On Incremental File System Development

EREZ ZADOK, RAKESH IYER, NIKOLAI JOUKOV, GOPALAN SIVATHANU, AND
CHARLES P. WRIGHT

Developing file systems from scratch is difficult and error prone. Layered, or stackable, file
systems are a powerful technique to incrementally extend the functionality of existing file systems
on commodity OSes at runtime. In this paper, we analyze the evolution of layering from historical
models to what is found in four different present day commodity OSes: Solaris, FreeBSD, Linux,
and Microsoft Windows. We classify layered file systems into five types based on their functionality
and identify the requirements that each class imposes on the OS. We then present five major design
issues that we encountered during our experience of developing over twenty layered file systems on
four OSes. We discuss how we have addressed each of these issues on current OSes, and present
insights into useful OS and VFS features that would provide future developers more versatile
solutions for incremental file system development.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhance-
ment—~Portability; D.2.13 [Software Engineering]: Reusable Software—Reuse models; D.4.3 [Operating Sys-
tems]: File Systems Management—File organization; D.4.7 [Operating Systems]: Organization and Design

General Terms: Design
Additional Key Words and Phrases: Layered File Systems, Stackable File Systems, VFS, Vnode,
1/0 Manager, IRP, Extensibility

1. INTRODUCTION

Data management is a fundamental facility provided by the operating system (OS). File
systems are tasked with the bulk of data management, including storing data on disk (or
over the network) and naming (i.e., translating a user-visible name such as /usr/src
into an on-disk object). File systems are complex, and it is difficult to enhance them.
Furthermore, OS vendors are reluctant to make major changes to a file system, because
file system bugs have the potential to corrupt all data on a machine. Because file system
development is so difficult, extending file system functionality in an incremental manner
is valuable. Incremental development also makes it possible for a third-party software
developer to release file system improvements, without developing a whole file system
from scratch.

Originally, file systems were thoroughly integrated into the OS, and system calls di-
rectly invoked file system methods. This architecture made it difficult to add multiple file
systems. The introduction of a virtual node or vnode provided a layer of abstraction that
separates the core of the OS from file systems [Kleiman 1986]. Each file is represented in

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 2006 ACM 1533-3077/2006/0000-0001 $5.00

ACM Transactions on Storage, Vol. 2, No. 2, May 2006, Pages 1-33.

2 . Zadok et al.

memory by a vnode. A vnode has an operations vector that defines several operations that
the OS can call, thereby allowing the OS to add and remove types of file systems at run-
time. Most current OSes use something similar to the vnode interface, and the number of
file systems supported by the OS has grown accordingly. For example, Linux 2.6 supports
over 30 file systems and many more are maintained outside of the official kernel tree.

Clearly defining the interface between the OS and file systems makes interposition pos-
sible. A layered, or stackable, file system creates a vnode with its own operations vector
to be interposed on another vnode. Each time one of the layered file system’s operations
is invoked, the layered file system maps its own vnode to a lower-level vnode, and then
calls the lower-level vnode’s operation. To add functionality, the layered file system can
perform additional operations before or after the lower-level operation (e.g., encrypting
data before a write or decrypting data after a read). The key advantage of layered file
systems is that they can change the functionality of a commodity OS at runtime so hard-to-
develop lower-level file systems do not need to be changed. This is important, because OS
developers often resist change, especially to file systems where bugs can cause data loss.

Rosenthal was among the first to propose layering as a method of extending file sys-
tems [Rosenthal 1990; 1992]. To enable layering, Rosenthal radically changed the VFES in-
ternals of SunOS. Each public vnode field was converted into a method; and all knowledge
of vnode types (e.g., directory vs. regular file) was removed from the core OS. Researchers
at UCLA independently developed another layering infrastructure [Heidemann and Popek
1991; 1994] that placed an emphasis on light-weight layers and extensibility. The original
pioneers of layering envisioned creating building blocks that could be composed together
to create more sophisticated and rich file systems. For example, the directory-name lookup
cache (DNLC) could simply be implemented as a file system layer, which returns results
on a cache hit, but passes operations down on a miss [Skinner and Wong 1993].

Layering has not commonly been used to create and compose building-block file sys-
tems, but instead has been widely used to add functionality rapidly and portably to existing
file systems. Many applications of layered file system are features that could be imple-
mented as part of the VES (e.g., unification), but for practical reasons it is easier to develop
them as layered file systems. Several OSes have been designed to support layered file sys-
tems, including Solaris, FreeBSD, and Windows. Several layered file systems are available
for Linux, even though it was not originally designed to support them. Many users use lay-
ered file systems unknowingly as part of Antivirus solutions [Symantec 2004; Miretskiy
et al. 2004], and Windows XP’s system restore feature [Harder 2001]. On Unix, a null-
layer file system is used to provide support for accessing one directory through multiple
paths. When the layer additionally modifies the data, useful new functionality like encryp-
tion [Corner and Noble 2002; Halcrow 2004] or compression [Zadok et al. 2001] can be
added. Another class of layered file systems, called fan out, operates directly on top of
several lower-level file systems. For example, unification file systems merge the contents
of several directories [Pendry and McKusick 1995; Wright et al. 2006]. Fanout file systems
can also be used for replication, load-balancing, failover, snapshotting, and caching.

The authors of this paper have over fifteen years of combined experience developing
layered file systems on four OSes: Solaris, FreeBSD, Linux, and Windows. We have
developed more than twenty layered file systems that provide encryption, compression,
versioning, tracing, antivirus, unification, snapshotting, replication, checksumming, and
more.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 3

The rest of this paper is organized as follows. In Section 2 we survey alternative tech-
niques to enhance file system functionality. In Section 3 we describe four models of layered
file system development. We then proceed to describe five broad classes of layered file sys-
tems in Section 4. In Section 5 we describe five general problems and their solutions that
are useful for all types of layered file systems. We conclude in Section 6 with guiding
principles for future OS and layered file system developers.

2. RELATED WORK

In this section we describe alternatives to achieve the extensibility offered by layered file
systems. We discuss four classes of related works based on the level at which extensibility
is achieved: in hardware, in the device driver, at the system-call level, or in user-level
programs. We have a detailed discussion of layered file system infrastructures in Section 3.

Hardware level. Slice [Anderson et al. 2000] is a storage system architecture for high
speed networks with network-attached block storage. Slice interposes a piece of code
called a switching filter in the network hardware to route packets among a group of servers.
Slice appears to the upper level as a single block-oriented storage device. High-level con-
trol information (e.g., files) is unavailable to interposition code at the hardware level, and
therefore cannot perform optimizations for specific devices.

Semantically-Smart Disk Systems (SDSs) [Sivathanu et al. 2003] attempt to provide
file-system-like functionality without modifying the file system. Knowledge of a specific
file system is embedded into the storage device, and the device provides additional func-
tionality that would traditionally be implemented in the file system. Such systems are
relatively easy to deploy, because they do not require modifications to existing file system
code. Layered file systems share a similar goal in terms of reusing and leveraging existing
infrastructures. Unlike a layered file system, an SDS is closely tied to the format of the file
system running on top of it, so porting SDSs to new file systems is difficult.

Device-driver level. Software RAID and Logical Volume Managers (LVMs) introduce
another layer of abstraction between the storage hardware and the file system. They provide
additional features such as increased reliability and performance, while appearing to the
file system as a simple disk, which makes them easy to deploy in existing infrastructure.
For example, on Linux a Cryptoloop devices uses a loopback block driver to encrypt data
stored on a disk or in a file. A new file system is then created within the Cryptoloop device.
Any file system can run on top of a block device-driver extension. However, block device
extensions cannot exploit the control information (e.g., names) that is available at the file
system level.

System-call level. SLIC [Ghormley et al. 1998] is a protected extensibility system for
OSes that uses interposition techniques to enable the addition of a large class of untrusted
extensions to existing code. Several OS extensions can be implemented using SLIC such
as encryption file systems and a protected environment for binary execution. The Inter-
position Agents toolkit [Jones 1993], developed by Microsoft Research, allows a user’s
code to be written in terms of high-level objects provided by this interface. The toolkit
was designed to ease interposing code between the clients and the instances of the system
interface to facilitate adding new functionality like file reference tracing, customizable file
system views, etc. to existing systems. Similarly, Mediating Connectors [Balzer and Gold-
man 1999] is a system call (and library call) wrapper mechanism for Windows NT that

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

4 . Zadok et al.

allows users to trap API calls.

System call interposition techniques rely on the communication channel between user-
space and the kernel, and hence cannot handle operations that bypass that channel (e.g.,
mmap operations and their associated page faults). Also, interposing at the system call
level results in overhead for all system calls even if only a subset of kernel components
(e.g., the file system) need to be interposed.

User level. Gray-box Information and Control Layers (ICL) [Arpaci-Dusseau and Arpaci-
Dusseau 2001] extend the functionality of OSes by acquiring information about their in-
ternal state. ICLs provide OS-like functionality without modifying existing OS code.
Dust [Burnett et al. 2002] is a direct application of ICLs that uses gray-box knowledge
of the OS’s buffer cache management policy to optimize application performance. For ex-
ample, if a Web server first services Web pages that are believed to be in the OS buffer
cache, then both average response time and throughput can be improved.

Blaze’s CFS is a cryptographic file system that is implemented as a user-level NFS
server [Blaze 1993]. The OS’s unmodified NFS client mounts the NFS server over the
loopback network interface. The SFS toolkit [Maziéres 2001] aims to simplify Unix file
system extensibility by allowing development of file systems at the user level. Using the
toolkit, one can implement a simple user-level NFS server and redirect local file system
operations into the user level implementation. The popularity of the SFS toolkit demon-
strates that developers have observed the complexity of modifying existing time-tested file
systems. SiRiUS [Goh et al. 2003], a file system for securing remote untrusted storage,
and Dabek’s CFS [Dabek et al. 2001], a wide area cooperative file system, were built using
the SFS toolkit.

Filesystem in Userspace [Szeredi 2005], or FUSE, is a hybrid approach that consists
of two parts: (1) a standard kernel-level file system which passes calls to a user-level
demon, and (2) a library to easily develop file-system—specific FUSE demons. Developing
new file systems with FUSE is relatively simple because the user-level demon can issue
normal system calls (e.g., read) to service a VES call (e.g., vEfs_read). The main two
disadvantages of a FUSE file system are that (1) performance is limited by crossing the
user-kernel boundary, and (2) the file system can only use FUSE’s API, which closely
matches the VFS API, whereas kernel file systems may access a richer kernel API (e.g.,
for process and memory management).

Sun designed and developed Spring as an object-oriented microkernel OS. Spring’s
architecture allowed various components, including file systems, to be transparently ex-
tended with user libraries [Khalidi and Nelson 1993]. Spring’s design was radically differ-
ent from current commodity OSes. As it was research prototype, it was not deployed
in real systems. K42 [Appavoo et al. 2002] is a new OS under development at IBM
which incorporates innovative mechanisms and modern programming technologies. Vari-
ous system functionalities can be extended at the user level through libraries by providing
a microkernel-like interface. The Exokernel architecture [Engler et al. 1995] implements
minimal components in the kernel and allows user-level applications to customize OS func-
tionality using library OSes.

In general, user-level extensions are easy to implement, but their performance is not as
good as kernel extensions because the former involve data copies between the user level
and the kernel level, as well as additional context switches.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 5

3. LAYERING MODELS

On Unix, the idea of layering evolved from the vnode interface [Kleiman 1986], initially
implemented in SunOS in 1984. Most of today’s layered file system models use a vnode
interface. Microsoft Windows, on the other hand, uses a message-passing layering model.
We describe three Unix models and the Windows model here; these cover the full range
of popular or commodity models available. In Section 3.1 we describe Rosenthal’s object-
oriented model. In Section 3.2 we describe the model contemporaneously developed at
UCLA. In Section 3.3 we describe the layering model found in three modern Unix systems
(Linux, FreeBSD, and Solaris). In Section 3.4 we describe the Windows 2000 and Win-
dows XP message-passing layering model. We present a summary table of the features
offered by each layering model in Section 3.5.

