
c12) United States Patent 
Archak et al. 

(54) MULTI-TIER CACHING 

(75) Inventors: Shrikar Archak, Bangalore (IN); Sagar 
Dixit, Pune (MH); Richard P. Spillane, 
Clifton Park, NY (US); Erez Zadok, 
Stony Brook, NY (US) 

(73) Assignee: The Research Foundation For the 
State University of New York, Albany, 
NY (US) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 238 days. 

(21) Appl. No.: 13/159,039 

(22) Filed: Jun. 13, 2011 

(65) Prior Publication Data 

US 2012/0072656 Al Mar. 22, 2012 

Related U.S. Application Data 

(60) Provisional application No. 61/354,054, filed on Jun. 
11,2010. 

(51) Int. Cl. 
G06F 12100 
G06F 13100 
G06F 13128 
G06F 17130 

(52) U.S. Cl. 

(2006.01) 
(2006.01) 
(2006.01) 
(2006.01) 

CPC ................................ G06F 17130132 (2013.01) 
(58) Field of Classification Search 

CPC ................................................. G06F 17/30132 
USPC ................................... 7111118, 104, E12.041 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,799,152 A * 111989 Chuang eta!. 
5,530,832 A * 6/1996 So eta!. ........................ 7111122 

RAM 
Tier 1 

~er~I~[J , ... 
I 

111111 1111111111111111111111111111111111111111111111111111111111111 
US009355109B2 

(10) Patent No.: 
(45) Date of Patent: 

5,546,559 A * 8/1996 
7,707,504 B2 * 4/2010 
7,809,759 B1 * 10/2010 
8,290,972 B1 * 10/2012 
8,549,518 B1 * 10/2013 

8,868,576 B1 * 10/2014 

2002/0073282 A1 * 6/2002 
2002/0188821 A1 * 12/2002 
2003/0028551 A1 * 2/2003 
2008/0158958 A1 * 7/2008 
2009/0006179 A1 * 112009 
2009/0049234 A1 * 212009 
2009/0248987 A1 * 10/2009 
2009/0310412 A1 * 12/2009 
2010/0064347 A1 * 3/2010 
201110099342 A1 * 4/2011 
201110113194 A1 * 5/2011 
201110246503 A1 * 10/2011 
2013/0060922 A1 * 3/2013 
2014/0280771 A1 * 9/2014 
2014/0324821 A1 * 10/2014 

* cited by examiner 

US 9,355,109 B2 
May 31,2016 

Kyushima et al ............. 7111133 
Quang eta!. .................. 715/735 
Bruso et a!. ................... 707/797 
Deshmukh et al ............ 707/758 
Aron ................... G06F 9/45558 

718/1 
Faibish ............. G06F 17/30091 

707/755 
Chauvel eta!. ............... 7111122 
Wiens et a!. . . . . . . . . . . . . . . . . . . 7111220 
Sutherland .................... 707/200 
Sokolov et al ........... 365/185.08 
Billingsley eta!. ............. 705/10 
Oh eta!. ....................... 7111103 
Jung eta!. ..................... 7111135 
Jang et al ................. 365/185.11 
More et al ......................... 726/4 
Ozdemir ....................... 7111162 
Terry eta!. .................... 7111114 
Bender et al .................. 707/769 
Koponen eta!. .............. 709/223 
Bosworth et al .............. 709/219 
Meiyyappan eta!. ........ 707/715 

Primary Examiner- Sheng-Jen Tsai 
(7 4) Attorney, Agent, or Firm - F. Chau & Associates, LLC 

(57) ABSTRACT 

A method for maintaining an index in multi-tier data structure 
includes providing a plurality of a storage devices forming the 
multi-tier data structure, caching an index of key-value pairs 
across the multi-tier data structure, wherein each of the key­
value pairs includes a key, and one of a data value and a data 
pointer, the key-value pairs stored in the multi-tier data struc­
ture, providing a journal for interfacing with the multi-tier 
data structure, providing a plurality of zone allocators record­
ing which zones of the multi-tier data structure are in used, 
and providing a plurality of zone managers for controlling 
access to cache lines of the multi-tier data structure through 
the journal and zone allocators, wherein each zone manager 
maintains a header object pointing to data to be stored in an 
allocated zone. 

21 Claims, 6 Drawing Sheets 
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MULTI-TIER CACHING 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims the benefit of U.S. Provisional 
Application, Ser. No. 61/354,054 filed on Jun. 11,2010 in the 
United States Patent and Trademark Office, the contents of 
which are herein incorporated by reference in its entirety. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
grant number CCF093 7854 awarded by the National Science 
Foundation. The government has certain rights in the inven­
tion. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The present invention relates to key-value storage, index­

ing, and more particularly to tiered key-value storage and 
indexing machines comprising a cluster of databases, file 
systems, or any other storage-stack software. 

2. Discussion of Related Art 
The volume of index data being generated by network­

connected devices is outpacing data storage technologies' 
speed, capacity, or abilities. Examples of these devices 
include systems for automatically generating tags, indexing 
constantly captured video, social-networking services index­
ing a growing database, and systems that generate large vol­
umes of index data. 

2 
with the multi-tier data structure, providing a plurality of 
block allocators recording which blocks of the multi-tier data 
structure are in use, and providing a plurality of zone manag­
ers for controlling access to blocks within individual tiers of 
the multi-tier data structure through the journal and block 
allocators, wherein each zone manager maintains a header 
object pointing to data to be stored in all allocated blocks. 

According to an embodiment of the present disclosure, a 
method for inserting and retrieving key-value pairs in a 

10 machine in communication with multiple storage devices 
managed in a hierarchy of tiers includes inserting the key­
value pairs in the machine and retrieving the key-value pairs 
from the machine. Inserting the key-value pairs in the 

15 
machine includes transferring first lists of sorted key-value 
pairs from a first memory on the machine to a higher (or 
highest) storage tier of the machine according to a merging 
method, if there is space available on the higher (or highest) 
storage tier, transferring second lists from the higher storage 

20 tiers to the lower storage tiers within the machine according to 
the merging method to create space in the higher storage tiers, 
and transferring third lists from higher machine tiers includ­
ing the machine to lower machine tiers according to the 
merging method and conflict resolution algorithm to create 

25 space in the higher storage tiers. Retrieving the key-value 
pairs from the machine includes searching for a first value 
with a valid key in the first memory on the machine, searching 
for a second value with the valid key in the highest storage tier 
of the machine if not present in first memory on the machine, 

30 searching for a value with the valid key in the lower storage 
tiers of the machine if not present on the highest storage tier 
of the machine, and searching for a value with the valid key in 
lower machine tiers if not present on higher machine tiers of 
the machine. Applications that create index data include data-dedupli­

cation and provenance systems. Data deduplication is one 35 

technology used to compensate for these large databases, 
where redundant data may be eliminated. Data deduplication 
relies on indexing to maintain performance levels. Automated 
provenance collection and indexing are examples of addi­
tional growing applications. Automatic provenance collec- 40 

tion describes systems that observe processes and data trans­
formations inferring, collecting, and maintaining provenance 
about them. 

According to an embodiment of the present disclosure, a 
method for maintaining an index in multi-tier data structure 
includes managing a plurality of resources within a multi -tier 
storage system, inserting a copy of at least one of the 
resources into the multi-tier storage system, detecting, at a 
selective time, the copy of the at least one resource, and 
performing a merging method to redistribute the plurality of 
resources within the multi-tier storage system. 

According to an embodiment of the present disclosure, a 
method for maintaining an index in multi-tier data structure 

45 includes managing a plurality of resources within a multi -tier 
storage system, and performing a merging method to redis­
tribute the plurality of resources within the multi -tier storage 
system, wherein the merging method is automatically tuned 
for a workload without disabling the machine. 

