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ABSTRACT

The popular Network File System (NFS) protocol is 30 years old.
The latest version, NFSv4, is more than ten years old but has only
recently gained stability and acceptance. NFSv4 is vastly differ-
ent from its predecessors: it offers a stateful server, strong security,
scalability/WAN features, and callbacks, among other things. Yet
NFSv4’s efficacy and ability to meet its stated design goals had not
been thoroughly studied until now. This paper compares NFSv4.1’s
performance with NFSv3 using a wide range of micro- and macro-
benchmarks on a testbed configured to exercise the core protocol
features. We (1) tested NFSv4’s unique features, such as delega-
tions and statefulness; (2) evaluated performance comprehensively
with different numbers of threads and clients, and different network
latencies and TCP/IP features; (3) found, fixed, and reported sev-
eral problems in Linux’s NFSv4.1 implementation, which helped
improve performance by up to 11×; and (4) discovered, analyzed,
and explained several counter-intuitive results. Depending on the
workload, NFSv4.1 was up to 67% slower than NFSv3 in a low-
latency network, but exceeded NFSv3’s performance by up to 2.9×
in a high-latency environment. Moreover, NFSv4.1 outperformed
NFSv3 by up to 172× when delegations were used.
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1. INTRODUCTION
Since its introduction, the Network File System (NFS) protocol

has become a highly popular network-storage solution. Over 90%
of enterprise storage capacity is served by network-based storage,
and NFS represents a significant proportion of that total [29, 32].
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Faster networks, the proliferation of virtualization, and the rise of
cloud computing all contribute to continued increases in NFS de-
ployments [1].

The continuous development and evolution of NFS has been crit-
ical to its success. Following NFSv2 (which we will refer to as V2
for brevity), NFSv3 (V3) added TCP support, 64-bit file sizes and
offsets, asynchronous COMMITs, and performance features such as
READDIRPLUS. NFSv4.0 (V4.0), the first minor version of NFSv4
(V4), had many improvements over V3, including (1) easier de-
ployment with one single well-known port (2049) that handles all
operations including file locking, quota management, and mount-
ing; (2) stronger security using RPCSEC_GSS [26]; (3) more ad-
vanced client-side caching using delegations, which allow the cache
to be used without lengthy revalidation; and (4) better operation
coalescing via COMPOUND procedures. NFSv4.1 (V4.1), the latest
minor version, further adds Exactly Once Semantics (EOS) so that
retransmitted non-idempotent operations are handled correctly, and
pNFS, which allows direct client access to multiple data servers and
thus greatly improves performance and scalability [14, 26].

V4.1 became ready for production deployment only a couple of
years ago [10, 21]. Because it is new and complex, V4.1 is less
understood than older versions; we did not find any comprehen-
sive evaluation of either V4.0 or V4.1 in the literature. (V4.0’s
RFC is 275 pages long, whereas V4.1’s RFC is 617 pages long.)
However, before adopting V4.1 for production, it is important to
understand how it behaves in realistic environments. To this end,
we thoroughly evaluated Linux’s V4.1 implementation by compar-
ing it to V3, the still-popular older version [21], in a wide range of
environments using representative workloads.

This paper has four contributions: (1) a comprehensive compar-
ison of the performance of V3 and V4.1 in low- and high-latency
networks, using a wide variety of micro- and macro-workloads;
(2) insightful performance analysis that sheds light on how underly-
ing system components (networking, RPC, and local file systems)
influence NFS’s performance; (3) a deep analysis of the perfor-
mance effect of V4.1’s unique features (statefulness, sessions, del-
egations, etc.) in its Linux implementation; and (4) fixes to Linux’s
V4.1 implementation that improve its performance by up to 11×.

Some of our key findings are:

• How to tune V4.1 and V3 to reach up to 1177MB/s aggregate
throughput in 10GbE networks with 0.2–40ms latency, while
ensuring fairness among multiple NFS clients.

• When we increase the number of benchmarking threads to
2560, V4.1 achieves only 0.3× the performance of V3 in a
low-latency network, but is 2.9× better with high latency.

• When reading small files, V4.1’s delegations can improve
performance up to 172× compared to V3, and can send 29×
fewer NFS requests in a file-locking workload;



The rest of this paper is organized as follows. Section 2 describes
our benchmarking methodology. Sections 3 and 4 discuss the re-
sults of data- and metadata-intensive workloads, respectively. Sec-
tion 5 explores NFSv4’s delegations. Section 6 examines macro-
workloads using Filebench. Section 7 overviews related work. We
conclude in Section 8, and discuss this study’s limitations and fu-
ture work in Section 9.

2. METHODOLOGY

Experimental Setup.
We used six identical Dell PowerEdge R710 machines for this

study. Each has a six-core Intel Xeon X5650 2.66GHz CPU, 64GB
of RAM, and an Intel 82599EB 10GbE NIC. We configured five
machines as NFS clients and one as the NFS server. On the server,
we installed eight Intel DC S3700 200GB SSDs in a RAID-0 con-
figuration with 64KB stripes, using a Dell PERC 6/i RAID con-
troller with a 256MB battery-backed write-back cache. The stor-
age configuration was able to achieve read throughputs of up to
860MB/s. We chose these high speed 10GbE NICs and SSDs to
avoid being bottlenecked by the network or the storage. Our ini-
tial experiments showed that even a single client could easily over-
whelm a 1GbE network; similarly, a server provisioned with HDDs
or even RAID-0 across several HDDs quickly became overloaded.
We believe that NFS servers’ hardware and network must be con-
figured to scale well and that our chosen configuration represents
modern servers; it reached 98.7% of the 10GbE NICs’ maximum
network bandwidth, allowing us to focus on the NFS protocol’s
performance rather than hardware limits.

All machines ran CentOS 7.0.1406 with a vanilla 3.14.17 Linux
kernel. Both the OS and the kernel were the latest stable versions
at the time we began this study. We chose CentOS because it is a
freely available version of Red Hat Enterprise Linux, which is often
used in enterprise environments. We manually ensured that all ma-
chines had identical BIOS settings. We connected the six machines
using a Dell PowerConnect 8024F 24-port 10GbE switch. We en-
abled jumbo frames and set the Ethernet MTU to 9000 bytes. We
also enabled TCP Segmentation Offload to leverage the offloading
feature of our NIC and to reduce CPU overhead. We measured a
round-trip time (RTT) of 0.2ms between two machines using ping
and a raw TCP throughput of 9.88Gb/s using iperf.

Many parameters can affect NFS performance, including the
file system used on the server, its format and mount options, net-
work parameters, NFS and RPC parameters, export options, and
client mount options. Unless noted otherwise, we did not change
any default OS parameters. We used the default ext4 file sys-
tem, with default settings, for the RAID-0 NFS data volume,
and chose Linux’s in-kernel NFS server implementation. We ex-
ported the volume with default options, ensuring that sync was
set so that writes were faithfully committed to stable storage as re-
quested by clients. We used the default RPC settings, except that
tcp_slot_table_entrieswas set to 128 to ensure the client
could send and receive enough data to fill the network. We used 32
NFSD threads, and our testing found that increasing that value had
a negligible impact on performance because the CPU and SSDs
were rarely the bottleneck. On the clients, we used the default
mount options, with the rsize and wsize set to 1MB, and the
actimeo (attribute cache timeout) set to 60 seconds. Because our
study focuses on the performance of NFS, in our experiments we
used the default security settings, which do not use RPCSEC_GSS
or Kerberos and thus do not introduce additional overheads.