3.1 Rosenthal’s Layering Model

In 1990, Rosenthal developed an experimental prototype of a new VFES for SunOS [Rosen-
thal 1990] with the goal of layering vnodes, so that file systems can be composed of build-
ing blocks. Rosenthal identified two distinct types of layering. The first, shown in Fig-
ure 1(a), is interposition in which a higher-level vnode is called before the lower-level vn-
ode, and can modify the lower-level vnode’s arguments, operation, and results. Today, this
is commonly called linear layering or linear stacking. The second, shown in Figure 1(b)
is composition in which a higher-level vnode performs operations on several lower-level
vnodes. Today, this is commonly called fan out.

User User User

(Vnode B) (Vnode B) (VnodeC) (VnodeB)

(a) Linear (b) Fan out (¢) Fanin

Fig. 1. Types of layering. In a linear layer all operations are intercepted by the top-level vnode, A, and A passes
it to a single vnode below. In fan-out, all operations go through the top-level vnode, A, but there are two or more
lower-level vnodes. In fan-in, some operations go through the top-level vnode, A, before going to the lower-level
vnode, B, but some operations can bypass A and directly access B.

Rosenthal introduced two key abstractions to support vnode layering: push and pop for
inserting and removing vnodes from a stack. All vnode operations go through the highest-
level vnode. Rosenthal replaced all visible attributes in the vnode structure with methods
so that layered file systems could intercept them. Push inserts a vnode at the top of a stack
of vnodes, so that all operations destined for the stack of vnodes go to the new top vnode.
The top vnode may in turn call the vnodes that are below it. Pop performs the opposite
operation: the top vnode from a stack is removed and operations go directly to the lower-
level vnode. Two new fields were added to the vnode structure: v_top and v_above.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

6 . Zadok et al.

The v_above pointer points to the vnode that is directly above this one in the stack.
The v_top pointer points to the highest level vnode in the stack. All vnode operations
go through the highest-level vnode, hence every vnode in the stack essentially becomes
an alias to the highest-level vnode. Unfortunately, this prevents fan-in access (shown in
Figure 1(c)), in which a user process accesses the lower-level file system directly. Fan-
in access is necessary when applications need to access unmodified data; for example,
a backup program should write encrypted data (stored on the lower-level file system) to
tape, not the unencrypted data (accessible through the top layer). Rosenthal also suggested
several layered file system building blocks, but did not implement any of them for his
prototype.

Rosenthal proposed a set of requirements for a layered vnode interface [Rosenthal 1992].
To support interposition, he concluded that the OS must support replacing a vnode’s op-
erations vector and private data for each interposer. Moreover, all vnode operations must
be mitigated through the operations vector. To support composition, Rosenthal concluded
that vnodes must support transactions. The vnode interfaces assumes that each operation
is atomic [Kleiman 1986]. However, to compose two file systems together, two distinct
lower-level vnode operations must be called; thus the overall operation is not atomic.

Later, a vnode interface for SunOS based on Rosenthal’s interposition and several exam-
ple file systems were developed [Skinner and Wong 1993]. Of particular note is that some
existing VFS operations took multiple vnode arguments, making it impossible to determine
which vnode’s operations vector should handle the operation. For example, 1 ink would
take two vnode arguments, the parent directory and the vnode to insert into that directory.
To make each vnode control all of its operations, Skinner and Wong decomposed these
larger vnode operations into smaller operations to manage vnode link counts, to update di-
rectory entries, and to create objects. Skinner and Wong’s prototype dealt with issues that
Rosenthal did not, including concurrency, locking, and per-mount operations. They also
developed file system components in a layered manner. Skinner and Wong’s implementa-
tion of mount and unmount is a particularly elegant example of push and pop. The OS’s
name-lookup code no longer needs special code for mount points. The root vnode of the
file system to be mounted is simply pushed on top of the covered vnode. To unmount a file
system, its root vnode is simply popped from the stack. The directory-name—lookup cache
was also implemented as an interposition layer.

3.2 UCLA’s Layering Model

In the early 1990s, Heidemann and Popek also developed an infrastructure for layered file
system development at UCLA [Heidemann and Popek 1991; 1994]. The UCLA model
emphasized general VFS extensibility and the ability to compose many small and efficient
building block layers into more sophisticated file system services. The UCLA model sug-
gests that each separate service should be its own layer. For example, UFS should be
divided into at least three different layers: (1) managing disk partitions, (2) a file storage
layer providing arbitrary-length files referenced by a unique identifier (i.e., inode number),
and (3) a hierarchical directory component. Breaking up a file system like UFS would
allow interposition at several points. For example, an intrusion-detection layer could be
inserted above the directory component so it has access to names, but a compression layer
could be inserted between the naming layer and the file storage layer to avoid the imple-
mentation details of hard links.

To provide extensibility, the UCLA model does not have a fixed set of operations. In-

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 7

stead, each file system provides its own set of operations, and the total set of operations is
the union of all file systems’ operations. If a file system does not support a given opera-
tion, then a generic routine for that file system is called. This routine could, for example,
simply return an “Operation not supported” error. However, for a layered file system, a
generic bypass routine can be used. To provide operations with arbitrary arguments, the
UCLA interface transforms all of an operation’s arguments into a single structure of argu-
ments. Along with the structure, meta-data is passed to the operation that identifies each
argument’s offset and type. Using this meta-data, the bypass routine can generically map
its own vnodes to lower-level vnodes and invoke the lower-level operation.

The UCLA model uses mount and unmount to instantiate a layered file system. The
existing mount operation fits well for two reasons: (1) it creates a new subtree of objects
within the file system name space, and (2) creation of subtrees usually requires an existing
file system object (e.g., to mount a UFS file system you need a device node). A file-system
layer often accesses an existing directory in much the same way that UFS uses a device.
For example, to mount an encryption file system, the path to the encrypted data is used.

Caching is essential to provide good performance, but can pose problems if two or more
layers cache an object. For example, if two layers concurrently cache the same page or
vnode, and one modifies it, then the other one would read stale data. Similarly, if both
of them modify the page or vnode, then one of them would lose its update. Heidemann
developed a prototype general-purpose cache manager that provided coherent access to all
file system layers [Heidemann and Popek 1995]. The UCLA cache manager requires lay-
ers to request either shared or exclusive ownership of an object before caching it. When
required, the cache manager revokes the existing layers’ ownership using a callback. In
most cases, the cache manager automatically determines when two objects represent the
same data. However, if layers may change the semantics of the data, then the cache man-
ager cannot correlate the upper-level and lower-level file’s position. In these cases, the
cache manager treats the upper-level and lower-level objects as two distinct objects, and
all ownership requests for either object are sent to the layer that changes the semantics.
The semantic-changing layer can then invoke the correct callbacks based on its knowledge
of the relationship between the original and transformed data.

The Ficus replicated file system and several course projects (e.g., encryption and com-
pression layers) were developed using the UCLA model [Guy et al. 1990].

3.3 Layering in Modern Unix Systems

In this section we describe layering in three modern Unix-based OSes: Solaris, FreeBSD,
and Linux. We discuss their pros and cons in terms of ease of development and perfor-
mance. All three systems use the vnode interface to enable layering functionality, but they
have key implementation differences that influence development ease and performance.

Solaris. The architecture of the Solaris VFS is nearly identical to the classic vnode
architecture. Each vnode has a fixed operations vector. Each operation must be imple-
mented by every file system (undefined operations are not permitted). Generic operations
for returning “operation not supported” or in some cases success are available. Mutable
attributes such as size, access time, etc. are not part of vnode fields; instead, the vnode
operations include functions for managing such attributes.

The Solaris loopback file system, Lofs [SMCC 1992], is a null pass-through layer that
layers only on directory vnodes. Thus, for regular files on Lofs, vnode objects are not

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

8 . Zadok et al.

duplicated. Because Lofs does not layer on file vnodes, the data pages of files are not
duplicated, resulting in more efficient memory utilization. However, this makes it harder
to extend Lofs to provide functionality like encryption, where two different page contents
need to be maintained at the lower level and the layered level.

CacheFS [SunSoft 1994] is a layered fan-out file system in Solaris which can mount on
top of two lower level directories, the source and the cache directory. When files in the
source directory are accessed through CacheFS, they are copied into the root of the cache
directory and indexed using a numeric identifier.

FreeBSD. The FreeBSD vnode interface has extensibility based on the UCLA model.
FreeBSD allows dynamic addition of vnode operations. While activating a file system,
the kernel registers the set of vnode operations that the file system supports, and builds an
operation vector for each file system that contains the union of all operations supported
by any file system. File systems provide default routines for operations that they do not
support. FreeBSD uses packed arguments so layers can generically bypass operations as
in the UCLA model.

FreeBSD’s version of the loopback file system is called nullfs [Pendry and McKusick
1995]. It is a simple file system layer and makes no transformations on its arguments, just
passing the requests it receives to the lower file system. FreeBSD’s union mounts [Pendry
and McKusick 1995] logically merge the directories that they are mounted on.

Compared to Solaris (and Linux), FreeBSD has the most versatile support for layering
at the file system level. Its architecture allows new vnode operations to be created dy-
namically. Packing function arguments in an argument structure allows layers to bypass
operations that they do not need to intercept easily.

Linux. Linux does not have native support for layered file systems. The Linux VES was
designed to make adding file systems relatively simple by separating generic file system
code from the individual file system implementations. A file system may choose not to
implement a method, and the VFS itself provides a sensible default. For example, a file
system can use generic routines for most data-oriented operations (i.e., reading from and
writing to files, including via mmap), and only needs to provide two primitive operations
to read and write a block from the file. This trend of extracting more and more abstractions
is on the rise in the new versions of the Linux kernel. Layered file systems are usually not
able to use generic methods, because they need to pass the operation to the lower-level file
system, but generic operations do not make it more difficult to develop layered file systems.
On the other hand, providing functionality directly within the VFS makes it more difficult
to implement layered file systems. As shown in Figure 2, a layered file system must appear
just like the VFS to the lower-level file system [Zadok and Béddulescu 1999], so it must
replicate this VFS functionality. Worse, as the VFS changes, the layered file system must
also change, or subtle bugs could be introduced.

On Linux, the vnode object is divided into two components: a dentry which represents
the name of the file and an inode which represents the actual on-disk file. This separation
simplifies support for hard links. On Linux, VFS operation vectors are fixed. Operations
cannot be added, and the prototype of existing operations cannot be changed. The Linux
VES stores mutable values inside the inode object. This makes it more difficult to maintain
cache coherency between the inodes of the layered file system and the lower level inodes.
It also causes performance degradation in layered file systems as the modified values in the

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 9

(VFS)

Y
_ File System Behavior | Layered

VFS-Like Behavior File System

Y
(Lower—Level File System)

Fig. 2. On Unix, layered file systems consist of two halves: the top half must behave like a file system, and the
bottom half must behave like the VFS.

lower-level objects need to be copied to the upper-level objects after each file operation.
The existing VFS API requires modifications to avoid this data redundancy. In particular,
the data fields should not be directly accessible from outside a file system. Instead, reads
and writes of these private fields should be performed by calling file-system methods. Our
evaluation, described in Appendix A, shows that the overheads of these method calls would
be negligible.

FiST [Zadok 2001] is a high-level layered file system definition language that we de-
veloped. FiST includes Wrapfs [Zadok et al. 1999], a layered vnode interface imple-
mentation for Linux, FreeBSD, and Solaris. Wrapfs is a simple pass-through layer that
intercepts name and data operations. The VFS objects of each entity (file or directory)
are duplicated at the Wrapfs level. On Linux, many file systems have been derived from
Wrapfs, including ones for encryption [Corner and Noble 2002; Halcrow 2004; Shana-
han 2000], intrusion detection [Keromytis et al. 2003], integrity checking [Kashyap et al.
2004, LISA], unification [Klotzbiicher 2004; Wright et al. 2006], tracing [Aranya et al.
2004], versioning [Muniswamy-Reddy et al. 2004], replication [Tzachar 2003], compres-
sion [Zadok et al. 2001; Indra Networks 2004], RAID-like functionality [Joukov et al.
2005], migration [Schaefer 2000], and more.

