Understanding and Optimizing Tiered Memory and Storage Systems
A Dissertation Proposal presented
by
Tyler Estro
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science

Stony Brook University

Technical Report FSL-26-01

January 2026

Stony Brook University
The Graduate School

Tyler Estro

We, the thesis committee for the above candidate for the
degree of Doctor of Philosophy, hereby recommend
acceptance of this thesis proposal

Erez Zadok - Dissertation Advisor
Professor, Computer Science Department

Mike Ferdman - Chairperson of Dissertation Proposal
Associate Professor, Computer Science Department

Anshul Gandhi
Associate Professor, Computer Science Department

Carl Waldspurger
Consultant, Carl Waldspurger Consulting

11

Abstract of the Dissertation Proposal
Understanding and Optimizing Tiered Memory and Storage Systems
by
Tyler Estro

Doctor of Philosophy

in
Computer Science
Stony Brook University

January 2026

Tiered memory and storage systems have become increasingly complex, com-
bining heterogeneous devices across multiple layers to balance performance and
cost. They underpin critical infrastructure, from operating system page caches
and database buffers to large-scale Al training pipelines. These systems expose
a vast configuration space, as many configurable parameters and design choices
compound across tiers. As hierarchies deepen and workloads diversify, identify-
ing optimal configurations has become both essential and increasingly difficult.
Compute Express Link (CXL) further amplifies this challenge by adding a shared,
byte-addressable memory tier accessible by multiple hosts, expanding the tiering
space and requiring new techniques to effectively exploit it.

This thesis proposal has three thrusts. In the first thrust, we examined cache
analysis trends and found that many techniques focus primarily on performance,
analyze tiers in isolation, and overlook cost-performance trade-offs. To address
these limitations, we implemented a multi-tier cache simulator that evaluates con-
figurations across a broad range of parameters. Simulations on real-world traces
revealed that cost-aware, multi-tier analysis can overturn common assumptions
about device choice, hierarchy complexity, and policy effectiveness.

In the second thrust, we developed methods for efficiently exploring large
tiered storage and memory configuration spaces. We designed a multi-stage frame-

11

work for analyzing cache miss-ratio curves that combines hash-based sampling,
curve simplification, and knee detection, including a novel multi-knee detection
technique “Z-Method”. To further support this exploration, we developed ad-
vanced interactive visualization techniques for analyzing large, high-dimensional
configuration spaces. Lastly, we developed statistical performance models based
on distribution fitting to better characterize and predict storage workload behavior.

In the third thrust, we propose two methods that apply CXL-based tiering to
improve live virtual machine migration. The first method copies and transparently
remaps guest memory to a shared memory device in a single pass, eliminating the
need for dirty page tracking and retransmission. The second method partitions
guest memory between DRAM and shared memory so that only DRAM-resident
memory requires transfer. Together, these approaches aim to reduce migration
time, blackout duration, and total data transferred compared to traditional migra-
tion methods.

It is our thesis that tiered memory and storage systems expose a vast configu-
ration space with the potential for significant performance and cost optimizations.
Fully realizing these benefits requires efficient techniques for both exploring and
exploiting this space, particularly as the introduction of CXL shared memory adds
new and powerful opportunities for tiering.

v

Contents

1 Introduction 1
2 Background and Motivation 5
2.1 Live VM Migration Overview 5
2.2 Remote Direct Memory Access (RDMA) 6
2.3 Compute Express Link (CXL) 8
2.4 Thesis Statemento 10
3 Related Work 11
3.1 Live Migration Algorithms 11
3.2 RDMA-Based Migration 12
3.3 Shared Memory Migration 12
3.4 CXL Remote Memory and Tiering 13
4 Desperately Seeking ... Optimal Multi-Tier Cache Configurations 15
4.1 Introduction 16
42 Cache Analysis e 18
4.3 Multi-tier Cache Simulation 19
44 Evaluation 22
45 Conclusion 27

5 Accelerating Multi-Tier Storage Cache Simulations Using Knee De-
tection 29
5.1 Introduction 30
5.2 Background 33
52.1 MissRatioCurves(MRCs) 33
5.2.2 Knee-Detection Algorithms 33
5.2.3 Cliff Removal Techniques 35

