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NFSv4.1, the latest version of the NFS protocol, has improvements 
in correctness, security, maintainability, scalability, and cross-OS 
interoperability. To help system administrators decide whether or 

not to adopt NFSv4.1 in production systems, we conducted a comprehensive 
performance comparison between NFSv3 and NFSv4.1 on Linux. We found 
NFSv4.1 to be stable and its performance to be comparable to NFSv3. Our 
new (and sometimes surprising) observations and analysis cast light on the 
dark alleys of NFS performance on Linux.

The Network File System (NFS) is an IETF-standardized protocol to provide transparent 
file-based access to data on remote hosts. NFS is a highly popular network-storage solution, 
and it is widely supported in OSes, including FreeBSD, Linux, Solaris, and Windows. NFS 
deployments continue to increase thanks to faster networks and the proliferation of virtu-
alization. NFS is also playing a major role in today’s cloud era by hosting VM disk images in 
public clouds and providing file services in cloud storage gateways.

The continuous evolution of NFS has contributed to its success. The first published version, 
NFSv2, operates on UDP and limits file sizes to 2 GB. NFSv3 added TCP support, 64-bit 
file sizes and offsets, and performance enhancements such as asynchronous writes and 
READDIRPLUS.

The latest version, NFSv4.1, includes additional items such as (1) easier deployment with one 
single well-known port (2049) that handles all operations, including locking, quota manage-
ment, and mounting; (2) operation coalescing via COMPOUND procedures; (3) stronger security 
using RPCSEC_GSS; (4) correct handling of retransmitted non-idempotent operations with 
sessions and Exactly-Once Semantics (EOS); (5) advanced client-side caching using delega-
tions; and (6) better scalability and more parallelism with pNFS [3].

We investigated NFSv4.1’s performance to help people decide whether to take advantage of 
its improvements and new features in production. For that, we thoroughly evaluated Linux’s 
NFSv4.1 implementation by comparing it to NFSv3, the still-popular older version [5], in a 
wide range of environments using representative workloads.

Our study has four major contributions:

◆◆ a demonstration that NFSv4.1 can reach up to 1177 MB/s throughput in 10 GbE networks 
with 0.2–40 ms latency while ensuring fairness to multiple clients;

◆◆ a comprehensive performance comparison of NFSv3 and NFSv4.1 in low- and high-latency 
networks, using a wide variety of micro- and macro-workloads;

◆◆ a deep analysis of the performance effect of NFSv4.1’s unique features (statefulness, ses-
sions, delegations, etc.); and

◆◆ fixes to Linux’s NFSv4.1 implementation that improve its performance by up to 11x.

Is NFSv4.1 Ready for Prime Time?
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Hardware Configuration

Server & Clients 
CPU
Memory
NIC 

Dell PowerEdge R710 (1 server, 5 clients)
Six-core Intel Xeon X5650, 2.66 GHz
64 GB
Intel 82599 10 GbE

Server Disk
RAID Controller 
Disks
Read Throughput 

RAID-0
Dell PERC 6/i
Eight Intel DC S2700 (200 GB) SSDs
860 MB/s

Network Switch 
Jumbo Frames
MTU
TCP Segmentation Offload
Round-Trip Time
TCP Throughput 

Dell PowerConnect 8024F
Enabled
9000 bytes
Enabled
0.2 ms (ping)
9.88 Gb/s (iperf)

Software Settings

Linux Distribution
Kernel Version
Server File System 

CentOS 7.0.1406
3.14.17
ext4

Network Settings
NFS Implementation

NFS Server Export Options
NFSD Threads

 tcp_slot_table_entries

NFS Client Settings
 rsize & wsize

 actimeo

Linux in-kernel
Default (sync set)
32
128

1MB
60

NFS Security Settings Default (no RPCSEC_GSS)

Table 1: Details of the experimental setup

Our experimental testbed consists of six identical machines (one server and five clients). 
Table 1 gives details of the hardware and software configuration.