When Wrapfs is used on top of a disk-based or a network file system, both layers cache
the pages. This is useful to implement features like encryption, where the lower level file
system’s page and Wrapfs’s page are different (ciphertext vs. plaintext). However, cache
incoherency may result if pages at different layers are modified independently. Wrapfs
performs its own caching and does not explicitly touch the caches of lower layers. When
writing to disk, cached pages in Wrapfs overwrite the lower level file system’s pages.
This policy correlates with the most common case of cache access, through the uppermost
layer. To maintain coherency between the meta-data caches, Wrapfs performs a copy of the
attributes from the lower level vnodes to the upper level vnodes after each operation that
modifies meta-data. For example, after a file write, the new values for size, modification
time, etc. are copied from the lower-level inode to the Wrapfs inode. This is required
because the Linux VFS stores mutable values as fields in the inode.

3.4 Layering on Windows

Windows applications use Win32 API calls such as ReadFile to perform file I/O opera-
tions. As seen in Figure 3, the Win32 subsystem in turn invokes the corresponding native
system calls, which are handled by the I/O manager. The I/O manager uses a message-

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

10 . Zadok et al.

passing architecture for all I/O-related activity in the kernel [Solomon and Russinovich
2000].

(. Application w (. Application w ;u.:;;
(Win32 S{bsystem) Win32 S{bsystem J 2
(* 1/0 Manager *) E
C Filter Driver (1)) E:.I

! i X
(File System Driver)

! i
(Filter Driver (2))

! i
(Storage Device Driver)H(Logical Volum@

Fig. 3. Windows layering model. Applications issue system calls, which are dispatched by the I/O manager.
The I/0O manager routes the request via an IRP to the appropriate file system and filter drivers, and finally to the
storage device driver which operates on the logical volume (partition). Filter drivers can intercept calls to file
system and storage device drivers.

The majority of I/O requests are represented by a data structure called the I/O Request
Packet (IRP) that describes an I/O request completely. The I/O manager sends the IRP
from one I/O system component to another. For example, when the Win32 operation
CreateFile is called to open a file, the I/O manager creates an IRP describing the op-
eration and sends it to the file system driver. After the driver receives the IRP, it performs
the specified operation, and passes the IRP back to the I/O manager.

IRP structure. In Windows, each logical volume has an associated driver stack, which
is a set of drivers layered one on top of another. The Windows Driver Model introduced in
Windows 98 and 2000 has two types of drivers: function drivers and filter drivers [Oney
2003]. A function driver is a kernel module that performs the device’s intended function-
ality. It is analogous to a lower-level file system module or disk device driver in the Unix
model. A filter driver is a kernel module that can view or modify a function driver’s be-
havior, and can exist above other function drivers. For example, in Figure 3 Filter Driver 1
is above the file system, but Filter Driver 2 is above the storage device. Each driver owns
and maintains a device object that represents its instance on the layered stack of drivers. A
file system filter driver can view or modify the file system driver’s IRPs by attaching itself
to the corresponding driver stack. In a driver stack, a higher-level driver has access to the
device object of the driver immediately below it. Using this object, the filter driver can
send an I/O request to the lower-level driver through the I/O manager.

An IRP describes an 1/O request completely. The IRP has two components. The first
part is fixed: it contains fields that are common to all I/O requests, including the address
of the buffer, flags, and other IRP maintenance fields. The second part is an array of
IO_STACK_LOCATION structures with one element for each of the layered drivers (i.e.,
function and filter drivers), which describes the current I/O request identified by a major

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 11

and minor function codes. For example, the NtReadFile system call creates an IRP with
the major function IRP_MJ_READ. The TO_STACK_LOCATION also contains a parame-
ters field that is specific to the request type.

Each IRP is identified by a major and minor function. The major number determines
which driver function is called, and the minor number indicates the operation that the
function should perform. If a filter driver does not provide a routine for a major function,
neither it nor any module below it receives those IRPs. Filter drivers commonly use a single
routine that is similar to the generic bypass routine in the UCLA and FreeBSD models for
many major function codes. There is no default routine for unhandled IRPs, so a filter
driver needs to keep up with the latest OS release to ensure proper functionality.

When an application makes a request to a device with multiple drivers on its stack, the
I/0 manager first sends an IRP to the highest-level driver in the stack. The request’s major
and minor codes, as well as arguments, are located in the TO_STACK_LOCATION structure
corresponding to the highest-level driver. The highest-level driver does its part of the I/O
processing, and then has two options. It can tell the I/O manager to complete processing
of this IRP without any further processing, or it can pass the IRP down to the next lower-
level driver. If the driver decides to pass the IRP to the lower-level driver, it sets up the
corresponding TO_STACK_LOCATION structure (often by copying its own stack location
into the lower-level driver’s location). The higher-level driver can optionally register a
completion routine that is called when the lower-level driver finishes processing this IRP.
Using this callback, the higher-level driver can post-process the data returned by the lower-
level driver. For example, an encryption layer registers a completion routine that decrypts
the data after a read request.

Fast I/0. A significant portion of read and write operations can be satisfied from the file
system cache. This fact is exploited by the Windows I/O manager by calling specialized
file system routines that move data from the cache into the user’s memory, or vice versa.
This eliminates the need to allocate and process an IRP, which may dominate the cost of
cached accesses. The file system driver exports fast I/0 entry points that the I/O manager
calls to perform the operation [Microsoft Corporation 2004b]. If a fast I/O access cannot
be satisfied from the cache, then it returns a failure. On such failures, the I/O manager
proceeds with the normal IRP call path.

Filter manager. Windows XP Service Pack 2 introduced a new file system filter driver
architecture called the File System Filter Manager [Microsoft Corporation 2004a]. In this
architecture, file system filters are written as mini-filter drivers that are managed by a
Microsoft-supplied filter manager driver. Mini-filters register with the filter manager to
receive only operations of interest. This means that they do not need to implement filtering
code for all I/O requests, most of which would be passed along without any changes. For
example, an encryption mini-filter could intercept only read and write requests. Mini-filters
can also chose to ignore certain classes of I/O such as paging or cached I/O.

A mini-filter provides optional pre-operation and post-operation routines for each type of
I/0 request. A new structure that describes the operation is passed to these routines instead
of IRPs. Mini-filter drivers can focus on request processing instead of IRP maintenance,
making them easier to develop than legacy filter drivers. In the pre-operation routine, the
mini-filter may complete the operation (bypassing lower layers); pass it to lower layers; or
redirect the request to another instance of itself on another volume’s driver stack.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

12 . Zadok et al.

Table I. A summary of the key properties of each layering model.

Rosenthal | UCLA Solaris FreeBSD | Linux Windows | Windows

IRP Mini-filter

Architecture Vnode Vnode Vnode Vnode Vnode Message | Function
Passing call

Designed for layering | Yes Yes Yes Yes Yes

Linear stacking Yes Yes Yes Yes Yes Yes Yes

Fan-in stacking Yes Yes Yes Yes

Fan-out stacking Yes Yes Yes Yes Yes

Cache coherency Yes Yes Yes Yes

Attributes methods Yes Yes Yes Yes Yes

Extensible operations Yes Yes

Default operation Yes Yes

Generic bypass Yes Yes Yes

Embeds functionality Yes

The filter manager provides several services to mini-filter drivers that ease develop-
ment: context management for per-stream, per-open-file-handle, and per-driver data; a
user-kernel communication channel; and temporary file name generation. However, the
most important service that the filter manager provides is that it obviates the need for IRP
maintenance.

In the Windows legacy model, filters cannot be unloaded, and a new filter can layer
only on top of the highest driver on the driver stack. The newer filter manager can unload
a mini-filter, and lets the mini-filter control its location in the stack using altitudes. An
altitude is a fixed location in the stack (assigned by Microsoft), that identifies where in the
stack a particular component is. Altitudes are designed such that a new filter can always be
inserted between two existing filters. This not only provides flexibility to attach filters in
the middle of the stack, but also allows them to fix their positions. For example, anti-virus
filters must be above encryption filters so that the anti-virus filter can scan plain text data.

3.5 Model Summary

Table I summarizes the key properties of each layering model that we examined.

Architecture: The Rosenthal, UCLA, Solaris, FreeBSD, and Linux layering models are
all vnode based. The Windows IRP model uses message passing and the Windows
mini-filter model uses function calls.

Designed for layering: The Rosenthal, UCLA, FreeBSD, and both Windows models were
designed with layering in mind. The Solaris and Linux models were not, and therefore
it is more difficult to develop layered file systems for Solaris and Linux than for the
other models.

Linear stacking: All models support linear stacking.

Fan-in stacking: The Rosenthal model does not support fan-in stacking, because the push
and pop interface prevents access to the lower-level layers. Both Windows models do
not support fan-in stacking for similar reasons. The UCLA, Solaris, FreeBSD, and
Linux models do support fan-in stacking.

Fan-out stacking: The Rosenthal, UCLA, Solaris, FreeBSD, and Linux models all sup-
port fan-out stacking. The Windows IRP and mini-filter models do not, because they
were designed specifically with linear stacking in mind.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 13

Cache coherency: The Rosenthal and both Windows models provide cache coherency
naturally, because fan-in access is not possible (i.e., one higher-level layer and another
lower-level layer cannot be accessed simultaneously). The UCLA model supports fan-
in access, but provides a stacking-aware cache manager that ensures cache coherency.
The Solaris, FreeBSD, and Linux models do not provide cache coherency for fan-in
access.

Attribute methods: The Rosenthal model replaces all vnode attributes with methods.
This allows layered file systems to modify these attributes easily, and eliminates cache
coherency issues. The Solaris, FreeBSD, and both Windows models also have methods
for attributes, whereas UCLA and Linux do not.

Extensible operations: Only the UCLA and FreeBSD models allow file systems to add
new vnode methods. The other models do not provide such extensibility.

Default operation: The UCLA and FreeBSD models allow file systems to specify a de-
fault operation. If a file system does not define an operation, then the default method is
called instead.

Generic bypass: The UCLA and FreeBSD models encapsulate information in the VFS
method calls so that layered file systems can use a generic routine to bypass most
methods (by setting it as the default method). The Windows IRP structure provides
similar encapsulation, so a single function can handle most layered operations. How-
ever, as Windows does not support a default operation, the programmer must still set
each file system operation’s function to this bypass function. The other models do not
support a generic bypass method.

Embeds Functionality: The Linux VFS embeds a significant amount of functionality
within the VFS itself. This enables rapid development of standard disk-based file sys-
tems, but greatly complicates layered file systems, which must emulate the VFS. An
improved design would be to provide generic functions that can be used by the disk-
based file systems. Other models do not embed functionality to such a degree as Linux.

4. CLASSES OF LAYERED FILE SYSTEMS

In this section we divide layered file systems into five broad categories, starting with the
least complex file systems and moving towards the most complex ones. For each category,
we describe several applications and how the different layering models affect a particular
class of file systems. In Section 4.1 we describe file systems that only monitor, but do not
change their operations or arguments. In Section 4.2 we describe file systems that change
file data, but not operations or meta-data. In Section 4.3 we describe size-changing file
systems, which modify both data and meta-data. In Section 4.4 we describe file systems
that change their operations. In Section 4.5 we describe fan-out file systems, which layer
on several underlying file systems.

4.1 Monitoring

Monitoring file systems intercept operations and examine their arguments, but do not mod-
ify them. Examples of monitoring layers are tracing, intrusion detection systems (IDSs),
and anti-virus. Monitoring file systems use linear layering as shown in Figure 1(a). Fan-in
access as shown in Figure 1(c) is inappropriate because accesses should not bypass the
monitoring layer.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

14 . Zadok et al.

Both tracing and IDSs need to examine a large subset of file system operations. For a
tracing system, the operations’ arguments are important to gain insight into application be-
havior. For an IDS, the arguments and processes are needed to determine which operations
should be considered a sequence; and the arguments are needed to correlate one operation
with other operations [Hofmeyr et al. 1998]. When tracing is used to gain insight into sys-
tems, performance is critical; the layered file system should be able to log the operations
and timings.

