
6  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
Ming Chen is a PhD candidate
in computer science at Stony
Brook University. His research
interests include file systems,
storage systems, and cloud

computing. He is working together with
Professor Erez Zadok in building storage
systems using NFS and cloud services.
mchen@cs.stonybrook.edu

Dean Hildebrand manages the
Cloud Storage Software team at
the IBM Almaden Research
Center and is a recognized
expert in the field of distributed

and parallel file systems. He has authored
numerous scientific publications, created over
28 patents, and chaired and sat on the
program committee of numerous conferences.
Hildebrand pioneered pNFS, demonstrating the
feasibility of providing standard and scalable
access to any file system. He received a BSc in
computer science from the University of British
Columbia in 1998 and a PhD in computer
science from the University of Michigan in
2007. dhildeb@us.ibm.com

Geoff Kuenning spent 15 years
working as a programmer
before changing directions and
joining academia. Today he
teaches computer science at

Harvey Mudd College in Claremont, CA, where
he has developed a reputation for insisting that
students write readable software, not just
working code. When not teaching or improving
his own programs, he can often be found
trying—and usually failing—to conquer nearby
Mount Baldy on a bicycle. geoff@cs.hmc.edu.

NFSv4.1, the latest version of the NFS protocol, has improvements
in correctness, security, maintainability, scalability, and cross-OS
interoperability. To help system administrators decide whether or

not to adopt NFSv4.1 in production systems, we conducted a comprehensive
performance comparison between NFSv3 and NFSv4.1 on Linux. We found
NFSv4.1 to be stable and its performance to be comparable to NFSv3. Our
new (and sometimes surprising) observations and analysis cast light on the
dark alleys of NFS performance on Linux.

The Network File System (NFS) is an IETF-standardized protocol to provide transparent
file-based access to data on remote hosts. NFS is a highly popular network-storage solution,
and it is widely supported in OSes, including FreeBSD, Linux, Solaris, and Windows. NFS
deployments continue to increase thanks to faster networks and the proliferation of virtu-
alization. NFS is also playing a major role in today’s cloud era by hosting VM disk images in
public clouds and providing file services in cloud storage gateways.

The continuous evolution of NFS has contributed to its success. The first published version,
NFSv2, operates on UDP and limits file sizes to 2 GB. NFSv3 added TCP support, 64-bit
file sizes and offsets, and performance enhancements such as asynchronous writes and
READDIRPLUS.

The latest version, NFSv4.1, includes additional items such as (1) easier deployment with one
single well-known port (2049) that handles all operations, including locking, quota manage-
ment, and mounting; (2) operation coalescing via COMPOUND procedures; (3) stronger security
using RPCSEC_GSS; (4) correct handling of retransmitted non-idempotent operations with
sessions and Exactly-Once Semantics (EOS); (5) advanced client-side caching using delega-
tions; and (6) better scalability and more parallelism with pNFS [3].

We investigated NFSv4.1’s performance to help people decide whether to take advantage of
its improvements and new features in production. For that, we thoroughly evaluated Linux’s
NFSv4.1 implementation by comparing it to NFSv3, the still-popular older version [5], in a
wide range of environments using representative workloads.

Our study has four major contributions:

◆◆ a demonstration that NFSv4.1 can reach up to 1177 MB/s throughput in 10 GbE networks
with 0.2–40 ms latency while ensuring fairness to multiple clients;

◆◆ a comprehensive performance comparison of NFSv3 and NFSv4.1 in low- and high-latency
networks, using a wide variety of micro- and macro-workloads;

◆◆ a deep analysis of the performance effect of NFSv4.1’s unique features (statefulness, ses-
sions, delegations, etc.); and

◆◆ fixes to Linux’s NFSv4.1 implementation that improve its performance by up to 11x.