Benchmarks and Workloads.
We developed a benchmarking framework named Benchmaster,

which can launch workloads on multiple clients concurrently. To
verify that Benchmaster can launch time-aligned workloads, we
measured the time difference by NTP-synchronizing client clocks
and then launching a program that simply writes the current time to
a local file. We ran this test 1000 times and found an average delta
of 235ms and a maximum of 432ms. This variation is negligible
compared to the 5-minute running time of our benchmarks.

Benchmaster also periodically collects system statistics using
tools such as iostat and vmstat, and by reading procfs en-
tries such as /proc/self/mountstats. The mountstats
file provides particularly useful details of each individual NFS pro-
cedure, including counts of requests, the number of timeouts, bytes
sent and received, accumulated RPC queueing time, and accumu-
lated RPC round-trip time. It also contains RPC transport-level
information such as the number of RPC socket sends and receives,
the average request count on the wire, etc.

We ran our tests long enough to ensure stable results, usually 5
minutes. We repeated each test at least three times, and computed
the 95% confidence interval for the mean using the Student’s t-
distribution. Unless otherwise noted, we plot the mean of all runs’
results, with the half-widths of the confidence intervals shown as
error bars. We focused on system throughput and varied the num-
ber of threads in our benchmarking programs in our experiments.
Changing the thread count allowed us to (1) infer system response
time from single-thread results, (2) test system scalability by grad-
ually increasing the number of threads, and (3) measure the maxi-
mum system throughput by using many threads.

To evaluate NFS performance over short- and long-distance net-
works, we injected delays ranging from 1ms to 40ms using netem
at the NFS clients side. We measured 40ms to be the average la-
tency of Internet communications within New York State. We mea-
sured New York-to-California latencies of about 100ms, but we do
not report results using such lengthy delays because many experi-
ments took too long just to initialize. For brevity, we refer to the
network without extra delay as “zero-delay,” and the network with
nms injected delay as “nms-delay” in the rest of this paper.

We benchmarked four kinds of workloads:

1. Data-intensive micro-workloads that test the ability of NFS
to maximize network and storage bandwidth (Section 3);

2. Metadata-intensive micro-workloads that exercise NFS’s han-
dling of file metadata and small messages (Section 4);

3. Micro-workloads that evaluate delegations, which are V4’s
new client-side caching mechanism (Section 5); and

4. Complex macro-workloads that represent real-world appli-
cations (Section 6).

3. DATA-INTENSIVE WORKLOADS
This section discusses four data-intensive micro-workloads that

operate on one large file: random read, sequential read, random
write, and sequential write.

3.1 Random Read
We begin with a workload where five NFS clients randomly read

a 20GB file with a given I/O size. We compared the performance
of V3 and V4.1 under a wide range of parameter settings includ-
ing different numbers of benchmarking threads per client (1–16),
different I/O sizes (4KB–1MB), and different network delays (0–
40ms). We ensured that all experiments started with the same cache
states by re-mounting the NFS directory and dropping the OS’s
page cache before each experiment. For all combinations of thread



count, I/O size, and network delay, V4.1 and V3 performed equally
well because these workloads were exercising the network and stor-
age bandwidth rather than the differences between the two NFS
protocols.
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Figure 1: Random-read throughput with 16 threads and differ-

ent network delays (varying I/O size).

We found that increasing the number of threads and the I/O size
always improved a client’s throughput. We also found that net-
work delays had a significant impact on throughput, especially for
smaller I/O sizes. As shown in Figure 1, a delay of 10ms reduced
the throughput by 20× for 4KB I/Os, but by only 2.6× for 64KB
ones, and did not make a difference for 1MB I/Os. The throughputs
in Figure 1 were averaged over the 5-minute experiment run, which
can be divided into two phases demarcated by the time when the
NFS server finally cached the entire 20GB file. NFS’s throughput
was bottlenecked by the SSDs in the first phase, and by the network
in the second. The large throughput drop for 4KB I/Os (20×) was
because the 10ms delay lowered the request rate far enough that
the first phase did not finish within 5 minutes. But with larger I/Os,
even with 10ms network delay the NFS server was able to cache
the entire 20GB during the run. Note that the storage stack per-
formed better with larger I/Os: the throughput of our SSD RAID
is 75.5MB/s with 4KB I/Os, but 285MB/s with 64KB I/Os (mea-
sured using direct I/O and 16 threads), largely thanks to the SSDs’
inherent internal parallelism.
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Figure 2: Random-read throughput with 1MB I/O size, default

2MB TCP maximum buffer size, and different network delays

(varying the number of threads per client).

However, when we increased the network delay further, from
10ms to 40ms, we could not saturate the 10GbE network (Fig-
ure 2) even if we added more threads and used larger I/O sizes. As
shown in Figure 2, the curves for 20ms, 30ms, and 40ms reached a
limit at 4 threads. We found that this limit was caused by the NFS
server’s maximum TCP buffer sizes (rmem_max and wmem_max
size), which restricted TCP’s congestion window (i.e., the amount
of data on the wire). To saturate the network, the rmem_max and
wmem_max sizes must be larger than the network’s bandwidth-
delay product. After we changed those values from their default

of 2MB to 32MB (larger than 10Gb/s×40ms
5

where 5 is the num-
ber of clients), we achieved a maximum throughput of 1120MB/s

when using 8 or more threads in the 20ms- to 40ms-delay networks.
These experiments show that we can come close to the maximum
network bandwidth for data-intensive workloads by tuning the TCP
buffer size, I/O size, and the number of threads for both V3 and
V4.1. To avoid being limited by the maximum TCP buffer size, we
used 32MB for rmem_max and wmem_max for all machines and
experiments in the rest of this paper.

3.2 Sequential Read
We next turn to an NFS sequential-read workload, where five

NFS clients repeatedly scanned a 20GB file from start to end using
an I/O size of 1MB. For this workload, V3 and V4.1 performed
equally well: both achieved a maximum aggregate throughput of
1177MB/s. However, we frequently observed a winner-loser pat-

tern among the clients, for both V3 and V4.1, exhibiting the follow-
ing three traits: (1) the clients formed two clusters, one with high
throughput (winners), and the other with low throughput (losers);
(2) often, the winners’ throughput was approximately double that
of the losers; and (3) no client was consistently a winner or a loser,
and a winner in one experiment might became a loser in another.
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Figure 3: Sequential-read throughputs of individual clients

when they were launched one after the other at an interval of

one minute. Results of one run of experiments.

The winner-loser pattern was unexpected given that all the five
clients had the same hardware, software, and settings, and were per-
forming the same operations. Initially, we suspected that the pattern
was caused by the order in which the clients launched the workload.
To test that hypothesis, we repeated the experiment but launched
the clients in a controlled order, one additional client every minute.
However, the results disproved any correlation between experiment
launch order and the winners. Figure 3 shows that Client2 started
second but ended up as a loser, whereas Client5 started last but be-
came a winner. Figure 3 also shows that the winners had about
twice the throughput of the losers. We repeated this experiment
multiple times and found no correlation between a client’s start or-
der and its chance of being a winner or loser.