The Rosenthal, UCLA, and Unix models are all suitable for tracing to varying degrees.
In all three of these models, simple linear layering can be used. Because fan-in access is not
required, the Rosenthal and Unix models do not suffer from cache coherency issues. The
Rosenthal model has fixed operations vectors, which means that for simple pass-through
layering, each operation requires its own function. On the other hand, as all vnode fields
are accessed through methods in the Rosenthal model, no vnode access information is
lost. The Solaris model is similar. Because the UCLA model it is extensible, the vast
majority of operations can be traced with only a single generic routine. The UCLA model
passes meta-data to the operation, so operation names (or unique identifiers) and vnodes
can be logged. On the other hand, vnode fields may still be accessed without the tracing
layer’s knowledge. The Windows model is similar to the FreeBSD and UCLA models in
that a single routine can generically pass an IRP to the layer below. It does not expose
information in the vnode fields (on Windows the fields are stored in a file control block),
so the tracing system has full access.

The Linux VFS makes tracing more difficult. Fields are directly accessed by the VFS,
without method invocations. The Linux VFS interface is also asymmetric. There are sev-
eral maintenance routines (e.g., removing a tree rooted at a particular dentry from the name
space) that the VES calls, which cannot be passed to the lower-level file system. After cer-
tain events occur (e.g., reference counts reach zero), the VFES calls these methods and they
cannot be intercepted by the tracing layer. The FreeBSD VFS provides the best support
for tracing. The vnode fields accessed only through method invocation, and it is possible
to use a generic tracing routine, because FreeBSD packs arguments and meta-data about
those arguments into a structure.

Anti-virus file systems need to examine only a small subset of operations. For example,
many commercial virus scanners only intercept exec and either open or close [Net-
work Associates Technology, Inc. 2004; Sophos 2004; Symantec 2004]. Other virus scan-
ning layers intercept read and write. The UCLA, FreeBSD, and Windows models
make this trivial because the rest of the operations can be serviced by a generic bypass
routine. The Rosenthal, Linux, and Solaris models require layered implementations for
each routine.

Anti-virus systems must be able to access the file data. When using an open, close,
or exec method for virus scanning, this requirement boils down to the ability to read an
open file from the kernel. Each model easily provides this functionality. In the Rosenthal,
UCLA, and Unix models, the anti-virus layer can make simple VFS function calls. In the
Windows model, instead of using function calls, IRPs are generated within the layer’s com-
pletion routine for the open or close. Unfortunately, generating these IRPs is difficult
and error-prone. Using the new filter manager architecture, it is possible to create a brand
new file handle that directly accesses the lower-level layer using the newly introduced filter
manager calls that are similar to the standard in-kernel file-access API.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 15

When using read and write, things become more complex, particularly for mmap
operations where all data-oriented operations need to be intercepted. The Rosenthal model
provides for intercepting page data by enforcing the rule that only the top-level file sys-
tem may cache pages, and all page-based operations go through the top-level object. In
the UCLA model, file systems can use page flipping to efficiently move pages that do not
change between layers. In Linux, each memory region in a process, called an address
space, has its own operations vector and host (i.e., the inode or other object that the region
represents). Each page belongs to precisely one address space. The page structure points
to its address space’s operations vector. This means that to intercept mmap operations,
a layered file system must maintain its own pages. Using traditional layering, this effec-
tively halves the cache size. Recently, we have employed a method similar to UCLA’s page
Sfipping [Joukov et al. 2005]. Wrapfs allocates its own page, but then replaces its own ad-
dress space’s host with that of the lower-level layer. The lower layer then fills in Wrapfs’s
page without the need to allocate a separate page. In FreeBSD and Solaris, page-based
operations are part of the vnode; therefore, interception without double caching is sim-
pler. Windows uses a single path for read and write system calls and mmap; therefore,
intercepting the read and write IRPs is sufficient.

Many monitoring file systems require complex algorithms. For example, an anti-virus
algorithm scans data for signatures or uses other complex heuristics. It is often preferable
to run complex portions of code in user-space, but the rest of the file system in the kernel
(for improved performance). We have used several methods to enable this communication
on Linux. In our Elastic Quota file system, we needed to store a persistent mapping from
inode numbers to names, to locate all instances of a given file. We chose to use the BDB
database [Seltzer and Yigit 1991], but at the time it only ran in user-space. We used a
Linux-specific netlink socket to send messages from the kernel to a user-level program,
which manipulates the BDB database accordingly. The Windows Filter manager supports
an abstraction called a communication port that is similar to a netlink socket. We also
used another more generic option: a character device driver. The kernel can enqueue
messages that are returned on read and execute functions during the write handler. As
character devices are available on most Unix systems, this approach is portable in that the
same user-level program can run on several OSes. FUSE (Filesystem in Userspace) uses a
similar approach [Szeredi 2005].

4.2 Data Transforming

One of the most common types of a data-transforming layer that does not change the data’s
size is encryption [Corner and Noble 2002; Halcrow 2004; Wright et al. 2003] (for size-
changing transformations, see Section 4.3). Data transformations have similar require-
ments to monitoring read and write, but for efficient backup they should additionally
support fan-in access as shown in Figure 1(c). Fan-in access results when a layered file
system is mounted on one path, but the underlying data is still available through a separate
path. For example, when using a compression layer, user applications must go through the
compression layer so that they can process uncompressed data. For performance, a backup
system should bypass the compression layer and write only the compressed data to tape.

Rosenthal’s model, UCLA’s model, Linux, and Windows easily support modifying the
data on the read and write paths (or equivalent page-based ones). Neither FreeBSD
nor Solaris include layered file systems that modify the data, but the FiST templates for
FreeBSD and Solaris do support data modification.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

16 . Zadok et al.

Rosenthal’s model is not compatible with fan-in, as lower-level vnodes cannot be di-
rectly accessed, because each vnode is essentially an alias for the top-level vnode. There-
fore it should not be used for data-transforming file systems. The Windows model suffers
from a similar disadvantage: all accesses are routed through the highest-level filter driver,
so it also cannot support fan-in access. UCLA’s cache coherence model supported fan-in
layering. The FiST templates support fan-in access, but without the cache coherence pro-
vided by the UCLA model: if a page is independently modified in the higher-level and
lower-level layers, then updates may be lost.

On Linux, attributes (e.g., size or permissions) may also be out of sync between the
higher-level and lower-level layers; this is because the attributes are copied only after cer-
tain operations that write the data. This means that if lower-level attributes are modified,
the higher-level layer does not reflect those changes until the file is modified through the
higher-level layer. On FreeBSD and Solaris, this is not an issue because the vnode does
not contain attributes but instead uses a getattr method to retrieve the attributes.

Sparse files contain regions that have never been written, called holes. When data from
a hole is read, the file system returns zeros. For data transforming file systems (e.g., en-
cryption), it is possible for zeros to be a valid encoding (e.g., ciphertext) [Halcrow 2004;
Zadok and Nieh 2000]. This means that if a data-transforming file system reads zeros from
the lower-level file system, then it decodes them and returns incorrect data. In FreeBSD,
a vnode operation called bmap maps a file’s logical block number to a physical block. If
the logical block is a hole, then —1 is returned. Using bmap, a layered file system can
determine if a page is indeed a hole, or actually filled with zeros. Linux also has a bmap
vnode operation, but it is deprecated. Solaris’s UFS uses a similar function, but it is not
exported by the VFS. Unfortunately, the bmap function is not always defined (e.g., NFS
has no bmap operation), therefore bmap is not a portable method of determining whether
a given page is a hole. To solve this problem, data-transforming file systems often prevent
sparse files from being written. If a write takes place past the known end of the file, then
zeroes are transformed (encrypted) and the transformed data is written from the current
end of the file to the point where the write after the end of the file occurs (i.e., the holes are
filled in). Unfortunately, filling in these holes can markedly reduce performance for some
applications that rely on sparse files (e.g., certain databases).

4.3 Size Changing

Some transformations of file data result in changes to its size. A simple example is com-
pression: layered compression file systems reduce the overall size, which saves storage
space and transmission bandwidth. Such file systems require transformation algorithms
that take a certain number of bits as input and produce a different number of bits of output.
We refer to these algorithms as Size Changing Algorithms (SCAs) [Zadok et al. 2001].
Most SCAs involve whole streams of input data, such that the reverse transformation re-
quires the entire output. For example, if compressing 4,096 bytes produces 3,000 bytes
of output, then those exact same 3,000 bytes need to be decompressed to reconstruct the
original data.

Several SCAs have been implemented as extensions to existing disk-based file sys-
tems. Windows NT supports compression on NTFS [Nagar 1997] using a filter driver.
E2compr [Ayers 1997] is a set of patches to Ext2 that adds block level compression. The
disadvantages of these methods are that they work only with specific OSes and file systems.
A file system layer that implements an SCA can be used with any existing file system.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 17

Supporting SCAs at the layered level is complicated because they change the file size
and layout, thereby requiring maintenance of additional mapping information between the
offsets for each file in the different layers of the file system. If not designed carefully, this
mapping information could cause additional processing and I/O, significantly affecting
performance. For example, if an encryption file system encrypts one page at a time, but the
encryption algorithm produces more than one page of output, then three challenges arise.
First, a single page at the encryption level represents more than one page in the lower level
file system. Therefore a read request for one page results in two pages of I/O at the lower-
level, increasing the possibility for bugs and poor performance. Second, the precise offset
to read needs to be determined by the offset mapping information, because different pages
may have different output sizes. Third, when retrieving file attributes (e.g., using stat),
the encryption file system should display the logical size at the higher-level, not the size
from the lower layer. This means that each getattr operation (or lookup on Linux)
needs to access the mapping information to find out what the decrypted size is. Therefore,
it is crucial to access offset mapping information persistently and efficiently.

Fast indexing [Zadok et al. 2001] provides SCA support in layered file systems. It
uses estimation heuristics and optimizes performance for the more common and important
operations (e.g., reads or appends), while rarely executed operations (e.g., overwriting
data in the middle of the file) may incur greater overheads. Fast indexing stores each file’s
SCA-mapping information in an index file. This file serves as a fast meta-data index into
the encoded file. The fast indexing system encodes and decodes one or more pages at a
time. The offsets of the pages within the encoded file are stored as a table in the index file.
When reading the file, the index file is consulted to determine the size of the decoded file
and the offsets to read within the encoded file.

4.4 Operation Transformation

Many features can be implemented by transforming data or meta-data, but certain advanced
features like versioning require transforming the operations themselves. For example, to
maintain versions of files at the file system level, operations like write, unlink, etc.
must be transformed into a copy or a rename at the layered level. While transforming
operations, it is important that the semantics of the OS are maintained. For example, if
unlink is called in Unix and it returns successfully, then the object should not be acces-
sible by that name any more. One way to maintain the OS semantics while not exactly
performing the operation intended, is to transform one operation into a combination of op-
erations. For example, to preserve the data of a file after it is unlinked, the unlink operation
could be transformed to a copy and then invoke an unlink. In Windows, operation trans-
forming is easier because there is no notion of a vnode structure. Instead, each operation
takes the full path name (or open file handle) of an object. The path name can then be
changed using simple string manipulation before it is passed down to the lower level.

To transform operations, the argument set of one operation must be transformed into the
argument set of the new operation. The relative ease of these transformations depends on
the implementation of the vnode interface. In Linux, the dentry cache allows an object’s
parent to be referenced, which means that one can traverse the dentry structure until the root
dentry is reached. This can be used to reconstruct paths, or to operate on an object’s parent
(e.g., to manipulate objects with rename and unlink, you need to access the parent
directory). FreeBSD and Solaris do not have a parent pointer from their vnode objects,
which can make these operations more difficult. For example, in FreeBSD union mounts,

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

18 . Zadok et al.

the vnode private data includes a pointer to the parent vnode, to simplify the 1ookup of
“..” [Pendry and McKusick 1995].

