
Inside the Linux Kernel Networking 143

Networking

Section Contents:

Overview

The Socket API

SKBuffs

Network Devices

Linux IP and TCP/UDP

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 144

Networking Overview

Networking presents several problems to an O/S:

Exposure to hostile, unvalidated activity

Complex asynchronous operations

Many protocols exist in many arrangements over
many transports

Performance is critical

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 145

Network Performance Issues

To maintain high performance:

Perform as few copies as possible

Perform copy+checksum

Align headers on cache boundaries

Keep interrupts enabled as much as possible

Cache all recent routing decisions

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 146

Networking Overview

We can define networking as a stack of interacting,
interchangeable components

Separate functionality from transport

Provide a uniform API layer

Enable modular implementation

Compare with the Streams model. . . (compromise
between modularity and performance)

Usenix Technical Conference, 2000



Inside the Linux Kernel Networking 147

Networking components

Socket API VFS

Socket layer

Protocol drivers

Device drivers

Queue Discipline (2.2+ only)

services
SKBuff

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 148

The Networking API

Linux implements a BSD Socket API:

Allocate a struct socket for each open socket

Associate a struct inode with each socket

The API is entirely portable between protocols

Use socket/inode strategy functions to implement
protocol-specific routines

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 149

The struct socket

A socket deals only with the API’s communication
endpoint. It contains:

Basic socket type information

Strategy function entry points

List of other sockets connected/awaiting connection

The socket encodes no information about the state of an
actual protocol

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 150

Moving data between layers

All networking data is built up and passed around in
struct sk_buff buffers.

All packets are stored contiguously

Data may be appended or prepended to the
sk_buff if space allows

Facilities are provided for easy queueing of
sk_buffs

Provide atomic (interrupt-safe) sk_buff operations

Usenix Technical Conference, 2000



Inside the Linux Kernel Networking 151

The SKBuff

Head
Tail Tailroom

Empty SKBuff

SKBuff in use

Head Tail

Data

Headroom

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 152

Network Device Drivers

Provide a standard interface to networking device drivers.
struct net device describes any single network
device, containing:

Interface name

Resources allocated to the device

Interface status

Device driver strategy routines

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 153

Getting data to a device driver

Sending is relatively simple. The device management
layer maintains one queue of sk_buffs for each priority
at each device.

dev_queue_xmit() queues a sk_buff to a device

If necessary, build driver-specific headers when packet is
queued (ARP)

Drop packets if driver queue length is exceeded (device’s
LINK STATE XOFF state bit is set to throttle output)

Send the packet only if the driver is idle

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 154

Getting data to a device driver: Scheduling

Under 2.2+, device transmit queues have a struct
Qdisc “queue discipline” to schedule packets.

Presents a standard interface for inserting/removing
packets on an output queue

net/sched/sch *.c implements multiple queuing
policies: FIFO, prioritised, traffic shaper. . .

net/sched/cls *.c implements multiple classifier
schemes: each packet can be selected on by route,
firewall rull or by more complex policies.

Usenix Technical Conference, 2000



Inside the Linux Kernel Networking 155

Getting data to a device driver: dst_entry

We maintain a dst_entry structure to identify recent
packet destinations, which:

Corresponds to a higher protocol’s routing decision
(eg. IP’s struct rtable)

Maintains:
– hh_cache pointer (for ARP resolution)
– Per-path protocol state (MTU)
– Rate limiting counters (RSVP)

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 156

Getting data from a device driver

Receiving data is harder: it is always received on an
interrupt.
2.2 deals with synchronisation issues are dealt with by using
the interrupt bottom-half

2.3 introduces the new softnet architecture:

Separate transmit and receive soft irqs are maintained for
each CPU

All net data structures are now properly SMP-spinlocked to
allow concurrent interrupts

Extensive use of r/w locks

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 157

Getting data from a device driver

The device driver receive path is first triggered in a
top-half hard interrupt:

Allocate a sk buff

Receive the packet into the sk buff and queue it
with netif_rx(), which:
– Adds the packet to the input queue for this CPU

(global backlog on 2.2)
– Raises the soft IRQ to process the queue

Usenix Technical Conference, 2000

Inside the Linux Kernel Networking 158

The Network Soft IRQ

net rx action (net bh on 2.2) must:

Send any outstanding queued packets to their
drivers/qdiscs

Roll through the backlog:
– Try to bridge or fastroute the packet first
– Fetch the protocol ID (set by the device driver)
– Pass the packet to the appropriate protocol: hash

protocol lists by protocol ID

Usenix Technical Conference, 2000



Inside the Linux Kernel Linux TCP/IP 159

Linux and TCP/IP

Multiple protocols are supported well in the kernel. IP is
just one, glued to the net stack with:

All network devices maintain multiple protocol-specific
pointers; for IP, use the per-device in_device (holds IP
addresses etc.) struct

The struct sock maintains much internal TCP-specific
information for active, bound connections:
– Sequence numbers
– Window/congestion control

Have one struct sock per connected struct socket

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 160

TCP/IP Components

ARP

UDPTCP

Socket interface

ICMP

IP
routing

Firewall chains

Route cache

Device drivers/QDisc

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 161

IP Device Interface

ip_rcv() handles all packets coming from the device
driver layers, and performs:

Accounting/Firewalling

Assignment to alias device

Reassembly of IP fragments

Delivery of packet to a local protocol handler, or

Forwarding of routable packets via ip_forward()

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 162

IP Routing Decisions

ip_rcv() needs to distinguish between packets
destined for the local machine and those to be forwarded.