CONTENTS

5.2.4 Evolutionary Algorithms: Population Initialization
5.3 Point Selection Techniques

5.3.1 Pre-Processing .
5.3.2 Methods
5.3.3 Post-Processing .
54 Z-Method
5.4.1 Design Concepts

5.4.2 Algorithm Description

5.4.3 Parameters . . .

5.5 Evaluation: Miss RatioCurves
5.5.1 Experimental Setup
5.5.2 Knee-Detection Algorithms

5.5.3 Multi-Tier MRCs

5.6 Evaluation: Population Initialization
5.6.1 Experimental Setup

5.6.2 Acceleration Rate
5.7 Conclusion

6 Visual Analytics and Performance Modeling
6.1 Advanced Interactive Visualizations
6.1.1 ICE: An Interactive Configuration Explorer for High Di-
mensional Categorical Parameter Spaces
6.1.2 PC-Expo: A Metrics-Based Interactive Axes Reordering
Method for Parallel Coordinate Displays
6.1.3 Into the Void: Mapping the Unseen Gaps in High Dimen-

sional Data . . .
6.2 Distribution Fitting . . .

7 Proposed Work
8 Future Work
9 Conclusion

10 Acknowledgments

vi

35
36
36
37
38
39
39
40
42
47
47
48
51
56
57
58
62

63
63

63

67

67
69

71

76

78

80

List of Algorithms

1 Z-Method multi-knee detection

Vil

List of Figures

2.1

4.1
4.2
4.3

4.4

5.1
52
5.3
54
5.5

5.6
5.7
5.8
59

5.10

6.1
6.2
6.3

A high-level overview of data movement over RDMA.

Effects of an intermediate SSD tier
SSD Aging Effects L.
Variation between vendor-reported specs and independently oper-

ated benchmarks L L oL,
Write-through vs. Write-back policy effect

MRC for trace w10, annotated to illustrate several key points . . .
Graphical representation of the post-processing methods
Effects of Z-Method parameters dz and dy
Evaluation of Z-Method using ARCand LRU
An MCC evaluation of 8 knee detection algorithms using our op-
timized hyper-parameters
Running times for 8 knee-detection algorithms
An example of how the HyperVolume Indicator is calculated . . .
Evaluation results of our framework using Z-Method across 2-tier
ARCand LRUMRGCs
Examples of point selection on two-tier MRCs that highlight three
different commonly observed scenarios
The acceleration rate (AR) achieved using our multi-knee detec-
tion framework for population initialization vs. other techniques

Interactive Configuration Explorer ICE)
PC-Expo: Parallel Coordinate Plot axes reordering framework
GapMiner visual interface oL

viil

66

List of Tables

4.1 Device specifications and parameters

5.1 Evaluation results of our framework using Z-Method across 2-tier
ARCandLRUMRGs

iX

Chapter 1

Introduction

Modern storage and memory hierarchies have become increasingly complex, form-
ing multi-tier systems comprising heterogeneous devices in a wide range of topolo-
gies. From operating system page caches to large-scale distributed systems, tier-
ing is employed to improve performance while reducing total cost of ownership
(TCO). Cloud providers often dynamically reconfigure memory and storage hier-
archies to meet service-level objectives (SLOs), balance loads, or in response to
hardware faults [164, 72, 49, 27, 28]. The configuration space for tiering sys-
tems is vast, spanning device types, number of tiers, tier capacities, and tier-
ing management policies, each with tunable parameters that influence perfor-
mance and cost [38]. To navigate this space effectively, techniques must be
efficient in (i) identifying high-quality configurations and (ii) adapting quickly
to changing locality and reuse behavior as workload access patterns vary over
time [121, 147, 116, 10, 24, 152]. Within this evolving landscape, Compute Ex-
press Link (CXL) introduces a cache-coherent interconnect that allows multiple
hosts to access a shared, byte-addressable memory tier [45]. CXL significantly
complicates the tiering space by introducing this fundamentally new paradigm
while enabling novel techniques to exploit its potential.

This work addresses two distinct challenges of tiering. The first is the efficient
exploration of the complex design space in tiered systems to identify optimal con-
figurations. The second is the effective implementation of tiering to fully realize
its benefits in modern systems. Addressing both challenges is essential for achiev-
ing high performance while maintaining cost efficiency.

