
Efficient, Scalable, and Versatile Application and System
Transaction Management for Direct Storage Layers

A Dissertation Presented

by

Richard Paul Spillane

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

Technical Report FSL-02-12

May 2012

Copyright by
Richard Paul Spillane

2012

Stony Brook University

The Graduate School

Richard Paul Spillane

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Erez Zadok–Dissertation Advisor
Associate Professor, Computer Science Department

Robert Johnson–Chairperson of Defense
Assistant Professor, Computer Science Department

Donald Porter–Third Inside member
Assistant Professor, Computer Science Department

Dr. Margo I. Seltzer–Outside member
Herchel Smith Professor, Computer Science, Harvard University

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Efficient, Scalable, and Versatile Application and System Transaction Management for
Direct Storage Layers

by

Richard Paul Spillane

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

A good storage system provides efficient, flexible, and expressive abstractions that allow for
more concise and non-specific code to be written at the application layer. However, because I/O
operations can differ dramatically in performance, a variety of storage system designs have evolved
differently to handle specific kinds of workloads and provide different sets of abstractions. For ex-
ample, to overcome the gap between random and sequential I/O, databases, file systems, NoSQL
database engines, and transaction managers have all come to rely on different on-storage data struc-
tures. Therefore, they exhibit different transaction manager designs, offer different or incompatible
abstractions, and perform well only for a subset of the universe of important workloads.

Researchers have worked to coordinate and unify the various and different storage system de-
signs used in operating systems. They have done so by porting useful abstractions from one system
to another, such as by adding transactions to file systems. They have also done so by increasing the
access and efficiency of important interfaces, such as by adding a write-ordering system call. These
approaches are useful and valid, but rarely result in major changes to the canonical storage stack
because the need for various storage systems to have different data structures for specific workloads
ultimately remains.

In this thesis, we find that the discrepancy and resulting complexity between various storage
systems can be reduced by reducing the difference in their underlying data structures and transac-
tional designs. This thesis explores two different designs of a consolidated storage system: one
that extends file systems with transactions, and one that extends a widely used database data struc-
ture with better support for scaling out to multiple devices, and transactions. Both efforts result
in contributions to file systems and database design. Based in part on lessons learned from these
experiences, we determined that to significantly reduce system complexity and unnecessary over-
head, we must create transactional data structures with support for a wider range of workloads. We
have designed a generalization of the log-structured merge-tree (LSM-tree) and coupled it with two

iii

novel extensions aimed to improve performance. Our system can perform sequential or file sys-
tem workloads 2–5× faster than existing LSM-trees because of algorithmic differences and works
at 1–2× the speed of unmodified LSM-trees for random workloads because of transactional log-
ging differences. Our system has comparable performance to a pass-through FUSE file system and
superior performance and flexibility compared to the storage engine layers of the widely used Cas-
sandra and HBase systems; moreover, like log-structured file systems and databases, it eliminates
unnecessary I/O writes, writing only once when performing I/O-bound asynchronous transactional
workloads.

It is our thesis that by extending the LSM-tree, we can create a viable and new alternative to
the traditional read-optimized file system design that efficiently performs both random database
and sequential file system workloads. A more flexible storage system can decrease demand for a
plethora of specialized storage designs and consequently improve overall system design simplic-
ity while supporting more powerful abstractions such as efficient file and key-value storage and
transactions.

iv

To God:
for his creation,

to Sandra:
the bedrock of my house, and

to Mom, Dad, Sean, and my family and friends:
for raising, loving, and teaching me.

v

Table of Contents

List of Figures xi

List of Tables xii

Acknowledgments xiv

1 Introduction 1

2 Motivation 4
Motivating Factors . 5

2.1 Important Abstractions: System Transactions and Key-value Storage 5
2.1.1 Transactions . 6

Transactional Model . 7
2.1.2 Key-Value Storage . 9

2.2 Performance . 10
2.3 Implementation Simplicity . 10

3 Background 12
3.1 Transactional Storage Systems . 13

3.1.1 WAL and Performance Issues . 13
3.1.2 Journaling File Systems . 15
3.1.3 Database Access APIs and Alternative Storage Regimes 17

Soft-updates and Featherstitch . 17
Integration of LFS Journal for Database Applications 17

3.2 Explaining LSM-trees and Background . 18
3.2.1 The DAM Model and B-trees . 19
3.2.2 LSM-tree Operation and Minor/Major Compaction 21
3.2.3 Other Log-structured Database Data Structures 23

3.3 Trial Designs . 24
3.3.1 SchemaFS: Building an FS Using Berkeley DB 25
3.3.2 User-Space LSMFS: Building an FS on LSMs in User-Space with Minimal

Overhead . 26
3.4 Putting it Together . 27
3.5 Conclusion . 29

vi

4 Valor: Enabling System Transactions with Lightweight Kernel Extensions 30
4.1 Background . 32

4.1.1 Database on an LFS Journal and Database FSes 32
4.1.2 Database Access APIs . 33

Berkeley DB . 33
Stasis . 34

4.2 Design and Implementation . 34
Transactional Model . 34
1. Logging Device . 37
2. Simple Write Ordering . 37
3. Extended Mandatory Locking 37
4. Interception Mechanism . 37
Cooperating with the Kernel Page Cache 38
An Example . 40

4.2.1 The Logging Interface . 40
In-Memory Data Structures . 41

Life Cycle of a Transaction . 41
Soft vs. Hard Deallocations . 43

On-Disk Data Structures . 43
Transition Value Logging . 43

LDST: Log Device State Transition . 44
Atomicity . 45

Performing Recovery . 45
System Crash Recovery . 45
Process Crash Recovery . 45

4.2.2 Ensuring Isolation . 45
4.2.3 Application Interception . 46

4.3 Evaluation . 47
4.3.1 Experimental Setup . 47

Comparison to Berkeley DB and Stasis 47
Berkeley DB Expectations . 48

4.3.2 Mock ARIES Lower Bound . 50
4.3.3 Serial Overwrite . 51
4.3.4 Concurrent Writers . 52
4.3.5 Recovery . 53

4.4 Conclusions . 54

5 GTSSLv1: A Fast-inserting Multi-tier Database for Tablet Serving 57
5.1 Background . 59
5.2 TSSL Compaction Analysis . 60

HBase Analysis . 60
SAMT Analysis . 62
Comparison . 62

5.3 Design and Implementation . 63
5.3.1 SAMT Multi-Tier Extensions . 63

vii

Re-Insertion Caching . 64
Space Management and Reclamation 65

5.3.2 Committing and Stacked Caching . 66
Cache Stacking . 66
Buffer Caching . 66

5.3.3 Transactional Support . 67
Snapshot, Truncate, and Recovery 68

5.4 Evaluation . 69
5.4.1 Experimental Setup . 69
5.4.2 Multi-Tier Storage . 70

Configuration . 70
Results . 71

5.4.3 Read-Write Trade-off . 72
Configuration . 72
Results . 73
Cassandra and HBase limiting factors 74

5.4.4 Cross-Tree Transactions . 75
Configuration . 75
Results . 76

5.4.5 Deduplication . 77
Configuration . 77
Results . 77
Evaluation summary . 77

5.5 Related Work . 78
(1) Cluster Evaluation . 78
(2) Multi-tier storage . 78
(3) Hierarchical Storage Management 79
(4) Multi-level caching . 79
(5) Write-optimized trees . 79
(6) Log-structured data storage . 80
(7) Flash SSD-optimized trees . 80

5.6 Conclusions . 80

6 GTSSLv2: An Extensible Architecture for Data and Meta-Data Intensive System
Transactions 83
6.1 Stitching and Related Arguments . 85

SAMT + Stitching and the Patch-tree 86
6.1.1 Patch-tree Characteristics . 89

Limits on the secondary index overhead 89
Linkage between LSM and LFS 90
The stitching predicate: optimizing for future scans 92

6.1.2 Finding an Alternative to Bloom Filters 93
6.2 Stitching Implementation . 97

6.2.1 VT-tree Implementation . 97
6.2.2 VT-trees within GTSSL . 101

viii

6.2.3 SimpleFS and System Benchmarking . 102
6.3 Evaluation . 102

6.3.1 Experimental Setup . 103
Storage Device Performance . 103
Configuration . 104

6.3.2 RANDOM-APPEND . 104
Configuration . 105

6.3.3 SEQUENTIAL-INSERTION . 106
6.3.4 RANDOM-INSERTION . 108
6.3.5 Point Queries . 109
6.3.6 Tuples of 64B in size . 109

Configuration . 110
6.3.7 Filebench Fileserver . 110

Configuration . 111
6.4 Related Work . 111

6.4.1 Adding Stitching to the Log-structured Merge-tree 112
In-place trees . 112
Copy-on-write LFS trees . 113
Merge trees . 116

6.4.2 Quotient Filters and other Write-optimized Approaches 117
(1) Quotient Filters with LSM-trees 117
(2) Write-Optimized Databases: 117
(3) Relation to LFS Threading and other Cleaning 118
Alternative LFS Cleaning Approaches 119

6.5 Conclusions . 120

7 Conclusions 122
7.1 List of Lessons Learned . 122

Once Written, Twice Nearby . 122
Journaling: A Special Case . 122
Keep your Caches Close, Keep your Shared Caches Closer 123
Get to the Point . 124
Log-structured and mmap . 125
Sequential and Multi-tier LSM-trees: a promising avenue for file

system design . 125
7.2 Summary . 126

8 Future Work 127
8.1 External Cache Management . 127
8.2 Opt-in Distributed Transactions with Asynchronous Resolution 127
8.3 Multi-tier Deployments for Client-side Compaction 128
8.4 Multi-tier Range Query Histograms . 128
8.5 Multi-node Deployment . 128
8.6 B-tree-like Out-of-space management . 129

ix

8.7 GTSSLv3: Independent SAMT Partitions for Partitionable Workloads and Multi-
Tiering with Stitching . 129

Bibliography 129

A Glossary 141

B Java Database Cache Analysis 146

x

List of Figures

2.1 Example of a system transaction . 8

3.1 The DAM model . 19
3.2 Definitions . 20
3.3 Basic LSM-tree Design . 21

4.1 Valor Architecture . 36
4.2 Valor Example . 41
4.3 Valor Log Layout . 42
4.4 Berkeley DB Micro-benchmarks . 49
4.5 Valor’s and Stasis’s performance relative to the mock ARIES lower bound 51
4.6 Asynchronous serial overwrite of files of varying sizes 52
4.7 Execution times for multiple concurrent processes accessing different files 53
4.8 Recovery benchmark . 54

5.1 Location of the Tablet Server Storage Layer . 58
5.2 LSM-tree and MT-SAMT analysis . 61
5.3 Private caches of a transaction . 67
5.4 Configuration of re-insertion caching benchmark 70
5.5 Multi-tier results . 71
5.6 Multi-tier insertion caching . 72
5.7 Read-write Optimization Efficiency . 73
5.8 Single-item Transaction Throughput . 74
5.9 Deduplication insertion and lookup performance 77

6.1 Elements Copy During Merge . 84
6.2 Patch-trees . 86
6.3 Stitching . 87
6.4 The stitching algorithm . 88
6.5 Linkage between an LFS and an LSM-tree . 91
6.6 Quotient Filter . 95
6.7 The stitch-next routine . 99
6.8 The stitch-check-scan routine . 100
6.9 Multiple transactions as multiple schemas . 101
6.10 Random Append and Stitching . 106
6.11 Stitching Trade-offs . 107
6.12 Sequential Insertion Stitching . 108

xi

6.13 Random Insertion Stitching . 109
6.14 Random Append of 64B-tuple Stitching . 110
6.15 Out-of-Cache object creation and lookup. 113
6.16 Illustration of copy-on-write LFS operation . 114
6.17 Copy-on-write LFS performance when thrashing 115

B.1 Multi-eviction C++ red-black tree Micro-benchmark 147
B.2 Multi-eviction C++ skip list Micro-benchmark . 148
B.3 Multi-eviction Java red-black tree Micro-benchmark 149
B.4 Multi-eviction Java skip list Micro-benchmark . 150

xii

List of Tables

2.1 Overview of trial transactional file system designs 4

3.1 A qualitative comparison of Transactional Storage Designs 27

4.1 A qualitative comparison of Transactional Storage Designs 55

5.1 Performance of databases performing asynchronous transactions. 76
5.2 A qualitative comparison of Transactional Storage Designs 82

6.1 Performance of our Intel X-25M Flash SSD . 103
6.2 Filebench file server workload results in ops/sec 111
6.3 Comparison of main storage data structures . 117
6.4 A qualitative comparison of Transactional Storage Designs 121

B.1 Performance counters of cpu-time, L2 cache misses, and off-core requests. 151

xiii

Acknowledgments
This work was made possible by the unending patience and tireless devotion of my wife Jianing

Guo, who always pushed me to go farther, to make things done, and to keep to my commitments
both to her and others.

Professor Erez Zadok provided encouragement, and a belief in my ideas and abilities when
even I was unsure at times. His confidence in me gave me the confidence necessary to pursue some
of the most technically challenging and important research I’ve ever explored, making this work
possible. Professor Zadok is a rare type of advisor that gives his students sufficient rope to hang
themselves with. Over the years he has given me countless opportunities to manage students and
resources, to become a better team leader, a better project manager, a better scientist, and all in all,
a better researcher, by simply letting me learn from my own mistakes in a forgiving environment.

My father, mother, and brother have been critical in supporting me, up to when they dropped
me off at Stony Brook as a freshman, and throughout my years as a graduate student researcher. Its
been tough, both personally and professionally, and when I need support, or a home to go to, my
family was always there. My father would always ask about my research, and my mother would
always actually listen. My brother who is also a computer scientist originally sparked the interest I
have in me now that made me go beyond just playing video games.

Pradeep J. Shetty has been a tireless thinker and coder on this work. He challenges me to inspire
him with the work, and because of my conversations with him, the work is well compared to other
research projects, and its contributions are clearly delineated.

Charles P. Wright has been a close friend and mentor for my six years in the lab, even after he
left he had a presence. I learned about transactions, and much of basic research from him directly.
He has helped me with intern opportunities, he has acted as a sounding board, and we are friends.
I thank him for everything he has done for me, and for all the help he has given me.

Sachin Gaikwad offered his independent mindedness and clear analysis and judgement of
Valor’s benefits and drawbacks. He was a fierce coder, and could hack the kernel quickly. I appre-
ciated the nights he spent working with me on Valor.

Sagar Dixit worked with me side by side on algorithmic issues, figuring out how to avoid
placing cursors in all levels to perform a fault in the virtual address space of a file. He carefully
wrote difficult data-structure code, and fought bug after bug. Without his assistance, the work we
did on external page caching, and tablet serving would not have been possible.

Shrikar Archak helped implement several novel kernel policies that allowed the kernel to notify
applications when they were inducing memory pressure, and gave them an opportunity to flush,
without risking resource deadlock. He also helped implement the trapping code to reroute system
calls back to a user-level handler. Finally he was instrumental in testing and debugging the journal
and recovery routines in the tablet server and database code.

Ramya Edara wrote the directory locking and per-process lock maintenance code in the kernel
for Valor. Without her assistance we would not have been able to test concurrency as accurately in
our evaluation, or have locking policies and permissions in place for security reasons.

Gopalan Suryanaryana helped with the implementation of libvalor and specifically with
code to cleanup file descriptors. He helped me analyze the effects of using system transactions on
the etc directory and its files. He was the first student I worked with as a researcher, and taught
me much more than I taught him, and I thank him.

Manjunath Chinni expected the highest standard from me, and looked to me for leadership, and

xiv

in so doing, pushed me to promote the Valor project and drive it forward.
Vasily Tarasov has helped me countless times. He has been at the ready right before some of

my most important deadlines to help me run benchmarks when I was undermanned. He is a good
friend, and a reliable colleague.

Saumitra Bhanage was the master of Filebench, and helped set up countless benchmarks. He
stayed up long nights before one of my toughest deadlines, and hacked through several critical
bugs. Without his help, my research would have been a paper deadline behind.

Justin Seyster has been a close friend and confidant. We have laughed and joked in the lab, and
he also wrote me some code just recently so he gets in here.

I thank Russel Sears, and Michael Bender, two co-authors whose papers I have read, and who
I have worked with on past papers. Without their research, and their trust, I would not know much
of what I needed to do my own research and make my own discoveries.

Leif Walsh, Karthikeyan Srinaivasan, and Zhichao Li have all written code for me, or helped me
through a deadline. Without their help, some of my camera ready copies and submissions would
not have been up to par.

I would also like to thank all the anonymous reviewers out there who have taken the time to
anonymously read my papers, and anonymously educate me via trial by fire.

Finally I would like to thank my committee Dr. Margo Seltzer, Dr. Robert Johnson, Dr. Donald
Porter, and my adviser, again, Dr. Erez Zadok.

Thank you everyone, education is a team sport, and we all help each other through it all, and
we’re all much better off for it.

xv

Chapter 1

Introduction

The file system is the part of the operating system that provides a way for applications to easily
read and write to a storage device. The typical abstraction provided to applications is the POSIX
API [54], which can be used to manipulate files using routines such as open, close, read, and
write.

The file system is optimized for workloads that read and write sequentially to large files. For
other workloads, there are multiple other data structures underlying multiple software packages. To
efficiently perform a non-file system workload, the user must first select the most efficient software
package for that workload, and install it.

Maintaining multiple separate storage abstractions and implementations increases the complex-
ity of the operating system, and introduces new overheads between storage layers that effect ap-
plication performance dramatically. Consolidating these storage designs into one universal storage
design would significantly reduce performance overheads, security vulnerabilities, and system in-
stability, while greatly simplifying application level code.

Though this may not be possible, we attempt to consolidate at least two highly popular work-
loads into a single storage system: key-value storage and file system workloads. Key-value storage
is a method of creating and utilizing large dictionaries of tuples on a storage device. We have found
in our survey of related work that key-value storage is a powerful abstraction that is effective as a
backend for implementing both file systems and database storage engines.

We also focus on obtaining efficient transactions for use with querying, modifying, and updating
multiple key-value pairs in a single compound operation to simplify concurrent application-level
programs manipulating storage. File tagging, meta-data management, and other workloads that mix
more complex and randomly accessed data workloads (structured data) with more sequential work-
loads can be transactionally and efficiently performed without explicit specialized interfaces and
implementations. By giving applications a single transactional interface to key-value storage that
works efficiently for file workloads, applications can avoid carefully checking that other malicious
applications are not observing them when performing sensitive operations. Package installation or
large system-wide modifications can be performed without fear of leaving partial changes to the
operating system in case of an error.

By providing a storage system that efficiently performs transactional key-value storage for

1

workloads ranging from large sequences of tuples (files) to small tuples (database entries) we re-
duce the plurality that complicates storage programming in the operating system.

In this work we explore a variety of possible transactional file system designs, with a focus on
maximizing performance. For example, if a regular file system can perform a sequential write at the
storage device’s maximum measured sequential write throughput, then we strove for a transactional
file system design that could achieve the same performance for that workload. If a database data
structure, such as the log-structured merge-tree (LSM-tree) [95], is capable of randomly inserting
small tuples at the theoretical optimal throughput [11, 18] for a target query throughput, then we
strove for a transactional file system design that could achieve that level of performance as well.

We explored extensions to the operating system that enable existing file systems to perform
application-level transactions through an extended POSIX API. We also designed a high-insertion
throughput database with improved insertion and point-query performance that allowed transac-
tions. Ultimately we generalized that design with algorithmic optimizations for partially and fully
sequential insertions to better suit it for file system workloads. In this way we pushed toward a
consolidated storage system that has the best properties of a transactional database and a highly
efficient file system to simplify system storage.

Our exploration resulted in several new storage system designs that answered some of our re-
search questions about storage system design. We enumerate the most important of these lessons.
It also resulted in several new extensions and algorithms for key-value storage systems, such as se-
quentially inserting LSM-trees, multi-tier storage with LSM-trees, transactional file system support
for existing file systems, and in related research with others [12], quotient filters.

The lessons we extracted from these experiences include:

• Avoiding typical transaction overheads: Performing sequential asynchronous over-writes
and appends within a traditional transactional architecture is costly in comparison to a file
system such as Ext3.

• The transactional variation that fits your problem: Ext3 was able to carefully optimize
its transactional architecture for its specific needs, avoiding most overheads, and comparing
favorably to Ext2, its non-journaling predecessor. This would not have been possible with a
general approach, but only by building a carefully considered custom design and implemen-
tation.

• Avoiding memory copy overheads for secure shared caches: Caches used for file system or
storage system data and meta-data play a large role in the performance of in-RAM workloads,
and even partially or largely out-of-RAM workloads. If processes can directly address these
caches within their own address space they perform much more efficiently than by sending
and receiving messages through a shared memory pipe or socket.

• Fast point queries are useful for file systems: Most meta-data operations within a file
system such as Ext3 are single element queries and can be heavily optimized and can perform
well in certain write-optimized data structures.

• Log-structured storage systems allow for a simpler cache implementation: Normally,
database systems must implement a separate user-level stand-alone page cache to enforce
important reliability guarnatees. Log-structured transactional architectures can use mmap to

2

efficiently reuse the kernel’s page cache and can therefore avoid having a separate and slower
user-level stand-alone implementation.

• Sequential and Multi-tier LSM-trees: a promising avenue for file system design: LSM-
trees obey or exploit many of the lessons learned about transactional storage architecture,
and if improved for file system workloads, could serve as a promising alternative to existing
extent-based file system designs.

The rest of this thesis is organized as follows. We begin by outlining our goals and research
questions that motivated us to push toward a consolidation of transactional database and efficient
file system designs in Chapter 2. Next, we explain background material related to our transactional
file system extensions and generalized LSM-tree design in Chapter 3. In Chapter 4 we describe
our transactional file system extensions. In Chapter 5 we describe our LSM-tree design and exten-
sions. We further extend the LSM-tree to better support partially and fully sequential workloads in
Chapter 6. Finally we conclude in Chapter 7 and discuss future work in Chapter 8. A glossary is
provided in Appendix A for terms the reader may be unfamiliar with.

3

Chapter 2

Motivation

There are three key ideas that motivate our search for a transactional file system that is efficient
for a broader range of workloads, spanning from small (64B or smaller) tuples to larger tuples
(sequences of 4KB tuples or larger). These are:

1. Abstractions (Key-value Storage and Transactions)

2. Performance

3. Ease of Implementation

Section Project Name Summary
Section 3.3.1 SchemaFS A prototyping framework and file system adaptation for Berkeley

DB 4.4 that provides a transactional file system interface
Section 3.3.2 LSMFS A framework for efficient user-level file systems with safe shared-

memory caches and an example file system based on LSM-trees
that stores meta-data in an LSM-tree, and data in an object store

Section 4.2 Valor A set of operating system extensions explicitly designed to provide
system transactions to existing file systems

Section 5.3 GTSSLv1 A database for heterogeneous storage and high update volume
Section 6.1 VT-trees and GTSSLv2 A file system design supporting system transactions and key-value

storage, representing a culmination of lessons learned from previ-
ous trial designs

Table 2.1: Overview of trial transactional file system designs: A brief high-level outline of the five
trial storage and file system designs undertaken in this dissertation. The top two rows in the table
includes shorter design vignettes. The bottom three rows refer to entire design sections.

We describe our search for a more flexible transactional file system by explaining the purpose,
design, related work, evaluation, and impact of several trial storage system designs. A brief outline
of the five trial designs developed through the course of our research is shown in Table 2.1.

4

We discuss two of our trial designs, SchemaFS and LSMFS, in Chapter 3. Valor is a full
transactional file system design and is designed to operate on top of any existing file system and
provide transactions to applications without incurring performance overheads on non-transactional
applications. GTSSLv1 is a database optimized for high insertion, update, and delete throughputs
while still supporting efficient scans and optimal point queries. GTSSLv1 provides asynchronous
transactions that are more efficient than existing approaches. We generalize the data structure
GTSSLv1 is based upon to more efficiently execute sequential workloads.

These designs were explored as part of a search for a consolidated file system design that
could offer both key-value storage and system transactions. Our earlier designs informed our later
designs, and some designs were more important for our ultimate design for a transactional key-
value storage file system than others. Specifically, Valor and GTSSLv1 had a larger impact on
GTSSLv2’s design than SchemaFS and LSMFS. Valor is described in Chapter 4, and GTSSLv1 is
described in Chapter 5.

In this chapter, in Sections 2.1–2.2 we discuss what each of the Abstractions, Performance, and
Implementation Simplicity factors means and show why these factors motivated our search through
the various trial designs in Table 2.1. We also show how a file system design can score high or low
for each factor. In Section 2.1 we introduce what we feel are the most important abstractions, and
specifically, system transactions, which allow grouping of simpler storage operations into more
complex operations and key-value storage which enables efficient storage and analysis of complex
data on storage devices.

Motivating Factors These factors were chosen based on our experience with transactional and
non-transactional file system design and our interpretations of the various works related to trans-
actional file system, database, and storage design. These factors were chosen to be as orthogonal
and as complete as possible: in our experience it would be difficult to compare a file system design
to other file systems without knowing its relation to all factors (abstractions, performance, and im-
plementation simplicity). Furthermore, in our experience a file system design can have a high or
low score for one of the factors, without necessarily having a high or low score for one of the other
factors. These factors make it possible to compare different storage system designs, but they say
nothing about whether certain designs actually exist. For example, in practice it is difficult to have
a system with flexible key-value storage including files, transactions, a simple implementation, and
also good performance. The goal of our research has been to move in this direction: to find a
consolidated storage design which maximizes all three of our factors. The designs we arrived at
can be applied to many storage contexts, and the lessons we have learned from this motivate our
generalization of the LSM-tree.

2.1 Important Abstractions: System Transactions and Key-value
Storage

Abstractions define what additional logic applications must include to store and retrieve data from
the file system. The measure of a good abstraction is to reduce the complexity of applications,
while permitting them to provide their intended features. An example file system with no ab-
stractions might be an interface for applications to send and receive messages using the protocol

5

natively understood by the storage or memory technology being used. An example file system
with a robust set of abstractions might be one that behaves more like a database than a typical file
system. The de facto abstraction in file systems today is a hierarchy of names, where each name is
associated with a large array of bytes. In this work, we focus primarily on providing system trans-
actions, an abstraction that makes it easy for applications to perform complex storage operations
by composing together simpler storage operations. These composed operations behave in a reliable
and predictable manner in the presence of concurrency and despite the possibility of software or
hardware faults. By expressing their application’s storage logic in terms of system transactions,
programmers can remove a large amount of storage-related security and crash-recovery code from
their applications.

2.1.1 Transactions
A transactional file system allows applications to group multiple storage operations into a single
operation that behaves in a reliable and predictable manner. Such a group of operations is a trans-
action. When the storage operations are POSIX file system operations, then these transactions
are called system transactions. Both transactions and system transactions obey the same basic
four rules. These rules are commonly referred to with the four letters ACID. The rules are briefly
explained here for convenience. However more extensive and precise descriptions can be found
elsewhere [43].

• Atomicity Either every operation in the group will be performed as intended, or none of the
operations will have any effect on the system.

• Consistency If every transaction transitions the storage system from one valid state to an-
other, the storage system will always be in a valid state, despite transactions running in par-
allel or detectable faults.

• Isolation Transactions can be programmed as if they are the only operation occurring on the
storage system until the transaction commits. Isolation and Consistency are related, and there
are various definitions of Isolation (levels [43]) that can increase performance in contentious
scenarios.

• Durability When a commit operation completes, enough data has been written to disk to
ensure that the transaction will not be undone, even in the face of a detectable fault.

Transactions, and in the case of file systems, system transactions are excellent abstractions be-
cause all the ACID properties in concert make it possible for developers to remove a great deal
of complexity and code from their applications. In one of our trial designs that provided appli-
cations with system transactions, called Amino [151] (see Appendix A), we were able to reduce
the complexity of a mail inbox management application, mail.local, by a factor of six. We
measured complexity using lines of code and McCabe’s cyclomatic complexity metric [78]. To see
how the ACID properties can reduce an application’s complexity, consider each of the following
four properties:

• Reducing Complexity with Atomicity If an error or a detectable fault occurs, the developer
does not have to program any logic to clean up or undo partially applied operations performed

6

before the error was detected. Instead, the transaction can be aborted, and atomicity ensures
the failed operation had no effect on the state of the storage system.

• Reducing Complexity with Consistency If every transaction transitions the storage system
from one valid state to another, it is sufficient to execute the system’s recovery or abort al-
gorithm to ensure the storage system is in a valid state after a system or application crash.
Consequently, fewer post-crash checks need to be implemented by the application devel-
oper [19, 39] and it is easier to reason about the reliability and fault tolerance of the storage
system.

• Reducing Complexity with Isolation The developer does not have to acquire locks on stor-
age resources or spend time debugging complex race and deadlock scenarios. An application
cannot accidentally make itself vulnerable to malicious alteration of data half-way through a
transaction [106, 151].

• Reducing Complexity with Durability The developer does not have to identify which
caches or devices to flush [8, 93, 152], and the system can often group together many slow
flushes across unrelated applications running at the same time into a single flush to the storage
medium.

Transactional Model To completely understand what features the application developer can now
expect from the storage interface, the resources in the operating or storage system that are protected
by the umbrella of the ACID properties need to be clearly delineated. This is for two reasons:

1. Developers can identify what portions of their program can be expressed with system trans-
actions and therefore recognize they do not have to write recovery, locking, or flushing code
for that portion.

2. Conversely, developers can identify which caches and interfaces (e.g., network connections,
user interfaces, etc.) require explicit error handling.

A list of which resources and operations are considered part of a system transaction is called a
transactional model. In Chapter 4 we describe a system that supports system transactions on files,
directories, and other file system operations which can alter, create, or delete files.

In Figure 2.1 we see an example of a simple application of a system transaction system call.
The application is easily able to undo the effects of the open system call, as well as the write,
if an error occurs while logging in log create in application log(), by just calling
sys txn abort(). The log create in application log() routine is an application-
level routine, not part of the transactional system, and is an example POSIX operation. Some of
the variable names are just specific to this example only (e.g., handle t, configs).

Notably, this transactional model does not include processes, network connections, signals,
memory, and many other operating system objects and operations on these objects. In this work
we focus on the task of designing a transactional file system that is expressive, fast, and sufficiently
elegant in design, and this is already an open research question which we address. Additional
efforts to extend the system transaction model to other areas not within the file system is outside
the scope of this dissertation. Such efforts either incur upwards of 2× overheads which we avoid

7

int create_config_file(handle_t handle)
{

int ret = 0;
ssize_t wret;

ret = sys_txn_begin();
assert(!ret);

int fd = open(configs[handle].name,
O_RDWR | O_CREAT, 0600);

if (fd < 0) {
ret = -errno;
goto out;

}

wret = write(fd, configs[handle].contents,
configs[handle].sz_contents);

if (wret != configs[handle].sz_contents) {
ret = -EIO;
goto out;

}

ret = log_create_in_application_log(configs[handle].name,
"create");

if (ret)
goto out;

/* Closes the file and undoes the write and log append */
ret = sys_txn_commit();
assert(!ret);

out:
if (ret)

sys_txn_abort();
out_txn:

return ret;
}

Figure 2.1: Example of a system transaction: An internal application routine to create a configu-
ration file based on information related to handle. Either both the file creation and log entry are
performed, or nothing in the file system is changed. Error cleanup is easily done with a single call
to sys txn abort().

8

or reduce [106, 147] or require rewriting too much of the operating system [119]. However, such
efforts are complimentary to our goals, as our final proposed design is completely separable from
the kernel, and could cooperate with most of these systems.

2.1.2 Key-Value Storage
System transactions are a powerful abstraction and are the focus of our research and this dissertation
in large part. However, another abstraction that we consider in the design of our trial file systems
and storage systems is a key-value storage interface, which naturally compliments transactions as
repeatedly proven in the database field [1, 107, 130]. This form of interface is different from the
typical POSIX file system interface in three ways:

1. Key-value stores are typically designed to store at least billions of objects on a single ma-
chine. File systems have historically not been optimized for extremely large numbers of files,
although more recent file system designs [139,140] are capable of this, at least in theory. XFS
benchmarks show that unsuitable file system data-structures make the insertion of a billion
objects infeasible in practice (see Section 3.3.2, Figure 6.15).

2. Key-value stores can efficiently store small pieces of information. Typically, file systems
make many design decisions that assume a file’s contents is at least a page (4KB currently) in
size. For example, the size required to store a small file in cache is typically at least a page.

3. Key-value stores support fast lower and upper bound binary (or B-ary) searches for an object,
and fast scans of objects belonging to a particular sub-set. This makes feasible more complex
queries that perform a series of unpredictable searches.

These advantages make key-value stores an excellent abstraction for applications that operate
on large quantities of meta-data or large sets of objects that are inter-related in many different ways.
For example, a storage system may want to index video data by automatically generating tags with
visual recognition algorithms, and then storing the video and these tags in the file system. Such
an application can avoid errors by ensuring that tags and video contents are updated transaction-
ally, and dependencies between the two types of data are consistently maintained across detectable
faults. However, storing such tags using small files would prove complex and error-prone for ap-
plication developers for the reasons listed above. Instead, developers would prefer the use of a
key-value store, or perhaps even an abstract query interpreter layer on top of a key-value store for
their tags, and a file system for their video data. Furthermore, developers would want it all to be
protected by system transactions. If a file system provided a key-value store interface in addition to
system transactions, this would enable a new class of applications to operate more efficiently, and
to be programmed more simply.

Another critical application for a key-value store in the file system is the reduction of count-
less lines of parsing code for parsing, reading, writing, and maintaining configuration files. These
parsers exist because structured data, such as a Makefile or configuration file, is stored in an un-
structured format. However, if stored in a key-value store, this code would be redundant, and
applications could avoid many potential bugs and redundant code, a good sign that key-value stores
are an excellent abstraction for applications. As an example, consider SQCK [44] which converts

9

Ext2 file system meta-data into a key-value format and is able to perform SQL queries to find in-
consistencies. This method is less error-prone than the C querying code in Ext2’s FSCK program
and is able to find errors not found by FSCK. Storing complex data in a structured format lends
itself to cleaner and simpler applications, and that is the point of a useful system abstraction.

2.2 Performance
Performance is how quickly a file system can execute the most common and important workloads.
This factor is one of the easiest to quantify for any particular file system design, and is typically
a very important goal for any storage system. In this work we develop several file system designs
that always strive for good performance, but sometimes must compromise in order to support better
abstractions, or a simpler architecture. One important goal of this dissertation is to show how to
maintain very good performance, without foregoing system transactions, or key-value pair storage.

Many modern applications need to store structured data along with traditional files to help cat-
egorize them. Traditional files includes video clips, audio tracks, and text documents. Structured
data represents large numbers of interrelated smaller objects. Examples include media tags such
as a photograph light conditions and object placement, or an MP3’s performance, album cover,
etc. File systems handle traditional file-based data efficiently, but struggle with the structured data.
Databases manage structured data efficiently, but not for large file-based data. Storage systems
supporting both file system and database workloads are architecturally complex [38, 83]. They
use separate storage stacks or outside databases, use multiple data structures, and often are ineffi-
cient [137].

A system that can efficiently process varying workloads, will be complex if its storage design
uses multiple, heterogeneous data structures. No known single data structure is flexible enough to
support both database and file system workloads efficiently.

Read-optimized stores using B-trees have predictable performance as the working set increases.
However, they hurt performance by randomly writing on each new insert, update, or delete. Log-
structured stores using B-trees efficiently insert, update, and delete; but they randomly read data
if their workload includes random writes and is larger than RAM. Log-structured merge-trees [95]
(LSM-trees) have neither of these problems. Furthermore, LSM-based transactions are inherently
log structured: that is why LSMs are widely in many write-optimized databases [6, 66]. Still,
current LSMs do not efficiently process sequential insertions, large key-value tuples, or large file-
based data.

We extended the LSM to support highly efficient mixes of sequential and random workloads,
and any mix of file-system and database workloads. We call this new data structure a VT-tree. We
discuss VT-trees further in Chapter 6.

2.3 Implementation Simplicity
Adding new abstractions to a file system’s interface typically requires new algorithms, data struc-
tures, and a general increase in complexity to provide these features. This increased complexity
can make it difficult to modify the file system later if the target workload or abstractions have to
change. Some of the most daunting systems research questions ask how to extend a widely used

10

and popular system with just enough modifications to enable some new abstraction or increase per-
formance [19,36,83,86,105,106,125,135]. Therefore, the number and complexity of modifications
to other operating system components in order to support a new file system design also contributes
to that design’s overall architectural and implementation complexity.

11

Chapter 3

Background

Designing a consolidated storage system that is capable of small to large key-value tuple storage,
system transactions and workloads ranging from database to file system workloads, has required the
study of many past systems. We surveyed previous work and applied what we learned to building
a number of prototype systems. We then took what we learned from those systems, bundled it
together with our knowledge of previous work, and embarked upon the designs that are the ultimate
topic of this thesis. We break our related work into two parts: the work of others (related work) and
our own work (trial designs):

Related work which includes other past systems that have features, research goals, design deci-
sions, or data structure choices that informed our own. Some of these are older systems we
have worked on.

Trial designs includes systems that are like related work, but that we were responsible for devel-
oping, allowing us to benefit from the experience of working on these systems. The lessons
learned from this experience shapes our current transactional and data structure design.

Previous techniques for protecting meta-data writes within the file system have been extensively
studied [127]. However, we wanted to extend system support for transactions to applications. This
required more powerful transactions that could be indefinitely large, support for deadlock detection
for directory and file locks, and changes to the buffer cache implementation that would permit at
least a limited form of write ordering. Early in our research and to the best of our knowledge, we
showed for the first time how to add support for these features for any underlying file system with
a small number of changes to the operating system’s caching code. The system we constructed is
called Valor and is discussed in Chapter 4. We discuss write-ahead logging algorithms (i.e., WAL
algortihms), other logging algorithms used by transactional systems such as Valor, and work related
to Valor in Section 3.1.

We found that many traditional file system workloads that would benefit from transactions
executed 2–3× slower on a WAL-based transactional file system (see Chapter 4). Furthermore,
although Valor’s design offered a way to transactionally protect meta-data updates, it did not pro-
vide to user-level applications a way to efficiently store key-value pairs that integrates well with its

12

file system transactional API. Based on these conclusions we decided to pursue a new underlying
data structure that would efficiently support sequential file workloads and more complex key-value
storage workloads. We used the log-structured merge-tree (LSM-tree). We review LSM-trees in
Section 3.2.

Section 3.3 discusses two trial designs and reflects on a few lessons learned from each of these
designs; these influenced the ultimate design that we push toward in Chapters 5 and 6. Finally,
we outline important transactional and data structure design decisions in Section 3.4 where we
introduce Table 3.1 that lists these decisions. We come back to Table 3.1 in subsequent Chapters 4,
5, and 6 where we develop and describe our transactional and data structure design ideas in detail.

3.1 Transactional Storage Systems
Transactions are a useful programming abstraction and have been used in many storage systems.
Some systems use transactions only internally for certain types of data and other systems expose
transactions to the application layer so they can be used by external applications. Journaling file
systems use transactions internally to store meta-data updates to the file system. Databases and
transactional file systems allow external applications to use transactions. Alternative approaches to
using transactions also exist, such as exposing write-ordering primitives to the application layer.

In Section 3.1.1 we introduce the basic concepts of logging within a transactional storage sys-
tem. In Section 3.1.2 we discuss journaling file systems, in Section 3.1.3 we discuss databases and
their influence on our own storage system designs. We also outline issues arising from different
APIs, performance limitations, the impact of soft-updates on transactional storage, and previous
work on integrating an LFS journal into database applications in Section 3.1.3.

3.1.1 WAL and Performance Issues
The family of logging algorithms used by most databases is the write-ahead logging family of
algorithms (WAL). WAL algorithms write modifications to data to a separate log file before per-
forming those modifications on the data. Writing modifications to a log before performing those
modifications on data is called logging. Logging algorithms that follow this procedure are called
write-ahead because they write the log record ahead of performing the modification to the data.
Databases can recover from partially executed transactions by comparing the contents of the database
with the contents of the log, and determining what must be done to restore the database to a con-
sistent state. This procedure is called recovery.

The WAL family of algorithms has several well-known variants [43]. In this thesis we refer to
two variants:

ARIES-like The ARIES variant of WAL specifies how to reliably undo a transaction (multiple
times if necessary) and cooperate with the operating system’s and database’s caches in an ef-
ficient way [85]. We describe ARIES and WAL in Appendix A as well. Traditional databases
such as Berkeley DB and InnoDB use ARIES-like write-ahead logging algorithms. The Valor
design in Chapter 4 is ARIES-like.

redo-only Redo-only means that this variant need only ensure that transactional operations can
be re-executed in case of a crash. Redo-only variants do not have to write as much data

13

to storage as ARIES-like variants, but are less flexible and typically do not provide larger-
than-RAM transactions. Redo-only algorithms are used to improve performance for write-
heavy workloads but typically do not allow for many large transactions. Cassandra [31] and
HBase [28] use a redo-only approach.

Some of the algorithms in this thesis are not strictly WAL. One popular variant of a non-WAL
logging algorithm is the journaling algorithm employed by Ext3 for file appends. We call this
variant of logging Ext3-like logging and it is used in log-structured copy-on-write databases and
file systems [30, 51, 139] as well.

Ext3 uses both a redo-only approach for meta-data writes, as well as the Ext3-like approach
for atomic file appends. To see how Ext3, and in a larger sense Redo-only can be useful, consider
how Ext3 protects meta-data updates. Ext3 must overwrite meta-data tables on the storage device,
but these record updates cannot be only partially executed or the file system’s state will become
corrupted. To avoid this, Ext3 logs meta-data modifications ahead of executing these modifications
on the actual meta-data tables. If the file system crashes at any point, Ext3 can simply check to
see what pending modifications are in the log, and re-execute those modifications on the meta-data
tables, thus overwriting any partial writes on the table that failed to fully complete due to the crash.
If the meta-data modifications were not logged ahead of being executed, then there would have
been no way to re-execute those modifications during recovery. This is why redo-only is a member
of the WAL family of logging algorithms: it must ensure that log records are always written ahead
of writes to the actual data. Databases typically use some WAL algorithm and often ARIES.

As mentioned before, Ext3 is not strictly in the WAL family because of how it performs atomic
file appends. The Ext3 journaling file system actually ensures that data modifications are performed
before the log writes are flushed to disk. This is required if Ext3 wants to avoid having junk data at
the end of a file after recovery and is the default mode that Ext3 operates in (ordered mode [144]).
To see why Ext3 does this, consider the case of a process appending to a file. Ext3 ensures that data
appended to the end of a file is on disk before that file’s meta-data shows an increased file length.
If Ext3 did not do this, it could show junk at the file’s end after recovery. If Ext3 did not order data
writes before the log is flushed, the file meta-data modification would be logged, but the appended
data might not have been written before the file system crashed. In such a scenario, Ext3 would
mistakenly replay the logged file meta-data modification, but without the appended data, the end of
the file would only show the contents of unused storage space. Ext3 avoids this by requiring that
data is written first in its ordered journaling mode. A strictly WAL-based approach that writes log
writes ahead of data writes would have to record at least the new data being appended to the end of
the file. In our above example, this would mean that newly appended data would be written at least
twice (once to the log and once to the end of the file). Cassandra and HBase are examples of strict
WAL-based systems that must write twice for newly inserted data [20, 31].

Other systems swap the order of a typical WAL order of log writes and data writes; they include
log-structured copy-on-write systems [30, 51], and LSM-tree-based log-structured storage systems
such as GTSSLv1 and GTSSLv2 from Chapters 5 and 6. In general, logging algorithms that “point”
to extents of data typically ensure that the extent is entirely on the storage device before writing
the “pointer” to the log, thus inverting the typical write-ordering relationship required by the WAL
family of algorithms. For example, Ext3 effectively points to appended data by increasing the
length of the file in the file’s meta-data and so it ensures that appended data is on the storage device
before initiating the update of the file’s meta-data by writing to the log.

14

A strictly WAL-based approach can also fully recover from a crash as long as all modifications
are logged. To support recovery from a crash after modifying data (as opposed to meta-data), the
system merely needs to log those modifications before performing them. However, this requires
that all modifications are written at least twice, once to the log, and again while being executed.
All WAL algorithms need to write a record of the modification before executing it. There are
some opportunities to optimize the WAL algorithm; in general, however, a WAL or ARIES-like ap-
proach incurs at least a 2–3× overhead in comparison to a file system performing an asynchronous
sequential write to the storage device.

Conversely, the Ext3-like approach avoids multiple writes of data within extents by pointing
to extents from the log without having to write those extents to storage more than once. This
optimization is only possible if it is not necessary to recover the contents of storage overwritten
by the extent. This is the case if that storage was unallocated before being overwritten (there is no
point in recovering the contents of unallocated storage). This is the case for log-structured systems
or Ext3 file appends.

WAL algorithms that support arbitrarily large transactions that can overwrite data must also
gather undo records. Undo records are the opposite of redo records. While a redo record tells
the WAL algorithm how to re-execute a failed operation, an undo record tells the WAL algorithm
how to un-execute or undo a failed operation. The general-purpose ARIES WAL algorithm logs
both undo and redo records. If a WAL algorithm must gather undo records, then it must perform
random reads for workloads that are much larger than RAM and perform random inserts, updates,
or deletes. Contemporary log-structured approaches do not depend on undo records [20].

We wanted to avoid the double or triple-write overheads of the WAL family of logging al-
gorithms file system and sequential workloads. We wanted to develop an approach that can be
extended to support larger-than-RAM transactions. We wanted to support high-throughput inser-
tions, updates, and deletes to facilitate efficient write-only transactions for tasks such as indexing
data [20].

We wanted to avoid the double- or triple-write overheads added by the WAL family of logging
algorithms for all workloads, while still allowing for larger-than-RAM transactions. This way
we could support high-throughput insertions, updates, and deletes and provide efficient write-only
transactions for tasks such as indexing data [20]. In Chapter 4 we demonstrate the overheads
that the WAL family of algorithms places on sequential asynchronous file system workloads by
examining several implementations as well as an idealized mock implementation of ARIES. In
Chapter 5 we describe the design of a log-structured database that dynamically switches between
the Ext3-like approach for large or asynchronous transactions and the redo-only approach for small,
durable, and concurrent transactions. This design can be extended to support larger-than-RAM
transactions which we discuss in the implementation of GTSSLv2 in Chapter 6.

3.1.2 Journaling File Systems
Non-transactional applications often resort to post-crash checking programs that must be run to
check for errors in the application’s storage and fix those errors. Non-journaling file systems operate
in a similar way. After a crash, a file system check [81] tool is run to detect and fix errors. There
are several problems with this approach: (1) it is difficult to show that the checking tool found all
possible errors; (2) it is difficult to predict what the state of storage will be after the checking tool
fixes any errors it found; and (3) the tool must typically scan the entire storage system to verify

15

that all is well. There are other additional problems, such as detecting and recovering from faults
while the checking tool is running, or maintaining a largely separate but redundant checking tool
source code [44]. However, a separate checking tool is still useful in case of hardware faults, or
other kinds of faults not detected by the transactional implementation [143].

Transactional systems avoid many of these problems. As long as each operation transitions the
storage system to a valid state, the system will always be in a valid state and will have no format-
ting errors after recovery is run. Recovery is a well studied and described process in transactional
research [43]. If a transaction commits, it is guaranteed its effects will not be undone during re-
covery and it is easier to predict and limit what updates are jeopardized by a crash. The recovery
log is typically much smaller than the entire storage system and just the most recent pending oper-
ations need to be replayed from the log after a crash. Transactional systems also safe-guard against
crashes that occur during recovery and the code needed to replay operations in a correct manner is
hidden within the transactional implementation and does not require a separate source code.

