
Trust Management for Web Services
Scott D. Stoller

Computer Science Department
Stony Brook University

stoller@cs.stonybrook.edu

Abstract—Service-Oriented Architecture (SOA) is increasingly
used in enterprise information systems, particularly in the form of
Web Services. This paper describes a practical trust management
system for Web Services that allows information in databases to
be used seamlessly and efficiently in trust management policies.

I. INTRODUCTION

Service-Oriented Architecture (SOA) is increasingly used in
enterprise information systems, particularly in the form of Web
Services. However, the access control mechanisms built into
current Web Services frameworks cannot express the complex
security policies of large organizations. As a result, much of
the access control for enterprise applications is implemented
in application-specific code. Security policies implemented
this way are more difficult and therefore more expensive to
write, read, verify, and maintain, compared to security poli-
cies in simpler, more declarative policy languages. Therefore,
we advocate extending the Web Services framework with
an application-independent access control mechanism that is
capable of expressing enterprise security policies.

A crucial requirement for the design of such a system is
support for the decentralized nature of enterprise systems.
The security policy and the information it uses come from
multiple sources, and the policy must specify which sources
are trusted for which decisions and information. This observa-
tion motivated work on trust management [1]. Another crucial
requirement for the design is convenient and efficient support
for policies that use information in relational databases.

No existing trust management framework satisfies these two
requirements. Most trust management frameworks are not de-
signed to integrate with Web Services or databases. PeerTrust
[2] is a trust management framework for the Semantic Web,
but it is not well suited for applications that heavily use
databases. iAccess [3] is a semantics-based trust management
framework with sophisticated trust negotiation, but use of
information in databases is not considered in its design.

This paper describes a trust management and trust nego-
tiation framework that satisfies these two requirements. The
design builds on the trust management framework for rela-
tional databases described in [4], which extends the original
trust management framework for relational databases in [5].
A key feature of the approach is that the policy language is a
relatively small extension of SQL. This has multiple benefits:

This work was supported in part by ONR under Grants N00014-07-1-0928
and N00014-09-1-0651, NSF under Grants CCF-0613913, CNS-0627447, and
CNS-0831298, and AFOSR under Grant FA0550-09-1-0481.

data stored in the database can conveniently and efficiently
be used in the policy; the implementation gets the benefits
of decades of work on efficient evaluation of SQL queries;
and the learning curve is small for people who already know
SQL. In contrast, the trust management frameworks mentioned
in the previous paragraph, including PeerTrust and iAccess,
have policy languages based on Datalog, which is elegant but
much less widely used.

II. SYSTEM ARCHITECTURE

A common architecture for an enterprise Web application
includes a Web services engine (server), on which application
Web services are deployed. Each Web service offers methods
that are invoked by clients using a remote invocation protocol,
such as SOAP. Application data is stored in a DBMS. We
assume the system has a public-key infrastructure (PKI). We
add two pieces to this typical architecture.

A trust management service deployed on the server provides
methods for using and managing (administering) the trust
management system. Informally, we classify the methods
in the trust management service API into two groups. The
first group contains methods useful for clients that want to
access application Web services; these clients use the trust
management service to obtain the necessary permissions. The
second group contains methods useful for clients that want to
manage (administer) the trust management policy. (Methods in
the first group are also useful for these clients). These methods
are used to manage the trust management policies for all the
Web Services, including the trust management service itself.
In this paper, the API is described in an informal notation; in
our prototype, the API is defined in WSDL.

An interceptor (handler) in the Web services engine en-
forces the trust management policy. The engine invokes the
interceptor on all incoming requests to invoke methods of the
Web service (e.g., SOAP request messages). The interceptor
queries the trust management policy and tells the engine to
permit or deny the request as appropriate.

Our prototype implementation uses Apache Axis2/Java on
Apache Tomcat, and MySQL (thanks to Raveesh Ahuja for
implementing the prototype). As a case study, we translated
the trust management policy for electronic health records
in [6] into our policy language. It is the largest and most
realistic formal trust management policy that we have seen.
The translation demonstrates that realistic trust management
policies can be expressed in our framework.



III. POLICY REPRESENTATION

The trust management policy for a Web service is defined by
the contents of SQL views called permission views. Permission
views may refer to regular tables and special tables called
certificate tables, or “certtables” for short. Permission views
and certtables are described in detail below.

