
111111 11
US 20050273858Al

(19) United States
(12) Patent Application Publication

Zadok et al.
(10) Pub. No.: US 2005/0273858 Al
(43) Pub. Date: Dec. 8, 2005

(54) STACKABLE FILE SYSTEMS AND
METHODS THEREOF

(76)

(21)

Inventors: Erez Zadok, Stony Brook, NY (US);
Charles P. Wright, Port Jefferson
Station, NY (US); Akshat Aranya,
New Delhi (IN); Abhijith Damodara
Das, Westbury, NY (US); Yevgeniy Y.
Miretskiy, Coram, NY (US);
Kiran-Kumar Muniswamy-Reddy,
Bangalore (IN); Andrew Paul Himmer,
Arlington, MA (US)

Correspondence Address:
F. CHAU & ASSOCIATES, LLC
130 WOODBURY ROAD
WOODBURY, NY 11797 (US)

Appl. No.:

603

10/862,212

User Process
read

eys_read

vfs read

(22) Filed: Jun. 7,2004

Publication Classification

(51) Int. Cl? ... G06F 15/16
(52) U.S. Cl. .. 726/24; 709/230

(57) ABSTRACT

An operating system kernel, including a protocol stack,
includes a network layer for receiving a message from a data
network, a stackable file system layer coupled to the network
layer for inspecting the message, wherein the stackable file
system layer is coupled to a storage device, the stackable file
system determining and storing file system level information
determined from the message, and a wrapped file system
comprising a file targeted by the message coupled to the
stackable file system layer for receiving the message
inspected by the stackable file system.

USER

KERNEL

~r-----~--~----~-------
VIRTUAL FILE SYSTEM (VFS)

avfs read
604

601

e.g.,ext3_read

605
602

FILE SYSTEM (e.g., EXT3)

Patent Application Publication Dec. 8, 2005 Sheet 1 of 10

100

~ APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

LINK

PHYSICAL

~'),..

"'-7
DATA COMMUNICATIONS NETWORK

FIGURE 1
(PRIOR ART)

US 2005/0273858 A1

Vl/ 108

Vl/ 107

./7/ 106

Vl/
105

104
vv

Vl/ 103

Vl/ 102

Vl/
101

Patent Application Publication Dec. 8, 2005 Sheet 2 of 10 US 2005/0273858 Al

200

~
APPLICATION /V

205

SYSTEM CALLS
/V2 04

VIRTUAL FILE SYSTEM
/V2 03

2 02
STACKABLE FILE SYSTEM

-201
NFS DEAMON

DISK NETWORK

-£')..

"-7
DATA COMMUNICATIONS NETWORK Vi/

101

FIGURE 2

Patent Application Publication Dec. 8, 2005 Sheet 3 of 10 US 2005/0273858 Al

301

302

307

303

CPU

SIGNAL
SOURCE

304

305

DISPLAY

r-------. 306

308

FIGURE 3

Patent Application Publication Dec. 8, 2005 Sheet 4 of 10 US 2005/0273858 Al

User process

SySl!em calls USER

402 KERNEL

501

Virtual File System 405

file systan operatioos

FSTS Tracer 1 II Tracer 2

Traced tHe system (Ext3. NFS. etc.)

lnpl.lt
Riter

FIGURE 4

I

I I
I I _____ ,

'---v--' '---y----1
Clli!ln Ill a&Serrmly A..")Y!C1IrOOili.IS F!Jlstl

alllveG (Opti'Dnat)

FIGURE 5

TRACE
STORAGE

404

503

_ ---,

Output
Driver

'---v--'
cn!llrnoral!!ljltlJ!

mers & am OO'lpUt
or;noer

404

;:V

504

Patent Application Publication Dec. 8, 2005 Sheet 5 of 10 US 2005/0273858 Al

User Process
read USER

eys_read KERNEL
603 vfs read
V\----~~~~~--~-----

VIRTUAL FILE SYSTEM (VFS)

avfe_read
604

601

e.g.,ext3_read ecanbuf

605
602

FILE SYSTEM (e.g., EXT3)

FIGURE 6

Depth Depth 1 I Depth 2 I Depth 3 I Depth 4
I ~~---r-,~)) I

a ' a
b ,---

'~

FIGURE?

Patent Application Publication Dec. 8, 2005 Sheet 6 of 10

SYSTEM CALL
INTERFACE

FILE SYSTEM
INTERFACE

801

802

USER PROCESS

write()

versionfs _write()

VERSIONING FILE SYSTEM

ext2 _write()

FILE SYSTEM (E.G., EXT2)

FIGURE 8

US 2005/0273858 Al

803

USER

KERNEL

804

Patent Application Publication Dec. 8, 2005 Sheet 7 of 10 US 2005/0273858 Al

A
A·i

'

A·dl
' A·i
'

b
b;i

c
C·i

'

FIGURE 9A

b;fi
b·i
'

C·dl
' C;i

FIGURE 98

d
d·i
'

e
• e;J

d·fl
' d;i

~~ e;n

Patent Application Publication Dec. 8, 2005 Sheet 8 of 10 US 2005/0273858 Al

0 foo A2 B2 C3 Current
c
0 _.,..,.
!! foo:flO A2 B2 C2 D3 El
·Clot .>
.t...
·GJ foo;f9 A2 Bl C2 D2
6
z foo~f8 Al Bl Cl Dl

FIGURE 10A

foo Al Bl Cl I Dl Current

FIGURE 108

foo I A2 I B2 I C3 Cw:rent
•lj
·~ foo;slO ~~~ C2 D3 I El jsMj ·-f
Q,i

>
t... foo;s.9
~
s I SI\11
;z foo;s8 AI Dl

FIGURE 10C

Patent Application Publication Dec. 8, 2005 Sheet 9 of 10 US 2005/0273858 Al

1101

\1\ MOUNTING A STACKABLE FILE SYSTEM -

1~
EXPORTING A MOUNT POINT OF THE STACKABLE FILE

SYSTEM TO A PROXY (OPTIONAL)

1~
EXPORTING A MOUNT POINT OF THE STACKABLE FILE • SYSTEM TO A CLIENT

11 03

~ MONITORING A FILE ACCESS TO A TARGET FILE SYSTEM
THROUGH THE STACKABLE FILE SYSTEM

11

~ MONITORING THE FILE ACCESS TO A TARGET FILE
SYSTEM FOR A PREDETERMINED BEHAVIOR

11

~ RECORDING EVENTS SATISFYING THE PREDETERMINED
BEHAVIOR

FIGURE 11

Patent Application Publication Dec. 8, 2005 Sheet 10 of 10 US 2005/0273858 A1

1201

/
TASK OR SECURE FILE
PROCESS SYSTEM

rJ
..

1202

~
1203

PER-USER
CIPHERTEXT

AND
CLEARTEXT

DATA

FIGURE 12

TASK OR PROCESS

~ 1302

KERNEL CACHES: INODE, DIRECTORY ENTRY, FILES,
DATAPAGES, ETC.

1303~ ~1301

SECURE FILE SYSTEM

FIGURE 13

US 2005/0273858 Al

STACKABLE FILE SYSTEMS AND METHODS
THEREOF

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to network file sys­
tems, and more particularly to stackable file systems.

[0003] 2. Discussion of Related Art

[0004] Communications between computers depend upon
a basic architecture. For example, the International Stan­
dards Organization (ISO) protocol stack is a set of cooper­
ating sequential protocols that pass messages between one
another. FIG. 1 shows the ISO protocol stack 100 connected
to a data communications network 101. The stack 100
comprises a physical layer 102, a data-link layer 103, and a
network layer 104. The stack further comprises a transport
layer 106, a session layer 107, a presentation layer 108, and
an application layer 109.

[0005] The physical layer 102 handles the physical trans­
mission of a bit stream over the data communications
network 101. The physical layer 102 is typically embodied
as a networking device. The data-link layer 103 handles
frames, or packets of data. The data-link layer 103 typically
performs error detection and recovery of bit stream content
from the physical layer 102. The network layer 104 routes
the packets of data, handling addressing, encoding and
decoding of packets. The transport layer 105 controls the
handling and flow of messages between computers. The
session layer 106 implements sessions or process-to-process
communications, for example, mail, remote logins, and file
transfer. The presentation layer 107 handles file formats,
resolving differences between clients in the network. The
application layer 108 is the interface with an end user. The
application layer 108 manages file transfer, access, and
management.

[0006] Each layer modifies a message received via the
data communications network 101. A message moves up the
stack after being received from the data communications
network 101. At each subsequent layer, additional informa­
tion is extracted from the message, and it can be said that the
message becomes less abstract.

[0007] More modern stacks include the TCP/IP protocol
stack. The TCP/IP stack has fewer layers than the ISO
protocol stack, however; many of the functions of individual
layers of the ISO protocol stack can be identified in the more
compact and efficient TCP/IP protocol.

[0008] Applications for detecting viruses and tracing com­
puter use typically operate on information gleamed at a low
level in the stack, e.g., the network level. Accordingly, the
information can be abstract and difficult to interpret.