In the first thrust, to address the challenge of efficiently exploring the complex
design space in tiered systems, we examined cache analysis trends and identified
key limitations in existing evaluation techniques [38]. We found that past tech-

CHAPTER 1. INTRODUCTION

niques often focused solely on performance, analyzed tiers in isolation, and ig-
nored trade-offs such as cost versus performance. Current cache simulators were
similarly restrictive, supporting only fixed hierarchies and limited metrics. We ad-
dressed these gaps by extending PyMimircache [155] to create a general n-level
cache simulator capable of modeling arbitrary hierarchies, capturing both perfor-
mance and cost, and enabling the analysis of trade-offs across multiple metrics.
We uncovered surprising insights through simulations using real-world traces:
(a) when total cost was held constant, lower-priced DRAM outperformed high-
end DRAM by providing greater capacity; (b) aging SSDs reduced performance
enough to favor simpler designs; and (c) write-back policies delivered up to 6 X
the throughput of write-through on identical hardware.

In the second thrust, we further addressed the challenge of efficient explo-
ration by developing a framework to efficiently characterize multi-tier caches [37].
Miss-ratio curves (MRCs) are common analysis tools for evaluating cache perfor-
mance, but generating them at fine granularity for every tier and configuration can
be prohibitively expensive. Our approach focuses on identifying knee points in
MRCs, where a small increase in cache size yields a disproportionately large drop
in miss ratios, indicating promising candidates for further evaluation. The frame-
work applies hash-based sampling [141], curve simplification [110], and adapts
any single-knee detection algorithm to find multiple knee points [8, 117, 129]. In
addition, we introduced a novel multi-knee detection algorithm, called Z-Method,
that employs statistical outlier detection to identify points robustly and efficiently.
We evaluated our framework using 106 diverse real-world workloads, and were
able to reduce the number of simulations needed to find optimal two-tier hierar-
chies by 5.5x for ARC and 7.7 x for LRU. We also applied our framework to seed
the initial population of evolutionary algorithms that we used to optimize multi-
tier cache configurations, achieving an overall convergence-acceleration rate of
34% across a broad range of configurations and datasets [37].

To further support exploration, we developed a set of advanced interactive
visualizations designed to help analysts interpret large, high-dimensional config-
uration spaces. First, we created an interactive configuration explorer that allows
users to examine how categorical design choices influence system behavior and to
compare competing configuration families through guided visual analysis [132].
Second, we built a parallel-coordinate axes-reordering framework that enables
users to uncover structural patterns and relationships across configuration param-
eters by automatically arranging axes to emphasize informative pairings [133].
Lastly, we introduced an empty-space analysis technique that identifies promis-
ing, previously unsampled configurations by detecting sparsely populated gaps in

2

CHAPTER 1. INTRODUCTION

the design space that may contain high-value alternatives [163].

In addition to these visualization tools, we developed statistical models that
apply distribution fitting to characterize storage workload behavior [140]. Through
an extensive evaluation of real-world traces, we found that the two-phase Hyper-
exponential provides the best empirical fit to storage workload distributions. This
result enables substantially more accurate queuing models that provide perfor-
mance predictions for cache and storage hierarchies.

In our third thrust, to address the challenge of effectively implementing tiering
in modern systems, we propose to apply tiering to live virtual machine (VM) mi-
gration using CXL. Unlike traditional migration approaches that rely on repeated
memory transfers and dirty page tracking [29], CXL enables multiple hosts to di-
rectly access the same byte-addressable memory region. We explore two designs:
(1) a CXL-based migration mechanism that eliminates dirty tracking entirely and
(2) a tiered-memory approach that reduces migration cost by placing part of the
VM’s memory in shared CXL space. Both approaches aim to reduce total mi-
gration time, blackout duration, and data movement compared to state-of-the-art
techniques such as RDMA.