By tracing the server’s networking stack, we discovered that the
winner-loser pattern is closely related to the server’s use of phys-
ical queues in its network interface card (NIC). Every NIC has a
physical transmit queue (tx-queue) holding outbound packets,
and a physical receive queue (rx-queue) tracking empty buffers
for inbound packets [25]. Many modern NICs have multiple sets of
tx-queues and rx-queues to allow networking to scale with
the number of CPU cores (each queue can be configured to inter-
rupt a specific core), and to facilitate better NIC virtualization [25].
Linux uses hashing to decide which tx-queue to use for each out-
bound packet. However, not all packets are hashed; instead, each
TCP socket has a field recording the tx-queue the last packet was
forwarded to. If a socket has any existing packets in the recorded
tx-queue, its next packet is also placed in that queue. This
approach allows TCP to avoid generating out-of-order packets by
placing packet n on a long queue and n+1 on a shorter one. How-



ever, a side effect is that for highly active TCP flows that always
have outbound packets in the queue, the hashing is effectively done
per-flow rather than per-packet. (On the other hand, if the socket
has no packets in the recorded tx-queue, its next packet is re-
hashed, probably to a new tx-queue.)

Client2

Sending data
NFS

Client1

Server

NIC Transmit Queues

Client5
tx1 tx2 tx3 tx4 tx5tx0

packet

Client4

Client3

Ethernet
Switch

Figure 4: Illustration of Hash-Cast.

The winner-loser pattern is caused by uneven hashing of TCP
flows to tx-queues. In our particular experiments, the server
had five flows (one per client) and a NIC configured with six
tx-queues. If two of the flows were hashed into one tx-queue
and the rest went into three separate tx-queues, then the two
flows sharing a tx-queue got half the throughput of the other
three because all tx-queues were transmitting data at the same
rate. We call this phenomenon—hashing unevenness causing a
winner-loser pattern of throughput—Hash-Cast, which is illus-
trated in Figure 4.

Hash-Cast explains the performance anomalies illustrated in Fig-
ure 3. First, Client1, Client2, and Client3 were hashed into tx3,
tx0, and tx2, respectively. Then, Client4 was hashed into tx0,
which Client2 was already using. Later, Client5 was hashed into
tx3, which Client1 was already using. However, at 270 seconds,
Client5’s tx-queue drained and it was rehashed into tx5. At the
experiment’s end, Client1, Client3, and Client5 were using tx3,
tx2, and tx5, respectively, while Client2 and Client4 shared tx0.
Hash-Cast also explains why the losers usually got half the through-
puts of the winners: the {0,0,1,1,1,2} distribution is the most likely
hashing result (we calculated its probability as roughly 69%).

To eliminate hashing unfairness, we evaluated the use of a single
tx-queue. Unfortunately, we still observed an unfair through-
put distribution across clients because of complicated networking
algorithms such as TSO Automatic Sizing, which can form feed-
back loops that keep slow TCP flows always slow [11]. To re-
solve this issue, we further configured tc qdisc to use Stochas-
tic Fair Queueing (SFQ), which achieves fairness by hashing flows
to many software queues and sends packets from those queues in
a round-robin manner [22]. Most importantly, SFQ used 127 soft-
ware queues so that hash collisions were much less probable com-
pared to using only 6 queues. To further alleviate the effect of col-
lisions, we set SFQ’s hashing perturbation rate to 10 seconds us-
ing tc qdisc, so that the mapping from TCP flows to software
queues changed every 10 seconds.

Note that using a single tx-queue with SFQ did not re-
duce the aggregate network throughput compared to using multiple
tx-queues without SFQ. We measured only negligible perfor-
mance differences between these two configurations. We found that
many of Linux’s queuing disciplines assume a single tx-queue
and could not be configured to use multiple ones. Thus, it might
be desirable to use just one tx-queue in many systems, not just
NFS servers. To ensure fairness among clients, for the remainder of
experiments in this paper we used SFQ with a single tx-queue.
The random-read results shown in Section 3.1 also used SFQ.

3.3 Random Write
The random-write workload is the same as the random-read one

discussed in Section 3.1 except that the clients were writing data
instead of reading. Each client had a number of threads that repeat-
edly wrote a specified amount (I/O size) of data at random offsets
in a pre-allocated 20GB file. All writes were in-place and did not
change the file size. We opened the file with O_SYNC set, to en-
sure that the clients write data back to the NFS server instead of
just caching it locally. This setup is similar to many I/O workloads
in virtualized environments [29], which use NFS heavily.

We varied the I/O size from 4KB to 1MB, the number of threads
from 1 to 16, and the injected network delay from 0ms to 10ms.
We ran the experiments long enough to ensure that the working
sets, including in the 4KB I/O case, were at least 10 times larger
than our RAID controller’s cache size. As expected, larger I/O sizes
and more threads led to higher throughputs, and longer network de-
lays reduced throughput. V4.1 and V3 performed comparably, with
V4.1 slightly worse (2% on average) in the zero-delay network.
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Figure 5: Random-write throughput in a zero-delay network.

Figure 5 shows the random-write throughput when we varied the
I/O size in the zero-delay network. V4.1 and V3 achieved around
the same throughput, but both were significantly slower than the
maximum performance of our SSD RAID (measured on the server
side without NFS). Neither V4.1 nor V3 achieved the maximum
throughput even with more threads. We initially suspected that the
lower throughputs were caused by the network, but the throughput
did not improve when we repeated the experiment directly on the
NFS server over the loopback device. Instead, we found the cul-
prit to be the O_SYNC flag, which has different semantics in ext4
than in NFS. The POSIX semantics of O_SYNC require all meta-
data updates to be synchronously written to disk. On Linux’s local
file systems, however, O_SYNC is implemented so that only the
actual file data and the meta-data directly needed to retrieve that
data are written synchronously; other meta-data remains buffered.
Since our workloads used only in-place writes, which updated the
file’s modification time but not the block mapping, writing an ext4
file did not update meta-data. In contrast, the NFS implementation
more strictly adheres to POSIX, which mandates that the server
commit both the written data and “all file system metadata” to sta-
ble storage before returning results. Therefore, we observed many
meta-data updates in NFS, but not in ext4. The overhead of those
extra updates was aggravated by ext4’s journaling of meta-data
changes on the server side. The extra updates and the journaling
introduced numerous extra I/Os, causing NFS’s throughput to be
significantly lower than the RAID-0’s maximum (measured with-
out NFS). This finding highlights the importance of understanding
the effects of the NFS server’s implementation and the underlying
file system that it exports.

We also tried the experiments without setting O_SYNC, which
generated a bursty workload to the NFS server. Clients initially
realized high throughput (over 1GB/s) since all data was buffered in



their caches. Once the number of dirty pages passed a threshold, the
throughput dropped to near zero as the clients began flushing those
pages to the server; this process took up to 3 minutes depending on
the I/O size. After that, the write throughput became high again,
until caches filled—and the bursty pattern then repeated.

3.4 Sequential Write
We also benchmarked sequential-write workloads, where each

client had a single thread writing sequentially to the 20GB file.
V4.1 and V3 again had the same performance. However, the single-
threaded sequential-write throughputs were lower than the corre-
sponding multi-threaded random-write throughputs because our all-
SSD storage backend favors multi-threaded I/O accesses due to the
SSD’s internal parallelism [2]. For sequential writes, the O_SYNC
behavior we discussed in Section 3.3 had an even stronger effect
if the backend storage used HDDs, because the small disk writes
generated by the meta-data updates and the associated journaling
broke the sequentiality of NFS’s writes to disk. We measured a
50% slowdown caused by this effect when we used HDDs for our
storage backend instead of SSDs [8].