[0009] Therefore, a need exists for a stackable file system
for performing, inter alia, location-independent network
intrusion detection, file system traces, versioning, and virus
protection, at a file system level in the stack.

SUMMARY OF THE INVENTION

[0010] An operating system kernel, including a protocol
stack, includes a network layer for receiving a message from
a data network, a stackable file system layer coupled to the

1
Dec. 8, 2005

network layer for inspecting the message, wherein the
stackable file system layer is coupled to a storage device, the
stackable file system determining and storing file system
level information determined from the message, and a
wrapped file system comprising a file targeted by the mes­
sage coupled to the stackable file system layer for receiving
the message inspected by the stackable file system.

[0011] The stackable file system layer includes a filter,
wherein the message is compared to the filter, the filter being
one of a virus signature, and an expression specifying an
object and an operation.

[0012] The stackable file system layer comprises a filter,
wherein the message is compared to the filter, the filter
specifying file system operations triggering a version save to
the storage device.

[0013] The protocol stack includes a virus-scanning
engine coupled between the stackable file system and the
storage device, wherein the storage device includes a virus
database of virus signatures accessed by the virus-scanning
engine. The virus-scanning engine scans the message before
data from a read() is delivered to a user and before data from
a write() propagates to a data storage device.

[0014] The stackable file system layer stores a version of
the file targeted by the message upon determining a change
in the file.

[0015] The filter performs an operation trace, wherein the
filter includes an input filter for determining the operations
to trace, an assembly driver for converting the traced opera­
tions and corresponding parameters into a stream, an output
filter for performing a stream transformation, and an output
driver for writing the stream out from the kernel to the
storage device.

[0016] A stackable file system method includes mounting
a stackable file system on top of a target file system, wherein
a stackable file system is loaded in a kernel below a system
call level and above a network layer, exporting a mount
point of the stackable file system to a client, monitoring a
message targeting a file in the target file system, through the
stackable file system, and storing information about the
message upon determining that the message satisfies a filter.

[0017] The stackable file system is mounted on one file
system or a server comprising the target file system.

[0018] The method includes exporting the target file sys­
tem to a proxy, wherein the proxy exports the mount point
of the stackable file system to the client.

[0019] The stackable file system monitors messages for
predetermined behavior.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Preferred embodiments of the present disclosure
will be described below in more detail, with reference to the
accompanying drawings:

[0021] FIG. 1 is a diagram of an ISO protocol stack;

[0022] FIG. 2 is a diagram of a TCP!IP protocol stack
according to an embodiment of the present disclosure;

[0023] FIG. 3 is a diagram of a system according to an
embodiment of the present disclosure;

US 2005/0273858 Al

[0024] FIG. 4 is a diagram of a trace file system according
to an embodiment of the present disclosure;

[0025] FIG. 5 is a diagram of a tracer according to an
embodiment of the present disclosure;

[0026] FIG. 6 is a diagram of an anti-virus file system
according to an embodiment of the present disclosure;

[0027] FIG. 7 is an illustration of an anti-virus automaton
according to an embodiment of the present disclosure;

[0028] FIG. 8 is a diagram of a versioning file system
according to an embodiment of the present disclosure;

[0029] FIGS. 9A and 9B show file system trees for a
versioning stackable file system according to an embodi­
ment of the present disclosure;

[0030] FIG. lOA illustrates a full storage policy of a
versioning stackable file system according to an embodi­
ment of the present disclosure;

[0031] FIG. lOB illustrates a current file for a sparse
storage policy of a versioning stackable file system accord­
ing to an embodiment of the present disclosure;

[0032] FIG. lOC illustrates a sparse storage policy of a
versioning stackable file system according to an embodi­
ment of the present disclosure;

[0033] FIG. 11 is a flow chart of a method for mounting
file systems to a stackable file system according to an
embodiment of the present disclosure;

[0034] FIG. 12 is a flow diagram of an on-exit callback
method according to an embodiment of the present disclo­
sure; and

[0035] FIG. 13 is a flow diagram of a cache validation
method according to an embodiment of the present disclo­
sure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0036] A stackable file system (stacking) is a layered
software technology that can be used to wrap another file
system, even another stackable file system. By wrapping
other file systems, stackable file systems can monitor file
system activity that comes from users before that activity is
passed on to the actual file system that the stackable file
system is wrapping. Accordingly, the network file system is
a proxy implementing stacking.

[0037] For example, the stackable file system can be
invoked with a request to create a new file, and it can decide,
based on a set of rules, to allow or deny the access needed
to create the new file; if it allows the access, the stackable
file system can pass-through the file creation request to the
underlying, wrapped, file system.

[0038] In another example, the stackable file system can
transparently encrypt and decrypt data, e.g., from a file,
passing through the stack. For example, a user issues a
request via a system call to write to a data file; the stackable
file system encrypts a data buffer and reissues the write
request to the wrapped file system, wherein the stackable file
system passes the encrypted data buffer to the wrapped file
system. This provides transparent encryption without user
intervention.

2
Dec. 8, 2005

[0039] Further, stackable file systems appear to a running
system as a regular file system no different than other file
systems (e.g., Network File System (NFS), Flash File Sys­
tem (FFS), Second Extended File System (EXT2), UNIX
File System (UFS), Common Internet File System (CIFS),
etc.). Thus, a stackable file system can be exported via
system methods, through the network, to remote clients
using for example, NFS or CIFS.

[0040] When combining the layering and exporting abili­
ties of stackable file systems, a network file system proxy
device can be produced using stackable file systems. For
example, in a system comprising a networked file system
(e.g., NFS, CIFS, etc.), a client C, and a matching serverS,
client C can access the file system on S via the network. A
proxy device Pis disposed in between C and S. S exports its
file system to P. P mounts the file system from S. P mounts
a second, stackable file system on top of the mounted file
system of S. P exports the stackable file system mount point
to client C. C mounts the exported file system from P.

[0041] This scenario can be done without the knowledge,
intervention, or reconfiguration of either S or C. P acts as a
transparent proxy, monitoring all file system activities.

[0042] Mounting a file system includes, for example,
passing to the kernel the name of the file system, the physical
block device including the file system and, where in the
existing file system topology the new file system is to be
mounted.

[0043] Referring to FIG. 2, whereas prior proxy tech­
niques use network-layer packet analysis and retransmis­
sion, stackable file systems achieve the proxying techniques
at a higher conceptual level-the stackable file system level
202. At the network level201, important information can be
lost to the proxying software, information such as the
identity of users, groups, and processes, as well as file
names. At the stackable file system level 202, on the other
hand, this information is available. Therefore, a transparent
file system proxy can perform more intelligent decisions
than a file system at the network level 201.

[0044] Note that this proxying technique can also be
achieved by directly mounting the stackable file system on
the server's (S) own exported file systems. That is, a separate
intermediate device (P) is not needed for file system proxy­
ing using stackable file systems. The same benefits can be
achieved entirely in software deployed either on servers or
clients.

[0045] It is to be understood that the present invention
may be implemented in various forms of hardware, soft­
ware, firmware, special purpose processors, or a combina­
tion thereof. In one embodiment, the present invention may
be implemented in software as an application program
tangibly embodied on a program storage device. The appli­
cation program may be uploaded to, and executed by, a
machine comprising any suitable architecture.

[0046] Referring to FIG. 3, according to an embodiment
of the present disclosure, a computer system 301 for imple­
menting the present disclosure can comprise, inter alia, a
central processing unit (CPU) 302, a memory 303 and an
input/output (110) interface 304. The computer system 301
is generally coupled through the 1!0 interface 304 to a
display 305 and various input devices 306 such as a mouse
and keyboard. The support circuits can include circuits such

US 2005/0273858 Al

as cache, power supplies, clock circuits, and a communica­
tions bus. The memory 303 can include random access
memory (RAM), read only memory (ROM), disk drive, tape
drive, etc., or a combination thereof. The present disclosure
can be implemented as a routine 307 that is stored in
memory 303 and executed by the CPU 302 to process the
signal from the signal source 308. As such, the computer
system 301 is a general-purpose computer system that
becomes a specific purpose computer system when execut­
ing the routine 307 of the present disclosure.

[0047] The computer platform 301 also includes an oper­
ating system and microinstruction code. The various pro­
cesses and functions described herein may either be part of
the microinstruction code or part of the application program
(or a combination thereof), which is executed via the oper­
ating system. In addition, various other peripheral devices
may be connected to the computer platform such as an
additional data storage device and a printing device.

[0048] It is to be further understood that, because some of
the constituent system components and method steps
depicted in the accompanying figures may be implemented
in software, the actual connections between the system
components (or the process steps) may differ depending
upon the manner in which the present invention is pro­
grammed. Given the teachings of the present invention
provided herein, one of ordinary skill in the related art will
be able to contemplate these and similar implementations or
configurations of the present invention.