Journaling file systems [19,39] harness the advantages of transactional systems, but make care-
ful design decisions that avoid most of the performance overheads of using a more general-purpose
transactional storage design [43]. Journaling file systems avoid these overheads by introducing a
log and using a particular brand of transactions well suited to meta-data accesses: the only kind of
operation the file system performs transactionally.

The kind of transaction supported by a journaling file system is a redo-only transaction [39]. By
performing redo-only operations and only for meta-data accesses, the file system need only write
a meta-data record twice when a record is updated; regular data writes are still written only once.
The limitation of redo-only logging is that a partially committed transaction cannot be undone
(with redo-only, only complete transactions can be re-done) and so transactions must be logged
completely before they can be flushed to the storage system. This requires transactions that can fit
entirely within RAM [144]. This restriction is not a problem for journaling file systems that make
only small meta-data updates relative to sequential data reads and writes. Journaling file systems
use a no-steal no-force caching policy which means that incomplete transactions are not flushed and
writing only occurs periodically for safety, or when there is a shortage of memory in the system.
The transactional implementation used in journaling file systems is not exposed to applications and
so applications must use a separate library or database software package to use transactions.

Journaling is the dominant solution for obtaining an efficient and predictable file system recov-
ery process and is used by major file systems such as Ext3 [19], NTFS [82], XFS [140], ZFS [139],
HFS+ [7], and JFS [62]. It is not the only method of recovering a file system from a crash and we
discuss one popular variant, soft updates [36], in Section 3.1.3. File-system–specific recovery is
an ongoing research area: journaling and journal recovery represent only one way of solving many
common file system recovery problems. Journaling is not the final word on efficient file system
checking and recovery after a crash.

Like journaling file systems, we want to protect the file system’s meta-data information, but
we also want to protect other important meta-data maintained by other applications. We want to
allow applications the ability to perform complex transactions that consist of many POSIX and
tuple operations, not just inode updates, for example. We want to permit transactions to be
larger than RAM or long-running. Chapter 4 shows how to build a transactional POSIX API on
top of existing file systems. The design discussed in Chapter 4 is no more than 34% slower for
asynchronous sequential workloads than the general-purpose transactional design used by most
databases, ARIES [43]. Chapter 5 shows how to build a transactional API for tuple storage on top

16

of an LSM-tree database architecture that avoids write-ahead logging overheads (including redo
logging) for asynchronous, sequential, or large transactions and permits compound smaller-than-
RAM transactions for many tuple operations. In Chapter 6 we show how to extend LSM-trees
to support file system workloads and make it possible to support transactional operations on large
transactions, sequential workloads, and file operations. In future work we outline how the beneficial
features of each of these approaches can be combined.

3.1.3 Database Access APIs and Alternative Storage Regimes
The other common approach to providing a transactional interface to applications is to provide a
user-level library to store data in a special page file or B-Tree maintained by the library. Berkeley
DB offers a B-Tree, a hash table, and other structures [130]. Stasis offers a page file [120]. These
systems require applications to use database-specific APIs to access or store data in these library-
controlled page files.

There are two difficulties with using database access APIs. The first difficulty is unwieldy
performance for file system and write-heavy random-access workloads. The second difficulty is
efficiently interfacing with the POSIX API so that system applications can easily adopt and utilize
efficient transactions.

Soft-updates and Featherstitch Soft-updates were developed as an alternative to journaling de-
scribed in Section 3.1.2. Soft-updates avoid additional writes to a journal but require running
garbage collection after a crash to recover potentially lost space. Garbage collection can be run in
the background while the file system is in use.

Featherstitch developed by Frost et al. [33] explores the idea of generalizing soft updates by
permitting writes that may be smaller than a block and allowing user-level applications to spec-
ify write dependencies in addition to the file system. Featherstitching requires non-trivial kernel
modifications and support for an SMP kernel configuration is not present in their current imple-
mentation.

In Frost et al.’s use-case studies [33], applications that benefit from featherstitch already per-
form fsync in the context of a recovery framework that the application has already implemented
in case of crash. In these scenarios write-ordering for atomicity instead of waiting on a forced flush
with fsync improves the performance of these applications. The authors describe how feather-
stitching can be used to underlie a journaling implementation, but no direct comparison between
featherstitching and an asynchronous transactional system is made either in terms of semantics or
performance. Forming dependency cycles in the application layer of Featherstitch is an error and it
is left as future work to check for cycles in this layer. Conversely, serializability of transactions is
enforced with dead-lock detection in the locking layer of transactional systems, requiring no check-
ing by applications. Support for ACID transactional semantics or more efficient log-structured-like
shadow-paging is left as future work.

Integration of LFS Journal for Database Applications Seltzer et al. develop an in-kernel log-
ging system that is used both as part of a log-structured file system and also to act as an in-kernel
journal for a database at the user-level [126]. They show with a simulation that logging overheads
can be reduced when using an in-kernel logging agent for a database. This performance gain helps

17

to explain performance differences between Valor and a user-level logging library such as Sta-
sis [120] as discussed in Chapter 4. In this thesis we discuss how to extend the VFS to support
transactional POSIX operations on top of any file system and generalizations to the widely used
log-structured merge-tree to enable it to better support a variety of workloads including sequential
and file system workloads. In this way we address a set of different problems that go beyond the
initial placement of a logging component in the kernel, but Seltzer’s work buttresses the design
decision to place Valor’s journal within the kernel for performance reasons.

3.2 Explaining LSM-trees and Background
We discuss transactional and data structure design decisions to enable key-value and transaction
support in a file system. To support a variety of workloads, ranging from indexing workloads,
to read-modify-update transactions, to file system workloads, we develop a generalization of a
widely used contemporary log-structured data structure that is capable of better handling sequential
workloads. The log-structured data structure that we generalize is the log-structured merge-tree or
the LSM-tree [95].

The LSM-tree is used for faster insertion performance by HBase, Cassandra, Big Table, and
other systems such as Hypertable [52]. The LSM-tree is not a traditional tree structure exactly, but
is similar to a tree. It differs in that an LSM-tree is actually a collection of trees. This collection
is treated as a single key-value store. LSM-trees writes sorted and indexed lists of tuples to stor-
age, which are then asynchronously merged into larger sorted and indexed lists using a minor com-
paction or major compaction. Minor and major compaction do not differ in functionality, but rather
in purpose. A minor compaction is when the merging occurs to bound the number or size of sorted
indexed lists on storage. A major compaction operates similarly to a minor compaction except that
it is scheduled to run periodically and is intended to ensure that all lists are eventually compacted
within a set time-period. For example, some sensitive data may need to be removed within 24
hours of marking it as deleted. However, the data will only be removed during compaction and no
minor compaction has yet compacted the lists containing this sensitive data. Without scheduling
a compaction of all lists, this sensitive data would continue to persist. Scheduling an additional
compaction that occur every 24 hours is an example of a major compaction.

There are many variants of the LSM-tree but we focus on two variants: (1) the COLA [11],
used in the popular HBase database [28], and (2) the SAMT which we analyzed and extended in
our own database, GTSSLv1, and is also used in Cassandra 1.

So the reader may better understand our discussion on background material surrounding our
LSM-tree extensions and generalizations, we introduce and explain the DAM model and B-trees in
Section 3.2.1. We explain the LSM-tree’s operation in Section 3.2.2 and then discuss background
material in Section 3.2.3.

1Although we independently discovered the SAMT as described here, we found by inspecting Cassandra’s source
code that they also use a data structure similar to the SAMT. The exact details of this data structure were only roughly
outlined in Cassandra’s documentation. However, its asymptotic performance is different from other customarily used
LSM-tree implementations and merits more than a cursory outline. We offer a full analysis of the SAMT in Chapter 5.
We also generalize and extend the SAMT to the MT-SAMT in Chapter 5 and discuss further generalizations to support
efficient sequential workloads in Chapter 6. However, since the SAMT is used in Cassandra, we describe its basic
operation here. The reader may better understand our discussion of background material related to LSM-trees given a
basic understanding of the SAMT which can serve as a canonical LSM-tree.

18

RAM M

Disk/Storage S

Read Write

Figure 3.1: The DAM model: The DAM model only allows block transfers of size b bytes or B
elements from S to M or vice verse.

3.2.1 The DAM Model and B-trees
We explain the LSM-tree by explaining the SAMT. When a term or object has a name in common
use in related work, we make a note of it and also refer to the glossary where all such synonymous
terms are listed as well. To explain the SAMT we first introduce a simple explanation of the DAM
model, the B-tree, and important sub-components and terminology used in the SAMT and most
other LSM-tree implementations.

To understand why LSM-trees are different from other on-disk data structures and why they
are organized the way they are, it is necessary to understand the cost model that is assumed when
designing the LSM-tree data structure and its variants known as the disk access model or DAM
model [11]. Figure 3.1 illustrates the DAM model. In the DAM model, there is a RAM M , and
a disk or storage device S. Device S is divided into a series of blocks, and it costs 1 to transfer a
block from M to S or vice verse. All blocks are the same size B. The convention in related work
is to use B to indicate the size of the block in elements, where as b is used to indicate the size of
the block in bytes.

SAMTs are composed of Wanna-B-trees. A Wanna-B-tree is a simplified B-tree that is suf-
ficient as a component of a SAMT, but is much simpler to implement. We now explain what a
Wanna-B-tree is and introduce important terminology that will be used throughout the rest of this
thesis and particularly in Chapters 5 and 6.

A Wanna-B-tree is a limited version of the B-tree. The B-tree is a balanced tree structure
which is optimized for lookups on storage devices which can be accurately modeled using the
DAM model. The B-tree is composed of index and leaf nodes. In Figure 3.2 we define an index
node as any list of key-value pairs, where the key is the key type of the tree and the value is an
offset pointing to another node in the tree. We define a leaf node as any list of key-value pairs,
where the key is the key type of the tree, and the value is the associated value of that key.

The simplified B-tree in Figure 3.2, panel ¬, makes efficient use of each block transfer of Bindex

index nodes. B-trees hold Bindex index nodes in a block of size B, and Bsmall tuples in a block of
the same size B. By configuring its arity to Bindex it is able to eliminate the near maximum number
of sub-trees that cannot contain the sought-after tuple with each block transfer until it retrieves
the block containing the sought-after tuple. One minor optimization not shown in Figure 3.2 or
discussed here is that the first index node in a group of index nodes can actually hold one more
pointer to a sub-tree of tuples whose keys are less than all keys in the group of index nodes. For

19

Index Node

Leaf Node

K
V

K
V

K

1

K K K

K K K

K
V

K
V

2

K K

K
V

K
V

K
V

K
V

K
V

B-tree Wanna-B-tree

Secondary Index

Bsmall

K

Bindex

Wanna-B-leaves

Figure 3.2: Definitions: There are two types of nodes, index and leaf nodes. You can construct
a B-tree or a much simpler Wanna-B-tree that only has a single layer of index nodes, called
a secondary index. The leaf nodes that comprise a Wanna-B-tree are called Wanna-B-leaves.
For best performance, Wanna-B-leaves should be contiguously stored together in sorted order on
storage, but this is not a requirement.

large Bindex this has a negligable impact on the space utilization of index-nodes.
Figure 3.2 shows that Wanna-B-trees use index and leaf nodes as well, and just as for B-trees,

Wanna-B-trees hold Bsmall tuples in a leaf node, and Bindex key-pointer pairs in an index node.
Unlike the B-tree, the Wanna-B-tree shown in Figure 3.2, panel ­, maintains only the first layer
of index nodes above the leaf nodes. We call this single layer of index nodes the secondary index.
We call the set of leaf nodes pointed at by the secondary index entries in a Wanna-B-tree, Wanna-
B-leaves. When a Wanna-B-tree’s leaf nodes are written to a storage device in a single contiguous
allocation with the secondary index written either separately or after the leaf nodes, this is called
an SSTable [20]. See Appendix A.

Wanna-B-trees only support insertions in sorted order but allow random lookups. To append
we add the elements into the last empty leaf node. If there is no empty leaf node, we create a new
one, and append its offset into the last empty index node. If there is no empty index node, then we
create one. To perform a lookup on a key K, we perform a binary search on the keys in the index
nodes to find the two neighboring key entries Ki and Ki+1 such that Ki ≤ K < Ki+1. Finally we
read in the leaf node pointed at by Ki as this is the leaf-node that must contain the tuple with key
K.

It is possible to use B-trees instead of Wanna-B-trees. However, we feel that this adds an
unnecessary level of complexity given that the secondary index is always resident in RAM. Still,
this may not be true. Systems with constrained RAM configurations (e.g., embedded or older
systems) may require a way to avoid thrashing on lookups in the secondary index. Our current
implementation of the SAMT does not account for potential thrashing on the secondary index and
assumes it is always be resident in RAM. Extending our implementations to use B-trees instead of
Wanna-B-trees or applying fractional cascading [11] would avoid this limitation (see Appendix A).

20

3.2.2 LSM-tree Operation and Minor/Major Compaction

Chang et. al.)

Secondary Storage

RAM

M*1

M*1

M*2

M*2

M*4

M*4

M

Two existing lists

(e.g., less than 2)

each level bounded

to keep the total

are merged together

number of trees in
Memory buffer

Level L=1

Level L=2

Level L=0

Query on ’q’

Wanna−B−trees
(called SSTables in

Figure 3.3: Basic LSM-tree Design

The SAMT, like other LSM-trees, is composed of Wanna-B-trees. Figure 3.3 shows a SAMT
composed of 6 Wanna-B-trees. These Wanna-B-trees are created when elements are inserted into
the SAMT, and are queried when the SAMT is queried. Figure 3.3 shows an example of a query
on the element q. First the memory buffer is checked, and if it does not contain the element,
each Wanna-B-tree is queried, from most recent to least, until the item is found. If the element
is not found in the memory buffer or any Wanna-B-tree, the query returns an error indicating the
element does not exist. This kind of query where we search for the most recent tuple belonging to
a particular key is called a point query.

If we want to read many tuples in series, or find the tuple that comes immediately before or
after a queried key value, we perform a query on all Wanna-B-trees and the memory buffer. We
remember the location of the tuple after querying it in each Wanna-B-tree or memory buffer, and
call this location a cursor. We then merge all cursors using the merge algorithm used in merge sort
to produce a single stream of all tuples in sorted order that come after the queried key value. This
kind of query is called a scan.

LSM-trees perform insertions by inserting the new tuple into the memory buffer in RAM. When
the memory buffer is full, the LSM-tree serializes the memory buffer to storage by appending each
item in sorted order to a new Wanna-B-tree. After serializing the memory buffer, a new Wanna-
B-tree with a secondary index has been created and tuples in the memory buffer can be removed

21

to accept new insertions. The reader may appreciate that point queries and especially scans will
take longer to perform when there are a large number of Wanna-B-trees. This is because lookup
operations must check an increasing number of Wanna-B-trees as more and more insertions are
serialized to storage as Wanna-B-trees.

LSM-trees solve this issue by merging Wanna-B-trees together into larger Wanna-B-trees, and
then removing the original smaller trees that were just merged together. This process is called
compaction in the LSM-tree. Although the compaction algorithms of LSM-tree designs differ, the
overall goal is the same: keep the total number of sorted buffers on storage bounded to some func-
tion of N , the number of tuples inserted. O’Neil and Sears bound LSM-tree lookups to 2 [95,121].
Jagadish et al. [57] bound LSM-tree lookups to KJ where J and K are configurable constants. The
COLA and HBase bound lookups to logK N [11,28]. The SAMT used in Cassandra and GTSSLv1
and GTSSLv2 bound lookups to K logK N (for some user-chosen K) [31, 136]. By bounding
lookups to a function of N , LSM-trees ensure that regardless of how many tuples are inserted,
query times are not indefinitely long.

LSM-trees perform two major types of compaction using the terminology described in Chang
et al.’s work [20]. The two types are minor compaction and major compaction. Minor compaction
occurs based on the number of items inserted into the LSM-tree so far, so it is triggered when the
LSM-tree has accepted a certain number of items. Major compaction occurs periodically and is
intended to occur far less frequently than minor compaction. Major compaction is not required to
maintain the asymptotic bounds on the LSM-tree’s performance.

Figure 3.3 illustrates what happens when a memory buffer is serialized to storage as a Wanna-
B-tree and we trigger minor compaction. The SAMT variant of the LSM-tree ensures bounded
queries by making sure the number and size of the Wanna-B-trees lie within certain parameters.
The SAMT ensures this by organizing itself into levels. Each level holds K Wanna-B-trees: for
example in Figure 3.3, K = 2. Each level holds Wanna-B-trees that are no larger than M ∗ KL

where M is the size of the memory buffer in tuples and L is the level, where the first level is L = 0.
The SAMT initiates a minor compaction when the number of Wanna-B-trees at any level is greater
than K. If we follow this rule, then on the third serialization of the memory buffer to storage we
will perform a minor compaction as there will already be two Wanna-B-trees at level L = 0 and
we will be making a third. Figure 3.3 illustrates this scenario. Before we can make a third tree at
level L = 0, we perform a minor compaction by merging the two Wanna-B-trees already at level
L = 0 into a larger Wanna-B-tree that we place in level L = 1 and then remove the two source
trees to the merge at level L = 0. Now there are no Wanna-B-trees in level L = 0 and it is legal to
serialize the memory buffer to level L = 0 as a new Wanna-B-tree. We discuss in more depth the
analysis of several LSM-tree variants in Chapter 5.

The above process works unmodified for insertions of tuples with unique keys. However, if
we want to perform updates on a tuple or delete a tuple, then we must specify special actions to
be taken during minor and major compactions. The LSM-tree takes care to ensure that there are
no more than one tuple with the same key in the memory buffer. When merging multiple or K
Wanna-B-trees as part of a minor compaction, the LSM-tree may have to merge multiple tuples
with the same key value.

To perform updates, the merge selects the most recent of these tuples with the same key to be
included in the new larger output Wanna-B-tree. To perform deletes, we insert a special tuple that
has the same key as the tuple we are trying to delete, but with a flag set indicating the tuple is a
tombstone. When merging K Wanna-B-trees together as part of minor or major compaction, we

22

treat the tombstone as an update, so if it is the most recent tuple in the merge, it is included in the
new larger output Wanna-B-tree and the other tuples are omitted. Different LSM-tree variants treat
tombstones differently. The SAMT removes tombstones when it knows that this minor compaction
is producing a Wanna-B-tree that will occupy the first slot in the lowest level—so there can be
no more tuples potentially with the same key to delete. Other LSM-tree variants only remove
tombstones during major compaction, which satisfies the above condition as well.

Periodically, a major compaction is performed. This major compaction merges all Wanna-B-
trees belonging to an LSM-tree into one Wanna-B-tree. In addition to some LSM-tree variants
relying on major compaction to remove tombstones, there are other reasons to perform periodic
compaction of all Wanna-B-trees. One example is performance, another is to ensure that tuples
that were deleted are physically removed from the storage device within a set time period (e.g.,
daily). Major compaction is also an opportune time to perform defragmentation. Although existing
LSM-tree variants do not fragment, our generalized LSM-tree that efficiently executes sequential
and file system workloads does fragment.

The LSM-tree is a tree data structure, like a B-tree, that can be used on storage devices. The
LSM-tree can perform completely random updates, insertions, and deletes asymptotically faster
than any data structure that performs one or more random block reads or writes per insertion.
However, if it takes more time to perform logN sequential transfers of the same tuple than to
perform one seek and one transfer of the same tuple, then LSM-trees are not as efficient as a more
traditional in-place storage data structure like an in-place B-tree. All file systems evaluated in
our LSMFS work, as well as in Chapter 4 use on-storage data structures that perform at least one
random block I/O when performing random updates for large working sets. The LSM-tree is indeed
much more efficient at random updates than these structures as shown in Figure 6.15.

Chapters 5 and 6 introduce extensions and generalizations of the SAMT. We extended the
SAMT described in Chapter 5 to support a multi-tier mode, more complex transactions, as well as
more efficiently flush to disk when performing large or asynchronous transaction commits. These
extensions are not sufficient to make the LSM-tree useful for file system, less uniformly random,
or large tuple workloads. To support these workloads, we will need to generalize the LSM-tree
to support sequential insertions. Our generalized LSM-tree introduces the idea of stitching which
avoids copying largely unmodified data during a minor compaction. In order to support efficient
support for queries, we must maintain Bloom filters and these Bloom filters cannot be efficiently
updated when performing stitching. So we use a new data structure called a quotient filter that is
like a Bloom filter, but can be efficiently updated while stitching. We discuss these extensions in
Chapter 6.

3.2.3 Other Log-structured Database Data Structures
There are other kinds of data structures that are log-structured besides the LSM-tree that are in-
tended for large and small tuples. RethinkDB [148], Write-optimized B-trees [42] and Berkeley
DB Java Edition [30] are examples. Each of these log-structured trees uses a very different design,
but subscribes to a common theme: making random updates to an on-storage tree more efficient
by appending them sequentially in batch and then re-wiring or modifying the tree structure to in-
clude the new sequentially appended updates or insertions. We offer a critique of the most common
adaptation of this approach in Section 6.4.

Log-structured file systems such as NetApp’s write-anywhere file system [51] and ZFS [16]

23

use a similar approach as log-structured databases, but are designed such that all meta-data for
the file system such as page offsets, inodes, and other similar information will be resident in
RAM when running workloads. Therefore, they can always efficiently re-wire their trees to point
to newly appended updates without incurring random I/Os. However, they cannot support updates
to datasets much larger than RAM that consist of tuples much smaller than a page without incurring
one or more random I/Os for each tuple update. This is because the dataset’s keys will not be able
to fit within RAM and so re-wiring the tree to point to new insertions will incur evictions and faults
of leaf pages at random points in the log. This is explained in more detail in Chapter 6.

The LSM-tree does support high throughput updates, insertions, and deletes regardless of ran-
domness or distribution of writes. Furthermore, its compactions are predictable, de-amortizable,
and when taken into account—do not significantly effect update throughput. Finally, scans operate
near the disk’s sequential read throughput, and point queries operate near the disk’s random read
throughput.

Unfortunately, if the data inserted is partially sorted, the LSM-tree is not able to spend less
write bandwidth by exploiting the fact that the data is already partially sorted. In fact, the LSM-
tree does not treat completely sequential or large writes any differently than completely random
updates. This is a significant deterrent from using the LSM-tree as the underlying data structure for
a file system, because many file system writes are much larger than a page and sequential insertion
is important to the performance of many file system workloads.

The LSM-tree is uniquely suited to efficiently processing random updates while maintaining
good lookup and scan performance and so it is widely used in NoSQL database implementations.
Chang et al. [20] motivate their Big Table architecture with the Web table example. This is a table
that receives many random updates, and some significant proportion of their queries are effectively
uniformly random. The LSM-tree is uniquely suited to this task.

We limit our comparison of our LSM-tree generalization to the unmodified LSM-tree, or as in
Chapter 5, to the LSM-tree implementations utilized by the Cassandra and HBase NoSQL systems.
In this way we provide a clear contribution to the LSM-tree structure and transactional file system
design.

3.3 Trial Designs
We began Chapter 3 by categorizing related work into related work which dealt with past systems
that are related to our research, but that we were not directly involved with and trial designs that
are related systems that we were directly involved in. We now provide a more detailed account
of those of our trial designs that shaped our design decisions in a transactional storage system but
were not given full chapters in this thesis.

The two systems described here are SchemaFS, a user-level file system based on a popular
and efficient database library and LSMFS, a user-level file system that uses LSM-trees to manage
meta-data while using an object store to manage data. Experiences from these systems shaped
our design decisions that led us to exploring Valor (Chapter 4) and GTSSLv1 (Chapter 5) and
ultimately generalizing the LSM-tree as discussed in Chapter 6.

We found that although user-level implementations increase the simplicity of the implemen-
tation, they do so at the cost of performance typically. We also found that separating data and
meta-data increases the complexity of our transactional implementation in LSMFS and reduces the

24

flexibility of the file system to handle a variety of workloads.

3.3.1 SchemaFS: Building an FS Using Berkeley DB
KBDBFS is an in-kernel file system we built on a port of the Berkeley Database [130] to the Linux
kernel. It was part of a larger project in which we explored uses of a relational database within the
kernel. KBDBFS utilized transactions to provide file-system–level consistency, but did not export
these same semantics to user-level programs. It became clear to us that unlocking the potential
value of a file system built on a database required exporting these transactional semantics to user-
level applications.

KBDBFS could not easily export these semantics to user-level applications, because as a stan-
dard kernel file system in Linux it used the virtual file system layer (VFS) to re-use common file
system code. This reusable component used by many file system implementations maintains caches
for inodes and directory entry data, or dentrys. These caches are not managed by a transaction
manager and so would be placed in an inconsistent state if an application aborted a file system
operation. To export transactions to user space, KBDBFS would therefore be required to either
(1) bypass the VFS layers that require these cached objects and be unable to benefit from re-using
common file system code, or (2) alternatively track each transaction’s modifications to these objects
by integrating the VFS into the KBDFS transaction manager by some means. The first approach
requires introducing a large amount of redundant code; the second approach requires major kernel
modifications that could significantly reduce performance of non-transactional applications [106],
as well as reduce kernel reliabilty.

Based on our experiences with KBDBFS, we chose to prototype a transactional file system,
again built on BDB, but in user space. Our prototype, Amino, utilized Linux’s process debugging
interface, ptrace [45]. This allowed us to service file-system–related calls on behalf of other
processes, storing all data in an efficient Berkeley DB B-tree schema called SchemaFS. Through
Amino we demonstrated two main ideas. First, we demonstrated the ability to provide transactional
semantics to user-level applications. Second, we showed the benefits that user-level programs gain
when they use these transactional semantics: programming model simplification and application-
level consistency [151]. Amino and its internal storage interface to BDB—called SchemaFS—is
one of our trial designs. We discuss it in more detail in Section 3.3.

We extended ptrace to reduce context switches and data copies, but Amino’s performance
was still poor compared to an in-kernel file system for system-call-intensive workloads (such as
the configuration phase of a compile). Amino’s performance was comparable to Ext3 for meta-
data workloads (such as Postmark [60]). For data-intensive workloads, Amino’s database layout
resulted in significantly lower throughput. Finally, Amino required that a new volume be used to
store data, and consequently could not work on top of existing volumes, or on top of existing file
systems that may provide a desirable feature or optimization for some workloads.

Amino was a successful project in that it validated the concept of a transactional file system with
a user-visible transactional API, but the performance we achieved could not displace traditional file
systems. Moreover, one of our primary goals was for transactional and non-transactional programs
to have access to the same data through the file system interface. Although Amino provided binary
compatibility with existing applications, running programs through a ptrace monitor was not
as seamless as we had hoped. The ptrace monitor had to run in privileged mode to service
all processes. It serviced system calls inefficiently due to additional memory copies and context

25

switches, and it imposed additional overheads from using signal passing to simulate a kernel system
call interface for applications [151].

Based on these limitations, we developed Valor, which is described in Chapter 4. Valor grants
transactional POSIX storage semantics to applications running on any file system. In experimen-
tation, Valor is shown to be more efficient than approaches that rely on a user-level page caching
approach such as Stasis [120]. Valor incurs the typical WAL overheads for asynchronous sequential
file system workloads, but only for applications that perform these workloads within a transactional
context. Valor provides a valuable outline for designing a transaction-capable VFS for file systems.
In Chapters 5–6 we develop a data structure that allows for a transactional implementation that can
compete more favorably with typical file systems while still efficiently supporting traditional and
more contemporary database workloads.

3.3.2 User-Space LSMFS: Building an FS on LSMs in User-Space with Min-
imal Overhead

Much of the inefficiency of a user-level storage system is due primarily to a special feature reserved
to file system caches: caches can be mapped into the address space of every process, and that secu-
rity can still be maintained with the system-call interface. We explored the performance impact of
in-kernel and out-of-kernel file system caches, and compared them to a user-level shared-memory
cache that guards against unrestricted access using a user definable trapping mechanism [133]
(trampoline). This work illustrates a partial, or hybrid, approach that moves a monolithic kernel
in the direction of a more fluid and extensible micro-kernel architecture. File systems that cannot
wait for expensive memory copies or context switches [141] can still be developed as user-level
daemons by using our approach.

We built a file system based on the LSM-tree data structure in user-level using our external
page caching framework. This file system consisted of two components: (1) a cache-oblivious
transactional meta-data database based on the cache-oblivious look-ahead array (COLA, see Ap-
pendix A) [11], a variant of the LSM-tree, and (2) an object store for data pages. By using an
object store to hold data pages we avoided generalizing the LSM-tree for sequential data or large
tuples. However, this prevented data from naturally spanning multiple tiers in the manner described
in Chapter 5, and also created a dependence on two underlying data structures that increased the
complexity of our design and implementation. By using an object store for data pages, we ensured
that LSMFS would not behave differently from other file systems except when updating and scan-
ning meta-data. Furthermore, we would have to categorize which tuples are “data” and go in the
object store, and which are “meta-data” and go in the LSM-tree. We address these questions by
generalizing the LSM-tree in Chapter 6.

Although LSMFS showed us that the LSM-tree was a good candidate for storing file system
meta-data, we were interested in further exploring the potential benefit of multi-tiering within the
LSM-tree. The transactional implementation in LSMFS was also not capable of handling high
numbers of concurrent durable transactions, and performed additional unnecessary copies on com-
mit. We also wanted to find a way to efficiently store file data within the LSM-tree instead of within
a separate object store, but this would require extensions to the LSM-tree that we explore further in
Chapter 6.

26

3.4 Putting it Together
To arrive at the generalized LSM-tree data structure used in Chapter 6, we combined the lessons
learned from Section 3.3 and Chapters 4–6. In Table 3.1 we lay out these lessons and show how
we concluded that we must explore using a new data structure for transactional file systems. The
data structure we chose to study and generalize is the log-structured merge-tree (LSM-tree), which
is introduced and briefly explained in Section 3.2.

Type Num Log- Trans- Conc- Async Write Random Stitch- Sequen-
Writes Struct. actions urrent Order ing tial

Ext3 FS 1 ¬ MD-only ¬ X Kernel R ¬ R,W
SchemaFS FS 3 ¬ Logical X X User R ¬ R
LSMFS FS 1 X MD-only ¬ X mmap S,W ¬ R,W

Table 3.1: A qualitative comparison of Transactional Storage Designs: We can conclude that we
must try new data structures for transactional file systems.

We can show how we ultimately decided to use LSM-trees, and how we arrived at GTSSLv1
and v2’s transactional architecture by using some of the observations listed in Table 3.1. Table 3.1
summarizes the features and properties of the major transactional storage system designs researched
within this thesis. This table extracts the technical details from our lessons learned in Section 3.3
for easier comparison across transactional and file storage systems.

Items already described in detail, including Ext3, SchemaFS, and LSMFS are highlighted in
bold in Table 3.1. Other items not yet comprehensively discussed will be described more thor-
oughly at the end of that item’s respective chapter. For example, Valor will be highlighted in bold
and its impact on our ultimate design choices will be discussed at the end of Chapter 4 where Valor
is discussed in detail along with a new copy of Table 3.1 with a new entry for Valor. GTSSLv1,
and GTSSLv2 will be similarly detailed at the end of Chapters 5 and 6, respectively.

• Type denotes whether the system exports a file system (FS) API or a key-value storage (KVS)
API.

• Num Writes is 1 if the system performs the minimal number of writes to carry out a larger
write operation for the majority of its write operations. If it is more than 1, then that is the
total number of writes that may be needed to carry out a write operation (e.g., to a log).
GTSSLv1 and v2 require only two writes for concurrent, small, durable transactions, and
only one write for larger or asynchronous transactions.

• Log Struct. denotes whether the system’s design is log-structured, thus not having to write
data first to the log as it does not overwrite existing data; non-log-structured systems which
may overwrite existing data must more tightly control write ordering.

• Transactions has the following values:

MD-only if the storage system uses transactions internally for meta-data logging only.
Logical if applications can extend the transactional system’s functionality. Only systems

that we list as Logical support this manner of extensibility.
POSIX if the transactional model supports only POSIX file operations.
Single if it can insert, modify, or delete only a single tuple atomically at a time.

27

Vals if it supports arbitrary transactions comprising one or more tuples, as long the entire
transaction fits in RAM. (In future work we are extending this for larger-than-RAM
transactions.) All other values (except “Logical”) must also fit in RAM, and are much
more restrictive.

• Concurrent is checked if the storage system can efficiently commit many concurrent durable
transactions (e.g., by grouping them into a single write request to a log record, or using
NVRAM, etc.)

• Async is checked if the system can commit non-durable transactions asynchronously, without
violating any transaction’s isolation or atomicity.

• Write Order has the following values:

Kernel if write ordering in the cache is controlled directly by kernel code.
User if write ordering is controlled by having user-level code maintain a separate cache and

decide when and how to flush it. This obviously carries significant space and time
overheads.

mmap if write ordering for the cache is not necessary and consequently a simple and efficient
cache implementation based on mmap can be derived.

• Random refers to the structured tables of a database or key-value (KV) store, or file-system
(FS) meta-data. File systems access their meta-data randomly, and so we rate the effective-
ness of their data structures for those operations. For key-value stores, we rate their efficiency
with random tuple accesses and updates. This column has one or more of the following val-
ues:

R if all read operations are efficient for structured data workloads (e.g., database queries).
W if all write operations are efficient for structured data workloads.
S if scans are efficient.
P if point queries are efficient.

• Stitching is checked if the system is able to avoid redundant compactions of a sequence
of tuples that is already contiguous enough to facilitate an efficient scan. Stitching systems
perform fewer copies for insertions of larger, more sequentially accessed tuples than other
LSM-tree–based systems.

• Sequential uses the same tokens as Random except that they denote the performance of the
storage system when processing larger tuples or highly sequential workloads. For file systems
this rates their efficiency at performing large sequential file reads and writes. For key-value
stores, this rates the store’s efficiency at performing insertions of mostly sequentially inserted
tuples or very large tuples.

The storage systems listed above are evaluated in Table 3.1 for their suitability as the underlying
storage system on a single-node system that supports system transactions and key-value storage.
Some systems have additional features, some utilize mechanisms not exposed to the application
layer, and some are designed to be portable. For example, Ext3’s internal transaction logging
mechanism, or directory entry hash tables are not available for applications to use directly. Berkeley
DB (upon which SchemaFS is based) uses a user cache to be portable. Regardless, we have found

28

many of these systems have surprisingly efficient (even if limited) transactional implementations
(e.g., Ext3), or provide fairly featureful transactional capabilities and we want to compare and
contrast all these systems’ features to understand how our own research learns from the lessons
listed in Section 3.3.

3.5 Conclusion
In Chapter 2 we explained the three criteria we used to evaluate transactional and key-value storage
file system designs: abstractions, performance, and implementation simplicity. We explained that
specifically the abstractions we were interested in were system transactions, and key-value storage
operations. In this chapter we explained how our search for a transactional key-value storage file
system related to other research in storage systems and data structures.

In addition to discussing related work we also highlighted important lessons learned from our
own trial designs in Section 3.3. We summarized the effects of these lessons and other related
systems’ transactional design decisions in Table 3.1. We saw which transactional design decisions
were made by Ext3 discussed in related work in Section 3.1.2, and SchemaFS and LSMFS dis-
cussed in Sections 3.3.1 and 3.3.2.

Now that we have framed our research from the perspective of related work and our past ex-
perience with other systems, we describe in detail our Valor design in Chapter 4, and subsequent
designs thereafter in Chapters 5 and 6.

29

Chapter 4

Valor: Enabling System Transactions with
Lightweight Kernel Extensions

In the past, application developers seeking to utilize a transactional interface for files typically had
to choose from two undesirable options: (1) modify complex file system code in the kernel or (2)
use a user-level solution, which incurs unnecessary overheads. Previous in-kernel designs either
had the luxury of designing around transactions from the beginning [119] or limited themselves to
supporting only one primary file system [147]. Previous user-level approaches were implemented
as libraries (e.g., Berkeley DB [130] and Stasis [120]) and did not support interaction through the
VFS [63] with other non-transactional processes. These libraries also introduce a redundant page
cache and provide no support to non-transactional processes.

This chapter presents Valor, the design of a transactional file interface that requires modifica-
tions to neither existing file systems nor applications, yet guarantees atomicity and isolation for
standard file accesses using the kernel’s own page cache. We have fully implemented the locking
and data logging portions of the Valor system. Directory logging and recovery are partially im-
plemented and are not evaluated in this thesis. Our experiments are limited to benchmarks which
have negligible meta-data and directory overhead; our testing shows that for these benchmarks,
directory logging overhead is negligible. We have come back to the Valor design repeatedly when
considering how to support transactional file access in a VFS-based operating system like Unix.
Valor’s design has been useful and is presented here in full. When discussing Valor’s directory
logging design, we remind the reader that this component is only partially implemented. When
discussing Valor’s experimental results, we remind the reader that we have implemented recovery
for data, but not for meta-data. The experiments in this chapter are for evaluations of data logging
and data recovery only. We describe techniques and methods for more generally supporting effi-
cient transactional operations on small complex data including file system meta-data in subsequent
Chapters 5 and 6.

Enforcing the ACID properties often requires many OS changes, including a unified cache
manager [50] and support for logging and recovery. Despite the complexity of supporting ACID
semantics on file operations [111], Microsoft [147] and others [35, 151] have shown significant
interest in transactional file systems. Their interest is not surprising: developers are constantly

30

reimplementing file cleanup and ad hoc locking mechanisms that are unnecessary in a transactional
file system. A transactional file system does not eliminate the need for locking and recovery, but
hides it inside the transactional implementation. Defending against TOCTTOU (time of check till
time of use) security attacks also becomes easier [108,109], because sensitive operations are easily
isolated from an intruder’s operations. The number of programs running on a standard system
continues to grow along with the cost of administration. In Linux, the CUPS printing service, the
Gnome desktop environment, and other services all store configuration information in files that
can become corrupted when multiple writers access them or if the system crashes unexpectedly.
Despite the existence of database interfaces, many programs still use flat text configuration files
for their simplicity, generality, and because a large collection of existing tools can access these
simple configuration files. For example, Gnome stores over 400 configuration files in a user’s
home directory. A transactional file interface is useful to all such applications.

To provide ACID guarantees, a file interface must be able to mediate all access to the transac-
tional file system. This forces the designer of a transactional file system to put a large database-like
runtime environment either in the kernel or in a kernel-like interceptor, since the kernel typically
services file-system system calls. This environment must employ abortable logging and recovery
mechanisms that are linked into the kernel code. The caches in the VFS layer effected by the
transaction must also be rolled back including [151] its stale inodes, dentries, and other in-kernel
data structures. The situation can be simplified drastically if one abandons the requirement that the
backing store for file operations must be able to interact with other transaction-oblivious processes
(e.g., grep), and by duplicating the functionality of the page cache in user space. This concession
is often made by transactional libraries such as Berkeley DB [130] and Stasis [120]: they provide
a transactional interface to a separate set of store files and they do not solve the complex prob-
lems of rewinding the operating system’s page cache and stale in-memory structures after a process
aborts. Systems such as QuickSilver [119] and TxF [147] address this trade-off between the com-
pleteness and implementation size by redesigning a specific file system around proper support for
transactional file operations. In this chapter we show that such a redesign is unnecessary, and that
every file system can provide a transactional interface without requiring specialized modifications.
We describe our system, which uses a seamless approach to provide transactional semantics using
a dynamically loaded kernel module and only minor modifications to existing kernel code. Our
technique keeps kernel complexity low yet offers a full-fledged transactional file interface without
introducing unnecessary overheads for non-transactional processes.

We call our file interface Valor. Valor relies on improved locking and write ordering semantics
that we added to the kernel. Through a kernel module, it also provides a simple in-kernel logging
subsystem optimized for writing data. Valor’s kernel modifications are small and easily separable
from other kernel components; thus introducing negligible kernel complexity. Processes can use
Valor’s logging and locking interfaces to provide ACID transactions using seven new system calls.
Because Valor enforces locking in the kernel, it can protect operations that a transactional process
performs from any other process in the system. Valor aborts a process’s transaction if the process
crashes. Valor supports large and long-lived transactions. This is not possible for ext3, XFS, or
any other journaling file system: these systems can only abort the entire file system journal and
only if there is a hardware I/O error or the entire system crashes. These systems’ transactions must
always remain in RAM until they commit (see Section 4.1).

Another advantage of Valor is that it is implemented on top of an unmodified file system. This
results in negligible overheads for processes not using transactions: they simply access the under-

31

lying file system, using the Valor kernel modifications only to acquire locks. Using tried-and-true
file systems also provides good performance compared to systems that completely replace the file
system with a database. Valor runs with a statistically indistinguishable overhead on top of ext3
under typical loads when providing a transactional interface to a number of sensitive configuration
files. Valor is designed from the beginning to run well without durability. File system semantics
accept this as the default, offering fsync(2) [46] as the accepted means to block until data is
safely written to disk. Valor has an analogous function to provide durable commits. This makes
sense in a file-system setting where the default policy is for writes to be serviced asynchronously
by the file system. For non-durable data-only transactions, Valor’s overhead on top of an idealized
ARIES implementation is only 35% (see Section 4.3).

The rest of this chapter is organized as follows. We detail Valor’s design in Section 4.2 and
evaluate its performance in Section 4.3. We conclude and propose future work in Section 4.4.

4.1 Background
The most common approach for transactions on stable storage is using a relational database, such as
an SQL server (e.g., MySQL [90]) or an embedded database library (e.g., Berkeley DB [130]); but
they have also long been a desired programming paradigm for file systems. By providing a layer of
abstraction for concurrency, error handling, and recovery, transactions enable simpler, more robust
programs. Valor’s design was informed by two previous file systems we developed using Berkeley
DB: KBDBFS and Amino [151]. Next we discuss journaling file systems’ relationship to our work,
and we follow with discussions on database file systems and APIs.

4.1.1 Database on an LFS Journal and Database FSes
Another transaction system which modified an existing OS was Seltzer’s log-structured file system,
modified to support transaction processing [126]. Seltzer et al.’s simulations of transactions em-
bedded in the file system showed that file system transactions can perform as well as a DBMS in
disk-bound configurations [124]. They later implemented a transaction processing (TP) system in a
log-structured file system (LFS), and compared it to a user-space TP system running over LFS and
a read-optimized file system [126]. Although Seltzer’s work discusses the performance of a user-
level database relying on an in-kernel transaction manager, it does not discuss at all how to achieve
POSIX system transactions. In Section 4.2 we discuss interception mechanisms, directory locking,
deadlock detection, locking permissions and policy to prevent denial of service attacks, and multi-
process transactions (e.g., bash). To support this level of locking, as well as process inheritance of
locks, transaction information must be maintained with the process block such as transaction ID,
and a list of held locks. Valor performs transactional operations concurrently with other updates to
the operating system’s and file system’s caches. Valor provides data recovery (although directory
recovery is not yet implemented). We detail Valor’s locking design within the operating system and
VFS layer as well as its recovery approach in Section 4.2.

Microsoft’s TxF [83, 147] and QuickSilver’s [119] database file systems leverage the early in-
corporation of transactions support into the OS. TxF exploits the transaction manager which was
already present in Windows. TxF uses multiple file versions to isolate transactional readers from
transactional writers. TxF works only with NTFS and relies on specific NTFS modifications and

32

how NTFS interacts with the Windows kernel. QuickSilver is a distributed OS developed by IBM
Research that makes use of transactional IPC [119]. QuickSilver was designed from the ground up
using a microkernel architecture and IPC. To fully integrate transactions into the OS, QuickSilver
requires a departure from traditional APIs and requires each OS component to provide specific roll-
back and commit support. We wanted to allow existing applications and OS components to remain
largely unmodified, and yet allow them to be augmented with simple begin, commit, and abort
calls for file system operations. We wanted to provide transactions without requiring fundamental
changes to the OS, and without restricting support to a particular file system, so that applications
can use the file system most suited to their work load on any standard OS. Lastly, we did not want
to incur any overheads on non-transactional processes.

LOCUS [87] details locking protocols for a distributed storage system that replicates files across
nodes on the same network. TABS [132] details a logging protocol for a distributed storage sys-
tem that allows processes to coordinate distributed two-phase transactions that manipulate objects
across nodes. LOCUS and TABS focus on sketching out workable protocols that can be used in
future implementations. LOCUS describes a protocol for performing locking in a distributed stor-
age system. TABS describes a protocol for transaction logging in a distributed storage system.
Neither system details how to add transactional file system support to a VFS-based operating sys-
tem. For example, LOCUS’s locking protocols do not deal with directories and provide no details
on how transactions interact with non-volatile storage. TABS describes the design of a two-phase
WAL-based transactional page store, but provides no experimental performance. TABS offers new
discussion on the interaction between transactional and non-transactional processes or file system
objects. TABS does not address write-ordering concerns within a complex operating system used
by legacy applications, non-transactional applications, or transactional applications. Neither LO-
CUS nor TABS provide robust deadlock detection: they rely on time-outs only. Our work in Valor
shows that achieving good performance for data recovery and meta-data isolation is non-trivial.
Valor shows how to integrate these features into a complex modern operating system.

Inversion File System [94], OdeFS [37], iFS [100], and DBFS [88] are database file systems im-
plemented as user-level NFS servers [77]. As they are NFS servers (which predate NFSv4’s locking
and callback capabilities [128]), the NFS client’s cache can serve requests without consulting the
NFS server’s database; this could allow a client application to write to a portion of the file system
that has since been locked by another application, violating the client application’s isolation. They
do not address the problem of supporting efficient transactions on the local disk.

4.1.2 Database Access APIs
We discussed in Section 3.1.3 how one common approach to providing a transaction interface
to applications is to provide a user-level library. This library stores data in a special page file
or set of files maintained by the library. Berkeley DB offers a B-Tree, a hash table, and other
structures [130]. Stasis offers a page file [120]. These systems require applications to use database-
specific APIs to access or store data in these library-controlled page files.

Berkeley DB Berkeley DB is a user library that provides applications with an API to transaction-
ally update key-value pairs in an on-disk B-Tree. We discuss Berkeley DB’s relative performance in
depth in Section 4.3. We benchmark BDB through Valor’s file system extensions. Relying on BDB
to perform file system operations, for which it was not originally designed or optimized, can result

33

in large overheads for large serial writes or large transactions (256MB or more). This is because
BDB is being used to provide a file interface, which is used by applications with different work-
loads than applications that typically use a database. If the regular BDB interface is used, though,
transaction-oblivious processes cannot interact with transactional applications, as the former use
the file system interface directly.

Stasis Stasis provides applications a transactional interface to a page file. Stasis requires that
applications specify their own hooks to be used by the database to determine efficient undo and
redo operations. Stasis supports nested transactions [43] alongside write-ahead logging and LSN-
Free pages [120] to improve performance. Stasis does not require applications to use a B-Tree on
disk and exposes the page file directly. Like BDB, Stasis requires applications to be coded against
its API to read and write transactionally. Like BDB, Stasis does not provide a transactional interface
on top of an existing file system which already contains data. Also like BDB, Stasis implements
its own private, yet redundant page cache which is less efficient than cooperating with the kernel’s
page cache (see Section 4.3).

Reflecting on our experience with KBDBFS and Amino, we have come to the conclusion that
adapting the file system interface to support ACID transactions does indeed have value and that
the two most valuable properties that the database provided to us were the logging and the locking
infrastructure. Therefore, in Valor we provide two key kernel facilities: (1) extended mandatory
locking and (2) simple write ordering. Extended mandatory locking lets Valor provide the isolation
that in our previous prototypes was provided by the database’s locking facility. Simple write or-
dering lets Valor’s logging facility use the kernel’s page cache to buffer dirty pages and log pages
which reduces redundancy, improves performance, and makes it easier to support transactions on
top of existing file systems.

4.2 Design and Implementation
The design of Valor prioritizes (1) a low complexity kernel design, (2) a versatile interface that
makes use of transactions optional, and (3) performance. Our approach achieves low complexity
by exporting a minimal set of system calls. Functionality exposed by these system calls would be
difficult to implement efficiently in user-space.