The first proposal of this thesis is a new CXL-based migration mechanism im-
plemented in QEMU. In this approach, the source machine performs a one-time
copy of the VM’s memory from local DRAM into CXL memory while the VM
continues executing. After each page is copied to CXL, the hypervisor transpar-
ently remaps the guest’s physical address pointer to point to CXL memory. As a
result, all subsequent VM writes transparently go directly to CXL, and there is no
need to track dirty pages. This eliminates the complexity and performance penalty
of traditional dirty tracking mechanisms. Once all pages have been transferred to
CXL, the destination host resumes the VM immediately from shared CXL mem-
ory, without waiting for memory to be copied to its local DRAM. From there, the
destination may choose to migrate memory lazily into DRAM for performance,
or continue executing from CXL.

The second proposal of this thesis is to implement memory tiering and the mi-
gration of tiered memory within QEMU. In this model, the guest VM’s memory
is split between local DRAM and a shared CXL device. Since the CXL mem-
ory is shared and visible to both hosts, pages that reside in CXL require no data
movement during migration. Only the portion of memory that is located in local
DRAM must be transferred. This significant reduction in data movement directly
translates to a much shorter total migration time. We also plan to evaluate hybrid
methods, where local memory is migrated using traditional methods such as TCP
or RDMA—to explore if there are scenarios where this is more optimal than pure

3

CHAPTER 1. INTRODUCTION

CXL-based migration.

It is our thesis that tiered storage and memory systems expose a vast configu-
ration space with the potential for significant performance and cost optimizations.
Fully realizing these benefits requires efficient techniques for exploring and ex-
ploiting this space, particularly as the introduction of CXL shared memory and
tiering adds new and powerful opportunities for tiering.

The rest of this thesis proposal is organized as follows: Chapter 2 provides
additional background on live migration, RDMA, CXL, as well as motivation
for this work. Chapter 3 reviews prior work relevant to live VM migration and
CXL. Chapter 4 examines cache analysis techniques and introduces our multi-tier
cache simulator. Chapter 5 presents our work on accelerating multi-tier storage
cache simulations using knee detection. Chapter 6 presents interactive visualiza-
tion tools and workload modeling techniques that support exploring and analyzing
complex system design spaces. Chapter 7 presents our proposed work on CXL-
based migration and tiered migration. Chapter 8 discusses future work outside
of the scope of this thesis. Chapter 9 concludes the proposal and outlines future
research directions. Chapter 10 acknowledges the contributions of collaborators,
institutional support, and funding agencies.

Chapter 2

Background and Motivation

In this chapter, we provide background information relevant to live VM migra-
tion and describe our vision and motivations for applying CXL-based tiering to
migration. We begin by describing the different live VM migration techniques.
Then we give some background on RDMA and discuss how it is used for live VM
migration. Lastly, we provide some background on CXL.

2.1 Live VM Migration Overview

Live VM migration involves transferring the VM state from the source machine
to the target machine. Much of this state is the contents of the VM’s memory
pages, which presents two main problems: (1) increasing memory sizes mean an
increasingly large amount of data must be transferred to the target host, and (2)
as the VM continues running, the memory contents at the source host continue to
change. There are three primary paradigms for live-VM migration that have been
developed to mitigate these issues: pre-copy, post-copy, and hybrid—described
next.

The pre-copy technique comprises three phases. In the first phase, all of the
VM’s memory pages are copied to the target machine while the VM continues
to run on the source host. Pages can be dirtied by the workload on the source
host during this time because the VM is still active. The second phase iteratively
copies the dirtied pages until a stopping condition is met. The final stop-and-copy
phase begins when this condition is met; the VM is paused on the source host,
all remaining pages are copied to the target machine, and the hypervisor resumes
VM execution on the target.

CHAPTER 2. BACKGROUND AND MOTIVATION

The post-copy technique takes the opposite approach. The minimum VM state
required to resume execution is first copied to the target machine, and then VM
execution is immediately resumed on the target without copying over any memory
pages. Memory is then handled using demand paging, where page faults require
transmission from the source machine. Several optimizations have been proposed
to reduce the number of page faults, including active push, pre-paging, and Dy-
namic self-ballooning [26].

The third technique is a hybrid that combines both pre- and post-copy meth-
ods. The pre-copy portion runs for a single round, rather than the iterative ap-
proach used in traditional pre-copy. Some versions of this technique only copy
over a fraction of the memory and storage, such as adaptive live VM migra-
tion [161]. After the pre-copy phase, the minimal VM state is copied to the target
machine and VM execution is immediately resumed. Finally, the rest of the mem-
ory pages are handled using demand paging as in traditional post-copy.