[0049] It should be noted that different file systems can be
written as wrapper file systems having different functional­
ity. For example, file systems can be implemented for
intrusion detection, intrusion avoidance, analysis, access
control, and encryption. Useful file systems can be written
with a small amount of code and rapidly prototyped. More­
over, several such file systems can be stacked together, to
form a union of their functionality.

[0050] The stackable encryption file system may be
deployed in a variety of applications. Among the applica­
tions are file system traces and anti-virus file systems.
Various embodiments of the present disclosure are described
below as examples of stackable file system implementations.

[0051] Intrusion Detection System

[0052] According to an embodiment of the present disclo­
sure, a file system intrusion detection system (IDS) works at
the stackable file system level 202, below systems calls 204,
but above the network layers 201. When such an IDS uses
file system stacking on a file server having a Virtual File
System (VFS) 203, it can monitor all file access activities as
if they were executed on the client. The VFS 203 manages
the different file systems that are mounted at any given time.
The VFS 203 maintains data structures that describe the
whole (e.g., virtual) file system and the real, mounted, file
systems.

[0053] Intrusion detection techniques such as misuse
detection and anomaly detection approaches may be imple­
mented with the file system IDS. Misuse detection tech­
niques detect attacks as instances of attack signatures. The
attack signatures may be stored in a library accessed by the
file system IDS. Anomaly detection uses a definition of
normal system behaviors. In anomaly detection, machine­
learning techniques may be used to learn normal behavior by

3
Dec. 8, 2005

observing the file system operation during a training phase
that is free of attacks. Subsequently, this learnt behavior is
compared against observed system behavior during the
detection phase, and any deviations are deemed to indicate
attacks.

[0054] As such, a file system IDS monitors messages for
predetermined behavior indicative of a security event. For
example, repeated attempts to delete a large number of files,
attempts to access unauthorized files ("snooping"), and
attempts to copy large amounts of proprietary data, even by
authorized users who deviate from a predetermined usage
pattern.

[0055] The file system IDS has full access to file data and
operations. Therefore, file system operations of the wrapped
file system can be accurately observed and filtered. Further,
the file system IDS can check the validity of the data before
permitting it to be written to a server or read by a user.
Checking validity includes checking integrity using check­
sum methods (e.g., SHAl and MDS), as well as Virus
Protection (e.g., inspecting file data for known and unknown
patterns indicating that the file contains a virus, other
malicious code, or any other undesirable patterns).

[0056] File System Trace

[0057] A thin stackable file system for capturing file
system traces may be deployed for analyzing user behavior
and system software behavior. A file system trace system
(FSTS) can capture uniform traces for a variety of file
systems without modifying the file system being traced. The
FSTS can capture traces at various degrees of granularity: by
users, groups, processes, files and file names, file operations,
and more; it can transform trace data into aggregate
counters, compressed, checksummed, encrypted, or anony­
mized streams; and it can buffer and direct the resulting data
to various destinations (e.g., sockets, disks, etc.). The FSTS
is modular and extensible, allowing for uses beyond tradi­
tional file system traces. For example, a FSTS can wrap
around other file systems for debugging or intrusion detec­
tion. Intrusion detection may be built into the input filter and
tracers, wherein predetermined intrusion signatures are
searched. The storage module 405 may be used to store
information about intrusion event, e.g., operations deter­
mined to satisfy the filters.

[0058] Among the potential modules are input filters,
output filters, and output drivers. The input filters can
efficiently determine what to trace by users, groups, pro­
cesses, sessions, file system operations, file names and
attributes, and more. Output filters may control trace data
manipulations such as encryption, compression, buffering,
checksumming, as well as aggregation operators that count
frequencies of traced operations. Output drivers can deter­
mine the amount of buffering to use and where the trace data
stream should be directed: a raw device, a file, or a local or
remote socket. The traces are portable and self-describing to
preserve their usefulness in the future. A set of user-level
tools can anonymize selective parts of a trace with encryp­
tion keys that can unlock desired subsets of anonymized
data. The design of the FSTS decomposes the various
components of the system in an extensible manner, to allow
others to write additional input or output filters and drivers.

US 2005/0273858 Al

[0059] A FSTS may be implemented as a stackable file
system that can be stacked on top of any underlying file
system. FIG. 4 shows that a FSTS 401 is a thin layer
between the VFS 402 and another file system 403. File
system-related system calls invoke VFS calls, which in turn
invoke an underlying file system 403. When the FSTS 401
is stacked on top of another file system 403, the VFS calls
are intercepted by the FSTS 401 before being passed to the
underlying file system 403. Before invoking the underlying
file system 403, the FSTS calls hooks into one or more
tracers that trace the operation. Another hook is called at the
end of the operation to trace a return value.

[0060] FIG. 5 depicts an architecture of the FSTS tracing
infrastructure. It includes four components: input filters 501,
assembly drivers 502, output filters 503, and output drivers
504. Input filters 501 are invoked using hooks from the file
system layer. Input filters 501 determine which operations to
trace. Assembly drivers 502 convert a traced operation and
its parameters into a stream format. Output filters 503
perform a series of stream transformations including, check­
sum (e.g., adding a piece of information to the stream
indicating the streams size), encryption, compression, etc.
Output drivers 504 write the trace stream out from the kernel
to an external entity, like a file or a socket. Output drivers
504 are similar to output filters 503 in that they operate on
a stream of bytes. An output driver 504 writes out the trace
stream after it has gone through a series of transformations
using output filters. Like output filters 503, output drivers
504 also employ buffering for efficiency.

[0061] An optional buffer 505 can be implemented for
asynchronous processing of the stream.

[0062] A combination of an input filter 501, an assembly
driver 502, an output filter 503, and an output driver 504
defines a tracer. The FSTS may support multiple tracers,
which makes it possible to trace the same system simulta­
neously under different trace configurations. The input filter
501 allows a user or system administrator to build a directed
acyclic graph having arbitrarily complex expressions. For
example, the expressions may filter for user identification,
group identification, system identification, etc. The filters
may also be applied to variables such as file name, inode
number, or a set of operations. An example of a filter may be
written as:

((UID~O) && (Name~foo)) II((GID~4) && (Op~
open))

[0063] wherein, the filter checks for a user identifi­
cation (UID) of "0" and a file name (Name) "foo" or
a group identification (GID) of "4" and an operation
(Op) of "open". File system objects and operations
fitting this filter are formed into a stream by the
assembly drivers 502 and delivered to either the
buffer 505 or output filters 503.

[0064] Each component has a well-defined API. The APis
can be used to extend the functionality of the FSTS. Custom
drivers may be written with little knowledge of kernel
programming or file system internals. An output driver or
output filter defines operations including: initialize, release,
write, flush, and get the preferred block size. An assembly
driver needs the implementation of pre-call and post-call
stubs for every VFS operation of interest. Including initial­
ization and cleanup, an assembly driver may have up to 74
operations on Linux. Pre-call methods invoke the assembly

4
Dec. 8, 2005

driver before the actual operation is passed to the lower-level
file system; post-call methods invoke the assembly driver
after the call to the lower-level file system. For example, an
assembly driver that is interested in counting the frequency
of file creation and deletion need only implement two
methods: CREATE and UNLINK. Custom drivers can be
plugged into the existing infrastructure easily.

[0065] Traces are generated in a binary format to save
space and facilitate parsing. The trace file is composed of
two basic building blocks: an argument and a message.

[0066] An argument represents a field of data in the trace,
for example, a PID, UID, timestamp, etc. Each argument is
an (arg_id, value) or an (arg_id, length, value) tuple. The
arg_id parameter specifies a unique identifier for the argu­
ment. The length parameter is only needed for variable­
length fields like file names and process names. The length
of constant-length fields can be omitted, thus saving space in
the trace. The highest bit of arg_id is zero for constant-length
fields to indicate that there is no length field. Anonymization
toggles the highest bit of arg_id for constant-length argu­
ments since the length of arguments changes after encryp­
tion, due to padding.

[0067] A message is the smallest unit of data written to the
trace. It represents all the data traced for one file system
operation. Each message consists of a message identifier,
msg_id, a length field, and a variable number of arguments.
The length field is the length of the entire message. When
parsing the trace file, the parser can quickly skip over
messages by just reading the msg_id and length fields
without parsing the arguments. The trace file is self-con­
tained in the sense that the meta -data information is encoded
within the trace. A trace parser needs to be aware only of the
basic building blocks of the trace. The header encodes the
message identifiers and argument identifiers with their
respective string values. The length of constant-length argu­
ments is also encoded in the header so that it need not be
repeated each time the argument occurs in the trace. The
length may vary on different platforms and it can be deter­
mined from the header when the trace is parsed. The header
also encodes information about the machine the trace was
recorded on, the operating system version, hardware char­
acteristics like the disk capacity of the mounted file system
and the amount of random access memory (RAM), the input
filter, the assembly drivers, the output filters, the output
driver for the trace, and other system state information.

[0068] Distribution of traces may raise concerns about
security and privacy. It may not be desirable to distribute
traces in their entirety as they may reveal too much infor­
mation about the traced system, especially about user and
personal activity. Traces may therefore be anonymized
before they are released publicly.