Valor allows applications to perform file-system operations within isolated and atomic transac-
tions. If desired, Valor can ensure a transaction is durable: if the transaction completes, the results
are guaranteed to be safe on disk if the underlying file system uses journaling or some other mech-
anism (e.g., soft-updates) to ensure safe meta-data writes. We now turn to Valor’s transactional
model, which specifies the scope of these guarantees and what processes must do to ensure these
guarantees.

Transactional Model Valor’s transactional guarantees extend to the individual inodes and pages
of directories and regular files for reads and writes. Valor enforces a bare minimum of kernel-side
locking for all processes and relies on transactional applications to perform their own additional
locking as necessary. Transactional applications are expected to use a user-level library to perform
any additional locking not already performed by Valor’s kernel-side components; this user-level
library will correctly acquire and release locks on behalf of transactional applications. Locking is

34

mandatory (i.e., not advisory), so even though transactional applications must use the Valor library
to acquire and release locks correctly, these locks are fully enforced and respected by all processes.

Valor’s transactional model is a function of what kinds of locks it acquires for what operations.
These policies can be changed by an implementer but we specify here a default transactional model.
In Section 4.2.2 we describe how Valor can be configured to prevent misuse of locks. Valor supports
transactional isolation of all of the inode’s fields except those that are updated by a random
write (e.g., mtime) or a random read (e.g., atime). Appending to a file and increasing its length
is protected by transactional isolation. Valor supports transactional isolation of testing for the
existence of, removing, and listing directory entries. Page overwrites to a file are protected as well.
Processes can spawn children that can partake in the parent’s transaction according to policies that
can be controlled by the application developer or system administrator as we discuss in further
detail in Section 4.2.2. Increasing the configurability of Valor’s transactional model is a subject of
future work. Maintaining the concurrency of random file accesses without sacrificing full isolation
of all inode fields, such as mtime and atime, is possible with lock types [43, 132]; extending
Valor to support additional types of locking is also subject of future work.

The bare minimum of kernel locking as performed by Valor is locking an inode when files
are accessed, and locking a path of directory inodes to a directory’s inode when a directory is
accessed. Valor read-locks a regular file’s inode when the file is written to, and write-locks the
inode when the file is appended to. Meta-data which is updated by a non-appending write is
not protected by isolation (e.g., mtime). Valor read-locks the inodes of directories leading to
a directory, and then either read or write-locks the directory being operated upon depending on
whether the application is modifying the directory.

Valor’s implementation attempts to avoid deadlocking when performing broad modifications
to a sub-tree within the file system, by allowing processes to recursively lock all of a directory’s
descendants during a rename. In this way, a process can reserve a sub-tree within a file system
before making extensive changes to it. Subsequent designs such as LSMFS and GTSSLv2 do not
follow this practice as it increases the cost of performing a rename. Futhermore, GTSSLv2 has
better support for snapshots. Snapshots can be used to provide private copies of a sub-tree which a
process can modify extensively; the process can then merge the changes back into the most recent
version of the file system. In such a scenario, handling conflicts during a merge would require
application-specific conflict handlers [61] and is currently a subject of future work.

To illustrate Valor’s locking policies, both inside and outside the kernel, we describe a brief
example. Consider two processes A and B. Process B is transactional but A is not. Process
B begins transaction TB which creates a directory /USR/SHARE/DOCS/. Then process A tries
to create /USR/SHARE/DOCS/FILE.TXT. Then process B performs some other work, removes
/USR/SHARE/DOCS/, and finally commits. Process A is not transactional and releases its locks
before each of its system calls end. However, process A still acquires locks on resources before
utilizing them and will attempt to acquire a read-lock on /, USR, and SHARE even though it is not
transactional: A has to wait on B. In this way, B’s isolation is enforced in that process A is not
able to observe B’s intermediate state by successfully creating FILE.TXT and therefore determining
that A created SHARE within its transaction. After B’s transaction commits, A will fail to create
FILE.TXT as SHARE will not exist.

We now turn to the concepts underlying Valor’s architecture. These concepts are implemented
as components of Valor’s system and illustrated in Figure 4.1.

35

KERNEL
USER

Logging Device (1) VFS: Ext. Mandatory
Locking (3)

Page Cache

Simple Write Ordering (2)

Interception Mech. (4)

P2

Log Append write

write
P1

Log Append write

Log Partition Disk

Separate partitions

Figure 4.1: Valor Architecture

36

1. Logging Device In order to guarantee that a sequence of modifications to the file system
completes as a unit, Valor must be able to undo partial changes left behind by a transaction that
was interrupted by either a system crash or a process crash. This means that Valor must store
some amount of auxiliary data, because an unmodified file system can only be relied upon to
atomically update a single sector and does not provide a mechanism for determining the state
before an incomplete write. Common mechanisms for storing this auxiliary data include either a
log [43] or a copy-on-write approach [51]. Valor does not modify the existing file system, so it uses
an undo-redo log stored on a separate partition called the log partition.

2. Simple Write Ordering Valor relies on the fact that even if a write to the file system fails
to complete, the auxiliary information has already been written to the log. Valor can use that
information to undo the partial write. In short, Valor needs to ensure that writes to the log partition
occur before writes to other file systems. This requirement is a special case of write ordering,
in which the page cache can control the order in which its writes reach the disk. We discuss our
implementation in Section 4.2.1, which we call simple write ordering both because it is a special
case and because it operates specifically at page granularity. Simple write ordering is not a general-
purpose write-ordering system [33] for applications and was designed to be simple and direct. It
is a component of Valor which is intended to help provide ACID transactions to applications. The
log partition and disk components in Figure 4.1 must be on separate partitions, although those
partitions may reside on the same physical device.

3. Extended Mandatory Locking Isolation gives a process the illusion that there are no other
concurrently executing processes accessing the same files, directories, or inodes. Transactional
processes implement this by first acquiring a lock before reading or writing to a page in a file, a
file’s inode, or a directory. However, an OS with a POSIX interface and pre-existing applications
must support processes that do not use transactions. These transaction-oblivious processes do not
normally acquire locks before reading from or writing to files or directories. Extended manda-
tory locking ensures that all processes, even transaction-oblivious processes, acquire locks before
accessing these resources. See Section 4.2.2. Existing mandatory locking in the Linux kernel in-
cludes a waits-for-graph and cycle detection which is performed each time a lock is acquired. These
locks are blocking (unless they deadlock). Extended mandatory locking inherits these features for
Valor’s own deadlock detection.

4. Interception Mechanism New applications can use special APIs to access the transaction
functionality that Valor provides; however, pre-existing applications must be made to run correctly
if they are executed inside a transaction. This could occur if, for example, a Valor-aware applica-
tion starts a transaction and launches a standard shell utility. Valor modifies the standard POSIX
system calls used by unmodified applications to perform the locking necessary for proper isolation.
Section 4.2.3 describes our modifications.

The above four Valor components provide the necessary infrastructure for the seven Valor sys-
tem calls. Processes that desire transactional semantics must use the Valor system calls to log their
writes and acquire locks on files. We now discuss the Valor system calls and then provide a short
example to illustrate Valor’s basic operation.

37

Log Begin begins a transaction. This must be called before all other operations within the trans-
action.

Log Append logs an undo-redo record, which stores the information allowing a subsequent oper-
ation to be undone or redone. This must be called before every operation within the transac-
tion. See Section 4.2.1.

Log Resolve ends a transaction. In case of an error, a process may voluntarily abort a transac-
tion. The abort operation undoes partial changes made during that transaction. Conversely,
if a process wants to end the transaction and ensure that changes made during a transaction
are all done as an atomic unit, it can commit the transaction. Whether a log resolve is a
commit or an abort depends on a flag that is passed to the call.

Transaction Sync flushes a transaction to disk. A process may call Transaction Sync to
ensure that changes made in its committed transactions are on disk and can never be un-
done. This is the only sanctioned way to achieve durability in Valor. O DIRECT, O SYNC,
and fsync [46] have no useful effect within a transaction for the same reason that nested
transactions cannot be durable: the parent transaction has yet to commit [43].

Lock, Lock Permit, Lock Policy Our Lock system call locks a page range in a file, an entire
directory (and the path to that directory), or an entire file with a shared or exclusive lock.
This is implemented as a modified fcntl. Since Valor operates with extended mandatory
locking, the fcntl is no longer advisory. These routines provide Valor’s support for trans-
actional isolation. Lock Permit and Lock Policy are required for security and inter-
process transactions, respectively. See Section 4.2.2.

Cooperating with the Kernel Page Cache As illustrated in Figure 4.1, the kernel’s page cache
is central to Valor, and one of Valor’s key contributions is its close cooperation with the page cache.
In systems that do not support transactions, the write(2) system call initiates an asynchronous
write which is later flushed to disk by the kernel page cache’s dirty-page write-back thread. In
Linux, this thread is called pdflush [17]. If an application requires durability in this scenario, it
must explicitly call fsync(2). Not mandating durability by default is an important optimization
which allows pdflush to economize on disk seeks by grouping writes together.

Therefore most system tools that modify the file system are optimized for a buffered write(2)
call: shell scripts, build scripts, make processes, and more slow down if they block on durable
commits. Further most file system operations can be easily retried, as they are generated by a
tool (e.g., system update, program installation) that can easily be re-run, but which wreak havoc if
only partially performed. Existing installation and update tools use ad-hoc techniques to avoid this
calamity, but providing a reliable single system that all such tools can use is one of Valor’s goals as
a transactional file system.

Databases, despite introducing transaction semantics, achieve similar economies through No-
Force page caches. These caches write auxiliary log records only when a transaction commits,
and then only as one large serial write, and use threads similar to pdflush to flush data pages
asynchronously [43]. Valor is also No-Force, but can further reduce the cost of committing a
transaction by writing nothing—neither log pages nor data pages—until pdflush activates. Valor’s
default transactions are analogous to a No-Force, non-durable transaction.

Valor’s simple write ordering scheme facilitates this optimization by guaranteeing that writes to
the log partition always occur before the corresponding data writes. In the absence of simple write

38

ordering, Valor would be forced to implement a redundant page cache, as many other systems do.
This is because in the absence of a system-supported write-ordering mechanism, modifications

to the file system page cache must be intercepted by a secondary cache, one which has been pro-
grammed to not write back until given the signal that the corresponding log writes have hit the
disk. Without introducing a secondary cache that would intercept every file system write, the log
would have to be synced before every single write to the cache to ensure no write in the cache is
ever flushed without its corresponding log record having been flushed first. This would ruin the file
system’s ability to perform efficient asynchronous sequential writes.

Valor implements simple write ordering in terms of existing Linux fsync semantics. Until
recently the fsync command on Ext3 and other popular file systems (e.g., XFS, and ReiserFS)
would return when the writes were scheduled, but before they had hit the disk platter. This intro-
duced a short race where applications running on top of Valor and the other systems we evaluated
(MySQL, Berkeley DB, Stasis, and ext3) could crash irrecoverably. All Linux kernel versions prior
to 2.6.30 suffered from this problem. Linux 2.6.30 forced fsync to perform a journal flush in Ext3
which ensures a disk-platter flush but only after improving fsync latency in Linux. Linux 2.6.30
included fixes for a host of I/O performance bugs for Ext3 and the block layer, including proper
prioritization of meta-data I/O in the block scheduler [25]. On systems that do not support proper
sync within the operating system we know of three workarounds: disabling write cache, switch-
ing to an operating system that provides correct synchronous writes, such as MacOS X, Linux, or
Windows, or powering the hard disk with an uninterruptible power supply.

Simple write ordering is also a general purpose primitive; user-level transactional storage sys-
tems often support non-durable atomic transactions. Although such systems avoid synchronously
writing the log to disk at commit, they must still ensure that when pages are written back, that
log writes precede all else. Without any sort of write-ordering mechanism, they are forced to
fsync(2) the log, to ensure that all page writes are preceded by their respective log writes. The
intent of calling fsync(2) by a user-level database performing a commit of an asynchronous trans-
action is to order the log write before the page write. However, the file system will also flush the
write (by the definition of fsync(2)). Instead, simple write ordering can coordinate with the page
cache, ensuring that log writes happen before page writes but that writes occur only when there
is pressure on the kernel’s page cache. This avoids redundant disk writes and cache flushes while
maintaining write ordering for database applications.

Alternative approaches to “soften” fsync(2) by not requiring an immediate write to the disk
platter include speculating [93] or a comprehensive write-ordering system [33]. Nightingale et al.
describe a system that makes fsync(2) calls asynchronous and forces a flush only when a user
observes the result of an operation through an I/O operation such as using the tty device. Such
a system would have to comprehensively detect any communication between processes and the
user: a notoriously challenging open problem [68]. Nightingale et al.’s system is not effective
for removing the overhead incurred by fsync(2) calls that always occur immediately before a
user is directly or indirectly notified of the sync. A comprehensive write ordering system with an
application interface must pervade the entire storage stack down to the block layer. Frost et al.’s
write ordering system maintains an additional logging and graph-management system [33].

Like these more complex systems, simple write ordering is a suitable solution for database,
source-control, logging, and transactional applications and requires only a small amount of code
to change in the kernel’s page write-back code. In other work [134], we configured a transactional
page-cache library called Stasis [120] to use Valor to schedule log write-back by modifying a few

39

lines of code, significantly reducing the cost of short asynchronous transactions without sacrificing
recoverability and atomicity. Simple write ordering is not as comprehensive as Frost et al.’s work
in terms of strictly providing write-ordering primitives. However, in concert with a database im-
plementation, or a transactional interface such as Valor, simple write ordering provides a sufficient
amount of cooperation with the kernel’s page cache to facilitate efficient asynchronous and atomic
storage operations.

Since Valor’s simple write ordering mechanism always guarantees that log writes hit the disk
before other pages, it is possible that an entire transaction can commit to the log, while pending
writes to the file system for that transaction are not yet written back. Valor reports to a process
blocking on this event (for durability) that the transaction committed to disk. If the system crashes
before this transaction’s pending writes hit the disk, Valor must be able to complete the disk writes
during recovery to fulfill its durability guarantee. Similar to database systems that also perform this
optimization, Valor uses redo-undo logging and includes sufficient information in the log entries to
redo the writes, allowing the transaction to be completed during recovery.

Valor supports large transactions that may not fit entirely in memory. This means that some
memory pages that were dirtied during an incomplete transaction may be flushed to disk to relieve
memory pressure. If the system crashes in this scenario, Valor must be able to rollback these
flushes during recovery to fulfill its atomicity guarantee. Valor writes undo records describing
the original state of each affected page to the log when flushing in this way. A page cache that
supports flushing dirty pages from uncommitted transactions is known as a Steal cache; XFS [140],
ZFS [139], and other journaling file systems are No-Steal, which limits their transaction size [144]
(see Section 4.1). Valor’s solution is a variant of the ARIES transaction recovery algorithm [85].

An Example Figure 4.2 illustrates Valor’s write-back mechanism. A process P initially calls the
Lock system call to acquire access to two data pages in a file, then calls the Log Append system
call on them, generating the two ’L’s in the figure, and then calls write(2) to update the data
contained in the pages, generating the two ’P’s in the figure. Finally, it commits the transaction
and quits. The processes did not call transaction sync. On the left hand side, the figure shows
the state of the system before P commits the transaction; because of Valor’s non-durable No-Force
logging scheme, data pages and corresponding undo/redo log entries both reside in the page cache.
On the right hand side, the process has committed and exited; simple write ordering ensures that
the log entries are safely resident on disk if any data pages were written out by pdflush.

We now discuss each of Valor’s four architectural components in detail. Section 4.2.1 discusses
the logging, simple write ordering, and recovery components of Valor. Section 4.2.2 discusses
Valor’s extended mandatory locking mechanism, and Section 4.2.3 explains Valor’s interception
mechanism.

4.2.1 The Logging Interface
The design of Valor maintains two logs. A general-purpose log records information on directory
operations, like adding and removing entries from a directory, and inode operations, like appends
or truncations. A page-value log records modifications to individual pages in regular files [26].
Currently our Valor implementation supports only accesses to the page-value log.

Before writing to a page in a regular file (dirtying the page), and before adding or removing
a name from a directory, the process must call Log Append to prepare the associated undo-redo

40

KERNEL
USER

Logging Device (1) VFS: E.M. Locking (4)

Page Cache

Simple Write Ordering (2)

P
Log Append write

Log Partition Disk

Logging Device (1) VFS: E.M. Locking (4)

Page Cache

<P :Exited>

Log Partition Disk

Before P exits

L PP L

L

P P

L

wait

After P exits

Figure 4.2: Valor Example

record. We refer to this undo-redo record as a log record. We found during our implementation
that maintaining page alignment within the page-value log is important for performance and so we
separated meta-data operations so that they would take place on a separate log.

Since the bulk of file system I/O is from dirtying pages and not directory operations, we run
experiments in Section 4.3 that consequently perform negligible meta-data I/O. Valor and Stasis do
not log meta-data at all in our experiments. Ext3 and Berkeley DB incur minimal overhead from
logging meta-data as our experiments are data intensive. Our recovery experiment only demon-
strates the time taken to perform recovery on data-intensive workloads. Valor manages its logs
by keeping track of the state of each transaction, and tracking which log records belong to which
transactions.

In-Memory Data Structures

There are three states a transaction goes through during the course of its life: (1) in-flight, in which
the application has called Log Begin but has not yet called Log Resolve; (2) landed, in which
the application has called Log Resolve but the transaction is not yet safe to deallocate; and (3)
freeing, in which the transaction is ready to be deallocated. Landed is distinct from freeing because
if an application does not require durability, Log Resolve causes neither the log nor the data from
the transaction to be flushed to disk (see above, Cooperating with the Kernel Page Cache).

Valor tracks a transaction by allocating a commit set for that transaction. A commit set consists
of a unique transaction ID and a list of log records. As depicted in Figure 4.3, Valor maintains
separate lists of in-flight, landed, and freeing commit sets. It also uses a radix tree to track free
on-disk log records.

Life Cycle of a Transaction When a process calls Log Begin, it gets a transaction ID by al-
locating a new log record, called a commit record. Valor then creates an in-memory commit set

41

A

Record Maps

State File

1 Page
(transition)

DISK MEMORY

r3

r8 r9

Radix Tree

Page Cache

L1

L2

L3 L5

L6

L4 L1

L4

L6

L5

L3

Inflight, Landed, Freeing Lists

L2

General Purpose Log
(in design-only)

Page Value Log

A.P.
Active

B.P.
Inact.

A.G.
Active

B.G.
Inact.

Figure 4.3: Valor Log Layout

and moves it onto the in-flight list. During the lifetime of the transaction, whenever the process
calls Log Append, Valor adds new log records to the commit set. When the process calls Log
Resolve, Valor moves its commit set to the landed list and marks it as committed or aborted
depending on the flag passed in by the process. If the transaction is committed, Valor writes a
magic value to the commit record allocated during Log Begin. Because the record has not been
written to since the last time the system was in a guaranteed recoverable state, and the record is
currently unallocated, this is not an overwrite of a record in the log. If the system crashes and the
log is complete, the value of this log record dictates whether the transaction should be recovered or
aborted.

Because Valor relies on transition logging, it must enforce that log records are written for each
page update. Although it can permit one update to a page without forcing a log record to disk, it
cannot permit two or more. The transaction can commit asynchronously and write to other pages,
but until the transaction is durably committed to storage, the page remains exclusively locked. Valor
keeps a flag in each page in the kernel’s page cache. This flag can read available or unavailable;
between the time Valor flushes the page’s log record to the log and the time the file system writes the
dirty page back to disk, it is marked as unavailable, and processes which try to call Log Append

to add new log records wait until it becomes available, thus preserving our simple write ordering
constraint. This un/available flag is separate from the write locking system that Valor uses to
enforce isolation. For hot file-system pages (e.g., those containing global counters), this could
result in bursty write behavior. One possible remedy which is a subject of future work is to borrow
Ext3’s solution: when writing to an unavailable page, Valor can create a copy. The original copy
remains read-only and is freed after the flush completes. The new copy is used for new reads and
writes and is not flushed until the next pdflush, maintaining the simple write ordering.

We modified pdflush to maintain Valor’s in-memory data structures and to obey simple write

42

ordering by flushing the log’s super block before all other super blocks. When pdflush runs,
it (1) moves commit sets which have been written back to disk to the freeing list, (2) marks all
page log records in the in-flight and landed lists as unavailable, (3) atomically transitions the disk
state to commit landed transactions to disk, and (4) iterates through the freeing list to deallocate
transactions which have been safely written back to disk. The pdflush routine in Linux asks the
underlying file system to safely write dirty inodes to disk. In the case of Ext3, Ext3 initiates a
journal flush, which forces the data to the disk platter.

Soft vs. Hard Deallocations Valor deallocates log records in two situations: (1) when a Log

Append fails to allocate a new log record, and (2) when pdflush runs. Soft deallocation waits for
pdflush to naturally write back pages and moves a commit set to the freeing list to be deallocated
once all of its log records have had their changes written back. Hard deallocation explicitly flushes
a landed commit set’s dirty pages and directory modifications so it can immediately deallocate it.

On-Disk Data Structures

Figure 4.3 shows the page-value log (implemented) and general-purpose log (in design-only). Valor
maintains two record map files to act as superblocks for the log files, and to store which log records
belong to which transactions. One of these record map files corresponds to the general-purpose log,
and the other to the page-value log. For a given log, there are exactly the same number of entries
in the record map as there are log records in the log. The five fields of a record map entry are:

Transaction ID The transaction (commit set) this log record belongs to.
Log Sequence Number (LSN) Indicates when this log record was allocated.
inode Inode of the file whose page was modified.
netid Serial number of the device the inode resides on.
offset Offset of the page that was modified.

During recovery, we use the contents of the record map entry to properly recover the contents
of a page.

General-purpose log records contain directory path names for recovery of original directory
listings in case of a crash. Page value log records contain a specially encoded page to store both
the undo and the redo record. The state file is part of the mechanism employed by Valor to ensure
atomicity and is discussed further when we describe Valor’s log device state transition procedure
(LDST).

Transition Value Logging Although the undo-redo record of an update to a page could be stored
as the value of the page before the update and the value after, Valor instead makes a reasonable
optimization in which it stores only the XOR of the value of the page before and after the update.
This is called a transition page. Transition pages can be applied to either recover or abort the on-
disk image. A pitfall of this technique is that idempotency is lost [43]; Valor avoids this problem by
recording the location and value of the first bit of each sector in the log record that differed between
the undo and redo image. Although log records are always page-sized, this information must be
stored on a per-sector basis as the disk may only write part of the page. (Because meta-data is
stored in a separate map, transition pages in the log are all sector-aligned.) If a transaction updates

43

the same page multiple times, Valor forces each Log Append call to wait on the Page Available
flag which is set by the simple write ordering component operating within pdflush. If it does not
have to wait, the call may update the log record’s page directly, incurring no I/O. However, if the
call must wait, then a new log record must be made to ensure recoverability. Since Valor uses the
un/available flag to ensure every page write has a transition record, and since other processes wait
on the transaction’s write lock on that page before they can make unlogged updates, it will always
be the case that if the ith version of a page is written back to disk, then either the ith or i + 1th

transition record for that page will be in the log file and no log record for that page more recent
then version i + 1 will be in the log record.

LDST: Log Device State Transition

Valor’s in-memory data structures are a reflection of Valor’s on-disk state; however, as commit sets
and log records are added, Valor’s on-disk state becomes stale until the next time pdflush runs.
We ensure that pdflush performs an atomic transition of Valor’s on-disk state to reflect the current
in-memory state, thus making it no longer stale. To represent the previous and next state of Valor’s
on-disk files, we have a stable and unstable record map for each log file. The stable record maps
serve as an authoritative source for recovery in the event of a crash. The unstable record maps
are updated during Valor’s normal operation, but are subject to corruption in the event of crashes.
The purpose of Valor’s LDST is to make the unstable record map consistent, and then safely and
atomically relabel the stable record maps as unstable and vice versa. This is similar to the scheme
employed by LFS [116, 126].

The core atomic operation of the LDST is a pointer update, in which Valor updates the state file.
This file is a pointer to the pair of record maps that is currently stable. Because it is sector-aligned
and less than one sector in size, a write to it is atomic. All other steps ensure that the record maps
are accurate at the point in time where the pointer is updated. The steps are as follows:

1. Quiesce (block) all readers and writers to any on-disk file in the Valor log partition.
2. Flush the inodes of the page-value and general-purpose log files. This flushes all new log

records to disk. Log records can only have been added, so a crash at this point has no effect
as the stable records map does not point to any of the new entries.

3. Flush the inodes of the unstable page-value and general-purpose record map files.
4. Write the names of the newly stable record maps to the state file.
5. Flush the inode of the state file. The up-to-date record map is now stable, and Valor now

recovers from it in case of a system crash.
6. Copy the contents of the stable (previously unstable) record map over the contents of the

unstable (previously stable) record map, bringing it up to date.
7. Un-quiesce (unblock) readers and writers.
8. Free all freeing log records.

Any transaction that wants to durably commit must participate in an LDST. However, multiple
transactions that update different pages can participate in the same LDST.

44

Atomicity The atomicity of transactions in Valor follows from two important constraints that
Valor ensures that the OS obeys: (1) that writes to the log partition and data partitions obey simple
write ordering and (2) that the LDST is atomic. At mount time, Valor runs recovery (Section 4.2.1)
to ensure that the log is ready and fully describes the on-disk system state when it is finished
mounting. Thereafter, all proper transactional writes are preceded by Log Append calls. No
writes go to disk until pdflush is called or Valor’s Transaction Sync is called. Simple write
ordering ensures that in both cases, the log records are written before the in-place updates, so no
update can reach the disk unless its corresponding log record has already been written. Log records
themselves are written atomically and safely because writes to the log’s backing store are only
made during an LDST. Since an LDST is atomic, the state of the entire system advances forward
atomically as well.

Performing Recovery

System Crash Recovery During the mount operation, the logging device checks to see if there
are any outstanding log records by checking if there are any allocated log records in the stable
record map, and, if so, runs recovery. During umount, the Logging Device flushes all committed
transactions to disk and aborts all remaining transactions. Valor can perform recovery easily by
reading the state file to determine which record map for each log is stable, and reconstructing the
commit sets from these record maps. A log sequence number (LSN) stored in the record map
allows Valor to read in reverse order the events captured within the log and play them forward or
back based on whether the write needs to be completed to satisfy durability or rolled back to satisfy
atomicity. Recovery finds all record map entries and makes a commit set for each of them which
is by default marked as aborted. While traversing through record map entries if it finds a record
map entry with a magic value (written asynchronously during Log Resolve) indicating that this
transaction was committed, it marks that set committed. Finally all commit sets are deallocated and
an LDST is performed. The system can then come on line.

Process Crash Recovery Recovery handles the case of a system crash, something handled by all
journaling file systems. However, Valor also supports user-process transactions and, by extension,
user-process recovery. When a process calls the do exit process clean-up routine in the kernel,
its task struct is checked to see if a transaction was in-flight. If so, Valor moves the commit set
for the transaction onto the landed list and marks the commit set as aborted.

4.2.2 Ensuring Isolation
Extended mandatory locking is a derivation of mandatory locking, a system already present in
Linux and Solaris [47, 80]. Mandatory locks are shared for reads but exclusive for writes and
must be acquired by all processes that read from or write to a file. Valor adds these additional
features: (1) a locking permission bit for owner, group, and all (LPerm), (2) a lock policy system
call for specifying how locks are distributed upon exit, and (3) the ability to lock a directory
(and the requirement to acquire this lock for directory operations). System calls performed by non-
transactional processes that write to a file, inode, or directory object acquire the appropriate lock
before performing the operation and then release the lock upon returning from the call.

45

Valor requires all processes to take locks via its extended mandatory locking mechanism. By
ensuring that even non-transactional system calls acquire and release locks, we guarantee that trans-
actional applications can retain higher degrees of isolation. All processes, even non-transactional
processes, obey at least degree 1 isolation. In this environment, then, by the degrees of isolation
theorem [43], transactional processes that obey higher degrees of isolation (up to degree 3) can do
so.

Valor supports inter-process transactions by implementing inter-process locking. Processes may
specify (1) if their locks can be recursively acquired by their children, and (2) if a child’s locks are
released or instead given to its parent when the child exits. These specifications are propagated to
the Extended Mandatory Locking system with the Lock Policy system call.

Valor prevents misuse of locks by allowing a process to acquire a lock only under one of two
circumstances: (1) if the process has permission to acquire a lock on the file according to the LPerm
of the file, or (2) if the process has read access or write access, depending on the type of the lock.
Only the owner of a file can change the LPerm, but changes to the LPerm take effect regardless of
transactions’ isolation semantics. Deadlock is prevented using a deadlock-detection algorithm. If
a lock would create a circular dependency, then an error is returned. Transaction-aware processes
can then recover gracefully. Transaction-oblivious processes should check the status of the failed
system call and return an error so that they can be aborted. We have successfully booted, used,
and shutdown a previous version of the Valor system with extended mandatory locking and the
standard legacy programs. We observed no deadlocks and major system tools and services did not
hang. We believe that Linux as it is, is already close to an operating system that could work in
an extended mandatory locking environment. A related issue is the locking of frequently accessed
file-system objects or pages. The default Valor behavior is to provide degree 1 isolation, which
prevents another transaction from accessing the page while another transaction is writing to it.
For transaction-oblivious processes, because each individual system call is treated as a transaction,
these locks are short lived. For transaction-aware processes, an appropriate level of isolation can
be chosen (e.g., degree 2—no lost updates) to maximize concurrency and still provide the required
isolation properties.

4.2.3 Application Interception
Valor supports applications that are aware of transactions but need to invoke sub-processes that
are not transaction-aware within a transaction. Such a subprocess is wrapped in a transaction
that begins when it first performs a file operation and ends when it exits. This is useful for a
transactional process that forks sub-processes (e.g., grep) to do work within a transaction. During
system calls, Valor checks a flag in the process to determine whether to behave transactionally or
not. In particular, when a process is forked, it can specify if its child is transaction-oblivious. If
so, the child has its Transaction ID set to that of the parent and its in-flight state set to Oblivious.
When the process performs any system call that constitutes a read or a write on a file, inode, or
directory object, the in-flight state is checked, and an appropriate Log Append call is made with
the Transaction ID of the process. There is currently no support for mmap calls made by non-
transaction-aware sub-processes. Support could be added by instrumenting the kernel’s page-fault
handling routine, but this is a subject of future work.

46

4.3 Evaluation
Valor provides atomicity, isolation, and durability, but these properties come at a cost: writes be-
tween the log device and other disks must be ordered, transactional writes incur additional reads
and writes, and in-memory data structures must be maintained. Additionally, Valor is designed to
provide these features while only requiring minor changes to a standard kernel’s design. In this sec-
tion we evaluate the performance of data-intensive workloads running on Valor and also compare
it to Stasis and BDB. Since Valor only implements data logging, we limit ourselves to experiments
with a negligible meta-data overhead. Studying the performance of a traditional logging architec-
ture like that used by Valor for meta-data workloads is a subject of future work. In Chapters 5 and 6
we adopt a design that supports arbitrary dictionary relationships and hosts a transactional file sys-
tem on top of this database, similar to how SchemaFS is hosted on top of the more general-purpose
Berkeley DB.

Section 4.3.1 describes our experimental setup. Section 4.3.2 analyzes a benchmark based
on an idealized ARIES transaction logger to derive a lower bound on overhead. Section 4.3.3
evaluates Valor’s performance for a serial file overwrite. Section 4.3.4 analyzes Valor’s concurrent
performance. Finally, Section 4.3.5 measures Valor’s recovery time for a data-intensive workload
that performs no meta-data logging. All benchmarks test scalability of sequential asynchronous
writes in a transactional file system.

4.3.1 Experimental Setup
We used four identical machines, each with a 2.8GHz Xeon CPU and 1GB of RAM for bench-
marking. Each machine was equipped with six Maxtor DiamondMax 10 7,200 RPM 250GB SATA
disks and ran CentOS 5.2 with the latest updates as of September 6, 2008. We compared the results
running on separate machines and found that for a four-hour set of different micro-benchmarks,
performance results were within 3.6% of each other. We show experiments that were run on the
same machine within the same figure. Results shown in different figures may have been run on
different machines. To ensure a cold cache and an equivalent block layout on disk, we ran each
iteration of the relevant benchmark on a newly formatted file system with as few services running
as possible. We ran all tests at least five times and computed 95% confidence intervals for the mean
elapsed, system, user, and wait times using the Student’s-t distribution. In each case, unless oth-
erwise noted, the half widths of the intervals were less than 5% of the mean. Wait time is elapsed
time less system and user time and mostly measures time performing I/O, though it can also be
affected by process scheduling. We benchmarked Valor on the modified Valor kernel and all other
systems on a stable unmodified 2.6.25 Linux kernel.

Comparison to Berkeley DB and Stasis The most similar technologies to Valor are Stasis and
Berkeley DB (BDB): two user level logging libraries that provide transactional semantics on top of
a page store for transactions with atomicity and isolation and with optional durability. Valor, Sta-
sis, and BDB were all configured to store their logs on a separate disk from their data, a standard
configuration for systems with more than one disk [43]. The logs used by Valor and Stasis were
set to 128MB. Berkeley DB’s log buffer was set to 128MB. Because we emphasized non-durable
transactions during the design of Valor, we configured Stasis and BDB to also use non-durable

47

transactions. This configuration required modifying the source code of Stasis to open its log with-
out O SYNC mode. Similarly, we configured BDB’s environment with DB TXN NOSYNC. Berkeley
DB was configured with a 512MB cache, half the size of the machine’s available physical RAM.
The ext3 file system performs writes asynchronously by default. For file-system workloads it is
important to be able to perform efficient asynchronous serial writes, so we focused on non-durable
transactions performing asynchronous serial writes.

For our BDB benchmark, we used the same database schema as Amino [151]. Each page of
data that the file system writes is stored as a key-value pair. The key is the file ID (an identifier
similar to an inode number) and page offset and the value is the data to be stored. We used the B-
Tree access method as this is the suitable choice for a large file system, and allows for sequentially
accessing adjacent pages. We refer to the size of each value stored in the database as the schema
page size. In conjunction with the schema page size, BDB’s database page size form an important
pair of tuning parameters. The BDB Manual [130] stipulates when either a key or a value cannot
be stored directly in the page of the leaf node. When a key or a value cannot fit in the page of
the leaf node, they are stored in an overflow page. Overflow pages reduce BDB performance, so
ideally a data set would always fit within the leaf pages. Each key and value are stored separately
in the leaf node and each are allotted page size/(minimum keys ∗ 2) bytes, where page size is
the database page size (e.g., 4KB, 8KB, ..., 64KB) and minimum keys is by default 2. In the case
of an 8KB database page size, a key would be forced into an overflow page if it were larger than
2KB. Similarly, a value would be forced into an overflow page if it were larger than 2KB.

When BDB allocates an overflow page, either only one key or only one value may be stored in
the overflow page; if the item’s size exceeds the database page size, then it consumes space in units
of the database page size (i.e., it cannot use a fraction of an overflow page). Additional complexity
is introduced because the overflow page meta-data requires some space. Thus, to achieve the best
possible performance, it is critical to select an appropriate and compatible schema and database
page sizes. For example, a naive approach that selects 4,096 bytes for both the schema and database
page sizes results in every key-value pair being stored across two overflow pages. The first overflow
page contains meta-data and the first 4,073 bytes of the schema page, the second overflow page
contains meta-data and the remaining 23 bytes of the schema page. As two key-values can never
share an overflow page, this second overflow page is less than 1% utilized; wasting both disk space
and bandwidth. Similarly, if one increases the database page size to 8,192 bytes (while keeping the
schema page size at 4,096 bytes), two values are still unable to fit into a single database page and
an overflow page is required. However, after storing the meta-data and schema page, the remaining
50% of the database page is wasted. If however, the schema page size was set to 4,073 bytes; then
the key-value pair precisely fits into a single overflow page without wasting any additional space
in overflow pages. An alternative design is to increase the database page size so that more than
two key-value pairs can fit into each database page. For example, if the database page size is set
to 16,384 bytes; then three 4,096-byte schema pages can fit into the leaf node. However, this is
only 75% space efficient as the fourth key must be stored in a separate page. Using the maximum
configurable database page size of 65,536, fifteen 4,096-byte schema pages fit within a single leaf,
which is 93.75% space efficient. We benchmarked each of these strategies, and selected the fastest:
a 64KB database page size with a 4KB byte schema page size.

Berkeley DB Expectations Since Berkeley DB’s performance was not sufficiently close to the
expected theoretical upper bound on performance for our benchmarks, we performed further bench-

48

 0

 100

 200

 300

 400

 500

 600

 700

 800

first-write (LB=1MB, sync)

second-write (LB=1MB, sync)

read (LB=1MB, sync)

flat-write (LB=1MB, sync)

first-write (LB=128MB, sync)

second-write (LB=128MB, sync)

read (LB=128MB, sync)

flat-write (LB=128MB, sync)

first-write (LB=1MB)

second-write (LB=1MB)

read (LB=1MB)

flat-write (LB=1MB)

first-write (LB=128MB)

second-write (LB=128MB)

read (LB=128MB)

flat-write (LB=128MB)

ext3-first-write

ext3-read

ext3-second-write

T
im

e
 (

s
e

c
)

Wait
User
Sys

BDB Only

Figure 4.4: Berkeley DB Micro-benchmarks

marking. We expected that Berkeley DB would perform 2–3× slower than Ext3 for asynchronous
sequential workloads such as those run in Section 4.3. This is for reasons discussed in Section 3.1.1:
we have to write the redo record in addition to the actual page write (2×) and if the write is an over-
write, then we have to sequentially read the page (negligible overhead) and write an additional undo
record (3×). We found that SchemaFS running on Berkeley DB would sometimes operate with
overheads of 5× for asynchronous sequential workloads—and up to 25× overheads for durable
workloads, or asynchronous but large sequential workloads. We also experimented with two alter-
nate independent implementations of a sequential benchmark for Berkeley DB as well as a variety
of caching, log-buffer, and durability configurations that we expected would have the largest impact
on performance.

Figure 4.4 shows the results of a micro-benchmark intended to determine how much of Berke-
ley DB’s overheads could be credited to our implementation of SchemaFS on top of Berkeley
DB. A third party skilled in Berkeley DB programming provided us with a separate benchmark
called FLAT-WRITE. This benchmark writes pages with sequentially increasing IDs directly to
Berkeley DB. The other Berkeley DB-based benchmarks are implemented using the SchemaFS
interface hosted on top of Berkeley DB. Both FLAT-WRITE and the SchemaFS benchmarks use
an <inode,page-offset> tuple as the key. Both implementations carefully implement the
Berkeley DB comparison routine. The SchemaFS system has a sequential read routine based on
database cursors that was used to test the contiguity of data pages. The FLAT-WRITE implementa-
tion’s code was reviewed for correctness.

49

The SchemaFS-based benchmarks are FIRST-WRITE, SECOND-WRITE, and READ. The FIRST-
WRITE benchmark performs a sequential 512MB write using newly allocated keys (like FLAT-
WRITE), except it enables asynchronous transactions once when starting the BDB environment,
where as FLAT-WRITE passes in a flag into each transaction commit to disable a synchronous com-
mit. The SECOND-WRITE benchmark does a 512MB overwrite, re-using the same keys used in
FIRST-WRITE, and so should incur reads of the original page and will have to write larger undo-
records. The READ benchmark performs a read of the entire 512MB file in SchemaFS. For all
reads we disabled atime as implemented in SchemaFS. We additionally list EXT3-FIRST-WRITE,
EXT3-SECOND-WRITE, and EXT3-READ to compare these sequential writes to the underlying Ext3
file system. The BDB-ONLY measurement counts time spent waiting on BDB calls to return, as
opposed to waiting for the test benchmark to exit successfully. For example, the BDB-ONLY mea-
surement may not include any of the time spent by Berkeley DB flushing dirty pages to storage. The
LB=1MB configuration indicates the benchmark ran with a 1MB log-buffer, and the LB=128MB
configuration indicates the benchmark ran with a 128MB log-buffer.

We found that performance of Berkeley DB was highest when performing asynchronous FIRST-
WRITE or FLAT-WRITE as it did not have to gather undo images and write undo records for newly
created tuples. Since FLAT-WRITE disables transaction commit on each write, it executes with
asynchronous performance as well. We also note that SECOND-WRITE is 5× slower than FIRST-
WRITE in asynchronous mode when counting total elapsed time. This difference is because the
environment must read in the undo entries, perform undo-redo record writes to the log, and then
ultimately write-back the log before it can completely shutdown. Furthermore, we note that the
leaf-node and parent-node allocation mechanism used by a B-tree implementation can severely
effect its performance for sequential workloads. Typically, file systems that utilize B-trees actually
allocate extents in the leaves of their B-tree instead of storing one page per leaf-node like SchemaFS
does.

We point out in the following benchmarks when we are performing an overwrite. Regardless,
even when waiting only on BDB calls to finish, both FLAT-WRITE and FIRST-WRITE, the fastest
asynchronous configurations, take 4.3× longer to complete than EXT3-FIRST-WRITE, even when
accounting for time taken by Ext3 to sync to disk.

To account for total time spent performing a transaction, the page cache is written back to disk
using sync (and simple write-ordering for Valor runs). Since Valor gathers all undo records im-
mediately and submits its transition records to the log-buffer before performing its actual write, all
transactional overheads are accounted for in each run, but can be batched together as all benchmarks
run with asynchronous (ACI) transactions.

To fully account for transactional overheads incurred by Berkeley DB calls, we measure elapsed
time of each benchmark, including time to shutdown its environment.

4.3.2 Mock ARIES Lower Bound
Figure 4.5 compares Valor’s performance against a mock ARIES transaction system to see how
close Valor comes to the ideal performance for its chosen logging system. We configured a separate
logging block device with ext2, in order to avoid overhead from unnecessary journaling in the file
system. We configured the data block device with ext3, since journaled file systems are in common
use for file storage. We benchmarked a 2GB file overwrite under three mock systems. MT-ow-
noread performed the overwrite by writing zeros to the ext2 device to simulate logging, and then

50

 0

 20

 40

 60

 80

 100

 120

Stasis
Valor

MT-ow-finite

MT-ow
MT-ow-noread

Ext3

E
la

ps
ed

 T
im

e
(s

ec
)

17.8

32.6

43.7 41.3

55.7

84.2

Wait
User

System

Figure 4.5: Valor’s and Stasis’s performance relative to the mock ARIES lower bound

writing zeros to the ext3 device to simulate write back of dirty pages. Valor hosts its journal
on ext2 and its data on ext3 and this is why our Mock benchmark uses a similar configuration.
On one hand we might run Mock ARIES on two ext2 devices to obtain an even tighter lower
bound. On the other hand, we might run the data partition of the Mock ARIES benchmark on ext3
to obtain a lower bound for a transactional file system: this permits non-transactional operations
to utilize ext3’s journal, like Valor does. We chose the Mock configuration that more closely
matches how Valor behaves by using ext3 to hold the data partition. Either way in practice the
overhead of ext3 in ordered mode (no data journaling) to ext2 for asynchronous benchmarks is
negligible [122]. We use ext3 in the default ordered mode.

MT-ow differs from MT-ow-noread in that it copies a pre-existing 2GB data file to the log to
simulate time spent reading in the before image. MT-ow-finite differs from the other mock systems
in that it uses a 128MB log, forcing it to break its operation into a series of 128MB copies into the
log file and writes to the data file. A transaction manager based on the ARIES design must do at
least as much I/O as MT-ow-finite. Valor’s overhead on top of MT-ow-finite is 35%. Stasis’s is
104%. The cost of MT-ow reading the before images as measured by the overhead of MT-ow on
MT-ow-noread is 34%. Although MT-ow-finite performs more logical seeks than MT-ow, it is still
6% faster due to repeatedly writing within the same set of physical tracks. In this experiment, we
varied the physical location of the tracks by changing the partitioning of the disks; we observed up
to a 9% performance difference and concluded that the primary source of difference in execution
time was due to performing large writes instead of repeated small flushed writes. Stasis’s overhead
is more than Valor’s overhead due to maintaining a redundant page cache in user space.

4.3.3 Serial Overwrite
In this benchmark we measure the time it takes for a process to transactionally overwrite an ex-
isting file. File transfers are an important workload for a file system. See Figure 4.6. Providing
transactional protection to large file overwrites demonstrates Valor’s ability to scale with larger
workloads and handle typical file system operations. Since there is data on the disk already, all
systems but ext3 must log the contents of the page before overwriting it. The transactional sys-
tems use a transaction size of 16 pages. The primary observation from these results is that each
system scales linearly with respect to the amount of data it must write. Valor runs 2.75 times longer
than ext3, spending the majority of that overhead writing Log Records to the Log Device. Stasis

51

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 256 512 1024 2048

E
la

ps
ed

 T
im

e
(s

ec
, l

og
)

Append Size in MB

Ext3
Stasis
Valor
BDB

Figure 4.6: Asynchronous serial overwrite of files of varying sizes

runs 1.75 times slower than Valor. It spends additional time allocating pages in user space for its
own page cache, and doing additional memory copies for its writes to both its log and its store file.
For the 512MB overwrite of Valor and Stasis, and the 256MB overwrite of Stasis, the half-widths
were 11%, 7%, and 23%, respectively. The asynchronous nature of the benchmark implies that
performance depends in part on how quickly the buffer cache is filled by the write. Other pro-
cesses executing at the same time can then seriously effect the performance of these benchmarks.
This is why we see such a high variance in our measurements of Valor and Stasis in this serial
write benchmark. BDB’s on-disk B-Tree format stores one file page per leaf-node; this is complex
and sensitive to the block allocation policies of Berkeley DB. Valor and Stasis use a simple page-
based layout. For example, Valor writes to the underlying file system which allocates an extent
that can then be populated with the sequential write without introducing any fragmentation. Valor’s
page-logging is page aligned: this is an important optimization that gave Valor a 2–3× speedup.
Thanks to these allocation and page alignment policies, Valor runs 8.22× faster than BDB for this
data-heavy workload.

4.3.4 Concurrent Writers
To measure concurrency, we ran varying numbers of processes that would each serially overwrite
an independent file concurrently. Each process wrote 1GB of data to its own file. Since the files are
independent, the writers need not wait on any locks to write. We ran the benchmark with 2, 4, 8,
and 16 processes running concurrently. Figure 4.7 illustrates the results of our benchmark. For low
numbers of processes (2, 4, and 8) BDB had half-widths of 35%, 6%, and %5 because of the high
variance introduced by BDB’s user space page cache. Stasis and BDB run at 2.7 and 7.5 times the
elapsed time of ext3. For the 2, 4, 8, and 16 process cases, Valor’s elapsed time is 3.0, 2.6, 2.4, and
2.3 times that of ext3. What is notable is that these times converge on lower factors of ext3 for
high numbers of concurrent writers. The transactional systems must perform a serial write to a log
followed by a random seek and a write for each process. BDB and Stasis must maintain their page
caches, and BDB must maintain B-Tree structures on disk and in memory. For small numbers of
processes, the additional I/O of writing to Valor’s log widens the gap between transactional systems

52

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 8 16

E
la

ps
ed

 T
im

e
(s

ec
)

Number of Processes

Ext3
Valor
BDB

Stasis

Figure 4.7: Execution times for multiple concurrent processes accessing different files

and ext3, but as the number of processes and therefore the number of files being written to at once
increases, the rate of seeks overtakes the cost of an extra log serial write for each data write, and
maintenance of on-disk or in-memory structures for BDB and Stasis.

4.3.5 Recovery
One of the main goals of a journaling file system is to avoid a lengthy fsck on boot [49]. Therefore
it is important to ensure Valor can recover from a crash in a finite amount of time with respect to
the disk. Although with our current Valor implementation we cannot show that Valor’s meta-data
recovery time is efficient in comparison to an fsck, we can evaluate Valor’s data-logging recovery
time and show that it grows linearly with the amount of data that is written into the log.

