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Motivation & Challenges Machine learning library design

1. Support standard math floating-point functions in 
the kernel

2. Tensor-like representation for matrices and model 
parameters.
▪ Adaptable forward and backprop; lock free d-s; 

parallelism
3. Adapt to new Workloads
▪ few-shot learning[1], active learning[2]

Operating System Integration

Kernel Library User-Kernel shared Library

User space vs. kernel space Reducing computation & memory overheads

Evaluation
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▪Motivations
▪Adaptive systems ← data patterns and OS events
▪User-level ML engines are often too costly
▪A lightweight yet efficient ML engine → OS kernel

▪Challenges
▪Extensive kernel programming skills
▪Debugging and fine-tuning ML models
▪Avoiding frequent user-kernel switches.

▪ Offloading training and inference (sub 𝜇𝑠 level) 
▪ User-kernel memory mapped shared mode
▪ Collects data from the kernel space 
▪ Trains using user-space threads 
▪ Inference runs in kernel space ↓ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

▪ User-kernel shared lock-free circular buffers[3]
▪ Easier developing, debugging, testing

Computation and memory capping
▪ Offloads the training to library threads saving the 

input data and the predictions for training
▪ Blocking mode process every single input data
▪ Freq. of computation requests is high ↑ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

▪ Dropping mode overruns unprocessed input data
▪ May hurt training quality ↓ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

Low Precision Training

▪ x86 floating-point kernel_fpu_begin.
▪ context-switch ↑ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑▪ Fine-tune mq-deadline I/O scheduler

▪ To predict whether the I/O request will meet deadline
▪ The regression model predicts issue time for a given I/O
▪ Normalized block number  & Ordinalized operation

▪ Predict with an accuracy of 74.62% 
▪ Reduced the overall I/O latency by 8%.

▪ Tests on QEMU with synthetic workloads
▪ We wrote nearly 3,000 lines of C/C++ code (LoC).
▪ User-space library → 96KB  Kernel module → 804KB