4. METADATA-INTENSIVE WORKLOADS
The data-intensive workloads discussed so far are more sensitive

to network and I/O bandwidth than to latency. This section focuses
on meta-data-intensive workloads, which are critical to NFS’s over-
all performance because of the popularity of uses such as shared
home directories, where common workloads like software devel-
opment and document processing involve many small- to medium-
sized files. We discuss three micro-workloads that exercise NFS’s
meta-data operations by operating on a large number of small files:
file reads, file creations, and directory listings.

4.1 Read Small Files
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Figure 6: Throughput of reading small files with one thread in

a zero-delay network.

We pre-allocated 10,000 4KB files on the NFS server. Figure 6
shows the results of the 5 clients randomly reading entire files re-
peatedly for 5 minutes. The throughputs of both V3 and V4.1 in-
creased quickly during the first 10 seconds and then stabilized once
the clients had read and cached all files. V4.1 started slower than
V3, but outperformed V3 by 2× after their throughputs stabilized.
We observed that V4.1 made 8.3× fewer NFS requests than V3
did. The single operation that caused this difference was GETATTR,
which accounted for 95% of all the requests performed by V3.
These GETATTRs were being used by the V3 clients to revalidate
their client-side cache. However, V4.1 rarely made any requests
once its throughput had stabilized. Further investigation revealed
that this was due to V4.1’s delegation mechanism, which allows
client-side caches to be used without revalidation. We discuss and
evaluate V4’s delegations in greater detail in Section 5.

To investigate read performance with fewer caching effects, we
used a 10ms network delay to increase the time it would take to
cache all of the files. With this delay, the clients did not finish
reading all of the files during the same 5-minute experiment. We
observed that the client’s throughput dropped to under 94 ops/s
for V3 and under 56 ops/s for V4.1. Note that each V4.1 client
made an average of 243 NFS requests per second, whereas each
V3 client made only 196, which is counter-intuitive given that V4.1
had lower throughput. The reason for V4.1’s lower throughput
is its more verbose stateful nature: 40% of V4.1’s requests are
state-maintaining requests (e.g., OPENs and CLOSEs in this case),
rather than READs. State-maintaining requests do not contribute to
throughput, and since most files were not cached, V4.1’s delega-
tions could not help reduce the number of stateful requests.
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To compensate for the lower throughput due to the 10ms network
delay, we increased the number of threads on each client, and then
repeated the experiment. Figure 7 shows the throughput results
(log scale). With 16 threads per client V3’s throughput (the red
line) started at around 8100 ops/s and quickly increased to 55,800
ops/s. After that, operations were served by the client-side cache;
only GETATTR requests were made for cache revalidation. V4.1’s
throughput (the green curve) started at only 723 ops/s, which is
eleven times slower than that of V3. It took 200 seconds for V4.1
to cache all files; then V4.1 overtook V3, and afterwards performed
25× faster thanks to delegations. V4.1 also made 71% fewer re-
quests per second than V3; this reversed the trend from the no-
latency-added single-thread case (Figure 6), where V4.1 had lower
throughput but made more requests.

To understand this behavior, we reviewed the mountstat data
for the V4.1 tests. We found that the average RPC queuing time
of V4.1’s OPEN and CLOSE requests was as long as 223ms, while
that average queuing time of all V4.1’s other requests (ACCESS,
GETATTR, LOOKUP, and READ) was shorter than 0.03ms. (The
RPC queuing time is the time between when an RPC is initialized
and when it begins transmitting over the wire.) This means that
some OPENs and CLOSEs waited over 200ms in a client-side queue
before the client started to transmit them.

To diagnose the long delays, we used Systemtap to instrument
all the rpc_wait_queues in Linux’s NFS client kernel module
and found the culprit to be an rpc_wait_queue for seqid,
which is an argument to OPEN and CLOSE requests [26]; it was
used by V4.0 clients to notify the server of changes in client-side
states. V4.0 requests that needed to change the seqid were fully
serialized by this wait queue. The problem is exacerbated by the
fact that once entered into this queue, a request is not dequeued
until it receives the server’s reply. However, seqid is obsolete
in V4.1: the latest standard [26] explicitly states that “The ‘seqid’
field of the request is not used in NFSv4.1, but it MAY be any value
and the server MUST ignore it.”



We fixed the long queuing time for seqid by avoiding the queue
entirely. (We have submitted a patch to the kernel mailing list.) For
V4.0, seqid is still used and our patch does not change its be-
havior. We repeated the experiments with these changes; the new
results are shown as the blue curve in Figure 7. V4.1’s perfor-
mance improved by more than 6× (from 723 ops/s to 4655 ops/s).
V4.1 finished reading all the files within 35 seconds, and thereafter
stabilized at a throughput 172× higher than that of V3 (thanks to
delegations). In addition to the higher throughput, V4.1’s average
response time was shorter than that of V3, also because of dele-
gations. For brevity, we refer to the patched NFSv4.1 as V4.1p in
following discussions.

We noted a periodic performance drop every 60 seconds in Fig-
ures 6 and 7, which corresponds to the actimeo mount option.
When this timer expires, client-cached metadata must again be re-
trieved from the server, temporarily lowering throughput.

4.2 File Creation
We demonstrated above that client-side caching, especially del-

egations, can greatly reduce the number of NFS meta-data requests
when reading small files. To exercise NFS’s meta-data operations
more, we now turn to a file-creation workload, where client-side
caching is less effective. We exported one NFS directory for each
of the five clients, and instructed each client to create 10,000 files
of a given size in its dedicated directory, as fast as possible.
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Figure 8: Rate of creating empty files in a 10ms-delay network.

Figure 8 shows the speed of creating empty files in the 10ms-
delay network. To test scalability, we varied the number of threads
per client from 1 to 512. V4.1 started at the same speed as V3
when there was only one thread per client. Between 2–32 threads,
V4.1 outperformed V3 by 1.1–1.5×, and V4.1p (NFSv4.1 with our
patch) outperformed V3 by 1.9–2.9×. Above 32 threads, however,
V4.1 became 1.1–4.6× slower than V3, whereas V4.1p was 2.5–
2.9× faster than V3.

As shown in Figure 8, when the number of threads per client in-
creased from 1 to 16, V3 sped up by only 12.5%, V4.1 by 50%,
and V4.1p by 225%. In terms of scalability (1–16 threads), V3
scaled poorly, with an average performance boost of merely 3%
each power-of-two step in the thread count. V4.1 scaled slightly
better, with an average 10% boost per step. But, because of the
seqid synchronizing bottleneck explained in Section 4.1, its per-
formance did not improve at all once the thread count increased
beyond two. With the seqid problem fixed, V4.1p scaled much
better, with an average boost of 34% per step. With 16–512 threads,
V3’s scalability improved significantly, and it achieved a high av-
erage performance boost of 44% per step; V4.1p also scaled well
with an average boost of 40% per step.

V4.1p always outperformed the original V4.1, by up to 11.6×
with 512 threads. Therefore, for the rest of this paper, we only
report figures for V4.1p, unless otherwise noted.