Valor’s ability to recover a file after a crash is based on its logging an equivalent amount of
data during operation. The amount of total data that Valor must recover cannot exceed the length
of Valor’s log, which was 128MB in all our benchmarks. Valor’s recovery process consists of: (1)
reading a page from the log, (2) reading the original page on disk, (3) determining whether to roll
forward or back, and (4) writing to the original page if necessary. To see how long Valor took
to recover for a typical amount of uncommitted data, we tested the recovery of 8MB, 16MB and
32MB of uncommitted data. In the first trial, two processes were appending to separate files when
they crashed, and their writes had to be rolled back by recovery. In the second trial, three processes
were appending to separate files. Process crash was simulated by simply calling exit(2) and not
committing the transaction. Valor first reads the Record Map to reconstitute the in-memory state at
the time of crash, then plays each record forward or back in reverse Log Sequence Number (LSN)
order. Figure 4.8 illustrates our recovery results. Label 2/8-rec in the figure shows elapsed time
taken by recovery to recover 8MB of data in the case of 2 process crash. We see that although the
amount of time spent recovering is proportional to the amount of uncommitted data for both the 2
and 3 process case, that recovering 3 processes takes more time than for 2 because of additional
seeking back and forth between pages on disk associated with log records for 3 uncommitted trans-
actions instead of 2. 2/32-rec is 2.31 times slower than 2/16-rec and 2/16-rec is 1.46 times slower
than 2/8-rec due to varying size of recoverable data. Similarly, 3/32-rec is 2.04 times slower than

53

 0

 0.5

 1

 1.5

 2

 2.5

 3

3/32-rec

3/16-rec

9/8-rec

2/32-rec

2/16-rec

2/8-rec

E
la

ps
ed

 T
im

e
(s

ec
)

0.3 0.5

1.1

0.5 0.8

1.6

Wait
User

System

Figure 4.8: Recovery benchmark: Time spent recovering from a crash for varying amounts of
uncommitted data and varying number of processes

3/16-rec and 3/16-rec is 1.5 times slower than 3/8-rec. Keeping the amount of recoverable data
same we see that 3 processes have 44%, 63%, and 60% overhead compared to 2 process with re-
coverable data of 8MB, 16MB, 32MB, respectively. In the worst case, Valor recovery can become
a random read of 128MB of log data, followed by another random read of 128MB of on-disk data,
and finally 128MB of random writes to roll back on-disk data.

Valor does no logging for read-only transactions (e.g., getdents, read) because they do not
modify the file system. Valor only acquires a read lock on the pages being read, and, because it
calls directly down into the file system to service the read request, there is no overhead.

Systems which use an additional layer of software to translate file system operations into
database operations and back again introduce additional overhead. This is why Valor achieves
good performance with respect to other database-based user level file system implementations that
provide transactional semantics. These alternative APIs can perform well in practice, but only if
applications use their interface, and constrain their workloads to reads and writes that perform well
in a standard database rather than a file system. Our system does not have these restrictions.

4.4 Conclusions
Valor performs asynchronous sequential over-writes 2× faster than Stasis. There are more sophis-
ticated user-level transactional libraries that use B-tree values to store page data directly in B-tree
leaf nodes; these can perform 8× slower than Valor’s page-logging when used on top of Ext3’s
asynchronous write throughput. Recovery of page data is efficient, taking 1.6 seconds to recover
three 32MB appends. For applications that modify a small number of files, or for any larger files,
Valor is within 35% overhead of an idealized ARIES implementation; Valor is still 3.6× slower
than an unmodified non-transactional Ext3. These results test only data recovery; meta-data recov-
ery from the general purpose log was not tested. Recovery of meta-data could take much longer.
For more meta-data–intensive workloads we turn to a more efficient design in Chapter 5. However,
even with these data-logging-only results, it is clear that asynchronous sequential file system work-

54

loads will not fair well on a traditional transactional implementation that must gather undo records.
In Chapter 5 we introduce a new transactional database design: it is based on a data structure and
transactional architecture that are more suited for workloads consisting of small random writes with
complex queries such as a meta-data–intensive file system workload.

Applications can benefit greatly from having a POSIX-compliant transactional API that mini-
mizes the number of modifications needed to applications. Such applications can become smaller,
faster, more reliable, and more secure—as we have demonstrated in this and prior work. However,
adding transaction support to existing OSs is difficult to achieve simply and efficiently, as we had
explored ourselves in several prototypes.

The primary contribution introduced in this chapter is our design of Valor, which was informed
by our previous attempts in the forms of KBDBFS and Amino. Valor runs in the kernel cooperating
with the kernel’s page cache, and runs more efficiently: Valor’s performance comes close to the
theoretical lower bound for a log-based transaction manager, and scales much better than Amino,
BDB, and Stasis.

Unlike KBDBFS, however, Valor integrates seamlessly with the Linux kernel, by utilizing its
existing facilities. Valor required less than 100 LoC changes to pdflush and another 300 LoC
to simply wrap system calls; the rest of Valor is a standalone kernel module which adds less than
4,000 LoC to the stackable file system template Valor was based on.

Type Num Log- Trans- Conc- Async Write Random Stitch- Sequen-
Writes Struct. actions urrent Order ing tial

Ext3 FS 1 ¬ MD-only ¬ X Kernel R ¬ R,W
SchemaFS∗ FS 3 ¬ Logical X X User R ¬ R
LSMFS FS 1 X MD-only ¬ X mmap S,W ¬ R,W
Valor FS 2 ¬ POSIX ¬ X Kernel R ¬ R

Table 4.1: A qualitative comparison of Transactional Storage Designs: We can conclude that
although Valor provides a general-purpose option for adding transactions to file systems from the
VFS, it incurs 3–4× overheads for sequential file system workloads.

Table 4.1 adds the Valor design to our table of transactional design decisions initially intro-
duced as Table 3.1 in Section 3.4. Valor was designed as a file system, and does not support
efficient key-value storage and retrieval. Valor writes data twice: once for the transition log entry,
and again for the actual page (if it is an overwrite). Valor is not log-structured, and uses a variant
of the general-purpose ARIES algorithm which permits it to run on top of and provide transactions
for existing storage systems but requires additional writes. Valor provides transactions for POSIX
operations, and Valor’s current implementation provides logging for data only. Valor uses a page
locking scheme so that it can perform transition logging, which prevents it from efficiently per-
forming highly concurrent small durable transactions. Valor provides asynchronous transactions
and controls write ordering directly from the kernel. Valor is efficient for all read operations, and
inefficient for sequential and random write operations. Valor does not provide a gradual perfor-
mance trade-off for workloads ranging from sequential to random access patterns.

Valor is modular and can operate on top of existing file systems. However, this modularity
comes at a performance cost of a 3.6× overhead on top of an unmodified non-transactional file
system (Ext3). If we want to perform asynchronous file system workloads with less overhead com-
pared to standard file systems, we will have to move in the direction of a log-structured architecture.

55

If we want to better support more meta-data–intensive workloads, not just logging them but
also indexing them efficiently, then we will have to explore more sophisticated key-value storage
data structures like those used in contemporary databases.

In Chapter 5 we explore our transactional log-structured database architecture based on the log-
structured merge-tree. This architecture can avoid double writes for asynchronous transactions,
better support complex workloads such as file system meta-data workloads, and provide a flexible
multi-tier architecture for incorporating various storage device technologies.

56

Chapter 5

GTSSLv1: A Fast-inserting Multi-tier
Database for Tablet Serving

In Chapter 4, we have seen that a partially in-kernel and user-level approach for adding new ab-
stractions such as system transactions can be nearly as efficient as a completely in-kernel approach,
but considerably easier to debug, and require few changes to the kernel itself. However, the logging
algorithm that we had to use for a modular transactional system was too slow. Valor could extend
transactional POSIX semantics to any underlying file system but it had to impose a 2–3× overhead
on asynchronous sequential write performance. Furthermore, Valor did not provide effective key-
value storage. We intend to add support for key-value storage to the file system, and to provide
efficient execution of workloads for database and more sequential file system workloads.

In this chapter we introduce GTSSLv1, a log-structured merge tree which operates efficiently
on multiple heterogeneous devices, and a carefully designed and implemented cache, transaction
manager, journal, recovery system, and data structure. GTSSLv1 was also designed to be the pri-
mary storage management system for a single node. GTSSLv1 was designed as a tablet server, a
database program that runs on almost every node of a large structured data store such as Big Ta-
ble [20]. Tablet servers typically require high throughput indexing and support for complex queries.
In Chapter 6 we discuss extending GTSSLv1 to better support sequential file system workloads.
However, first we must describe how GTSSLv1’s design can handle tablet server workloads so that
it is clear to the reader how GTSSLv1 and GTSSLv2 can handle tablet serving and other database
workloads. We do not discuss message passing or networking between such nodes, but only the
database software that runs on these nodes, and compare to existing similar software such as Cas-
sandra [66] and HBase [6].

We found that for database workloads, the GTSSLv1 architecture provides 2× faster inser-
tions for asynchronous transactional workloads than existing popular LSM-tree databases such as
Cassandra and HBase. This performance difference was due to architectural differences in how
GTSSLv1 provides support for transactions. For random read and write workloads, GTSSLv1 per-
forms between 3–5× faster than Cassandra and HBase. This performance difference was mainly
due to implementation differences between Cassandra and HBase, and GTSSLv1. Cassandra and
HBase are implemented in Java for easier development. We found out that even for workloads

57

consisting of the relatively standard pair size of 1KB [24], these Java based systems became CPU-
bound due to caching overheads. GTSSLv1 provides details on expanding the database architecture
used by Cassandra and HBase to support multi-tier configurations where Flash SSD, magnetic disk,
RAM, and other devices are all leveraged to improve performance of workloads. When we insert a
Flash SSD into a traditional RAM+HDD storage stack, GTSSLv1’s insertion throughput increased
by 33%, and our lookup throughput increased by 7.4×. This allows the bulk of colder data to reside
on inexpensive media, while most hot data automatically benefits from faster devices. We explain
the design of GTSSLv1 in this chapter, showing how to create an efficient transactional database
for indexing workloads, traditional database workloads, and multi-tier support. We show how ex-
isting implementations of the BigTable architecture must be wary of implementation overheads or
will be significantly hampered when randomly accessing even moderately sized tuples (i.e., 1KB
or smaller tuples).

The way systems like Big Table, HBase, and Cassandra interact with underlying storage devices
is a critical part of their overall architecture. Cluster systems comprise many individual machines
that manage storage devices. These machines are managed by a networking layer that distributes
to them queries, insertions, and updates. Each machine runs database or database-like software
that is responsible for reading and writing to the machine’s directly attached storage. Figure 5.1
shows these individual machines, called tablet servers, that are members of the larger cluster. We
call the portion of this database software that communicates with storage, the Tablet Server Storage
Layer (TSSL). For example, Hadoop HBase [6], a popular cluster technology, includes a database,
networking, and an easier-to-program abstraction above their TSSL (logical layer).

TSSL
(Compression)

Tablet Server 0...N

Client Requests

Network Layer

Logical Layer

In
n
o
D

B

SQL

B
D

B

C
a
ss

a
n
d
ra

C
a
ss

a
n
d

ra
D

B

H
B

a
se

H
B

a
se

 D
B

GTSSL

Figure 5.1: Location of the Tablet Server Storage Layer: Different storage and communication
technologies are used at different layers in a typical database cluster architecture.

The performance and feature set of the TSSL running on each node affects the entire cluster
significantly. If performance characteristics of the TSSL are not well understood, it is difficult
to profile and optimize performance. If the TSSL does not support a critical feature (e.g., transac-
tions), then some programming paradigms can be difficult to implement efficiently across the entire
cluster (e.g., distributed and consistent transactions).

It takes time to develop the software researchers use to analyze their data. The programming
model and abstractions they have available to them directly affect how much time development
takes. This is why many supercomputing/HPC researchers have come to rely upon structured data
clusters that provide a database interface, and therefore an efficient TSSL [2, 104].

58

Still, some supercomputing researchers develop custom cluster designs for a particular ap-
plication that avoids logical layer overheads (such as SQL) when necessary [27, 74, 91]. These
researchers still want to understand the performance characteristics of the components they al-
ter or replace, and especially if those components are storage-performance bottlenecks. Cooper
compared the performance of 5-node Cassandra and HBase clusters [24] to a shared SQL cluster.
Pavlo compares the efficiency of more powerful parallel DBMS clusters running on high-end hard-
ware [2,102] to widely used NoSQL cluster software. These research efforts show an emphasis on
understanding single-node storage performance for understanding overall cluster performance.

One of the most important components to optimize in the cluster is the TSSL. This is because
affordable storage continues to be orders of magnitude slower than any other component, such as
the CPU, RAM, or even a fast local network. Any software that uses storage heavily, such as major
scientific applications, transactional systems [85, 135], databases [97], file systems [65, 122, 123,
131, 142], and more, are designed around the large difference in performance between RAM and
storage devices. Using a flexible cluster architecture that can scale well with an increasing number
of nodes is an excellent way to prorate these storage and computing costs [27]. Complimentary to
this effort is increasing the efficiency of each of these nodes’ TSSLs to decrease overall computing
costs.

In this work we present a new, highly scalable, and efficient TSSL architecture called the Gen-
eral Tablet Server Storage Layer or GTSSLv1. GTSSLv1 employs significantly improved com-
paction algorithms that we adapted to multi-tier storage architectures. GTSSLv1 supports general-
purpose transactions of multiple tuples. GTSSLv1 avoids a 2× overhead for asynchronous I/O-
bound transactional workloads that other LSM-tree–based databases such as HBase, Big Table,
and Cassandra pay. We describe and analyze the compaction algorithms used by HBase and Cas-
sandra. This is important for understanding what workloads these various systems are best suited
for. We identify the importance of CPU efficiency for small tuple workloads. We show that an
LSM-tree–based database is sensitive to implementation choices for small tuple workloads and
that Java-based implementations suffer a 5× overhead in comparison to GTSSLv1, a comparable
C++ implementation. By focusing on a single node we were better able to understand the per-
formance and design implications of these existing TSSLs, and how they interact with Flash SSD
devices when using small as well as large data items. In summary, we provide a comprehensive
overview of the performance issues applicable to all LSM-tree–based tablet servers or databases.

We introduce the standard TSSL architecture and terminology in Section 5.1. We theoreti-
cally analyze existing TSSL compaction techniques in Section 5.2. In Section 5.3 we introduce
GTSSLv1’s design and compare it to existing TSSLs. Our evaluation, in Section 5.4, compares
the performance of GTSSLv1 to Cassandra and HBase, and GTSSLv1’s transactional performance
to Berkeley DB and MySQL’s InnoDB. We discuss related work in Section 5.5. We conclude and
discuss future work in Section 5.6.

5.1 Background
As shown in Figure 5.1, the data stored in the TSSL is accessed through a high-level logical in-
terface. In the past, that interface has been SQL. However, HBase and Cassandra utilize a logical
interface other than SQL. As outlined by Chang et al. [20], HBase, Cassandra, and Big Table
organize structured data as several large tables. These tables are accessed using a protocol that

59

groups columns in the table into column families. Columns with similar compression properties
and columns that are frequently accessed together are typically placed in the same column family.
Figure 5.1 shows that the logical layer is responsible for implementing the column-based protocol
used by clients, using an underlying TSSL.

The TSSL provides an API that allows for atomic writes, as well as lookups and range queries
across multiple trees that efficiently store variable length key-value pairs or pairs on storage. These
trees are the on-storage equivalent of column families. Although TSSLs transactionally manage
a set of tuple trees to be operated on by the logical layer, TSSL design is typically different from
traditional database design. Both the TSSL and a traditional database perform transactional reads,
updates, and insertions into multiple trees, where each tree is typically optimized for storage access
(e.g., a B+-tree [23]). In this sense, and as shown in Figure 5.1, the TSSL is very similar to an
embedded database API such as Berkeley DB (BDB) [130], or a DBMS storage engine such as
MySQL’s InnoDB. However, unlike traditional database storage engines, the majority of insertions
and lookups handled by the TSSL are decoupled. To understand what decoupling is, consider a
large clustered system: one process may be inserting a large amount of data gathered from sensors,
a large corpus, or the Web, while many other processes perform lookups on what data is currently
available (e.g., search). Furthermore, most of these insertions are simple updates, and do not involve
large numbers of dependencies across multiple tables. This leads to two important differences
from traditional database storage engine requirements: (1) most insertions do not depend on a
lookup, not even to check for duplicates, and (2) their transactions typically need only provide
atomic insertions, rather than support multiple read and write operations in full isolation. We
call the relaxation of condition (1) decoupling, and it permits the use of efficient write-optimized
tree data-structures that support higher insertion throughputs such as the LSM-tree. These kinds
of data-structures are different from traditional B+-trees. We call the relaxation of condition (2)
micro-transactions; it enables using a simple, non-indexed, redo-only journal. Thus, the TSSL
need not support a mix of asynchronous and durable transactions. The GTSSLv1 and GTSSLv2
systems do not support only micro-transactions, but Cassandra and HBase are limited to supporting
only these simpler kinds of transactions. In Section 5.3 we show how to extend an LSM-tree-based
TSSL to support more complex transactions.

5.2 TSSL Compaction Analysis
GTSSLv1 was designed to scale to a multi-tier storage hierarchy, and much of how compaction
works must be re-thought. We analyze and compare the existing compaction methods employed
by HBase and Cassandra, and then in Section 5.3, we introduce what extensions are necessary in a
multi-tier regime.

We analyzed the compaction performance of Cassandra, HBase, and our GTSSLv1 using the
Disk-Access Model (DAM) for cost and using similar techniques as those found in Bender et al.’s
work on the R-fanout cache-oblivious look-ahead array (R-COLA) [11]. We introduced the DAM
model in Section 3.2.1.

HBase Analysis HBase [28] is a variation of the R-fanout Cache-Oblivious Look-ahead Array
(R-COLA) [11]. The R-COLA can dynamically trade off insert throughput for lower query latency
by increasing R. The value of R can go from 2 to B. If R = B then the R-COLA is as efficient

60

C0

C1

C2

C3

Clearing space for flush After flushing memtable
RAM

Disk

C0

C1

C2

C3

Clearing space for flush After flushing memtable
RAM

Disk

HBase 3-COLA:

Cassandra SAMT:

C0

C1

C2

C3

1

2

C0

C1

C2

C3

Reclamation Multi-tier read caching
RAM

Disk

GTSSL Multi-Tier SAMT:

GTSSL Multi-Tier SAMT:

3

4

SSD

C0

C1

C2

C3

C0

C1

C2

C3

Clearing space for flush After flushing memtable
RAM

Disk

SSD

C0

C1

C2

C3

C0

C1

C2

C3

Figure 5.2: LSM-tree and MT-SAMT analysis: In panel ¬, HBase merges C0, C1, C2, and half
of C3 back into C3, like a 3-COLA would. In panel ­, Cassandra merges buffers in quartets to
create space for a flushing memtable. In panels ® and ¯, GTSSLv1 merges, and then promotes the
resulting Wanna-B-tree up into a higher tier. Subsequent reads will also be cached into the higher
tier via re-insertion.

as a B-tree for queries, and only random insertions. Typically R = 3 or R = 4. HBase uses
R = 3 or a 3-COLA. In this analysis, N is the number of tuples that have been inserted into
a data structure. Figure 5.2, panel ¬, shows that the R-COLA consists of dlogR Ne arrays of
exponentially increasing size, stored contiguously (C0 through C3). In this example, R = 3. C1

through C3 on storage can be thought of as three Wanna-B-trees, and C0 in RAM can be thought
of as the memtable. When the memtable is serialized to disk (and turned into an Wanna-B-tree),
the R-COLA checks to see if level 0 is full. If not, it performs a merging compaction on level 0, on
all adjacent subsequent arrays that are also full, and on the first non-full level, into that same level.
In Figure 5.2’s example, C0 through C3 are merged into C3; after the merge, the original contents
of C3 have been written twice to C3. Each level can tolerate R − 1 merges before it too must be
included in the merge into the level beneath it. This means that every pair is written R− 1 times to
each level.

Bender et al. provide a full analysis of the R-COLA; in sum, the amortized cost of insertion
is (R−1) logR N

B
, and the cost of lookup is logR N . This is because every pair is eventually merged

into each level of the R-COLA; however, it will be repeatedly merged into the same level R − 1
times. So for N total pairs inserted, each pair would have been written R − 1 times to logR N
levels. As all pairs are written serially, we pay 1 in the DAM for every B pair written, and so we
get (R−1) logR N

B
amortized insertion cost. A lookup operation must perform 1 random read transfer

in each of logR N levels for a total cost of logR N . Bender et al. use fractional cascading [21]
to ensure only 1 read per level. Practical implementations and all TSSL architectures, however,
simply use small secondary indexes in RAM.

61

By increasing R, one can decrease lookup costs in exchange for more frequent merging during
insertion. HBase sets R = 3 by default, and uses the R-COLA compaction method. HBase adds
additional thresholds that can be configured. For example, HBase performs major compactions
when the number of levels exceeds 7.

SAMT Analysis The R-COLA used by HBase has faster lookups and slower insertions by in-
creasing R. GTSSLv1 and Cassandra, however, can both be configured to provide faster insertions
and slower lookups by organizing compactions differently. We call the structure adopted by Cas-
sandra’s TSSL and GTSSLv1, the Sorted Array Merge Tree (SAMT). As shown in Figure 5.2,
panel ­, rather than storing one list per level, the SAMT stores K lists, or slots on each level. The
memtable can be flushed K times before a compaction must be performed. At this time, only the
slots in C1 are merged into a slot in C2. In the example depicted, we must perform a cascade of
compactions: the slots in C2 are merged into a slot in C3, so that the slots in C1 can be merged
into a slot in C2, so that the memtable in C0 can be serialized to a slot in C1. As every element
visits each level once, and merges are done serially, we perform logK N

B
disk transfers per insertion.

Because there are K slots per level, and logK N levels, we perform K logK N disk transfers per
lookup. The cost of lookup with the SAMT is the same for K = 2 and K = 4, but K = 4 provides
faster insertions. So K = 4 is a good default, and is used by both GTSSLv1 and Cassandra.

Comparison Although the HBase 3-COLA method permits more aggressive merging during in-
sertion to decrease lookup latency by increasing R, it is unable to favor insertions beyond its default
configuration. This permits faster scan performance on disk, but for 64B or larger keys, random
lookup performance is already optimal for the default configuration. This is because for the vast
majority of lookups, Bloom filters [15] on each Wanna-B-tree avoid all logR N Wanna-B-trees
except the one containing the desired pair. Furthermore, on Flash SSD the 3-COLA is less optimal,
as even the seeking incurred from scanning is mitigated by the Flash SSD’s obliviousness toward
random and serial reads. We found that 256KB random reads operate at 98% the throughput of
64MB random reads on our Flash SSD. This means that the amount of read-ahead buffer required
to merge multiple lists at disk throughput can be small for Flash SSD, and that the initial cost of
placing cursors is the primary difference between scanning within a SAMT or a COLA. The cost
of placing a cursor in a SAMT compared to a 2-COLA is K logK N/ log2 N times more expensve,
and K times if comparing an R-COLA for R = K. For reasonable values of K (e.g., K < 10), a
SAMT will never take more than 3× more seeks to place a cursor than a 2-COLA, but will perform
inserts 3× faster. Where the cost of scan can be mitigated by advancing the cursor K times to
effectively diminish the overhead of placing cusrors in the SAMT close to 2, the cost of insertion
can never be improved upon by the COLA for any insertion workload.

Conversely, the SAMT can be configured to further favor insertions by increasing K, while
maintaining lookup performance on Flash SSD and disk by using Bloom filters, and maintaining
scan performance on Flash SSD. Although Bloom filters defray the cost of unnecessary lookups in
Wanna-B-trees, as the number of filters increases, the total effectiveness of the approach decreases.
When performing a lookup in the SAMT with a Bloom filter on each Wanna-B-tree, the probability
of having to perform an unnecessary lookup in some Wanna-B-tree is 1 − (1 − f)NB where NB

is the number of Bloom filters, and f is the false positive rate of each filter. This probability is
roughly equal to f ∗ NB for reasonably small values of f . In our evaluation, Bloom filters remain

62

effective as long as the number of Wanna-B-trees for each tree/column-family is less than 40.

5.3 Design and Implementation
We studied existing TSSLs (Cassandra and HBase) as well as existing DBMS storage engines
(Berkeley DB and InnoDB). This guided GTSSLv1’s design. GTSSLv1 utilizes several novel
extensions to the SAMT (discussed in Section 5.2). As shown in Figure 5.2 panels ® and ¯,
GTSSLv1 supports storage device specific optimizations at each tier. GTSSLv1 intelligently mi-
grates recently written and read data between tiers to improve both insertion and lookup throughput
and permit effective caching in storage tiers larger than RAM.

TSSL efficiency is critical to overall cluster efficiency. GTSSLv1 extends the scan cache (de-
scribed in Section 5.1) and buffer cache architecture used by existing TSSLs. GTSSLv1 completely
avoids the need to maintain a buffer cache while avoiding common mmap overheads; GTSSLv1 fur-
ther aggressively exploits Bloom filters so they have equal or more space in RAM than the scan
cache.

Although Web-service MapReduce workloads do not typically require more than atomic in-
sertions [20], parallel DBMS architectures and many scientific workloads require more substantial
transactional semantics. GTSSLv1 introduces a light-weight transactional architecture that allows
clients to commit transactions as either durable or non-durable. Durable transactions fully ex-
ploit group-commit as in other TSSL architectures. However, GTSSLv1 also allows non-durable
transactions, and these can avoid writing to the journal completely for heavy insertion workloads
without compromising recoverability. In addition, GTSSLv1 provides the necessary infrastructure
to support transactions that can perform multiple reads and writes atomically and with full degree
three isolation.

We discuss how we improved the SAMT structure so that it could operate in a multi-tier way
that best exploits the capabilities of different storage devices in Section 5.3.1. We detail our caching
architecture and design decisions in Section 5.3.2. We discuss GTSSLv1’s transactional extensions
to the typical TSSL in Section 5.3.3.

5.3.1 SAMT Multi-Tier Extensions
As discussed in the introduction of this chapter and in Section 5.1, GTSSLv1 is a TSSL and is
comparable in functionality to a database storage engine such as MySQL’s InnoDB or Berkeley
DB. GTSSLv1 allows applications to create tuple trees that can store key-value tuples. GTSSLv1
uses an extended SAMT data structure called the Multi-Tier-SAMT (MT-SAMT) as its tuple tree.
So an installation of GTSSLv1 would use an instance of an MT-SAMT for each tuple tree. In this
way, the MT-SAMT is to GTSSLv1 what the B-tree is to a traditional database storage engine. The
MT-SAMT extends the SAMT merging method in three ways. (1) Client reads can be optionally
re-inserted to keep recently read (hot) data in faster tiers (e.g., a Flash SSD). (2) Lists of recently
inserted data are automatically promoted into faster tiers if they fit. (3) Different tiers can have
different values of K (the number of slots in each level; see Section 5.2). Our implementation also
includes support for full deletion, and variable-length keys and values. Deletes are processed by
inserting tombstones as described in Section 3.2.2.

63

One way of looking at tombstones is as though they are messages. These messages are pro-
cessed during the merge by combining them with the tuples they are supposed to affect or convey
their message to. In this sense, deletes or tombstones are one kind of message that deliver their
message (deletion) when finding matching tuples during the merge, but there are others [20]. For
example, a deduplicating system may maintain a schema where the key is a checksum and the value
is an offset to a content-addressed block [153]. Since many files may point to the same block, we
cannot remove this block when deleting a file as it will remove the block for other files as well.
Instead, we add a reference count and introduce a new type of message similar to how a tombstone
works. This new message is called an increment, or conversely, a decrement. With increments,
we can maintain reference counts which are updated during a merge, and combined during lookup.
When merging a tuple with an increment, we add the value of the increment to the tuple’s reference
count, and when that count exceeds some threshold (e.g., goes below zero) we perform some action
(e.g., deleting the reference block).

Another example of a message is a timestamp. Rather than deleting items immediately we can
add a timestamp value to the delete message or tombstone. During the merge we do not actually
perform the delete operation on matching tuples, unless the current time is past the timestamp listed
in the tombstone. This way we can mark tuples for deletion but delete them only after a period of
time. This can be used to obey data retention policies or regulatory compliance laws, for example.
The MT-SAMT design does not preclude extensions for increments, timestamps, or other common
types of messages that more complex than tombstones.

Re-Insertion Caching Whenever a pair is inserted, updated, deleted, or read, the C0 (fastest)
cache is updated. The cache is configured to hold a preset number of pairs. When a pair is inserted
or updated, it is marked DIRTY, and the number of pairs in the cache is increased. Similarly, after
a key is read into the C0 cache, it is marked as RD CACHED, and the number of pairs is increased.
Once a pre-set limit is met, the cache evicts into the MTSAMT structure using the merging process
depicted in Figure 5.2 panel ®. By including RD CACHED pairs in this eviction as regular updates,
we can answer future reads from C1 rather than a slower lower level. However, if the key-value
pairs are large, this can consume additional write bandwidth. This feature is desirable when the
working-set is too large for C0 (RAM) but small enough to fit in a fast-enough device residing at
one of the next several levels (e.g., C1 and C2 on Flash SSD). Alternatively, this feature can be
disabled for workloads where saving the cost of reading an average pair is not worth the additional
insertion overhead, such as when we are not in a multi-tier scenario. All RD CACHED values are
not written to the output Wanna-B-tree during a major compaction. During a minor compaction, a
RD CACHED pair is treated like any normal insertion and is eliminated during the merge if a more
recent tuple has the same key. At any point a tier can relieve space pressure by re-compacting
its Wanna-B-trees and removing any RD CACHED pairs. This would be analogous to a cache
eviction. Since RD CACHED pairs are treated as updates, no additional space is used by inserting
RD CACHED pairs.

When scanning through tuple trees, if read caching is enabled, the scanner inserts scanned
values into the cache, and marks them as RD CACHED. We have found that randomly reading
larger tuples (>4096KB) can make effective use of a Flash SSD tier. However for smaller tuples
(<64B) the time taken to warm the Flash SSD tier with reads is dominated by the slower random
read throughput of the magnetic disk in the tier below. By allowing scans to cache read tuples,
applications can exploit application-specific locality to pre-fetch pairs within the same or adjacent

64

rows whose contents are likely to be later read.
Evictions of read-cached pairs can clear out a Flash SSD cache if those same pairs are not in-

telligently brought back into the higher tier which they were evicted from after a cross-tier merging
compaction. In Figure 5.2 panel ¯, we see evicted pairs being copied back into the tier they were
evicted from. This is called reclamation, and it allows Wanna-B-trees, including read-cached pairs,
that were evicted to magnetic disks (or other lower-tier devices) to be automatically copied back
into the Flash SSD tier if they can fit.

Space Management and Reclamation We designed the MTSAMT so that more frequently ac-
cessed lists would be located at higher levels, or at Ci for the smallest i possible. After a merge, the
resulting list may be smaller than the slot it was merged into because of resolved deletes and up-
dates. If the resulting list can fit into one of the higher (and faster) slots from which it was merged
(that are now clear), then it is moved upward, along with any other slots at the same level that can
also fit. This process is called reclamation and requires that the total amount of pairs in bytes that
can be reclaimed must fit into half the size of the level they were evicted from. By only reclaiming
into half the level, a sufficient amount of space is reserved for merging compactions at that level
to retain the same asymptotic insertion throughput. In the example in Figure 5.2, the result of the
merging compaction in panel ® is small enough to fit into the two (half of four) available slots
in C1, and specifically in this example requires only one slot. If multiple slots were required, the
Wanna-B-tree would be broken up into several smaller Wanna-B-trees. This is possible because
unlike Cassandra and HBase, GTSSLv1 manages blocks in the underlying storage device directly,
rather than treating Wanna-B-trees as entire files on the file system, which allows for this kind of
optimization. Reclamation across levels within the same tier is very inexpensive, as this requires
merely moving Wanna-B-tree blocks by adjusting pointers to the block, rather than copying them
across devices. If these rules are obeyed, then partially filled slots are guaranteed to always move
upward, eliminating the possibility that small lists of pairs remain stuck in lower and slower levels.

We optimized our MTSAMT implementation for throughput. Our design considers space on
storage with high latency and high read-write throughput characteristics (e.g., disk) to be cheaper
than other hardware (e.g., RAM or Flash SSD). GTSSLv1 can operate optimally until 1/2 of total
storage is consumed; after that, performance degrades gradually until the entire volume is full,
save a small amount of reserve space (usually 5% of the storage device). (Such space-time trade-
offs are common in storage systems [81], such as HBase [28], Cassandra [66], and even Flash
SSD devices [55], as we elaborate further below.) At this point, only deletes and updates are
accepted. These operations are processed by performing the equivalent of a major compaction: if
there is not enough space to perform a merging compaction into the first free slot, then an in-place
compaction of all levels in the MTSAMT is performed using the GTSSLv1’s reserve space. As
tuples are deleted, space is reclaimed, freeing it for more merging compactions that intersperse
major compactions until 1/2 of total storage is again free; at that point, only merging compactions
need be performed, regaining the original optimal insertion throughput.

Chang et al. do not discuss out of space management in Big Table [20] except to say that a ma-
jor compaction is performed in those situations; they also do not indicate the amount of overhead
required to perform a major compaction. Cassandra simply requires that half of the device remain
free at all times [66] and ceases to operate if half of the device is not free, arguing that disk storage
is cheap. It is not uncommon for write-optimized systems, such as modern Flash SSD firmware,
to require a large amount of storage to remain free for compaction. High performance Flash SSD

65

devices build these space overheads (among other factors) into their total cost [34]. Even commod-
ity Flash SSD performs far better when the partition actually uses no more than 60% of the total
storage capacity [55]. To exploit decoupling, compaction-based systems such as GTSSLv1 have
some overhead to maintain optimal insertion throughput in the steady state, without this space their
throughput will degrade. We believe that GTSSLv1’s gradual degradation of performance beyond
50% space utilization is a sufficient compromise.

5.3.2 Committing and Stacked Caching
We showed how the MTSAMT extends the typical SAMT to operate efficiently in a multi-tier
environment. In addition to efficient compaction, reclamation, and caching as discussed above,
the efficiency of the memtable or C0 (Section 5.1) as well as how efficiently it can be serialized
to storage as an Wanna-B-tree is also extremely important. As we evaluate in Section 5.4, the
architecture of the transaction manager and caching infrastructure is the most important determiner
of insertion throughput for small key-value pairs (< 1KB). GTSSLv1’s architecture is mindful of
cache efficiency, while supporting new transactional features (asynchronous commits) and complex
multi-operation transactions.

Cache Stacking The transactional design of GTSSLv1 is implemented in terms of GTSSLv1’s
concise cache-stacking feature. Like other TSSLs, GTSSLv1 maintains a memtable to store key-
value pairs. GTSSLv1 uses a red-black tree with an LRU implementation, and DIRTY flags for
each pair. An instance of this cache for caching pairs in a particular column family or tree is called
a scan cache. Unlike other TSSL architectures, this scan cache can be stacked on top of another
cache holding pairs from the same tree or MTSAMT. In this scenario the cache on top or the upper
cache evicts into the lower cache when it becomes full by locking the lower cache and moving its
pairs down into the lower cache. This feature simplifies much of GTSSLv1’s transactional design,
which we explore further in Section 5.3.3. In addition to the memtable cache, like other TSSLs,
GTSSLv1 requires a buffer cache, but as we discuss in the next paragraph, we do not need to fully
implement a user-level buffer cache as traditional DBMSes typically do.

Buffer Caching TSSLs utilized in cloud-based data stores such as Cassandra, HBase, or GTSSLv1
never overwrite data during the serialization of a memtable to storage, and therefore need not pin
buffer-cache pages, greatly simplifying their designs. We offload to the Linux kernel all caching
of pages read from storage, by mmaping all storage in 1GB slabs. This simplifies our design as
we avoid implementing a buffer cache. 64-bit machines’ address spaces are sufficient and the cost
of a random read I/O far exceeds the time spent on a TLB miss. Cassandra’s default mode is to
use mmap within the Java API to also perform buffer caching. However, serial writes to a mapping
incur reads as the underlying Linux kernel always reads the page into the cache, even on a write
fault. This can cause overheads on serial writes of up to 40% in our experiments. Other TSSL ar-
chitectures such as Cassandra do not address this issue. To avoid this problem, we pwrite during
merges, compactions, and serializations. The pwrite call is the same as write but takes an addi-
tional offset parameter so that an additional lseek call is not required. We then invalidate only the
affected mapping using msync with MS INVALIDATE. As the original slots are in place during
the merge, reads can continue while a merge takes place, until the original list must be deallocated.

66

Once deallocated, reads can now be directed to the newly created slot. The result is that the only
cache which must be manually maintained for write-ordering purposes is the journal cache. The
journal cannot be written to disk until the mmaped buffer cache has been flushed to disk so we use
a journal cache for recent appends to the journal. When this cache fills, we flush the mmaped buffer
cache and then write the journal cache to the end of the journal.

All TSSLs that employ mmap, even without additionally optimizing for serial writes like GTSSLv1,
typically avoid read overheads incurred by a user-space buffer cache. On the other hand, traditional
DBMSes cannot use mmap as provided by commodity OSes. This is because standard kernels (e.g.,
Linux) have no portable method of pinning dirty pages in the system page cache. Without this, or
some other write-ordering mechanism, traditional DBMSes that require overwrites (e.g., due to us-
ing B+-trees), will violate write-ordering and break their recoverability. Therefore they are forced
to rely on complex page cache implementations based on malloc [43, 120, 135] or use complex
kernel-communication mechanisms [133–135].

5.3.3 Transactional Support
Pavlo et al. [102] and Abouzeid et. al [2] use traditional parallel DBMS architectures for clustered
structured data workloads, but these still rely on distributed transaction support. GTSSLv1’s trans-
actional architecture permits for atomic durable insertions, batched insertions for higher insertion-
throughput, and larger transactions that can be either asynchronous or durable. This lets the same
TSSL architecture to be used in a cluster operating under either consistency model.

We described MTSAMT’s design and operation and its associated cache or memtable (C0).
As mentioned before, each MTSAMT corresponds to a tree or column family in a cloud stor-
age center. GTSSLv1 operates on multiple MTSAMTs to support row insertions across multiple
column families, and more complex multi-operation transactions as required by stronger consis-
tency models. Applications interact with the MTSAMTs through a transactional API: begin,
commit durable, and commit async.

Staged

c

MTSAMT MTSAMT MTSAMT
0 1 2

0

Staged Staged

c0 c0

p0 p1 p2

txn0 txn1 txn2

STORAGE

RAM

Private
Caches

Figure 5.3: Private caches of a transaction: Three processes, p0...p2, each maintain an ongoing
transaction that has modified all 3 MTSAMTs so far.

GTSSLv1’s transaction manager (TM) manages all transactions for all threads. As shown in
Figure 5.3, the TM maintains a stacked scan cache (Section 5.3.2) called the staged cache on top of

67

each tree’s C0 (also a scan cache). When an application begins a transaction with begin, the TM
creates a handler for that transaction, and gives the application a reference to it. At any time, when
a thread modifies a tree, a new scan cache is created if one does not already exist, and is stacked
on top of that tree’s staged cache. The new scan cache is placed in that transaction’s handler. This
new scan cache is called a private cache. In Figure 5.3 we see three handlers, each in use by
three separate threads P0 through P2. Each thread has modified each of the three trees (MTSAMT0

through MTSAMT2).
Transactions managed by GTSSLv1’s TM are in one of three states: (1) they are uncommitted

and still exist only with the handler’s private caches; (2) they are committed either durably or
asynchronously and are in either the staged cache or C0 of the trees they effect; or (3) they are
entirely written to disk. Transactions begin in state (1), move to state (2) when committed by a
thread, and when GTSSLv1 performs a snapshot of the system, they move to state (3) and are
atomically written to storage as part of taking the snapshot.

Durable and asynchronous transactions can both be committed. We commit transactions durably
by moving their transaction to state (2), and then scheduling and waiting for the system to perform
a snapshot. While the system is writing a snapshot to storage, the staged cache is left unlocked so
other threads can commit (similar to EXT3 [19]). A group commit of durable transactions occurs
when multiple threads commit to the staged cache while the current snapshot is being written, and
subsequently wait on the next snapshot together as a group before returning from commit. Asyn-
chronous transactions can safely commit to the staged cache and return immediately from commit.
After a snapshot the staged cache and the C0 cache swap roles: the staged cache becomes the C0

cache.
Next we discuss how we efficiently record snapshots in the journal, and how we eventually

remove or garbage-collect snapshots by truncating the journal.

Snapshot, Truncate, and Recovery Unlike other BigTable based cluster TSSL architectures,
GTSSLv1 manages blocks directly, not using separate files for each Wanna-B-tree. GTSSLv1 uses
a large flat file that is zeroed out before use. A block allocator manages the flat file on each storage
device. Every block allocator uses a bitmap to track which blocks are in use. The block size used
is 128MB to prevent excessive fragmentation, but the OS page cache still uses 4KB pages for reads
into the buffer cache.

Each tree (column family) maintains a cluster of offsets and meta-data information that points
to the location of all Wanna-B-tree block offsets, secondary index block offsets, and Bloom filter
block offsets. This cluster is called the header. When a snapshot is performed, all data referred to
by all headers, including blocks containing Wanna-B-tree information, and the bitmaps, are flushed
to storage using msync. Afterward, the append-only cache of the journal is flushed, recording all
headers to the journal within a single atomic transaction. During recovery, the most recent set of
headers are read back into RAM, and we recover the state of the system at the time that header was
committed to the journal.

Traditional TSSLs implement a limited transaction feature-set that only allows for atomic in-
sertion. Chang et al. [20] outline a basic architecture that implements this. Their architecture
always appends insertions to the journal durably before adding them to the memtable. Cassandra
and HBase implement this transactional architecture as well. By contrast, Pavlo et al. [102] and
Abouzeid et al. [2] make the case for distributed transactions in database clusters. GTSSLv1’s
architecture does not exclude distributed transactions, and is as fast as traditional TSSLs like Cas-

68

sandra or HBase, or a factor of 2 faster when all three systems use asynchronous commits. One
important feature of GTSSLv1 is that high-insertion throughput workloads that can tolerate partial
durability (e.g., snapshotting every 3–5 seconds) need not write the majority of data into the jour-
nal. Although Cassandra and HBase support this feature for many of their use cases as well, they
only delay writing to the journal, rather than avoid it. GTSSLv1 can avoid this write because if
the C0 cache evicts its memtable as an Wanna-B-tree between snapshots, the cache will be marked
clean, and only the header need be serialized to the journal, avoiding double writing. This de-
sign improves GTSSLv1’s performance over other TSSLs. The transaction must fit into RAM in
GTSSLv1. Our implementation of GTSSLv2 overcomes this limitation as discussed in Section 6.2.

5.4 Evaluation
We evaluated GTSSLv1, Cassandra, and HBase along with some traditional DBMSes for various
workloads. However, we focus here on the four most important properties relevant to this work:
(1) the multi-tier capabilities of GTSSLv1, (2) the flexibility and efficiency of their compaction
methods, (3) the efficiency of their serialization and caching designs for smaller key-value pairs,
and (4) the transactional performance of GTSSLv1 and potentially other TSSLs with respect to
traditional DBMSes for processing distributed transactions in a cluster. As laid out in Sections 5.2
and 5.3, we believe these are key areas where GTSSLv1 improves on the performance of existing
TSSL architectures.

In Section 5.4.2, using micro-benchmarks we show that GTSSLv1’s multi-tier capability pro-
vides better insertion throughput and caching behavior. We then evaluate the insertion and lookup
throughput of these systems by configuring them in write-optimized and read-optimized modes
in Section 5.4.3. We compare transaction throughput of GTSSLv1 with that of Berkeley DB and
MySQL (using InnoDB) in Section 5.4.4. We then compare insert and lookup performance of
GTSSLv1 against Cassandra and HBase using real-world deduplication index workload in Sec-
tion 5.4.5.

5.4.1 Experimental Setup
Our evaluation ran on three identically configured machines running Linux CentOS 5.4. The exper-
iments in each figure were run on the same machine; results shown in different figures were run on
different, identically configured machines. The client machines each have a quad-core Xeon CPU
running at 2.4GHz with 8MB of cache, and 24GB of RAM; the machines were booted with either
4.84GB, or 0.95GB of RAM to test out-of-RAM performance, and we noted with each test how
much RAM was actually used. Each machine has two 146.1GB 15KRPM SAS disks (one used
as system disk), a 159.4GB Intel X-25M Flash SSD (2nd generation), and two 249.5GB 10KRPM
SATA disks. Our tests used pre-allocated and zeroed out files for all configurations. We cleared all
caches on each machine before running any benchmark. To minimize internal Flash SSD firmware
interference due to physical media degradation and caching, we focus on long-running throughput
benchmarks in this evaluation. Therefore, we reset all Flash SSD wear-leveling tables prior to eval-
uation (using the TRIM command), and we also confined all tests utilizing Flash SSD to a 90GB
partition of the 159.4GB disk, or 58% of the disk. In tests involving HBase and Cassandra, we
configured both systems to run directly on top of the file system. This is the default behavior for

69

256MB 256MB256MB256MB

1GB 1GB1GB1GB

Flash Tier

4GB 4GB 4GB 4GBSAS Tier

Figure 5.4: Configuration of re-insertion caching benchmark: Storage is divided into two tiers,
Flash and SAS (magnetic disk).

Cassandra, but HBase had to be specially configured as it typically runs on top of HDFS. We gave
both systems 3GB of JVM heap, and we used the remaining 1.84GB as a file cache. We configured
GTSSLv1 to use upwards of 3GB for non-file cache information, including secondary indexes and
Bloom filters for each slot in each tree, and the tuple cache (C0) for each tree. This memory is
allocated in GTSSLv1’s heap. GTSSLv1 often used much less than 3GB, depending on the size
of the pairs, but never more. We disabled compression for all systems because measurements of
its effectiveness and for which data-sets are orthogonal to efficient TSSL operation. To prevent
swapping heap contents when the file cache was under memory pressure due to MMAP faults, we
set the SWAPPINESS parameter to zero for all systems and monitored swap-ins and swap-outs to
ensure no swapping took place. All tests, except the multi-tier storage tests in Section 5.4.2 were
run on the Intel X25-M Flash SSD described above.

5.4.2 Multi-Tier Storage
We modified the SAMT compaction method so that multiple tiers in a multi-tier storage hierarchy
would be naturally used for faster insertion throughputs and better caching behaviors. Here we
explore the effectiveness of caching a working set that is too large to fit in RAM, but small enough
to fit in our Flash SSD.

Configuration We used only the Flash SSD in this test. In this test we also use the SAS disk.
We configured GTSSLv1 with the first tier as RAM, the second on Flash SSD, and the third on the
SAS disk. As shown in Figure 5.4, the Flash SSD tier holds two levels, each with a maximum of
4 Wanna-B-trees (slots): the maximum Wanna-B-tree size on the first level is 256MB, and on the
second level it is 1GB. The SAS tier holds one level, with a maximum of 4 Wanna-B-trees, each
no larger than 4GB. We booted the machine with 900MB of RAM. The size of available cache
is 256MB, the size of the page cache is approximately 500MB after deducting expected space
for secondary indexes and Bloom filters. The size of each pair was 4KB including the key and
value. Since re-insertion caching was flooding the page cache with writes, we found little of it was
available for read caching. We randomly inserted 16GB of random 4KB pairs and then performed
random queries on a randomly selected subset of these pairs. The subset was 1GB large and is
called the hot-set.