All of the existing migration techniques have significant CPU, memory, stor-
age, and network overheads. The migration process heavily degrades the perfor-
mance of guest workloads and adversely affects the efficiency of the data cen-
ter [26]. The overheads are typically classified as either blackout or brownout
phases. A blackout phase occurs during traditional pre-copy, where VM execu-
tion is halted as the last dirty pages are copied over. A brownout phase refers to the
time during migration while the VM is still active and performance is degraded.
Brownout phases are particularly problematic, as they can significantly degrade
performance for multiple minutes.

2.2 Remote Direct Memory Access (RDMA)

RDMA allows data to be transferred directly between the memory of two ma-
chines over a network without involving their operating systems or CPUs. RDMA
provides low latency and high throughput by bypassing the CPU, making it ideal
for applications requiring rapid access to remote memory, such as distributed
databases, big data analytics, and cloud services. While this technology offers
tangible benefits, RDMA still has at least three architectural limitations.

The first challenge with RDMA is the complexity and overhead of its memory
management protocols. Before using memory for RDMA operations, each ma-
chine must register that memory with their RDMA NICs (RNICs) as an RDMA
“memory region” (MR). During registration, the operating system reserves physi-
cal memory and ensures that the memory pages in their MRs are “pinned.” Mem-

CHAPTER 2. BACKGROUND AND MOTIVATION

Source Machine Target Machine
_————— PB_AM ______ Protocol Change Protocol Change _————— PB_AM ______
! IDMA DMA' !
[App RDMA |,] (A Roma |22 [app |
: Buffer MR :—P PCle —P[RNIC J L RNIC PCle —: MR Buffer :

Figure 2.1: A high-level overview of data movement over RDMA. Data is first
copied from the source machine’s application buffer to its RDMA memory region
(MR). Next, the source machine’s RNIC transfers the memory from its DRAM to
a PCle channel utilizing DMA. The RNIC driver then converts the transaction to
the appropriate network protocol (e.g., InfiniBand). The data is then transferred
over the network to the target machine, where all previous steps are executed in
the reverse order until the data reaches the target machine’s application buffer.

ory pinning involves locking memory pages in physical memory so they cannot
be swapped out by the operating system, ensuring the RNICs can reliably ac-
cess them. Registration also involves translating virtual addresses to physical ad-
dresses and then registering them with the RNIC. Depending on the size and frag-
mentation of the memory, this registration process can take from microseconds
to milliseconds, involving system calls and coordination between the CPU, OS,
and hardware [96]. Frequent pinning introduces significant latency and increased
CPU usage, greatly reducing the benefits of RDMA [76]. When an application is
done with the MR, that region can be deregistered.

Several techniques have been developed to reduce the overhead of RDMA
registration and deregistration, but also come with their own disadvantages and
have limited applications [154]. For example, a commonly used technique is to
pre-allocate and reuse MRs [76, 111, 150, 83]. Reusing MRs improves the overall
performance of RDMA by avoiding de/registration overheads, but requires redun-
dant data copies in the DRAM of both machines—thus adding some overhead and
complexity. This is because data need to be copied from their original location on
the source machine into a pre-allocated MR, and then from a pre-allocated MR on
the target machine to its final destination.

The second RDMA issue is the inefficiency of data movement over RDMA.
Figure 2.1 depicts a high-level overview of an RDMA operation using pre-allocated
MRs on both machines. Three main issues contribute to the inefficiency: First, the
data must be copied between the application buffers and MRs of both machines,
resulting in redundant data and the overhead of the copy. Next, RDMA utilizes
efficient DMA to transfer data to and from DRAM, but this requires at least two

CHAPTER 2. BACKGROUND AND MOTIVATION

DMA transfers because transfers need to be performed by both RNICs. Lastly,
transfers between PCle-attached RNICs take place over a high-speed network
(e.g., InfiniBand), introducing additional overheads from the required protocol/in-
terface changes [45].