Is NFSv4.1 Ready for Prime Time?
M I N G C H E N , D E A N H I L D E B R A N D , G E O F F K U E N N I N G , S O U J A N Y A
S H A N K A R A N A R A Y A N A , B H A R A T S I N G H , A N D E R E Z Z A D O K

www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 7

FILE SYSTEMS AND STORAGE
Methodology

Hardware Configuration

Server & Clients
CPU
Memory
NIC

Dell PowerEdge R710 (1 server, 5 clients)
Six-core Intel Xeon X5650, 2.66 GHz
64 GB
Intel 82599 10 GbE

Server Disk
RAID Controller
Disks
Read Throughput

RAID-0
Dell PERC 6/i
Eight Intel DC S2700 (200 GB) SSDs
860 MB/s

Network Switch
Jumbo Frames
MTU
TCP Segmentation Offload
Round-Trip Time
TCP Throughput

Dell PowerConnect 8024F
Enabled
9000 bytes
Enabled
0.2 ms (ping)
9.88 Gb/s (iperf)

Software Settings

Linux Distribution
Kernel Version
Server File System

CentOS 7.0.1406
3.14.17
ext4

Network Settings
NFS Implementation

NFS Server Export Options
NFSD Threads

 tcp_slot_table_entries

NFS Client Settings
 rsize & wsize

 actimeo

Linux in-kernel
Default (sync set)
32
128

1MB
60

NFS Security Settings Default (no RPCSEC_GSS)

Table 1: Details of the experimental setup

Our experimental testbed consists of six identical machines (one server and five clients).
Table 1 gives details of the hardware and software configuration.

We developed Benchmaster, a benchmarking framework that launches workloads on multiple
clients concurrently. Benchmaster also collects system statistics using tools such as iostat
and vmstat, and by reading procfs entries. /proc/self/mountstats provides particularly
useful per-procedure details, including request and byte counts, accumulated queueing time,
and accumulated round-trip time.

Bharat Singh is a graduate
student in computer science at
Stony Brook University. Before
that he worked at NetApp
developing storage solutions.

His research interests include file and storage
systems. He is working with Professor Erez
Zadok in building high performance storage
systems using NFS.
bharat.singh.1@stonybrook.edu

Soujanya Shankaranarayana
earned her master’s degree
from Stony Brook University in
2014 and was advised by
Professor Erez Zadok. She is

presently working at Tintri Inc., a Bay Area
storage startup. Her research interests involve
NFS, distributed storage, and storage solutions
for virtualized environments. In addition to
academic research experience, she also has
industry experience in distributed systems and
storage systems.
soshankarana@cs.stonybrook.edu

Erez Zadok received a PhD in
computer science from
Columbia University in 2001.
He directs the File Systems and
Storage Lab (FSL) at the

Computer Science Department at Stony Brook
University, where he joined as faculty in 2001.
His current research interests include file
systems and storage, operating systems,
energy efficiency, performance and
benchmarking, security, and networking. He
received the SUNY Chancellor’s Award for
Excellence in Teaching, the US National
Science Foundation (NSF) CAREER Award, two
NetApp Faculty awards, and two IBM Faculty
awards. ezk@fsl.cs.sunysb.edu

8  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

We ran our tests long enough to ensure stable results, usually
five minutes. We repeated each test at least three times, and
computed the 95% confidence interval for the mean. Unless
otherwise noted, we plot the mean of all runs’ results, with the
half-widths of the confidence intervals shown as error bars. To
evaluate NFS performance over short- and long-distance net-
works, we injected delays ranging from 1 ms to 40 ms (Internet
latency within New York State) using netem at the client side.
For brevity, we call the network without extra delay “zero-delay,”
and the network with nms injected delay as “n ms-delay.”

Major Results
We organize our major results around several questions that
might arise when considering whether to adopt NFSv4.1. We
hope our answers will help system administrators make well-
informed deployment decisions.

Is NFSv4.1 Ready for Production?
Throughout our study, Linux’s NFSv4.1 implementation func-
tioned well and finished all workloads smoothly. This was true
for three different kernel versions: 2.6.32, 3.12.0, and 3.14.17
(only the 3.14.17 results are shown here). We believe NFSv4.1’s
implementation to be stable, considering the wide scope and
high intensity of our tests, which included dozens of micro-
and macro-workloads, involved as many as 2560 threads, and
reached throughput up to 1177 MB/s.