[0069] A secret-key encryption method using Cipher
Block Chaining (CBC) is implemented to hide certain
information in the trace. Each argument type in the trace is
encrypted with a different randomly generated key. Encryp­
tion provides a one-to-one reversible mapping between
unanonymized and anonymized fields. Also, different map­
pings for each field remove the possibility of correlation
between related fields, for example UID=O and GID=O may
occur together in traces, but this cannot be easily inferred
from the anonymized traces in which the two fields have
been encrypted using different keys. Trace files generated by

US 2005/0273858 Al

FSTS 401 are anonymized offline during post-processing.
This allows anonymization of one source trace file in
multiple ways.

[0070] A user-level anonymization tool allows selection of
the arguments to be anonymized. For example, in one set of
traces it may be desirable to anonymize only the file names,
whereas in another, UIDs and GIDs may also be anony­
mized. Anonymized traces may be distributed publicly with­
out encryption keys. Specific encryption keys can be pri­
vately provided to someone who needs to extract
unanonymized data. Also, the use of encryption makes
anonymization more efficient since lookup tables are not
needed to map each occurrence of a data field to the same
anonymized value. The anonymization approach is stateless:
no additional information is needed other than one encryp­
tion key for each type of data anonymized.

[0071] Anti-Virus Stackable File System

[0072] Another example of an application of a stackable
file system is an anti-virus stackable file system (AVFS). The
AVFS can add virus detection to other file systems including
Ext3, NFS, etc. AVFS supports forensic modes that can
prevent a virus from reaching the disk, automatic versioning
of potentially infected files to allow safe recovery, quaran­
tining of known infected files, and isolation of infected files
from user processes.

[0073] The AVFS system is a kernel-based virus scanner
module and a file system. The virus scanner module is called
by the file system to perform scanning every time files are
read for the first time, created, or modified. This is an
on-access scanning method. An on-access scanner looks for
viruses when an application reads or writes data, and can
prevent a virus from ever being written to disk. Since
scanning is performed when data is read, as opposed to when
the file is opened, users are not faced with unexpected
delays. Since scanning is performed when data is written, as
opposed to when the file is closed, no windows of vulner­
ability exist that might allow malicious data to be written to
persistent storage. AVFS is an on-access virus scanning
system.

[0074] To reduce the amount of data scanned, AVFS stores
persistent state. AVFS scans one page a time, but a virus may
span multiple pages. After scanning one page, AVFS records
state. When the next page is scanned, AVFS can resume
scanning as if both pages were scanned together. After an
entire file is scanned, AVFS marks the file clean. AVFS does
not scan clean files until they are modified.

[0075] AVFS supports different forensic modes. One
mode prevents a virus from ever reaching the disk. As soon
as a process attempts to write a virus, AVFS returns an error
to the process before the changes are made to the file. The
second mode does not immediately return an error to the
process. Before the first write to a file is committed, a
backup of that file is made. If a virus is detected, thenAVFS
quarantines the virus (no other process can access a file
while it is quarantined), allows the write to go through,
records information about the event, and finally reverts to
the original file. This leaves the system in a consistent state,
and allows the administrator to investigate the event.

[0076] Different virus scanners may be adapted to work
with AVFS. The virus scanner also includes a virus database
of virus signatures. The virus scanner may be adapted to run

5
Dec. 8, 2005

in a kernel. By running the scanner in the kernel, data copies
or context switches can be reduced. The virus scanner also
allows the system administrator to decide what tradeoff
should be made between memory usage and scanning speed.
Since the number of viruses is continuously growing, these
scalability improvements will become even more important
in the future.

[0077] AVFS uses a page-based on-access virus scanner
that scans in real time. AVFS has support for data-consis­
tency using versioning and support for forensics by record­
ing malicious activity. The scanning algorithm limits repeti­
tive scanning using a state-oriented approach.

[0078] The virus scanner is separate from the file system
module. A stackable file system allows for portability to
different environments. The AVFS system is transparent in
that no user intervention is needed and existing applications
need not be modified to support virus protection.

[0079] AVFS is a stackable file system that provides
protection against viruses. FIG. 6 shows a view of an AVFS
infrastructure. When the AVFS 601 is mounted over an
existing file system 602, it forms a bridge between a Virtual
File System (VFS) 603 and the underlying file system 602.
The VFS calls various AVFS operations and AVFS calls the
corresponding operations of the underlying file system.
AVFS performs virus scanning and state updates during
these operations. A virus-scanning engine 604 may be inte­
grated into an operating system kernel. The virus-scanning
engine 604 exports an application program interface (API)
that is used by the AVFS 601 for scanning files and buffers
of data. For example, a read from the VFS 603, vfs_read(),
translates into avfs _read() in the AVFS layer 601. The lower
layer read method (ext3 _read()) is called and the data
received is scanned in the AVFS layer 601.

[0080] The file system methods that the stacking infra­
structure provides include read, write, open, and close. A
page may be used as a basic data unit in the stackable file
system. Reads and writes occur in pages and virus scanning
is performed during individual page reads and writes. This
level of granularity allows for viruses to be scanned before
the data from a read() is delivered to the user and before the
data from a write() propagates to the disk. The window of
opportunity for any virus attack is significantly reduced.
Further, consistency of the data is maintained in the files
because data is scanned for viruses before it gets written to
disk. In addition, with a state implementation, files may be
scanned partially and incrementally. This state implementa­
tion also allows scanned files to be marked as clean so that
they do not need to be re-scanned if they are not modified.

[0081] To better integrate the virus scanner 604 with the
AVFS 601, the virus scanner 604 may be run in the kernel.
A kernel-based virus scanner offers improved speed and
security over user level scanners. Speed is improved by
avoiding message passing and data copying between kernel
and user space. Security is improved because the virus
scanner cannot be trivially killed.

[0082] The virus scanner 604 may include a core scanner
library as well as various command line programs. The virus
definition database 605 contains virus patterns, for example,
basic patterns that are a simple sequence of characters that
identify a virus, and multi-part patterns that include more
than one basic sub-pattern. To match a virus, all sub-patterns

US 2005/0273858 Al

of a multipart pattern may match in order. The virus patterns
may also contain wildcard characters. The combination of
multi-part patterns and wildcard characters enables the virus
scanner to detect polymorphic viruses. Polymorphic viruses
are more difficult to detect than non-polymorphic viruses,
because each instance of a polymorphic virus has a different
footprint than other instances.

[0083] The virus scanner 604 may use a pattern-matching
algorithm such as the Aho-Corasick method. The algorithm
includes a pattern matching finite state machine and a text
string used as the input to the automaton. To construct a
pattern-matching automaton, the Aho-Corasick algorithm
first builds a finite state machine for all of the patterns. FIG.
9 shows the automaton for two keywords "abaa" and "abba"
over the alphabet { a,b}. State 0 denotes the starting state of
the automaton, and the final states are shown with bold
circles. The pattern "abaa" is added, creating states 0-4. The
pattern "abba" is added, creating states 5-6. Two additional
states were needed since both patterns share the same prefix
"ab." Transitions over the characters of the patterns are
called success transitions.

[0084] Versioning File System

[0085] Referring to FIG. 8, a stackable file system may be
implemented as a versioning file system (versionfs) 801 for
displaying and comparing multiple versions of files. Ver­
sionfs 801 can transparently version whole files 802 upon
user changes 803 to those files. Versionfs 801 can be run on
clients, servers, or proxies. Versions can be taken based on
a policy set by an administrator. Policies can limit, for
example, the total number of versions saved, the maximum
time they are saved, or the total disk space they consume.
Version files can be compressed to save space; also versionfs
801 can take incremental "delta" versions that record only
changes between individual disk blocks, pages of files, or
lines of text. The versions are stored in a memory device
804, such as backup disk drive or physical memory. Ver­
sionfs 801 may be used in the context of secure systems: by
taking versions, the system can recover from malicious
attacks that corrupt or modify or even delete files.

[0086] Versionfs 801 operates at the highest possible layer
inside the operating system. As shown in FIG. 2, versionfs
operates at the stackable file system level202. Versionfs 801
can operate on top of another file system 802 and transpar­
ently add versioning functionality without modifying exist­
ing file system implementations or native on-media struc­
tures. Versionfs 801 monitors relevant file system operations
resulting from user activity 803, and creates backup files 804
when a user modifies a file. Version files are automatically
hidden from the user and may be handled in a Unix­
semantics compliant manner.

[0087] To be flexible for users and administrators, ver­
sionfs 801 supports various retention and storage policies.
Retention policies determine how many versions to keep per
file. Storage policies determine how versions are stored. The
term "version set" includes a given file and all of its
versions. A user-level dynamic library wrapper allows users
to operate on a file or its version set without modifying
existing applications such as ls, rm, or mv. A library of saved
versions makes version recovery as simple as opening an old
version with a text editor. This functionality removes the
need to modify user applications and gives users flexibility
to work with versions.