The third issue is that RDMA requires additional hardware and potential in-
frastructure changes. The initial investment of adopting RDMA can be prohibitively
expensive due to the need for specialized RNICs and lossless network infrastruc-
ture [97]. While RDMA is often promoted for its low latency and reduced CPU
usage, it still imposes some processing overhead and struggles with congestion
control. Many of these challenges are addressed by using smart RNICs, which
offload tasks from the CPU and optimize data flow. However, these advanced
RNICs can even further increase costs, with prices reaching up to 5.7X more than
commodity RNICs [112]. Integrating RDMA into existing infrastructures may
also involve replacing traditional Ethernet networks, requiring significant system
modifications. These investments make it challenging to identify appropriate ap-
plications and design systems that properly leverage RDMA performance gains to
justify the initial expenses [103, 55, 48].

2.3 Compute Express Link (CXL)

Compute Express Link (CXL) is an open, industry-supported interconnect stan-
dard designed to provide high-performance, cache-coherent memory access be-
tween processors, memory expansion devices, and accelerators such as GPUs and
FPGAs. CXL reduces overall system costs, simplifies software development,
and minimizes access latencies by enabling resource sharing through an opti-
mized data path, efficient coherency protocols, and minimizing redundant data
copies [30].

CXL is built on the PCle interface and defines three separate protocols for
interacting with CXL devices:

* CXL.io: functionally equivalent to the PCle protocol; it provides non-coherent
load/store I/0 access and is used for fundamental operations such as initial-
ization, device discovery, and interrupts,

* CXL.cache: allows CXL devices to coherently access and cache host CPU
memory, and

CHAPTER 2. BACKGROUND AND MOTIVATION

e CXL.mem: allows the host CPU to coherently access CXL device memory
for both volatile memory and persistent storage.

Furthermore, CXL devices are classified into three different types:

* Type 1 Devices: specialized accelerators that lack their own local memory
(e.g., SmartNICs),

* Type 2 Devices: general-purpose accelerators such as GPUs and FPGAs
with their own local DDR and/or HBM that provides coherent two-way ac-
cess between host CPU memory and device memory, and

* Type 3 Devices: memory expansion devices that provide hosts access to
disaggregated memory or byte-addressable persistent storage.

The first CXL Specification 1.0 was released in March 2019. It is based on
PClIe 5.0 and allows hosts to coherently access the memory of directly attached
accelerators and memory expansion devices [146]. CXL 1.1 was released in June
2019, comprising some errata and a new compliance chapter defining how inter-
operability testing between the host processor and an attached CXL device can be
performed [119].

The next generation CXL 2.0 was released in November 2020, introducing
single-level CXL switching, memory pooling, and CXL IDE (Integrity and Data
Encryption) [31]. CXL 2.0 switches enable multiple hosts to connect to multiple
CXL devices, either through a CXL switch or via direct connect. With CXL 2.0
memory pooling, CXL Type 3 memory expansion devices called multi-logical de-
vices (MLDs) can be partitioned into logical devices (LDs), with up to 16 different
hosts exclusively accessing the LDs of a single device.

CXL 3.0 doubles the bandwidth of CXL 2.0 up to 64 GT/s while maintaining
the same latency, and introduces several new features that greatly differentiate it
from traditional RDMA memory access. It implements memory sharing through
an enhanced coherency protocol, replacing the bias-based coherency used in pre-
vious generations. This model enables snoop filter implementation and allows
devices with their own memory to back-invalidate a host machine’s cache. For
example, Type 2 accelerators can fetch data from the host and save it in their own
cache, perform work on the data, and then update the host’s cache upon comple-
tion. This new coherency protocol also facilitates peer-to-peer connectivity be-
tween devices. CXL 3.0 devices are able to directly access each other’s memory

CHAPTER 2. BACKGROUND AND MOTIVATION

without needing to go through the host, enabling a higher level of disaggregation
and more flexible topologies.

CXL 3.0 also expands on memory pooling by introducing coherent memory
sharing. With 2.0 memory pooling, Type 3 memory expansion devices can be par-
titioned to multiple hosts with each partition belonging to only a single host. In
contrast, multiple hosts or devices can coherently access shared regions of mem-
ory with CXL 3.0 memory sharing. This feature gives us the opportunity to de-
sign systems that reduce unnecessary data movement and redundant data copies,
resulting in less overhead and better resource utilization than RDMA.