We developed Benchmaster, a benchmarking framework that launches workloads on multiple 
clients concurrently. Benchmaster also collects system statistics using tools such as iostat 
and vmstat, and by reading procfs entries. /proc/self/mountstats provides particularly 
useful per-procedure details, including request and byte counts, accumulated queueing time, 
and accumulated round-trip time.
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We ran our tests long enough to ensure stable results, usually 
five minutes. We repeated each test at least three times, and 
computed the 95% confidence interval for the mean. Unless 
otherwise noted, we plot the mean of all runs’ results, with the 
half-widths of the confidence intervals shown as error bars. To 
evaluate NFS performance over short- and long-distance net-
works, we injected delays ranging from 1 ms to 40 ms (Internet 
latency within New York State) using netem at the client side. 
For brevity, we call the network without extra delay “zero-delay,” 
and the network with nms injected delay as “n ms-delay.”

Major Results
We organize our major results around several questions that 
might arise when considering whether to adopt NFSv4.1. We 
hope our answers will help system administrators make well-
informed deployment decisions.

Is NFSv4.1 Ready for Production?
Throughout our study, Linux’s NFSv4.1 implementation func-
tioned well and finished all workloads smoothly. This was true 
for three different kernel versions: 2.6.32, 3.12.0, and 3.14.17 
(only the 3.14.17 results are shown here). We believe NFSv4.1’s 
implementation to be stable, considering the wide scope and 
high intensity of our tests, which included dozens of micro- 
and macro-workloads, involved as many as 2560 threads, and 
reached throughput up to 1177 MB/s.

For data-intensive workloads that operate on one big NFS file, 
NFSv4.1 performed almost the same as the simpler NFSv3 
while providing extra features. Both NFSv3 and NFSv4.1 were 
able to easily saturate the 10 GbE network, although we needed 
to enlarge the maximum TCP buffer sizes (i.e., rmem_max and 
wmem_max) when the network latency was long.

For metadata-intensive workloads that operate on many small 
files and directories, our early results showed vast differences 
between NFSv3 and NFSv4.1. Figure 1 shows one such result, 
where NFSv4.1 (the bottom curve at time 0) performed 24x 
worse (note the log10 scale) than NFSv3 (the bottom curve at 
time 300) during the first 200 seconds, but jumped to be 25x 

better after that. By looking at mountstats data and tracing the 
kernel with SystemTap, we found that NFSv4.1’s poor early per-
formance was due to a system bug. We fixed that with a patch [6], 
resulting in the upper curve (marked with triangles) in Figure 
1. The performance jump at about 40 seconds was because of a 
new feature called delegations, on which we will elaborate later. 
For the rest of the article, we will report results of the patched 
NFSv4.1 instead of the vanilla version.

After the bug fix, NFSv4.1 performed close (slightly better or 
worse) to NFSv3 for most metadata-intensive workloads, but 
with exceptions in extreme settings. For example, with 512 
threads per client, NFSv4.1 created small files 2.9x faster or 3x 
slower depending on the network latency.

Generally speaking, we think NFSv4.1 is almost ready for 
production deployment. It functioned well in our comprehensive 
and intense tests, although with a few performance issues in 
the metadata-intensive tests. However, the performance bug we 
found was easy to uncover, and its fix was also straightforward, 
suggesting that NFSv4.1 is not yet widely deployed; otherwise, 
these issues would already have been corrected. We argue that 
it is time for NFS users to at least start testing NFSv4.1 for pro-
duction workloads.

Are You Affected by Hash-Cast?
Hash-Cast is a networking problem we discovered during our 
study; it affects not only NFS but any systems hosting concur-
rent data-intensive TCP flows. In our test of a sequential read 
workload, we frequently observed a winner-loser pattern among 
the clients, for both NFSv3 and NFSv4.1, exhibiting the follow-
ing three traits: (1) the clients formed two clusters, one with high 
throughput (winners) and one with low throughput (losers); (2) 
often, the winners’ throughput was approximately double that of 
the losers; and (3) no client was consistently a winner or a loser; a 
winner in one experiment might became a loser in another. 