Individual machines that form a larger database cluster 
such as those used by Google's BigTable and Yahoo's 
Hadoop and HBase perform indexing tasks as well. These 
machines are referred to as 'Tablet Servers' in the literature. 
Even database engines such as MySQL's InnoDB, ISAM 
(Indexed Sequential Access Method), Berkeley DB, and other 
such key-value stores must perform indexing for traditional 50 

RDBMS (relational database management system) work­
loads. Indexing is being applied to system logs, file metadata, 
databases, database clusters, media tagging, and more. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Preferred embodiments of the present invention, as well as 
definitions and meanings of abbreviations, will be described 

55 below in more detail, with reference to the accompanying 
drawings: 

In these contexts, and others, indexing is an important 
component of a variety of platforms and applications. 

SUMMARY OF THE INVENTION 

According to an embodiment of the present disclosure, a 
method for maintaining an index in multi-tier data structure 
includes providing a plurality of storage devices forming the 
multi-tier data structure, caching a list of key-value pairs 
stored on one or more tiers of the multi-tier data structure as 
a plurality of sub-lists according to a caching method, 
wherein each of the key-value pairs includes a key, and either 
a data value, a data pointer, the key-value pairs stored in the 
multi-tier data structure, providing a journal for interfacing 

FIG. 1 is a diagram of a tiered storage system according to 
an embodiment of the present application; 

FIG. 2 is an exemplary CHISL multi-tier system according 
60 to an embodiment of the present application; 

FIGS. 3A-C show exemplary merging methods according 
to an embodiment of the present application; 

FIG. 4 shows an exemplary SAMT with multiple slots, 
secondary indexes, and filters according to an embodiment of 

65 the present application; 
FIG. 5 shows SAMT tier header and block allocators 

according to an embodiment of the present application; 
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FIG. 6 shows three processes, p0 ... p2 , each maintaining 
an ongoing transaction that has modified three SAMTs, 
according to an embodiment of the present application; 

FIG. 7 is an exemplary CHISL configuration having one or 
more slots or lists per level or cache line according to an 
embodiment of the present application; 

FIG. 8 shows an exemplary merge and cache method in an 
exemplary CHISL implementation according to an embodi­
ment of the present application; 

FIG. 9 shows an exemplary CHISL structure employed as 10 

a multi-tier colunm store by storing colunms as nested key­
value pairs using the CHISL multi-tier hierarchy according to 
an embodiment of the present application; and 

FIG. 10 shows exemplary CHISL reconfigurations, 
dynamically shifting from a write-optimized merging method 15 

to a more read-optimized merging method according to an 
embodiment of the present application. 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 20 

According to an embodiment of the present disclosure, a 
high-throughput, transactional, consistent, multi-tier index 
and caching system seamlessly spans different storage tech­
nologies, exploiting useful properties of each storage tech- 25 

no logy. Transactional semantics can be full, partial, or none. 
The multi-tier system, referred to herein as Cascading Hier­
archy of Sorted Lists (CHISL), maintains insertion through­
puts in excess of a single-node Cassandra installation, a 
single-node HBase installation, Voldemort, Hypertable, the 30 

best-case log-structured index, Berkeley DB, MySQL, XFS, 
or Ext3 index implementations, and the like, regardless of the 
storage technology. 

CHISL can be used as a storage engine in a single RDBMS, 
embedded database, a cluster of databases, a local or net- 35 

worked or distributed file system, a deduplication mecha­
nism, and any other implementation in which a key-value 
store may be used. 

FIG. 1 is an exemplary multi -tier index and caching system 
including a plurality of different types of nodes. The nodes 40 

may be one or more client type 101, one of first through N tier 
102-104 or storage type 105. Different tier storage devices are 
employed at each node type. The tiers may be prioritized, for 
example, first through third-tier storage devices 106-108. The 
storage devices may be hosted within one physical machine, 45 

or connected by a network. For example, one or more storage 
tiers may be hosted within a client to a cluster. One or more 
tiers may be stored at the nodes within the cluster responsible 
for storing that range ofkey-value pairs within that key space. 

According to an embodiment of the present disclosure, 50 

CHISL is an end-to-end transactional indexing storage sys­
tem. Because Internet data can be stored anywhere from 
directly attached devices, to near-line ones, to remote clouds, 
CHISL may scale across arbitrary hierarchies of heteroge­
neous storage devices and servers, including Flash-based 55 

storage. The number of nodes within a single tier, or the 
number of tiers is not limited. 

CHISL insertions may avoid random reads or writes 
entirely, contributing to its scalability, by utilizing sorted­
array merge-trees (SAMT), Cache-Oblivious Look-ahead 60 

Array (COLA), other write-optimized indexing technologies, 
filters such as Bloom filters, etc. 
Glossary of Terms 

Some terms are used repeatedly throughout the present 
disclosure and for clarity are defined both when first used, and 65 

in this glossary. These definitions apply unless otherwise 
noted. 

4 
Pair: A pair is a variable length key-value pair, where the 

value can be a nested array of variable length key-value 
pairs. A value can also be a pointer or an offset to a 
location in RAM (Random Access Memory) or storage. 
The key can be sorted with a plurality of sort orders, 
sorting first by the primary sort ordering. When two keys 
are considered incomparable or equal by the primary 
sort ordering, they are sorted by the secondary sort 
ordering, and so on. Storing an array within a value may 
be done by first storing a simple secondary index at the 
beginning of the series of bytes comprising the value, 
and storing the element key-value pairs within the array. 
The secondary index may include the offsets to each key, 
where every K'h offset (for a configurable K) also 
includes that pair's key, or part of key, or K is allowed 
some variance so that only short keys are chosen. Several 
configurations of a pair or key-value pair are shown in 
FIG. 9. 

Secondary Index: A secondary index may find a value 
within an array in a single block or data transfer to the 
storage device. The secondary index may store one entry 
for many entries in the array in storage. For example, the 
offsets of all pairs may be stored within a block at the 
beginning of the block, and the first pair's key may be 
stored in the secondary index along with the offset of the 
block. Further improvements permit efficient mixing of 
large and small keys. By layering secondary indexes on 
top of each other a B+-tree index may be created. 

Hierarchy: A hierarchy is a structure that stores pointers to 
all lists within the store. These pointers may be sorted by 
the age of their lists. For example, if a list A was created 
before a list B, then the pointer to A will come before B 
in the hierarchy. 

Merging method: Merging methods may use a hierarchy of 
lists to combine some of these lists together and create a 
new list based on their age and their size. 

Lock resolution method: Lock resolution methods deter­
mine what should be done if two pairs have the same 
value key during a merge. These methods can also be 
called conflict resolution methods. Common conflict 
resolution methods include, for example, selecting the 
pair coming from the younger list, stopping the merge 
and issuing an error (for example, to retry a transaction), 
or reporting the conflict in a sorted list of conflicting 
pairs that can be scarmed by a program or machine to 
determine what to do in the case of each conflict spe­
cially. 

Caching method: A caching method may be used to deter­
mine how to split a list into component sub-lists, and in 
which tiers to transfer (or not transfer) a sub-list when 
there is a need to perform a compaction (e. g., to maintain 
efficient lookup and scan performance, or to create free 
space). For example a multi-tier read caching method 
may use 40% of its space to store sub-lists containing 
only re-inserted reads so as to keep frequently read val­
ues in faster storage devices (e.g., Flash, Phase-change 
Memory, or other memory technology higher in the 
cache hierarchy). If there is need for space from younger 
and/or more frequently read sub-lists, older and/or less 
frequently read sub-lists may be transferred to a storage 
device lower/slower in the cache hierarchy to make 
memory available. 

Deduplication method: A deduplication method is a spe­
cialization of a lock resolution method, where a conflict 
in keys indicates a duplicate entry, and a message is sent 
to a block or storage manager to take note of the dupli-
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cate for purposes of consistency, performance, effi­
ciency, load balancing, or to reduce unneeded space 
utilization. 