For data-intensive workloads that operate on one big NFS file,
NFSv4.1 performed almost the same as the simpler NFSv3
while providing extra features. Both NFSv3 and NFSv4.1 were
able to easily saturate the 10 GbE network, although we needed
to enlarge the maximum TCP buffer sizes (i.e., rmem_max and
wmem_max) when the network latency was long.

For metadata-intensive workloads that operate on many small
files and directories, our early results showed vast differences
between NFSv3 and NFSv4.1. Figure 1 shows one such result,
where NFSv4.1 (the bottom curve at time 0) performed 24x
worse (note the log10 scale) than NFSv3 (the bottom curve at
time 300) during the first 200 seconds, but jumped to be 25x

better after that. By looking at mountstats data and tracing the
kernel with SystemTap, we found that NFSv4.1’s poor early per-
formance was due to a system bug. We fixed that with a patch [6],
resulting in the upper curve (marked with triangles) in Figure
1. The performance jump at about 40 seconds was because of a
new feature called delegations, on which we will elaborate later.
For the rest of the article, we will report results of the patched
NFSv4.1 instead of the vanilla version.

After the bug fix, NFSv4.1 performed close (slightly better or
worse) to NFSv3 for most metadata-intensive workloads, but
with exceptions in extreme settings. For example, with 512
threads per client, NFSv4.1 created small files 2.9x faster or 3x
slower depending on the network latency.

Generally speaking, we think NFSv4.1 is almost ready for
production deployment. It functioned well in our comprehensive
and intense tests, although with a few performance issues in
the metadata-intensive tests. However, the performance bug we
found was easy to uncover, and its fix was also straightforward,
suggesting that NFSv4.1 is not yet widely deployed; otherwise,
these issues would already have been corrected. We argue that
it is time for NFS users to at least start testing NFSv4.1 for pro-
duction workloads.

Are You Affected by Hash-Cast?
Hash-Cast is a networking problem we discovered during our
study; it affects not only NFS but any systems hosting concur-
rent data-intensive TCP flows. In our test of a sequential read
workload, we frequently observed a winner-loser pattern among
the clients, for both NFSv3 and NFSv4.1, exhibiting the follow-
ing three traits: (1) the clients formed two clusters, one with high
throughput (winners) and one with low throughput (losers); (2)
often, the winners’ throughput was approximately double that of
the losers; and (3) no client was consistently a winner or a loser; a
winner in one experiment might became a loser in another.

Initially, we suspected that the winner-loser pattern was caused
by the order in which the clients launched the workload. To test
that hypothesis, we repeated the experiment but launched the

Figure 1: Aggregate throughput of five clients reading 10,000 4 KB files
with 16 threads in a 10 ms-delay network (log10)

Figure 2: Sequential-read throughputs of individual clients when they
were launched one after the other at an interval of one minute (results of
one run of experiments)

www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 9

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

clients in a controlled order, one additional client every minute.
However, the results disproved any correlation between experi-
ment launch order and winners. Figure 2 shows that Client2
started second but ended up as a loser, whereas Client5 started
last but became a winner. Figure 2 also shows that the winners
had about twice the throughput of the losers. We repeated this
experiment multiple times and found no correlation between a
client’s start order and its chance of being a winner or loser.

By tracing the server’s networking stack, we discovered that the
winner-loser pattern is caused by the server’s use of its multi-
queue network interface card (NIC). Every NIC has a physical
transmit queue (tx-queue) holding outbound packets, and a
physical receive queue (rx-queue) tracking empty buffers for
inbound packets [7]. Many modern NICs have multiple sets of
tx-queues and rx-queues to allow networking to scale with the
number of CPU cores, and to facilitate better NIC virtualization
[7]. Linux uses hashing to decide which tx-queue to use for each
outbound packet. However, not all packets are hashed; instead,
each TCP socket has a field recording the tx-queue the last
packet was forwarded to. If a socket has any outstanding packets
in the recorded tx-queue, its next packet is also placed in that
queue. This approach allows TCP to avoid generating out-of-
order packets by placing packet n on a long queue and n+1 on a
shorter one. However, a side effect is that for highly active TCP
flows that always have outbound packets in the queue, the hash-
ing is effectively done per-flow rather than per-packet.