6
Dec. 8, 2005

[0088] In versionfs 801, the head, or current, version is
stored as a regular file, maintaining the access characteristics
of the underlying file system. This design avoids a perfor­
mance penalty for reading the current version. Each version
is stored as a separate file. For example, the file foo's n-th
version is named foo;Xn. X is substituted depending on the
storage policy used for the version. X may be: "f' indicating
a full copy, "c" indicating a compressed version, "s" indi­
cating a sparse version, and "d" indicating a versioned
directory. The user is restricted from directly creating or
accessing files with names matching the above pattern.

[0089] A meta-data file (e.g., foo;i) is stored with each
version set and contains the minimum and maximum version
numbers as well as the storage method for each version. The
meta -data file acts as a cache of the version set to improve
performance. This file allows versionfs 801 to quickly
identify versions and know what name to assign to a new
version. On version creation, versionfs 801 also discards
older versions according to defined retention policies.

[0090] Newly created versions are created using a copy­
on-change policy. Copy-on-change differs from copy-on­
write in that writes that do not modify data will not cause
versions to be created. The dirty bit that the operating system
or hardware provides is not sufficient, because it does not
distinguish between data being overwritten with the same
content or different one.

[0091] There are at least six types of operations that create
a version of a file: a write to the file (e.g., either through
write or mapping pages of memory (mmap)), unlink, remov­
ing a directory (rmdir), rename, truncate, and ownership or
permission modifications (e.g., chown and chmod).

[0092] The write operations are intercepted by the stack­
able file system. Versionfs 801 creates a new version if the
existing data and the new data differ. Between each open and
close, only one version is created. This heuristic approxi­
mates one version per save. The unlink system call also
creates a version. For some version storage policies (e.g.,
compression), unlink results in the file's data being copied.
If the storage policy permits, then unlink is translated into a
rename operation to improve performance. Translating
unlink to a rename reduces the amount of 1!0 required for
version creation.

[0093] The rmdir system call is converted into a rename,
for example "rmdir foo" renames foo to foo;dl. A directory
is renamed if the directory appears to be empty from the
perspective of a user. To do this, a readdir operation is
executed to ensure that all files are either versions or version
set meta-data files. Deleted directories cannot be accessed
unless a user recovers the directory. Directory recovery can
be done using a user-level library that invokes a special­
purpose ioctl.

[0094] The readdir operation returns a pointer to a dirent
(format of directory entries) structure representing the next
directory entry in the directory stream. The readdir operation
returns NULL on reaching the end-of-file or if an error
occurred. The data returned by readdir is overwritten by
subsequent calls to readdir for the same directory stream.

[0095] FIG. 9A shows a tree before it is removed by rm-rf
(remove recursively with force) and FIG. 9B shows the tree
after it is removed by rm-rf. The rm command operates in a
depth-first manner. First rm descends into A and calls

US 2005/0273858 Al

unlink(b). To create a version for b, versionfs 801 instead
renames b to b;fl. Next, rm descends into C, and d and e are
versioned the same way b was. Next, rm calls rmdir on C.
Versionfs 801 uses readdir to check that C does not contain
any files visible to the user, and then renames it to C;dl. A
is versioned by renaming it to A;dl. The rename system call
needs to create a version of the source file and the destin a­
tion file. The source file needs a version so that the user can
recover it later using the source name. If the destination file
exists, then it too is versioned so its contents are preserved.
Whereas the history of changes is preserved to the data in a
file, the file name history of a file may not be preserved
because data versioning is more important to users than
file-name versioning.

[0096] When renaming foo to bar, if both are regular files,
the following scenarios are possible:

[0097] bar does not exist: In this case, a version of
foo is created before renaming foo to bar. If both
operations succeed, then the meta -data file bar;i is
created.

[0098] bar exists: A version of bar is created. Subse­
quently, a version of foo is created. Then foo is
renamed to bar.

[0099] bar does not exist but bar;i exists: This hap­
pens if bar has already been deleted and its versions
and meta -data files were left behind. In this case, a
version for foo is created, then foo is renamed to bar.
For versioning bar, the storage policy that was
recorded in bar;i is used.

[0100] The rename system call renames only the head
version of a version set. Entire version sets can be renamed
using the provided user-level library.

[0101] The truncate system call also creates a new version.
However, when truncating a file foo to zero bytes, versionfs
801 renames foo to be the version. Versionfs 801 then
recreates an empty file foo. This saves on 1!0 that would be
needed for the copy.

[0102] File meta-data is modified when owner or permis­
sions are changed, therefore chmod (change access permis­
sions of a file) and chown (change the ownership of files
and/or directories) also create versions. This may be useful
for security applications. If the storage policy permits (e.g.,
sparse mode), then no data is copied.

[0103] Storage policies define the internal format for ver­
sions. The system administrator may set the default policy,
which may be overridden by the user. Examples of storage
policies include: full, compressed, and sparse mode.

[0104] Full mode makes an entire copy of the file each
time a version is created. As can be seen in FIG. 11, each
version is stored as a separate file of the form foo;fN, where
N is the version number. The current, or head, version is foo.
The oldest version in the diagram is foo;f8. Before version
8 is created, its contents are located in foo. When the page
A2 overwrites the page Al, versionfs 801 copies the entire
head version to the version, foo;f8. After the version is
created, A2 is written to foo, then Bl, C2, and D2 are written
without any further version creation. This demonstrates that
in full mode, once the version is created, there is no
additional overhead for read or write. The creation of
version 9 is similar to the creation of version 8. The first

7
Dec. 8, 2005

write overwrites the contents of page A2 with the same
contents. Versionfs 801 does not create a version as the two
pages are the same. When page B2 overwrites page Bl, the
contents of foo are copied to foo;f9. Further writes directly
modify foo. Pages C2, D3, and El are directly written to the
head version. Version 10 is created in the same way. Writing
A2 and B2 do not create a new version. Writing C3 over C2
will create the version foo;flO and the head file is copied into
foo;flO. Finally, the file is truncated. Because a version has
already been created in the same session, a new version is
not created.

[0105] Compress mode is similar to full mode, except that
the copies of the file are compressed. If the original file size
is less than one block, then versionfs 801 may not use
compression. Compress mode reduces space utilization and
1!0 wait time, but may need more system time. Versions can
also be converted to compress mode offline using a cleaner.

[0106] When holes are created in files (e.g., through lseek
and write), file systems like Ext2, FFS, and UFS do not
allocate blocks. Files with holes are called sparse files.
Sparse mode versioning stores only block deltas between
two versions. Blocks that change between versions are saved
in the version file. It uses sparse files on the underlying file
system to save space.

[0107] Compared to full mode, sparse mode versions
reduce the amount of space used by versions and the 1!0
time. The semantics of sparse files are that when a sparse
section is read, a zero-filled page is returned. There may be
no way to differentiate this type of page with a page that is
genuinely filled with zeros. To identify which pages are
holes in the sparse version file, versionfs 801 stores sparse
version meta-data information at the end of the version file.
The meta -data contains the original size of the file and a
bitmap that records which pages are valid in this file.
Versionfs 801 does not pre-allocate intermediate data pages,
but does leave logical holes. These holes allow versionfs 801
to backup changed pages on future writes without costly
data-shifting operations.

[0108] Two properties of the sparse format are: a normal
file can be converted into a sparse version by renaming it and
then appending a sparse header; and tail versions may be
discarded because reconstruction only uses more recent
verswns.

[0109] To reconstruct version N of a sparse file foo,
versionfs 801 opens foo;sN. Versionfs 801 reconstructs the
file one page at a time. If a page is missing from foo;sN, then
the next version is opened and an attempt is made to retrieve
the page from that version. This process is repeated until the
page is found. This procedure always terminates, because
the head version is always complete. FIG. lOB shows the
contents of foo when no versions exist. A meta-data file,
foo;i, which contains the next version number, also exists.
FIG. lOC shows the version set after applying the same
sequence of operations as in FIG. lOA, but in sparse mode.

[0110] Versionfs 801 creates foo;s8 when write() tries to
overwrite page Al with A2. Versionfs 801 allocates a new
disk block for foo;s8, writes Al to the new block, updates
the sparse bitmap and overwrites Al with A2 in foo. This
strategy helps preserve sequential read performance for
multi-block files. The other data blocks are not copied to
foo;s8 yet and foo;s8 remains open. Next, write() overwrites

US 2005/0273858 Al

page B1 with the same data. Versionfs 801 does not write the
block to the sparse file because data has not changed. Next,
C2 overwrites C1 and versionfs 801 first writes C1 to the
sparse file and then writes C2 to the head version. Versionfs
801 also updates the sparse meta-data bitmap. Page D is
written in the same way as page C. The creation of version
9 is similar to version 8. The last version in this sequence is
version 10. The pagesA2, B2, and C3 are written to the head
version. Only C3 differs from the previous contents, so
versionfs 801 writes only C2 to the version file, foo;s10. The
file is truncated to 12 KB (three 4 KB pages), so D3 and E1
are copied into foo;s10. The resulting version set is shown
in FIG. 10C.