Sequential Optimizations: A exemplary merging method 
that avoids multiple writes of data that is already sorted, 
or data that does not require sorting, for example, either 
because it the data is not complex enough to justifY 
indexing, or the data is large and is always read in whole. 

6 

Filtering Method: An extension to the search operation of a 
merging method where a structure F is maintained for 10 

each list and optionally sub-list where unneeded 
searches are avoided by consulting this structure. This 
structure may be a compact negative cache. A (compact) 
negative cache is a compact data structure that supports 

15 
membership queries on a set. Queries on the negative 
cache have a small probability of reporting items as 
being members of the set when they are not. A Bloom 
filter is an example of a compact negative cache. If a 
query indicates an item is not a member of the set, the 20 

item is not a member of the set. If a list is stored on a 

According to an embodiment of the present disclosure, a 
position of each list may be stored within the multi-tier stor­
age in a fast storage device, for example the machine's RAM. 
Alternatively, each list's position within the multi -tier storage 
hierarchy may be determined before a merge is performed 
according to the merging method. Regardless of whether the 
hierarchy is stored continuously, or only determined selec­
tively, all such machines are embodiments of the present 
disclosure. 

To perform an insertion ofkey-value pairs with potentially 
completely random values, merging methods may be 
employed where key-value pairs are sorted in RAM, and 
merged with sorted lists already on a storage device. By 
selecting a number of lists to merge together when transfer­
ring key-value pairs from RAM to storage, based on age, the 
overall time spent inserting many key-value pairs may be 
reduced. There are several methods by which a sorted list of 
the most recently inserted key-value pairs in RAM can be 
merged with sorted lists already in storage, called merging 
methods. 

According to an embodiment of the present disclosure, list 
merging may be performed in connection with a plurality of 
storage devices with different random and serial read and 
write throughputs. These storage devices may be connected 

device T, the structure F may be stored in a higher tier or 
faster storage device C. In such a configuration the time 
spent consulting the structure stored inC is less than the 
time that would be needed to perform the search in the 
device T where the list is stored. The structure can be 
generated when the list or sub-list is created in T, and 
then either immediately, or at a later time the generated 
structure can be transferred to the faster device C. 

TSSL!Pair Store: The Tablet Server Storage Layer (TSSL) 
is a database or database-like storage software which 
may be installed on every node in a cluster of databases. 
The TSSL controls a plurality of pair stores: data struc­
tures designed to store key-value pairs or pairs. CHISL is 
a suitable pair store for a TSSL, and can be used as a 
component of a colunm store or any other database store. 

SSTable: Another name for a list stored on a storage device. 
Memtable: Another name for the C0 buffer stored in a fast 

storage device such as RAM or some other suitable 
memory technology. 

1. Merging Method Adaptations Overview and Analysis 
According to an embodiment of the present disclosure, a 

multi-tier storage hierarchy may be implemented having an 
arbitrary merging method and caching method, with a lock 
resolution, duplicate management, sequential optimizations, 
and dynamic reconfiguration method. Exemplary merging 
methods are described in this section. Exemplary embodi­
ments of a CHISL multi-tier method are described herein. 
Further, implementations of a merging method compatible 
with embodiments of the present disclosure, extending a 
SAMT merging method using a CHISL multi-tier method, 
are described. 

According to an embodiment of the present disclosure, a 
merging method may be tuned or selected for a level of 
insertion ingestion. The merging method may be automati­
cally changed to merge more frequently in order to maintain 
fewer lists, wherein lookups need only query a small number 
oflists, at the expense of more time spent merging and there­
fore a lower insertion throughput. The tnning or selection of 
a merging method is complementary to embodiments 
described herein and can be used to create a flexible multi-tier 
storage system capable of managing duplicate resources, 
caching sub-lists in different storage tiers according to the 
caching method, and processing either high volumes of inser­
tions while maintaining efficient and bounded lookup and 
scan performance, or vice verse, according to workload con­
ditions. 

25 to one or more machines. According to an embodiment of the 
present disclosure, lists may be stored as sub-lists that store 
different kinds of information. For example entries that were 
inserted to speed lookups may be separated from entries that 
were inserted to update existing key-value pairs. The separa-

30 tion oflists into sub-lists permits managing methods to keep 
recently read information in more efficient storage devices, 
while recently inserted information is transferred to another 
storage device, for example one with comparable cost (e.g., 
monetary) that is slower but larger. Further, the separation of 

35 lists may allow a device to effectively store structured data 
typically stored in an RDBMS, database engine, or database 
cluster node in a cache hierarchy of storage devices, where all 
devices are comparable in cost, but larger storage devices are 
slower to access. In addition, the separation oflists may allow 

40 devices to store the same amount of structured data, and to 
speed up workloads that access a portion of this data too large 
to fit in RAM, small enough to fit in a storage device slower 
and larger than RAM, and faster and smaller than disk or a 
device that can store more structured data as compared to 

45 other devices when cost is comparable. 
Exemplary merging method adaptations described herein 

can store which lists are to be merged based on age, frequency 
of use, or other criteria in RAM at all times, or alternatively 
can determine which lists are to be merged according to this 

so criteria before merging them into a larger list to be transferred 
to some storage tier in the multi-tier hierarchy. The informa­
tion used to determine which lists are to be merged and in 
what order is called a hierarchy. Whether an adaptation con­
structs its hierarchy before the merge or maintains its hierar-

55 chy continuously is an implementation detail and does not 
alter an adaptation of the present disclosure. 

Amortized versions of two alternate merging methods, 
specifically the COLA Merging Method Adaptation and the 
SAMT Merging Method Adaptation are described herein. 

60 Techniques described herein from adapting these merging 
methods to utilize a multi-tier structure according to an 
embodiment of the present disclosure are applicable to other 
merging methods including deamortized versions. The spe­
cific method by which an adaptation is performed is an imple-

65 mentation detail. One exemplary technique to achieve deam­
ortization is to perform a portion of a next set of merges 
during each insertion. This can be achieved by performing 
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merges asynchronously in the storage tiers while using a 
timer to throttle insertions into C0 , or by synchronously per­
forming a portion of the next scheduled merge before each 
insertion into C0 . 

Metric of Abstract Analysis 

8 
The memtable or C0 can be flushed K times before a compac­
tion is performed. The slots in cl are merged into a slot in c2. 
In the example depicted, a cascade of compactions is per­
formed: the slots in c2 are merged into a slot in c3' so that the 

5 slots in C1 can be merged into a slot in C2 and the memtable 
can be flushed to C1 . 

According to an embodiment of the present disclosure, a 
multi-tier storage hierarchy may be scaled. Current systems 
utilize merging methods that are insensitive to the problems 10 

faced by a multi-tier hierarchy. Two existing compaction 
methods are discussed herein, and in Section 2, extensions are 
described for applications to a multi-tier regime according to 

Comparison of COLA and SAMT 

It should be understood that panels 1 (HBase 3-CO LA) and 
2 (Cassandra SAMT) ofFIG. 3C are not multi-tier structures. 
Although the HBase 3-COLA method permits more aggres­
sive merging during insertion to decrease lookup latency by 
increasing R, it may not favor insertions beyond its default 
configuration. This permits faster scan performance on disk, 
but for 64 byte or larger keys, random lookup performance is 

an embodiment of the present disclosure. Compaction per­
formance of the methods is analyzed using the Disk-Access 15 

Model (DAM) for cost. DAM divides the system into a 
memory M and storageS. The unit of transfer from S toM is already optimal for the default configuration. This is because 

for most lookups, Bloom filters on each SSTable avoid all log 
R(N) SSTables except the one which contains the sought after 

a block ofb bytes. Operations and manipulations of data in M 
are at no cost. Blocks transferred either from M to S or from 
S toM cost 1. For the remainder of this analysis, B=b/<size of 
key-value pair> is used instead of b. This means each data 
structure is penalized 1 unit for reading or writing a key-value 
pair to a random location in storage S, or is penalized 1 unit 
for reading or writing a series of B key-value pairs to a 
random location in storage S. 