Perform a full ip_route_input when we see the
packet

We only make one pass over the routing tables

The routing dst_entry is stored in the sk_buff

Finally, pass the skb to the input method in the
dst entry for forwarding or local delivery

Usenix Technical Conference, 2000



Inside the Linux Kernel Linux TCP/IP 163

IP Fragment Management

Manage incoming fragments by maintaining a cache of
incomplete datagrams:

Maintain a struct ipq for each incomplete
datagram

Maintain a struct ipfrag for each fragment

Hold all outstanding fragments on a ipq list, and all
ipqs on the ipq_hash hash table

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 164

IP Fragment Processing

Incoming IP fragments are passed to ip_defrag()
either on local delivery or if a netfilter module wants to
assemble fragments:

Search the ipqueue for an incomplete datagram
(ipq) which matches this packet, and create a new
ipq if necessary

Set a timer to expire the ipq in 30 seconds

When all fragments have arrived, call ip_glue() to
merge them, and return a new sk_buff

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 165

IP Forwarding

ip_forward() deals with packets not destined for a
local socket:

Use the sk_buff’s existing routing information to
work out the next hop

Generate diagnostic ICMP for unroutable packets

Call ip_send() to either fragment the packet, or
directly dev_queue_xmit() on the destination
interface

Simply drop packets if we don’t have enough memory

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 166

IP Routing

We maintain two separate routing databases:

the permanent FIB (Forwarding Information Base)
– Set up by the user
– Indexed by route mask, type-of-service, and

source address and interface;

a transient route cache.

Usenix Technical Conference, 2000



Inside the Linux Kernel Linux TCP/IP 167

The Route Cache

The struct rtable encodes and caches a single
routing decision:

ip_route_output returns a struct rtable
(processes like ICMP may want to know a route
before they have a sk buff to send)

ip_route_input sets the sk_buff route directly.

For performance, use a hash table to cache routes

If route not cached, pass it to ip_route_*_slow

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 168

The Route Database

FIB organisation is optimised for performance:

Group routes into zones according to the netmask
length

For each zone, maintain a separate 256-entry hash
table of routing nodes

Allow fib_node routing nodes to share as much
data (interface, protocol, metrics etc.) as possible via
shared fib_info

Allow update via netlink character device

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 169

NetFilter

The 2.3 kernel’s NetFilter code replaces the old
firewalling/NAT code:

Separate rule sets (iptables) for incoming; forwarded;
locally received; locally injected; and output packets, plus
user-defined iptables

A generic NF HOOK call can be called anywhere in any
network stack, specifying which iptable to run

New tables or rule types may be registered dynamically

Rules may return a verdict of accept or drop, and may also
modify or steal the sk buff

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 170

NetFilter uses

The NetFilter framework implements many pieces of the
old 2.2 IP stack:

Firewalling is accomplished by calling the filter iptable

The NAT iptable can be used to modify packets:
– source-address NAT is used to implement

masquerading
– dest-address NAT is used to implement

transparent proxying

Usenix Technical Conference, 2000



Inside the Linux Kernel Linux TCP/IP 171

IP Aliases

Kernel transparently supports IP aliases:

Autodetect interface names of the form “dev:num”

Link each alias to its root interface

Routing logic reroutes packets destined to an alias to
the root interface

ARP support is automatic for all defined interfaces

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 172

The Address Resolution Protocol

ARP is the protocol which resolves IP addresses into
ethernet HW addresses. The old style code
special-cased ARP:

struct arp_table maintains a single ARP entry

Maintain a hash table of ARP entries

Each entry references a list of sk_buffs held up for
this ARP request

ARP is called by the device’s rebuild_header()

Use netlink interface to the arpd user-mode cache

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 173

Neighbourhood maps

The ARP database is just one special case of a
neighbourhood table (also used for IPv6 neighbourhood
discovery):

struct neigh_table provides hashed lookup and
management of struct neighbours

Each neighbour references a hh_cache hardware
header for the link level

The ARP database creates provides neighbourhood
methods for ARP solicitation

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 174

The UDP Protocol

UDP has no connections: all we need to do is route
packets to open sockets.

Rely on the socket API layer to create sockets for us

Use udp v4 lookup() to identify the destination
socket for incoming packets

Maintain a per-protocol hash table of sockets

Maintain a single-entry last-used-socket cache

Transmitted packets go straight to the IP layer

Usenix Technical Conference, 2000



Inside the Linux Kernel Linux TCP/IP 175

The TCP Protocol

TCP has major differences from UDP, including:

Connections maintained: sockets have a backlog list
of pending connections

Many non-data types of packet to be dealt with:
maintain connection state machine

Data transport is reliable

Maintain flow rates and round-trip times for flow
control

Usenix Technical Conference, 2000

Inside the Linux Kernel Linux TCP/IP 176

TCP Reliable Data Stream

In order to present reliable communications to the API:

Keep sk_buffs on the struct sock write queue
until acknowledged

Retry transmits automatically on timeouts

Queue incoming packets until they can be presented
in order

Usenix Technical Conference, 2000