Initially, we suspected that the winner-loser pattern was caused 
by the order in which the clients launched the workload. To test 
that hypothesis, we repeated the experiment but launched the 

Figure 1: Aggregate throughput of five clients reading 10,000 4 KB files 
with 16 threads in a 10 ms-delay network (log10)

Figure 2: Sequential-read throughputs of individual clients when they 
were launched one after the other at an interval of one minute (results of 
one run of experiments)
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clients in a controlled order, one additional client every minute. 
However, the results disproved any correlation between experi-
ment launch order and winners. Figure 2 shows that Client2 
started second but ended up as a loser, whereas Client5 started 
last but became a winner. Figure 2 also shows that the winners 
had about twice the throughput of the losers. We repeated this 
experiment multiple times and found no correlation between a 
client’s start order and its chance of being a winner or loser.

By tracing the server’s networking stack, we discovered that the 
winner-loser pattern is caused by the server’s use of its multi-
queue network interface card (NIC). Every NIC has a physical 
transmit queue (tx-queue) holding outbound packets, and a 
physical receive queue (rx-queue) tracking empty buffers for 
inbound packets [7]. Many modern NICs have multiple sets of 
tx-queues and rx-queues to allow networking to scale with the 
number of CPU cores, and to facilitate better NIC virtualization 
[7]. Linux uses hashing to decide which tx-queue to use for each 
outbound packet. However, not all packets are hashed; instead, 
each TCP socket has a field recording the tx-queue the last 
packet was forwarded to. If a socket has any outstanding packets 
in the recorded tx-queue, its next packet is also placed in that 
queue. This approach allows TCP to avoid generating out-of-
order packets by placing packet n on a long queue and n+1 on a 
shorter one. However, a side effect is that for highly active TCP 
flows that always have outbound packets in the queue, the hash-
ing is effectively done per-flow rather than per-packet.

The winner-loser pattern is caused by uneven hashing of TCP 
flows to tx-queues. In our experiments, the server had five flows 
(one per client) and a NIC with six tx-queues. If two flows were 
hashed into one tx-queue and the rest into three others, then 
the two flows sharing a tx-queue got half the throughput of the 
other three because all tx-queues were transmitting at the same 
rate. We call this phenomenon (i.e., hashing unevenness causing 
a winner-loser pattern of throughput) Hash-Cast (see Figure 3).

Hash-Cast explains the performance anomalies illustrated in 
Figure 2. First, Client1, Client2, and Client3 were hashed into 
tx3, tx0, and tx2, respectively. Then, Client4 was hashed into 
tx0, which Client2 was already using. Later, Client5 was hashed 

into tx3, which Client1 was already using. However, at 270 sec-
onds, Client5’s tx-queue drained and it was rehashed into tx5. 
At the experiment’s end, Client1, Client3, and Client5 were using 
tx3, tx2, and tx5, respectively, while Client2 and Client4 shared 
tx0. Hash-Cast also explains why the losers usually got half the 
throughputs of the winners: the {0,0,1,1,1,2} distribution has the 
highest probability, around 69%.

To eliminate hashing unfairness, we used only a single tx-queue 
and then configured tc qdisc to use Stochastic Fair Queue-
ing (SFQ), which achieves fairness by hashing flows to many 
software queues and sends packets from those queues in a round-
robin manner. Most importantly, SFQ used 127 software queues 
so that hash collisions were much less probable compared to using 
only six. To further alleviate the effect of collisions, we set SFQ’s 
hashing perturbation rate to 10 seconds, so that the mapping from 
TCP flows to software queues changed every 10 seconds.

Note that using a single tx-queue with SFQ did not reduce the 
aggregate network throughput compared to using multiple tx-
queues without SFQ. We measured only negligible performance 
differences between these two configurations. We found that 
many of Linux’s queueing disciplines assume a single tx-queue 
and could not be configured to use multiple ones. Thus, it might 
be desirable to use just one tx-queue in many systems, not just 
NFS servers. We have also found Hash-Cast to be related to 
Bufferbloat [2].