COLA Merging Method Adaptation 

HBase is a variation of the Cache-Oblivious Lookahead 
Array (R-COLA). The R-COLA supports increasingly more 
read-optimized configurations as its R parameter is increased. 
HBase sets R=3, which is optimal in practice for the 
R-COLA, and the particular HBase configuration may be 
referred to as a 3-COLA. FIG. 3C, panel 1, shows an 
R-COLA including flogR (N)¥ arrays of exponentially 
increasing size, stored contiguously (C0 through C3 ). In this 
example, R=3. C1 through C3 on storage 304 can be thought 
of as three lists (e.g., SSTables ), and C0 in RAM 305 can be 
thought of as a buffer in a fast storage device such as RAM 
(memtable ). The memtable is a write-back cache storing data 
that may be looked up by key. When the memtable is serial­
ized to disk 304 and turned into an SSTable, the R-COLA 
checks to see iflevel 0 is full. Iflevel 0 is not full, it performs 
a merging compaction on level 0, on all adjacent subsequent 
arrays that are also full, and on the first non-full level, into that 
same level. In FIG. 3C panel2, C0 through C3 are merged into 
C3 ; after the merge, the original contents of C3 have been 
written twice to C3 . Each level can tolerate R-1 merges 
before it needs to be included in the merge into the level 
beneath it. This means that every pair is written R -1 times to 
each level. C0 can be serialized to a slot in C1 . As every 
element visits each level once, and merges are done serially, 
log K(N) disk transfers are performed per insertion. Because 
there are K slots per level, and log ~N) levels, K*log ~N) 
disk transfers are performs per lookup. The cost of lookup 
with the SAMT is the same for K=2 and K=4, but K=4 
provides faster insertions. K=4 may be used as a default. 

SAMT Merging Method Adaptation 

The R -COLA used by HBase has faster lookups and slower 
insertions by increasing R. CHISL and Cassandra may be 
configured to provide faster insertions and slower lookups by 
organizing compactions differently. The structure adopted by 
Cassandra's TSSL and CHISL is referred to as a Sorted Array 
Merge Tree (SAMT). As shown in FIG. 3C, panel 2, the 
SAMT stores K lists, or slots on a plurality of levels C0 -C3 . 

20 pair. Furthermore, on Flash SSD the 3-COLA is less optimal, 
as even the seeking incurred from scanning is mitigated by the 
Flash SSD's obliviousness toward random and serial reads. 
Conversely, the SAMT can be configured to further favor 
insertions by increasing K, while maintaining lookup perfor-

25 mance on Flash SSD and disk by using Bloom filters, and 
maintaining scan performance on Flash SSD. Although 
Bloom filters defray the cost of unneeded lookups in 
SSTables, as the number of filters increases, the total effec­
tiveness of the approach may decrease. When performing a 

30 lookup in the SAMT with a Bloom filter on each SSTable, the 
probability ofhaving to perform an unneeded lookup in some 
SSTable is 1-(1-f)NB where NB is the number of Bloom 
filters, and f is the false positive rate of each filter. This 
probability is about equal to f*NB for small values off Bloom 

35 filters may be effective as long as the number of SSTables 
remains finite. For a Bloom filter filtering method, having the 
number of each tree/colunm-family being less than about 40 
is sufficient, other filtering methods may have different values 
depending on their space efficiency for higher false positive 

40 rates. 
2. Exemplary Design and Implementation 

CHISL utilizes several extensions to the SAMT (discussed 
in Section 3). As shown in FIG. 3C panels 3 and 4, CHISL 
supports storage device specific optimizations at each tier, 

45 e.g., RAM, SSD and Disk. CHISL migrates recently written 
and read data between tiers to improve both insertion and 
lookup throughput and permit caching in storage tiers larger 
than RAM. Referring to FIG. 7, CHISL may be configured to 
have different numbers of slots or lists per level or cache lines 

50 according to an embodiment of the present application. 
TSSL efficiency is related to overall cluster efficiency. 

CHISL extends the scan cache and buffer cache architecture 
used by existing TSSLs. CHISL avoids the need to maintain 
a buffer cache while avoiding common memory-mapping 

55 (MMAP) overheads. CHISL further exploits Bloom filters so 
that they have equal or more space in RAM than the scan 
cache. Although Web-service MapReduce workloads do not 
typically require more than atomic insertions, parallel DBMS 
(Database Management System) architectures and many sci-

60 entific workloads use more substantial transactional seman­
tics. CHISL introduces an optional transactional architecture 
that allows clients to commit transactions as either durable or 
non-durable. Durable transactions exploit group-commit as 
in other TSSL architectures. CHISL also allows non-durable 

65 transactions, and these can avoid writing to the journal com­
pletely for heavy insertion workloads without compromising 
recoverability. In addition, CHISL provides the infrastructure 
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to support transactions that can perform multiple reads and 
writes atomically and with full isolation. 

Exemplary CHISL Method 

A CHISL multi-tier method (CHISL method) permits the 
modification of a merging, caching, lock resolution, duplicate 
management, sequential optimization, filtering method, and 
dynamic reconfiguration method to operate within a multi­
tier storage environment, where multiple devices are grouped 
into multiple tiers. 

There may be many such groupings for the same set of 
devices. An example is shown in FIG. 1, where the CHISL 
method groups devices (Nodes) with similar random and 
serial read and write storage characteristics into tiers. Nodes 
within a tier are responsible for merging lists of data sent to 
that node from one or more nodes in another tier, and then at 
some point transferring these lists to one or more nodes in 
another tier. The example in FIG. 1 shows one grouping of 
machines where one or more nodes of the Client type transfer 
lists to one or more nodes of the First type. At some point 
these lists along with subsequent lists are merged together 
according to the merging method, and according to the cach­
ing and merging method a time is chosen where these lists are 
then transferred to one or more nodes of the Second-tier type. 
The same decision is repeatedly made and the data percolates 
whole or in part down (from Client to Storage) through the 
tiers. Although the example in FIG. 1 shows only three nodes 
within each tier, it is explicitly noted that any nnmber of nodes 
may belong to a single tier, and there may be any number of 
tiers. Furthermore, the channels by which data is sent from 
one node to another may be any medinm, either an Ethernet 
device, or any WAN/LAN networking medinm suitable for a 
bus between devices not within close proximity of each other, 
or a bus such as SCSI, SATA, or any medium suitable for a bus 
between devices within close proximity of each other. 

Retrieval of data from CHISL begins with a client or user 
selecting a pair to lookup or scan. According to a lock reso­
lution method, the user may be required to notify one, some, 

10 
mance. A filter may be used on each of the slots in levels too 
large to fit in a given tier, e.g., C. In an exemplary lookup in 
403 of FIG. 4, no key is found in C0 . Thereafter, filters are 
sequentially checked. In the example, C1.0 's filter reports 
"No," as does C1. 1 andC1.2 's, andC1.3 'sreports "Maybe," and 
the block is inspected using its' corresponding secondary 
index 404. In the example, the key is not found and the 
method continues to C 1 .4, and finding the key there, the key is 
copied back into C0 for reading 405. For medium sized (e.g., 

10 128 byte) key-value pairs, filters may enable 1 I/0 per lookup, 
despite being write-optimized. Secondary indexes consnme 
an equivalent amount of resources as the immediate parents 
of the leaf nodes in a B-Tree, which are typically cached in 
RAM. As seen in FIG. 4, a filtering method may be used to 

15 avoid searches in lists where the sought after pair is not 
present. Typically the structures consulted by this method 
would be stored in the faster storage device C,, and the lists for 
which searches are avoided would be stored in storage device 
T,. In some embodiments of the filtering method, the struc-

20 tures that must be consulted would likely be generated at the 
time the lists are first constructed by the merging method. 
Either the structures would be created in corresponding C, 
simultaneously, or would be transferred there with a sequen­
tial read and write at some later time, determined by the 

25 filtering method. The storage device C, in which these struc­
tures are stored need not be the highest or fastest such storage 
device, typically as long as C, is faster than the corresponding 
T,, this would be sufficient. 