In the 10ms-delay network, the rates of creating empty, 4KB,
and 16KB files differed by less than 2% when there were more
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Figure 9: Average number of outstanding requests when creat-

ing empty files in a 10ms-delay network.

than 4 threads, and by less than 27% with fewer threads; thus, they
all had the same trends. As shown in Figure 8, depending on the
number of threads, V4.1p created small files 1.9–2.9× faster than
V3 did. To understand why, we analyzed the mountstats data
and found that the two versions differed significantly in the number
of outstanding NFS requests (i.e., requests sent but not yet replied
to). We show the average number of outstanding NFS requests in
Figure 9, which closely resembles Figure 8 in overall shape. This
suggests that V4.1p performed faster than V3 because the V4.1p
clients sent more requests to the server at one time. We exam-
ined the client code and discovered that V3 clients use synchronous
RPC calls (rpc_call_sync) to create files, whereas V4.1p clients use
asynchronous calls (rpc_call_async) that go through a work queue
(nfsiod_workqueue). We believe that the asynchronous calls are
the reason why V4.1p had more outstanding requests: the long net-
work delay allowed multiple asynchronous calls to accumulate in
the work queue and be sent out in batch, allowing networking al-
gorithms such as TCP Nagle to efficiently coalesce multiple RPC
messages. Sending fewer but larger messages is faster than sending
many small ones, so V4.1p achieved higher rates. Our analysis was
confirmed by the mountstats data, which showed that V4.1p’s
OPEN requests had significantly longer queuing times (up to 30×)
on the client side than V3’s CREATEs. (V3 uses CREATEs to create
files whereas V4.1p uses OPENs.) Because V3’s server is state-
less, all its mutating operations have to be synchronous; otherwise
a server crash might lose data. V4, however, is stateful and can
perform mutating operations asynchronously because it can restore
states properly in case of server crashes [23].
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Figure 10: Rate of creating empty files in a zero-delay network.

In the zero-delay network, there was not a consistent winner be-
tween the two NFS versions (Figure 10). Depending on the number
of threads, V4.1p varied from 1.76× faster to 3× slower than V3.
In terms of scalability, V3’s speed increased slowly when we began
adding threads, but jumped quickly between 64 and 512 threads. In
contrast, V4.1p’s speed improved quickly at the initial stage, but
plateaued and then dropped when we used more than 4 threads.

To understand why, we looked into the mountstats data, and
found that the corresponding graph (not shown) of the average num-



ber of outstanding requests closely resembles Figure 10. It again
suggests that the lower speed was the result of a client sending re-
quests rather slowly. With further analysis, we found that V4.1p’s
performance drop after 32 threads was caused by high contention
for session slots, which are V4.1p’s unique resources the server al-
locates to clients. Each session slot allows one request; if a client
runs out of slots (i.e., has reached the maximum number of con-
current requests the server allows), it has to wait until one becomes
available, which happens when the client receives a reply for any
of its outstanding requests. We instrumented the client kernel mod-
ule and collected the waiting time on the session slots. As shown
in Figure 11, waiting began at 32 threads, which is also where
V4.1p’s performance began dropping (Figure 10). Note that with
512 threads, the average waiting time is 2500ms, or 12,500× the
0.2ms round-trip time. (The 10ms-delay experiment also showed
waiting for session slots, but the wait time was short compared to
the network RTT and thus had a smaller effect on performance.)
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Figure 11: Average waiting time for V4.1p’s session slots of ten

experimental runs. Error bars are standard deviations.

We note that Figure 11 had high standard deviations above 32
threads per client. This behavior results from typical non-real-time
scheduling artifacts in Linux, where some threads can win and be
scheduled first, while others wait longer. Even when we ran the
same experiment 10 times, standard deviations did not decrease,
suggesting a non-Gaussian, multi-modal distribution [28]. In addi-
tion to V4.1p’s higher wait time in this figure, the high standard de-
viation means that it would be harder to enforce SLAs with V4.1p
for highly-concurrent applications.

With 2–16 threads (Figure 10), V4.1p’s performance advantage
over V3 was because of V4.1p’s asynchronous calls (the same as
explained above); V4.1p’s OPENs had around 4× longer queuing
time, which let multiple requests accumulate and be sent out in
batch. This queuing time was not caused by the lack of available
session slots (Figure 11). This was verified by evaluating the use of
a single thread, in which case V4.1p performed 17% slower than
V3 because V4.1p’s OPEN requests are more complex and took
longer to process than V3’s CREATE (see Section 4.3).

One possible solution to V4.1p’s session-slot bottleneck is to en-
large the number of server-side slots to match the client’s needs.
However, slots consume resources: for example, the server must
then increase its duplicate request cache (DRC) size to maintain its
exactly once semantics (EOS). Increasing the DRC size can be ex-
pensive, because the DRC has to be persistent and is possibly saved
in NVRAM. V3 does not have this issue because it does not provide
EOS, and does not guarantee that it will handle retransmitted non-
idempotent operations correctly. Consequently, V3 outperformed
V4.1p when there were more than 64 threads (Figure 10).

4.3 Directory Listing
We now turn to another common meta-data-intensive workload:

listing directories. We used Filebench’s directory-listing workload,
which operates on a pre-allocated NFS directory tree that contains

50,000 empty files and has a mean directory width of 5. Each client
ran one Filebench instance, which repeatedly picks a random sub-
directory in the tree and lists its contents.
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This workload is read-only, and showed behavior similar to that
of reading small files (Section 4.1) in that its performance depended
heavily on client-side caching. Once all content was cached, the
only NFS requests were for cache revalidations. Figure 12 (log
scale) shows the throughput of single-threaded directory listing in
networks with different delays. In general, V4.1p performed slight-
ly worse than V3. The biggest difference was in the zero-delay net-
work, where V4.1p was 15% slower. mountstats showed that
V4.1p’s requests had longer round-trip times, which implies that
the server processed those requests slower than V3: 10% slower
for READDIR, 27% for GETATTR, 33% for ACCESS, and 36% for
LOOKUP. This result is predictable because the V4.1p protocol,
which is stateful and has more features (EOS, delegations, etc.), is
substantially more complex than V3. As we increased the network
delay, the processing time of V4.1p became less important: V4.1p’s
performance was within 94–99% of V3.

With 16 threads, V4.1p’s throughput was 95–101% of V3’s. Note
that V4.1p’s asynchronous RPC calls did not influence this work-
load much because most of this workload’s requests did not mutate
states. Only the state-mutating V4.1p requests are asynchronous:
OPEN, CLOSE, LOCK, and LOCKU. (WRITE is also asynchronous,
but this workload does not have any.)

5. NFSV4 DELEGATIONS
In this section, we discuss delegations, an advanced client-side

caching mechanism that is a key new feature of NFSv4. Caching
is essential to good performance in any system, but in distributed
systems like NFS it gives rise to consistency problems. V2 and
V3 explicitly ignored strict consistency [7, p. 10], but supported a
limited form of validation via the GETATTR operation. In practice,
clients validate their cache contents frequently, causing extra server
load and adding significant delay in high-latency networks.

In V4, the cost of cache validation is reduced by letting a server
delegate a file to a particular client for a limited time, allowing ac-
cesses to proceed at local speed. While holding the delegation, a
client need not revalidate its attributes or contents. If any other
clients want to perform conflicting operations, the server can recall
the delegation using callbacks via a server-to-client back-channel
connection. Delegations are based on the observation that file shar-
ing is infrequent [26] and rarely concurrent [16]. Thus, they can
boost performance most of the time, but can also hurt performance
in the presence of concurrent and conflicting file sharing.

Delegations have two types: open delegations of files, and di-

rectory delegations. The former comes in either “read” or “write”
variants. We will focus on read delegations of regular files because
they are the simplest and most common type—and are also the only
delegation type currently supported in the Linux kernel [12].