[0111] Various version retention policies may be devel­
oped. The retention policies, which may include
Elephantfs's retention policies, determine how many ver­
sions need to be retained for a file. Examples of retention
policies include number, space, and time.

[0112] For "number" the user can set the maximum and
minimum number of versions in a version set. This policy is
attractive because some history is always kept.

[0113] In "time" the user can set the maximum and
minimum amount of time to retain versions. This allows the
user to ensure that a history exists for a certain period of
time.

[0114] For the "space" retention policy, the user can set the
maximum and minimum amount of space that a version set
can consume, for example, some number of megabytes. This
policy allows a deep history tree for small files, but does not
allow one large file to use an undesirably large amount of
space (e.g., more than defined as the maximum).

[0115] A version is never discarded if discarding it violates
a policy's minimum. The minimum values take precedence
over the maximum values. If a version set does not violate
any policy's minimum and the version set exceeds any one
policy's maximum, then versions are discarded beginning
from the tail of the version set.

[0116] Providing a minimum and maximum version is
useful when a combination of two policies is used. For
example, a user can specify that the number of versions to
be kept should be 10-100 and 2-5 days of versions should be
kept. This policy ensures that both the 10 most recent
versions and at least two days of history is kept. Minimum
values ensure that versions are not prematurely deleted, and
maximums specify when versions should be removed.

[0117] Each user and the administrator can set a separate
policy for each file size, file name, file extension, process
name, and time of day. File size policies are useful because
they allow the user to ensure that large files do not use too
much disk space. File name policies are a convenient
method of explicitly excluding or including particular files
from versioning. File extension policies are useful because
file names are highly correlated with the actual file type. This
type of policy could be used to exclude large multimedia
files or regenerable files such as .o files. This can also be
used to prevent applications from creating excessive ver­
sions of unwanted files. For example, excluding "-" from
versioning will prevent emacs from creating multiple ver­
sions of "-" files.

8
Dec. 8, 2005

[0118] Process name policies can be used to exclude or
include particular programs. A user may want any file
created by a text editor to be versioned, but to exclude files
generated by their Web browser. Time-of-day policies are
useful for administrators because they can be used to keep
track of changes that happen outside of business hours or
other possibly suspicious times. For all policies, the system
administrator can provide defaults. Users can customize
these policies. The administrator can set the minimum and
maximum values for each policy. This is useful to ensure
that users do not abuse the system. In case of conflicts,
administrator defined values override user-defined values. In
case of conflicts between two retention policies specified by
a user, the most restrictive policy takes precedence.

[0119] By default, users are allowed to read and manipu­
late their own versions, though the system administrator can
turn off read or read-write access to previous versions.
Turning off read access is useful because system adminis­
trators can have a log of user activity without having the user
know what is in the log. Turning off read-write access is
useful because users cannot modify old versions either
intentionally or accidentally.

[0120] Versionfs 801 exposes a set of ioctls (110 control
codes) to user space programs, and relies on a library,
libversionfs to convert standard system call wrappers into
versionfs ioctls. The libversionfs library can be used as an
LD _PRELOAD library that intercepts each library system
call wrapper and directory functions (e.g., open, rename, or
readdir). After intercepting the library call, libversionfs
determines if the user is accessing an old version or the
current version or a file on a file system 1002 other than
versionfs 801. If a previous version is being accessed, then
libversionfs invokes the desired function in terms of ver­
sionfs ioctls; otherwise the standard library wrapper is used.
The LD _PRELOAD wrapper greatly simplifies the kernel
code, as versions are not directly accessible through standard
VFS methods.

[0121] Versionfs 801 provides the following ioctls: ver­
sion set stat, recover a version, open a raw version file, and
also several manipulation operations (e.g., rename and
chown). Each ioctl takes the file descriptor of a parent
directory within versionfs 801. When a file name is used, it
is a relative path starting from that file descriptor.

[0122] Version-set stat (vs_stat) returns the minimum and
maximum versions in a version set and the storage policy for
each version. This ioctl also returns the same information as
stat(2) for each version.

[0123] The version recovery ioctl takes a file name F, a
version number N, and a destination file descriptor D as
arguments. It writes the contents ofF's N-th version to the
file descriptor D. Providing a file descriptor gives applica­
tion programmers flexibility. Using an appropriate descrip­
tor they can recover a version, append the version to an
existing file, or stream the version over the network. A
previous version of the file can even be recovered to the head
version. In this case, version creation takes place as normal.

[0124] The open-raw ioctl is used by libversionfs to open
a version file. To preserve the version history integrity,
version files can be opened for reading only. The libver­
sionfs library recovers the version to a temporary file,
re-opens the temporary file read-only, unlinks the temporary

US 2005/0273858 Al

file, and returns the read-only file descriptor to the caller.
After this operation, the caller has a file descriptor that can
be used to read the contents of a version.

[0125] Opening a raw version returns a file descriptor to
an underlying version file. Users are not allowed to modify
raw versions. This ioctl is used to implement readdir and for
our version cleaner and converter. The application must first
run the version-set stat to determine what the version
number and storage policy of the file are. Without knowing
the corresponding storage policy, the application cannot
interpret the version file correctly. Through the normal VFS
methods, version files are hidden from user space. There­
fore, when an application calls readdir, it will not see deleted
versions. When the application calls readdir, libversionfs
runs readdir on the current version of the raw directory so
that deleted versions are returned to user space. The contents
of the underlying directory are then interpreted by libver­
sionfs to present a consistent view to user space. Deleted
directories cannot be opened through standard VFS calls,
therefore we use the raw open ioctl to access them as well.

[0126] Also provided are ioctls that rename, unlink, rmdir,
chown, and chmod an entire version set. For example, the
version-set chown operation modifies the owner of each
version in the version set. To ensure atomicity, versionfs
locks the directory while performing version-set operations.
The standard library wrappers simply invoke these manipu­
lation ioctls. The system administrator can disable these
ioctls so that previous versions are not modified.

[0127] All versions of files are exposed by libversionfs.
For example, version 8 of foo is presented as foo;8 regard­
less of the underlying storage policy. Users can read old
versions simply by opening them. When a manipulation
operation is performed on foo, then all files in foo's version
set are manipulated.

[0128] An example session using libversionfs is as fol­
lows. Typically users see only the head version, foo.

[0129] $ echo-n Hello >foo

[0130] $ echo-n ", world"»foo

[0131] $echo "!"»foo

[0132] $ ls

[0133] foo

[0134] $ cat foo

[0135] Hello world!

[0136] Users may set an LD_PRELOAD to see all ver­
sions.

[0137] $ LD _PRELOAD=libversionfs.so

[0138] $ export LD _PRELOAD

[0139] After using libversionfs as an LD _PRELOAD, the
user sees all versions of foo in directory listings and can then
access them. Regardless of the underlying storage format,
libversionfs presents a consistent interface. The second
version of foo is named foo;2. There are no modifications
required to standard applications.

[0140] $ Is

[0141] foo foo;1 foo;2

9
Dec. 8, 2005

[0142] If users want to examine a version, all they need to
do is open it. Any dynamically linked program that uses the
library wrappers to system calls can be used to view older
versions. For example, diff can be used to examine the
differences between a file and an older version.

[0143] $ cat 'foo;1'

[0144] Hello

[0145] $ cat 'foo;2'

[0146] Hello, world

[0147] $ diff foo 'foo;1'

[0148] lc1

[0149] <Hello, world!

[0150]

[0151] >Hello

[0152] libversionfs can also be used to modify an entire
version set. For example, the standard mv command can be
used to rename every version in the version set.

[0153] $ mv foo bar

[0154] $ ls

[0155] bar bar;l bar;2

[0156] A version cleaner and converter may be imple­
mented using the version-set stat and open-raw ioctls. As
new versions are created, versionfs 801 prunes versions
according to the retention policy. Versionfs 801 does not
evaluate the retention policies until a new version is created.
To account for this, the cleaner uses the same retention
policies to determine which versions should be pruned.
Additionally, the cleaner can convert versions to more
compact formats (e.g., compressed versions).

[0157] The cleaner is also responsible for pruning direc­
tory trees. Directories in the kernel may not be pruned
because recursive operations are expensive to run in the
kernel. Additionally, if directory trees were pruned in the
kernel, then users would be surprised when seemingly
simple operations take a significantly longer time than
expected. This could happen, for example, if a user writes to
a file that used to be a directory. If the user's new version
needed to discard the entire directory, then the user's simple
operation would take an inexplicably long period of time.

[0158] In the event of a crash, the meta -data file can be
regenerated entirely from the entries provided by readdir.
The meta-data file can be recovered because we can get the
storage method and the version number from the version file
names. Versionfs 801, however, depends on the lower level
file system to ensure consistency of files and file names. A
high-level file system checker similar to fsck may be used to
reconstruct damaged or corrupt version meta-data files.