Insertion of data into CHISL begins with a client or user 
30 selecting a pair to insert, modifY, or read. According to a lock 

resolution method, the user may be required to notify one, 
some, or all of the nodes that the pair is being accessed. Space 
within each node may be divided according to the caching 
method, for example as shown in FIG. 8, into read caching 

35 space and write caching space. FIG. 8 shows an exemplary 
merge and cache method using CHISL to retain a sub-list 801 
of a list that contains frequently read data in a relative high tier 
(tier 0), while transferring a sub-list 802 of the same list that 
contains writes (e.g., insertions, updates, and deletions) to a 

40 relatively low tier (tier 1 ). A merge method may be applied to 
the structure 803 to move a write sub-list 802, while the cache 
method will leave the read sub-list 801 in place. The merge 
and cache method result in the structure 804, wherein the 

or all of the nodes of this access. As shown in FIG. 4, each 
node organizes its memory in order of most randomly acces­
sible to least randomly accessible. When comparing storage 
devices within different tiers, and which may exist either 
within the same machine or on different machines, one tier is 
more randomly accessible than the other. This more randomly 45 

accessible tier is the cache for the less randomly accessible 
tier. For example, in the two-tier example of FIG. 4, a slot in 

write sub-lists have been moved to a lower tier (tier 1). 
The allotment may change over time as performance 

requirements change depending on the workload according to 
the dynamic reorganization method. If there is not enough 
space to accommodate the potentially newly updated or read 
pair, then according to the merging method, the lists occupy-

a lower level401 (the less randomly accessible tier) needs to 
be able to contain all the slots 402 in the lowest level of the 
next higher level (the more randomly accessible tier). The 
cache tier C for some other tier T may contain secondary 
indexes and space-efficient filters. If they exist, these second­
ary indexes and filters are consulted on tier C before searching 
for the pair in the tier T. If the pair can be proven to not exist 
by the filters, then lookup may stop, otherwise if the exact key 
of the pair is not kuown or the existence of the pair is still in 
question a lookup may proceed with the optionallocational 
information provided by the secondary index in C. If the pair 
is not found in T, the search proceeds to other nodes. Searches 
of nodes can be parallelized across tiers, and can simulta­
neously be performed in order of the fastest tiers to slowest 
tiers, in this way, it is more likely that the C tier for some T tier 
will be more quickly located and accessed, thus possibly 
eliminating the need to consult the slower T tier at all. 

To improve read throughput, when the work-set size is 
small enough to fit in a RAM, e.g., the C tier, using RAM as 
a cache, e.g., the T tier, may provide the improved perfor-

50 ing the memory are transferred to another node according to 
the merging method. If there is more than one list being 
transferred, none, some, or all of these lists may be merged at 
the time of transfer. The nnmber oflists merged is determined 
by the merging method, the sequential optimization method, 

55 and the dynamic reorganization method, which examine the 
nnmber, the size, the complexity of the list's secondary index 
and filters, and the desired insertion, update, delete, scan, and 
lookup performance of the workload and/or user. If the deter­
mination to merge is made, then during merge, a lock reso-

60 lution and deduplication method are utilized to determine 
how to handle pairs with conflicting keys, where keys conflict 
if they are incomparable or are equal in value. At this point a 
lock resolution method may stop the merge and alert a conflict 
resolution authority, such as an automated process, or a user 

65 by issuing a hnman understandable error. At this same point a 
deduplication method may notify a duplicate pair manager 
that two pairs with potentially duplicate key values exist, and 
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this entity may decide to remove the duplicate to save space, 
or move it physically to another node for performance, reli­
ability, security, or any other reason. 

Once enough space has been created to accommodate the 
new pair(s) by transferring and possibly merging already 
present lists, they are transferred from the user's or client's 
memory to the node and form a new list or modifY an existing 
list. According to a caching method, not all lists may be 
transferred at this time. For example, in FIG. 8, the list is 
broken into a read and write sub-lists, where only the write 10 

sub-lists are transferred to another node, and the read sub-lists 
remain unless further space is needed, or performance or 
security requirements change according to the dynamic reor­
ganization method. 

The dynamic reorganization method may alter the thresh- 15 

olds used to determine if a merge or list transferal is required 
as shown in FIG. 10. For example, the number of slots/lists in 
each tier can be reconfigured to induce more merging during 
regular operation of the merging method, deamortizing read 
optimization across multiple evictions/transfers 1000 or lists 20 

on the same level (slots) can be merged together for aggres­
sive read optimization 1001 or 1002. 

12 
slots, SAMT merges the contents of both of its slots into one 
of the slots in ci 303a. It then marks the slot in ci full and both 
slots ofC,-1 free. This may result in a cascading merge; FIG. 
3A shows a multi-tiered cache before cascading and FIG. 3B 
shows a multi-tiered cache after cascading wherein portions 
of cache, e.g., 301, 302b, 303b, and 303c are flushed. 

For each tier that a particular key-value pair occupies, 
CHISL maintains a tier header, depicted in FIG. 5, to manage 
meta data associated with the portion of a key-value pair struc­
ture within that tier. Each slot in a key-value pair structure is 
divided into blocks. By representing slots as a series of 
blocks, unused space from partially filled slots may be re­
used, and multiple snapshots of the key-value pair structure 
may be stored to simplifY a transactional implementation. 
The size of the blocks may be set to reduce or avoid fragmen­
tation, e.g., 1 GB. 

FIG. 5 shows a portion of a tier header corresponding to a 
single slot 501 residing on an SSD. The blocks 502 (zO 
through z3) are mapped out of order to the slot. The blocks 
size ensures good serial write performance. The offsets of 
blocks are in tum managed by a block allocator. The partition 
of storage that each block allocator manages is called its 
allocation region. Block allocators maintain a bitmap of 
which blocks are free or not. For example, for 1 GB blocks, a 
4 KB bitmap can represent 32 TB worth of blocks, and a 
bitmap will flush quickly to the journal and consume little 
memory. In FIG. 5 there are two block allocators 503 and 504 
controlling this SSD (m0 and m 1). Block allocator m0 allo­
cates 1 GB blocks for slot blocks from a data allocation region 

As shown in FIG. 2, multiple pair types (201-203) can be 
stored across a series of devices 204 from higher tiers 205 to 
lower tiers 206. As shown in FIG. 9, colunm and row storage, 25 

along with other localization and data locality optimizations 
may be achieved by configuration of the pairs used within a 
pair type. For example, CHISL may be employed as a multi­
tier colunm store by storing columns as nested key-value 
pairs using the CHISL multi-tier hierarchy. 30 (Data A.R.). Block allocator m 1 allocates 8 MB blocks to 

store tier header information and both block allocators' bit­
maps (Metadata A.R.). Larger blocks avoid seeking during 
list merges. Small blocks avoid wasting space for storing 
metadata. The filter and secondary index are resident in some 

A properly suitable sequential optimization method can be 
used to avoid re-writing portions of lists during a merge by 
identifying which pair types or arrays within pairs need to be 
sorted, and which do not, along with performance require­
ments for scans and lookups. 