A. Permission View

A permission view is, conceptually, a function from the
request details to the access control decision (permit or deny).
Let S.m denote a method m provided by a Web service S. The
“arguments” to the permission view for method S.m are stored
in a table named request_S_m, which contains columns
invoker (invoker’s public key) and invokerDN (invoker’s
distinguished name), plus columns corresponding to the ar-
guments of method S.m. The interceptor stores information
about the current request in this table before evaluating the
permission view, converting the XML representation of the
arguments to an appropriate SQL representation. If evaluation
of the permission view returns a non-empty result set, the
request is permitted; otherwise, it is denied. Views are defined
using the trust management service’s createView method.
Its prototype is createView(name, viewDef), where
name is the view name, and viewDef is the body of an
SQL view definition.

For example, consider a Web service named HRsvc that
provides access to electronic health records. The service
defines a method agentViewItem(byte[] patient,
int itemID) that allows a patient’s agent (e.g., spouse) to
view an item in the patient’s health records. The agent table
contains a record with s in the subject column and p in the
patient column if s is an agent for p. A sample permission
view for this method is as follows, where requestAVI
abbreviates request_HRsvc_agentViewItem.
createView("permView_HRsvc_agentViewItem",
"SELECT * FROM agent, requestAVI
WHERE agent.subject = requestAVI.invoker

&&
agent.patient = requestAVI.patient

LIMIT 1")
This says that an invocation of agentViewItem is permitted
if the invoker is in the set of agents of the patient identified
by the patient argument of agentViewItem.

B. Certificate Table (Certtable)

A certificate table, abbreviated as certtable, is a special
kind of table that stores information from specified trusted
sources (issuers) [4]. Only information obtained in signed
X.509 attribute certificates can be inserted in certtables. An
attribute certificate contains a list of attribute-value pairs, the
issuer’s public key, and a digital signature. One of the attributes
must be subject; the other attributes provide information
about the subject.

A certtable is defined by invoking the trust
management service’s method createCerttable(name,
colDefs, constraint, issuers, fetchFrom,

createCerttable(name, colDefs,
constraint, issuers, fetchFrom,
releaseTo)

createView(name, viewDef)

grant(operation, resource, grantees,
grantName)

revoke(grantName)

setPermView(service, method, view)

Fig. 1. Trust Management Service API: Methods for Policy Administrators

releaseTo), where name is the name of the certtable,
colDefs is a comma-separated list of column definitions of
the form name type (as in SQL), constraint is a Boolean
expression of the form allowed in the check clause in an
SQL create table statement, and issuers specifies the
trusted sources for information stored in this table (in other
words, only information from those sources may be inserted
in this table). issuers may be a public key, identifying
a specific issuer, or a query of the form select column
from ctv, where ctv is the name of a certtable, table, or
view. The second form means that the users whose public
keys are returned by the query are trusted issuers for this
certtable. The fetchFrom and releaseTo arguments
are described in Section VI. When the allowed issuers are
specified using a certtable, table, or view ctv, if records for
an issuer are removed from ctv, certificates issued by that
issuer are automatically removed from the certtable.

Every certtable contains the following columns, even if
they are not explicitly declared: subject, subjectDN,
issuer, expiration, and certificate. The
certificate column contains the X.509 certificate
from which the information in the record was obtained.

For example, if doctors are trusted issuers for information
about agents, the agent certtable could be defined by (the
certType attribute makes the certificate’s purpose explicit)
createCerttable(
name="agent",
colDefs="certType varchar(30),

patient varchar(1000)",
constraint="certType=’agent’",
issuers="select subject from doctor",
fetchFrom="issuer",
releaseTo="GP for same patient" )

IV. TRUST MANAGEMENT SERVICE API: METHODS FOR
POLICY ADMINISTRATORS

Figure 1 summarizes methods in the trust management
service API that are useful (in addition to the methods in
Section V) for managing the trust management policy.

The grant method in Figure 1 is used to grant permissions
for invoking methods of the trust management service. Note
that the grant method is not used to grant permissions
for invoking methods of application Web services; that is
accomplished by defining appropriate permission views and



Operation Resource
create certtable or view
delete name of certtable
insert name of certtable
grant pair: operation and resource
requestPerm none
revoke name of grant
setPermView pair: names of service and method

Fig. 2. Operations and resources used in grant table

updating contents of certtables or tables used in permission
views. For methods of the trust management service, the
permission views are fixed by the design of the framework;
granting permissions for those methods is accomplished by
updating the contents of a table, called the grant table,
used in those views. Administrators update the contents of
the grant table using the grant and revoke methods.