Does Statefulness Make NFSv4.1 Slow?
The biggest difference that distinguishes NFSv4.1 from NFSv3 
is statefulness. Both NFSv2 and NFSv3 were designed to be 
stateless (i.e., the server does not maintain clients’ states). A 
stateless server is easy to implement, but it precludes stateful 
tasks such as mounting, file locking, quota management, etc. 
Consequently, NFSv2/v3 pushed these tasks onto standalone 
services running on separate (and sometimes ad hoc) ports, 
causing maintenance problems (especially when clients need to 
access these ports through firewalls). Being stateful, NFSv4.1 
can consolidate all its services to run on single well-known 
port 2049, which simplifies configuration and maintenance. 
However, a stateful protocol introduces overhead messages to 
maintain state. We ran tests to characterize this overhead.

Our tests validated that the stateful NFSv4.1 is more talkative 
than NFSv3. Figure 4 shows the number of requests made by 
NFSv4.1 and NFSv3 when we ran the Filebench File-Server 
workload for five minutes. For both the zero and 10 ms-latency 
networks, NFSv4.1 achieved lower throughput than NFSv3 
despite making more requests. In other words, NFSv4.1 needs 
more communication with the server per file operation. In Fig-
ure 4, more than one third of NFSv4.1’s requests are OPEN and 
CLOSE, which are used to maintain states. We also observed in 

Figure 3: Illustration of Hash-Cast
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other tests (particularly with a single thread and high network 
latency) that NFSv4.1’s performance was hurt by its verbosity.

Verbosity is the result of NFSv4.1’s stateful nature. To combat 
that effect, NFSv4.1 provides compound procedures, which can 
pack multiple NFS operations into one RPC. Unfortunately, com-
pounds are not very effective: most contain only 2–4 often trivial 
operations (e.g., SEQUENCE, PUTFH, and GETFH), and applications 
currently have no ability to generate their own compounds. We 
believe that implementing effective compounds is difficult for 
two reasons: (1) the POSIX API dictates a synchronous program-
ming model: issue one system call, wait, check the result, and 
only then issue the next call; (2) without transaction support, 
failure handling in multi-operation compounds is difficult.

Nevertheless, statefulness also helps performance. Figure 
5 shows the speed of creating empty files in the 10 ms-delay 
network: NFSv4.1 increasingly outperformed NFSv3 as the 
number of threads grew. This is because of NFSv4.1’s asynchro-
nous RPC calls, which allow the networking layer (TCP Nagle) 
to coalesce multiple RPC messages. Sending fewer but larger 
messages is faster than sending many small ones, so NFSv4.1 
achieved higher performance. Because NFSv3 is stateless, all its 
metadata-mutating operations have to be synchronous; other-
wise a server crash might lose data. NFSv4.1, however, is stateful 
and can perform metadata-mutating operations asynchronously 
because it can restore states properly in case of server crashes.

What Is the Impact of Sessions?
Sessions are a major feature of NFSv4.1; they offer Exactly-
Once Semantics (EOS). To work around network outages, NFS 
has evolved from UDP-only (NFSv2), to both-UDP-and-TCP 
(NFSv3), and now to TCP-only (NFSv4.1). However, using 
TCP does not solve all problems. Should a TCP connection be 
completely disrupted, RPC requests and replies might be lost 
and need to be retried once another connection is established. 
An NFS request might be executed more than once if (1) it was 

received and executed by the server, (2) its reply to the client got 
lost, and (3) the client retried after reconnecting. This causes 
problems for non-idempotent operations such as rename.

To solve this problem, an NFS server has a Duplicate Requests/
Reply Cache (DRC), which saves the replies of executed requests. 
If the server finds a duplicate in the DRC, it simply resends the 
cached reply without re-executing the request. However, when 
serving an older client, the server cannot know how many replies 
might be lost, because clients do not acknowledge them. This 
means that the DRC is effectively unbounded in size.