5.1 Granting a Delegation
An open delegation is granted when a client opens a file with

an appropriate flag. However, clients must not assume that a dele-
gation will be granted, because that choice is up to the server. If a
delegation is rejected, the server can explain its decision via flags in
the open reply (e.g., lock contention, unsupported delegation type).
Even if a delegation is granted, the server is free to recall it at any
time via the back channel. Recalling a delegation may involve mul-
tiple clients and multiple messages, which may lead to considerable
delay. Thus, the decision to grant the delegation might be complex.
However, because Linux currently supports only file-read delega-
tions, it uses a simpler decision model. The delegation is granted if
three conditions are met: (1) the back channel is working, (2) the
client is opening the file with O_RDONLY, and (3) the file is not
currently open for write by any client.

During our initial experiments we did not observe any delega-
tions even when all three conditions held. We traced the kernel
using SystemTap and discovered that the Linux NFS server’s
implementation of delegations was outdated: it did not recognize
new delegation flags introduced by NFSv4.1. The effect was that
if an NFS client got the filehandle of a file before the client opened
the file (e.g., using stat), no delegation was granted. We fixed
the problem with a kernel patch, which has been accepted into the
mainline Linux kernel.

5.2 Delegation Performance: Locked Reads
We previously showed the benefit of delegations in Figure 7,

where delegations helped V4.1p read small files 172× faster than
V3. This improvement is due to the elimination of cache reval-
idation traffic; no communication with the server (GETATTRs) is
needed to serve reads from cache. Nevertheless, delegations can
improve performance even further in workloads with file locking.
To quantify the benefits, we repeated the delegation experiment
performed by Gulati [13] but scaled it up. We pre-allocated 1000
4KB files in a shared NFS directory and then mounted it on the
five clients. Each client repeatedly opened each of the files in the
shared NFS directory, locked it, read the entire file, and then un-
locked it. (Locking the file is a technique used to ensure an atomic
read.) After ten repetitions the client moved to the next file.

Operation NFSv3
NFSv4.1 NFSv4.1

deleg. off deleg. on

OPEN 0 10, 001 1000

READ 10, 000 10, 000 1000

CLOSE 0 10, 001 1000

ACCESS 10, 003 9003 3

GETATTR 19, 003 19, 002 1

LOCK 10, 000 10, 000 0

LOCKU 10, 000 10, 000 0

LOOKUP 1002 2 2

FREE_STATEID 0 10, 000 0

TOTAL 60,008 88,009 3009

Table 1: NFS operations performed by each client for NFSv3

and NFSv4.1 (delegations on and off). Each NFSv4.1 operation

represents a compound procedure. For clarity, we omit trivial

operations (e.g., PUTFH) in compounds. NFSv3’s LOCK and

LOCKU come from the Network Lock Manager (NLM).

Table 1 shows the number of operations performed by V3 and by
V4.1p with and without delegation. Only V4.1p shows OPENs and
CLOSEs because only V4 is stateful. When delegations were on,
V4.1p used only 1000 OPENs even though each client opened each

file ten times. This is because each client obtained a delegation
on the first OPEN; the following nine were performed locally. Note
that in Table 1, without a delegation (for V3 and V4.1p with delega-
tions off), each application read incurred an expensive NFS READ

operation even though the same reads were repeated ten times. Re-
peated reads were not served from the client-side cache because of
file locking, which forces the client to revalidate the data.

Another problem is caused by the timestamp granularity on the
NFS server. Traditionally, NFS provides close-to-open cache con-
sistency. Timestamps are updated at the server when a file is closed,
and any client subsequently opening the same file revalidates its lo-
cal cache by checking its attributes with the server. If the locally-
saved timestamp of the file is out of date, the client’s cache of the
file is invalidated. Unfortunately, some NFS servers offer only one-
second granularity, which is too coarse for modern systems; clients
could miss intermediate changes made by other clients within one
second. In this situation, NFS locking provides stronger cache co-
herency by first checking the server’s timestamp granularity. If the
granularity is finer than one microsecond, the client revalidates the
cache with GETATTR; otherwise, the client invalidates the cache.
Since the Linux in-kernel server uses a one-second granularity,
each read operation incurs a READ RPC request because the pre-
ceding LOCK has invalidated the client’s local cache.

Invalidating an entire cached file can be expensive, since NFS is
often used to store large files such as virtual disk images [29], me-
dia files, etc. The problem is worsened by two factors: (1) invali-
dation happens even when the client is simply acquiring read (not
write) locks, and (2) a file’s entire cache contents are invalidated
even if the lock only applies to a single byte. In contrast, the NFS
client with delegation was able to satisfy nine of the ten repeated
READs from the page cache. There was no need to revalidate the
cache at all because its validity was guaranteed by the delegation.

Another major difference among the columns in Table 1 was the
number of GETATTRs. In the absence of delegation, GETATTRs
were used for two purposes: to revalidate the cache upon file open,
and to update file meta-data upon read. The latter GETATTRs were
needed because the locking preceding the read invalidated both the
data and meta-data caches for the locked file. A potential optimiza-
tion for V4.1p would be to have the client append a GETATTR to
the LOCK in the same compound, and let the server piggyback file
attributes in its reply. This could save 10,000 GETATTR RPCs.

The remaining differences between the experiments with and
without delegations were due to locking. A LOCK/LOCKU pair is
sent to the server when the client does not have a delegation. Con-
versely, no NFS communication is needed for locking when a del-
egation exists. For V4.1p with delegations off, one FREE_STATEID

follows each LOCKU to free the resource (stateid) used by the lock
at the server. (A potential optimization would be to append the
FREE_STATEID operation to the same compound procedure that in-
cludes LOCKU; this could save another 10,000 RPCs.)
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In total, delegations cut the number of V4.1p operations by over
29× (from 88K to 3K). This enabled the original stateful and “chat-
tier” V4.1p (with extra OPEN, CLOSE, and FREE_STATEID calls) to
finish the same workload using only 5% of the requests used by V3.
In terms of data volume, V3 sent 3.8MB and received 43.7MB,
whereas V4.1p with delegation sent 0.6MB and received 4.5MB.
Delegation helped V4.1p reduce the outgoing traffic by 6.3× and
the incoming traffic by 9.7×. As seen in Figure 13, these reductions
translate to a 6–19× speedup in networks with 0–10ms latency.

5.3 Delegation Recall Impact
To evaluate the overhead of conflicting delegations, we created

two groups of NFS clients: the Delegation Group (DG) grabs and
holds NFS delegations on 1000 files by opening them with the
O_RDONLY flag, while the Recall Group (RG), recalls those del-
egations by opening the same files with O_RDWR. To test scalabil-
ity, we varied the number of RG clients from one to four. For n
clients in the DG, an RG open generated n recalls because each
DG client’s delegation had to be recalled separately.

We compared the cases when the DG clients were and were not
holding delegations. Each DG client needed two operations to re-
spond to a recall: a DELEGRETURN to return the delegation, and an
OPEN to re-open the file (since the delegation was no longer valid).

For the RG client, the presence of a delegation incurred one ad-
ditional NFS OPEN per file. The first OPEN failed, returning an
NFS4ERR_DELAY error to tell the client to try again later because
the server needed to recall outstanding delegations. The second
open was sent as a retry and succeeded.

The running time of the experiment varied dramatically, from
0.2 seconds in the no-delegation case to 100 seconds with dele-
gation. This 500× delay was introduced by the RG client, which
failed in the first OPEN and retried it after a timeout. The initial
timeout length is hard-coded to 100ms in the client kernel mod-
ule (NFS4_POLL_RETRY_MIN in the Linux source code), and is
doubled every time the retry fails. This long timeout was the dom-
inating factor in the experiment’s running time.