[0159] Other applications of the stackable file system are
possible, including an encryption application. By wrapping
other file systems, stackable file systems can monitor file
system activity that comes from users before that activity is
passed on to the actual file system that the stackable file
system is wrapping. Referring to FIG. 11, stackable file
system implementations include mounting a stackable file
system on top of a target file system 1101, wherein a
stackable file system is loaded in a kernel below a system

US 2005/0273858 Al

call level and above a network layer, exporting a mount
point of the stackable file system to a client 1102, and
monitoring a file access to the target file system, through the
stackable file system, by the client 1103.

[0160] The stackable file system is mounted on one or a
server comprising the target file system. The export of the
target file system may be to a proxy 1104, wherein the proxy
exports the mount point of the stackable file system to the
client 1102. The stackable file system monitors file access to
the target file system for predetermined behavior 1105, for
example, performing traces, or anti-virus detection. The
predetermined behavior may be, for example, a certain
number of deletes performed in a given time period, or
access to a certain file. Information about events that satisfy
the predetermined behavior is stored for later analysis 1106.

[0161] Encryption

[0162] Typically, only superusers can mount new file
systems to a directory. Since each user may want their own
encrypted directory, with their own keys etc., each user
would need a separate mount point. Many mounts are costly
and inefficient in operating systems. A stackable encryption
file system (SEFS) allows a file system to be mounted as an
empty directory. Users can "attach" a directory to the SEFS.
This attachment is done via a set of calls, e.g., ioctl(2), that
add the user's private directory into the encrypted name­
space. As part of the attachment process, the SEFS performs
checks to ensure the authenticity and security of the user
performing the mount. With attach-mode mounts, users can
safely "mount" and "unmount" any number of directories
without needing superuser privileges or more than one
kernel mount structure. Data stored using the SEFS remains
confidential, by using strong encryption to store data. The
kernel notifies the SEFS upon the death of a process and
evict cleartext pages from the cache. The SEFS makes
encryption transparent to the application: any existing appli­
cation can make use of strong cryptography with no modi­
fications. The SEFS is cipher agnostic, so it is not tied to any
one cipher.

[0163] The SEFS makes the assumption that the underly­
ing storage media can be read and tampered with, so to
ensure data confidentiality, it needs to be encrypted. Before
the encrypted data is used, the owner must provide the key
to the SEFS, for example, by entering a passphrase. Once the
key is sent to kernel space, the SEFS stores it in core
memory. The SEFS will use the encryption key on behalf of
readers and writers, without revealing it to them. When
cryptographic algorithms are used for authentication,
authentication information is distinct from the encryption
key. After the initial authentication takes place, the result is
bound to a specified user, group, session, or process.

[0164] The SEFS uses a long-lived key to encrypt all data
and file names written to disk. If we used a short-lived key,
then whenever the key changed, all data would have to be
re-encrypted. To avoid this performance penalty, we use
long-lived keys. The SEFS uses the underlying file system to
store ciphertext data, but all other data related to the encryp­
tion key is stored in pinned core memory that cannot be
swapped to disk.

[0165] The SEFS is cipher agnostic. It uses cipher mod­
ules that are treated as simple data transformations. The
SEFS uses a cipher that encrypts an arbitrary length buffer
into a buffer of the same size. The ciphers performs this
encryption in Cipher Feedback Mode (CFB). CFB mode

10
Dec. 8, 2005

maintains equal size encrypted files. Changing the size of
files may complicate stackable file systems and decreases
performance. Selecting an appropriate cipher allows the user
to select where they want to lie on the security-performance­
convenience continuum. If the user is more concerned about
performance, then a faster but less secure cipher may be
chosen (e.g., one with a shorter key length).

[0166] Each encryption key is associated with an attach.
Attachments allow owners to have personal encrypted direc­
tories. An attach is similar to a separate instance of a
stackable file system. Each attach has a corresponding
directory entry within the SEFS mount 202 point and stacks
on a different lower-level directory 201 as shown in FIG. 2.

[0167] An attach can be thought of as a lightweight
user-mode mount. Unlike a regular mount, the SEFS attach
cannot hide any data because SEFS does not allow any files
or directories to be created in the root of the SEFS. The
SEFS presents an unencrypted view of the existing data in
the system, without modifying metadata.

[0168] Using an attach permits the use of a specific type of
stackable enhancement for many lower directories without
running into hard limits or degrading system performance
for other operations. The SEFS may use, for example, the
directory cache (dcache) in Linux to store attaches, because
the dcache organizes many entries efficiently.

[0169] Further, the SEFS has a completely separate name
space for each set of encrypted files. Each attach has private
data that is relevant only to that specific attachment. The
per-attach data is made up of an encryption key, authoriza­
tions (e.g., access control entries), and active sessions. These
data structures separate encryption, authorization, and active
sessions. These data structures model flexible and diverse
policies including ad-hoc groups.

[0170] The encryption key information is specific to the
cipher for this attach. This data includes the encryption key
and any information, such as initialization vectors, needed to
perform encryption. The SEFS passes this data to each
encryption or decryption operation, but has no knowledge
about the contents of this data. The cipher is wholly respon­
sible for its maintenance and interpretation. This data is
opaque to the SEFS so that a multitude of ciphers can be
used without any modifications to the SEFS.

[0171] For authorizations, each attach has one or more
authorizations. An authorization gives an entity access to the
SEFS after the entity meets a certain authentication criteria.
An entity may be a process, session, user, or group. The
authentication criteria includes a method (e.g., password)
and data that is specific to this method (e.g., a salted hash of
the password).

[0172] Each attach also has one or more active sessions.
An active session includes the description of an entity and
the permissions granted to that entity. Active sessions of the
SEFS are not necessarily the same as UNIX sessions (e.g.,
an active session can be bound to a user or process). Once
an entity has authenticated according to the rules in an
authorization, an active session is created. One authorization
can map to multiple active sessions (e.g., a user authenti­
cates in two sessions using a single authorization entry).
Each active session corresponds to an authorization that
exists or existed in the past. If an authorization is removed,
the active sessions are allowed to remain.

US 2005/0273858 Al

[0173] For flexibility, the SEFS uses fine-grained permis­
sions. Each authorization and active session contains a
bitmask of permissions. The permissions include read, write,
and execute bits in addition to operations, including:
"Detach" that allows removal of the attachment from the
SEFS; "Add an Authorization" allows users to delegate a
subset of their permissions to new authorizations; "List
Authorizations" allows users to verify and examine which
entities (e.g., users, sessions, processes, and groups) are
authorized to use this attach; "Delete an Authorization"
allows users to remove an authorization from an attach;
"Revoke an Active Session" allows users to prevent a
currently-authenticated user from accessing the SEFS; "List
Active Sessions" allows users to verify and examine which
users have authenticated to an attach; and "Bypass VFS
Permissions" allows users to take on the identity of the file's
owner for files within the attach. This permission is required
to implement ad-hoc groups, which allow the convenient
sharing of encrypted data.

[0174] By default, any user is allowed to create an attach­
ment with full permissions, except bypass VFS permissions.
The system administrator can change the default policy by
adding authorizations to the SEFS mount point. Each autho­
rization allows a single entity to attach or authenticate to an
attach. The main SEFS mount point has no active sessions,
only authorizations. The mount point cannot require authen­
tication, because authentication takes place through an ioctl.
If the user has not already been granted permission, then the
ioctl will not be permitted. Once the attach or authentication
takes place, the entity receives a subset of permissions in the
authorization. Authorizations for the SEFS mount point may
use two additional permissions: "attach" allows a user to
create an attach; and "authentication" allows a user to
authenticate to an attach.

[0175] The system administrator can also limit the maxi­
mum numbers of attaches and the maximum and minimum
key timeouts both on a global and on a per user basis.

[0176] Methods for generating attach names include: user
selection; generation of a name based on the entity doing the
attaching, preventing name space collisions between users;
and random generation of unique attach names.

[0177] The SEFS may support native UNIX groups. The
SEFS may support ad-hoc groups by adding authorizations
for several individual users or other entities. The bypass­
VFS-permissions option allows the owner of the attach to
delegate permissions, assuming root has given it to the
owner. When this is enabled, the SEFS performs permission
checks independently of the lower-level file system.

[0178] Keys, authorizations, and active sessions all may
have a timeout associated with them. When an object times
out, the SEFS executes a user-space program optionally
specified at attach time. For example, the user may specify
an application that ties into a graphical desktop environment
to prompt for the user's passphrase. The SEFS may cause
further file system operations to fail with "permission
denied." The SEFS may cause the opening of a file to fail,
but allow already opened files to continue to function.
Further, files that are already open may be allowed to
continue to function, but when a user attempts to open a new
file, the process is put to sleep until the operation can
succeed, e.g., the user re-authenticates. Further still, all

11
Dec. 8, 2005

operations may cause the process to be put to sleep until the
operation can succeed: open, read, write, etc. block until
re-authentication.

[0179] An authorization timeout prevents new users from
authenticating with that authorization, but active sessions
may continue to use the attach.

[0180] An SEFS kernel thread wakes up sleeping pro­
cesses after a user-specified duration. The function that
caused the process to sleep returns an error.