Having many different types of VFS objects in Linux (file, dentry, inode, etc.)
makes operation transformation at the layered level more difficult. Many operations take
different kinds of objects as arguments, which necessitates the conversion of one type of
object to another when transforming the operation. Some of these conversions are even
impossible. For example, in Linux, it is not possible to transform a memory-mapped write
into a copy, as a memory-mapped writes take the inode object as argument, whereas
copying requires the dentry object to open a file, and there is no support for convert-
ing inodes to dentries in the Linux vnode interface. This scenario occurs in versioning
file systems that needs to perform copy-on-write for creating new versions [Muniswamy-
Reddy et al. 2004]. In FreeBSD and Solaris, almost all operations take a vnode as an
argument, so transforming the operations is simpler. Similarly, in Windows, all operations
are implemented in terms of path names and file objects, so converting between objects is
simpler.

4.5 Fan-Out File Systems

A fan-out file system layers on top of several lower-level file systems called branches,
as shown in Figure 1(b). An object in a fan-out file system represents objects on several
lower-level file systems. Fan-out file systems still need to deal with all of the previously
mentioned issues and two more key challenges. First, each operation on the fan-out level
may result in multiple lower-level operations. This makes guaranteeing each operation’s
atomicity difficult. Second, the VFS often uses fixed-length fields that must be unique.
This complicates mapping between upper and lower level VES objects and fields.

Each VFS operation should be atomic, but an operation on a fan-out file system may
involve several underlying branches. For example, to remove a file in a fan-out mirror-
ing file system, it must be removed from each underlying branch. If the removal fails on
any branch, then this partial error needs to be handled. Rosenthal proposed that transac-
tions would be necessary to handle these conditions [Rosenthal 1992], but did not imple-
ment them. Adding transaction support to the OS would require significant and pervasive
changes to many subsystems, not just the VFS. For example, process control blocks con-
tain pointers to open files. If a transaction that created a file were to be aborted, then those
pointers need to be removed from the process control block. Instead, fan-out file systems
have implemented their own specific policies to minimize the non-atomicity of their op-
erations. For example, UCLA’s Ficus system is designed to support disconnected replicas
and resolve conflicts [Guy et al. 1990]. FreeBSD’s union mounts avoid partial failures by
allowing writes only to one branch [Pendry and McKusick 1995]. In our unification file
system, we have carefully ordered operations such that we defer changing the user-visible
union until the very last operation [Wright et al. 2006]. If the operation succeeds, then
the whole operation returns success and the union is modified. If the last operation fails,
then the underlying branches may have changed, but the overall view remains the same.
Transactions are gaining more acceptance as an OS primitive [MacDonald et al. 2002;
Microsoft Corporation 2004c], but even if fully integrated into an OS there are still cases
in which transactions will not be sufficient. For example, if one branch is located on an
NEFS file system, then transactions cannot be used reliably because NFS does not support
transactions.

Many VFS fields have a fixed length that cannot be extended. This is true of the Rosen-

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 19

thal, UCLA, Solaris, FreeBSD, and Linux models. For example, inode numbers are com-
monly 32-bit integers. They are used by user-space processes and other kernel components
to identify a file uniquely (e.g., tar only writes one copy if two files have the same inode
number). Any file system may use this entire address space; so if two file systems are
combined, then there is no direct way to compute a new unique inode number based on the
existing inode numbers because there are no remaining bits to distinguish between the two
file systems. Directory offsets record at what point a process is when reading a directory.
In a traditional directory, the offset is a physical byte-location in a file, but in more modern
directory structures, such as HTrees [Phillips 2001], the offset is actually a small cookie.
Using this cookie, the file system can resume reading a directory from where it left off.
A fan-out file system cannot use any additional bits to record in which branch to resume
the directory-reading operation. Both of these problems could be alleviated if instead of
allocating fixed-size units for identifiers, the VFS supported variable-sized arguments. A
fan-out file system that needs extra bits could simply concatenate its own information with
that of the lower-level file system.

The Windows model has fan-out problems because it was designed for linear layering.
To support fan out, a filter driver must be interposed on each branch’s driver stack. When
an I/O request is received on any stack, it must be sent to the lower-level driver on each
driver stack. Because the filter driver is interposed on each volume’s driver stack, each
of the volumes becomes an alias for the fan-out file system. Because Windows does not
support fan in, each of the lower-level volumes is now inaccessible; this may limit some
applications of fan-in file systems (e.g., when running a snapshotting file system, programs
and another instance of the filter driver could not access older snapshots).

When using the Windows filter manager, creating instances of a mini-filter is controlled
by the filter manager. A single mini-filter instance cannot be interposed on multiple vol-
umes, So a separate instance is needed for each volume stack. This makes fan out more
difficult to implement with the filter manager, but the IRP model is still available. To
support fan out, a mini-filter can duplicate the I/O request and send it to the lower-level
layer. The original request can then be redirected to another instance of the driver on a
different volume’s driver stack. Having two separate instances of the driver complicates
development of fan-out file systems on Windows more so than Unix.

5. USEFUL VFS AND OS FEATURES

We developed over twenty layered file systems on a range of OSes for more than a decade.
During that time, we have repeatedly come across several deficiencies in file system and OS
infrastructures. In this section we categorize these limitations into seven general problems
(the first five of which we have solved or worked around). With each category, we also
discuss enhancements to existing file system and OS infrastructures that would aid in easier
development and improved performance of layered file systems. In Section 5.1 we discuss
persistently storing extra meta-data. In Section 5.2 we discuss missing interception points.
In Section 5.3 we discuss access control. In Section 5.4 we discuss cache management.
In Section 5.5 we discuss collapsing layers. In Section 5.6 we discuss the last two issues:
intents and file serialization.

5.1 Persistently Storing Data

Layered file systems often need to store information persistently on disk for various scopes:
perfile-system, per-directory, or per-file. For example, a simple integrity-checking file

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

20 . Zadok et al.

system that performs checksumming on file data needs to store the checksums in a per-
sistent manner. An encryption file system needs to store the encryption algorithm and
parameters on a per-mount basis. The same encryption file system may store security poli-
cies for file trees on a per-directory basis. Layered file systems most commonly use per-file
data. For example, file system layers that perform size-changing transformations persis-
tently store the mapping information for each file. Often, per-file data is accessed during
critical regions of read or wr i te. For example, a checksumming file system accesses the
checksum associated with a file (or page) during every read and write. Therefore, persistent
data must be accessed efficiently. The persistent data storage method adopted, in addition
to being efficient, should also be easy to implement, and transparent to the other layers.
In the rest of this section we describe some methods we have used to store persistent data,
and suggest new OS facilities to improve persistent storage by layered file systems.

Unused fields and bits. Some lower-level file systems (e.g., Ext2) have unused inode
bits or fields that layered file systems can take advantage of. These flags can be used
by layered file systems in a transparent fashion to store file-specific information. Elastic
Quotas [Zadok et al. 2004] use the no dump bit in Ext2 inodes to differentiate between
two classes of files. While this method has good performance, the layered file system must
be tailored to a specific lower-level file system. This violates the general design goal of
layering: to support a wide range of lower level-file systems transparently; but performance
benefits sometimes justify its use.

Parallel files. The parallel file method stores per-file data in a separate file F’ for each
file F' [Muniswamy-Reddy et al. 2004; Zadok et al. 2001]. Parallel files are used in our
compression file system for size-mapping information and in our versioning file system for
per-file policies. Parallel files are easy to implement; however, we found three disadvan-
tages to this approach. First, having two physical files for each regular file in a file system
requires double the number of in-memory objects, on-disk inodes, and directory entries.
Second, a good naming scheme for parallel files is required, but even with the best naming
scheme, a user might want to create a regular file with the same name as the parallel file.
Because the name of the parallel file has to be larger than the actual filename for correct-
ness, it shortens the effective MAX_PATH limit. Third, journaling file systems provide only
per-file consistency. Because the consistency semantics of parallel files span more than
one file, journaling cannot provide consistency between F' and F’.

Interspersed data. Another option is to embed persistent data in the main file, so that
extra objects are not needed. Efficiency and access patterns often dictate the data embed-
ding method: at the end of the file, at the beginning of the file, or spread out throughout
the file. Placing persistent data at the end of the file is useful for append-mostly access
patterns. However, that data should be small (e.g., an integer) to avoid having to rewrite
too much data at the end of that file. Placing persistent data at the beginning of the file is
useful for sequential read patterns, because the extra data can be read before the main file
is read. However, if the size of the data is not a multiple of the page size, this complicates
the computation of offsets into the main file’s data. The most flexible technique is to spread
the data evenly throughout the file and to align it on page boundaries. The two advantages
here are that meta-data pages could be easily computed and meta-data can be efficiently
read separately from the data pages of the main file. The main disadvantage is that this
persistent meta-data should fill most of the extra pages, so space is not wasted. We used

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 21

this technique twice. Our encryption file system stores integrity checksums throughout
the file, and our RAID-like layered file system (RAIF [Joukov et al. 2005]) stores parity
information, stripe size, and more.

For example, in our encryption file system, with a 160-bit SHA1 hash, 204 hashes fit
within a single 4KB page, so every 205" page is a checksum page. With this method, we
can easily compute the original file size and the index of any given page. Because each
upper-level page corresponds to precisely one lower-level page, there is no unnecessary
I/0. The main disadvantages with this method is that to access any one of the 204 pages
requires access to the checksum page, and that the OS may turn off read-ahead because file
access is no longer sequential.

In-kernel databases. KBDB [Kashyap et al. 2004, TR] is our port of the Berkeley
DB [Seltzer and Yigit 1991] to the Linux Kernel. Berkeley DB is a scalable, transaction-
protected data management system that stores key-value pairs. I3FS, our layered integrity-
checking file system, uses in-kernel databases to store the policies and checksums associ-
ated with each file [Kashyap et al. 2004, LISA]. KBDB has two advantages for persistent
storage: (1) it provides a common and easy-to-use interface for complex data structures
like B-trees and hash tables, and (2) it is portable across systems as data can be backed
up by simply copying the database files. The main disadvantage of using KBDB is that
to achieve good performance, the schema must be carefully designed and the database
parameters must be tuned through experimentation.

Extended Attributes. Extended Attributes (EA) associate arbitrary name-value pairs with
each file. They can be used to store information like ACLs or arbitrary user objects.
On Linux, Ext2, XFS, and Reiserfs support extended attributes using a common API.
FreeBSD’s FFS also supports extended attributes, but with a different API. Layered file
systems can use the EA interface to store persistent per-file data. However, there are two
key disadvantages of using EAs. First, each file has a limited space for EAs (e.g., 4,096
bytes on Ext2). Second, each file system’s EA implementation has distinct performance
and storage properties. We have developed a generic EA file system layer (called EAFS)
that provides EA support for any existing file system with no practical limits to the number
or size of EAs.

Data streams. NTFS supports multiple named data streams for a file. Each stream can
be opened and accessed as if it were a separate file. When mounted over NTES, layered file
systems can use streams to store persistent data associated with files, but streams cannot
be transparently used on different file systems. Streams are also unavailable on Unix.

New OS features. Clearly, each of the methods we have adopted for storing data per-
sistently have their own advantages and trade-offs in terms of performance, portability,
and extensibility. Lower-level file systems should provide more efficient and extensible
persistent meta-data storage for other OS components, including layered file systems.

The meta-data management mechanism of on-disk file systems should be made extensi-
ble. Extended attributes should be generalized across file systems, without size limitations.
For example, a reasonably sized ACL and per-user encryption keys for a layered encryp-
tion file system may not fit within a single 4KB block. EAs should also have predictable
performance requirements across lower-level file systems (e.g., some file systems perform
well with many duplicate EAs, but are poor for searching; others have efficient search but

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

22 . Zadok et al.

have poor duplicate storage). Our EAFS provides such predictable and uniform function-
ality. File systems should also support additional named streams (as in NTFS), using a
common API. This is important as EAs are inappropriate for arbitrarily large data (e.g.,
per-block information should not be stored in EAs because you cannot efficiently seek to
a specific position within an EA).