2.4 Thesis Statement

This thesis proposal aims to utilize CXL shared memory to address three problems
that stem from RDMA'’s migration-specific inefficiencies: (1) the significant over-
head of dirty-page tracking, which is required by traditional RDMA-based mi-
gration; (2) retransmission of pages that are dirtied after their initial copy, which
increases both total migration time and the amount of data transferred; and (3) ex-
tended blackout periods during the stop-and-copy phase, with duration increasing
as VM memory size grows.

To address these problems, we propose two CXL-based techniques that over-
come fundamental limitations of state-of-the-art RDMA-based live VM migra-
tion. The first is a CXL-based migration approach that avoids dirty tracking and
transfers each page only once, reducing the overhead of traditional multi-pass
techniques. The second is a transparent CXL memory tiering migration strategy
that dramatically reduces both the total migration time and data that needs to be
migrated.

The goal of this work is to implement both techniques in QEMU, evaluate
their performance against RDMA-based and hybrid migration approaches, and
demonstrate that CXL migration and memory tiering can significantly reduce total
migration time, blackout duration, and the amount of data transferred, particularly
for large, memory-intensive VMs.

10

Chapter 3
Related Work

In this chapter, we survey related works about live migration algorithms, RDMA-
based migration, shared-memory migration, and CXL remote memory and tiering.

3.1 Live Migration Algorithms

Clark et al. first proposed the standard pre-copy approach to live migration in
2005, in which memory pages are copied iteratively while the VM continues run-
ning. They showed that their prototype could migrate an 800 MB guest over 100
Mbps Ethernet in around 20-180 seconds while keeping blackout times between
roughly 40-270 ms, depending on the workload [29]. Biswas et al. evaluated mi-
gration over 10 Gbps Ethernet and showed that transferring a 400 MB VM finishes
in about 15 seconds with blackout times of approximately 300-400 ms [14]. More
recently, in 2018 Google reported blackout times of around 50-200 ms for 30 GB
VMs using 25 Gbps Ethernet, with total migration taking a few minutes [113].
These results demonstrate that even as network bandwidth improves, the effective
speed of migration remains limited and blackout times show no improvement,
underscoring fundamental limitations of traditional live-migration methods.
Researchers have proposed many techniques that make traditional migration
more efficient. Ibrahim et al. add a stop-and-copy switch that adapts to memory-
dirtying rate and link speed, cutting slowdown on HPC jobs by up to 10x [61].
Haris et al. replace hand-tuned thresholds with a k-nearest-neighbor predictor
that halts pre-copy once the predicted blackout meets an SLA, trimming total
migration time by 86% and downtime by 65% [53]. Eswaran et al. preserve
copy-on-write sharing among templated VMs during migration, cutting network

11

CHAPTER 3. RELATED WORK

traffic by up to 92% and total migration time by 95% [39]. Liu et al. compress
outgoing pages with Intel’s In-Memory Analytics Accelerator, achieving 4.5 %
compaction and restoring memory 55 percent faster with no extra CPU load [75].
Song et al. shard copy, checksum, and I/O across all cores and NIC queues,
shrinking downtime by up to approximately 280 using 10 Gbps Ethernet [120].
Despite these optimizations, each technique still depends on dirty-page tracking
and retransmitting dirtied pages, and therefore cannot fully eliminate the funda-
mental inefficiencies of traditional migration.

3.2 RDMA-Based Migration

State-of-the-art migration systems often utilize RDMA to reduce both migration
time and CPU overhead. Huang et al. first demonstrated that InfiniBand RDMA
can reduce total migration time by up to two orders of magnitude compared with
TCP, inaugurating the zero-copy paradigm [59]. Follow-up work by Isci et al.
recorded similar gains on enterprise traces while maintaining blackout under 200
ms [62]. Nomad snapshots RDMA queue pairs and restores them on a peer RNIC
at the destination, enabling live migration of VMs with active RDMA connec-
tions [60]. Live migration over InfiniBand with single-root I/O virtualization
(SR-IOV) support, which allows virtual machines to directly access virtual func-
tions exposed by a physical NIC, achieves blackout times below 140 ms for 8 GB
guests but requires device-specific coordination to transfer hardware state between
source and destination [47].