[0181] Active sessions can be revoked. A timeout 1s a
special case of a revocation because it is a scheduled
revocation, so an active session revocation has the same
behavior as an active session timeout with one key differ­
ence. If an active session times out, then it may be indefi­
nitely extended by re-authenticating even if the correspond­
ing authorization was removed. When an active session is
revoked, it may not be re-enabled.

[0182] Cleartext pages may be evicted from the page
cache, periodically and on detach. Unused dentries and
inodes are also evicted from the dcache and icache, respec­
tively. For added security at the expense of performance,
SEFS may purge cleartext data from caches more often.

[0183] To ensure the security of the stackable encrypting
file system, kernel features can be added. For example, a
process/task structure on-exit callback method allows
encryption keys to be associated with specific users, pro­
cesses, or session leaders. Referring to FIG. 12, a callback
function to be called when a task terminates is installed
1201. The callback function is called before the task termi­
nates 1202. The file system purges predetermined data from
memory 1203, for example, data denoted as confidential.
When the processes or tasks terminate, it can be ensured that
the all associated security information is purged along with
the process, for example, cipher keys, authentication data,
cached buffers, etc. Another example of a kernel feature
performs a cache validity check for encryption file systems
to invalidate cached objects that used expired authentication
keys or cipher keys that have changed. Referring to FIG. 13,
a callback function to be called is installed when cached
objects, such as inodes, directory entries, files, data pages,
etc., are found in the cache, but before they are returned to
user processes 1301. A task runs in the kernel and invokes
a cache to retrieve an object 1302. A cache code invokes the
previously installed callback 1303, thus calling the actual
file system, which can certify the validity of the objects
before they are returned. Further, invalid objects are purged
and recreated after access controls are applied. Page caches
often reside right in front of file systems, for efficiency
reasons. However, cached objects can be used without
consulting the file system. Some cached objects may repre­
sent ciphertext data, while others represent cleartext data;
having those objects in the page cache presents security
vulnerabilities and may allow attacks on the page cache
itself. Therefore, before a cached object that belongs to a
cryptographic file system is used, the file system is consulted
to validate the object. Accordingly, the file system invali­
dates cached objects that used expired authentication keys or
cipher keys that have changed.

[0184] The stackable encryption system can implement
authentication and encryption keys provided by a user. The
SEFS allows a delayed or subsidiary authentication of
applications. These features may be configurable per pro­
cess.

US 2005/0273858 Al

[0185] To ensure data confidentiality, the SEFS may use
strong cryptography algorithms (e.g., Blowfish or AES in
CFB mode). File data and file names are handled in two
different ways. Data is encrypted one page at a time, using
an initialization vector (IV) specified along with the encryp­
tion key XORed with the inode number and page number.
File names are encrypted with the IV XORed with the inode
number of the directory. While the output may include
characters that are not valid UNIX pathnames (e.g., /and
NULL), the result may be base-64 encoded before being
passed to the lower-level file system. This reduces the
maximum path length by 25%. A checksum is stored at the
beginning of the encrypted file name, wherein if a file name
is not encrypted with the correct key, then this checksum
will prevent it from appearing in the SEFS, and since CFB
mode is used, if two files have a common prefix, then they
will have a common encrypted prefix. Since it is unlikely
that these two files will have the same checksum, prefixing
their names with the checksum will prevent them from
having the same prefix in the ciphertext. Further, the direc­
tory entries "." and " .. " are not encrypted to preserve the
directory structure on the lower-level file system.

[0186] Having described embodiments for a system and
method for a stackable file system, it is noted that modifi­
cations and variations can be made by persons skilled in the
art in light of the above teachings. It is therefore to be
understood that changes may be made in the particular
embodiments of the invention disclosed which are within the
scope and spirit of the invention as defined by the appended
claims. Having thus described the invention with the details
and particularity required by the patent laws, what is claimed
and desired protected by Letters Patent is set forth in the
appended claims.

1. An operating system kernel comprising a protocol stack
comprising:

a network layer for receiving a message from a data
network;

a stackable file system layer coupled to the network layer
for inspecting the message, wherein the stackable file
system layer is coupled to a storage device, the stack­
able file system determining and storing file system
level information determined from the message; and

a wrapped file system comprising a file targeted by the
message coupled to the stackable file system layer for
receiving the message inspected by the stackable file
system.

2. The protocol stack of claim 1, wherein the stackable file
system layer comprises a filter, wherein the message is
compared to the filter, the filter being one of a virus
signature, and an expression specifying an object and an
operation.

3. The protocol stack of claim 1, wherein the stackable file
system layer comprises a filter, wherein the message is
compared to the filter, the filter specifying file system
operations triggering a version save to the storage device.

4. The protocol stack of claim 1, further comprising a
virus scanning engine coupled between the stackable file
system and the storage device, wherein the storage device
includes a virus database of virus signatures accessed by the
virus scanning engine.

5. The protocol stack of claim 4, wherein the message is
scanned by the virus-scanning engine before data from a
read is delivered to a user and before data from a write
propagates to a data storage device.

12
Dec. 8, 2005

6. The protocol stack of claim 1, wherein the stackable file
system layer stores a version of the file targeted by the
message upon determining a change in the file.

7. The protocol stack of claim 2, wherein the filter
performs an operation trace, wherein the filter comprises:

an input filter for determining an operation to trace;

an assembly driver for converting the operation into a
stream;

an output filter for performing a stream transformation;
and

an output driver for writing the stream out from the kernel
to the storage device.

8. A stackable file system method comprising:

mounting a stackable file system on top of a target file
system, wherein a stackable file system is loaded in a
kernel below a system call level and above a network
layer;

exporting a mount point of the stackable file system to a
client;

monitoring a message targeting a file in the target file
system, through the stackable file system; and

storing information about the message upon determining
that the message satisfies a filter.

9. The method of claim 8, wherein the stackable file
system is mounted on a server comprising the target file
system.

10. The method of claim 9, further comprising exporting
the target file system to a proxy, wherein the proxy performs
the exporting of the mount point of the stackable file system
to a client.

11. The method of claim 8, wherein monitoring further
comprises:

determining an operation in the message to trace;

converting the operation in a stream;

transformating the stream; and

writing the stream to a trace storage device.
12. The method of claim 11, wherein the transformation

is one of a compression, an encryption, and a checksum.
13. The method of claim 8, wherein monitoring com­

prises:

comparing the message to the filter on-access, wherein the
filter is a virus signature is a virus database; and

determining the message to include a virus upon deter­
mining a match; and

storing a version of the message including the virus.
14. The method of claim 13, wherein the on-access

comparison is performed when a file is created, when the file
is read for a first time, and when the file in modified.

15. The method of claim 8, wherein monitoring com­
prises:

determining the message to include an operation to
change the target file system upon comparing the
message to the filter, wherein the filter is a policy set;
and

storing a version of the target file system upon making the
change.

US 2005/0273858 Al

16. The method of claim 15, wherein the version is stored
as a sparse file.

17. The method of claim 15, wherein the version is stored
as a full or compressed file.

18. An operating system kernel having a protocol stack
comprising:

a network layer for receiving a message from a data
communications network;

a stackable file system layer coupled to the network layer
adapted to encrypt or decrypt the message received the
network layer, wherein the stackable file system layer
is kernel mount providing an attachment point for one
or more directories, each directory being added to an
encrypted name-space of the stackable file system
layer.

19. The operating system kernel of claim 18, wherein an
owner of each directory provides a directory key to the
stackable file system layer, wherein the stackable file system
layer stores the key in a kernel space of the operating system
kernel.

20. The operating system kernel of claim 19, wherein the
owner is authenticated and bound to at least one of a user,
a group, a session, a process, a process group, a time-of-day
range, a client host MAC address or IP address.

21. The operating system kernel of claim 18, comprising
a long-lived key used by the stackable file system layer to
encrypt or decrypt data and meta-data, wherein the stackable
file system layer uses the network layer to store ciphertext
data, and a pinned core memory to store an encryption key.

13
Dec. 8, 2005

22. The operating system kernel of claim 18, further
comprising a cipher module for performing data encryption
or data decryption.

23. The operating system kernel of claim 18, comprising
variable length buffers for receiving encrypted data, the
variable length buffer having a length equal to the length of
the encrypted data.

24. The operating system kernel of claim 18, wherein
encryption is performed in a cipher feedback mode.

25. The operating system kernel of claim 18, wherein the
stackable file system layer associates each attached directory
with an individual encryption key.

26. The operating system kernel of claim 18, the stackable
file system layer maintains a separate name space for each
set of encrypted files, wherein the separate name-space
comprises an encryption key, one or more authorizations,
and one or more active sessions.

27. The operating system kernel of claim 26, wherein the
encryption key is specific to a cipher for the attached
directory.

28. The operating system kernel of claim 26, each autho­
rization and active session comprises a bitmask of permis­
sions.

29. The operating system kernel of claim 18, wherein the
stackable file system layer associates timeouts with at least
one of a key, an authorization, and an active session.

* * * * *