To test delegation recall in networks with longer latencies, we re-
peated the experiment after injecting network delays from 1–10ms.
Under those conditions, the experiment’s running time increased
from 100s to 120s. With 10ms of extra network latency, the run-
ning time was still dominated by the client’s retry timeout. How-
ever, when we increased the number of clients in DG from one
to four, the total running time did not change. This suggests the
delegation recall works well when there are several clients holding
conflicting delegations at the same time.

We believe that a long initial timeout of 100ms is questionable
considering that most SLAs specify a latency of 10–100ms [3].
Also, because Linux does not support write delegations, Linux NFS
clients do not have any dirty data (of delegated files) to write back
to the server, and thus should be able to return delegations quickly.
We believe it would be better to start with a much shorter timeout;
if that turns out to be too small, the client will back-off quickly
anyway since the timeout increases exponentially.

6. MACRO-WORKLOADS
We now turn to macro-workloads that mix data and meta-data

operations. These are more complex than micro-workloads, but
also more closely match the real world. Our study used Filebench’s
File Server, Web Server, and Mail Server workloads [15].

6.1 The File Server Workload
The File Server workload includes opens, creates, reads, writes,

appends, closes, stats, and deletes. All dirty data is written back to

the NFS server on close to enforce NFS’s close-to-open semantics.
We created one Filebench instance for each client and ran each ex-
periment for 5 minutes. We used the File Server workload’s default
settings: each instance had 50 threads operating on 10,000 files (in
a dedicated NFS directory) with an average file size of 128KB, with
the sizes chosen using Filebench’s gamma function [30].
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Figure 14: File Server throughput (varying network delay)
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Figure 15: Number of NFS requests made by the File Server

As shown in Figure 14, V4.1p had lower throughput than V3.
Without any injected network delay, V4.1p’s throughput was 12%
lower because V4.1p is stateful and more talkative. To maintain
state, V4.1p did 3.5 million OPENs and CLOSEs (Figure 15), which
was equivalent to 58% of all V3’s requests. Note that 0.6 million of
the OPENs not only maintained states, but also created files. With-
out considering OPEN and CLOSE, V4.1p and V3 made roughly the
same number of requests: V4.1p sent 106% more GETATTRs than
V3 did, but no CREATEs and 78% fewer LOOKUPs.

V4’s verbosity hurts its performance, especially in high-latency
networks. We observed the same problems in other workloads such
as small-file reading (Section 4.1), where V4 was 40% slower than
V3 with a single thread and a 10ms-delay network. Verbosity is the
result of V4’s stateful nature, and the V4 designers were aware of
the issue. To reduce verbosity, V4 provides compound procedures,
which pack multiple NFS operations into one message. However,
compounds have not been implemented effectively in Linux (and
other OSes): most contain only 2–4 often-trivial operations (e.g.,
SEQUENCE, PUTFH, and GETFH); and applications currently have
no ability to generate their own compounds. We believe that imple-
menting effective compounds is difficult for two reasons: (1) The
POSIX API dictates a synchronous programming model: issue one
system call, wait, check the result, and only then issue the next
call. (2) Without transaction support, failure handling in com-
pounds with many operations is fairly difficult.

In this File Server workload, even though V4.1p made a total of
56% more requests than V3, V4.1p was only 12% slower because
its asynchronous calls allowed 40–95% more outstanding requests
(as explained in Section 4.2). When we injected delay into the
network (Figure 14), V4.1p continued to perform slower than V3,
by 8–18% depending on the delay. V4.1p’s delegation mechanism



did not help for the File Server workload because it contains mostly
writes, and most reads were cached (also Linux does not currently
support write delegations).

Figure 14 also includes the unpatched V4.1. As we increased
the network delay, V4.1p performed increasingly better than V4.1,
eventually reaching a 10.5× throughput improvement. We con-
clude that our patch helps V4.1’s performance in both micro- and
macro-workloads, especially as network delays increase.

6.2 The Web Server Workload
Filebench’s Web Server workload emulates servicing HTTP re-

quests: 100 threads repeatedly operate on 1000 files, in a dedicated
directory per client, representing HTML documents with a mean
size of 16KB. The workload reads 10 randomly-selected files in
their entirety, and then appends 16KB to a log file that is shared
among all threads, causing contention. We ran one Web Server
instance on each of the five NFS clients.
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Figure 16: Web Server throughput (varying network delay).

Figure 16 shows the throughput with different network delays.
V4.1p was 25% slower than V3 in the zero-delay network. The
mountstats data showed that the average round-trip time (RTT)
of V4.1p’s requests was 19% greater than for V3. As the network
delay increased, the RPC RTT became overshadowed by the delay,
and V4.1p’s performance became close to V3’s and even slightly
better (up to 2.6%). V4.1p’s longer RTT was due to its complexity
and longer processing time on the server side, as explained in Sec-
tion 4.3. With longer network delays, V4.1p’s performance picked
up and matched V3’s because of its use of asynchronous calls.

To test delegations, we turned on and off the readonly flag of
the Filebench workload, and confirmed that setting readonly en-
abled delegations. In the zero-delay network, delegations reduced
the number of V4.1p’s getattr requests from over 8.7M to only
11K, and opens and closes from over 8.8M to about 10K. In
summary, delegations cut the total number of all NFS requests by
more than 10×. However, the substantial reduction in requests did
not bring a corresponding performance boost: the throughput in-
creased by only 3% in the zero-delay network, and actually de-
creased by 8% in the 1ms-delay situation. We were able to identify
the problem as the writes to the log file. With delegations, each
Web Server thread finished the first 10 reads from the client-side
cache without any network communication, but then was blocked
at the last write operation.

To characterize the bottleneck, we varied the number of threads
in the workload and repeated the experiments with delegations both
on and off. Figure 17 shows that delegations improved V4.1p’s
single-threaded performance by 7.4×, from 18 to 137 Kops/s. As
the thread count increased, the log write began to dominate and del-
egations’ benefit decreased, eventually making no difference: and
the two curves of V4.1p in Figure 17 converged. With delegations,
V4.1p was 2.2× faster than V3 when using one thread. However,
V4.1p began to slow down with 4 threads, whereas V3 sped up and
did not slow down until the thread number increased to 64. The
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Figure 17: Web Server throughput in the zero-delay network

(varying thread count per client).

eventual slowdown of both V3 and V4.1p was because the system
became overloaded when the log-writing bottleneck was hit. How-
ever, V4.1p hit the bottleneck with fewer threads than V3 did be-
cause V4.1p, with delegations, only performed repeated WRITEs,
whereas V3 performed ten GETATTRs (for cache revalidation) be-
fore each WRITE. With more than 32 threads, V4.1p’s performance
was also hurt by waiting for session slots (see Section 4.2).

This Web Server macro-workload demonstrated how the power
of V4.1p’s delegations can be limited by the absence of write dele-
gations in the current version of Linux. Any real-world application
that is not purely read-only might quickly bottleneck on writes even
though read delegations can eliminate most NFS read and revali-
dation operations. However, write delegations will not help if all
clients are writing to a single file, such as a common log.