FIGS. 3A-B show a configuration with a single device, 
organizing its storage into three tiers, where the bus is a SATA 
and memory bus connection, where the number oflists within 
a tier is configured at two, and one in the highest tier (RAM in 
this case). 

35 fast storage device (could be RAM, but not necessarily), and 
may also be stored on disk to be recoverable after a crash. The 
offsets of the locations of the filter and secondary index are 
maintained by the header in block b0 505 and block s0 506, 
respectively. 

40 

As seen in FIG. 3A, the key-value store is divided into an 
in-RAM cache and an on -storage set of sorted lists. The cache 
includes a red-black tree of pairs. The on-storage component 
includes a series oflevels, where each level holds two or more 
slots.A slot is a sorted array of pairs. The key-value store uses 45 

red-black trees as a cache structure, and when these caches 
are full, it will flush their contents in large serial writes to the 
slots and levels of the on-storage component. Throughout 
operation, a merging regiment on these slots and levels is used 
to maintain high insert, delete, and update throughput. 

Operations may be categorized as either reads or writes. 
Reads include: (1) finding an exact value if it exists or find­
exact, and (2) range queries. Writes include: (1) insert, (2) 
delete, and (3) update. 

50 

Write: Pairs can be inserted between existing pairs. 55 

Updates and deletes change the value of a pair or remove it 
entirely. After elements are deleted, new elements can be 
inserted again. Inserts fail with an ENOSPC error (no space 
left on device) when the allotted space is full. 

Referring to FIG. 3A, new key-value pairs are inserted into 60 

the cache in RAM, called C0 301. When there is no more 
RAM for insertions, C0 flushes all key-value pairs in sorted 
order as a contiguous serial write to an empty slot in C1 , which 
is then marked full. C1 has two slots 302a and 302b, each of 
which can hold as much data as C0 ; this relationship holds for 65 

each C, and C,-1 with the exception of a lowest-order slot 
(explained below). When a cache line C,-1 has no empty 

Exemplary SAMT Multi-Tier Extensions 

CHISL may extend the SAMT merging method in multiple 
ways. For example, (1) Client reads can be optionally re­
inserted to keep recently read (hot) data in faster tiers (e.g., a 
Flash SSD). (2) Lists of recently inserted data are automati­
cally promoted into faster tiers if they fit. (3) Different tiers 
can have different values of K (the number of slots in each 
level. 

According to an embodiment of the present disclosure, a 
SAMT the Multi-tier SAMT or MTSAMT is described. The 
exemplary implementation includes support for full deletion, 
variable-length keys and values, and allows the logical layer 
to specifY whatever format, bits, or timestamps deemed nec­
essary by the logical layer, as other TSSLs do. 

Exemplary Re-Insertion Caching 

Whenever a pair is inserted, updated, deleted, or read, the 
C0 (fastest) cache may be updated. The cache may be config­
ured to hold a preset number of pairs. When a pair is inserted 
or updated, it is marked DIRTY, and the number of pairs in the 
cache is increased. Similarly, after a key is read into the C0 

cache, it is marked as RD _CACHED, and the number of pairs 
is increased. Once a pre-set limit is met, the cache evicts into 
the MTSAMT structure using the merging process depicted 
in FIG. 3C panel3. By including RD_ CACHED pairs in this 
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eviction as regular updates, we can answer future reads from 
C1 rather than a slower lower level. However, if the key-value 
pairs are large, this can consume additional write bandwidth. 
This feature is desirable when the working-set is too large for 

14 

C0 (RAM) but small enough to fit in a fast-enough device 
residing at one of the next several levels (e.g., C1 and C2 on 
Flash SSD). Alternatively, this feature can be disabled for 
workloads where saving the cost of reading an average pair is 
not worth the additional insertion overhead, such as when we 
are not in a multi-tier scenario. All RD_CACHED values are 
omitted during a major compaction, and RD_CACHED val­
ues are omitted during a merging compaction if another pair 
with the same key can be emitted instead. Therefore, no 
additional space is used by inserting RD_CACHED pairs. 
When scanning through trees (MTSAMTs ), if read caching is 
enabled, the scanner inserts scanned values into the cache, 
and marks them as RD _CACHED. Experimentally, we found 
that randomly reading larger tuples (>4096 KB) can make 
effective use of a Flash SSD tier; however, for smaller tuples 

SSTable would be broken up into several smaller SSTables. 
This is possible because CHISL manages blocks in the under­
lying storage device directly, rather than treating SSTables as 
entire files on the file system, which allows for this kind of 
optimization. Reclamation across levels within the same tier 
is inexpensive, as this includes moving SSTable blocks by 
adjusting pointers to the block, rather than copying them 
across devices. If these rules are obeyed, then partially filled 
slots may be guaranteed to always move upward, eliminating 

10 the possibility that small lists of pairs remain stuck in lower 
and slower levels. The exemplary MTSAMT implementation 
has been designed for throughput. The exemplary design 
considers space on storage with high latency and high read/ 

15 
write throughput characteristics (e.g., disk) to be cheaper than 
other hardware (e.g., RAM or Flash SSD). CHISL can oper­
ate optimally nntil 1h of total storage is consumed; after that, 
performance degrades gradually until the entire volume is 
full, save a small amount of reserve space (usually 5% of the 

( <64 B) the time taken to warm the Flash SSD tier with reads 20 storage device). Such space-time trade-offs are common in 
storage systems, such as HBase, Cassandra, and even Flash 
SSD devices. 

is dominated by the slower random read throughput of the 
magnetic disk in the tier below. By allowing scans to cache 
read tuples, applications can exploit application-specific 
locality to pre-fetch pairs within the same or adjacent rows 
whose contents are likely to be later read. Evictions ofread- 25 

cached pairs can clear out a Flash SSD cache if those same 
pairs are not intelligently brought back into the higher tier 
they were evicted from after a cross-tier merging compaction. 
In FIG. 3C panel4, evicted pairs are copied back into the tier 
they were evicted from. This is called reclamation, and it 30 

allows SSTables, including read-cached pairs, that were 
evicted to magnetic disks (or other lower-tier devices) to be 
automatically copied back into the Flash SSD tier if they can 
fit. 

35 

Exemplary Sub-List Optimization 

Read-cached values need not be stored in the same lists as 
other pairs, but can instead be segregated into a separate list 
which is created at the same time, but holds only read-cached 40 

values. When a merging compaction takes place, and lists 
from one tier are merged together, and the result is written to 
another or lower tier, the read-cached list can remain where it 
is, or can be moved to a higher or faster tier. This allows an 
operator of the machine or system to configure a proportion of 45 

faster storage devices to use an allotted space for caching. 
Without separating reads into sub-lists, they would be carried 
downward to another tier during the merge. By leaving the 
read-cached pairs in place, and only transferring the inserted 
pairs, reads can still be serviced at the speed of the faster 50 

storage device. 

Exemplary Space Management and Reclamation 

An MTSAMT may be designed for so that more frequently 55 

accessed lists would be located at higher levels, or at C, for the 
smallest i possible. After a merge, the resulting list may be 
smaller than the slot it was merged into because of resolved 
deletes and updates. If the resultant list can fit into one of the 
higher (and faster) slots from which it was merged (which are 60 

now clear), then it may be moved upward, along with any 
other slots at the same level that can also fit. This process is 
called reclamation. 

In the example in FIG. 3C, the result of the merging com­
paction in panel 4 is small enough to fit into the two (half of 65 

four) available slots in Cu and specifically in this example 
requires only one slot. If multiple slots were required, the 

At this point, only deletes and updates may be accepted. 
These operations are processed by performing the equivalent 
of a major compaction: ifthere is not enough space to perform 
a merging compaction into the first free slot, then an in-place 
compaction of all levels in the MTSAMT is performed using 
the CHISL's reserve space. As tuples are deleted, space is 
reclaimed, freeing it for more merging compactions that 
intersperse major compactions until 1h of total storage is 
again free; at that point, only merging compactions need be 
performed, regaining the original optimal insertion through­
put. 