NFSv4.1’s sessions solve the problem by bounding the number of 
unacknowledged replies. The server assigns each session a num-
ber of slots, each of which allows one outstanding request. By 
reusing a session slot, a client implicitly acknowledges that the 
reply to the previous request using that slot has been received. 
Thus, the DRC size is bounded by the total number of session 
slots, making it feasible to keep DRC in persistent storage: for 
example, a small amount of NVRAM, which is necessary to 
achieve EOS in the face of crashes.

However, if a client runs out of slots (i.e., has reached the maxi-
mum number of concurrent requests the server allows), it has to 
wait until one becomes available, which happens when the client 
receives a reply for any of its outstanding requests. In our tests, 
we observed that the lack of session slots can affect NFSv4.1’s 
performance. In Figure 6, session slots became a bottleneck when 
the thread count increased above 64, and thus NFSv4.1 performed 
worse than NFSv3. Note that the number of session slots is a 
dynamic value negotiated between the client and server. However, 
Linux has a hard limit of 160 on the number of slots per session.

How Much Does Delegation Help?
A key new feature of NFSv4.1 is delegation, a client-side caching 
mechanism that allows cached data to be used without lengthy 
revalidation. Caching is essential to good performance, but in 
distributed systems like NFS it creates consistency problems. 
NFS clients need to revalidate their cache to avoid reading stale 

Figure 4: Number of NFS requests made by the File Server workload. 
Each NFSv4.1 operation represents a compound procedure. For clarity, 
we omit trivial and rare operations in the same compound (e.g., PUTFH, 
SEQUENCE, etc.).

Figure 5: Rate of creating empty files in a 10 ms-delay network
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data. In practice, revalidation happens often, causing extra 
server load and adding delay in high-latency networks.

In NFSv4.1, the cost of cache validation is reduced by letting 
a server delegate a file to a particular client for a limited time. 
While holding the delegation, a client need not revalidate the 
file’s attributes or contents. If any other clients want to perform 
conflicting operations, the server can recall the delegation using 
callbacks. Delegations are based on the observation that file 
sharing is infrequent and rarely concurrent [4]. Thus, they boost 
performance most of the time, but can hurt performance in the 
presence of concurrent and conflicting file sharing.

We studied read delegations (which are the only type currently 
supported in the Linux kernel). In Linux, a read delegation is 
granted if (1) the back channel to the client is working, (2) the 
client is opening the file with O_RDONLY, and (3) the file is not 
open for write by any client. The benefits of delegations appear 
in Figure 1, where they helped NFSv4.1 read small files around 
172x faster than NFSv3. In Figure 1, NFSv4.1 was simply read-
ing from the local cache without any server communication at 
all, whereas NFSv3 had to send repeated GETATTRs for cache 
revalidation.

Read delegations can also improve the performance of file lock-
ing. We quantified the improvement by pre-allocating 1000 4 KB 
files in a shared NFS directory. Each client repeatedly opened 
each file, locked it, read the entire file, and then unlocked it. 
After ten repetitions the client moved to the next file.

Table 2 shows the number of operations performed by NFSv3 
and by NFSv4.1 with and without delegation. Only NFSv4.1 
shows OPENs and CLOSEs because only NFSv4.1 is stateful.  
When delegations were on, NFSv4.1 used only 1000 OPENs even 
though each client opened each file ten times. This is because 
each client obtained a delegation on the first OPEN; the follow-
ing nine were performed locally. Note that NFSv4.1 did not use 
any LOCKs or LOCKUs because, with delegations, locks were also 
processed locally.

Without a delegation (NFSv3 and NFSv4.1 with delegations off 
in Table 2), each application read incurred an expensive NFS 
READ operation even though the same reads were repeated ten 
times. Repeated reads were not served from the client-side cache 
because of file locking, which forces the client to invalidate the 
cache [1].