6.3 The Mail Server Workload
Filebench’s Mail Server workload mimics mbox-style e-mail ac-

tivities, including compose, receive, read, and delete. Each Mail
Server instance has 16 threads that repeat the following sets of op-
erations on 1000 files in a flat directory: (1) create, write, fsync,
and close a file (compose); (2) open, read, append, fsync, and close
a file (receive); (3) open, read, and close a file (read); (4) delete a
file (delete). The initial average file size was 16KB, but that could
increase if appends were performed. We created a dedicated NFS
directory for each NFS client, and launched one Mail Server in-
stance per client. We tested different numbers of NFS clients, in
addition to different network delays.
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Figure 18: Mail Server throughput (varying network delay)

Figure 18 (note the log Y scale) presents the Mail Server through-
put with different network delays. Without delay, V4.1p and V3
had the same throughput; with 1–40ms delay, V4.1p was 1.3–1.4×
faster. Three factors affected V4.1p’s performance: (1) V4.1p
made more NFS requests for the same amount of work (see Sec-
tion 6.1); and (2) V4.1p’s operations were more complex and had
longer RPC round-trip times (see Section 4.3); but (3) V4.1p made
many asynchronous RPC calls and helped the networking algo-
rithms coalesce RPC messages (see Section 4.1). Although the first
two factors hurt V4.1p’s performance, the third more than compen-



sated for them. Increasing the network delay did not change fac-
tor (1), but diminished the effect of (2) as the delay gradually came
to dominate the RPC RTT. Longer network delays also magnified
the benefits of factor (3) because longer round trips were mitigated
by coalescing requests. Thus, V4.1p increasingly outperformed V3
(1.3–1.4×) as the delay grew. V4.1p’s read delegations did not help
in this workload because most of its activities write files (reads are
largely cached). This again shows the potential benefit of write
delegations, even though Linux does not currently support them.
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Figure 19: Mail Server throughput (varying client count)

Figure 19 shows the aggregate throughput of the Mail Server
workload with different numbers of NFS clients in the zero- and
10ms-delay networks. With zero delay, the aggregate throughput
increased linearly from 1 to 3 clients, but then slowed because
the NFS server became heavily loaded. An injected network de-
lay of 10ms significantly reduced the NFS request rate: the server’s
load was much lighter, and although the aggregate throughput was
lower, it increased linearly with the number of clients.

7. RELATED WORK
NFS versions 2 and 3 are popular and have been widely de-

ployed and studied. Wittle and Keith designed the LADDIS NFS
workload and measured NFS’s response time and throughput under
various loads [31]. Based on LADDIS, the SPECsfs suites were
designed to benchmark and compare the performance of different
NFS server implementations [27]. Martin and Culler [20] studied
NFS’s behavior on high performance networks. They found that
NFS servers were most sensitive to processor overhead, but insensi-
tive to network bandwidth due to the dominant effect of small meta-
data operations. Ellard and Seltzer designed a simple sequential-
read workload to benchmark and improve NFS’s readahead algo-
rithm [9]; they also studied several complex NFS benchmarking
issues including the ZCAV effect, disks’ I/O reordering, the un-
fairness of disk scheduling algorithms, and differences between
NFS over TCP vs. UDP. Boumenot conducted a detailed study of
NFS performance problems [6] in Linux, and found that the low
throughput of Linux NFS was caused not by processor, disk, or
network performance limits, but by the NFS implementation’s sen-
sitivity to network latency and lack of concurrency. Lever et al. in-
troduced a new sequential-write benchmark and used it to measure
and improve the write performance of Linux’s NFS client [17].

Most prior studies [6, 9, 17, 20, 27, 31] were about V2 and V3.
NFS version 4, the latest NFS major version, is dramatically differ-
ent from previous versions, and is far less studied in the literature.
Prior work on V4 focuses almost exclusively on V4.0, which is
quite different than V4.1 due to the introduction of sessions, Ex-
actly Once Semantics (EOS), and pNFS. Harrington et al. sum-
marized major NFS contributors’ efforts in testing the correctness
and performance of Linux’s V4.0 [4] implementation. Radkov et
al. compared the performance of a prototype version of V4.0 and

iSCSI in IP-networked storage [24]. Martin [19] compared the file
operation performance between Linux V3 and V4.0; Kustarz [15]
evaluated the performance of Solaris’s V4.0 implementation and
compared it with V3. However, Martin and Kustarz studied only
V4.0’s basic file operations without exercising unique features such
as statefulness and delegations. Hildebrand and Honeyman ex-
plored the scalability of storage systems using pNFS, an impor-
tant part of V4.1. Eshel et al. [18] used V4.1 and pNFS to build
Panache, a clustered file system disk cache that shields applications
from WAN latency and outages while using shared cloud storage.

Only a handful of authors have studied the delegation mecha-
nisms provided by NFSv4. Batsakis and Burns extended V4.0’s
delegation model to improve the performance and recoverability
of NFS in computing clusters [5]. Gulati et al. built a V4.0 cache
proxy, also using delegations, to improve NFS’s performance in
WANs [13]. However, both of these studies were concerned more
with enhancing NFS’s delegations to design new systems rather
than evaluating the impact of standard delegations on performance.
Although Panache is based on V4.1, it revalidated its cache using
the traditional method of checking timestamps of file objects in-
stead of using delegations.

As the latest minor version of V4, V4.1’s Linux implementation
is still evolving [12]. To the best of our knowledge there are no
existing, comprehensive performance studies of Linux’s NFSv4.1
implementation that cover its advanced features such as stateful-
ness, sessions, and delegations.

8. CONCLUSIONS
We have presented a comprehensive benchmarking study of Li-

nux’s NFSv4.1 implementation. Our study found that: (1) V4.1’s
read delegations can effectively avoid cache revalidation and help
it perform up to 172× faster than V3. (2) Read delegations alone,
however, are not enough to significantly improve the overall per-
formance of realistic macro-workloads because V4.1 might still
be bottlenecked by write operations. Therefore, we believe that
write delegations are needed to maximize the benefits of delega-
tions. (3) Moreover, delegations should be avoided in workloads
that share data, since conflicts can incur a delay of at least 100ms.
(4) We found that V4.1’s stateful nature makes it more talkative
than V3, which hurts V4.1’s performance and makes it slower in
low-latency networks (e.g., LANs). Also, V4.1’s compound proce-
dures, which were designed to help the problem, are not in prac-
tice effective. (5) However, in high-latency networks (e.g., WANs),
V4.1’s performed comparably to and even better than V3’s since
V4.1’s statefulness permits higher concurrency through asynchro-
nous RPC calls. For highly threaded workloads, however, V4.1 can
be bottlenecked by the number of session slots. (6) We also showed
that NFS’s interactions with the networking and storage subsystems
are complex, and system parameters should be tuned carefully to
achieve high NFS throughput. (7) We identified a Hash-Cast net-
working problem that causes unfairness among NFS clients, and
presented a solution. (8) Lastly, we made improvements to Linux’s
V4.1 implementation that boost its performance by up to 11×.

9. LIMITATIONS AND FUTURE WORK
This work has two limitations that can be addressed in the fu-

ture: (1) Most of our workloads did not share files among clients.
Because sharing is infrequent in the real world [26], it is critical
that any sharing be representative. One solution would be to re-
play multi-client NFS traces from real workloads, but this task is
challenging in a distributed environment. (2) Our WAN emulation



using netem was simple, and did not consider harsh packet loss,
intricate delays, or complete outages in real networks.

Lastly, we believe that V4.1’s compound procedures hold much
promise but are woefully underutilized. We plan to implement
more advanced compounds, such as transactional NFS compounds
that can coalesce many operations and execute them atomically on
the server. With transactional compounds, programmers, instead
of waiting and then checking the status of each operation, can per-
form many operations at once and use exception handlers to deal
with failures. Such a design could greatly simplify programming
and improve performance at the same time.
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