Current file systems only support three operations on file data: read, overwrite, and
append. Two new operations should be created: insert page to insert a page in the middle
of a file, and delete page to efficiently delete a page from the middle of a file. This method
would avoid unnecessary movement of data (e.g., to insert a page, the remaining data
currently needs to be rewritten). This feature can also be extended to user level so that
applications can efficiently manipulate data in the middle of files (e.g., for text or video
editors).

Current on-disk file systems perform block allocation by themselves and they do not
export interfaces to the VFS for advisory allocation requests. PLACE [Nugent et al. 2003]
exploits gray-box knowledge of FFS layout policies to let users place files and directories
into specific and localized portions of disk, but requires a separate user-level library and
cannot always place data efficiently as it must work around the file system’s allocation
policy. If the VFS can give hints about related data to lower level file systems, then it
can be used in the block allocator to ensure that related information is placed as close as
possible. Currently, none of the OSes we reviewed support this feature; but this would be
useful when a layered file system uses parallel files.

5.2 Missing Interception Points

One of the most frustrating, yet all too common, aspects of developing layered file sys-
tems is that some operations cannot be intercepted. For example, the chdir system call
on FreeBSD, Solaris, Linux, and Windows does not call any file system methods except
lookup, getattr, or access. This causes problems with our unification file system
(Unionfs), which supports dynamic addition and removal of branches. When a branch is
added, it is analogous to mounting a file system. Unionfs must keep track of how many
referenced files there are on each branch to prevent an in-use branch from being removed.
Because chdir is not passed to the file system, the unification file system is unaware
that a process is using a given branch as its working directory. When the branch is then
removed, the working directory of the process no longer exists. In Unionfs, when the di-
rectory is next accessed, we replace its operations vector with one that returns ESTALE,
which is used by NFS clients when an object is deleted on the server. This solution is
hardly ideal; the VFS instead should notify file systems when a process changes its work-
ing directory. Indeed, every file-system—related system call should have a corresponding
vnode operation.

Another example of a missing interception point is process termination. All vnode op-
erations are executed in the context of a process [Kleiman 1986], yet when the process
terminates, the file system is not notified. We came across this issue when developing our
layered encryption file system [Wright et al. 2003]. Instead of granting access to individ-
ual users, our file system could specify more fine-grained access control (e.g., by session
ID or PID). To authenticate, a process executes an 1octl and passes the authentication
information to the encryption file system. The encryption file system makes note that this
process has authenticated, and then allows it to execute other operations. To do this se-
curely, we need to invalidate the authentication information once the process exits so that

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 23

a newly created process with the same identifier could not hijack the session (we also ex-
punge cleartext data from the cache). Other process operations including fork and exec
may also be of interest to file systems. We modified the OS to provide lightweight hooks
so that file systems (and other kernel components) can easily intercept the subset of these
operations that are required. We have since used them for several projects such as Elastic
Quotas [Zadok et al. 2004] and others [Kashyap et al. 2004, TR].

As we discussed in Section 3.3, intercepting of accesses to file system objects would al-
low us to deal with redundant data and meta-data efficiently (i.e., cache coherency between
layered and lower-level file systems). We show in Appendix A that the corresponding API
would add negligible overheads.

5.3 Access Control

Layering is a form of wrapping, and wrappers are a time-honored software security tech-
nique. Not surprisingly, layered file system have been particularly useful for information-
assurance purposes. Many file systems need to modify access control decisions made by
the lower-level file system. For example, our layered file system that provides ACL support
for any existing file system needs to determine authoritatively what operations should be
permitted.

Unfortunately, the Solaris, FreeBSD, and Linux VFS operations directly call the lower-
level inode’s access operation (permission is equivalent to access on Linux).
Therefore, a layered file system can only provide more restrictive permissions than the
lower-level layer without changing the effective UID of the process. To grant more priv-
ileges than the lower-level file system would otherwise grant, a layered file system must
change the process’s UID to the owner of the inode, perform the operation, and then re-
store the UID. We adopted this solution to support ad-hoc groups in our layered encryption
file system [Wright et al. 2003] and in our generic ACL layer. An additional complication
added by FreeBSD is that the access method is called from within 1ookup, before the
precise operation to be conducted is known.

The Windows model delegates security entirely to the file system. When a file is opened,
an TRP_MJ_CREATE message is sent to the file system along with an ACCESS_STATE
structure that describes the object’s context and the desired access type. If the file system
decides to deny the access, then it returns an error; otherwise it performs the open. This
allows lower-level file systems to implement security primitives flexibly (e.g., FAT has no
security primitives, but NTFS has ACLs). However, this model makes it difficult to layer on
top of existing file systems as the security information is not exposed in a uniform manner
to components above the lower-level file system. The Windows kernel supports imperson-
ation of a saved security context (i.e., the privileges given to a user). Unfortunately, the
Windows kernel does not provide a method to change the IRP’s security context. At the
point that the filter driver is invoked, even if the filter driver changes the thread’s security
context by impersonating another user, the IRP’s security context has already been set, so
the impersonation has no effect for this IRP. If the impersonation is not relinquished, the
thread would have the increased privileges for all future I/O operations (even for other file
systems); therefore using impersonation is not suitable for elevating privileges precisely.

5.4 Cache Management

In modern OSes, file systems are intimately connected with the VM system and the caches.
The page cache is generally thought of as residing “on the side”—that is, it does not ac-

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

24 . Zadok et al.

tually exist above the file system, yet the page cache is not below the file system either.
In Linux, Solaris, FreeBSD, and Windows, vnode operations (or I/O requests) exist for
reading pages into the cache and writing pages back to disk. Once a page is read into
the cache, the file system has little control over it. The OS often directly accesses cached
pages without notifying the file system. The OS itself decides which pages to evict without
notifying the file system, and file systems cannot easily evict their own pages.

Accessing pages in the cache without notifying the file system prevents the file system
from applying its access-control policies to the page. The OS uses generic algorithms for
deciding which pages to evict, and then proceeds to evict them without notifying the file
system. In a layered file system, several objects may be related and if one is removed from
the cache, then the other should be removed as well. For example, in a file system that
uses parallel files for persistent data storage, if the main file is removed, the parallel file
should be removed as well. However, without notification, the layered file system cannot
evict those other objects. When pages must be evicted, the OS should provide a reasonable
default policy, but allow file systems to override it. For example, a replication file system
should evict pages from all but a single replica so that most reads can still be satisfied.

UCLA’s layering model provided a centralized caching manager with appropriate no-
tifications to the file system. Unfortunately, it required changes to all file systems. We
have developed a more limited cache coherence mechanism for Linux that does not require
changing existing file systems. To determine the layers’ order, we modified the VFS to
record information about pages as they are created. If an incoherence is detected (based
on the paging hardware’s dirty bits), then we handle it in two ways. First, we invalidate
any stale higher-level pages that are not dirty. Second, if multiple levels are dirty, then we
write-through the highest-level dirty pages. This second policy has the effect of treating
the higher-level layers as authoritative. We also provide file systems with more control
over their cached objects. When developing our layered encryption file system, we added
kernel call-back hooks which allowed us to evict cleartext objects from the cache when a
session ends [Wright et al. 2003].

5.5 Layer Collapsing

Each layered file system usually provides specific functionality, so that they can be com-
posed together in new ways. Part of the allure of layered file systems is that they perform
only one function, so that they can be composed together in new ways to provide new func-
tionality. A common example is that a layered encryption file system can be made more
secure by adding integrity checking. One way to achieve this is to mount one layered file
system on top of another. When there are multiple layered file systems, existing perfor-
mance issues in layering become more acute. If a layered file system duplicates file data
pages and vnode objects, then an n-level mount could result in the data pages and objects
being duplicated n times, and n times as high function call overheads. Care must also be
taken to ensure the two file systems can be composed together without introducing incom-
patibilities. The transmutation operations performed by one layered file system may not be
compatible with those of another (e.g., a versioning file system may convert an unlink
to a rename, but that could prevent an IDS file system below it from detecting malicious
file-deletion access patterns). Finally, as the number of layers increases, the overhead due
to function call and object indirection becomes more pronounced.

One solution to this is to collapse several layers into a single layer during compilation
or at runtime. High-level layered file system specification languages such as FiST offer

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 25

a syntax for describing file systems [Zadok and Nieh 2000]. To collapse different layers
during compilation, their high level specifications can be combined automatically. In the
example of the encryption file system described here, the decision whether to encrypt the
data first or to compute the checksums first should be specified. This method would provide
seamless integration of several features in a single layer with low overheads. Even in this
method, the specifications should ensure that conflicts do not arise between different layers
while storing persistent data, or while using in-memory fields. Layers can be collapsed at
runtime by modifying the VFS to order the operations performed by several layers so as
to eliminate the multiple function calls and object references. Runtime collapsing is more
flexible, but is significantly more complicated to implement.

5.6 Other Desirable File System Features

There are often cases where a single system call or operation results in several vnode op-
erations. For example, FreeBSD requires three vnode operations to open a file: 1ookup,
access, and open. The Linux and FreeBSD VFSs pass an intent to the earlier opera-
tions within a multi-operation sequence, so that they can modify their behavior based on
the forthcoming operation [Cluster File Systems, Inc. 2002]. Right now, intents are rather
limited. In FreeBSD, the 1 ook up operation has lookup, create, delete, and rename intents.
On Linux, there are lookup, create, and access intents. Intents should be more descriptive.
For example, when executing mkdir on Linux and FreeBSD, an “mkdir” intent should be
used instead of a “create” intent. With more specific intents, layers can be more versatile
(e.g., FreeBSD’s MAC and Linux’s LSM file-system-related hooks could be implemented
as a file-system layer). On Solaris, intents are not available. On Windows, each operation
is self-contained, so there is no need for intents.

Most files, in addition to data, also have simple meta-data like access times, modifica-
tion time, inode change time, an owner, and access permissions. Recently, the number
of additional types of information associated with a file has been multiplying (e.g., EAs,
streams, etc.). This means that it is not possible simply to copy a file on a file system to
preserve its full contents, without the copy application understanding each of these special-
ized types of data. Layered file systems suffer from a similar problem: they cannot reliably
copy a file when required. To solve this problem, each file system should provide two new
vnode methods: (1) a serialization method that consolidates all extra, file-system—specific
information about a given file in a series of opaque bytes, and (2) a corresponding deseri-
alization method that restores a file based on those opaque bytes.

We plan to implement these two features in the future.

In sum, we enumerated seven problems that we encountered, five of which we provided
some solution for. In light of this, we have suggested seven possible changes to OSes and
VESs that would enable more versatile, efficient, and robust layered file systems:

(1) To support persistent storage, an extensible and uniform meta-data interface and a file
insert-delete interface should be implemented in lower-level file systems.

(2) OSes should notify the file system about all file-system—related operations, by identi-
fying and adding missing interception points.

(3) Policy decisions, like permission checks, should be designed such that all layers are
traversed, to allow each layer to make the appropriate security decisions.

(4) The OS should include a light-weight cache manager, like the one we built for Linux,

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

26 . Zadok et al.

that provides cache coherence without requiring changes to lower-level file systems.
OSes should also include hooks for a file system to have more control over its cached
objects.

(5) Layer collapsing should be employed to improve performance when several layers are
used together.

(6) The VFS interface should include precise intents so that file systems can accurately
determine a file system operation’s context.

(7) OSes should include a VFS-level interface to copy a file reliably.

Each of these seven features would provide an improved interface for future layered file
system developers.

6. SUMMARY AND CONCLUSIONS

In this paper we have three contributions. First, we have analyzed four different models of
layered file system development: the Rosenthal model, the UCLA model, layered devel-
opment on current Unix OSes, and Microsoft Windows. Second, based on our experience
developing over twenty layered file systems on four different OSes (Solaris, FreeBSD,
Linux, and Windows), we have classified layered file systems into five categories, based
on their interactions with the VFS and the lower-level file systems. We analyzed the OS and
VES features that each class of file systems requires. Third, we identified seven types of
problems that affect all classes of layered file systems, and described our current solutions
for five of them and suggested how future OSes could better address these deficiencies.