To exploit decoupling, compaction-based systems such as 
CHISL have some overhead to maintain optimal insertion 
throughput in the steady state. Without this space, their 
throughput will degrade. 

Exemplary Committing and Stacked Caching 

The exemplary MTSAMT extends the SAMT to operate 
efficiently in a multi-tier environment. In addition to efficient 
compaction, reclamation, and caching as discussed above, the 
efficiency of the memtable or C0 as well as how efficiently it 
can be serialized to storage as an SSTable is also discussed. 
The architecture of a transaction manager and caching infra­
structure affects insertion throughput for small key-value 
pairs (<1 KB). CHISL's architecture is mindful of cache 
efficiency, while supporting new transactional features ( asyn­
chronous commits) and complex multi-operation transac­
tions. 

Exemplary Cache Stacking 

The transactional design ofCHISL may be implemented in 
terms of CHISL's concise cache-stacking feature. CHISL 
maintains a memtable to store key-value pairs. CHISL uses a 
red-black tree with an LRU implementation, and DIRTY 
flags for each pair. An instance of this cache for caching pairs 
in a particular column family or tree is called a scan cache. 
Unlike other TSSL architectures, this scan cache can be 
stacked on top of another cache holding pairs from the same 
tree or MTSAMT. In this scenario the cache on top or the 
upper cache evicts into the lower cache when it becomes full 
by locking the lower cache and moving its pairs down into the 
lower cache. In addition to the memtable cache, like other 
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TSSLs, CHISL may use a buffer cache. The buffer cache need 
not fully implement a user-level buffer cache. 

Exemplary Buffer Caching. 

According to an embodiment of the present disclosure, on 
operating system (OS) kernel, such as Linux, may be used for 

16 
gives the application a reference to it. At any time, when a 
thread modifies a tree, a new scan cache is created if one does 
not already exist, and is stacked on top of that tree's staged 
cache. The new scan cache is placed in that transaction's 
handler. This new scan cache is called a private cache. In FIG. 
6 we see three handlers, each in use by three separate threads 
PO through P2. Each thread has modified each of the three 
trees (MTSAMTO through MTSAMT2). Transactions man-
aged by CHISL's TM are in one of three states: 

(1) they are uncommitted and still exist only with the 
handler's private caches; 

(2) they are committed either durably or asynchronously 
and are in either the staged cache or CO of the trees they 
effect; or 

(3) they are entirely written to disk. 
Transactions begin in state (1), move to state (2) when com­
mitted by a thread, and when CHISL performs a snapshot of 
the system, they move to state (3) and are atomically written 
to storage as part of taking the snapshot. Durable and asyn-

all caching of pages read from zones by mmap-ing (maping 
files or devices into memory) storage in 1 GB slabs, or 
chunks. This simplifies a design implementation by avoiding 10 

implementing a buffer cache. 64-bit machines' address 
spaces are sufficiently large and the cost of a random read 
input/output (I/0) exceeds the time spent on a TLB miss. 
Serial writes may be used on a map, incurring reads as the 
underlying operating system kernel reads the page into the 15 

cache, even on a write fault. This may cause overhead on 
serial writes due to the additional reads. To avoid this prob­
lem, an operation such as PWRITE may be used during 
merges, compactions, and serializations, wherein the affected 
mapping may be invalidated using, for example, MSYNC 
with MS_INVALIDATE. As the original slots are in place 
during the merge, reads can continue while a merge takes 
place, until the original list must be deallocated. 

20 chronous transactions can both be committed. We commit 
transactions durably by moving their transaction to state (2), 
and then scheduling and waiting for the system to perform a 
snapshot. While the system is writing a snapshot to storage, 
the staged cache is left unlocked so other threads can commit Once deallocated, reads can now be directed to the newly 

created slot. The result is that the only cache which need be 
manually maintained for write-ordering purposes is the jour­
nal cache, which is an append-only cache similar to that 
implemented by the POSIX FILE C API, which is light­
weight, and simple. All TSSLs that employ MMAP, even 
without additionally optimizing for serial writes like CHISL, 
typically avoid read overheads incurred by a user-space buffer 
cache. On the other hand, traditional DBMSes can not use 
mmap as provided by commodity operating systems. This is 
because standard kernels (e.g., Linux) currently have no por­
table method of pinning dirty pages in the system page cache. 
Without this, or some other write-ordering mechanism, tra­
ditional DBMSes that require overwrites (e.g., due to using 
B+-trees), will violate write-ordering and break their recov­
erability. Therefore, they are forced to rely on complex page 
cache implementations based on MALLOC or use complex 
kernel-communication mechanisms. TSSLs utilized in 
cloud-based data stores such as Cassandra, HBase, or CHISL 
never overwrite data during the serialization of a memtable to 
storage, and therefore need not pin buffer-cache pages, 
greatly simplifYing these designs. 

Exemplary Transactional Support 

25 (similar to EXT3). A group commit of durable transactions 
occurs when multiple threads commit to the staged cache 
while the current snapshot is being written, and subsequently 
wait on the next snapshot together as a group before returning 
from COMMIT. Asynchronous transactions can safely com-

30 mit to the staged cache and return immediately from COM­
MIT. After a snapshot the staged cache and the CO cache swap 
roles: the staged cache becomes the CO cache. 

As shown in FIG. 6, the TM maintains a stacked cache 
called the staged cache on top of each pair type's C0 601. 

35 When an application begins a transaction with BEGIN, the 
TM creates a handler for that transaction and gives the appli­
cation a reference to it. The first time the application reads or 
modifies a particular pair type, a new private cache txnO 602 
is stacked on top of the staged cache 603 to hold those 

40 changes. Depending on whether the flusher is rum1ing or not, 
the application will commit differently. If the flusher is not 
running, the staged cache will be empty, and the TM will evict 
all the application's private caches into the corresponding C0 

directly. If the application is committing durably, it will ini-
45 tiate flush and wait for it to complete; otherwise it will return 

directly. If the flusher is rum1ing, the TM will evict the appli­
cation's private caches into the staged cache. If the applica­
tion is committing durably, it will enqueue itself onto the 
group commit queue. If it is committing asynchronously, it CHISL's optional transactional architecture permits for 

atomic durable insertions, hatched insertions for higher inser­
tion-throughput, and larger transactions that can be either 
asynchronous or durable. This lets the same TSSL architec­
ture to be used in a cluster operating under either consistency 
model, if desired. MTSAMT's design and operation and its 
associated cache or memtable (C0 ). As mentioned before, 
each MT-SAMT corresponds to a tree or colunm family in a 
cloud storage center. CHISL operates on multiple 
MTSAMTs to support row insertions across multiple column 
families, and more complex multi-operation transactions as 
required by stronger consistency models. Applications inter- 60 

act with the MTSAMTs through a transactional API: BEGIN, 
COMMIT_DURABLE, and COMMIT_ASYNC. CHISL's 
transaction manager (TM) manages all transactions for all 
threads. As shown in FIG. 6, the TM maintains a stacked scan 
cache called the staged cache on top of each tree's CO (also a 65 

scan cache). When an application begins a transaction with 
BEGIN, the TM creates a handler for that transaction, and 

50 will return immediately. 
CHISL' s flush protocol ensures that all pair type caches are 

atomically written. Therefore, at the time of flush, the method 
determines whether the private caches of a transaction are 
wholly in the C0 cache 601 or its staged cache 603 (or not). 

55 Using the C0 cache 601 and the staged cache 603, it can be 
guaranteed that the private caches of a transaction exists in 
one of the C0 cache 601 and the staged cache 603. 