70

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000 14000

N
um

 K
V

s
lo

ok
ed

 u
p

pe
r

se
c

Time in Secs

Figure 5.5: Multi-tier results: Initially throughput is disk-bound, but as the hot-set is populated, it
becomes Flash SSD-bound, and is periodically evicted and reclaimed.

Results As shown in Figure 5.5, initial lookup throughput was 243.8 lookups/s, which corre-
sponds to the random read throughput of the disk, 251 reads/s. Pairs are read into the scan cache
(C0), and once 256MB have been read, as described in Section 5.3.1, data in C0 is flushed into the
Flash SSD to facilitate multi-tier read caching. This corresponds to the 20 sudden drops in lookup
throughput. Once the entire 1GB of hot-set has been evicted into the Flash SSD tier, subsequent
reads, even from the Flash SSD, are re-inserted. These reads cause the contents of the Flash SSD
to flush into the SAS tier. Since at most 1GB of the 4GB being merged into the SAS tier is unique,
we will omit at least 3GB of tuples while writing into the SAS tier. Since the resulting output from
the merge is small enough to fit into a single slot at the lowest level of the Flash SSD tier, it is
reclaimed back into the Flash SSD tier via a copy.

The mean lookup throughput is 1,815.93 lookups/s, a 7.4× speedup over the disk read through-
put, and 48% of the Flash SSD random read throughput. The sudden drops in lookup throughput
are due to evictions, now being caused by reads which actually result in writes. Latency spikes are
a common problem with compaction based TSSLs. In Figure 5.5 we see low points in the instan-
taneous lookup throughput. These points are an artifact of our benchmarking methedology. When
we measure the instantaneous throughput of the workload, we begin timing and then repeatedly
check to see if five seconds have elapsed after every insert. Since some insertions can cause long
pauses (when minor compaction is performed), samples of instantaneous throughput immediately
before a minor compaction will show as low insertion throughput.

For hotsets that will be queried over a long period of time, read-caching for random reads from
lower storage tiers can be beneficial, as we have shown above. Additionally, caching of recently
inserted values in higher tiers is an automatic benefit of the MTSAMT. We re-ran the above exper-
iment with a data-set of 16GB of randomly inserted 1KB keys with read caching disabled. After
all values were inserted, we searched for each pair from most recently inserted to least. Figure 5.6
shows our results. Insertion of the pairs was 33% faster for the RAM-SSD-SAS configuration as
the more frequent merging compactions of the higher tiers took place on a Flash SSD device, and
merges across tiers did not have to read and write to the same device at once. The pairs were in-
serted randomly, but the Wanna-B-trees on storage are sorted, so we see a series of random reads
within each Wanna-B-tree. After insertions, the scan cache of 256MB was full; there were three

71

 100

 1000

 10000

 100000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06In
st

an
ta

ne
ou

s
lo

ok
up

 th
rp

t (
lo

g)

Time in Secs (log)

ram-sas

ram-ssd-sas

Figure 5.6: Multi-tier insertion caching: Caching allows for lookups of recently inserted data to
happen rapidly, while still allowing for very large data-sets that can be cheaply stored mainly on
disk.

256MB Wanna-B-trees, and three 1GB Wanna-B-trees in the first tier, and three 4GB Wanna-B-
trees in the second tier. For RAM-SSD-SAS only the three 4GB Wanna-B-trees were on SAS, for
RAM-SAS they all were. Although each Wanna-B-tree is guarded by an in-RAM bloom filter, false
positives can cause lookups to check these tables regardless. Furthermore the ratio of buffer cache
to Wanna-B-tree size shrinks exponentially as the test performs lookups on lower levels. This
causes the stair-step pattern seen in Figure 5.6. Initial spikes in lookup throughput occur as the
buffer cache is extremely effective for the 256MB Wanna-B-trees, but mixing cache hits with the
faster cache-populating Flash SSD (14,118 lookups/s) provides higher lookup throughput than with
the SAS (1,385 lookups/s). Total lookup throughput of the first 3,000,000 pairs, or the first 27%
of the data-set was 2,338 lookups/s for RAM-SSD-SAS, and 316 lookups/s for RAM-SAS, a 7.4×
performance improvement.

5.4.3 Read-Write Trade-off
We evaluated the performance of Cassandra, HBase, and GTSSLv1 when inserting 1KB pairs
into four trees, to exercise multi-tree transactions. 1KB is the pair size used by YCSB [24]. For
each system we varied its configuration to favor either reads or writes. HBase supported only one
optimal configuration, so it was not varied. Cassandra and GTSSLv1 can trade off lookup for
insertion performance by increasing K (see Section 5.2). Our configuration named BALANCED

sets K = 4, the default; configuration MEDIUM sets K = 8; configuration FAST sets K = 80.
We measured insertion throughput and lookup separately to minimize interference, but both tests
utilized ten writers or readers.

Configuration In addition to the configuration parameters listed in Section 5.4.1, to utilize four
trees in Cassandra and HBase, we configured four column families. We computed the on-disk
footprint of one of Cassandra’s pairs based on its SIZE routine in its TSSL sources (which we
analyzed manually), and we reduced the size of the 1KB key accordingly so that each on-disk
tuple would actually be 1KB large. We did this to eliminate any overhead from tracking column

72

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500 4000

W
rit

e
T

hr
ou

gh
pu

t i
n

op
s/

se
c

Read Throughput in ops/sec

cassandra
flash-ssd-reference-point

gtssl
hbase

Figure 5.7: Read-write Optimization Efficiency: Cassandra has comparable insertion perfor-
mance to GTSSLv1 when both systems retain as much lookup throughput as possible. GTSSLv1
reaches much further into the trade-off space. HBase is already optimally configured, and cannot
further specialize for insertions.

membership in each pair. We did the same for HBase, and used tuples with no column membership
fields for GTSSLv1, while also accounting for the four byte size field used for variable length
values. This minimized differences in performance across implementations due to different feature
sets that require more or less meta-data to be stored with the tuple on disk. Overall, we aimed to
configure all systems as uniformly as possible, to isolate only the TSSL layer, and to configure
Cassandra and HBase in the best possible light.

Results Figure 5.7 is a parametric function, where each point represents a run, and the param-
eter varied is the system configuration. The x-axis measures that configuration’s insertion (write)
throughput, and the y-axis measures its random lookup (read) throughput. The maximum lookup
throughput of each structure cannot exceed the random read performance of the drive; similarly, the
maximum insertion throughput cannot exceed the serial write throughput of the drive. These two
numbers are shown as one point at FLASH SSD REFERENCE POINT. Systems are better overall the
closer they get to this upper-right-hand-side corner reference point.

Both HBase and Cassandra utilize Bloom filtering, but Bloom filtering is a new feature for
HBase that was recently added. HBase caches these Bloom filters in an LRU cache. So although
HBase can swap in different Bloom filters, for uniform or Zipfian lookup distributions, HBase
has to page in Bloom filter data pages to perform lookups, causing a 10× slowdown compared to
Cassandra and GTSSLv1. However, if we perform a major compaction (which can take upwards
of an hour) we notice that with 4KB blocks, HBase lookups can be as high as 910 lookups/s; for
the same block size before major compaction, however, lookup throughput is only 200 lookups/s,
lower than with the default 64KB blocksize. Performing major compactions with high frequency
is not possible as it starves clients.

For the BALANCED configuration, Cassandra and GTSSLv1 have similar insertion through-
puts of 16,970 ops/s and 22,780 ops/s, respectively. However, GTSSLv1 has a 3× higher lookup
throughput than Cassandra, and a 10× higher than HBase. GTSSLv1 utilizes aggressive Bloom
filtering to reduce the number of lookups to effectively zero for any slot that does not contain the

73

 1

 10

 100

 10 100 1000 10000 100000 1e+06

O
ve

rh
ea

d
in

 fa
ct

or
s

(lo
g)

KV size in Bytes (log)

cassandra
gtssl

hbase

Figure 5.8: Single-item Transaction Throughput: Neither Cassandra nor HBase improve beyond
an overhead of 2.0× for large pairs, or 4x for small pairs when compared to GTSSLv1.

sought-after key. The random read throughput of the Flash SSD drive tested here is 3,768 reads/s,
closely matching the performance of GTSSLv1. Cassandra uses 256KB blocks instead of 4KB
blocks, but uses the meta-data to read in only the page within the 256KB block containing the key.
We observed that block read rates were at the maximum bandwidth of the disk, but Cassandra re-
quires three I/Os per lookup [31] when memory is limited, resulting in a lookup throughput that is
only 1/3 the random read throughput of the Flash SSD.

For the more write-optimized configurations, GTSSLv1 increased its available bandwidth for
insertions considerably: for MIDDLE, GTSSLv1 achieved 32,240 ops/s and 3,150 ops/s, whereas
Cassandra reached only 20,306 ops/s and 960 ops/s, respectively. We expected a considerable in-
crease in insertion throughput and sustained lookup performance for both Cassandra and GTSSLv1
as they both use variants of the SAMT. However, Cassandra’s performance could not be im-
proved beyond 21,780 ops/s for the FAST configuration, whereas GTSSLv1 achieved 83,050 ops/s.
GTSSLv1’s insertion throughput was higher thanks to its more efficient serialization of memta-
bles to Wanna-B-trees on storage. To focus on the exact cause of these performance differences,
we configured all three systems (HBase, Cassandra, and GTSSLv1) to perform insertions but no
compaction of any sort. We explore those results next.

Cassandra and HBase limiting factors To identify the key performance bottlenecks for a TSSL,
we ran an insertion throughput test, where each system was configured to insert sizes of pairs vary-
ing from 64B to 512KB as rapidly as possible, using ten parallel threads. Cassandra, HBase, and
GTSSLv1 were all configured to commit asynchronously, but still maintain atomicity and consis-
tency (the FAST configuration). Furthermore, Cassandra’s compaction thresholds were both set to
80 (larger than the number of Wanna-B-trees created by the test); HBase’s compaction (and com-
paction time-outs) were simply disabled, leaving both systems to insert freely with no compactions
during this test. The ideal throughput for this workload is the serial append bandwidth of the Flash
SSD (110MB/s), divided by the size of the pair used in that run. Figure 5.8 shows these results.
Each point represents an entire run of a system. The y-axis represents how many times slower a
system is compared to the ideal, and the x-axis represents the size of the pair used for that run. All
three systems have the same curve shape: a steep CPU-bound portion ranging from 64B to 1KB,

74

and a shallower I/O-bound portion from 1KB to 512KB.
For the I/O-bound portion, HBase and Cassandra both perform at best 2.0× worse than the

ideal, whereas GTSSLv1 performs 1.1× worse than the ideal, so GTSSLv1 is 2× faster than Cas-
sandra and HBase in the I/O-bound portion. Cassandra and HBase both log writes into their log on
commit, even if the commit is asynchronous, whereas GTSSLv1 behaves more like a file-system
and avoids writing into the log if the memtable can be populated and flushed to disk before the next
flush to the journal. This allows GTSSLv1 to avoid the double-write to disk that Cassandra and
HBase perform, a significant savings for I/O-bound insertion-heavy workloads that can tolerate a
5-second asynchronous commit.

For the CPU-bound portion, we see that GTSSLv1 is a constant factor of 4× faster than both
HBase and Cassandra, and additionally that HBase and Cassandra have very similar performance:
the ratio of Cassandra’s overhead to HBase’s is always within a factor of 0.86 and 1.3 for all runs.
When running Cassandra and its journal entirely in RAM, their insertion throughput of the 64B pair
improved by only 50%, dropping from 99.2× to 66.1×, which is still 4× slower than GTSSLv1
which was not running in RAM. The meager change in performance for running entirely in RAM
further confirms that these workloads were CPU-bound for smaller pairs (< 1KB).

We wanted to understand the performance difference between GTSSL and Cassandra in the
memory-bound range, because nothing in GTSSL’s architecture could easily explain it. This led us
to an extensive analysis of the various in-memory data structures used by Cassandra and GTSSL,
which we show in Appendix B. We discovered that Cassandra’s Java-based skip-list implemen-
tation is approximately three times slower than our C++ red-black tree implementation. So, the
factor of three difference we see in performance in the memory bound regime is largely due to this
implementation artifact.

5.4.4 Cross-Tree Transactions
We designed GTSSLv1 to efficiently process small transactions, as well as high-throughput inser-
tion workloads. We evaluated GTSSLv1’s transaction throughput when processing many small and
large transactions. We ran two tests: (1) TXN-SIZE and (2) GROUP-COMMIT. In TXN-SIZE, the
number of executing threads is fixed at one, and each commit is synchronous. Each run of the
benchmark performs a transaction that inserts four pairs, each into a separate tree. Each run uses
a different size for the four pairs, which is either 32B, 256B, or 4096B. In GROUP-COMMIT, we
performed parallel transactions across 512 threads. Each transaction inserted a different 1KB tuple
into four separate trees, so each transaction inserted 4KB at a time. We wanted to test performance
of parallel transactions on our 4-core machine.

Configuration We configured three systems for comparison in this test: GTSSLv1, MySQL (us-
ing InnoDB), and Berkeley DB (BDB). We configured each system identically to have 1GB of
cache. We did not include HBase or Cassandra in these results as they do not implement asyn-
chronous transactions. We configured BDB as favorably as possible through a process of reconfig-
uration and testing: 1GB of cache and 32MB of log buffer. We verified that BDB never swapped
or thrashed during these tests. We configured BDB with a leaf-node size of 4096B. We configured
InnoDB favorably with a 1GB of cache and 32MB of log buffer. We configured GTSSLv1 with
1GB of cache (four 256MB caches). All systems ran on Flash SSD.

75

32B 256B 4KB
GTSSLv1 8,203 3,140 804
Berkeley DB 683 294 129
MySQL 732 375

Table 5.1: Performance of databases performing asynchronous transactions.

Results GTSSLv1 outperformed MySQL and BDB on the whole by a factor of about 6–8×.
We inserted 1,220MB of transactions (9,994,240 transactions of four 32-byte insertions). For 32-
byte insertions, overall insertion performance for BDB, MySQL, and GTSSLv1 is 683, 732, and
8,203 commits/s, respectively. For 256 byte insertions it is 294, 375, and 3,140 commits/s, re-
spectively. At 4KB insertions, MySQL does not permit 4K columns, and so we omit this result.
However, GTSSLv1 and BDB each have throughputs of 804 and 129, respectively. GTSSLv1 is
6.23× faster than BDB. MySQL, BDB, and GTSSLv1 each attained initial insertion throughputs of
2,281, 5,474, and 9,908 transactions/s, respectively, when just updating their own journals. MySQL
and BDB begin converging on their B-Tree insertion throughput as they write-back their updates.
GTSSLv1, on the other hand, avoids random writes entirely, and pays only merging overheads
periodically due to merging compactions, so final insertion throughputs are quite different.

We were surprised by the high durable commit throughput of GTSSLv1, and expected per-
formance to be approximately no more than the random write throughput of the device, or 5,000
writes/sec. So, we ran a micro-benchmark on Ext3. We simulated performing synchronous 32B
sequential transactions by appending 32B, and then syncing the file, and repeating. If transactions
are submitted serially, the current transaction must wait for the disk to sync its write before the next
transaction can proceed. For comparison, we ran the same test on a magnetic disk and found that its
write throughput was 300 commits/sec; on the Flash SSD, however, the same test scored a surpris-
ingly high 15,000 commits/sec, even higher than the random write throughput of the Flash SSD.
We concluded that due to differences between the memory technologies employed on both devices,
that the Flash SSD is capable of much higher synchronous append throughput when compared to a
magnetic disk.

GTSSLv1 is able to keep the total amount written per-commit small—as it must only flush the
dirty pairs in its C0 cache plus book-keeping data for the flush (111 bytes). This additional amount
written per transaction gives direct synchronous append an advantage of 66% over GTSSLv1; how-
ever, as GTSSLv1 logs only redo information, its records require no reads to be performed to log
undo information, and its records are smaller. This means that as BDB and MySQL must routinely
perform random I/Os as they interact with a larger-than-RAM B+-tree, GTSSLv1 need only per-
form mostly serial I/Os, which is why GTSSLv1 and other TSSL architectures are better suited
for high insertion-throughput workloads when there is sufficient drive or storage space for a log-
structured solution, and transactions are no larger than RAM.

In the GROUP-COMMIT test, we tested GTSSLv1 for synchronous transaction commit through-
put. When testing peak Flash SSD-bandwidth GROUP-COMMIT throughput, we found that GTSSLv1
could perform 26,368 commits/s for transactions, updating four trees with 1KB values, at a band-
width of 103MB/s, which is near the optimal bandwidth of the Flash SSD: 110MB/sec.

76

 0

 20000

 40000

 60000

 80000

 100000

 120000

Cassandra

HBase

Gtssl

 0

 500

 1000

 1500

 2000

 2500

 3000
T

hr
ou

gh
pu

t (
op

s/
se

c) -Insertion-

 0

 20000

 40000

 60000

 80000

 100000

 120000

Cassandra

HBase

Gtssl

 0

 500

 1000

 1500

 2000

 2500

 3000
T

hr
ou

gh
pu

t (
op

s/
se

c) -Insertion- -Lookup-

Figure 5.9: Deduplication insertion and lookup performance: Displayed are the throughput of
the Cassandra and HBase TSSLs, and GTSSLv1. Both y-axes are in ops/sec.

5.4.5 Deduplication
The previous tests were all micro-benchmarks. To evaluate the performance of Cassandra, HBase,
and GTSSLv1 when processing a real-world workload, we built a deduplication index. We check-
summed every 4KB block of every file in a research lab network of 82 users, with a total of 1.6TB.
This generated over 1 billion hashes. We measured the time taken to insert these hashes with ten
parallel insertion threads for all systems. We then measured the time to perform random lookups
on these hashes.

Configuration We generated the deduplication hashes by chunking all files in our corpus into
4KB chunks, which were hashed with SHA256. We appended these 32B hashes to a file in the order
they were chunked (depth-first traversal of the corpus file systems). To test lookups, we shuffled the
hashes in advance into a separate lookup list. During insertion and lookup, we traversed the hashes
serially, minimizing the overhead due to the benchmark itself, during evaluation of each system.

Results As seen in Figure 5.9, we found that performance is analogous to the 64B case in Sec-
tion 5.4.3, which used randomly generated 64B numbers instead of a stream of 32B hashes. Cas-
sandra, HBase, and GTSSLv1 were able to perform 22,920 ops/s, 23,140 ops/s, and 109,511 ops/s,
respectively. For lookup performance they scored 967 ops/s, 398 ops/s, and 2,673 ops/s, respec-
tively. As we have seen earlier, the performance gap between Cassandra and HBase compared
to GTSSLv1 are due to CPU and I/O inefficiency, as the workload is comparable to a small-pair
workload, as discussed above. Real-world workloads can often have pairs of 1KB or smaller in
size, such as this deduplication workload. An efficient TSSL can provide up to 5× performance
improvement without any changes to other layers in the cluster architecture. In our experiments we
found that improvements for CPU-bound workloads were due mostly to basing GTSSLv1 on C++
instead of Java.

Evaluation summary TSSL architectures have traditionally optimized for IO-bound workloads
for pairs 1KB or larger on traditional magnetic disks. For 1KB pairs, GTSSLv1 has a demonstrably

77

more flexible compaction method. For the read-optimized configuration, GTSSLv1 lookups are
near optimal: 88% the maximum random-read throughput of the Flash SSD, yet our insertions are
still 34% faster than Cassandra and 14% faster than HBase. For the write-optimized configuration,
GTSSLv1 achieves 76% of the maximum write throughput of the Flash SSD, yet our lookups are
2.3× and 7.2× faster than Cassandra and HBase, respectively. This performance difference was
due to Cassandra and HBase being CPU-bound for pairs 1KB or smaller. When we varied the pair
size, we discovered that for smaller pairs, even when performing no compaction and no operations
other than flushing pairs to storage, all TSSLs became CPU-bound, but GTSSLv1 was still 5×
faster than the others.

For larger pairs, all TSSLs eventually became I/O-bound. GTSSLv1 achieved 91% of the max-
imum serial write throughput of the Flash SSD. Cassandra and HBase achieved only 50% of the
maximum Flash SSD throughput, due to double-writing insertions even when transactions were
asynchronous. Cassandra’s and HBase’s designs were geared for ease of development and were
written in Java; but as modern Flash SSD’s get faster, the tuple size at which workloads become
CPU-bound increases. We observed CPU-bound effects for 1KB tuples in our experiments. Devel-
opers of LSM-tree-based databases will have to carefully consider the underlying runtime environ-
ment their databases run on top of and can no longer assume that most workloads will be strictly
I/O-bound.

GTSSLv1’s design explicitly incorporates Flash SSD into a multi-tier hierarchy. When we
insert a Flash SSD into a traditional RAM+HDD storage stack, GTSSLv1’s insertion throughput
increased by 33%, and our lookup throughput increased by 7.4×. This allows the bulk of colder
data to reside on inexpensive media, while most hot data automatically benefits from faster devices.

Supporting distributed transactions in clusters does not require a different TSSL layer. GTSSLv1’s
transactions are light-weight yet versatile, and achieve 10.7× and 8.3× faster insertion throughputs
than BDB and MySQL InnoDB, respectively.

5.5 Related Work
We discuss cluster evaluation (1), multi-tier and hierarchical systems (2–4), followed by alternative
data-structures for managing trees or column families in a TSSL architecture (5–7).

(1) Cluster Evaluation Super computing researchers recognize the need to alter out-of-the-box
cluster systems, but there is little research on the performance of individual layers in these cluster
systems, and how they interact with the underlying hardware. Pavlo et al. measured the perfor-
mance of a Hadoop HBase system against widely used parallel DBMSes [102]. Cooper et al.
compared Hadoop HBase to Cassandra [66] and a cluster of MySQL servers (similar to HadoopDB
and Perlman and Burns’ Turbulence Database Cluster). The authors of HadoopDB include a simi-
lar whole-system evaluation in their paper [2]. We evaluate the performance bottlenecks of a single
node’s storage interaction, and provide a prototype architecture that alleviates those bottlenecks.

(2) Multi-tier storage Flash SSD is becoming popular [48]. Solaris ZFS can use intermediate
SSDs to improve performance [70]. ZFS uses an Flash SSD as a DBMS log to speed transaction
performance, or as a cache to decrease read latency. But this provides only temporary relief: when

78

the DBMS ultimately writes to its on-disk tree, it bottlenecks on B-tree throughput. ZFS has no ex-
plicit support for very large indexes or trees, nor does it utilize its three-tier architecture to improve
indexing performance. GTSSLv1, conversely, uses a compaction method whose performance is
bound by disk bandwidth, and can sustain high-throughput insertions across Flash SSD flushes
to lower tiers with lower latencies. Others used Flash SSD’s to replace swap devices. FlashVM
uses an in-RAM log-structured index for large pages [118]. FASS implements this in Linux [58].
Payer [103] describes using a Flash SSD hybrid disk. Conquest [149] uses persistent RAM to hold
all small file system structures; larger ones go to disk. These systems use key-value pairs with
small keys that can fit entirely in RAM. GTSSLv1 is more general and can store large amounts of
highly granular structured data on any combination of RAM and storage devices.

(3) Hierarchical Storage Management HSM systems provide disk backup and save disk space
by moving old files to slower disks or tapes. Migrated files are accessible via search software or
by replacing migrated files with links to their new location [53, 101]. HSMs use multilevel storage
hierarchies to reduce overall costs, but pay a large performance penalty to retrieve migrated files.
GTSSLv1, however, was designed for always-online access as it must operate as a TSSL within a
cluster, and focuses on maximum performance across all storage tiers.

(4) Multi-level caching Multi-level caching systems address out-of-sync multiple RAM caches
that are often of the same speed and are all volatile: L2 vs. RAM [29], database cache vs. file
system page cache [40], or located on different networked machines [73,129]. These are not easily
applicable to general-purpose multi-tier structure data storage due to large performance disparities
among the storage devices at the top and bottom of the hierarchy.

(5) Write-optimized trees The COLA maintains O (log (N)) cache lines for N key-value pairs.
The amortized asymptotic cost of insertion, deletion, or updates into a COLA is O (log (N) /B)
for N inserted elements [11]. With fractional cascading, queries require O (log (N)) random
reads [21]. Fractional cascading is a technique that can be used to accelerate overall query perfor-
mance when a query comprises multiple queries to component data structures and these component
queries are performed in a predictable order. See Appendix A for a more detailed description of
fractional cascading. GTSSLv1’s SAMT has identical asymptotic insertion, deletion, and update
performance; however, lookup with SAMT is O

(
log2 (N)

)
. In practice GTSSLv1’s secondary in-

dexes easily fit in RAM though, and so lookup is actually equivalent for trees several TBs large.
Furthermore, as we show in our evaluation, GTSSLv1’s Bloom filters permit 10–30× faster lookups
for datasets on Flash SSD than what the COLA (used by HBase) can afford. Log-Structured Merge
(LSM) trees [95] use an in-RAM cache and two on-disk B-Trees that are R and R2 times larger
than cache, where 1

R
+ R + R2 is the size of the tree. LSM tree insertions are asymptotically

faster than B-Trees: O
(√

N log N
B

)
[121] compared to O

(
logB+1 N

)
, but asymptotically slower

than GTSSLv1’s SAMT. LSM tree query times are more comparable to B-Tree’s times. Rose is a
variant of an LSM tree that compresses columns to improve disk write throughput [121].

Jagadish et al. describe a variant of the LSM-tree that uses an approach similar to the SAMT [57].
In their scheme, K trees are held at N levels, like in the SAMT, but these trees are merged into
a single large B tree after N levels. The SAMT is never required to merge into a single B tree.

79

According to the authors, the analysis provided does not obtain a meaningful comparison to tradi-
tional LSM-trees. In this chapter, Section 5.2, we compare the DAM to the HBase/COLA style of
traditional LSM-tree merging, and the Cassandra/SAMT style of LSM-tree merging. Jagadish et
al. do not implement concurrency or recovery mechanisms for their data structure. Both GTSSLv1
and GTSSLv2 implement these features and explore in detail many complexities in supporting
transactions, efficient delete. In Chapter 6 we detail our support for efficient sequential insertion.

Anvil [75] is a library of storage components for assembling custom 2-tier systems and focuses
on development time and modularity. Anvil describes a 2-COLA based structure and compares
performance with traditional DBMSes in TPC-C performance. GTSSLv1’s uses the multi-tier
MTSAMT structure, and is designed for high-throughput insertion and lookups as a component
of a cluster node. We evaluate against existing industry standard write-optimized systems and
not random-write-bound MySQL InnoDB. Data Domain’s deduplicating SegStore uses Bloom
filters [15] to avoid lookups to its on-disk hash table, boosting throughput to 12,000 inserts/s.
GTSSLv1 solves a different problem: the base insertion throughput to an on-disk structured data
store (e.g., Data Domain’s Segment Index, for which insertion is a bottleneck). GTSSLv1 is compli-
mentary to, and could significantly improve the performance of similar deduplication technology.

(6) Log-structured data storage Log-structured file systems [117] append dirtied blocks to a
growing log that must be compacted when full. Goetz’s log-structured B-trees [42] and FlashDB [92]
operate similarly to WAFL [51] by rippling up changes to leaf pointers. Goetz uses fence-keys to
avoid expensive rippling, and uses tree-walks during scans to eliminate leaf pointers. FAWN [4]
is a distributed 2-tier key-value store designed for energy savings. It uses a secondary index in
RAM and hash tables in Flash SSD. FAWN claims that compression (orthogonal to this work) al-
lows large indexes to fit into 2GB of RAM. By contrast, GTSSLv1 has been tested with 1–2TB
size indexes on a single node. Log-structured systems assume that the entire index fits in RAM,
and must read in out-of-RAM portions before updating them. This assumption breaks down for
smaller (64B) pairs where the size of the index is fairly large; then, compaction methods employed
by modern TSSLs become vital.

(7) Flash SSD-optimized trees Flash SSD has high throughput writes and low latency reads,
ideal for write-optimized structured data storage. FD-Trees’s authors admit similarity to LSM
trees [72]. Their writes are worse than an LSM-tree for 8GB workloads; their read performance,
however, matches a B-tree. GTSSLv1’s insertions are asymptotically faster than LSM trees. LA-
Tree [3] is another Flash SSD-optimized tree, similar to a Buffer Tree [10]. LA-Trees and FlashDB
can adaptively reorganize the tree to improve read performance. Buffer Trees have asymptotic
bound equal to COLA. However, it is not clear or discussed how to efficiently extend Buffer Trees,
LA-Trees, or FD-Trees for multiple storage tiers or transactions as GTSSLv1 does.

5.6 Conclusions
We introduced GTSSLv1, an efficient tablet server storage architecture that is capable of exploiting
Flash SSD and other storage devices using a novel multi-tier compaction algorithm. Our multi-
tier extensions have 33% faster insertions and a 7.4× faster lookup throughput than traditional
RAM+HDD tiers—while storing 75% of the data (i.e., colder data) on cheaper magnetic disks. For

80

IO-bound asynchronous transactional workloads, GTSSLv1 achieves 2× faster throughput than
Cassandra and HBase by avoiding multiple writes to a journal and the Wanna-B-tree. GTSSLv1 is
able to dynamically switch between logging redo records to a journal for smaller concurrent ARIES
workloads and writing directly to the Wanna-B-tree for larger asynchronous transaction workloads.

We also found that CPU-boundedness is an important factor for small tuple insertion efficiency.
We were surprised to find that current implementations of Cassandra and HBase were 2.3× and
7.2× slower for lookups than GTSSLv1 respectively, and 3.8× slower for insertions in CPU-bound
workloads (e.g., 64B tuples). This was due primarily to differences in the choice of underlying
implementation, GTSSLv1 used C++ and Cassandra and HBase use Java. However, this imple-
mentation decision had far reaching consequences both on performance of smaller tuples, and even
for read-write flexibility. Cassandra and HBase were unable to effectively trade-off read through-
put for write throughput, even though their design and data structure allow for this, as their overall
throughput was already bottlenecking on runtime overheads for 1KB tuples. Future implemen-
tations should take heed and avoid CPU overheads as well as IO overheads when profiling and
optimizing.

We have shown how the existing TSSL layer can be extended to support more versatile trans-
actions capable of performing multiple reads and writes in full isolation without compromising
performance. GTSSLv1 achieved 10.7× and 8.3× faster insertion throughputs than BDB and
MySQL’s InnoDB, respectively.

Newer storage technologies such as Flash SSD do not penalize random writes of 1KB or less.
Our theoretical analysis of existing TSSL compaction methods indicates that although Cassandra is
better suited for such workloads than HBase, true multi-tier support is required to leverage modern
Flash SSD’s as part of the TSSL storage hierarchy.

Our performance evaluation of existing TSSL architectures show that, faced with increasingly
faster random I/O from Flash SSD’s, CPU and memory efficiency are paramount for increasingly
more complex and granular data. Integrating modern storage devices into a TSSL requires a more
general approach to storage than currently available, and one that operates in a generic fashion
across multiple tiers. GTSSLv1 offers just that.

Despite GTSSLv1’s effective performance for random workloads in comparison to Cassan-
dra and HBase, when performing sequential insertions it still operates at 1/5 of the disk’s write
throughput. In comparison to Ext3, for sequential insertions, GTSSLv1 would perform 5× slower.
If we intend to use LSM-trees as an underlying data structure for a file system design, we will have
to improve performance considerably.

Table 5.2 now lists Cassandra and GTSSLv1 in comparison to other storage systems in terms
of the transactional design decisions table, Table 3.1 first introduced in Section 3.4. Cassandra
and GTSSLv1 are comparable in purpose: they both target key-value storage workloads, and for
concurrent small transaction workloads they both must write twice. GTSSLv1 provides value-
logging for tuple updates and general ACID transaction support for transactions that fit within
RAM. Both systems are log-structured and provide some support for asynchronous transactions,
though Cassandra still writes twice for asynchronous transactions and cannot blend synchronous
and asynchronous transactions together dynamically. Both systems perform like LSM-tree–based
systems in that predecessor queries are less efficient than for a strict B-tree–based system, but
point queries, scans, and all random writes are efficient. However, both systems are inefficient for
sequential write workloads.

If we can maintain the efficiency of GTSSL while extending it with several key optimizations—

81

Type Num Log- Trans- Conc- Async Write Random Stitch- Sequen-
Writes Struct. actions urrent Order ing tial

Ext3 FS 1 ¬ MD-only ¬ X Kernel R ¬ R,W
SchemaFS∗ FS 3 ¬ Logical X X User R ¬ R
Valor FS 2 ¬ POSIX ¬ X Kernel R ¬ R
LSMFS FS 1 X MD-only ¬ X mmap S,W ¬ R,W
Cassandra KVS 2 X Single X X mmap P,S,W ¬ R
GTSSLv1 KVS 1–2 X Vals X X mmap P,S,W ¬ R

Table 5.2: A qualitative comparison of Transactional Storage Designs: We can conclude that
although we have great flexibility in terms of transactional performance and random access work-
loads, we still execute sequential file system workloads inefficiently.

namely support for sequential insertions that do not re-copy on merge—then we believe we would
have the basis for an efficient transactional file system. Next, in Chapter 6, we discuss our exten-
sions to the LSM-tree to support efficient sequential insertion.

82

Chapter 6

GTSSLv2: An Extensible Architecture for
Data and Meta-Data Intensive System
Transactions

We pointed out in the conclusion of Chapter 5, Section 5.6, that LSM-trees are not as efficient when
inserting sequential workloads as a typical file system or B-tree. Figure 6.1 illustrates the problem
that LSM-trees face when performing sequential workloads. In Figure 6.1, panel ¬ we see a typical
merge in a SAMT, where the number of slots per level is set to K = 2. If we consider the path of
an element el as it is copied from one level into the next level below, as illustrated in panel ­, we
see that over the course of N insertions, el is copied logK N times.

This causes a problem when there is a subsequence of A els that is sufficiently large enough
that copying it logK N times takes more time than seeking to some reserved location and writing it
once. If it is faster to insert A els by seeking and writing once, then inserting this sequence into an
LSM tree will take longer than inserting it into a B-tree or existing traditional file system.

In the DAM model, it costs A
Bsmall

storage transfers to sequentially read or write A tuples or els.
The cost of reading and writing A els logK N times compared to seeking once (+1) and writing A
els sequentially once is:

2 ∗ A logK N

Bsmall

≥ 1 +
A

Bsmall

We solve for A to determine the length of a sequential insertion at which the cost of randomly
writing is as good or better than insertion into an LSM-tree:

A ≥ Bsmall

2 logK N − 1

As a practical example, lets assume that we have 5 levels. The first level is 128MB large and
K = 4. Then logK N = 5. If our disk transfer rate is 100MB/sec, and time to seek is 8ms, then
we can read 819KB in the time it takes to perform a single seek. If we take a 2× overhead for
sequential reads and writes, then we can assume that in our DAM model, the block size in bytes

83

Level i

Level i+1

Copy

1 Naive merging copies

Level i+2

Level i

2 Elements copied to each level

Level i+1

A

A

el

el

el

Figure 6.1: Elements Copy During Merge: We perform “copies” of a sequence of els across
multiple levels, rather than writing them just once, like a more traditional storage system would.

b = 819KB. Then, solving for A we see that for 91KB sequences of els or larger, seeking and
writing once beats insertion into an LSM. For this basic example, we have shown that a traditional
random write will beat a SAMT for a sufficiently large A.

We extend the multi-tier sorted-array merge-tree (MT-SAMT) database discussed in Chapter 5
to efficiently store sequential objects by generalizing LSM-trees to support stitching. The stitching
optimization is designed to avoid the problem depicted in Figure 6.1, while still preserving the good
insertion, update, and delete throughput of the SAMT. Typically an LSM-tree destroys the sets of
Wanna-B-leaves that are merged together at some point after the merge completes. The intuition
behind stitching is to not destroy these sets of Wanna-B-leaves after the merge so that we can avoid
copying large sequences of els by leaving these els in their original location. When stitching we
populate the secondary index with entries that point both to tuples within a newly created output
set of Wanna-B-leaves, as well as to runs of sequential tuples that were left in place in older sets of
Wanna-B-leaves.

The purpose of generalizing LSM-trees to support stitching is to make the LSM-tree a viable
data structure for file system workloads. This will require avoiding scans when re-hashing the
Bloom filters of the LSM-tree, and will require methods for handling updates and deletes during
merges. Our prototype implementation has support for high-throughput sequential writes, and
variable-throughput random appends, depending on the desired scan performance . It permits a
trade-off between scan and random append throughput, but always out-performs existing LSM-tree
designs for sequential insertion, and never performs worse for completely random insertions.

Existing file systems do not efficiently support a key-value storage abstraction. An example of
a file system that comes close is BeFS [38], a file system based on B-trees with support for non-
hierarchical style tagging. BeFS introduces several system calls to perform tagging, but because
our implementation also supports system transactions, this baroque interface is not required. By
supporting both system transactions and key-value storage, applications are free to perform their
own tagging, as transactions ensure that inconsistencies do not occur between tags and tagged files.
Beyond tagging, existing file systems are not well suited for many important and popular workloads

84

because they do not efficiently support key-value storage. We consider that the data managed by a
contemporary application can roughly be divided into three categories:

Small Structured meta-data or a large collection of objects all related to each other or other data
such as a collection of tags on media, data gathered from sensors such as position, or the
frame index of a movie.

Large Runs of sequentially read or written data, such as a backup copy, a large media file, or a
collection of randomly updated objects that are always read sequentially.

Medium Items that are neither particularly small nor large, and cost too much to write repeatedly
or can cause fragmentation if space is allocated for them too naively.

Today’s file systems are capable of only efficiently handling large objects, and to some extent,
medium sized objects. This is by design. File system designers leave more complex workloads that
are likely to be highly application-specific to database libraries [1,107,130] that can be linked by the
application when needed. However similar to system transactions, the key-value storage abstraction
is a well understood and widely used abstraction, and there are only a few very successful and
widely used datastructures used in databases today. The major datastructures in use are the B-
tree [1,23,107,130,140], the log-structured merge-tree (LSM-tree) [6,11,20,66,95], and the copy-
on-write LFS tree [42, 67, 115, 139].

The approach that this thesis explores is to extend the log-structured merge-tree design detailed
in Chapter 5 to efficiently support sequential and file system workloads by introducing stitching and
using quotient filters [12]. We extend the transactional architecture of GTSSLv1 to use VT-trees,
our generalized version of the SAMT that supports sequential insertions. Our new transactional
database is called GTSSlv2. We build a FUSE-based prototype file system on top of this database
called SimpleFS to evaluate performance for a file system workload.

We begin by discussing specific arguments for stitching-based LSM-trees in the general sense,
the stitching algorithm, and the properties of the VT-tree in Section 6.1. We then discuss our specific
implementation of stitching and GTSSLv2 in Section 6.2. We evaluate VT-trees in comparison to
traditional LSM-trees as well as perform a simple system benchmark in Section 6.3. Next we
discuss related work in Section 6.4. Finally we conclude in Section 6.5.

6.1 Stitching and Related Arguments
In this Section we introduce the VT-tree. The VT-tree is an LSM-tree that supports stitching and
uses quotient filters. The intuition behind the VT-tree is to delay writing for as long as possible so
that better decisions can be made for both allocation and placement of the write. We explain the
VT-tree, and its relationship to the LSM-tree and copy-on-write LFS trees by informally arguing
several assertions:

1. Copy-on-write LFS trees (e.g., LFS [115]) and merge trees (e.g., LSM-Tree [95]) are actu-
ally two extreme configurations of the same data structure. LSM-trees never fragment and
are only compacted for performance reasons by using minor and major compactions. LFS
does not perform minor compactions, and must perform periodic cleaning to defragment for
performance reasons.

85

former Level i+2

former Level i

former Level i+1
secondary index
for patch-tree

output Wanna-B-leaves

K logK N sets of
Wanna-B-leaves
(K=2)

Patch-tree

quotient filter

Figure 6.2: Patch-trees: A Patch-tree is a Wanna-B-tree that may be fragmented. A patch-tree is
a composite structure consisting of any Wanna-B-leaves containing stitched tuples, output Wanna-
B-leaves for any tuples compacted when creating the patch-tree, and a secondary index that turns
these sets of Wanna-B-leaves into a fragmented Wanna-B-tree.

2. Sometimes it is better to leave a sequence of data items in place rather than copying them
when performing a merge. This is the basis of stitching and is an extension to the MT-SAMT
structure discussed in Chapter 5, and was briefly discussed in the beginning of Chapter 6. We
show that the amount of stitching that should take place within a sequence of items depends
on the number of times a sequence is read, the storage characteristics (including seek time
and bandwidth for reads and writes), and the number and size of the elements in the sequence.

3. If using quotient filters and they fit into RAM, we can almost always perform point queries
with one I/O, regardless of the amount of stitching.

4. If we always choose to stitch, due to fragmentation, scan performance will eventually hit
a performance cliff and rapidly degrade. We show why in Section 6.1.1. This may be an
acceptable configuration for workloads that perform mostly random writes and point queries.

These arguments are outlined in this Section. In our arguments and explanations we use the
DAM model as described in Section 3.2. We now turn to the structure of the VT-tree and how it
performs stitching and explain its properties.

SAMT + Stitching and the Patch-tree When the SAMT is generalized to support stitching, we
call it a VT-tree. Both the SAMT and the VT-tree are composed of K logK N Wanna-B-trees, but
Wanna-B-trees within a VT-tree can be fragmented. In other words, the Wanna-B-leaves need
not be contiguously allocated in a VT-tree but could be stored in physically separate locations on
the storage device. As Figure 6.2 shows, patch-trees consist of multiple sets of Wanna-B-leaves,
a secondary index that ties these sets of Wanna-B-leaves together into a potentially fragmented
Wanna-B-tree, and a quotient filter. So just like a SAMT is a composition of Wanna-B-trees and

86

unused space

1
V

Input lists from size

Contiguous Scans projected
onto block alignment

category i

resulting merge

Fill

Secondary index from

V
3

V
5

V
6

V
1

V
4

V
7

V
8

V

3 5 7

2

1

2
V

3
V

4
V

87654321

1 2

Fragmentation from

Figure 6.3: Stitching

their Bloom filters, a VT-tree is a composition of fragmented Wanna-B-trees and their quotient
filters.

VT-trees perform queries the same way SAMTs and other LSM-trees do—as described in Sec-
tion 3.2—by first querying the memory buffer, and then the most- to least-recent patch-trees. In-
sertions are performed the same way up until a minor or major compaction is performed. The
difference lies in how patch-trees are merged together during compaction.

Figure 6.3 illustrates how a VT-tree performs a merge of two lists into a larger list without
copying every single tuple as a naive LSM-tree would. Figure 6.3 executes the algorithm shown
in Figure 6.4. Some tuples which were adjacent to each other in the input sets of Wanna-B-leaves
will be adjacent in the output set of Wanna-B-leaves. The top of Figure 6.3 illustrates this effect:
elements which were adjacent in the input and output sets of Wanna-B-leaves are outlined together
in a box (e.g., 2 and 3, 5 and 6, or 7 and 8), and if an element is interleaved between two other
elements during the merge, then it is outlined in its own box (e.g., 1 and 4). Each box of tuples is
called a contiguous scan-unit. The same illustration at the top of Figure 6.3 shows which leaf-nodes
the tuples would be written to in the output set of Wanna-B-leaves from the merge. In the example
depicted in Figure 6.3, Bsmall is 2 tuples, so a leaf-node holds 2 tuples. In practice, b, the block size
in bytes, would be sufficiently large that a block is at least 4KB large.

Figure 6.3 depicts a secondary index that is indexing the result of merging the two input lists
¬ and ­. To perform stitching, the VT-tree constructs a new secondary index that points to the
input sets of Wanna-B-leaves and the output set of Wanna-B-leaves as shown in Figure 6.3. If a
contiguous scan-unit coincides with an output block (e.g., 5 and 6, and 7 and 8), then it is an aligned
leaf node and we can avoid copying it by pointing at it directly from the new secondary index. If
a scan-unit does not coincide with an output block (e.g., the scan-unit is too small like 1 or 4, or is
out of alignment like 2 and 3) or it should not be stitched for some other reason, then it is copied
into the output Wanna-B-leaves (depicted in Figure 6.3), and the secondary index is made to point
to the new block written to the fill. Figure 6.3 shows how the VT-tree did not have to copy tuples
5 and 6 or 7 and 8 during the merge. For large sequential insertions, the vast majority of the tuples
can be broken into scans that coincide with blocks in the output list. This allows the VT-tree to

87

// Takes an array of patch-trees that need to be merged
// Returns a tuple of the new secondary index and Wanna-B-leaves
(secondary_index, wanna_B_leaves) stitching_merge(patch_tree []ps):

// An iterator that merges together the patch-trees in ’ps’.
// The iterator produces tuples, but is smart enough to know when
// a tuple is at the beginning of a leaf node, and can get the
// secondary index entry pointing to it in that case.
patch_tree::merge_iterator mi(ps)

// Our new secondary index and Wanna-B-leaves
secondary_index new_si
wanna_B_leaves new_leaves

while (mi.has_next()):
if (mi.leaf_node_aligned() && mi.can_stitch()):

// We are at a tuple that’s at the beginning of a leaf node
// and that leaf node can be stitched, so we copy over the
// secondary index entry pointing to that leaf node
new_si.append(mi.secondary_index_entry())

else:
// We cannot stitch, either we are not ’leaf-node-aligned’,
// or that leaf node cannot be stitched for some reason. We
// create a new secondary index entry pointing to the output
// Wanna-B-leaves since that is where we will put the tuple
new_si.append(new secondary_index_entry(

mi.current_tuple().key,
new_leaves.get_location()))

// Always put at least the current tuple into the output leaves
new_leaves.append(mi.current_tuple())
mi.next()

while (mi.has_next() && !mi.leaf_node_aligned()):
// Put the following tuples in the output Wanna-B-leaves as
// long as we are iterating in the current leaf node. When
// we get to the beginning of the next leaf node check again
// to see if we can stitch
new_leaves.append(mi.current_tuple())

return (new_si, new_leaves);

Figure 6.4: The stitching algorithm is written here in pseudo-code. It attempts to stitch on every
available opportunity, and when it cannot stitch, it copies the tuples into a new leaf node that
contains at least one tuple in a new set of Wanna-B-leaves. Nevertheless, when stitching or creating
a new leaf node, a new secondary index entry is created. The algorithm returns the new secondary
index and the set of Wanna-B-leaves.

88

leave these blocks in place, and only copy some of the blocks at the beginning and the end to the
fill. This is how the VT-tree is able to avoid repeatedly copying tuples in sequential workloads.

6.1.1 Patch-tree Characteristics
We now outline some basic characteristics of the patch-tree which we rely upon. We show when
we should stitch and when we should copy. We show how the decision to stitch or copy relates to
the workload, the characteristics of the storage device, and the number of times a sequence of items
is expected to be read. The list of properties of stitching that we discuss includes:

Limits on the secondary index overhead The overhead on the space consumed by the secondary
index in RAM will not be more than double due to stitching.

Linkage between LSM and LFS LSM-trees can behave like an LFS system in that they can avoid
repeated writes of tuples and rely on an asynchronous cleaning method to recover scan per-
formance and space lost from fragmentation. LSM-trees that rely on cleaning are still funda-
mentally different from copy-on-write based LFS trees described in related work.

Stitching predicates The application can specify a routine to indicate what data is likely to be
accessed together. The VT-tree can use this hinting routine during minor compactions to
speed up insertions without harming read performance. The routine tells the VT-tree what
tuples need to be relocated together physically on the storage device, and which tuples can
stay far apart without impacting read performance. We call this routine a stitching predicate.