The winner-loser pattern is caused by uneven hashing of TCP
flows to tx-queues. In our experiments, the server had five flows
(one per client) and a NIC with six tx-queues. If two flows were
hashed into one tx-queue and the rest into three others, then
the two flows sharing a tx-queue got half the throughput of the
other three because all tx-queues were transmitting at the same
rate. We call this phenomenon (i.e., hashing unevenness causing
a winner-loser pattern of throughput) Hash-Cast (see Figure 3).

Hash-Cast explains the performance anomalies illustrated in
Figure 2. First, Client1, Client2, and Client3 were hashed into
tx3, tx0, and tx2, respectively. Then, Client4 was hashed into
tx0, which Client2 was already using. Later, Client5 was hashed

into tx3, which Client1 was already using. However, at 270 sec-
onds, Client5’s tx-queue drained and it was rehashed into tx5.
At the experiment’s end, Client1, Client3, and Client5 were using
tx3, tx2, and tx5, respectively, while Client2 and Client4 shared
tx0. Hash-Cast also explains why the losers usually got half the
throughputs of the winners: the {0,0,1,1,1,2} distribution has the
highest probability, around 69%.

To eliminate hashing unfairness, we used only a single tx-queue
and then configured tc qdisc to use Stochastic Fair Queue-
ing (SFQ), which achieves fairness by hashing flows to many
software queues and sends packets from those queues in a round-
robin manner. Most importantly, SFQ used 127 software queues
so that hash collisions were much less probable compared to using
only six. To further alleviate the effect of collisions, we set SFQ’s
hashing perturbation rate to 10 seconds, so that the mapping from
TCP flows to software queues changed every 10 seconds.

Note that using a single tx-queue with SFQ did not reduce the
aggregate network throughput compared to using multiple tx-
queues without SFQ. We measured only negligible performance
differences between these two configurations. We found that
many of Linux’s queueing disciplines assume a single tx-queue
and could not be configured to use multiple ones. Thus, it might
be desirable to use just one tx-queue in many systems, not just
NFS servers. We have also found Hash-Cast to be related to
Bufferbloat [2].

Does Statefulness Make NFSv4.1 Slow?
The biggest difference that distinguishes NFSv4.1 from NFSv3
is statefulness. Both NFSv2 and NFSv3 were designed to be
stateless (i.e., the server does not maintain clients’ states). A
stateless server is easy to implement, but it precludes stateful
tasks such as mounting, file locking, quota management, etc.
Consequently, NFSv2/v3 pushed these tasks onto standalone
services running on separate (and sometimes ad hoc) ports,
causing maintenance problems (especially when clients need to
access these ports through firewalls). Being stateful, NFSv4.1
can consolidate all its services to run on single well-known
port 2049, which simplifies configuration and maintenance.
However, a stateful protocol introduces overhead messages to
maintain state. We ran tests to characterize this overhead.

Our tests validated that the stateful NFSv4.1 is more talkative
than NFSv3. Figure 4 shows the number of requests made by
NFSv4.1 and NFSv3 when we ran the Filebench File-Server
workload for five minutes. For both the zero and 10 ms-latency
networks, NFSv4.1 achieved lower throughput than NFSv3
despite making more requests. In other words, NFSv4.1 needs
more communication with the server per file operation. In Fig-
ure 4, more than one third of NFSv4.1’s requests are OPEN and
CLOSE, which are used to maintain states. We also observed in

Figure 3: Illustration of Hash-Cast

10  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

other tests (particularly with a single thread and high network
latency) that NFSv4.1’s performance was hurt by its verbosity.