The grant table has the following columns: operation
(operation for which permission is granted), resource (re-
source on which the operation is permitted), grantees
(users to whom permission is granted), and grantName
(unique identifier for this record). We refer to an operation and
resource together as a “permission” or “privilege”. The use of
operation names, instead of method names, in permissions, is a
convenient abstraction. grantees is the name of a certtable,
table, or view whose subject column contains the identities
(public keys) of the grantees. Figure 2 shows the allowed
values of operation and the corresponding allowed values
of resource. In resources, the special value “*”, called
wildcard, can be used to represent all (other) allowed values.
The resource for the grant operation is a pair containing an
operation and a resource; this is a recursive definition.
createCerttable is described in Section III-B. The

permission view for createCerttable checks that (i.e.,
returns a non-empty result set if) the invoker has permission
for create on certtable. createCerttable updates
the grant table to give the invoker appropriate permissions
on the new certtable. All certtables are owned by a database
account associated with the trust management service, not by
the invoker of createCerttable (who might not even
have a database account); this is also true for views created
using createView.
createView is described in Section III-A. The permission

view for createView checks that the invoker has permission
for create on view. createView updates the grant
table to give the invoker select and grant permissions
on the new view.
grant inserts a record in the grant table. The arguments

of this method correspond directly to the columns of the
grant table. The permission view for grant checks that the
invoker has permission for grant on the pair containing the
specified operation and resource. grant updates the grant
table to give the invoker revoke permission on the new grant.
revoke removes the record with the specified name in the

grantName column from the grant table. The permission

insertAttribCert(cert, certtable)

insertPKcert(cert, certtable)

deleteCert(certtable, constraint)

getCert(col, val, colDefs, constraint)

requestPerm(service, method)

Fig. 3. Trust Management Service API: Methods for Application Clients
(and Policy Administrators)

view for revoke checks that the invoker has permission for
revoke on the named grant.
setPermView sets the named view to be the permission

view for the specified method of the specified application Web
service, by updating a table maintained by the trust manage-
ment service. The permission view for setPermView checks
that the invoker has permission for setPermView on the pair
containing the specified service and method.

V. TRUST MANAGEMENT SERVICE API: METHODS FOR
APPLICATION CLIENTS

Figure 3 lists methods in the trust management API that are
useful for application clients (and policy administrators).
insertAttribCert inserts a record in the specified

certtable. The new record contains the attribute values from the
specified X.509 attribute certificate cert; the certificate itself is
stored in the certificate column. The permission view for
insertAttribCert checks that the invoker has insert
permission on the specified certtable. The insertion succeeds
if (1) cert has a valid signature, (2) cert contains attributes
corresponding to all of the columns in the certtable (the cer-
tificate may contain other attributes as well), (3) cert’s issuer
is allowed by the certtable’s issuer specification, and (4) the
attribute values in cert satisfy the certtable’s constraint. If
the certtable argument is the empty string, the certificate
is inserted in all certtables on which the invoker has insert
permission and for which the above conditions are satisfied.
insertPKcert is similar to insertAttribCert, ex-

cept that the argument is an X.509 public-key certificate, which
is treated as an attribute certificate containing only subject
(subject’s public key), subjectDN (subject’s distinguished
name), issuer, and expiration attributes.
deleteCert deletes records satisfying the specified con-

straint from the specified certtable. The constraint is a Boolean
expression of the form allowed in SQL delete statements.
The permission view checks that the invoker has permission
for delete on the specified certtable.
getCert(col, val, colDefs, constraint) returns all

certificates, stored in any certtable, that satisfy the criteria
indicated by the method arguments. Specifically, it returns
certificates that (1) have an attribute named col with value
val, (2) contain attributes corresponding to all of the columns
in colDefs, (3) satisfy the constraint on the attribute values,
and (4) are releasable to the invoker, as defined in Section VI.
requestPerm attempts to provide the invoker with per-

mission to invoke the specified method of the specified service,



by fetching relevant attribute certificates, using the algorithm
in Section VI. The permission view checks that the invoker
has requestPerm.

VI. CERTIFICATE FETCHING AND TRUST NEGOTIATION

Users can obtain desired permissions by explicitly inserting
certificates in certtables. However, relying on users to do this
is usually impractical. Our trust management service supports
automated fetching of certificates from servers indicated in the
policy. This is sometimes called credential discovery [7].

The fetchFrom argument of createCerttable (see
Figure 1) specifies a user from whom the trust manager should
request certificates when a desired certificate is not already
present in the certtable. The legal values are: "" (do not fetch
certificates for this certtable); "issuer" (request certificates
from the users specified by the issuers argument for this
certtable); and subject (request certificates from the subject
of the desired certificate). The trust management service
fetches certificates from a user by invoking the getCert
method on the specified user’s home server. In our prototype, a
user’s home server is named in the user’s public-key certificate;
alternatively, a directory service could be used.