The layering model used by current Unix systems is based on Kleiman’s vnode interface
and ideas explored by the Rosenthal and UCLA models. To be useful, the vnode interface
and the operations vector should be as extensible as possible. The UCLA and FreeBSD
interfaces provide a flexible interface, with extensible argument lists and operations. The
Linux VFES provides many default routines and default functionality for undefined opera-
tions within the VFS itself. This enables the rapid development of lower-level file systems,
but including file-system functionality in the VFES itself makes it more difficult to imple-
ment layered file systems. Rather than including default functionality within VFS methods,
generic functions that a file system can use should be provided. Solaris and FreeBSD only
have one core VFS object, the vnode. This makes it simpler to transform one type of oper-
ation to another, as objects do not need to be converted from one type to another (especially
because not all conversions are possible).

Windows uses a message-passing architecture for layering that was designed only for
linear layering. We found that the Windows message-passing architecture and the Unix
object-oriented architecture are functionally equivalent. However, other factors are more
likely to affect whether a given layered file system is relatively simple or difficult to de-
velop. Message passing may, however, be a slightly less intuitive programming model than
a procedural one—as evidenced by the fact that Microsoft introduced the filter manager
API, which eliminates the need for programming using a message passing API. Windows
makes it relatively simple to perform monitoring, data transformation, and other linear
transforms. Transforming operations is simple because Windows wholly encapsulates each
operation inside an IRP and uses a few objects. Significant portions of meta-data that are
exposed to higher-levels in Unix (e.g., security information) are not exposed on Windows.
Therefore, it is more difficult to modify this type of information. Finally, fan-out and fan-in
file systems are more difficult to implement on Windows.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 27

Provisioning for Extensibility. In the remainder of this section, we describe five forward-
looking design principles (in bold font) for OSes to support layering well. In general, it
is difficult to provision for extensibility fully, because at the time you are designing an
extensible operating system you do not know what types of extensions future developers
will envision. Because of this, we believe that:

(i) To support layering properly, the operating system should provision for extensi-
bility at every level.

In particular, methods, return codes, in-memory objects, and on-disk objects should all
be extensible.

Methods. Operations vectors should be extensible as in the UCLA and BSD models.
New operations should be easy to add, and enough meta-data should be available to bypass
any operation. This allows simple layers to be developed quickly, and allows the VFES to
be extended without the need to change existing file systems.

Return codes. The VFES should be structured in a way that unknown return codes are
passed back to user-space. In this way, file systems can introduce new more descriptive
error codes. The VFS should also provide a method to register these new error codes,
an associated descriptive messages, and an associated legacy error code to map to. For
example, an Anti-virus file system could return EQUARANTINED, with an associated
text of ““This file may contain a virus and has been quarantined,” and a legacy-compatibility
error code of EPERM. In this way enhanced applications can present more informative
messages to users, while existing applications work without any changes.

In-Memory Objects. The VFS should not directly access fields of objects but wrap these
accesses in methods instead. As demonstrated in Appendix A, this exacts only a negligible
overhead. Additionally, each in-memory object should have a private data field that can be
used to extend the object (e.g., to add a pointer to a lower-level object).

On-Disk Objects. File systems should provide a way to store arbitrary meta-data with
each object. All non-standard on-disk meta-data should be exposed through this same
API, to improve portability between file systems and OSes. For example, the extended
attribute API could be used to expose additional inode bits that are currently manipulated
with various ioct1s, which each program or OS component must understand.

The VFS can be thought of as an intertwined combination of an engine that dispatches
calls to other “lower” file systems and a “library” of generic file system functionality. Func-
tionality that exists directly in VFS methods makes it more difficult to develop layered file
systems for two primary reasons. First, more of the VFS must be replicated by the bottom
half of layered file systems (as shown in Figure 2). Second, the functionality embedded
within the VES cannot be changed easily, so the layered file system developer must work
around it. Therefore:

(ii) A stronger separation should be made between the dispatch engine and the generic
file system functionality of the VFS.

For example, currently each system that uses the vnode interface has a single-component
lookup routine that is driven by a larger VFS lookup routine that handles multi-component
lookup operations (the so-called namei OS routine). The vnode should have a multi-
component lookup operation, that in most cases is serviced by a generic VFS function. For

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

28 . Zadok et al.

most file systems, this generic function would repeatedly call the single component lookup
routine, much as the current VFS does. However, some file systems (e.g., NFSv4 [Shepler
et al. 2000]) could take care of the overall multi-component lookup routine to provide bet-
ter performance (e.g., for constructing a NFSv4 compound operation). The key advantage
of this architecture is that it adheres to the following two design principles:

(iii) Generic functionality should not be embedded within the VFS.
and
(iv) File systems should be able to control their behavior at all levels.

As soon as a file-system—related system call enters the kernel, it should dispatch the
call to a vnode operation to perform the operation. This vnode operation could in turn
call other vnode operations. For example, the mkdir system call could call a do_mkdir
vnode operation. In the same way as a generic multi-component 1ookup could call a
single component 1ookup, a generic do_mkdir would call the proper 1ookup, lock,
access,mkdir, and unlock vnode methods. By overriding just these generic methods,
a layered file system could change VFS functionality. Thus:

(v) Exposing more OS functionality to the file system helps to eliminate missing in-
terception points.

APPENDIX
A. PROTECTION OF VFS OBJECTS’ FIELDS

On Linux, the VFS and lower-level file systems access object’s fields directly. This poses a
problem for layered file systems because they must keep their own objects’ fields consistent
with the corresponding lower-level object. For example, the file size field of the lower
inode must be copied to the upper inode on every file size update.

As described in Section 3, Solaris, FreeBSD, and Windows do not have this problem,
because there is no duplication of attributes between the upper and lower-level file sys-
tems. The lower and upper layers are separated and can only read or modify each other’s
properties and data via function calls. On the face of it, wrapping many fields in methods
might add noticeable overheads. To measure the actual overheads that would be added if
an object-oriented paradigm were included in the Linux kernel we performed the following
experiment.

We modified a Linux kernel in such a way that the inode private fields are only accessed
directly if no methods for accessing these fields are provided by a file system. If, however,
the file system provides methods for reading or updating such fields, then these methods
are called instead. A Perl script performs this Linux kernel instrumentation automatically.
In particular, the script performs three actions:

(1) The script inserts new methods into the inode operations vector that access the object’s
fields. For example, in the case of i_mode, the script adds the following function
declarations to the inode operations structure:

umode_t (*read_i_mode) (struct inode =*inode);
void (*write_i_mode) (struct inode *inode, umode_t new_val);

(2) For each inode field, the script adds inline functions to access the inode’s object. If
the inode object has a method defined for that field, then the object’s own method is

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 29

used. Otherwise, the object’s field is read directly. For example, the script adds the
following function to read the i_mode field:

static inline umode_t read_i_mode(struct inode =xinode)
{
if (inode->i_op && inode->i_op->read_i_mode)
return inode->i_op->read_i_mode(inode) ;
else
return inode->i_mode;

}

The script defines similar methods for updating other inode fields.

(3) Every access to private inode fields is converted to use one of the inline functions. For
example,

inode->i_mode = mode;

is converted to

write_i_mode(inode, (mode));

Also, the script properly handles more complicated cases, such as
inode->i_nlink++;

which are converted into

write_i nlink(inode, read_i_nlink(inode) + 1);

Our Perl script is only 133 lines long. We used it to instrument the 2.6.11 Linux kernel.
In particular, we protected the following twelve inode private fields: i_ino, i_mode, i_nlink,
i_uid, i_gid, i_rdev, i_size, i_blkbits, i_blksize, i_version, i_blocks, and i_bytes. This required
converting 3,113 read and 1,389 write operations into function calls. The script added 207
new lines of code and modified 3,838 lines of Linux source code. The compiled Linux
kernel size overhead was 22,042 bytes.

To evaluate the CPU time overheads, we ran two benchmarks on a 1.7GHz Pentium IV
with 1GB of RAM. The system disk was a 30GB 7,200 RPM Western Digital Caviar IDE
formatted with Ext3. The tests were located on a dedicated Maxtor Atlas 15,000 RPM
18.4GB Ultra320 SCSI disk formatted with Ext2. We remounted the file systems between
each benchmark run to purge file system caches. We ran each test at least ten times and used
the Student-t distribution to compute the 95% confidence intervals for the mean elapsed,
system, and user times. In each case the confidence intervals were less than 5% of the
mean.

First, we ran Postmark 1.5 [Katcher 1997], which simulates the operation of electronic
mail servers. Postmark performs a series of file system operations such as appends, file
reads, creations, and deletions. This benchmark uses little CPU but is I/O intensive. We
configured Postmark to create 20,000 files, between 512—10K bytes in size, and perform
200,000 transactions. The rest of the parameters were the Postmark defaults. We ran
Postmark under instrumented and vanilla versions of the 2.6.11 Linux kernel. The elapsed
times were statistically indistinguishable, and the 95% confidence interval for the system
time overhead was between 0.1% and 2.5% (the average was 1.3%).

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

30 . Zadok et al.

Second, we ran a custom benchmark that invoked a stat system call on one file 100
million times. A stat call looks up the file and copies thirteen inode fields into a user
buffer. Our script instrumented nine out of these thirteen fields. There is very little I/O
during this benchmark, because the same file is used repeatedly (the CPU utilization was
100%). This is a worst case for this system, as the overheads are entirely CPU-bound. Our
experiments showed that the instrumented kernel had a 2.3% system time overhead while
running this intense sequence of stat system calls.

As a result of our experiments, we conclude that the addition of the an object-oriented
per-field-access infrastructure into the Linux kernel has negligible impact on the operation
of the file systems.

ACKNOWLEDGMENTS

This work has evolved over more than a decade. We would like to thank the thousands of
world-wide FiST and Unionfs users—from both academia and industry—who downloaded
and used the software, and the many who reported bugs and submitted patches. Special
thanks go to Ion Biddulescu, who developed much of the initial Linux stackable templates;
to Yevgen Borodin, Michael Gorbovitski, and Haik Lorenz who ported FiST to Linux 2.6
in 2004; and to Sunil Satnur, who stress-tested the code using a POSIX test suite, and then
fixed many bugs.

This work was partially made possible by an NSF CAREER award ETA-0133589, NSF
Trusted Computing Award CCR-0310493, and HP/Intel gifts numbers 87128 and 88415.1,
all awarded to Stony Brook University. Earlier parts of this work were accomplished at
Columbia University, partly under NSF CISE Research Infrastructure grants CDA-90-
24735 and EIA-9625374.

REFERENCES

ANDERSON, D., CHASE, J., AND VADHAT, A. 2000. Interposed Request Routing for Scalable
Network Storage. In Proceedings of the 4th Usenix Symposium on Operating System Design and
Implementation (OSDI ’00). USENIX Association, San Diego, CA, 259-272.

APPAVOO, J., AUSLANDER, M., DASILVA, D., EDELSOHN, D., KRIEGER, O., OSTROWSKI, M.,
ROSENBURG, B., WISNIEWSKI, R., AND XENIDIS, J. 2002. K42 overview. www.research.
ibm.com/K42/.

ARANYA, A., WRIGHT, C. P., AND ZADOK, E. 2004. Tracefs: A File System to Trace Them All.
In Proceedings of the Third USENIX Conference on File and Storage Technologies (FAST 2004).
USENIX Association, San Francisco, CA, 129-143.

ARPACI-DUSSEAU, A. C. AND ARPACI-DUSSEAU, R. H. 2001. Information and Control in Gray-
Box Systems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01). ACM, Banft, Canada, 43-56.

AYERS, L. 1997. E2compr: Transparent file compression for Linux. Linux Gagzette 18. www.
linuxgazette.com/issuel8/e2compr.html.

BALZER, R. AND GOLDMAN, N. 1999. Mediating connectors. In Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems Workshop. IEEE, Austin, TX, 72-77.

BLAZE, M. 1993. A Cryptographic File System for Unix. In Proceedings of the first ACM Confer-
ence on Computer and Communications Security. ACM, Fairfax, VA, 9-16.

BURNETT, N. C., BENT, J., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2002. Ex-
ploiting Gray-Box Knowledge of Buffer-Cache Contents. In Proceedings of the Annual USENIX
Technical Conference. USENIX Association, Monterey, CA, 29-44.