Limits on the secondary index overhead Since we only support stitching complete, intact, and
aligned leaf nodes, we can show that a secondary index resulting from a merge that uses stitching
will never be more than twice as large as a secondary index resulting from a typical LSM-tree
merge. The stitching algorithm shown in Figure 6.4 greedily checks every tuple to see if it is at
the beginning of a leaf node; if it is, and that leaf node can be stitched, then we stitch it. We can
see that at any point this algorithm will either be copying over an existing secondary index entry
from one of the K patch-trees being merged into the new secondary index, or it will create a new
secondary index entry pointing to at least one but no more than Bsmall tuples. If it is stitching, it will
create a secondary index entry that points to a full leaf node. Conversely, if it is copying, it could
create a secondary index entry that points to a leaf node with just one tuple. If we conservatively
assume that leaf nodes with a single tuple in them are wasted, then every other secondary index
entry will point to a fully utilized leaf node, and the remaining entries will point to nothing and be
wasted. This is why we conclude that for F secondary index entries in the output secondary index,
generated during a merge of K patch-trees:

F − 1 ≤ 2 ∗ N

Bsmall

(6.1)

Equation 6.1 says that if we always stitch at least one secondary index entry, and the minimum
number of secondary index entries we could attain in a typical non-stitching merge is N/Bsmall,
then we will not create more than twice that many secondary index entries when stitching. It is
possible for both the first and last secondary index entries to point to a wasted leaf-node so we
subtract 1 from F .

89

Linkage between LSM and LFS LSM-trees and copy-on-write LFS systems are both log-structured,
but utilize different approaches for solving two problems. The first problem is efficiently finding,
updating, and writing tuples when the size of the working set is much larger than the size of RAM.
The second problem is how both systems optimize for future sequential scans of tuples. Our intent
in exploring the linkage between LSM-trees and copy-on-write LFS trees is to better understand
the differences between how LSM-trees and copy-on-write LFS trees solve these two problems so
that the best features of both can be used for any workload as appropriate.

LSM-trees solve the first problem of organizing tuples for rather large working sets by using
O (log N) B-trees or Wanna-B-trees of exponentially [11, 28, 31, 136] or quadratically [95, 121]
increasing size as discussed in Section 3.2. LFS copy-on-write trees typically maintain a single
copy-on-write B-tree that stores the keys in a leaf node separately from the values as shown in
Figure 6.16. This keys-only leaf node stores the keys with pointers to their corresponding values
in the values-only leaf node. When a tuple is updated, the new tuple value is written to the end
of the log at position logend, then the keys-only leaf node that contains the key for that tuple is
faulted in if it is not already resident in RAM; an updated version of the keys-only leaf node is
appended with the newly written value with the key’s pointer set to logend. We discuss issues
with this approach in Section 6.4. Our LFS-like configuration of the VT-tree still solves this first
problem the LSM-tree-way, by maintaining exponentially increasing Wanna-B-trees.

Solving the second problem, or optimizing for future sequential scans of tuples, is more com-
plicated. LSM-trees automatically optimize for sequential scans of tuples by sorting them immedi-
ately upon insertion using minor compaction (discussed in Section 3.2). On the other hand, copy-
on-write LFS trees do not typically perform any kind of sorting up front, but instead append new
writes to a log that is later cleaned by an asynchronous background cleaning process; this process
restores sufficient physical locality to ensure good performance. Thus, LSM-trees perform up-front
compaction via minor compaction, and copy-on-write LFS trees perform background compaction
via cleaning.

VT-trees do not always have to stitch at every opportunity. We can configure them to not stitch
unless a relatively long sequence of leaf-nodes can be stitched. By compacting sequences of tuples
that might have otherwise been stitched as tiny fragments, the VT-tree is able to perform any desired
amount of defragmentation during a minor compaction. In this way it effectively performs cleaning
up-front, rather than in a background asynchronous cleaning thread like the kind used for cleaning
in a copy-on-write LFS tree. Whatever cleaning the VT-tree is not performed up-front, it could still
be performed later on by an asynchronous cleaning thread (e.g., during idle time).

To relate LSM-trees to a copy-on-write LFS system, we utilize the notion of a scan-unit. A
scan-unit is a series of els in a patch-tree which are accessed sequentially and in their entirety.
For example, we could define a simple schema for holding files where the key is <inode,page
offset>, and the primary sortin ordering is by inode, and the secondary sort ordering is by
page offset. We assume in this schema that files are always read sequentially and in their
entirety. In this schema, sequentially reading a file would be equivalent to scanning all els from
inclusive <inode=i,page offset=0>, to exclusive <inode=i+1, page offset=0>. So
then in this schema, two els belong to the same scan-unit if their keys have the same inode value.
Ideally we want els in the same scan-unit to be sorted in sequential order, but we do not care if
different scans are not physically sorted on the storage device. This is because we do not expect
readers to sequentially read first file a and then immediately sequentially read file b, just because
file a’s inode number is the highest inode number less than file b’s inode number. In other

90

2 3

K
V

K
V

K
V

K
V

(C0)

(C1)

K
V

K
V

K
V

K
V

(C2)

K
V

K
V

K
V

K
V

K
V

K
V

K
V

K
V

(C0)

K
V

K
V

K
V

K
V

(C0)

(C1)

K
V

K
V

K
V

K
V

1 Always copy:
 LSM-tree

Never copy:
 LFS-like

 g(...)=true:
 Balanced configuration

(L=0)

(L=1)

(L=2)

(L=0)

(L=1)

(L=2)

(L=0)

(L=1)

(L=2)

Figure 6.5: Linkage between an LFS and an LSM-tree: Three examples of how the decision
of when to stitch during a minor compaction affects the performance of subsequent scans or a
cleaning operation.

words the actual inode numbers of files do not imply the ordering in which their respective files
would be read.

Figure 6.5 depicts three separate scenarios that follow along with our example of files as scans.
In all three scenarios we have two files with different inodes and two blocks each. Each scenario
shows how we trade off insertion performance by paying for more up-front compaction during
minor compactions in exchange for better scan performance at some later time. Panel ¬ shows
the behavior of the VT-tree is LSM-tree-like when the VT-tree copies on every minor compaction.
The opposite configuration is shown in panel ­ where tuples are only written once and are always
stitched from then on. Panel ® shows a balanced configuration where we do not spend unnecessary
additional sequential I/O but do some up-front compaction during a minor compaction to eliminate
unnecessary seeking.

In all scenarios we first insert the four blocks belonging to the two files, and then we sub-
sequently insert additional tuples not shown in Figure 6.5. These additional tuples cause minor
compactions on the four tuples that are shown, first at (C1) where the four tuples are (or are not
in ­) sequentially merged and written physically together into level L = 1. Then, just in ¬, more
insertions cause a second minor compaction at (C2) where the elements are sequentially merged
and written physically together into level L = 2. In this example, the VT-tree is configured to have
two Wanna-B-trees per level so K = 2.

When items are read, an upward arrow indicates the placement of the cursor (a seek); as seen in
panel ¬ in Figure 6.5, all the stitched items in separate sets of Wanna-B-leaves required a seek to
scan: this is the penalty of stitching. The files are read randomly, so the two scan requests are shown
separately on the bottom of each panel. In the case of ¬ and ­, scans of both files are satisfied
with the minimal number of seeks, two. However, panel ¬ pays an additional unnecessary copy of
the two files from L = 1 to L = 2 that panel ® avoids. In the full stitching case shown in panel
­, we saved four sequential writes at minor compaction (C1), but only at the cost of two additional
random reads during the scan of the two files. In the general case, the LFS-like configuration would

91

require a random read for every block scanned when reading a file.
We now see how a VT-tree can dynamically shift from acting like a typical LSM-tree to acting

like a copy-on-write LFS tree in terms of optimizing physical layout for future scans. Although the
VT-tree still organizes tuples into exponentially increasing Wanna-B-trees, the physical location
of these tuples in their sets of Wanna-B-leaves can range from completely random (panel ­) to
fully contiguous (panel ¬) depending on the predicate used to determine when to stitch. If a good
predicate g(. . .) is chosen, as in the case of panel ®, unnecessary sequential writes can be avoided
for sufficiently sequential scans without adding additional seek overheads when performing reads.
We now discuss several predicates that can be used to determine whether to stitch or not during a
minor compaction.

The stitching predicate: optimizing for future scans We consider two predicates that can be
used to decide when to stitch. First a simple stitching threshold where g(. . .) = f for f ≥ 0 and
secondly a schema-specific same-scan function which returns true if two tuples belong to the
same scan-unit.

In Figure 6.3 we showed an example where stitching was performed only if the scan-unit was
leaf-node aligned. In that example, this requirement prevented tuples 2 and 3 from being stitched.
We introduce an additional constraint on stitching called the stitching threshold which we represent
with the variable f .

When performing a merge, we stitch a sequence of els iff they are all from the same Wanna-B-
leaves, are leaf-node aligned, and the size of the stitch is greater than f ∗Bsmall tuples. By requiring
a stitching threshold, we can trade-off insertion performance for scan performance for schemas like
the file schema.

The problem with the static stitching threshold function is that we may have files of different
sizes. Consider the case where we have randomly written small files, and randomly written to a
few large files. Before a compaction, we will have to seek to and merge from multiple sets of
Wanna-B-leaves to sequentially read a large file. We will not have wasted any time on sequentially
writing small files into a single sorted set of Wanna-B-leaves. So before compaction, reading large
files will be slow because we will have to merge from many sources, but writing small files will be
cheap because we will not have done any unnecessary writes yet.

After compaction, we will have fewer Wanna-B-trees. Because we are performing stitching,
however, we could still have many sets of Wanna-B-leaves. How compaction effects performance
depends on the stitching threshold. For large files a larger stitching threshold will be better, and
for small files a smaller stitching threshold will be better. To see why, consider our above example
with a large stitching threshold. The compaction with a large stitching threshold will sequentially
re-write small files’ pages so that they are sorted. These small files are smaller than the stitching
threshold, so they will be sorted by inode, even though they will not be read in order of inode.
On the other hand, larger files will benefit from the large stitching threshold as randomly written
pages will be re-written so that they are physically contiguous and sequential scans of large files
will be much faster after compaction.

If we decide instead to use a small stitching threshold, then after compaction small files will be
stitched and left in place. However, blocks which were randomly updated in larger files will also
be stitched in place. With a smaller stitching threshold we avoided sequentially writing files and
sorting them by inode, but sequential reads of larger files will have to deal with serious fragmen-
tation which will harm scan performance. What we see is that when the length of a sequential scan

92

depends on the data, as in the case of sequentially scanning files of potentially different length, then
there is no ideal or optimal stitching threshold.

Alternatively we can use a schema-specific same-scan function as our stitching predicate
instead of a constant threshold. The same-scan function returns true when two tuples belong
to the same scan-unit, and false otherwise. In our example file schema, same-scan would
return true if two tuples have the same inode. During a minor compaction, when merging
patch-trees, we stitch only when same-scan return true, or in the case of the file schema, when
the stitch would not leave two tuples with the same inode in different sets of Wanna-B-leaves.
We can still use a stitching threshold in addition to same-scan to avoid compaction of files that
are already much larger than b, e.g., we could always stitch when tuples are in 8MB sequences
regardless of whether they belong to the same file.

We can imagine other stitching predicates besides same-scan and the stitching threshold f .
For instance, Matthews et al. [76] modify an LFS to use a graph to remember previous access
patterns; then, based on the sequence in which blocks are accessed as encoded in the graph, the
cleaner places these blocks together. The stitching predicate cannot arbitrarily read any leaf nodes,
but only those it encounters during the merge of the minor compaction and those it can hold in its
RAM. This limits what kinds of cleaning the stitching predicate can be used for, but this does not
preclude other background asynchronous cleaners from also operating.

Typically, copy-on-write LFS trees and LFS systems rely solely on cleaning to optimize physi-
cal layout for future queries. Cleaning is also used to defragment the store. Although VT-trees do
not rely on cleaning for optimizing the layout to improve future queries performance, as VT-trees
perform such compaction during minor compactions, VT-trees do rely on cleaning for defragmen-
tation.

Fragmentation occurs when a region of leaf nodes that is the size of the minimum unit of
allocation and deallocation is only being partially utilized. The minimum unit of allocation in our
implementation is called a zone. Zones are 8MB large. So if a zone contains blocks pointed at
by secondary index entries, along with blocks of unused leaf nodes, it is fragmented. The zone
cannot be deallocated because it is in use; moreover, the unused blocks consume space that cannot
be reused.

Patch-trees can be defragmented at any time. Defragmentation can be performed by performing
a major compaction and setting the stitching threshold to be fairly large. This forces all tuples to
be copied into an output set of Wanna-B-leaves, leaving the sets of Wanna-B-leaves that were
formerly used by the merged patch-trees completely unused. While the merge proceeds, when a
zone has been iterated across and all of its tuples have been moved, it can be deallocated. This
defragmentation algorithm is simple; exploring alternatives in a comprehensive manner is a subject
of future work.

6.1.2 Finding an Alternative to Bloom Filters
Many large storage systems employ data structures that give fast answers to approximate mem-
bership queries (AMQs). The Bloom filter [15] is a well-known example of an AMQ. An AMQ
data structure supports the following dictionary operations on a set of keys: insert, lookup, and
optionally delete. For a key in the set, lookup returns “present.” For a key not in the set, lookup
returns “absent” with a probability of at least 1 − ε, where ε is a tunable false-positive rate. There
is a tradeoff between ε and the space consumption.

93

Within the context of the LSM-tree, Bloom filters are particularly useful. The weakness of
the LSM-tree is that it must perform searches in multiple Wanna-B-trees to find a tuple when
performing a point query. However, if the tuple is not within a Wanna-B-tree, that Wanna-B-tree’s
Bloom filter can probably quickly eliminate that I/O by returning “absent.” When the Bloom filter
false positive rate is sufficiently high, and all Bloom filters are resident in RAM, an LSM-tree can
perform point queries at the storage device’s random read throughput [136].

The problem is that if we naively use Bloom filters while stitching, then we will forfeit most of
our performance gains for sequential workloads. This is because current LSM-tree implementations
rely on being able to scan all the keys during a merge so they can rehash each key into the new
larger Bloom filter for the output SSTable resulting from this merge operation. In our tests, reading
tuple keys to rehash them into the new larger Bloom filter limited the benefit of stitching to only a
5MB/sec throughput increase over a standard SAMT without stitching. If stitching optimizations
are to avoid I/O (including reads), then we have to populate the new patch-tree’s Bloom filter
without reading the keys that cannot fit in RAM.

We could avoid reading tuples by simply not attempting to merge the Bloom filters. In this
case we would simply have many small Bloom filters, and we would have to check them all when
performing lookups. Current LSM-trees need to check only O (log) N Bloom filters; if we perform
no merging in order to avoid rehashing tuples, however, then we would have to check more—
O (N)—Bloom filters. The expected number of false positives would increase dramatically and
this has a negative performance impact on point queries as we show in Section 6.3.

More importantly, existing LSM-tree implementations also rely on rehashing tuples in order to
process deletes. Current LSM-trees delete tuples from their Bloom filters by simply not including
the deleted items when creating the new larger Bloom filter on a merge. If they elect to not merge
their Bloom filters, they would never have an opportunity to create a new, larger Bloom filter that
does not have the deleted tuples in it. Therefore, point query performance would also suffer for
workloads that delete tuples due to Bloom filters aging.

If we want to use filters to ensure that point queries can be performed with a single I/O, then we
will have to use an alternative AMQ structure besides the Bloom filter. In other work we developed
Quotient Filters (QFs) [12], which we utilize here. QFs are a replacement for Bloom filters (BF)
and also function as an AMQ. QFs are faster than Bloom filters, but consume 10–25% more space
than similarly configured BFs. QFs offer two benefits we use in our VT-trees. (1) We can efficiently
merge two QFs together without ruining their false positive rates (not possible with BFs). (2) we
can efficiently tolerate a small number of duplicates which can also be deleted. Quotient filters are
comparable in space efficiency to Bloom filters but can be merged efficiently entirely within RAM
without having to re-insert the original keys.

The QF stores p-bit fingerprints of elements. The QF is a compact hash table similar to that
described by Cleary [22]. The hash table employs quotienting, a technique suggested by Knuth [64,
Section 6.4, exercise 13], in which the fingerprint is partitioned into the q most significant bits (the
quotient) and the r least significant bits (the remainder). The remainder is stored in the bucket
indexed by the quotient. Figure 6.6 illustrates the basic structure of a quotient filter. In this example,
0 ≤ q ≤ 8 and the values â . . . f̂ ≤ 8. If we consider an example insertion of d, we first hash d to
generate its p-bit fingerprint. We will actually store the fingerprint and not d itself. d hashes to the
fingerprint 2 ∗ 8 + d̂, so d̂ is stored at position 2.

We perform a lookup by hashing the value to its fingerprint, and then separating the fingerprint
into the bucket q and remainder r. If we find the remainder r in bucket q, then we know that the

94

a

b

c

d f

a b c d e f--

e

1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 00 0 0 0 0 0

0 1 2 3 4 5 6 7

is occupied
is continuation
is shifted

run

cluster

bucket(x) = x / 8
x = x mod 8^

^ ^ ^ ^^ ^

^^ ^ ^

^

^

slot

bucket
remainders
in same
bucket

Figure 6.6: Quotient Filter

element was inserted. For example, if we query d, we check to see if d̂ is stored at position 2,
and find it is, so we report that d may have been inserted. However, we must consider the case
where two different fingerprints have different remainders but the same quotient. In this case both
insertions try to store different remainders in the same bucket. In Figure 6.6 we see that this occurs
when a hashes to 1 ∗ 8 + â and b hashes to 1 ∗ 8 + b̂. The quotient of both a and b is 1, but their
remainders are different: â and b̂, respectively. We cannot naively store both of these remainders
in the same bucket. When two fingerprints try to store different remainders in the same bucket, we
call this a soft collision.

To handle soft collisions, we use a linear probing method and an additional 3 meta-data bits per
bucket. We adopt an encoding scheme that uses the 3 meta-data bits and a linear probing technique
to convert portions of the quotient filter into an open hashtable format. Figure 6.6 illustrates how
the conceptual open hashtable format that stores fingerprints of a . . . f is encoded as a quotient
filter using linear probing and our 3-bit scheme.

As shown in Figure 6.6, we store remainders belonging to the same bucket in a run. We store
runs that are physically contiguous in the quotient filter as a cluster. When we want to perform
a lookup, we first decode the cluster. We then search through the cluster to find the appropriate
run. Finally, we search through the run to see if the remainder we are looking for is there. If it is
found, then we return that the element was inserted into the quotient filter. If we were to query d in
Figure 6.6, then we would first hash d to 2∗8+ d̂, obtaining 2 as our quotient. We now must decode
the cluster containing d’s run. We know that the cluster containing d must begin at or also contain
whatever is in slot 2 of the quotient filter. We need a way of knowing if the element that occupies

95

slot 2 also occupies bucket 2, or if instead it was shifted. To determine this we use is shifted as one
of our meta-data bits and set it to 1 if a fingerprint’s remainder had to be stored in a slot not equal to
its quotient. We can scan to the left until we find a slot where is shifted is 0 and the next slot to the
left is empty, to find the beginning of a cluster. We do this in our lookup of d and find the beginning
of the cluster potentially containing d’s fingerprint is at slot 1, where â is currently stored.

Next, we need to determine which buckets contain which elements and which buckets are
empty. We do this by using the is occupied and is continuation bits. Starting from the begin-
ning of the cluster at slot 1 where â is, we scan to the right. Every time is occupied is 1 we know
that there is at least one remainder stored in the bucket list in the open hashtable representation
corresponding to that slot. Every time we see is continuation set to 0, we know that we are reading
the beginning of a new run. Since runs can be shifted away from the slot they are associated with,
we must keep count of runs. For our example lookup of d, we know that it is stored 1 bucket away
from where a’s fingerprint is stored, so we scan to the right until we are in the second run and slot
2’s is occupied bit is set. Once we are in the second run and slot 2’s is occupied bit is set, we know
that this run must contain d̂ or else d’s fingerprint was never inserted. We scan through the run
of length 1 that contains d’s fingerprint at slot 4 and find d̂, so we know that d’s fingerprint was
inserted and the lookup returns true.

Quotient filters are fully functional hashtables and perfectly reconstruct the values they store.
However, since we do not store actual keys (e.g., d) but rather store their fingerprints (e.g., 2∗8+d̂),
it is possible that different keys will hash to the same fingerprint. A false positive occurs when two
keys hash to the same fingerprint. A careful analysis of quotient filters shows that a quotient filter
and Bloom filter with the same false positive rate and supporting the same number of insertions
have comparable space efficiency. More details (e.g., how to perform insertions and deletes and
false positive analyses) are available in other work [12].

All the values stored in a QF are actually stored in sorted order. This is because after a stored
value is reconstructed, its most significant bits are determined by its offset in the QF. So, if we
reconstruct stored fingerprints from left to right, we obtain a list of sorted integers.

We can merge two QFs by converting them back into a list of sorted integers, merging these
integers, and then re-hashing this new sorted list back into a larger QF. Since we are inserting
elements in sorted order, and they are uniformly distributed across the length of the new QF, we can
efficiently append them and insert them into the new QF without having to perform random reads.
This is because newly inserted items will be stored after previous inserted items, and their uniform
distribution (as they were randomly hashed fingerprints originally) makes it highly improbable that
there are clusters much longer than length logN . This is exactly how we merge QFs in the VT-tree.

Now that we have a Bloom filter-like data structure which can be merged, we can create new
larger Wanna-B-trees without having to scan any tuples from the storage device, and so we can per-
form minor compactions without incurring I/O when workloads are dominantly sequential. When
merging patch-trees, we first merge their quotient filters, including any duplicate fingerprints. Then,
during the merge of the Wanna-B-trees, if any tuples are removed due to processing updates or
deletes according to the method in Section 3.2, they are also removed from the merged quotient
filter. After the merge completes, we are left with a quotient filter that only has a fingerprint of x if
tuple x is in the resulting merged patch-tree.

96

6.2 Stitching Implementation
The implementation of VT-trees within the GTSSL architecture described in Chapter 5 makes sev-
eral simplifying assumptions. We describe the implementation of VT-trees in Section 6.2.1 and
then discuss how VT-trees are placed within the GTSSL architecture in Section 6.2.2. Finally we
describe the schema of our FUSE-based file system SimpleFS in Section 6.2.3 and how it uses
VT-trees within the GTSSL architecture to perform file operations.

6.2.1 VT-tree Implementation
VT-trees are implemented as a modification of the SAMT introduced in Section 3.2, extended in
Chapter 5, and generalized in Chapter 6. There are two primary ways of accessing the SAMT:

Receiving an eviction which happens when the red-black tree cache is full, and must be evicted
into the SAMT.

Performing a query which happens when a client performs a query on the SAMT structure for
tuples not found in the red-black tree.

We receive an eviction by performing a minor compaction if necessary, and then serializing
the contents of the cache (e.g., red-black tree) into a new Wanna-B-tree, while simultaneously
building a secondary index and populating a quotient filter. These two items (new Wanna-B-tree
and quotient filter) are combined along with any other Wanna-B-trees pointed at by the secondary
index into a new patch-tree which is then added to the SAMT. We shoed an example of this in
Figure 6.2 where a patch-tree is shown being composed of 6 sets of merged Wanna-B-leaves, a
new set of Wanna-B-leaves for the output, the secondary index tying the Wanna-B-leaves together,
and a quotient filter.

Creating patch-trees is different than merging together and creating Wanna-B-trees in a regular
LSM-tree. The primary difference lies in how we perform a minor compaction, or how we merge
together patch-trees into a new patch-tree. When merging together multiple patch-trees into a new
patch-tree, we first merge the quotient filter as described in Section 6.1.2, and then merge the patch-
trees.

Merging the patch-trees requires having a cursor on each patch-tree: we merge the cursors
and produce the output patch-tree. A cursor on a patch-tree is actually equivalent to a cursor on
a Wanna-B-tree as a patch-tree is a fragmented Wanna-B-tree with a quotient filter. A patch-tree
cursor consists of two parts: (1) a secondary index iterator, and (2) a leaf-node iterator. We initialize
a patch-tree cursor by starting the secondary index iterator at the first secondary index entry of the
patch-tree, and then placing the leaf-node iterator at the beginning of the leaf-node pointed to by
that secondary index entry. We iterate through the tuples in the leaf-node until we reach the end,
and then we iterate the secondary index iterator so it points to the next leaf-node, and reset the
leaf-node iterator to the beginning of that next leaf-node. In this way merging K patch-trees is
equivalent to having K patch-tree iterators, which means a merge of K patch-trees involves K
quotient filters and K Wanna-B-trees.

We must be careful when merging patch-trees to not read leaf-nodes that are being stitched as
this will accidentally cause I/O, even if we do not mutate the value of that leaf-node. Because of
this, we perform two kinds of operations when merging patch-trees into a new patch-tree:

97

Load tuple which loads a single tuple into the leaf-node currently being filled in the output Wanna-
B-leaves being created by the merge operation.

Stitch which copies the current secondary index entry into the new secondary index being created
by the merge, stitching the leaf-node pointed at by that secondary index entry.

We perform the actual merge by executing the algorithm listed in Figure 6.4. We merge multiple
patch-trees into a new patch-tree by stitching whenever possible. It is only possible to stitch when
the merge operation is currently processing a tuple that starts at the beginning of a block pointed to
by a secondary index entry. In this case, the secondary index entry has the same key value as the
tuple, so we avoid retrieving the key from the block itself, and simply use the copy in the secondary
index entry. When we cannot stitch, we load tuples until we are able to stitch again. This is how
we avoid reading leaf-nodes when stitching.

We attempt to stitch forward in the stitch nextmethod depicted in Figure 6.7. We construct
an iterator that merges multiple patch-tree iterators. This iterator is called a merge iterator.
The routine is called only if the current tuple in the merge is at the beginning of a leaf-node pointed
at by a secondary index entry. In this case, the merge iterator is at a stitch point. Each time
we stitch one secondary index entry, we stitch the tuples within the leaf-node pointed at by that
secondary index entry into the new secondary index for the patch-tree currently being constructed
from the merge. To implement a stitching threshold as discussed in Section 6.1.1, we do not want
to stitch leaf-nodes if there are not enough of them contiguously laid out in sequential order. We
require that there be at least stitch thresh leaf-nodes in a row to stitch them.

This routine returns two pieces of information: (1) whether or not we can stitch the next
stitch scan cnt secondary index entries, and (2) stitch scan cnt. For example, if stitch next
returns (0,10), then the first tuple element 0 tells us that we can stitch, and the number of
secondary index entries that we can stitch is 10. If, on the other hand, stitch next returns
(-EINVAL,10), then we must load each tuple for the next 10 leaf-nodes into the output set of
Wanna-B-leaves and create new secondary index entries to point to these new leaf-nodes in the
output set of those Wanna-B-leaves. In this way stitch next determines on behalf of the caller
how many secondary index entries to stitch, or how many entries it must process by copying before
it can attempt to stitch again.

Currently our implementation always tries to stitch as many secondary index entries as we can.
However, we cannot always stitch. There may not be enough blocks to overcome the stitching
threshold, or the blocks may contain tuples that need to be removed during the merge (e.g., delete
or tombstone tuples, see Section 5.3). In these cases we report that these secondary index entries
cannot be stitched, but must be processed by copying their tuples into the output Wanna-B-leaves.

As shown in Figure 6.7, stitch next begins by verifying that we are at a stitch point. Next,
min vec cursor returns a pointer to the iterator being merged by the merge iterator with
the smallest key according to our comparison method bt->Merge. This pointer is stored in
min. Next, we create second min which is explicitly initialized with an invalid pointer value
cs.end(). We then compare min in a loop with the other iterators to find the second-smallest
iterator that is not finished iterating, and store it in second min. If all other iterators are finished,
second min continues to be initialized with the invalid pointer value cs.end(). Next, we
dereference second min and set kv to NULL if second min is not initialized or to the key
second min points to if it is.

98

tuple<int,int> merge_iterator::stitch_next()
{

// We can only stitch from a valid stitch point
assert(stitch_point());
auto min = min_vec_cursor();

// Get the value of the next smallest iterator’s key
auto second_min = cs.end();
for (auto i = cs.begin(); i != cs.end(); ++i)

// i is not min and is not ended so it has a valid
// value, and second_min either hasn’t been set yet,
// or i is smaller then second_min
if (i != min && !(*i)->is_end() &&

(second_min == cs.end() ||
(bt->Merge((*i)->get_key(), (*second_min)->get_key()) <= 0)))

second_min = i;

const dbt_buff *kv;
if (second_min != cs.end())

kv = (*second_min)->get_kv();
else

kv = NULL;

// stitch_check_scan(NULL,...) means scan to the end
int stitch_scan_cnt = (*min)->stitch_check_scan(kv, redacting);

if (stitch_scan_cnt <= stitch_thresh);
return make_tuple(-EINVAL,stitch_scan_cnt);

else
return make_tuple(0,stitch_scan_cnt);

}

Figure 6.7: An internal routine to the VT-tree enabled SAMT which makes appropriate modifi-
cations to a merge iterator when it is possible to stitch one or more secondary indexes during a
merge.

99

uint64_t patch_tree::iterator::stitch_check_scan(
const dbt *kv, bool r) const

{
assert(parent->ith_source_block(index_curr) == p);
auto end = parent->sis.end();
auto i = index_curr;
if (i.equals(end))

return 0;
auto i_after = index_curr.iterate_forward(1);
while (!i.equals(end) &&

!i_after.equals(end) &&
(!kv || parent->bt.Merge(kv, i_after.get_dbt())) >= 0) &&
!(r && ((ptr *)(i.get_dbt()->get_value()))->is_redacting())) {

i.next();
i_after.next();

}

return i.distance(index_curr);
}

Figure 6.8: An internal routine to the VT-tree allows SAMT to ensure that a series of secondary
index entries from a patch-tree is eligible for being stitched across.

We now try to count how many secondary index entries we can stitch by calling
stitch check scan, whose implementation is depicted in Figure 6.8. The stitch check scan
routine verifies that we are at a stitch point by checking that the secondary index iterator of the
patch-tree iterator and the leaf-node iterator are pointing at the same location. Next, we initialize
and then iterate i until it is at the secondary index that is furthest from index curr but whose
key is not greater than or equal to kv’s key according to the bt.Merge comparison routine. If we
are supposed to elide certain tuples then r is set to true and we verify that the leaf-node pointed
at by the secondary index entry has no tuples within it that need to be elided. If it does have tuples
that may have to be removed during the merge, then we cannot stitch that leaf-node, and so we stop
the stitch at the current position. Once we have stitched forward as far as possible without violating
any of the above invariants, we return the distance we successfully stitched (which could be zero).

We can force the VT-tree to act like a regular SAMT by never stitching and always loading
tuples into the output Wanna-B-leaves constructed during the merge of patch-trees. If we do this
then the other sets of Wanna-B-leaves will not be pointed at by any new secondary index entry
created during the merge, and those unused sets of Wanna-B-leaves will be automatically removed
and deallocated during the merge. We can compare traditional LSM-trees to VT-trees by simply
increasing the stitching threshold to be sufficiently large enough that we always copy tuples into
the output Wanna-B-leaves. This is how we evaluate VT-trees in Section 6.3.

100

*

3 schemas for
3 transactions

3 dictionary relationships
each backed by a VT-tree

The main-line
schema

The lock-tree shared
by all schemas

Figure 6.9: Multiple transactions as multiple schemas: Multiple transactions are represented as
multiple schemas and a main-line schema. All transactions and the main-line schema share the
lock-tree to avoid conflicting with each other.

6.2.2 VT-trees within GTSSL
VT-trees sit underneath the exact same red-black tree cache used in GTSSLv1. In our current im-
plementation of the GTSSLv2 architecture, we support transactions that are larger than RAM by
giving each transaction a separate set of VT-trees for their new insertions. As shown in Figure 6.9,
the system groups VT-trees into a schema. The schema is the set of all dictionary relationships the
user has created. There are multiple instances of the schema, one for each running transaction, and
a main-line schema. These schemas all have the same number of VT-trees, are compatible, and can
be duplicated and merged together. Transactions begin by creating a new schema, modifying it,
and then merging it back into the main-line. This method of managing transactions is analogous to
source control systems [41]. This method of managing transactions is also similar to the Primebase
XT transaction manager for MySQL [79]. The difference between how GTSSLv2 manages trans-
actions and how Primebase XT manages transactions is that GTSSLv2 transactions do not have
undo images, are indexed as LSM-trees, and can be queried. These differences are necessary to
eliminate undo images; this is important for supporting high throughput random write workloads
(see Section 3.1.1).

The set of locks on individual tuples and ranges of tuples is stored separately in RAM and shared
by all transactional and non-transactional processes. Although transactions can grow to be larger
than RAM, their set of locks currently cannot in our implementation. The lock-tree in RAM uses
ranges of locks and heuristic methods that can be customized by applications to pre-lock ranges of
the key-space within a particular dictionary relationship. This permits applications to interact with
more tuples than the lock-tree can hold locks for in RAM by using one range lock to protect many
tuple updates. Large, complex transactions that cannot group tuple accesses into range locks, may
have to abort if their sets of locks cannot be held within RAM within the lock-tree. As future work,
we are investigating storing locks within a VT-tree as well so that the set of locks can grow to be

101

larger than RAM.
Transactions begin by creating a new schema, a set of VT-trees. The transaction makes modifi-

cations to the schema by first acquiring appropriate locks within the lock-tree shared by all schemas
in RAM. Then they insert modifications into the schema’s red-black tree until the red-black tree
is full and it must evict into the schema’s VT-tree for that dictionary relationship. Transactions
perform reads by acquiring the appropriate locks within the lock-tree in RAM, and then querying
for the tuple in the transaction’s schema or the main-line schema depending on which schema has
the most up to date version of the read tuples.

Transactions commit in two steps. First, the transaction inserts the elements in each of its
schema’s VT-tree’s red-black trees into the corresponding red-black tree for each VT-tree in the
main-line schema. If any of the main-line schema’s red-black trees must evict, they do so. Both
GTSSLv1 and GTSSLv2 perform this first step. However, GTSSLv2 executes a new second step: it
updates the main-line schema’s VT-trees such that they now include the corresponding patch-trees
belonging to the committing transaction (if it has any). These patch-trees contain the transaction’s
updates that had to be evicted from RAM because the transaction became too large.

The extensions in the implementation of GTSSLv2’s transactional architecture permit larger-
than-RAM transactions using the above design and implementation, but evaluation of this system
is currently a subject of joint research and future work with Pradeep Shetty. See Chapter 8. All ex-
periments in Section 6.3 were run without transactions and operated only on the main-line schema
with interaction with the lock-tree disabled.

6.2.3 SimpleFS and System Benchmarking
One of our goals was to test the feasibility of VT-trees to act as the underlying data structure in
a file system. Although VT-tree performance for sequential and file system workloads compares
very favorably to regular LSM-trees, we wanted to test their performance against native kernel file
systems. For that purpose, we developed SimpleFS: a FUSE implementation of the same schema
used by LSMFS 3.3.2. The SimpleFS layer is an implementation of a FUSE low-level interface
which translates FUSE file system requests into key-value requests. To support file system requests,
the SimpleFS layer creates three VT-trees. The three Key-value pair formats for these three VT-
trees are shown below. The VT-trees are (1) nmap for namespace entries, similar to dentries.
In nmap, the path-component of a file and its parent directory’s inode number forms the key, and
the value is the inode number of the file. (2) imap for storing inode attributes; and (3) dmap for
the data blocks of all files.

VT-tree Format
nmap 〈{parent-inode#, path-component}, inode#〉
imap 〈inode#, inode〉
dmap 〈{inode#, offset}, data-block〉

6.3 Evaluation
To evalute the effects of stitching on performance of sequential, random insert, and random append
workloads we modified the GTSSLv2 compaction layer to support three modes: (1) NO-COMPACT

102

and (2) STITCHING. When compacting in the STITCHING mode we can set the stitching threshold
f to any value from 0 to 264 − 1. We can force the compaction layer to behave as a traditional
LSM-tree implementation by setting f = 264−1. This is how we obtain our third configuration (3)
COPY-ALL. When stitching, if GTSSLv2 must perform a copy, it uses the same code that COPY-ALL

would use. By measuring only algorithmic changes on top of the same underlying implementation,
we are able to isolate differences in performance to just the efficiency of our stitching algorithm
and implementation.

We find that workload differences greatly affect the performance gains made by stitching. In
the following sections we discuss three micro-benchmarks. Finally in Section 6.3.7 we discuss a
file server system benchmark. Each section first describes the workload, predicts its performance
in GTSSLv2’s compaction layer, and then we analyze benchmarks for that workload.

6.3.1 Experimental Setup
Our evaluation ran on the same machines that we ran our experiments in Chapter 5. Our tests used
pre-allocated and zeroed out files for all configurations. We cleared all caches on each machine
before running any benchmark. To minimize internal Flash SSD firmware interference due to
physical media degradation and caching, we focus on long-running throughput benchmarks in this
evaluation. Therefore, we reset all Flash SSD wear-leveling tables prior to evaluation (using the
TRIM command), and we also confined all tests utilizing Flash SSD to a 90GB partition of the
159.4GB disk, or 58% of the disk. This is near the ideal partition size to maximize random write
throughput of the device [55]. In all tests, the GTSSLv2 compaction layer was configured to use
an 8MB key-value cache (std::map [89]) for sorting randomly inserted keys. Sequential insertions
were also placed in this cache for fairness. Once the 8MB cache fills, we evict it into the compaction
layer and write its contents asynchronously with pwrite (and msync with MS INVALIDATE to
re-synchronize the page cache). Quotient Filters are enabled in all runs, as are secondary indexes.
Unlike GTSSLv1, GTSSLv2’s secondary indexes are stored in a file mmap and may need to be
faulted in during a run. This will cause some read I/O for stitching workloads as we will see in the
subsequent sections. All tests were run on the Intel X25-M Flash SSD

Storage Device Performance In the following experiments, we refer to the random and sequen-
tial read and write throughput of our underlying Flash SSD, the Intel X-25M.

read write
random 3,000 IOps 2,100 IOps
sequential 245 MB/sec 110 MB/sec

Table 6.1: Performance of our Intel X-25M Flash SSD

In Table 6.1, we see what random and sequential read and write throughput the Flash SSD is
capable of. When measuring random-write throughput, we noticed initially a high write-throughput
(roughly 5,000 IOps) that dropped considerably and became highly variatic once the underlying
FTL began performing compactions in parallel with our random writes. These tests were performed
using large mmaps of the entire disk (90GB), while the machine was only booted with 3GB of
RAM. Random writes would first have to fetch the page before writing to it. Sequential read

103

and write throughput were measured with dd, either writing zeros to the entire 90GB volume, or
reading the entire volume into /dev/null. All datasets written are 10GB large, so for example,
if randomly reading 4KB pages from the dataset, with 3GB of RAM, we’d expect to see a factor
1.3× speed up on random reads, so 3,900 lookups per second instead of 3,000.

Configuration For each workload, we performed three benchmarks: INSERT, SCAN, and POINT-
QUERY. For each workload we first run the INSERT benchmark resulting in a populated VT-tree,
and then run the SCAN and POINT-QUERY benchmarks on this tree. During insertion, we randomly
insert 4KB tuples consisting of an 8B key, a 4087B value, and a 1B flag into an 8MB in-RAM
red-black tree, which is then evicted into the VT-tree data structure. Key generation depends on
the workload we are performing. For SEQUENTIAL-INSERTION we pick a random number from
1 to 264 − 1 and use that as our key, and then sequentially insert 16,384 of the following numbers
after (e.g., we pick 42, then insert 42, 43, ..., 16,426). For RANDOM-INSERT we just insert random
numbers. For RANDOM-APPEND we simulated the effect of randomly selecting a range of tuples,
and then just appending to the end of this range. This would be analogous to randomly selecting
files and appending to them (e.g., a /var/mail workload [32]). For benchmarks running this
workload, there are 2,040 “files” or ranges, and we append to each of them 1,280 times, resulting
in 10GB of random appends.

The details of how we perform each benchmark follow. To perform the INSERT benchmark on a
workload, we filled a red-black tree with 8MB of 4KB tuples (2,040 tuples), and then evicted these
tuples into the VT-tree data structure directly. We repeated this 1,280 times, for a total of 10GB
of insertions. The only difference between workloads is how the keys are generated for these 4KB
tuples. We bypassed the transactional and standard caching layers completely so as only to measure
the VT-tree’s performance with various merging and stitching configurations. Note the only cache
available is the 8MB red-black tree, and the remaining 3GB serve only as a file or page cache. To
perform the SCAN benchmark, we randomly select the beginning of an inserted sequence of seq
tuples, and then scan all seq tuples in that sequnce. To perform the POINT-QUERY benchmark, we
randomly select a tuple from all of those inserted, including those within a sequence of tuples, and
retrieve its value.

We never perform point queries on tuples that do not exist, so our QFs can only help us hone
in on the patch-tree in the VT-tree with the query result, and cannot completely avoid work from a
point query. This is done by generating random numbers with a 64-bit hash function instead of a
linear congruence.

To randomly insert numbers, and guarantee existing lookups, we hash the numbers from 0...N ,
to generate random numbers. Then, to perform queries, we randomly select a number from 0...N ,
hash it, and can know that we have inserted it while performing the lookup. We used the 128-bit
Murmur hash [9].

6.3.2 RANDOM-APPEND

The random-append scan workload randomly appends new elements to a number of scan-units as
discussed in Section 6.1.1. One of the intuitions of stitching is that it is not necessary to perform all
the work that a normal LSM-tree performs to obtain good scan performance. Figure 6.5 shows in
panel ® a scan-unit of 8 blocks on the bottom, the upward arrows indicating seeks to four positions
to perform the scan. If the cost of sequentially transferring two blocks is equivalent to the cost of

104

a single seek, then we may find it sufficient to group blocks belonging to the same scan-unit into
groups of two. This would avoid additional copies during merge, but guarantee a scan throughput
that is within a factor of two of optimal. We can set the stitching threshold f = 1 to ensure that
sequences of length one are copied with the next or previous tuple during a merge such that we
rarely have a stitch of length one. Consequently, scans will spend roughly an equal amount of time
transferring as seeking.

Configuration The random-local scan workload performs local updates, or updates that will only
dirty a small number of blocks out of all the blocks belonging to a scan-unit. Appending to a scan-
unit is an instance of a local update, because the only block dirtied is the block at the end of the
scan-unit, and the blocks being newly appended. Our synthetic random-local scan update workload
appends newly inserted blocks to the end of the scan-unit.

The workload operates as follows. First, a series of 2,040 random numbers are selected. Next,
in the first pass, we insert these random numbers adding an offset off to each random number.
Initially off is 0, so the first pass simply inserts the random numbers. Afterward, we increment
off by 1, and perform a second pass, inserting the 2,040 random numbers we generated, this time
incremented by 1 (off). We repeat this 1,280 times, incrementing off each time. Since there are
2,040 4KB pages in an 8MB eviction, we insert a total of 10GB of 4KB tuples in this manner.

Since we generate 64-bit random numbers, it is highly probable that the 2,040 numbers we
generate will be further than 1,280 apart, and so we should rarely have overlap. In this way, we
randomly append to 2,040 scans, 1,280 times. It will not cause a fault if there are any overlaps or
duplicates, so we do not check.

We expect that the majority of the blocks in a scan-unit will not be dirtied by interleaving blocks,
because blocks from two separate patch trees being merged together from the same scan-unit will
be ordered such that the more recently created patch-tree will have blocks that come after those in
the older patch-tree. This way the merge can stitch the blocks if they are already greater than the
stitching threshold.

This means that increasing the stitching threshold will slow down insertion throughput, but
should increase scan throughput by decreasing the number of seeks necessary to read a stream of
blocks. Based on Table 6.1, in the time it takes to perform a random read IOp on the Flash SSD, we
could read 85KB at full sequential read throughput. Naively we can say that setting the stitching
threshold such that blocks larger than 85KB are stitched will grant us a scan throughput no worse
than half the Flash SSD scan throughput, or 122MB/sec (half because we spend half our time
seeking, and half our time transferring). For a 1MB block, we would expect to see a 226MB/sec
read throughput.

Figure 6.10 shows the result of randomly appending tuples to 2,040 scans. The y-axis shows
the number of evictions performed by the benchmark until it reaches 1,280 and ends, and the x-axis
shows the time that each eviction occurred. The second y-axis shows the block read throughput.
When we perform a merging compaction, portions of a scan-unit are placed together. Once the
aggregated scan-unit has become sufficiently large that it is not less than the stitching threshold
f , it is no longer copied during compaction. Therefore we can trade insertion throughput for
scan throughput: by increasing the stitching threshold thus forcing tuples to accumulate together
across merging compactions to ensure a higher locality of tuples when scanning. We have chosen
several key stitching threshold, f = 0, f = 3, f = 15, and f = 16, 383, and we expect to
perform 1, 2, 3, 4, or more copying merges respectively as K = 4. We see respectively decreasing

105

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

E
v
ic

ti
o

n
s
 (

8
M

B
 e

v
ic

ti
o

n
s
)

B
lo

c
k
 I

n
s

Time (sec)

Insertion throughput of 4K tuples

No compaction
Block Ins No compaction

f=0
Block Ins f=0
Block Ins f=7

f=7
f=15

Block Ins f=15
f=16,383

Block Ins f=16,383

Figure 6.10: Random Append and Stitching

throughputs of 57MB/sec, 47MB/sec, 31MB/sec, and 23MB/sec as we spend more time in each
merge performing copying merges. The amount of Block Ins decreases accordingly as well, with
f = 16, 383 performing the most Block Ins during compaction, and decreasing Block Ins bursts as
f decreases. Since appends are random, the stitching code must perform more work to update the
secondary indexes as scans accumulate together across merging compactions, so we are not able
to reach the NO-COMPACT throughput of 90MB/sec, which is only bound by time spent serializing
tuples into the page cache.

As depicted in Figure 6.11, scan throughput was 16MB/sec, 63MB/sec, 81MB/sec, and 131MB/sec
for the stitching thresholds of f = 0 through f = 16, 383 accordingly. We insert into VT-trees with
the lower stitching thresholds more quickly by avoiding copies during merging compactions. This
improvement is paid for with lower scan throughput due to loss of locality.

6.3.3 SEQUENTIAL-INSERTION

We measured the result of sequentially inserting groups of 16,384 4KB tuples according to the
SEQUENTIAL-INSERTION workload. The NO-COMPACT configuration performs no merging com-
pactions of patch-trees, and so there are 1,280 patch-trees upon completion of the benchmark. All
other configurations perform stitching, with either a set threshold of f = 0, f = 15, or f = 16, 383.
As long as we stitched less than the seq, we performed no I/Os on compaction, as can be seen by

106

Stitching Trade-offs

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000 10000 100000
 0

 20

 40

 60

 80

 100

 120

 140

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(M

B
/s

e
c)

S
ca

n
 T

h
ro

u
g
h
p
u
t
(M

B
/s

e
c)

Stitching Threshold (log)

Scan throughput of 4K tuples

Insertion Throughput by f
Scan Throughput by f

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000 10000 100000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(M

B
/s

e
c)

P
o
in

t
Q

u
e
ry

 T
h
ro

u
g
h
p
u
t
(L

K
U

s/
se

c)

Stitching Threshold (log)

Point query throughput of 4K tuples

Insertion Throughput by f
Point Query Throughput by f

Figure 6.11: Stitching Trade-offs

the minimal levels of block ins measured by vmstat on the second y-axis. Since the sequentiality
of the insertions was always higher than the stitching threshold up to 15, both f = 0 and f = 15
perform at the same throughput, 85MB/sec and 87MB/sec, respectively. In our vmstat logs all
stitching configurations were CPU-bound (25 us on a 4-core machine), but primarily by our code
serializing tuples to the underlying page cache. This is evident as NO-COMPACT, which performs
no compactions or merges, and only serializes to the underlying page cache, has a closely match-
ing throughput of 91MB/sec, while the underlying Flash SSD throughput is 110MB/sec. The fully
compacting configuration of f = 16, 383 performs insertions at 28MB/sec, or less than 1/3 the
throughput of our stitching configurations for sequential insertions.

