Q\\\\ KMLib: Towards Machine Learning For Operating Systems

Stony Brook and Storage Components

University Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok
Department of Computer Science, Stony Brook University

Motivation & Challenges O Machine learning library design)
"Motivations 1. Support standard math floating-point functions in
= Adaptive systems <« data patterns and OS events the kernel
"User-level ML engines are often too costly 2. Tensor-like representation for matrices and model
"A lightweight yet efficient ML engine — OS kernel parameters.
*Challenges " Adaptable forward and backprop; lock free d-s;
sExtensive kernel programming skills parallelism

"Debugging and fine-tuning ML models 3. Adapt to new Workloads
"Avoiding frequent user-kernel switches. " few-shot learning[1], active learning|2]

Operating System Integration 3
User space %%%%
Kernel space
Xor Vi v kmlib =
é) l <
0S-ML Api) ’ duw
>
AT kmtib. ko ST
inference x) Kernel space
(P \ !
mg—-kmlib. ko :' | A, Iy l
| o (e f w , B
mg-kmlib.ko [« inference 0S-ML Api
Kernel Library User-Kernel shared Library
User space vs. kernel space @ Reducing computation & memory overheads
= Offloading training and inference (sub us level) Computation and memory capping ®
" User-kernel memory mapped shared mode = Offloads the training to library threads saving the
. CoI.Iects c.nlata from the kernel space input data and the predictions for training
" Irains using user-space threads = Blocking mode process every single input data
" |nference runs in kernel spac.e l latency * Freq. of computation requests is high T overhead
= User-kernel shared lock-free circular buffers|3] = Dropping mode overruns unprocessed input data
" Easier developing, debugging, testing = May hurt training quality | overhead
Low Precision Training
Evaluation @ = x86 floating-point kernel_fpu_begin.
* Fine-tune mqg-deadline 1/O scheduler = context-switch T overhead

= To predict whether the I/O request will meet deadline
* The regression model predicts issue time for a given 1/0

. L . References
" Normalized block number & Ordinalized operation . .
. _ [1] Wang, Y. and Yao, Q. Few-shot learning: A survey. arXiv
= Reduced the overall I/0 latency by 8%. [2] Settles, B. Active learning literature survey. Technical report,

= Tests on QEMU with synthetic workloads Ur?iversity of Wisconsin-Madison Department of Computer
= We wrote nearly 3,000 lines of C/C++ code (LoC). >ciences, 2009,

_ I | | [3] Desnoyers, M. and Dagenais, M. R. Lockless multi-core high-
User-space 'brary — 96KB Kernel module — 804KB throughput buffering scheme for kernel tracing. Operating

Systems Review, 46(3):65-81, 2012.

fsl.cs.stonybrook.edu/~umit lakgun@cs.stonybrook.edu