CLUSTER FILE SYSTEMS, INC. 2002. Lustre: A scalable, high-performance file system. www .
lustre.org/docs/whitepaper.pdf.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 31

CORNER, M. AND NOBLE, B. D. 2002. Zero-Interaction Authentication. In The Eigth ACM Con-
ference on Mobile Computing and Networking. ACM, Atlanta, GA, 1-11.

DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. 2001. Wide-area
cooperative storage with cfs. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01). ACM, Banff, Canada, 202-215.

ENGLER, D., KAASHOEK, M. F., AND O’TOOLE JR., J. 1995. Exokernel: An operating system
architecture for application-level resource management. In Proceedings of the 15th ACM Sympo-
sium on Operating System Principles (SOSP ’95). ACM SIGOPS, Copper Mountain Resort, CO,
251-266.

GHORMLEY, D. P., PETROU, D., RODRIGUES, S. H., AND ANDERSON, T. E. 1998. SLIC: An
Extensibility System for Commodity Operating Systems. In Proceedings of the Annual USENIX
Technical Conference. ACM, Berkeley, CA, 39-52.

GOH, E.-J., SHACHAM, H., MODADUGU, N., AND BONEH, D. 2003. Sirius: Securing remote
untrusted storage. In Proceedings of the Tenth Network and Distributed System Security (NDSS)
Symposium. Internet Society (ISOC), San Diego, CA, 131-145.

GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE JR., T. W., POPEK, G. J., AND ROTHMEIER, D.
1990. Implementation of the Ficus replicated file system. In Proceedings of the Summer USENIX
Technical Conference. IEEE, Anaheim, CA, 63-71.

HALCROW, M. A. 2004. Demands, Solutions, and Improvements for Linux Filesystem Security. In
Proceedings of the 2004 Linux Symposium. Linux Symposium, Ottawa, Canada, 269-286.

HARDER, B. 2001. Microsoft Windows XP System Restore. http://msdn.
microsoft.com/library/default.asp?url=/library/en—-us/dnwxp/html/
windowsxpsystemrestore.asp.

HEIDEMANN, J. S. AND POPEK, G. J. 1991. A layered approach to file system development. Tech.
Rep. CSD-910007, UCLA.

HEIDEMANN, J. S. AND POPEK, G. J. 1994. File system development with stackable layers. ACM
Transactions on Computer Systems 12, 1 (February), 58-89.

HEIDEMANN, J. S. AND POPEK, G. J. 1995. Performance of cache coherence in stackable filing.
In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM SIGOPS, Copper Mountain Resort, CO, 3-6.

HOFMEYR, S. A., SOMAYAIJI, A., AND FORREST, S. 1998. Intrusion detection using sequences of
system calls. Journal of Computer Security 6, 151-180.

INDRA NETWORKS. 2004. StorCompress. www.indranetworks.com/StorCompress.
pdf.

JONES, M. B. 1993. Interposition Agents: Transparently Interposing User Code at the System
Interface. In Proceedings of the 14th Symposium on Operating Systems Principles (SOSP ’93).
ACM, Asheville, NC, 80-93.

Joukov, N., RAI, A., AND ZADOK, E. 2005. Increasing distributed storage survivability with
a stackable raid-like file system. In Proceedings of the 2005 IEEE/ACM Workshop on Cluster
Security, in conjunction with the Fifth IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2005). IEEE, Cardiff, UK, 82-89. (Won best paper award).

KASHYAP, A., DAVE, J., ZUBAIR, M., WRIGHT, C. P., AND ZADOK, E. 2004. Using the Berkeley
Database in the Linux Kernel. www.fsl.cs.sunysb.edu/project-kbdb.html.

KASHYAP, A., PATIL, S., SIVATHANU, G., AND ZADOK, E. 2004. I3FS: An In-Kernel Integrity
Checker and Intrusion Detection File System. In Proceedings of the 18th USENIX Large Installa-
tion System Administration Conference (LISA 2004). USENIX Association, Atlanta, GA, 69-79.

KATCHER, J. 1997. PostMark: A New Filesystem Benchmark. Tech. Rep. TR3022, Network Ap-
pliance. www.netapp.com/tech_library/3022.html.

KEROMYTIS, A. D., PAREKH, J., GROSS, P. N., KAISER, G., MISRA, V., NIEH, J., RUBENSTEIN,
D., AND STOLFO, S. 2003. A holistic approach to service survivability. In Proceedings of the
2003 ACM Workshop on Survivable and Self-Regenerative Systems. ACM, Fairfax, VA, 11-22.

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

32 . Zadok et al.

KHALIDI, Y. A. AND NELSON, M. N. 1993. Extensible file systems in Spring. In Proceedings of
the 14th Symposium on Operating Systems Principles (SOSP '93). ACM, Asheville, NC, 1-14.
KLEIMAN, S. R. 1986. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Technical Conference. USENIX Association, Atlanta, GA,

238-247.

KLOTZBUCHER, M. 2004. Development of a Linux Overlay Filesystem for Software Updates in
Embedded Systems. M.S. thesis, Universitidt Konstanz, Konstanz, Germany.

MACDONALD, J., REISER, H., AND ZAROCHENTCEV, A. 2002. Reiser4 transaction design docu-
ment. www.namesys.com/txn-doc.html.

MAZIERES, D. 2001. A Toolkit for User-Level File Systems. In Proceedings of the Annual USENIX
Technical Conference. USENIX Association, Boston, MA, 261-274.

MICROSOFT CORPORATION. 2004a. File System Filter Manager: Filter Driver Development Guide.
www.microsoft.com/whdc/driver/filterdrv/default.mspx.

MICROSOFT CORPORATION. 2004b. Installable File System Development Kit. www.
microsoft.com/whdc/devtools/ifskit/default.mspx.

MICROSOFT CORPORATION. 2004c. Microsoft MSDN WinFS Documentation. http://msdn.
microsoft.com/data/winfs/.

MIRETSKIY, Y., DAS, A., WRIGHT, C. P., AND ZADOK, E. 2004. Avfs: An On-Access Anti-Virus
File System. In Proceedings of the 13th USENIX Security Symposium (Security 2004). USENIX
Association, San Diego, CA, 73-88.

MUNISWAMY-REDDY, K., WRIGHT, C. P., HIMMER, A., AND ZADOK, E. 2004. A Versatile and
User-Oriented Versioning File System. In Proceedings of the Third USENIX Conference on File
and Storage Technologies (FAST 2004). USENIX Association, San Francisco, CA, 115-128.

NAGAR, R. 1997. Windows NT File System Internals: A developer’s Guide. O’Reilly, Sebastopol,
CA, 615-667. Section: Filter Drivers.

NETWORK ASSOCIATES TECHNOLOGY, INC. 2004. McAfee. www.mcafee.com.

NUGENT, J., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. 2003. Controlling Your PLACE
in the File System with Gray-box Techniques. In Proceedings of the Annual USENIX Technical
Conference. USENIX Association, San Antonio, TX, 311-323.

ONEY, W. 2003. Programming the Microsoft Windows Driver Model, Second ed. Microsoft Press,
Redmond, WA.

PENDRY, J. S. AND MCKUSICK, M. K. 1995. Union mounts in 4.4BSD-Lite. In Proceedings of
the USENIX Technical Conference on UNIX and Advanced Computing Systems. USENIX Asso-
ciation, New Orleans, LA, 25-33.

PHILLIPS, D. 2001. A directory index for EXT?2. In Proceedings of the 5th Annual Linux Showcase
& Conference. USENIX Association, Oakland, CA, 173-182.

ROSENTHAL, D. S. H. 1990. Evolving the Vnode interface. In Proceedings of the Summer USENIX
Technical Conference. USENIX Association, Anaheim, CA, 107-118.

ROSENTHAL, D. S. H. 1992. Requirements for a “Stacking” Vnode/VFS interface. Tech. Rep.
SD-01-02-N014, UNIX International.

SCHAEFER, M. 2000. The migration filesystem. www.cril.ch/schaefer/anciens._
projets/mfs.html.

SELTZER, M. AND YIGIT, O. 1991. A new hashing package for UNIX. In Proceedings of the
Winter USENIX Technical Conference. USENIX Association, Dallas, TX, 173-184.

SHANAHAN, D. P. 2000. CryptosFS: Fast cryptographic secure nfs. M.S. thesis, University of
Dublin, Dublin, Ireland.

SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW, R., BEAME, C., EISLER, M., AND
NOVECK, D. 2000. NFS Version 4 Protocol. Tech. Rep. RFC 3010, Network Working Group.
December.

SIVATHANU, M., PRABHAKARAN, V., Porovicl, F. 1., DENEHY, T. E., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. 2003. Semantically-Smart Disk Systems. In Proceed-

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

On Incremental File System Development . 33

ings of the Second USENIX Conference on File and Storage Technologies (FAST 03). USENIX
Association, San Francisco, CA, 73—-88.

SKINNER, G. C. AND WONG, T. K. 1993. “Stacking” Vnodes: A progress report. In Proceedings
of the Summer USENIX Technical Conference. USENIX Association, Cincinnati, OH, 161-174.
SMCC. 1992. lofs — loopback virtual file system. Sun Microsystems, Inc. SunOS 5.5.1 Reference

Manual, Section 7.

SOLOMON, D. A. AND RUSSINOVICH, M. E. 2000. Inside Microsoft Windows 2000. Microsoft
Press, Redmond, WA.

SOPHOS. 2004. Sophos Plc. www . sophos . com.

SUNSOFT. 1994. Cache file system (CacheFS). Tech. rep., Sun Microsystems, Inc. February.

SYMANTEC. 2004. Norton Antivirus. www . symantec . com.

SZEREDI, M. 2005. Filesystem in Userspace. http://fuse.sourceforge.net.

TzZACHAR, N. 2003. SRFS kernel module. Tech. rep., Computer Science Department,
Ben Gurion University. September. www.cs.bgu.ac.il/~srfs/publications/
implementation_report.pdf.

WRIGHT, C. P., DAVE, J., GUPTA, P., KRISHNAN, H., QUIGLEY, D. P., ZADOK, E., AND ZUBAIR,
M. N. 2006. Versatility and unix semantics in namespace unification. ACM Transactions on
Storage (TOS) 2, 1 (February), 1-32.

WRIGHT, C. P., MARTINO, M., AND ZADOK, E. 2003. NCryptfs: A Secure and Convenient Cryp-
tographic File System. In Proceedings of the Annual USENIX Technical Conference. USENIX
Association, San Antonio, TX, 197-210.

ZADOK, E. 2001. FiST: A System for Stackable File System Code Generation. Ph.D. thesis,
Computer Science Department, Columbia University. www.fsl.cs.sunysb.edu/docs/
zadok-phd-thesis/thesis.pdf.

ZADOK, E., ANDERSON, J. M., BADULESCU, I., AND NIEH, J. 2001. Fast Indexing: Support
for size-changing algorithms in stackable file systems. In Proceedings of the Annual USENIX
Technical Conference. USENIX Association, Boston, MA, 289-304.

ZADOK, E. AND BADULESCU, I. 1999. A stackable file system interface for Linux. In LinuxExpo
Conference Proceedings. Raleigh, NC, 141-151.

ZADOK, E., BADULESCU, I., AND SHENDER, A. 1999. Extending file systems using stackable
templates. In Proceedings of the Annual USENIX Technical Conference. USENIX Association,
Monterey, CA, 57-70.

ZADOK, E. AND NIEH, J. 2000. FiST: A Language for Stackable File Systems. In Proc. of the
Annual USENIX Technical Conference. USENIX Association, San Diego, CA, 55-70.

ZADOK, E., OSBORN, J., SHATER, A., WRIGHT, C. P., MUNISWAMY-REDDY, K., AND NIEH, J.
2004. Reducing Storage Management Costs via Informed User-Based Policies. In Proceedings
of the 12th NASA Goddard, 21st IEEE Conference on Mass Storage Systems and Technologies
(MSST 2004). IEEE, College Park, MD, 193-197.

Received October 2005; accepted December 2005

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.