The releaseTo argument of createCerttable de-
fines the release policy for the certtable. It specifies the
set of users to whom certificates in the certtable may be
released via (i.e., returned from) getCert. The legal values
of releaseTo, and the sets of users they denote, are: "" (no
one), public (everyone), a public key (that user), ctv (the
name of a certtable or view, denoting the subjects of records
therein), and ctv for same col (the subjects of records r in
ctv such that column col of r has the same value as attribute
r in the certificate being considered for release).

Examples of fetchFrom and releaseto appear
in the definition of the agent certtable in Section
III-B. releaseTo="GP for same patient" means
that agent certificates for a patient may be released to the
patient’s general practitioner (GP). This assumes the certtable
GP contains a record with subject = c and patient = p
if clinician c is patient p’s general practitioner.

The trust management service uses certificate fetching—in
the form of calls to getCert—in multiple places. (1) In the
algorithms for insertAttribCert and insertPKcert,
if the issuers of the target certtable t are specified by a certtable
or view ctv, and there is no record in ctv for the issuer i
of the certificate being inserted, certificate fetching is used
to try to obtain certificates about i that establish that i is
a trusted issuer for t. This is done recursively: if ctv is a
certtable, certificates are fetched for its issuers certtable
(if necessary), and so on. (2) In the algorithm for getCert
itself, if a candidate certificate cannot be released because there
is no suitable record for the invoker in a certtable t used in the
relevant releaseTo policy, the algorithm calls getCert to
try to obtain such a certificate. This can lead to a distributed
“chain reaction” of calls to getCert. Such interactions are
usually called trust negotiation. (3) Certificate fetching is used
in the algorithm for requestPerm, as described next.

requestPerm(service, method) works as follows.
If the specified service is the trust management service
TMsvc, let T be the set of certtables that appear in the
grantees column of any record in the grant table with
the specified method in the operation column; otherwise,
let T be the set of certtables t such that t or a view that
depends on t appears in the permission view for the specified
method of the specified service.

For each certtable t in T , the trust management ser-
vice tries to obtain certificates whose subject is the
invoker and that can be inserted in certtable t. It does
this by invoking getCert(subject, u, colDefs(t),
constraint(t)) on the home servers of users indicated by
fetchFrom(t), where colDefs(t), constraint(t),
and fetchFrom(t) return the colDefs, constraint,
and fetchFrom arguments, respectively, from t’s definition.
Furthermore, if it receives a certificate c that cannot be inserted
in the target certtable t because there is no record for c’s issuer
i in the certtable or view (if any) in issuers(t), it uses cer-
tificate fetching as described above for insertAttribCert
to try to establish that i is an issuer for t.

VII. NESTED SERVICE CALLS

SOAs often lead to nested service calls: a server may
invoke other services while processing a request, those other
services may utilize yet other services, etc. To support secure
processing of nested service calls, our system keeps track of
the calling context of each request—a sequence of public keys
identifying the services in the chain of nested calls that led to
this request. We extend request tables with a context
column, and we extend the interceptor for incoming calls to
extract the calling context from the SOAP header and store it
in the context column of the request table. The calling
context can be used freely in permission views.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” ACM Transactions on
Computer Systems, vol. 10, no. 4, pp. 265–310, Nov. 1992.

[2] W. Nejdl, D. Olmedilla, and M. Winslett, “Peertrust: Automated trust
negotiation for peers on the semantic Web,” in Proc. 2004 Workshop
on Secure Data Management (SDM), ser. Lecture Notes in Computer
Science, vol. 3178. Springer-Verlag, 2004, pp. 118–132.

[3] H. Koshutanski and F. Massacci, “Interactive access control for auto-
nomic systems: from theory to implementation,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 3, no. 3, Aug. 2008.

[4] S. D. Stoller, “Trust management and trust negotiation in an extension
of SQL,” in Proc. 4th International Symposium on Trustworthy Global
Computing (TGC 2008), ser. Lecture Notes in Computer Science, vol.
5474. Springer-Verlag, Nov. 2009, pp. 186–200.

[5] S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati,
“Trust management services in relational databases,” in Proc. 2nd ACM
Symposium on InformAtion, Computer and Communications Security
(ASIACCS ’07). ACM, 2007, pp. 149–160.

[6] M. Y. Becker, “Cassandra: Flexible trust management and its application
to electronic health records,” Ph.D. dissertation, University of Cambridge,
Oct. 2005.

[7] N. Li, W. H. Winsborough, and J. C. Mitchell, “Distributed credential
chain discovery in trust management,” Journal of Computer Security,
vol. 11, no. 1, pp. 35–86, 2003.