Verbosity is the result of NFSv4.1’s stateful nature. To combat
that effect, NFSv4.1 provides compound procedures, which can
pack multiple NFS operations into one RPC. Unfortunately, com-
pounds are not very effective: most contain only 2–4 often trivial
operations (e.g., SEQUENCE, PUTFH, and GETFH), and applications
currently have no ability to generate their own compounds. We
believe that implementing effective compounds is difficult for
two reasons: (1) the POSIX API dictates a synchronous program-
ming model: issue one system call, wait, check the result, and
only then issue the next call; (2) without transaction support,
failure handling in multi-operation compounds is difficult.

Nevertheless, statefulness also helps performance. Figure
5 shows the speed of creating empty files in the 10 ms-delay
network: NFSv4.1 increasingly outperformed NFSv3 as the
number of threads grew. This is because of NFSv4.1’s asynchro-
nous RPC calls, which allow the networking layer (TCP Nagle)
to coalesce multiple RPC messages. Sending fewer but larger
messages is faster than sending many small ones, so NFSv4.1
achieved higher performance. Because NFSv3 is stateless, all its
metadata-mutating operations have to be synchronous; other-
wise a server crash might lose data. NFSv4.1, however, is stateful
and can perform metadata-mutating operations asynchronously
because it can restore states properly in case of server crashes.

What Is the Impact of Sessions?
Sessions are a major feature of NFSv4.1; they offer Exactly-
Once Semantics (EOS). To work around network outages, NFS
has evolved from UDP-only (NFSv2), to both-UDP-and-TCP
(NFSv3), and now to TCP-only (NFSv4.1). However, using
TCP does not solve all problems. Should a TCP connection be
completely disrupted, RPC requests and replies might be lost
and need to be retried once another connection is established.
An NFS request might be executed more than once if (1) it was

received and executed by the server, (2) its reply to the client got
lost, and (3) the client retried after reconnecting. This causes
problems for non-idempotent operations such as rename.

To solve this problem, an NFS server has a Duplicate Requests/
Reply Cache (DRC), which saves the replies of executed requests.
If the server finds a duplicate in the DRC, it simply resends the
cached reply without re-executing the request. However, when
serving an older client, the server cannot know how many replies
might be lost, because clients do not acknowledge them. This
means that the DRC is effectively unbounded in size.

NFSv4.1’s sessions solve the problem by bounding the number of
unacknowledged replies. The server assigns each session a num-
ber of slots, each of which allows one outstanding request. By
reusing a session slot, a client implicitly acknowledges that the
reply to the previous request using that slot has been received.
Thus, the DRC size is bounded by the total number of session
slots, making it feasible to keep DRC in persistent storage: for
example, a small amount of NVRAM, which is necessary to
achieve EOS in the face of crashes.

However, if a client runs out of slots (i.e., has reached the maxi-
mum number of concurrent requests the server allows), it has to
wait until one becomes available, which happens when the client
receives a reply for any of its outstanding requests. In our tests,
we observed that the lack of session slots can affect NFSv4.1’s
performance. In Figure 6, session slots became a bottleneck when
the thread count increased above 64, and thus NFSv4.1 performed
worse than NFSv3. Note that the number of session slots is a
dynamic value negotiated between the client and server. However,
Linux has a hard limit of 160 on the number of slots per session.

How Much Does Delegation Help?
A key new feature of NFSv4.1 is delegation, a client-side caching
mechanism that allows cached data to be used without lengthy
revalidation. Caching is essential to good performance, but in
distributed systems like NFS it creates consistency problems.
NFS clients need to revalidate their cache to avoid reading stale

Figure 4: Number of NFS requests made by the File Server workload.
Each NFSv4.1 operation represents a compound procedure. For clarity,
we omit trivial and rare operations in the same compound (e.g., PUTFH,
SEQUENCE, etc.).

Figure 5: Rate of creating empty files in a 10 ms-delay network

www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 11

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

data. In practice, revalidation happens often, causing extra
server load and adding delay in high-latency networks.

