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Motivation & Challenges O Machine learning library design )
"Motivations 1. Support standard math floating-point functions in
= Adaptive systems <« data patterns and OS events the kernel
"User-level ML engines are often too costly 2. Tensor-like representation for matrices and model
"A lightweight yet efficient ML engine — OS kernel parameters.
*Challenges " Adaptable forward and backprop; lock free d-s;
sExtensive kernel programming skills parallelism

"Debugging and fine-tuning ML models 3. Adapt to new Workloads
"Avoiding frequent user-kernel switches. " few-shot learning[1], active learning|2]

Operating System Integration 3
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User space vs. kernel space @ Reducing computation & memory overheads
= Offloading training and inference (sub us level) Computation and memory capping ®
" User-kernel memory mapped shared mode = Offloads the training to library threads saving the
. CoI.Iects c.nlata from the kernel space input data and the predictions for training
" Irains using user-space threads = Blocking mode process every single input data
" |nference runs in kernel spac.e l latency * Freq. of computation requests is high T overhead
= User-kernel shared lock-free circular buffers|3] = Dropping mode overruns unprocessed input data
" Easier developing, debugging, testing = May hurt training quality | overhead
Low Precision Training
Evaluation @ = x86 floating-point kernel_fpu_begin.
* Fine-tune mqg-deadline 1/O scheduler = context-switch T overhead

= To predict whether the I/O request will meet deadline
* The regression model predicts issue time for a given 1/0
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