For scan throughput for the SCAN benchmark on the SEQUENTIAL-INSERTION workload, we
measured 152MB/sec, 158MB/sec, 149MB/sec, and 25MB/sec, respectively, for f = 0, f = 15,
f = 16, 383, and NO-COMPACT. For compacted VT-trees, scan throughput was between 60–64%
of the Flash SSD’s sequential read throughput. The difference in performance is a combination of
having to read eviction data in 8–32MB chunks depending on f , and having to set cursors in each
patch-tree before performing a scan. The latter component is exacerbated in the NO-COMPACT

run where throughput is only 25MB from having to set 1,280 cursors before performing a scan,
instead of less than 4 ∗ log4(1, 280 ∗ 2, 040) = 40 (the bound on the resulting number of lists after
compaction with any stitching threshold).

107

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

E
v
ic

ti
o

n
s
 (

8
M

B
 e

v
ic

ti
o

n
s
)

B
lo

c
k
 I

n
s

Time (sec)

Insertion throughput of 4K tuples

Seq=16K No compaction
Seq=16K Block Ins No compaction

Seq=16K f=0
Seq=16K Block Ins f=0

Seq=16K f=15
Seq=16K Block Ins f=15

Seq=16K f=16,383
Seq=16K Block Ins f=16,383

Figure 6.12: Sequential Insertion Stitching

6.3.4 RANDOM-INSERTION

The RANDOM-APPEND workload is less obviously sequential than SEQUENTIAL-INSERTION, but
there are still hot spots and cold spots. The hot spots are the ends of the scan-units being randomly
appended to, and the cold spots are the bulk of the scan-units which remain unmodified after each
append.

With the RANDOM-INSERTION workload, there are no cold spots, and the VT-tree is unable
to significantly benefit from stitching. As seen in Figure 6.13, benchmarks running this workload
experienced no change in insertion throughput for lower stitching thresholds (except f = 0 which
can always stitch 4KB tuples). This is because it is highly probable that two patch-trees of random
numbers will interleave completely, making stitching configurations always choose to copy on the
merge anyway. When performing random insertions, all configurations with a stitching thresh-
old exceeding the size of the sequential cluster inserted performed at nearly the same throughput,
24MB/sec, the same throughput as the f = 16, 383 configuration, as all configurations copied on
every merge.

Configurations that had more sequential insertions performed better than those with less, even
if both stitched completely. The f = 0 configuration for sequentially inserted clusters of length 1
is 50% slower than the f = 0 configuration for clusters of length 16. The overhead from shorter
merges dominates the I/O overhead of longer merges, so for this 10GB workload, the f = 0
configuration for clusters of length 1 seems almost linear.

108

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450

E
v
ic

ti
o

n
s
 (

8
M

B
 e

v
ic

ti
o

n
s
)

Time (sec)

Insertion throughput of 4K tuples

Seq=1 No compaction
Seq=1 f=0

Seq=1 f=15

Seq=1 f=16,383
Seq=16 No compaction

Seq=16 f=0

Seq=16 f=15
Seq=16 f=16,383

Figure 6.13: Random Insertion Stitching

6.3.5 Point Queries
As depicted in Figure 6.11, in all compacting benchmarks run, we found point query throughput
was always between 3,900 and 4,000 IOps, or 1.3 the random read throughput of the Flash SSD
because of the page cache answering 30% of the read IOps. This was also true in other workloads
besides RANDOM-APPEND. In all NO-COMPACT benchmarks, lookup throughput was much worse,
always 1,400 IOps, due to having to consult 1,280 QFs since we did not merge filters. This would
be equivalent to lookup throughput if we were using Bloom filters and not performing merges. The
configured FP-rate for each QF was 1/1, 024, so with 1,280 QFs to check in NO-COMPACT, we
can expect an additional 1.25 random read IOps, for a total expected number of 2.25 random read
IOps/lookup, giving us an expected lookup throughput of 1,777, in addition to CPU overheads and
having to perform lookups in a fragmented secondary index, lookup throughput drops to 1,400.
This issue will become greatly exacerbated for datasets larger than 10GB. Therefore, we concluded
that QFs are necessary to maintain high point-query throughput while stitching.

6.3.6 Tuples of 64B in size
In addition to experiments run on 4KB tuples, we also conducted identical experiments on 64B
tuples. In these workloads, insertions are primarily CPU-bound, and yet we find that stitching still
helps considerably. The reason is that not only are I/O overheads avoided by stitching, but so are
CPU overheads.

109

Stitching Trade-offs

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 10 100 1000 10000 100000
 0
 5
 10
 15
 20
 25
 30
 35
 40

In
s
e

rt
io

n
 T

h
ro

u
g

h
p

u
t

(M
B

/s
e

c
)

S
c
a

n
 T

h
ro

u
g

h
p

u
t

(M
B

/s
e

c
)

Stitching Threshold (log)

Scan throughput of 64B tuples

Insertion Throughput by f Scan Throughput by f

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 10 100 1000 10000 100000
 0

 1000

 2000

 3000

 4000

 5000

 6000

In
s
e

rt
io

n
 T

h
ro

u
g

h
p

u
t

(M
B

/s
e

c
)

P
o

in
t

Q
u

e
ry

 T
h

ro
u

g
h

p
u

t
(L

K
U

s
/s

e
c
)

Stitching Threshold (log)

Point query throughput of 64B tuples

Insertion Throughput by f Point Query Throughput by f

Figure 6.14: Random Append of 64B-tuple Stitching

Configuration In this RANDOM-APPEND workload, we inserted tuples in sequences of 64, oth-
erwise the optimal strategy is to always copy on merge. It is natural that small tuples require longer
sequences to benefit from stitching. This is a benefit of stitching: very small tuple insertions are au-
tomatically handled in an optimal fashion with copying on every merge. Stitching only optimizes
sequential workloads. Small levels of sequentiality (e.g., the aggregate sequence after multiple
compactions is still smaller than the stitching threshold) will be handled as if randomly inserted.

Figure 6.14 shows the stitching trade-offs for 64B tuples instead of 4KB tuples. Stitching
thresholds f = 0, f = 3, f = 15, f = 16, 383 each were measured at 18.2MB/sec, 14.5MB/sec,
11.4MB/sec, and 9.3MB/sec. All insertion throughputs are well below the disk saturated inser-
tion throughput of 110MB/sec, and our vmstat logs show that 100% of the CPU was spent in
user-level code: the benchmark was CPU-bound. Still, stitching provides a 2× performance im-
provement over the f = 16, 383 configuration as even the CPU time spent scanning tuples can be
greatly reduced by stitching. Scanning with compaction for f = 16, 383 compared to f = 0 is 38%
faster at 28.9MB/sec compared to 21.0MB/sec.

6.3.7 Filebench Fileserver
SimpleFS uses FUSE to support POSIX operations. Using FUSE requires two additional context
switches and buffer copies than running on a native file system. This results in around 2–3×
overhead compared to the native file system performance [110]. However, serial reads on FUSE
are comparable and even some times better than native file systems. This is due to caching and read-

110

Ext4 FUSE-Ext4 SimpleFS FUSE-XFS
2, 411 604 617 897

Table 6.2: Filebench file server workload results in ops/sec

ahead performed at both the FUSE kernel component and the lower native file system [110]. The
FUSE kernel module caches read pages, but writes are immediately sent to the FUSE server running
in user space. Supporting write-back cache in FUSE kernel is complex as the entity responsible for
accepting or rejecting the writes is not the FUSE kernel, but the FUSE server instead. To exclude
FUSE overhead, we compare SimpleFS’s performance with FUSE-Ext4 and FUSE-XFS, a pass-
through FUSE mounted on Ext4 and XFS, respectively. We also evaluated Ext4 to measure FUSE
overhead by comparing it against FUSE-Ext4. We use Filebench [32] for evaluating these systems.

Configuration SimpleFS creates an fs-schema consisting of three schemas—nmap, imap, dmap—
as SAMTs (with stitching), as described in Section 6.2.3. We configured nmap, imap, and dmap to
have RAM buffers of sizes 6MB, 12MB and 512MB, respectively. We set the stitching threshold
to 1MB for all the runs. Fileserver workload performs a sequence of creates, deletes, appends,
reads, writes and stat operations on a directory tree. We configured the mean size of the file to
100KB, mean append size to 16KB, directory width to 20, and number of files to 100K. Filebench
pre-allocates 80% of the files and randomly selects a file for each of the above operations. We ran
the benchmark for 10 minutes with 10 threads and I/O size of 4KB for all file systems on Flash
SSD.

As seen in Table 6.2, for file server workload, SimpleFS performs comparable to FUSE-Ext4.
FUSE-XFS has 45% better throughput than FUSE-Ext4 and SimpleFS. File server workload has
a good mix of meta data operations and, large sequential and random reads and writes. By look-
ing at ops/sec for each operation, we noticed that SimpleFS performs comparable or superior to
FUSE-Ext4 and FUSE-XFS for meta-data operations such as open, create, stat and delete
operations. These meta data operations are similar to random database workloads consisting of
small tuples. VT-trees can process these operations at a very high speed. File server workload also
includes appending 16KB to a random file and also randomly reading the whole file. SimpleFS is
2× slower here because appends causes the data of the file to be spread on disk. Compactions of
on-disk lists in GTSSLv1 brings these data together over the life time of the file. If the file is read
before a compaction is triggered, it causes the file to be read from multiple places on disk, resulting
in lower throughput. The frequency of compaction is determined by the insertion rate and, can also
be triggered periodically which would help improve SimpleFS’s performance for whole file reads.

6.4 Related Work
We discuss work related to the VT-tree, a component of GTSSLv2. Sections 6.4.1 discusses several
categories of widely used tree data-structures for key-value storage on a storage device and makes
several important arguments for why LSM-trees are superior for workloads where the number of
keys is far larger than what RAM can hold. The efficiency of LSM-trees for this type of workload is
a key motivating factor in generalizing the LSM-tree to support sequential insertions. Section 6.4.2
discusses related work for quotient filters and other kinds of write-optimized systems and databases.

111

6.4.1 Adding Stitching to the Log-structured Merge-tree
SimpleFS is a file system implemented as a FUSE driver on top of a user-level database. The
SimpleFS database is based on a transaction manager and journal that maintain a number of log-
structured merge-trees. Typically a database maintains B-trees. However, we choose log-structured
merge-trees because of their much higher insert and update throughputs, their comparable perfor-
mance for point queries and scans, and their acceptable performance for small scans and lower
bound queries.

We claim that extending the log-structured merge-tree to support stitching is an effective way to
support file system workloads, and that it constitutes a novel extension to log-structured merge-tree
algorithms. To explain why this claim is true, we categorize background material in this section
into three categories:

In-place trees B-trees [23], their derivations and implementations [96, 112, 140], and hash ta-
bles [19]

Copy-on-write LFS trees Log-structured file systems [117], copy-on-write log-structured B-trees [42,
67, 92], and their derivations and implementations [51, 139]

Merge trees Log-structured merge-trees [95], and their derivations and implementations [3,10,11,
72, 75, 121]

In-place trees In-place trees typically have the best random read performance and extremely
competitive serial read performance. However, they must read in whatever blocks they update, and
do not perform as well as other data structures for random-write patterns or workloads. In practice,
for insert/update-heavy workloads where the majority of operations result in cache misses, in-place
trees and hash tables will create an I/O bottleneck if the workload is not already CPU-bound.

Figure 6.15) shows the insertion throughputs of the LSM-tree-based file system LSMFS as the
configuration exp-pc in comparison to the hash-table–based file system ext3 and the B-tree–
based file systems xfs and reiserfs. In the benchmark depicted in Figure 6.15, we created
1,000,000 to 16,000,000 files with randomly generated names in the same directory, and then per-
formed 100,000 random lookups within that directory. Directory operations are backed by the tree
data-structure (i.e., LSM-tree, hashtable, or B-tree) of the file system. At 4 million inserted items,
LSMFS was 62× faster than ext3, 150× faster than reiserfs, and 188× faster than xfs. For
8 million insertions, reiserfs was 163× slower than exp-pc, and xfs was 262× slower than
exp-pc (LSMFS). Runs of 16 million took more than 20 hours for traditional file systems to com-
plete. The exp-pc configuration inserted 16 million random keys in 422 seconds. Afterrward,
it performed 100,000 lookups in 676 seconds. The large performance gap is due to the latency
difference between performing random insertions into a log-structured merge-tree and random in-
sertions into an in-place B-tree that converts each random insertion into a random write. Other
in-place B-tree designs fair similarly.

Compared to a traditional B-tree, a write-optimized MT-SAMT or other LSM sacrafices a small
drop in predecessor query performance for a large increase in random-write throughput. In fact,
an MT-SAMT or LSM can actually be configured to have identical asymptotic performance to
a B-tree for both insertion and lookup, as long as the items are inserted in random order, and
the secondary indexes are all resident in RAM or fractional cascading is used [11]. Furthermore,

112

Figure 6.15: Out-of-Cache object creation and lookup.

LSM-trees can dynamically shift between being read- to write-optimized while running. Then, for
random workloads, an MT-SAMT or LSM can be thought of as a more dynamic and configurable
B-tree. For sequential workloads, a B-tree will probably outperform an MT-SAMT or LSM. This
issue is addressed directly with stitching, which we expect will alleviate most of the penalties LSM
trees experience when accepting sequential insertions.

Copy-on-write LFS trees Copy-on-write LFS trees append new data, even if that data is being
randomly inserted into the data set. However, during append, the tree must acquire other related
information to complete the update, if all the keys of the working set cannot be resident in RAM,
the acquisition of this key data causes reads in current designs. An example is shown in Figure 6.16.

In Figure 6.16 we see a copy-on-write LFS tree performing an update to a random value. The
index entry pointing to the original block location must be updated as the updated value is in a new
location (the tail of the journal). The index block must be read before it can be updated and this
request incurs a random read request. In the case of a log-structured file system, the amount of
RAM required to index all blocks typically fits into RAM and so no index nodes need be faulted
in on random updates. On the other hand, copy-on-write LFS trees such as the log-structured B-
tree [42] are designed to handle database workloads where the working set could be much larger
than RAM, and so these systems cannot expect all keys to fit into RAM.

The copy-on-write LFS database may rely on the Flash storage technology’s rapid random read
throughput to quickly fault index nodes on random writes. We ran an experiment to compare the
performance of an LSM-tree to the performance of a mock copy-on-write LFS tree on both SSD
and magnetic disk. The mock copy-on-write LFS tree is like a regular copy-on-write LFS with
several major assumptions intended to idealize its performance and simplify its implementation.

We assume that mock-LFS uses all of its RAM during insertion to store parent nodes; normally

113

RAM

k

LOG

random read

New
value

LOG

...

...
se

ria
l w

rite

Old
value

Bindex

Figure 6.16: Illustration of copy-on-write LFS operation: When the keys do not fit into RAM, the
parent node immediately above the original value on storage must be faulted into RAM so that one
of its pointers can be updated to point to the new value appended to the log.

on a random insert, log2(N) nodes from leaf to root would have to be updated to point to newly
allocated nodes in the output log. If we assume that mock-LFS caches 2k parent nodes in RAM,
then it need only write log2(N)− k parent nodes, and the new key-value pair. During insertion, we
assume that mock-LFS caches only the left and right pointers, along with the key (no value) in each
parent node to maximize cache efficiency. Furthermore, we assume that the cache is always clean.
Since we are inserting random keys, then we assume that mock-LFS never needs to rebalance and
presume that it does not flush its cache out until all insertions complete.

Copy-on-write LFS trees must be balanced for best performance according to their workload.
The parameter that must be balanced is the arity of the tree. When using larger arities, the perfor-
mance of sequential insertions and random insertions where the set of keys fits into RAM is much
slower, but random insertions when the set of keys does not fit into RAM can be much faster. The
reason for this is that for each random insert, when the keys do not fit into RAM, we would have to
copy Bindex mostly unmodified key-pointer pairs to the log on each write in addition to the updated
value itself as depicted in Figure 6.16.

When using smaller arities, the performance of sequential insertions and random insertions
where the set of keys fits into RAM is much faster, but random insertions when the set of keys does
not fit into RAM can be much slower. The reason smaller arities can slow down random inserts
when the set of keys does not fit into RAM is that more than one level of parent nodes may be
out of RAM. Therefore, we may have to randomly fault in more than one parent node per random
insert.

In our experiment we balanced the mock LFS tree to the best of our ability [13, 145]. We used
an arity of 2 so that random insertions would be as fast as possible before the set of keys exceeded
RAM in size. After repeated insertions cause the set of keys to be larger than what can fit into RAM,
our mock LFS configuration faults in no more than two parent nodes per random write. Therefore,
the difference in performance between LSM-trees and mock LFS could at best be halved if a larger
arity is used, but the difference in measured performance between LSM-trees and the mock LFS
tree is far more than a factor of 2.

114

Figure 6.17: Copy-on-write LFS performance when thrashing: Once the size of the index exceeds
the size of RAM, becoming random read-bound slows LFS insertion to random read throughput.

115

We inserted 100 million elements in random order into mock-LFS and the LSM-tree represented
as CHISL. For both mock-LFS and CHISL we ran the test on two different configurations: RAM
and SSD, and RAM and SAS (magnetic disk). Initially mock-LFS was able to rapidly insert the
first 33 million (225) key-value pairs into its in-RAM cache and sequentially write them to the log.
However, once the size of the index exceeded RAM, both mock-lfs-ssd and mock-lfs-sas

began performing at least one random read per insertion to find the parent of the node to insert
into, so it can append a new node and parent in its output log. The mock-lfs-sas configuration
is indeed much slower than the mock-lfs-ssd configuration. After 5,000 seconds, however, even
the mock-lfs-ssd was only able to reach an average throughput of 5,407 inserts/sec, averaged
from 5,000 seconds until the end of the benchmark. The LSM-tree’s insertion throughput on SSD
is represented by CHISL-ssd and is 136,000 random inserts/sec in this benchmark. The LSM-
tree has comparable throughput for both SSD and SAS. This is because, even though the devices
have substantially different random read performance, they have comparable sequential read and
write performance: random insertion into an LSM-tree depends only on sequential read and write
performance. Twigg independently makes the same argument we make here, and runs a similar
simulation (written in OCAML [56]) with similar results.

Merge trees Log-structured merge-trees can be used to store key-value pairs at high insertion
throughputs. Because of their high insertion and update throughputs, they form the basic build-
ing block of contemporary cluster database designs as explained in Section 5.1. We introduce and
comprehensively explain LSM-trees in Section 3.2. Section 5.2 described the COLA [11], our for-
malized SAMT analysis of the compaction algorithm used by Cassandra [66], Section 5.3 described
the multi-tier SAMT (MT-SAMT) which we started with as the basis of the generalized LSM-tree,
the VT-tree, which we discuss in Chapter 6.

Merge trees never perform a random read when doing an insert or complete update of a data
item. This is possible because data items are written to storage in large sorted lists that are peri-
odically compacted using a minor compaction which issues only sequential reads and never faults
in pages randomly. The merge tree can then perform queries by creating a view on multiple sorted
lists. Essentially, randomly inserted items are never allowed to stray too far apart. Therefore,
a complex indexing framework to track these items is not required, and need not be updated on
append as with the case of a copy-on-write LFS tree.

For typical configurations, Merge trees typically perform random reads more slowly than either
In-place or copy-on-write LFS trees, and typically perform scans more slowly than In-place trees.
However, if queries are typically either point queries or scans that are always larger than several
dozen blocks, Bloom filters [15] can be used with great effect to avoid most overheads in lookup,
while maintaining an order of magnitude or more increase in insertions, updates, and deletes. In
the worst case scenario, a merge tree will perform a short scan approximately 10× slower than an
in-place tree or a copy-on-write LFS tree.

In Table 6.3, we list tree data structures that are well suited for storing data on disk or Flash
SSD. All of these data structures are analyzed using the DAM model, which is introduced and
discussed in Section 3.2.1 and applied in Section 5.2 on the SAMT and COLA.

116

Insert Delete Update Lower bound small
scan

Large scan Multi-tier

SAMT d logK N
B e dK log2

K Ne dK log2
K N + A

B e No
MT-SAMT d logK N

B e dK log2
K Ne dK log2

K N + A
B e Yes

VTREE Depends on Input dlog2
K Ne dlog2

K N + A
B e Yes

K-COLA/LSM (K−1) logK N
B dlogK Ne dlogK N + A

B e No
Log-str. FS/B-tree Depends on Input O (logK N) Depends on Input No
B-Tree Depends on Input dlogB Ne dlogB N + A

B e+ S No

Table 6.3: Comparison of main storage data structures: We evaluated each framework according
to our four criteria. Each row represents a framework, and each column represents a criterion. The
VT-tree (SAMT+stitching) performs A insertions either in A

B
if sequential and batched, or A logK A

B

if not sequential or not batched. LFS inserts are A
B

if previous insertions have been sequential and
batched, otherwise LFS inserts of A elements are A due to forced random reads. Insertion into a
B-tree is A

B
if insertions are batched and sorted, or otherwise are logB N .

6.4.2 Quotient Filters and other Write-optimized Approaches
(1) Quotient Filters with LSM-trees Quotient Filters and their related work are discussed more
thoroughly in our companion paper [12]. We discovered quotient filters, and we found a first
reference to a similar structure in a paper by Cleary in 1984 [22]. In the Cleary paper, 5 bits
are used instead of 3, and more importantly, applications of the unique merging and re-hashing
capabilities of QFs are not discussed. Due to the inefficient handling of duplicates in QFs, QFs are
most useful when they are merged within the context of a log-structured merge-tree, as this allows
ample opportunity to remove duplicates and apply deletes. Our application of QFs to LSM-trees is
to the best of our knowledge unique.

Existing LSM-tree algorithms, designs, and implementations [20, 28, 31] do not address the
problem of re-hashing keys into a larger Bloom filter during Wanna-B-tree creation. Existing im-
plementations simply scan the keys while merging, which we have shown introduces unacceptable
IO overheads, and makes the stitching optimization far less useful.

(2) Write-Optimized Databases: Work related to GTSSLv1 is also related to GTSSLv2, we treat
with many other variants of write-optimized databases there as well, in Section 5.5. We summarize
some important log-structured database approaches in the following text.

BDB Java Edition (BDBJE) [30] is a log-based, no-overwrite transactional storage engine. In
BDBJE, each key-value pair gets stored in a separate leaf node of a B-Tree. It uses a log to store
the dirty key-value pair. It is unclear from the white paper [30] how BDBJE handles completely
random insertions while keeping its number of internal nodes (INs and BINs) bounded within
RAM without re-balancing, and consequently, randomly reading its leaf nodes, or performing a
minor compaction (similar to that of LSM-trees) to re-integrate newly created leaf node entries with
existing leaf nodes. The paper does not provide details on this reason for a kind of compaction,
what compaction would be used, or how BDBJE operates under this access pattern. It is, however,
stated in the BDBJE FAQ [98] that if all keys (contained within BINs) are not resident in RAM,
then every operation in a completely random write pattern requires faulting in a likely evicted BIN.

117

This causes random reads on almost every insertion or other random write. This effect is not unique
to BDBJE, but is a side-effect of all log-structured B-trees or red-black trees [146]. We emulated
this effect with a highly idealized stochastic benchmark in Section 6.4.1 where we show that even
if compaction overhead is not counted, just randomly reading keys on each random insertion will
be far costlier than using an LSM-tree approach for large working set sizes, even on Flash SSD
devices.

On the other hand, it is clear how LSM-trees achieve optimal insertion throughput for the lookup
throughput they provide, and minor compactions are predictable in length and exact time of occur-
ring, regardless of workload or access pattern. Bounds on amortized insertion time are guaranteed
for both the COLA [11, 28] and SAMT [31, 136] variations on the LSM-tree. De-amortization can
increase predictability of latency without sacrificing insertion bounds [11].

(3) Relation to LFS Threading and other Cleaning Cleaning in the log-structured file system
is a difficult problem that ties together out-of-space two concerns: the efficiency of various com-
paction algorithms, and when to schedule cleaning. In our work we introduce a third concern:
efficient storage and retrieval of tuples when a randomly written-to working set’s keys cannot fit
within RAM. This is an important workload for indexing systems such as BigTable [20], dedupli-
cation systems [153], and any workload where write operations do not depend on the result of a
random read [11, 136].

In Section 3.2, we describe two forms of compaction: minor compaction which is performed
regularly to ensure the LSM-tree remains efficient for querying; and major compaction which is
performed periodically and can be likened to compaction in an LFS. GTSSLv1 treats major com-
pactions as a minor compaction that involves all lists or SSTables. In either case, during a minor
compaction, we avoid the overheads typically associated with LSM-trees while performing sequen-
tial workloads, by utilizing stitching.

The concept of stitching is reminiscent of threading in log-structured file systems [115]. A
log-structured file system can avoid copying old data blocks to the beginning of a newly compacted
log by leaving them in place and allocating from the blocks in-between. The primary difference
between stitching and threading is that stitching occurs when merging two or more SSTables in an
LSM-tree. There are many tuples in each block pointed to by a secondary index entry in a stitch-
ing LSM-tree or VT-tree. As shown in Figure 6.3, some blocks of tuples must be copied into a
new larger pair of blocks in order to bound the total number of secondary index entries. Further
complications arise when performing deletes. As discussed in more detail in Chapter 5, deletes
are performed during a major compaction. When stitching, deletes that are omitted reduce the size
of the resulting block as it contains fewer tuples. Therefore, blocks that must have their deletes
removed are copied during a merge, to bound the total number of secondary index entries. Bound-
ing the number of secondary index entries is vital to maintaining the LSM-tree’s good insertion
throughput.

Log-structured file systems can rely on storing meta-data required for efficient retrieval of data
within RAM. Indeed this increase in size of RAM for caching is a precept of Rosenblum and
Ousterhout’s paper [115]. Conversely, LSM-trees expect to hold O (log) N of their keys in RAM.
It is not obvious how a log-structured or copy-on-write B-tree would keep the size of its secondary
index bounded in the face of completely random writes without performing random reads, or per-
forming some form of merging similar to how LSM-trees operate.

The copy-on-write approach (used by WAFL [51] and ZFS [16]) is shown by Twigg et al. to

118

be as slow as the storage device’s random read throughput when performing random insertions and
the index of keys no longer resides in RAM [146]. In the DAM model, each random write would
cost O (1) for a copy-on-write LFS tree. Conversely, and as shown in Chapter 5, a random write to
a VT-tree would cost dlogK Ne

Bsmall
. We also provide an explanation and idealized experimental analysis

of this effect in Section 6.4.
Since the LSM-tree packs new random insertions into newly allocated zones (or clusters in LFS

terminology), it makes full use of the storage device’s sequential bandwidth. It is the LSM-tree’s
repeated rounds of merging that allow an LSM-tree to bound the total number of lists and size of
its secondary indexes when performing random writes. Copy-on-write LFS trees bound the size
of their secondary indexes by maintaining keys in sorted order and faulting in blocks of keys as
needed. This has to happen all the time when performing random writes and the set of keys does
not fit into RAM. In this way, an LSM-tree is different from a log-structured or copy-on-write B-
tree and it can better support random write workloads [11,20,145]. We have extended the LSM-tree
to support more sequential workloads by understanding how to perform stitching, as introduced in
Chapter 6.

Stitching alone is not sufficient to maintain good point query performance. LSM-trees use
Bloom filters to avoid performing I/Os while searching through SSTables that do not contain the
key. This way they can usually spend just one I/O searching through the list that does have the key,
or no I/Os if the key does not exist. However, an LSM-tree that uses a Bloom filter would still have
to scan every block—even those it stitches—to recover the keys within each block (that could not
fit in RAM) to re-hash them into a new Bloom filter. It was this fundamental limitation of Bloom
filters that led us to a joint research on cascading quotient filters (QF) [12]. Using QFs, we can re-
construct the QF belonging to an SSTable resulting from a merge of other SSTables without having
to scan any blocks. To obtain the QF of an SSTable resulting from a merge, we simply merge the
two QFs from the SSTables being merged together—that are already in RAM—to create the QF for
the resulting SSTable. This merging capability of QFs and the concept of merging them alongside
the regular compactions of the LSM-tree, allows us to continue to avoid I/Os when stitching, even
when re-hashing filters to maintain good point query performance.

These difficulties, along with determining when blocks can and cannot be stitched due to up-
dates, deletes, or interleaving are not addressed in Rosenblum or Ousterhout’s work. In their work,
Bloom filters were not required, primarily because the log-structured file-system maintained all
keys in RAM and merging was not required to bound the number of lists or size of secondary
indexes.

Alternative LFS Cleaning Approaches In addition to the Sprite LFS cleaning approaches such
as threading, there are several other approaches for reducing the cost of compaction in an LFS.
Matthews et al. [76] utilize a graph to maintain a cache of recent read access patterns. This graph
is consulted when cleaning to decide which blocks to place together when moving them out of
fragmented segments and into new compacted segments. Additionally, Matthews et al. explore
the application of dynamically switching cleaning methods from a standard cleaner to a “hole-
plugging” cleaner that utilizes free (but fragmented) space within existing segments to perform
allocations.

Other approaches to reducing the impact of compaction focus on identifying idle times when
running background compaction. These have a minimal impact on important workloads executing

119

on the storage system [14].
Optimizing on-disk layout based on recent popular access patterns and identifying idle times to

run cleaning with minimal impact are important lessons to any log-structured system that wants to
minimize the impact of compaction on file system performance. LSM-tree based file systems and
storage systems can capitalize on these techniques by scheduling large minor or major compactions
to occur while the system is idle. Our generalized stitching LSM-tree discussed in Chapter 6 could
be modified to physically place groups of tuples frequently accessed together based on expected
read access patterns even while secondary index entries pointing to these tuples remain in sorted
order. Making such modifications to exploiting these kinds of techniques in the context of LSM-tree
based storage systems is a topic of future work.

6.5 Conclusions
We found that stitching configurations perform at least as well as traditional LSM-trees. However,
when there was any sequentially (e.g., random appends vs. random insertions), stitching configu-
rations performed upwards of 2.5× better than the standard LSM-tree algorithm which performed
copies on every merge. In addition to being able to trade off locality for insertion throughput
for random appends, sequential insertions are 3.1× faster with stitching with no loss in scan per-
formance. For CPU-bound workloads, such as inserting 64B tuples, stitching permits workloads
with some sequentiality to perform 2× faster than under a traditional LSM-tree. Our prototype
SimpleFS system benchmark shows that stitching LSM-trees can perform comparably to existing
native kernel-level file systems within the overheads imposed by the FUSE framework.

The culmination of lessons learned in previous trial designs discussed in Chapters 4–5 is that the
choice of data structure, and the decision to host the database and transaction manager at the user-
level, are critical to efficiently and simply supporting the desired abstractions of system transactions
and key-value storage for system processes.

Our main goal was to build a simple storage system that supports both file system and database
workloads and, provides efficient system transactions to applications. With our novel extension
to LSM-tree, GTSSLv1 can perform efficiently for highly sequential workloads (file-based data
access), as well as highly random workloads (structured data access, databases), and anything in
between. We showed that our sequential optimization, stitching, is a must feature in LSM-trees in
order to support sequential and file system workloads. We further showed that stitching can only
avoid read IOs if quotient filters are employed to permit merging of filters entirely within RAM.

Table 6.4 now lists GTSSLv2 in comparison to other storage systems in terms of transactional
design decisions. GTSSLv2, like GTSSLv1, can switch between concurrent small durable trans-
actions and larger or asynchronous transactions in the same workload; spending either one or two
writes when necessary. GTSSLv2 is log-structured and supports value logging for generic ACID
transactions. Unlike GTSSLv1, GTSSLv2’s current implementation has been extended to support
larger-than-RAM transactions. Details as to how this is accomplished is part of joint research
with Pradeep Shetty and is discussed in future work in Chapter 8. GTSSLv2 uses mmap for page
caching, and write with msync and MS INVALIDATE for efficient sequential writes. Unlike
GTSSLv1, GTSSLv2 is able to perform sequential writes at 90MB/sec or 81% of the disks sequen-
tial write throughput, and is CPU-bound meaning that its data structure is not the bottle-neck, but
implementation efficiency. For this reason, GTSSLv2 is able to perform efficient sequential writes.

120

Type Num Log- Trans- Conc- Async Write Random Stitch- Sequen-
Writes Struct. actions urrent Order ing tial

Ext3 FS 1 ¬ MD-only ¬ X Kernel R ¬ R,W
SchemaFS∗ FS 3 ¬ Logical X X User R ¬ R
Valor FS 2 ¬ POSIX ¬ X Kernel R ¬ R
LSMFS FS 1 X MD-only ¬ X mmap S,W ¬ R,W
Cassandra KVS 2 X Single X X mmap P,S,W ¬ R
GTSSLv1 KVS 1–2 X Vals X X mmap P,S,W ¬ R
GTSSLv2 KVS 1–2 X Vals X X mmap P,S,W X R,W

Table 6.4: A qualitative comparison of Transactional Storage Designs: VT-trees permit sufficient
flexibility to process both random and sequential access workloads. The log-structured nature of
VT-trees makes them easy to integrate into a log-structured architecture.

121

Chapter 7

Conclusions

In this thesis we described several designs, and focused on two in specific: (1) a transactional
extension to the operating system support layer for file systems, and (2) flexible, scalable, and
transactional, extensions to a widely used database design intended for high-throughput insertions,
updates, and deletes. We have learned lessons along the way about how a consolidated storage
system that supports transactional key-value storage for small to large tuples and files might look.
These are enumerated and explained in Section 7.1.

We finally summarize the conclusions of this thesis in Section 7.2.

7.1 List of Lessons Learned
Once Written, Twice Nearby In Chapter 4 we discussed in detail the design, implementation,
and evaluation of a transactional VFS layer—called Valor—designed to allow any file system to
support application level system transactions. Like Stasis [120] and Berkeley DB [130], we chose
to use undo and redo records. We decided to closely follow a traditional ARIES [85] journaling
architecture.

This design allowed us to provide transactions to lower file systems, even without modifying
them. However, we suffered significant performance overheads. We found that these overheads
were not unique to the Valor implementation, but similar overheads or worse could be observed by
running the same workloads on other transactional storage and database libraries such as Stasis and
Berkeley DB.

We concluded that if we want a modular solution that will work with most underlying file
systems, we will have to pay for at least two writes (a redo record and the actual write), and
possibly additional reads and processing depending on what restrictions we place on transaction
sizes. After Valor, we decided to pursue a more specialized solution that would perform fewer
writes by customizing both the transactional design and the underlying data structures used.

Journaling: A Special Case An WAL transactional system typically supports small and large
durable transactions. Berkeley DB and Valor also support asynchronous transactions or non-

122

durable (but still atomic) transactions. There are some important optimizations typically used by
these systems, such as group commit, which make the WAL architecture well-suited to applications
which run small durable transactions, but may have to run transactions larger than RAM. However,
if some transactional features were omitted, the transactional system could have been designed
differently to allow enhanced performance for specific workloads.

The Cedar file system [39] introduces the concept of journaling in combination with a fast file
system design to maintain the file system’s meta data consistency after a crash or other failure.
Cedar is an example of a file system which does not use the standard ARIES variant of WAL.
Like Cedar, Ext3 [19] uses redo-only logging and in its default ordered mode always writes data
blocks before meta-data blocks. Ext3 never needs to roll back a transaction because it will never
partially commit a transaction. Partial transaction commit typically occurs because of memory
pressure. However, all transactions in Ext3 are very small, and are composed of inode updates
which can be arbitrarily separated into multiple transactions if necessary. Since Ext3 also does not
allow applications to transactionally write to multiple data blocks, there is no source of memory
pressure that would force Ext3 to partially commit a transaction.

Ext3 also exploits the notion that it must only provide atomic updates of inode meta-data,
and not even guarantee durability. This allows Ext3 to group together multiple log writes for even
single-threaded workloads, and to saturate a commodity storage device’s read and write throughput
with minimal overhead from journaling [122].

We learned by designing Valor, and by studying other journaled and log-structured transac-
tion systems [16, 51, 114, 125], that one size does not fit all [138], and that by understanding what
transactional semantics are desired, significant overheads like those present in Valor and other
WAL-based systems can be avoided, much like how Ext3 is able to perform closely to or sur-
pass its non-journaled predecessor, Ext2. Through the course of our research we observed how-
ever, that some of the most compelling reasons to support system transactions require transactions
much larger than RAM. One commonly cited example is a system-wide package installation or
upgrade [106, 135, 151]. Similarly, many smaller transactions that require durability can benefit
from a more ARIES-like approach.

We discovered that if the storage system is log-structured, it can naturally support both durable,
asynchronous, large, and small transactions in the same workload. By log-structured, we mean that
the storage system can refer to its previously flushed transactional logs to perform queries. A log-
structured system with the right transactional architecture can be both ARIES-like and Ext3-like
when necessary. Implementation details for this type of transactional architecture and its integration
with a log-structured merge-tree were discussed in Chapter 5.

Keep your Caches Close, Keep your Shared Caches Closer Another advantage to Ext3’s lim-
ited transactional architecture is its easier implementation in the kernel. Conversely, we have found
that porting large sophisticated storage systems into the kernel can be extremely cumbersome and
difficult [59, 151]. So one major influence in our storage research has been taking into account im-
plementation difficulty and complexity, and engineering solutions that may not have to completely
reside in the kernel. When designing Valor, we followed this lesson by not putting all transactional
functionality into the kernel.

Because of the complexity of these more featureful storage systems, when implementing a
transactional storage system for file system and database workloads, we did so in user-space. In past
related research we either utilized ptrace primitives, or more recently used FUSE. We have con-

123

ducted several research projects that were based on or discussed FUSE including Story Book [134]
and LSMFS [133]. We found that FUSE can inhibit application performance dramatically when
every VFS request it receives from a system call must be sent to the user-level server daemon. We
explored two different ways of avoiding this round-trip-time: (1) by not using FUSE and instead
finding another way to secure inter-process storage cache sharing, and (2) by finding a way to
overcome cache-incoherency issues that arise when enabling FUSE’s in-kernel caches.

In Section 3.3.2, we discussed an alternative we explored [133] to using FUSE for a user-
level file system. Essentially we enabled applications to directly access a shared memory cache
instead of using the NFS-like relay mechanism employed by FUSE. This allowed our workloads to
perform as efficiently as kernel-level file systems for in-cache workloads, but required a separate
VFS implementation, a system call trampoline mechanism. Furthermore, we had to map large
shared user-level file system caches into each process’ address space. Although this did not threaten
security because we required a kernel context-switch to access these address ranges, it increased
the complexity of the kernel and required per-thread stack maintenance in each address space.

We found that if we could leave FUSE’s read-caching enabled, it performed comparably well
to native file systems for read-only benchmarks. Unfortunately, when read caching is enabled,
many VFS read-related requests will never be forwarded to the user-level server or daemon. For
some developers of FUSE-based file systems, not receiving every read request is not an option. For
example, a file system that logs every read access for security monitoring reasons will not meet
its specifications while FUSE read caching is enabled. FUSE also does not support write-back
caching. We have found in experimentation that FUSE can benefit from batching together multiple
write requests.

If in-RAM or in-cache performance is important, an efficient user-level implementation will
work as long as the caches accessed by applications can be immediately accessed using shared
memory, either within the kernel address range, or some other protected address range. FUSE
remains a promising path toward more simply shared inter-application caches, but currently it does
not support a write-back cache. Most importantly, developers of FUSE-based file systems must be
able to work around not receiving every read request.

Get to the Point In our work on LSMFS [133], we measured the file creation throughput of
LSMFS against several in-kernel file systems. These results were discussed in the “User-Space
LSMFS” vignette, Section 3.3.2. At the time that research was conducted we developed a file
system based on a database schema not too unlike that used in SchemaFS from Section 3.3.1.
Since page ranges were at least one page large, the secondary indexes of these tables could be
expected to fit into RAM. Other meta-data operations such as inode and path lookup, file creation,
existence checking, and read and write operations can also be performed with strictly point queries
or in-RAM index queries. Listing directories requires placing a database cursor, and incrementing
it multiple times, which is generally more expensive operation than a single point query.

Zhu, Li, and Patterson [154] found that you can actually perform unique creations rapidly by
using a write-optimized index and a Bloom filter. Newly created unique items will be falsely
reported as already existing by the Bloom filter K% of the time, where K is the false positive
rate. All the others can be efficiently inserted into the write-optimized index. We discovered that
with LSMFS, where we use an LSM-tree as our write-optimized index for inodes and dentries,
we could create files orders of magnitude faster than existing file systems (this is discussed in
detail in the vignette below). Later we discovered it was possible to perform point queries in an

124

LSM-tree at the disk’s random read throughput (discussed in Chapter 5). The lesson here was that
many common meta-data operations can be performed orders of magnitude faster than existing file
systems without violating POSIX semantics, or using asynchronous error reporting buffers.

Log-structured and mmap When developing LSMFS and later GTSSLv1 we learned that new
data writes do not overwrite existing pages. On the other hand, writes to the journal must be held
until related data writes are flushed. For example, a journal entry may point to a list of flushed
tuples, although the list can be flushed at any time, the journal entry pointing to it cannot be flushed
until the list is entirely on the storage device. This implies that log-structured systems can place
their data caches in a large mmap, and must only buffer log writes, that are sequential and for
which a simpler buffering implementation is obtained. This allows these systems to benefit from
a zero-copy page cache managed by the kernel, and the kernel is free to flush this cache when
necessary.

We found upon analyzing Cassandra’s source code that this optimization is already in use there.
However, although we used mmap in LSMFS for page caching, we incurred additional overheads
on write operations. When writing to an mmaped region, the kernel does not know if you will only
partially write, and then read the remainder of a single page, and so it faults-in whole pages, even if
they will be over-written by the process. GTSSLv1 avoided this by using write and msync with
the MS INVALIDATE flag to invalidate mmaped regions after calling write.

Sequential and Multi-tier LSM-trees: a promising avenue for file system design In addition
to a flexible transactional architecture that allows for high-throughput asynchronous updates and
reads and group commit of small durable transactions, the data structure underlying the storage
system should exhibit certain properties.

First, we have found that a log-structured data structure permits the greatest flexibility in allow-
ing transactions both larger and smaller than RAM, as well as durable and asynchronous transac-
tions.

Second, we have found that supporting both random index updates and insertions, as well as
maintaining a high scan throughput, can be achieved with a log-structured merge tree (LSM). This
data structure is widely used in NoSQL type databases, but the data structure itself can be used with
any transactional paradigm. One of the more popular variants of the LSM-tree is the COLA [11]
which is used by HBase [28] for compaction. Within the disk-access model (DAM model), it is
not possible to find another data structure that inserts as quickly as the COLA, but can query any
faster, or vice verse [18]. It should be noted that it is also not possible to find a data structure which
can randomly insert and query faster than the B-tree [18]. The LSM-tree trades-off query time for
increased insertion throughput. In practice, LSM-tree queries can be sped up dramatically with the
aid of Bloom filters and appropriate caching. Since LSM-trees are log-structured, we can support
both ARIES (database) and Ext3-style (file system) workloads as summarized in Section 3.4 and
detailed in Chapter 5.

Third, we have found with LSMFS and as further discussed in our vignette below, that support-
ing larger tuple insertions, or sequential tuple workloads is vitally important for many common file
system operations and workloads. As we will discuss in detail in Chapter 6, LSM-trees are inef-
ficient at performing these kinds of operations. Our generalized LSM-tree can efficiently perform
sequential file system-like workloads, and those results are also discussed in Chapter 6.

125

We showed in Chapter 6 that our generalized LSM-tree can serve as a new basic underlying file
system data structure by supporting both random and sequential workloads, as well as a file system
file server workload, and we hope that the contents of this thesis will help guide future research in
studying the application of LSM-trees to scalable, transactional file system design.

7.2 Summary
Searching for a consolidated, transactional, and workload-flexible storage system involves opti-
mizing the data structures, design, and implementation to best meet those goals. Trying to retrofit
existing file system designs to support new abstractions and paradigms is a low-hanging fruit for
researchers, but ultimately leads to performance issues, scalability issues, and most importantly
awkward, or limited abstractions. We began with an idea of what we wanted, and then after at-
tempting to make it fit in as a component of existing systems, and suffering from the requisite
performance and engineering difficulties, we ultimately realized a much better solution was to start
again, with lessons learned from our research to inform a design which would still be efficient, and
offer both system transactions and a key-value storage interface that would perform well for a range
of workloads from structured to sequential data.

Research in storage systems must pay closer attention to the underlying data structures that are
relied upon. A thorough understanding of the theoretical limitations of underlying data structures
from the perspective of a limited RAM and a less limited storage device can help to realize a storage
system that is more flexible for a variety of workloads, and is more future-proof even as workloads
and demands on storage change. Such a system if designed from the ground up to support widely
used and highly desirable abstractions, such as transactions and key-value storage, can be simpler,
more efficient, and more scalable overall.

126

Chapter 8

Future Work

Beyond what is described and shown in Chapters 4–6, there are many interesting avenues for this
research. At the heart of our design is the idea of linking together many trees of the same schema
to provide snapshots, transactions, stitching, and more. This idea can be extended to network
scenarios, and the algorithms employed can be extended for multiple storage tiers. We believe the
abstraction of merging many trees together is one that will make powerful transactional and key-
value storage semantics not only possible on a single node, but on a network of nodes. We discuss
some of these ideas below.

8.1 External Cache Management
As operating systems become increasingly more complex, they must distribute operating compo-
nents into modules, and rely on message passing between these modules to simplify the architec-
ture as well as to better exploit machines with an increasing number of cores, NUMA regions, and
multiple buses. File systems can no longer be developed as a main-memory data-structure that
periodically flushes its contents to a storage device. The file system must assume that multiple
client caches will exist that will be read and updated independently of each other. GTSSL already
supports this workload where the client cache corresponds 1-to-1 to a transaction. It would be
beneficial to explore tying these independent transaction caches with affinity to a particular core or
memory region.

8.2 Opt-in Distributed Transactions with Asynchronous Reso-
lution

In a larger context, the algorithms and techniques within this thesis could be extended to multiple
nodes where each client maintains its own transactional state. Commits would happen periodically
as map-reduce processes that perform a merge of all committed lists, and notify clients when a
transaction is rejected and must be restarted. Rejections could be avoided by reserving ranges of

127

the key-space with the commit process so that rejection favors those who reserved the range in
the key-space in which the conflict occurs. This requires that transactions that want to guarantee
commit of transactions do so by contacting a lock-tree (which can also be distributed in a more
task-specific manner). The transactions that wish to forgo this guarantee do not suffer performance
loss. Thus, guarantee of transaction commit is opt-in.

8.3 Multi-tier Deployments for Client-side Compaction
Currently database clusters are distributed across many machines, but the clients are expected to do
little or not partake in the operation of the database. One possible avenue of future work is to have
clients compact insertions locally into lists, and then rather than sending each request across the
Internet, send large compacted lists of insertions across the network. As the transactional model
used allows applications to update their client-side independently, queries on data created by the
client can be answered locally by the client itself. If a lock reservation system is used, the client
need not worry about abort of its transaction if it contacts the lock management system maintained
by the server before performing updates and modifications to the key-spaces it intends to modify
or read.

The view manager, the module responsible in SBFS for unioning multiple read-only snapshots
into a single consistent view for a transaction, and for maintaining pessimistic locks, can naturally
be shelled out to a separate server. In this way multiple nodes could define a single view manager
that would maintain locks across ranges in the keyspace of various tables, and tell nodes where
various snapshots are located so that tables distributed across multiple machines can be viewed as
a single table. We view this as an elegant and compelling architecture to extend SBFS DB to a
multi-tier deployment where different tiers are on different machines connected by a network.