In NFSv4.1, the cost of cache validation is reduced by letting
a server delegate a file to a particular client for a limited time.
While holding the delegation, a client need not revalidate the
file’s attributes or contents. If any other clients want to perform
conflicting operations, the server can recall the delegation using
callbacks. Delegations are based on the observation that file
sharing is infrequent and rarely concurrent [4]. Thus, they boost
performance most of the time, but can hurt performance in the
presence of concurrent and conflicting file sharing.

We studied read delegations (which are the only type currently
supported in the Linux kernel). In Linux, a read delegation is
granted if (1) the back channel to the client is working, (2) the
client is opening the file with O_RDONLY, and (3) the file is not
open for write by any client. The benefits of delegations appear
in Figure 1, where they helped NFSv4.1 read small files around
172x faster than NFSv3. In Figure 1, NFSv4.1 was simply read-
ing from the local cache without any server communication at
all, whereas NFSv3 had to send repeated GETATTRs for cache
revalidation.

Read delegations can also improve the performance of file lock-
ing. We quantified the improvement by pre-allocating 1000 4 KB
files in a shared NFS directory. Each client repeatedly opened
each file, locked it, read the entire file, and then unlocked it.
After ten repetitions the client moved to the next file.

Table 2 shows the number of operations performed by NFSv3
and by NFSv4.1 with and without delegation. Only NFSv4.1
shows OPENs and CLOSEs because only NFSv4.1 is stateful.
When delegations were on, NFSv4.1 used only 1000 OPENs even
though each client opened each file ten times. This is because
each client obtained a delegation on the first OPEN; the follow-
ing nine were performed locally. Note that NFSv4.1 did not use
any LOCKs or LOCKUs because, with delegations, locks were also
processed locally.

Without a delegation (NFSv3 and NFSv4.1 with delegations off
in Table 2), each application read incurred an expensive NFS
READ operation even though the same reads were repeated ten
times. Repeated reads were not served from the client-side cache
because of file locking, which forces the client to invalidate the
cache [1].

Another major difference among the columns in Table 2 was
the number of GETATTRs. In the absence of delegations, GETAT-

TRs were used for two purposes: to revalidate the cache upon file
open, and to update file metadata upon read. The latter GETATTRs
were needed because the locking preceding the read invalidated
both the data and metadata caches for the locked file.

In total, delegations cut the number of NFSv4.1 operations by
over 29x (from 88 K to 3 K). This enabled the original stateful
and “chattier” NFSv4.1 (with extra OPEN, CLOSE, and FREE_
STATEID calls) to finish the same workload using only 5% of the
requests used by NFSv3. These reductions translate to a 6–193x
speedup in networks with 0–10 ms latency.

Nevertheless, users should be aware of delegation conflicts,
which incur expensive cost. We tested delegation conflicts by
opening a delegated file with O_RDWR from another client and
observed that the open was delayed for as long as 100 ms because
the NFS server needed to recall outstanding delegations upon
conflicts.

We have also observed that read delegations alone are sometimes
not enough to significantly boost performance because writes
quickly became the bottleneck, and the overall performance was

Operation NFSv3
NFSv4.1
deleg. off

NFSv4.1
deleg. on

OPEN 0 10,001 1000

READ 10,000 10,000 1000

CLOSE 0 10,001 1000

ACCESS 10,003 9003 3

GETATTR 19,003 19,002 1

LOCK 10,000 10,000 0

LOCKU 10,000 10,000 0

LOOKUP 1002 2 2

FREE_STATEID 0 10,000 0

TOTAL 60,008 88,009 3009

Table 2: NFS operations performed by each client for NFSv3 and NFSv4.1
(with and without delegations). Each NFSv4.1 operation represents a
compound procedure. For clarity, we omit trivial and rare operations in the
same compound (e.g., PUTFH, SEQUENCE, FSINFO). NFSv3’s LOCK and
LOCKU (i.e., unlock) come from the Network Lock Manager (NLM).