Another major difference among the columns in Table 2 was 
the number of GETATTRs. In the absence of delegations, GETAT-

TRs were used for two purposes: to revalidate the cache upon file 
open, and to update file metadata upon read. The latter GETATTRs 
were needed because the locking preceding the read invalidated 
both the data and metadata caches for the locked file.

In total, delegations cut the number of NFSv4.1 operations by 
over 29x (from 88 K to 3 K). This enabled the original stateful 
and “chattier” NFSv4.1 (with extra OPEN, CLOSE, and FREE_
STATEID calls) to finish the same workload using only 5% of the 
requests used by NFSv3. These reductions translate to a 6–193x 
speedup in networks with 0–10 ms latency.

Nevertheless, users should be aware of delegation conflicts, 
which incur expensive cost. We tested delegation conflicts by 
opening a delegated file with O_RDWR from another client and 
observed that the open was delayed for as long as 100 ms because 
the NFS server needed to recall outstanding delegations upon 
conflicts.

We have also observed that read delegations alone are sometimes 
not enough to significantly boost performance because writes 
quickly became the bottleneck, and the overall performance was 

Operation NFSv3
NFSv4.1 
deleg. off

NFSv4.1 
deleg. on

OPEN 0 10,001 1000

READ 10,000 10,000 1000

CLOSE 0 10,001 1000

ACCESS 10,003 9003 3

GETATTR 19,003 19,002 1

LOCK 10,000 10,000 0

LOCKU 10,000 10,000 0

LOOKUP 1002 2 2

FREE_STATEID 0 10,000 0

TOTAL 60,008 88,009 3009

Table 2: NFS operations performed by each client for NFSv3 and NFSv4.1 
(with and without delegations). Each NFSv4.1 operation represents a 
compound procedure. For clarity, we omit trivial and rare operations in the 
same compound (e.g., PUTFH, SEQUENCE, FSINFO). NFSv3’s LOCK and 
LOCKU (i.e., unlock) come from the Network Lock Manager (NLM). 

Figure 6: Rate of creating empty files in a zero-delay network



12   J U N E 20 1 5  VO L .  4 0,  N O.  3  www.usenix.org

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

thus limited. This finding calls for further investigation into 
how delegations can improve write performance.

Conclusions
We have presented a comprehensive performance benchmarking 
of NFSv4.1 by comparing it to NFSv3. Our study found that: 

1. Linux’s NFSv4.1 implementation is stable but suffers from 
some performance issues. 

2. NFSv4.1 is more talkative than NFSv3 because of statefulness, 
which hurts NFSv4.1’s performance and makes it slower in 
low-latency networks (e.g., LANs). 

3. In high-latency networks (e.g., WANs), however, NFSv4.1 
performed comparably to and even better than NFSv3, since 
NFSv4.1’s statefulness permits higher concurrency through 
asynchronous RPC calls. 

4. NFSv4.1 sessions can improve correctness while reducing the 
server’s resource usage, but the number of session slots can be a 
scalability bottleneck for highly threaded applications. 

5. NFSv4.1’s read delegations can effectively avoid cache revali-
dation and improve performance, especially for applications 
using file locks, but delegation conflicts can incur a delay of at 
least 100 ms. 

6. Multi-queue NICs suffer from the Hash-Cast problem and can 
cause unfairness among not only NFS clients but any data-
intensive TCP flows.

Due to space limits, we have presented only the major findings 
and have omitted some details in explanation; please refer to our 
SIGMETRICS paper [1] for more results and further details.

Limitations and Future Work
Our study focused only on the performance of NFSv4.1; other 
aspects such as security (RPCSEC_GSS) and scalability (pNFS) 
should be interesting subjects to study in the future. Most of our 
workloads did not share files among clients. Because sharing 
is infrequent in the real world [4], it is critical that any sharing 
be representative. Finally, a different NFSv4.1 implementation 
than the Linux one might (and probably would) produce different 
results.
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