Exemplary Snapshot, Truncate, and Recovery 
Operations 

CHISL manages blocks directly, not using separate files for 
each SSTable. A block allocator manages each storage 
device. Every block allocator uses a bitmap to track that 
blocks are in use. The block size used is 128MB to prevent 
excessive fragmentation, but the operating system page cache 
still uses 4 KB pages for reads into the buffer cache. Each tree 
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(column family) maintains a cluster of offsets and metadata 
information that points to the location of all SSTable block 
offsets, secondary index block offsets, and Bloom filter block 
offsets. This cluster may be called the header. When a snap­
shot is performed, all data referred to by all headers, including 
blocks containing SSTable information, and the bitmaps, are 
flushed to storage using MSYNC. Afterward, the append­
only cache of the journal is flushed, recording all headers to 
the journal within a single atomic transaction. 

During recovery, the most recent set ofheaders may be read 10 

back into RAM, and the state of the system at the time that 
header was committed to the journal may be recovered. Tra­
ditional TSSLs implement a limited transaction feature-set 
that only allows for atomic insertion. CHISL's architecture 

15 
does not exclude distributed transactions and is as fast as 
traditional TSSLs like Cassandra or HBase, or a factor of 2 
faster when all three systems use asynchronous commits. One 
feature ofCHISL is that high-insertion throughput workloads 
that can tolerate partial durability (e.g., snapshotting every 20 

3-5 seconds) need not write the majority of data into the 
journal. CHISL can avoid this write because if the C0 cache 
evicts its memtable as an SSTable between snapshots, the 
cache will be marked clean, and only the header need be 
serialized to the journal, avoiding double writing. This design 25 

improves CHISL's performance. 
3. Exemplary Implementations 

It is to be understood that the present invention may be 
implemented in various forms of hardware, software, firm­
ware, special purpose processors, or a combination thereof. In 30 

one embodiment, the present invention may be implemented 
in software as an application program tangibly embodied on 
a program storage device. The application program may be 
uploaded to, and executed by, a machine comprising any 

35 
suitable architecture. 

According to an embodiment of the present invention, a 
computer system for tiered indexing can comprise, inter alia, 

18 
skill in the related art will be able to contemplate these and 
similar implementations or configurations of the present 
invention. 

The invention claimed is: 
1. A method of storing data as a plurality ofkey-value pairs 

in a multi-tier storage system, the system comprising at least 
one lower-latency non-volatile memory storage device and at 
least one higher-latency non-volatile memory storage device, 
the method comprising: 

generating a first zone manager for managing a first parti­
tion of storage of a first non-volatile memory device 
among the lower-latency non-volatile memory storage 
devices to generate a tier of the multi -tier storage sys­
tem; 

generating a second zone manager for managing a second 
partition of storage of a second non-volatile memory 
device among the higher-latency non-volatile memory 
storage devices to generate another tier of the multi-tier 
storage system; 

allocating, from the first zone manager, bytes pointed at by 
a more frequently accessed sub-list among all the key­
value pairs in a key-value relation; 

allocating, from the second zone manager, bytes pointed at 
by a less frequently accessed sub-list among all the 
key-value pairs in the key-value relation; 

allocating bytes from the first zone manager for storing 
meta-data, where the meta-data comprises at least one 
association of the key-value relation with an array of 
pointers to sub-lists belonging to the relation, wherein 
each sub-list includes at least one pointer to bytes allo-
cated for sorted key-value pairs comprising the corre­
sponding sublist, 

wherein each partition comprises at least one block of a 
given size, and 

wherein the system maintains a hierarchy structure in one 
of the tiers that stores the key-value relation and enables 
the key-value pairs to be stored in any one of the tiers. 

2. The method of claim 1, further comprising storing in one 
40 of the sub-lists a pointer to a secondary index and a pointer to 

bytes for data of the sorted list, said secondary index stores an 
index to the sorted list stored in bytes pointed at by this 
sub-list. 

a central processing unit (CPU), a memory and an I/0 inter­
face. The computer system is generally coupled through the 
I/0 interface to a display and various input devices such as a 
mouse and keyboard. The support circuits can include circuits 
such as cache, power supplies, clock circuits, and a commu­
nications bus. The memory can include random access 
memory (RAM), read only memory (ROM), disk drive, tape 45 

drive, etc., or a combination thereof. Embodiments of the 
present disclosure can be implemented as a routine that is 
stored in memory and executed by the CPU to process the 
signal from the signal source. As such, the computer system is 
a general purpose computer system that becomes a specific 50 

purpose computer system when executing the routine of the 
present invention. 

3. The method of claim 2, wherein the storing comprises: 
allocating bytes from at least one of the zone managers for 

storing a sorted list of key-offset pairs or secondary 
index pairs; 

dividing the sorted list being indexed into a set of finite 
ranges of key-value pairs; and 

storing a secondary index pair to indicate the beginning of 
each range of key-value pairs stored in the list being 
indexed. 

4. The method of claim 3, wherein the secondary index pair 
is a key and a value where the key is equivalent to the key of 
a first tuple in the range being indicated and the value of the 
offset of the first tuple in the range being indicated. 

5. The method of claim 1, the structure comprising a com­
pact negative cache in the first non-volatile memory device 
for at least one of the sublists in the second non-volatile 

The computer platform also includes an operating system 
and micro instruction code. The various processes and func­
tions described herein may either be part of the micro instruc- 55 

tion code or part of the application program (or a combination 
thereof) which is executed via the operating system. In addi­
tion, various other peripheral devices may be connected to the 
computer platform such as an additional data storage device 
and a printing device. 60 memory device. 

It is to be further understood that, because some of the 
constituent system components and method steps depicted in 
the accompanying figures may be implemented in software, 
the actual connections between the system components (or 
the process steps) may differ depending upon the manner in 65 

which the present invention is programmed. Given the teach­
ings of the present invention provided herein, one of ordinary 

6. The method of claim 5, wherein the compact negative 
cache is a Bloom Filter. 

7. The method of claim 1, wherein at least one of the 
key-value pairs is a variable length key-value pair. 

8. The method of claim 1, the structure comprising a com­
pact negative cache in the second non-volatile memory device 
for each sub-list in the second non-volatile memory device, 
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and then transferring the structure from the second non-vola­
tile memory device to the first non-volatile memory device. 

9. The method of claim 8, wherein the compact negative 
cache is a Bloom Filter. 

10. The method of claim 1, wherein the system further 
comprises a cache that stores one or more of the frequently 
used sub lists from one or more of the tiers, wherein a storage 
device used for the cache has a lower latency than the at least 
one lower-latency non-volatile memory storage device for 
sequential or random access. 

10 
11. The method of claim 10, wherein the cache is one of a 

volatile memory or a non-volatile memory. 
12. The method of claim 1, wherein at least one of the 

sublists is stored using a red-black tree. 
13. The method of claim 1, wherein at least one of the 

sublists is stored using a B-tree data structure. 15 

14. The method of claim 1, wherein at least one of the 
sublists is stored using an R-COLA data structure. 

15. The method of claim 1, wherein at least one of the 
sublists is stored using a SAMT data structure. 

20 
16. Themethodofclaim 1, where the allocating performed 

by at least one of the zone managers is with respect to bytes at 
multiple offsets. 

17. The method of claim 1, where at least one of the 
sub-lists contains one or more key-value pairs indicating a 
deleted item. 

18. The method of claim 1 where at least one of the sub-lists 
contains one or more key-value pairs indicating an updated 
item. 

19. The method of claim 1, further comprising compacting 
a group of the sub-lists in one of the tiers into a fewer number 
of sub-lists according to a merging method. 

20. The method of claim 19, further comprising reclaiming 
space resulting from the compacting from the corresponding 
zone manager. 

21. The method of claim 20, further comprising transfer­
ring another group of the sub-lists into the reclaimed space. 

* * * * * 