Figure 6: Rate of creating empty files in a zero-delay network

12  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
Is NFSv4.1 Ready for Prime Time?

thus limited. This finding calls for further investigation into
how delegations can improve write performance.

Conclusions
We have presented a comprehensive performance benchmarking
of NFSv4.1 by comparing it to NFSv3. Our study found that:

1. Linux’s NFSv4.1 implementation is stable but suffers from
some performance issues.

2. NFSv4.1 is more talkative than NFSv3 because of statefulness,
which hurts NFSv4.1’s performance and makes it slower in
low-latency networks (e.g., LANs).

3. In high-latency networks (e.g., WANs), however, NFSv4.1
performed comparably to and even better than NFSv3, since
NFSv4.1’s statefulness permits higher concurrency through
asynchronous RPC calls.

4. NFSv4.1 sessions can improve correctness while reducing the
server’s resource usage, but the number of session slots can be a
scalability bottleneck for highly threaded applications.

5. NFSv4.1’s read delegations can effectively avoid cache revali-
dation and improve performance, especially for applications
using file locks, but delegation conflicts can incur a delay of at
least 100 ms.

6. Multi-queue NICs suffer from the Hash-Cast problem and can
cause unfairness among not only NFS clients but any data-
intensive TCP flows.

Due to space limits, we have presented only the major findings
and have omitted some details in explanation; please refer to our
SIGMETRICS paper [1] for more results and further details.

Limitations and Future Work
Our study focused only on the performance of NFSv4.1; other
aspects such as security (RPCSEC_GSS) and scalability (pNFS)
should be interesting subjects to study in the future. Most of our
workloads did not share files among clients. Because sharing
is infrequent in the real world [4], it is critical that any sharing
be representative. Finally, a different NFSv4.1 implementation
than the Linux one might (and probably would) produce different
results.

Acknowledgments
We thank Lakshay Akula, Vasily Tarasov, Arun Olappamanna
Vasudevan, and Ksenia Zakirova for their help in this study. This
work was made possible in part thanks to NSF awards CNS-
1223239, CNS-1251137, and CNS-1302246.

References
[1] M. Chen, D. Hildebrand, G. Kuenning, S. Shankaranarayana,
B. Singh, and E. Zadok, “Newer Is Sometimes Better: An
Evaluation of NFSv4.1,” in Proceedings of the SIGMETRICS
2015, Portland, OR, June 2015, ACM. Forthcoming.

[2] M. Chen, D. Hildebrand, G. Kuenning, S. Shankaranarayana,
V. Tarasov, A. Vasudevan, E. Zadok, and K. Zakirova, “Linux
NFSv4.1 Performance under a Microscope,” Technical Report
FSL-14-02, Stony Brook University, August 2014.

[3] D. Hildebrand and P. Honeyman, “Exporting Storage
Systems in a Scalable Manner with pNFS,” in Proceedings of
MSST, Monterey, CA, 2005, IEEE.

[4] A. Leung, S. Pasupathy, G. Goodson, and E. Miller,
“Measurement and Analysis of Large-Scale Network File
System Workloads,” in Proceedings of the USENIX Annual
Technical Conference, Boston, MA, June 2008, pp. 213–226.

[5] A. McDonald, “The Background to NFSv4.1,” ;login:, vol. 37,
no. 1, February 2012, pp. 28–35.

[6] NFS: avoid nfs_wait_on_seqid() for NFSv4.1: http://www.
spinics.net/lists/linux-nfs/msg47514.html.

[7] Scott Rixner, “Network Virtualization: Breaking the
Performance Barrier,” Queue, vol. 6, no. 1, January 2008, pp.
36–37 ff.

The USENIX Store
is Open for Business!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book,
a USENIX or conference shirt, or the box set from last year’s work-
shop? Now you can, via the USENIX Store!

Head over to www.usenix.org/store and check out the collection
of t-shirts, video box sets, ;login: magazines, short topics books,
and other USENIX and LISA gear. USENIX and LISA SIG members
save, so make sure your membership is up to date.