8.4 Multi-tier Range Query Histograms
In joint work with Bender et al. [12], we showed how a Bloom filter could be replaced with another
data-structure suitable for use outside of RAM, the quotient filter. We also showed in this work
how it is necessary to support stitching alongside efficient filtering. We now explain the potential
benefit of a multi-tier range query histogram, a sort of “Bloom filter” for range queries, which
could be extended to an out-of-RAM context as well, allowing it to be incorporated into a multi-
tier regime as well. The basic idea is to use an X-fast (or Y-fast) trie [150] to separate keys into
roughly uniformly distributed clusters, whose most-significant bits are then stored in cascade filters
to maintain a compact representation. Insertion into this data-structure would probably be faster
than into a single cascade filter, but at the cost of added complexity to the architecture. Furthermore,
such a system would be incapable of obviating range queries on ranges where the start and end of
the range have the same most-significant bits as a key inserted into the VT-tree.

8.5 Multi-node Deployment
In our Chisl work [136] we explored the performance of a tablet server storage layer on a single
node, and found potential causes of slowness, and identified definite bottlenecks, while providing

128

architectural alternatives for transaction management and multi-tier support. Benchmarking these
extensions to verify that efficiency is maintained in the distributed case is a natural extension of
experimentation on this project.

8.6 B-tree-like Out-of-space management
Typically when an LSM-tree nears the capacity of the storage device, it begins to perform in-
place merging, and non-optimal in-place merging. Essentially, there is enough space for only the
lowest level, and it consumes most of the free space. RAM merges in place with this massive
sequence on every flush. Cassandra simply requires half the disk be free. Flash drives handle
out-of-space scenarios more gracefully, but still performance can drop by a factor of 5× when
performing random insertions on an Intel X-25 Mv2 that is 90% full compared to 55% full. In
the DAM model, if the RAM buffer is B times smaller than the massive single list on disk, an
in-place merge is equivalent to randomly writing each el in the RAM buffer. However, if the els
are sequential, and could be written in A

B
time for A els, this is a huge penalty.

When a SAMT+stitching tree (VT-tree) runs out of space, a naive approach is to perform ineffi-
cient in-place merges as described above, where very small trees are merged into very large trees on
disk. By utilizing stitching, we intend to explore if the merge can be performed in name only. This
means that we perform a stitching merge, and only modify in-place blocks that need actually be
modified. If the changes are not randomly spread across the tree, we expect the vast majority of the
merge will be effectively free of charge as existing elements will merely be stitched back in place.
However, because space is tight, the resulting patch-tree will need to be immediately cleaned, if
not during the merge itself. This will result in random writes as the inserted els will not have time
to coalesce with future els into larger blocks. In this way, the VT-tree begins to perform random
writes similar to a B-tree when it is low on space. This is an interesting aspect of the research, and
may demonstrate a linkage between B-trees, LSM-trees, and an LFS.

8.7 GTSSLv3: Independent SAMT Partitions for Partitionable
Workloads and Multi-Tiering with Stitching

Work on GTSSLv2 consisted primarily of extending LSM-trees to support stitching, and then eval-
uating the performance benefit of this extension. We also are currently undergoing work on ex-
tending the transactional architecture of GTSSLv2 to support multiple VT-trees that can be used
in parallel, and then placed into a single VT-tree which is then asynchronously re-shaped using
merging compactions. This is joint work with Pradeep Shetty.

By permitting multiple VT-trees to be used, we can begin transactions by creating a new VT-
tree, and maintain locks in a separate lock-tree with deadlock detection. When a transaction com-
mits, we simply place the patch-trees of the committing VT-tree into the most recent VT-tree shared
by non-transactional applications. After the commit, we create a new common VT-tree that non-
transactional applications commit into.

This form of “snap-shotting as transactions” also solves several incoherency problems with how
FUSE limits use of its read cache, and also can potentially parallelize partionable workloads in a
natural and transparent way.

129

Bibliography

[1] M. AB. MySQL Reference Manual, March 2007. www.mysql.com/doc/en/index.
html.

[2] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander
Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for analytical
workloads. Proc. VLDB Endow., 2:922–933, August 2009.

[3] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh. Lazy-adaptive tree: an
optimized index structure for flash devices. Proc. VLDB Endow., 2(1):361–372, 2009.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP ’2009), pages 1–14. ACM SIGOPS, October 2009.

[5] Eric Anderson and Joseph Tucek. Efficiency matters! SIGOPS Oper. Syst. Rev., 44:40–45,
March 2010.

[6] The Apache Foundation. Hadoop, January 2010. http://hadoop.apache.org.

[7] Apple Computer, Inc. HFS Plus Volume Format, March 2004. http://developer.
apple.com/technotes/tn/tn1150.html.

[8] Apple, Inc. Mac OS X Reference Library, 2009.

[9] A. Appleby. Murmur Hash, January 2012. http://sites.google.com/site/
murmurhash.

[10] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms (extended abstract). In
University of Aarhus, pages 334–345. Springer-Verlag, 1995.

[11] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J.Nelson.
Cache-oblivious streaming b-trees. In SPAA ’07: Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures, pages 81–92, New York, NY, USA,
2007. ACM.

[12] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Medjedovic, P. Montes,
P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash: How to cache your hash on flash. In
HotStorage ’11: Proceedings of the 3rd USENIX Workshop on Hot Topics in Storage, June
2011.

130

[13] P. A. Bernstein. Scaling Out without Partitioning: A Novel Transactional Record Manager
for Shared Raw Flash. In Proceedings of the HPTS 2009 Workshop, 2009. www.hpts.
ws/session2/bernstein.pdf.

[14] Trevor Blackwell, Jeffrey Harris, and Margo Seltzer. Heuristic cleaning algorithms in log-
structured file systems. In Proceedings of the USENIX 1995 Technical Conference Proceed-
ings, TCON’95, pages 23–23, Berkeley, CA, USA, 1995. USENIX Association.

[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[16] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems. http://hub.
opensolaris.org/bin/view/Community+Group+zfs/docs, 2010.

[17] D. P. Bovet and M. Cesati. Understanding the LINUX KERNEL. O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebatopol, CA 95472, 2005.

[18] Gerth Stolting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’03, pages 546–554, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[19] M. Cao, T. Y. Tso, B. Pulavarty, S. Bhattacharya, A. Dilger, and A. Tomas. State of the Art:
Where we are with the Ext3 filesystem. In Proceedings of the Linux Symposium, Ottawa,
ON, Canada, July 2005.

[20] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system for structured data. In
OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[21] B. Chazelle and L. J. Guibas. Fractional cascading: A data structuring technique with ge-
ometric applications. In Proceedings of the 12th Colloquium on Automata, Languages and
Programming, pages 90–100, London, UK, 1985. Springer-Verlag.

[22] J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE T. Comput.,
33(9):828–834, 1984.

[23] D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137, June 1979.

[24] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[25] J. Corbet. Solving the Ext3 latency problem. http://lwn.net/Articles/328363/.

[26] B. Cornell, P. A. Dinda, and F. E. Bustamante. Wayback: A User-level Versioning File
System for Linux. In Proceedings of the Annual USENIX Technical Conference, FREENIX
Track, pages 19–28, Boston, MA, June 2004. USENIX Association.

131

[27] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost of
doing science on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 50:1–50:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[28] Bruno Dumon. Visualizing hbase flushes and compaction. http://outerthought.org/blog/465-
ot.html, February 2011.

[29] E. D. Demaine. Cache-Oblivious Algorithms and Data Structures, 1999.

[30] BDB Java Edition. Bdb java edition white paper. www.oracle.
com/technetwork/database/berkeleydb/learnmore/bdb-je-
architecture-whitepaper-366830.pdfi, September 2006.

[31] J. Ellis. Re: Worst case iops to read a row, April 2010. http://cassandra-user-
incubator-apache-org.3065146.n2.nabble.com/Worst-case-iops-
to-read-a-row-td4874216.html.

[32] Filebench. http://filebench.sourceforge.net.

[33] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant Hov-
sepian, Andrew Matsuoka, and Lei Zhang. Generalized file system dependencies. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP
’07, pages 307–320, New York, NY, USA, 2007. ACM.

[34] FusionIO. IODrive octal datasheet. www.fusionio.com/data-sheets/iodrive-
octal/.

[35] E. Gal and S. Toledo. A transactional flash file system for microcontrollers. In Proceedings
of the Annual USENIX Technical Conference, pages 89–104, Anaheim, CA, April 2005.
USENIX Association.

[36] G. R. Ganger, M. Kirk McKusick, C. A. N. Soules, and Y. N. Patt. Soft updates: a solution
to the metadata update problem in file systems. ACM Trans. Comput. Syst., 18(2):127–153,
2000.

[37] N. H. Gehani, H. V. Jagadish, and W. D. Roome. OdeFS: A File System Interface to an
Object-Oriented Database. In Proceedings of the Twentieth International Conference on
Very Large Databases, pages 249–260, Santiago, Chile, September 1994. Springer-Verlag
Heidelberg.

[38] D. Giampaolo. Practical File System Design with the Be File System. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998.

[39] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar File System. Communica-
tions of the ACM, 31(3):288–298, 1988.

[40] B. S. Gill. On Multi-level Exclusive Caching: Offline Optimality and Why promotions are
better than demotions. In FAST ’08: Proccedings of the 6th conference on File and storage
technologies, Berkeley, CA, USA, 2008. USENIX Association.

132

[41] git. http://git-scm.com.

[42] G. Graefe. Write-optimized b-trees. In VLDB ’04: Proceedings of the Thirtieth international
conference on Very large data bases, pages 672–683. VLDB Endowment, 2004.

[43] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, San Mateo, CA, 1993.

[44] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Sqck: a declarative file system checker. In Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementation, OSDI’08, pages 131–146, Berkeley,
CA, USA, 2008. USENIX Association.

[45] M. Haardt and M. Coleman. ptrace(2). Linux Programmer’s Manual, Section 2, November
1999.

[46] M. Haardt and M. Coleman. fsync(2). Linux Programmer’s Manual, Section 2, 2001.

[47] M. Haardt and M. Coleman. fcntl(2). Linux Programmer’s Manual, Section 2, 2005.

[48] F. Hady. Integrating NAND Flash into the Storage Hierarchy ... Research or Product De-
sign?, 2009. http://csl.cse.psu.edu/wish2009_invitetalk1.html.

[49] R. Hagmann. Reimplementing the Cedar file system using logging and group commit. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP ’87),
pages 155–162, Austin, TX, October 1987. ACM Press.

[50] J. S. Heidemann and G. J. Popek. Performance of cache coherence in stackable filing. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95),
pages 3–6, Copper Mountain Resort, CO, December 1995. ACM SIGOPS.

[51] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server Appliance. In
Proceedings of the USENIX Winter Technical Conference, pages 235–245, San Francisco,
CA, January 1994. USENIX Association.

[52] Hypertable. Hypertable. www.hypertable.org, 2011.

[53] IBM. Hierarchical Storage Management. www.ibm.com/servers/eserver/
iseries/hsmcomp/, 2004.

[54] IEEE/ANSI. Information Technology–Portable Operating System Interface (POSIX)–Part 1:
System Application: Program Interface (API) [C Language]. Technical Report STD-1003.1,
ISO/IEC, 1996.

[55] Intel Inc. Over-provisioning an intel ssd. Technical Report 324441-001, Intel Inc., October
2010. cache-www.intel.com/cd/00/00/45/95/459555_459555.pdf.

[56] Objective Caml. http://caml.inria.fr/index.en.html.

133

[57] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti. Incre-
mental organization for data recording and warehousing. In Proceedings of the 23rd Inter-
national Conference on Very Large Data Bases, VLDB ’97, pages 16–25, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[58] D. Jung, J. Kim, S. Park, J. Kang, and J. Lee. FASS: A Flash-Aware Swap System. In Proc.
of International Workshop on Software Support for Portable Storage (IWSSPS), 2005.

[59] A. Kashyap, J. Dave, M. Zubair, C. P. Wright, and E. Zadok. Using the Berkeley Database
in the Linux Kernel. www.fsl.cs.sunysb.edu/project-kbdb.html, 2004.

[60] J. Katcher. PostMark: a new filesystem benchmark. Technical Report TR3022, Network
Appliance, 1997. www.netapp.com/tech_library/3022.html.

[61] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In
Proceedings of 13th ACM Symposium on Operating Systems Principles, pages 213–225,
Asilomar Conference Center, Pacific Grove, CA, October 1991. ACM Press.

[62] D. Kleikamp and S. Best. How the Journaled File System handles the on-disk layout, May
2000. www-106.ibm.com/developerworks/library/l-jfslayout/.

[63] S. R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Technical Conference, pages 238–247, Atlanta, GA,
June 1986. USENIX Association.

[64] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison
Wesley, 1973.

[65] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energy and performance evaluation of
lossless file data compression on server systems. In Proceedings of the Second ACM Israeli
Experimental Systems Conference (SYSTOR ’09), Haifa, Israel, May 2009. ACM.

[66] Avinash Lakshman and Prashant Malik. Cassandra: structured storage system on a p2p
network. In Proceedings of the 28th ACM symposium on Principles of distributed computing,
PODC ’09, pages 5–5, New York, NY, USA, 2009. ACM.

[67] C. Lamb. The design and implementation of a transactional data manager. In Sun 2004
Worldwide Java Developer Conference. Sun, 2004. www.oracle.com/technetwork/
database/berkeleydb/transactional-data-manager-129520.pdf.

[68] Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16:613–615,
October 1973.

[69] LevelDB, January 2012. http://code.google.com/p/leveldb.

[70] A. Leventhal. Flash storage memory. Communications of the ACM, 51(7):47–51, 2008.

[71] J. Levon and P. Elie. Oprofile: A system profiler for linux. http://oprofile.
sourceforge.net, September 2004.

134

[72] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash disks. In ICDE ’09: Proceed-
ings of the 2009 IEEE International Conference on Data Engineering, pages 1303–1306,
Washington, DC, USA, 2009. IEEE Computer Society.

[73] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C. Myers,
M. Day, and L. Shrira. Safe and efficient sharing of persistent objects in thor. In SIGMOD
’96: Proceedings of the 1996 ACM SIGMOD international conference on Management of
data, pages 318–329, New York, NY, USA, 1996. ACM.

[74] Wei Lu, Jared Jackson, and Roger Barga. Azureblast: a case study of developing science
applications on the cloud. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pages 413–420, New York, NY, USA,
2010. ACM.

[75] M. Mammarella, S. Hovsepian, and E. Kohler. Modular data storage with anvil. In SOSP
’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 147–160, New York, NY, USA, 2009. ACM.

[76] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and
Thomas E. Anderson. Improving the performance of log-structured file systems with adap-
tive methods. SIGOPS Oper. Syst. Rev., 31:238–251, October 1997.

[77] D. Maziéres. A toolkit for user-level file systems. In Proceedings of the Annual USENIX
Technical Conference, pages 261–274, Boston, MA, June 2001. USENIX Association.

[78] T. J. McCabe and C. W. Butler. Design complexity measurement and testing. Communica-
tions of the ACM, 32(12):1415–1425, December 1989.

[79] P. McCullagh. The primebase xt transactional engine. www.primebase.org/
download/pbxt_white_paper.pdf, 2006.

[80] R. McDougall and J. Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Archi-
tecture, Second Edition. Prentice Hall, Upper Saddle River, New Jersey, 2006.

[81] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX. ACM
Transactions on Computer Systems, 2(3):181–197, August 1984.

[82] Microsoft Corporation. Advantages of Using NTFS. http://technet.microsoft.
com/en-us/library/cc976817.aspx.

[83] Microsoft Corporation. Microsoft MSDN WinFS Documentation. http://msdn.
microsoft.com/data/winfs/, October 2004.

[84] M. Milenkovic, S. T. Jones, F. Levine, and E. Pineda. Using performance inspector tools.
In Proceedings of the 2009 Linux Symposium, pages 215–224, Ottawa, Canada, June 2009.
IBM, Inc., Linux Symposium.

[85] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

135

[86] D. Morozhnikov. FUSE ISO File System, January 2006. http://fuse.
sourceforge.net/wiki/index.php/FuseIso.

[87] Erik T. Mueller, Johanna D. Moore, and Gerald J. Popek. A nested transaction mechanism
for locus. In Proceedings of the ninth ACM symposium on Operating systems principles,
SOSP ’83, pages 71–89, New York, NY, USA, 1983. ACM.

[88] N. Murphy, M. Tonkelowitz, and M. Vernal. The Design and Implementation of
the Database File System. www.eecs.harvard.edu/˜vernal/learn/cs261r/
index.shtml, January 2002.

[89] David R. Musser and Atul Saini. The STL Tutorial and Reference Guide: C++ Program-
ming with the Standard Template Library. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1995.

[90] MySQL AB. MySQL: The World’s Most Popular Open Source Database. www.mysql.
org, July 2005.

[91] Beomseok Nam, Henrique Andrade, and Alan Sussman. Multiple range query optimiza-
tion with distributed cache indexing. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[92] S. Nath and A. Kansal. FlashDB: Dynamic Self-tuning Database for NAND Flash. Technical
Report MSR-TR-2006-168, Microsoft Research, November 2006.

[93] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn. Rethink the sync. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI
2006), pages 1–14, Seattle, WA, November 2006. ACM SIGOPS.

[94] M. A. Olson. The Design and Implementation of the Inversion File System. In Proceedings
of the Winter 1993 USENIX Technical Conference, pages 205–217, San Diego, CA, January
1993. USENIX.

[95] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (LSM-tree).
Acta Inf., 33(4):351–385, 1996.

[96] Oracle. Btrfs, 2008. http://oss.oracle.com/projects/btrfs/.

[97] Oracle. Database administrator’s reference. http://download.oracle.com/docs/
cd/B19306_01/server.102/b15658/tuning.htm, March 2009.

[98] Oracle. Bdb java edition faq. www.oracle.com/technetwork/database/
berkeleydb/je-faq-096044.html#33, September 2011.

[99] Oracle. Bdb java edition faq. www.oracle.com/technetwork/database/
berkeleydb/je-faq-096044.html#38, September 2011.

[100] Oracle Corporation. Oracle Internet File System Archive Documentation. http://otn.
oracle.com/documentation/ifs_arch.html, October 2000.

136

[101] R. Orlandic. Effective management of hierarchical storage using two levels of data cluster-
ing. Mass Storage Systems, IEEE Symposium on, 0:270, 2003.

[102] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel
Madden, and Michael Stonebraker. A comparison of approaches to large-scale data analy-
sis. In Proceedings of the 35th SIGMOD international conference on Management of data,
SIGMOD ’09, pages 165–178, New York, NY, USA, 2009. ACM.

[103] H. Payer, M. A. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch. Combo Drive: Optimizing
Cost and Performance in a Heterogeneous Storage Device. In Proc. Workshop on Integrating
Solid-state Memory into the Storage Hierarchy (WISH), 2009. http://csl.cse.psu.
edu/wish2009_papers/Payer.pdf.

[104] Eric Perlman, Randal Burns, Yi Li, and Charles Meneveau. Data exploration of turbulence
simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, SC ’07, pages 23:1–23:11, New York, NY, USA, 2007. ACM.

[105] Z. Peterson and R. Burns. Ext3cow: a time-shifting file system for regulatory compliance.
Trans. Storage, 1(2):190–212, 2005.

[106] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Em-
mett Witchel. Operating system transactions. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP ’09), pages 161–176. ACM, 2009.

[107] PostgreSQL Global Development Team. PostgreSQL. www.postgresql.org, 2011.

[108] Calton Pu, Jim Johnson, Rogério de Lemos, Andreas Reuter, David Taylor, and Irfan Zaki-
uddin. 06121 report: Break out session on guaranteed execution. In Atomicity: A Unifying
Concept in Computer Science, 2006.

[109] Calton Pu and Jinpeng Wei. A methodical defense against tocttou attacks: The edgi ap-
proach. In Proceedings of the International Symposium on Secure Software Engineering
(ISSSE’06), pages 399–409, March 2006.

[110] Aditya Rajgarhia and Ashish Gehani. Performance and extension of user space file systems.
In 25th Symposium On Applied Computing. ACM, March 2010.

[111] V. K. Reddy and D. Janakiram. Cohesion Analysis in Linux Kernel. apsec, 0:461–466,
2006.

[112] H. Reiser. ReiserFS v.3 Whitepaper. http://web.archive.org/web/
20031015041320/http://namesys.com/.

[113] H. Reiser. ReiserFS. www.namesys.com/, October 2004.

[114] M. Rosenblum. The Design and Implementation of a Log-structured File System. PhD thesis,
Electrical Engineering and Computer Sciences, Computer Science Division, University of
California, 1992.

137

[115] M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-structured File
System. In ACM Transactions on Computer Systems (TOCS), pages 26–52. ACM, 1992.

[116] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems, 10(1):26–52, 1992.

[117] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. In Proceedings of 13th ACM Symposium on Operating Systems Principles,
pages 1–15, Asilomar Conference Center, Pacific Grove, CA, October 1991. Association for
Computing Machinery SIGOPS.

[118] M. Saxena and M. M. Swift. Flashvm: Revisiting the virtual memory hierarchy, 2009.

[119] F. Schmuck and J. Wylie. Experience with transactions in QuickSilver. In Proceedings of the
13th ACM Symposium on Operating Systems Principles (SOSP ’91), pages 239–253, Pacific
Grove, CA, October 1991. ACM Press.

[120] R. Sears and E. Brewer. Stasis: Flexible Transactional Storage. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation (OSDI 2006), Seattle, WA,
November 2006. ACM SIGOPS.

[121] R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed, log-structured replication. In
Proceedings of the VLDB Endowment, volume 1, Auckland, New Zealand, 2008.

[122] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating performance and energy in file system
server workloads extensions. In Proceedings of the Eighth USENIX Conference on File and
Storage Technologies (FAST ’10), pages 253–266, San Jose, CA, February 2010. USENIX
Association.

[123] P. Sehgal, V. Tarasov, and E. Zadok. Optimizing Energy and Performance for Server-Class
File System Workloads. ACM Transactions on Storage (TOS), 6(3), September 2010.

[124] M. Seltzer and M. Stonebraker. Transaction Support in Read Optimized and Write Op-
timized File Systems. In Proceedings of the Sixteenth International Conference on Very
Large Databases, pages 174–185, Brisbane, Australia, August 1990. Morgan Kaufmann.

[125] M. I. Seltzer. Transaction Support in a Log-Structured File System. In Proceedings of the
Ninth International Conference on Data Engineering, pages 503–510, Vienna, Austria, April
1993.

[126] M. I. Seltzer. Transaction Support in a Log-Structured File System. In Proceedings of the
Ninth International Conference on Data Engineering, pages 503–510, Vienna, Austria, April
1993.

[127] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N. Soules, and C. A.
Stein. Journaling versus soft updates: Asynchronous meta-data protection in file systems.
In Proceedings of the Annual USENIX Technical Conference, pages 71–84, San Diego, CA,
June 2000. USENIX Association.

138

[128] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck.
NFS Version 4 Protocol. Technical Report RFC 3530, Network Working Group, April 2003.

[129] L. Shrira, B. Liskov, M. Castro, and A. Adya. How to scale transactional storage systems.
In EW 7: Proceedings of the 7th workshop on ACM SIGOPS European workshop, pages
121–127, New York, NY, USA, 1996. ACM.

[130] Sleepycat Software, Inc. Berkeley DB Reference Guide, 4.3.27 edition, December
2004. www.oracle.com/technology/documentation/berkeley-db/db/
api_c/frame.html.

[131] Keith A. Smith. File system benchmarks. www.eecs.harvard.edu/˜keith/
usenix96/, 1996.

[132] A. Z. Spector, J. Butcher, D. S. Daniels, D. J. Duchamp, J. L. Eppinger, C. E. Fineman,
A. Heddaya, and P. M. Schwarz. Support for distributed transactions in the tabs prototype.
IEEE Trans. Softw. Eng., 11:520–530, June 1985.

[133] R. Spillane, S. Dixit, S. Archak, S. Bhanage, and E. Zadok. Exporting kernel page caching
for efficient user-level I/O. In Proceedings of the 26th International IEEE Symposium on
Mass Storage Systems and Technologies, Incline Village, Nevada, May 2010. IEEE.

[134] R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and E. Zadok. Story Book:
An Efficient Extensible Provenance Framework. In Proceedings of the first USENIX work-
shop on the Theory and Practice of Provenance (TAPP ’09), San Francisco, CA, February
2009. USENIX Association.

[135] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and M. Chinni. Enabling transactional file
access via lightweight kernel extensions. In Proceedings of the Seventh USENIX Conference
on File and Storage Technologies (FAST ’09), pages 29–42, San Francisco, CA, February
2009. USENIX Association.

[136] R. P. Spillane, P. J. Shetty, E. Zadok, S. Archak, and S. Dixit. An efficient multi-tier tablet
server storage architecture. In Proceedings of the 2nd ACM Symposium on Cloud Computing
(SOCC’11), Cascais, Portugal, October 2011.

[137] M. Stonebraker. One Size Fits All: An Idea Whose Time has Come and Gone. In In Pro-
ceedings of the International Conference on Data Engineering (ICDE), pages 2–11, 2005.

[138] Michael Stonebraker and Ugur Cetintemel. One size fits all: An idea whose time has come
and gone. In Proceedings of the 21st International Conference on Data Engineering, ICDE
’05, pages 2–11, Washington, DC, USA, 2005. IEEE Computer Society.

[139] Sun Microsystems, Inc. Solaris ZFS file storage solution. Solaris 10 Data Sheets, 2004.
www.sun.com/software/solaris/ds/zfs.jsp.

[140] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in
the XFS file system. In Proceedings of the Annual USENIX Technical Conference, pages
1–14, San Diego, CA, January 1996.

139

[141] M. Szeredi. Filesystem in Userspace. http://fuse.sourceforge.net, February
2005.

[142] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A Nine Year Study of File System and
Storage Benchmarking. ACM Transactions on Storage (TOS), 4(2):25–80, May 2008.

[143] T. Ts’o. Planned Extensions to the Linux Ext2/Ext3 Filesystem. In Proceedings of the
Annual USENIX Technical Conference, FREENIX Track, pages 235–243, Monterey, CA,
June 2002. USENIX Association.

[144] Stephen Tweedie. Ext3, journaling filesystem. In Ottawa Linux Symposium,
July 2000. http://olstrans.sourceforge.net/release/OLS2000-ext3/
OLS2000-ext3.html.

[145] Andy Twigg, Andrew Byde, Grzegorz Milos, Tim Moreton, John Wilkes, and Tom Wilkie.
Stratified b-trees and versioned dictionaries. In Proceedings of the 3rd USENIX conference
on Hot topics in storage and file systems, HotStorage’11, pages 10–10, Berkeley, CA, USA,
2011. USENIX Association.

[146] Andy Twigg, Andrew Byde, Grzegorz Milos, Tim Moreton, John Wilkes, and Tom Wilkie.
Stratified b-trees and versioned dictionaries. In Proceedings of the 3rd USENIX conference
on Hot topics in storage and file systems, HotStorage’11, pages 10–10, Berkeley, CA, USA,
2011. USENIX Association.

[147] S. Verma. Transactional NTFS (TxF). http://msdn2.microsoft.com/en-us/
library/aa365456.aspx, 2006.

[148] L. Walsh, V. Akhmechet, and M. Glukhovsky. Rethinkdb - rethinking database storage.
www.rethinkdb.com/papers/whitepaper.pdf, 2009.

[149] A. Wang, G. Kuenning, P. Reiher, and G. Popek. The conquest file system: Better perfor-
mance through a disk/persistent-ram hybrid design. Trans. Storage, 2(3):309–348, 2006.

[150] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n). Inf.
Process. Lett., 17(2):81–84, 1983.

[151] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending ACID Semantics to the
File System. ACM Transactions on Storage (TOS), 3(2):1–42, June 2007.

[152] Peter Zaitsev. True fsync in linux (on ide). Technical report, MySQL AB, Senior Support
Engineer, March 2004. lkml.org/lkml/2004/3/17/188.

[153] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies. USENIX Association, 2008.

[154] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. In Proceedings of the Sixth USENIX Conference on File and Storage
Technologies (FAST ’08), San Jose, California, USA, 2008.

140

Appendix A

Glossary

An alphabetical glossary of terms is provided.

1ffs is a custom 1-file file system we built for use with user-level file systems such as LSMFS.
It is a simple file system that exports only a single file, but can respond to swapping and
flush events within the kernel and runs on top of the disk device [133]. In this way, a user-
level database or file system can intelligently respond to memory pressure without having to
pre-allocate a fixed cache size.

ACI is an acronym referring to (A)tomic, (C)onsistent, (I)solated, but not necessarily (D)urable.
This kind of transaction is commonly used in high-insertion throughput and file system work-
loads where individual operations are either more expendable, or are easily repeated [43]. See
“Transaction.”

ACID is an acronym referring to (A)tomic, (C)onsistent, (I)solated, and (D)urable [43]. See
“Transaction.”

ARIES is an acronym which stands for (A)lgorithm for (R)ecovery and (I)solation (E)xploiting
(S)emantics. It is the de facto write-ahead logging algorithm used for transactions and re-
covery in databases [85]. ARIES works well for many concurrent transactions which read
several random tuples, update their contents, and then durably commit these changes during
a transaction commit. ARIES can be between 2–3× slower than a typical file system for
more sequential file system workloads. ARIES gathers undo records and can be orders of
magnitude slower for transactions which only perform random updates, insertions, or deletes
compared to a log-structured approach.

Amino is a trial design [151] built on top of SchemaFS which provides support for system trans-
actions, or transactions that perform POSIX operations on the Amino file system. See trans-
actions, SchemaFS, and POSIX.

Berkeley DB is a database library [130] designed to be portable across many operating systems.
The library provides support for an extensible logging infrastructure, shared memory cache,
and transactional B-tree, hash table, and array on-disk data structures.

141

Bloom Filter is a space-efficient data structure used as an approximate membership query, or a
negative-cache for lookups [15]. It consists of k hash functions and a bit-array. To insert it
takes any key and translates it into k random bit-offsets within this bit array, and sets those
offsets to 1. To perform a “may-contain” query it takes any key and translates it into k random
bit-offsets within the bit array, and returns true if all offsets are 1. If may-contain returns true,
there is a probability approaching 1/2k that the Bloom Filter does not contain the sought after
key. This is the false positive rate of the Bloom filter. This is only true if the Bloom filter is
optimally configured and contains no more keys than it was originally configured to hold.

BtrFS is a Linux file system designed for better handling of snap-shots and long-term fragmenta-
tion [96].

COLA is a variant of the log-structured merge-tree. The COLA or cache-oblivious look-ahead ar-
ray [11] (without fractional cascading) is independently discovered and used in actual LSM-
tree implementations (e.g., Acunu [145], Anvil [75], and HBase [28]). See fractional cas-
cading. The COLA paper provides an excellent analysis of the LSM-tree within the DAM
model, and shows that its configuration does not depend on the ideal block size of the device.

Consistent State is any point in the single predictable timeline that all transactions and other op-
erations can be placed on. If an error occurs at some point in this timeline, recovery will
restore the storage system to how it was at the last point in the timeline immediately before
the error [43].

Defragmentation is a process for removing fragmentation. Fragmentation occurs when a block
that is the size of the minimum unit of allocation and deallocation is only being partially
utilized. The block cannot be deallocated because it still is being utilized, but the unutilized
portions cannot be deallocated because they are smaller than the minimum unit of dealloca-
tion. Defragmentation copies the utilized portion of the block to another location, leaving the
block completely unutilized, and it can then be deallocated. Since defragmentation incurs
additional reads and writes not directly related to insert, delete, update, or query operations,
it is typically considered as overhead. See Chapter 6.

Ext3 is the default Linux file system [19]. It uses a combination of journaling, hash tables to
quickly access directory entries, and traditional file system structures.

Fractional Cascading is a technique that can be used to avoid repeated searches within a data
structure [21]. Some data structures are composed of multiple searchable sub-data structures.
When searching through the data structure, one must search through some or all of the sub-
data structures. Fractional cascading builds a secondary index for each of these sub-data
structures. If sub-data structure A is sought through before sub-data structure B, then we
embed B’s secondary index into A such that when the block that may contain the sought
after element in A is retrieved, with it we also retrieve the location of the constant number
of blocks that may contain the element in B. In this way we can confine our search through
B to those specific blocks. In practice, the secondary indexes of both A and B will easily fit
in RAM, and so B’s secondary index is not embedded into A as it will already be in RAM
anyway and does not need to “piggy-back” on block retrievals from A.

142

FUSE is a plugin for the Linux kernel that developers can use to write (F)ile systems in (U)ser
(S)pac(E) [86].

Indirect block is an internal or parent node in a file radix tree [19]. A file radix tree is a high arity
tree (e.g., 512-ary) that contains offsets (e.g., 32-bit or 64-bit), and where the leaf nodes are
blocks of file data (e.g., 512B or 4096B blocks). File trees permit easily maintained sparse
files, more flexible allocation strategies, and more flexible defragmentation strategies. They
are complex and must typically be maintained with a journal. See “Journaling.”

Journal(ling) is a transactional log used by file systems that only intend to perform internal meta-
data transactions. Typically on inodes, indirect blocks, and other internal file system struc-
tures. Journaling is how file systems use the journal: first, they write a meta-data operation
command to the journal, and then second they perform the operation. If an error occurs, they
can re-try the operation by reading back the command from the journal, and re-trying the
operation until it succeeds [19, 39]. See “Recovery.”

LSMFS is a file system developed on top of a COLA implementation with basic transactional
support, but used only internally for meta-data. It runs on top of 1ffs, and uses exported
page caching for user-level file systems [133].

Memtable is a buffer or in-RAM list of sorted tuples. In GTSSLv1 and v2, it is a red-black tree.
In other systems it is typically a skip list. Once the memtable is full, it is serialized to storage
as an SSTable or list [20]. If stitching is used, it is serialized as a patch-tree. See Section 3.2.

Patch-tree is a compound of lists of sorted tuples or source-trees, along with a single secondary
index, and a single quotient filter. It effectively replaces the SSTable in a stitching LSM-tree.
See Chapter 6 and specifically Section 6.1.

POSIX is a standard interface for interacting with the underlying operating system. It allows
for manipulation of files, processes, memory, networking, and user and permission manage-
ment [54].

Quotient Filter or QF is similar to the Bloom filter, but supports duplicates, deletes, and its con-
tents can be efficiently re-hashed into a larger QF, which is less than a preset size [12].

Recovery is executing an algorithm that reads commands written to a journal or transactional log,
and either re-tries them, or reverses them in order to restore the storage system to a consistent
state [43]. See “consistent state.”

ReiserFS is a Linux file system designed for better handling of small files and meta-data opera-
tions [113].

SchemaFS is a POSIX API for system transactions built on top of Berkeley DB 4.4. It is used in
conjunction with Amino [151], see Amino and Berkeley DB.

Structured data is data whose access patterns can be difficult to predict, and could be based on
application-specific algorithms. Structured data includes database tables, file system meta-
data, tablets used in cloud data centers, large astronomical images, large graphs, indexes, and
much more [20].

143

Source-tree is a list of sorted tuples on storage. It is equivalent to an SSTable or list in a traditional
LSM-tree, but without a Bloom filter or secondary index. When two patch-trees are merged
together, their constituent lists of sorted tuples are combined together into the new patch-
tree, along with the fill, which is also a new list of sorted tuples. During combination a new
secondary index and quotient filter are constructed. The secondary index and QF for each of
the old patch trees are discarded. The sorted lists of tuples contributed by the old patch trees
are source-trees. After merging, source-trees could be partially or completely deleted. See
Chapter 6 and specifically Section 6.1.

SSTable is a serialized memtable. It is an on-storage list of sorted tuples, along with (optionally) a
serialized (but potentially cached) secondary-index, and a serialized (but potentially cached)
Bloom filter [20]. If the term SSTable is used to describe a serialized list of tuples in a
stitching LSM-tree, it refers to a patch-tree. See Section 3.2. See Wanna-B-tree.

Transaction a grouping of operations into a compound operation. This compound operation can-
not be partially applied (atomic), can be placed in a single predictable timeline with all other
operations (consistent), can be performed as if it were the only operation occurring at that
time (isolated), and once success is confirmed, the operation cannot be revoked at a later
time (durable). Transactions may exhibit some or all of these properties (atomic, consistent,
isolated, durable). In this thesis we deal with transactions that are atomic, consistent, and
isolated, and optionally, durable [43]. See “ACID.”

VFS is the virtual file system and refers to using indirect calls into specific file system implementa-
tions using a pre-defined standard set of routines which can be overridden by each specific file
system implementation. The VFS also refers to code common to most or all specific file sys-
tem implementations, which is implemented in terms of these pre-defined standard routines
which perform indirect calls. By organizing the storage component of the operating system
in this way, code common to all specific file system implementations can be refactored into
a single, maintainable code base, and only code that differs due to differences in file system
formats need be separately maintained.In this way an operating system can efficiently mount
and interact with multiple file systems [63].

VT-tree is our variant of the SAMT which utilizes the stitching generalization for LSM-trees and
uses quotient filters to support efficient point queries, see Chapter 6.

Wanna-B-tree is a simplified B-tree that supports only appending sorted tuples and performing
lookups. It is composed of zones which can be individually deallocated without having to
destroy the entire Wanna-B-tree. It consists of a secondary index, and a set of leaf nodes
containing tuples that are called Wanna-B-leaves. See Chapter 3. See zones.

Write-ahead Logging (WAL) is a family of logging algorithms for database logging and recov-
ery. ARIES is one variant of a WAL algorithm. WAL algorithms are at least 2× slower
than a log-structured approach for large, sequential, or asynchronous transactions. WAL al-
gorithms do not support larger-than-RAM transactions when not gathering undo records and
performing redo-only logging [43, 85].

XFS is a Linux file system developed by SGI which is designed for better handling of long-term
fragmentation [140].

144

Zones are the unit of allocation and deallocation in the GTSSLv1 and GTSSLv2 systems. After
performing stitching on a VT-tree, a zone may no longer have used tuples within it; at this
point the zone can be deallocated. If it has a mix of used and unused tuples, then it wastes
space. It can be defragmented at any time by copying the used tuples out during a minor
compaction and can then be deallocated.

145

Appendix B

Java Database Cache Analysis

We evaluated the performance of just Cassandra’s primary caching implementation, the Java skip
list, and compared it to the primary caching implementation used by GTSSLv1, the STL red-black
tree. We performed further profiling of Cassandra by observing CPU time usage, L2 cache misses,
and counting out-of-core requests (using CPU counters).

When the database or key-value store is CPU-bound, Java generational garbage collectors often
have difficulty in efficiently managing a large cache that contains objects that are mostly created
once, and then infrequently used there after [99]. We used the garbage collection settings that
Cassandra specified in their configuration. We suspected that the bottleneck to Cassandra’s perfor-
mance may lie within the skip list implementation that Cassandra uses as its primary cache. When
randomly inserting into a skip list on a machine with 16GB of RAM, and with Java configured
to have an 8GB heap, we noticed that insertion throughput would steadily drop to 20,000 inserts
per second. However our above benchmarks ran with a 3GB heap, and under these circumstances,
insertion throughput did not drop so low, but still much lower than an STL red-black tree.

To analyze the skip list’s performance on the same system, we ran a benchmark that compares a
skip list to an STL red-black tree. Figures B.1, B.2, B.3, and B.4 depict a benchmark where random
64B tuples are entered into a C++ red-black tree [89], C++ skip list [69], Java red-black tree, and
a Java skip list, respectively. Garbage collection events that were collected while running the Java
benchmarks are also shown. The benchmark runs in three epochs, as the per-epoch performance
for Java is not entirely consistent, it is useful to run multiple epochs to see the disparity. In each
epoch, the cache (whether it is a red-black tree or skip list) is cleared, and a new set of random
elements are inserted. We inserted 18.3 million tuples, or 1.1GB of tuples. We attempted to insert
more, but Java crashed with an out-of-memory exception with our configured heap size (5GB) on
our system. We used the same system configuration as for the varying key-value and read-write
trade-off benchmarks above. We found that the average throughput of insertions into the red-black
tree was 341,000 inserts/second, and for the Java red-black tree was 223,000 inserts/second. For the
C++ skip list we measured 270,000 inserts/second, and for the Java skip list we measured 109,000
inserts/second. The C++ red-black tree sustains a 1.5× faster insertion throughput over the Java
red-black tree. The C++ skip list sustains a 2.5× faster insertion throughput over the Java skip
list. GTSSLv1 uses the STL red-black tree, and Java uses the measured skip list. We found the

146

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 20 40 60 80 100 120 140

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(i
n
s/

se
c)

Time (sec)

C++ rb-tree behavior

C++ red-black tree

Figure B.1: Multi-eviction C++ red-black tree Micro-benchmark

C++ red-black tree was overall 3.1× faster than the Java skip list. We also noted the consistent
interference of Java’s garbage collection, sometimes running for 8–10 seconds, decreased overall
insertion throughput. Total time spent garbage collecting for the JAVA SKIP LIST configuration was
209.9 seconds, or 42% of the total runtime of the benchmark. Garbage collection causes significant
performance differences in memory-access intensive applications, such as a database cache.

We configured OProfile [71] to profile for both timer interrupts, and instructions which required
out-of-core requests (OFFCORE REQUESTS) 1. Off-core requests includes data read requests, code
read requests, uncached memory requests, L1D writebacks, and offcore RFO requests.

Table B.1 shows the performance counters measured by OProfile when running the first 10%
of the 64B data point of the key-value benchmark from Figure 5.8. The top group of rows corre-

1We performed further profiling of Cassandra using tools that could perform more in-depth profiling of Java Just-
in-Time (JIT) compiled code as well as utilize other CPU counters besides the timer interrupt. First we attempted to use
Performance Inspector [84]. Performance Inspector provides Java Just-in-Time (JIT) profiling, and most importantly,
can profile using CPU timer interrupts, or other kinds of CPU counter events, such as L2 cache misses. Unfortunately,
despite claiming to support Ubuntu 10.04, Performance Inspector relies on the JVMI interface to the underlying JVM
to perform profiling, which has since been deprecated after Java 1.5, and Cassandra 0.7 requires at least Java 1.6 which
no longer supports JVMI. OProfile [71] does use the JVMTI interface, which is the preferred way of converting text
addresses into Java symbols for Java 1.5 and later we also learned that OProfile can be configured to profile for arbitrary
CPU events.

147

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 0 20 40 60 80 100 120 140 160 180

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(i
n
s/

se
c)

Time (sec)

C++ skip list behavior

C++ skip list

Figure B.2: Multi-eviction C++ skip list Micro-benchmark

sponds to Cassandra, and the bottom group of rows corresponds to GTSSLv1. The total number
of clock samples taken during the GTSSLv1 and Cassandra runs were 4,408,685 and 80,556,391,
respectively; the numbers of LLC misses were 6,498 and 154,348 respectively. Cassandra per-
formed 521.9 clock samples per LLC miss, where as GTSSLv1 performed 678.5 clock samples per
LLC miss. This indicates that irrespective of running time, GTSSLv1 had fewer LLC misses per
operation than Cassandra. Similarly, GTSSLv1 performed 61.6 clock samples per off-core request,
whereas Cassandra performed only 25.5 clock samples per off-core request. We see that 32.6% of
Cassandra’s LLC misses occurred within libjvm.so (the JVM), whereas 33.6% of GTSSLv1’s
LLC misses occurred within its “Merge” routine, which is responsible for performing comparisons
during cache accesses, and merges. In addition to LLC misses from within the JVM, Cassandra’s
skip list (findPredecessor, doGet, and doPut), and calls to binary search account for 26.5% of its
LLC misses. Cassandra spends 55.3% of its time and 42.7% of its LLC misses within the kernel,
the JVM, and the benchmark program itself. Conversely, GTSSLv1 spends 43.2% of its time and
only 19.2% of its LLC misses within the kernel and libstdc++. We can see that Cassandra
performs 2.2× more of its LLC misses within the kernel, the JVM, or the benchmark program, and
not JIT-ed database code. The primary source of LLC misses in Cassandra is libjvm.so. This
indicates that Cassandra performs 32.6% of its LLC misses while interpreting non-JIT-ed code, or
manipulating memory within the JVM. GTSSLv1 directly manipulates memory through mmaped

148

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(i
n
s/

se
c)

G
a
rb

a
g
e
 C

o
lle

ct
io

n
 P

a
u
se

 T
im

e
 (

se
c)

Time (sec)

Java rb-tree behavior

Java red-black tree
GC red-black tree

Figure B.3: Multi-eviction Java red-black tree Micro-benchmark

regions, and from optimized machine code running directly on top of the kernel.
Java both compiles and interprets code when running an executable. Java also provides array-

bounds checking, built-in synchronization primitives, garbage collection, runtime type-cast check-
ing, and reflection facilities. These features contribute to more easily developed code, but also
contribute to performance losses for large complex systems such as Cassandra and HBase. We
found it difficult to carefully pin-point a single bottleneck in Cassandra or HBase’s performance
because we were not able to find one specific bottleneck. We did find that the JVM consumed up
to 25% of CPU time, which did not include overheads from the Java skip list implementation, or
other code which was just-in-time compiled.

We found that major components, such as the data structure used for caching tuples, can be
up to 3× slower than an equivalent in C++. Ultimately, differences in design and implementation
make a direct comparison of performance difficult, but we can see that GTSSLv1 performance is at
worst comparable to existing, widely used key-value stores; and for these specific workloads that
are so heavily CPU-bound, basing the LSM-tree database implementation on C++ as GTSSLv1
does is a much faster approach than basing the implementation on Java. These results corroborate
the reported inefficient use of CPU and RAM in HBase by others as well [5].

Future TSSL architectures must seriously consider CPU efficiency as the cost of a random write
drops significantly for 1KB block sizes on Flash SSD.

149

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600
 0

 2

 4

 6

 8

 10

 12

In
se

rt
io

n
 T

h
ro

u
g
h
p
u
t
(i
n
s/

se
c)

G
a
rb

a
g
e
 C

o
lle

ct
io

n
 P

a
u
se

 T
im

e
 (

se
c)

Time (sec)

Java skip list behavior

Java skip list
GC skip list

Figure B.4: Multi-eviction Java skip list Micro-benchmark

150

Symbol CLK Perc. L2 Miss. Perc. OFFCORE Perc.
Cassandra
vmlinux 19,071,280 23.7% 5,937 3.8% 831,463 26.3%
libjvm.so 17,982,060 22.3% 50,369 32.6% 454,741 14.4%
Bench.java 7,476,035 9.3% 9,729 6.3% 424,231 13.4%
findPredecessor 2,142,821 2.7% 12,401 8.0% 54,929 1.7%
MD5.implCompress 1,971,985 2.5% 257 0.2% 34,672 1.1%
doGet 1,713,567 2.1% 12,061 7.8% 42,016 1.3%
findPredecessor 1,260,313 1.6% 7,606 4.9% 33,118 1.0%
SSTableReader.getPosition 807,889 1.0% 1,251 0.8% 13,652 0.4%
StorageProxy.mutate 693,905 0.9% 1,096 0.7% 41,643 1.3%
indexedBinarySearch 669,771 0.8% 5,158 3.3% 15,891 0.5%
doPut 617,549 0.8% 3,783 2.5% 18,368 0.6%
GTSSLv1
vmlinux 1,655,251 37.4% 456 7.0% 30,745 42.7%
Merge 451,879 10.2% 2,185 33.6% 10,380 14.4%
libcrypto.so 375,372 8.5% 1 0.0% 1,125 1.6%
nolock insert 275,922 6.2% 1,097 16.9% 6,268 8.7%
libstdc++ 255,283 5.8% 793 12.2% 3,300 4.6%
bloom::insert key 79,923 1.8% 302 4.6% 2,700 3.8%

Table B.1: Performance counters of cpu-time, L2 cache misses, and off-core requests.

151