While RDMA improves performance, it still relies on dirty-page tracking, re-
transmission of dirtied pages, and has architectural limitations (see Chapter 2.2).
As aresult, blackout times have seen little improvement and convergence remains
slow under write-heavy workloads.

3.3 Shared Memory Migration

Researchers have begun to investigate shared memory as a more efficient alterna-
tive to network-based VM migration. Recent work by Grapentin et al. developed
an IBM POWERO9-based prototype that uses ThymesisFlow [105] to enable peer-
to-peer, disaggregated memory access between servers. This work showed that
key performance metrics from the perspective of applications running in the vir-
tual machine, such as memory latency and throughput, were improved by up to

12

CHAPTER 3. RELATED WORK

three orders of magnitude during the migration process [46]. Ran ef al. evaluated
migration using distributed shared memory (DSM), a system that allows multiple
machines to share a unified memory space over a network. By preloading the
VM’s memory into the DSM layer before hand-off, they reduced total migration
time by about 70 percent [66]. Finally, we note that there was a BoF discussion
about how CXL could be used for VM migration at the Linux Storage, Filesystem,
Memory Management & BPF Summit in May 2023, along with a website titled
"nil migration" [122]; however, no code has been released and there have been
no updates on the website since. These works show that shared-memory migra-
tion is feasible on proprietary fabrics and motivate the development of CXL-based
migration.

3.4 CXL Remote Memory and Tiering

Recent evaluations demonstrate that CXL 2.0 Type-3 memory-expansion devices
achieve a significant portion of PCle’s theoretical bandwidth, with latency about
twice as high as local DRAM. Zhong et al. measure 97 ns idle latency for on-board
DDRS5 and 219 ns for a CXL device on Intel Sapphire Rapids, while per-core
bandwidth tops out at 48 GB/s on an x16 PCle 5.0 link [164]. Unal et al. report
similar results in a HotOS 2025 study, measuring 112 ns latency for DRAM and
237 ns for CXL, with bandwidth just under 50 GB/s [134]. Weisgut et al. evaluate
Micron CXL devices on Genoa servers and record a median 255 ns load latency
together with 46 GB/s sustained copy bandwidth per device, scaling to 92 GB/s
with four cards [145].

A recent survey by Sharma et al. thoroughly describes the architectural sources
of CXL latency and bandwidth [32]. They state that CXL latency is composed of
a protocol component and a queuing component, which depends on load. Pro-
tocol latency comes from two full traversals of the CXL port stack, each adding
around 21-25 ns, plus approximately 15 ns of wire and retimer flight time, re-
sulting in roughly 57 ns per memory access. Queueing latency is incurred only
under load as requests pile up in the link-layer and memory-controller queues.
Ultimately, this results in the average latency of CXL being roughly double that
of local DRAM. As for bandwidth, 6-9% is lost to link-layer overheads, includ-
ing bytes used for flit headers, CRC/FEC, SKP and ordered-set blocks, as well as
flow-control bookkeeping based on credits.

Emerging research shows that CXL-attached DRAM can serve as a high-
capacity second tier with only single-digit performance cost when guided by smart

13

CHAPTER 3. RELATED WORK

hardware or OS policies. Transparent Page Placement (TPP) extends Linux NUMA
balancing to demote cold pages to CXL and promote hot ones, keeping a tiered
system within 1% of an all-DRAM baseline and outperforming stock Linux by up
to 18% [92]. Intel Flat Memory Mode plus the Memstrata allocator moves tiering
into the memory controller at cache-line granularity and enforces per-tenant iso-
lation, keeping 82% of 115 Azure traces within 5% of local DRAM and trimming
the worst slowdown from 34% to below 6% [164]. Nomad retains shadow copies
and performs transactional page migration, cutting thrashing and delivering up
to 6 x speed-ups over TPP under heavy memory pressure [151]. Alto introduces
a memory-level parallelism-aware amortized off-core latency metric to suppress
unnecessary migrations, improving performance by up to 12x compared to TPP,
Nomad, and two other policies across both NUMA and CXL hardware [86]. To-
gether, these results paint an increasingly optimistic picture: CXL memory can
reliably expand server capacity while keeping latency-sensitive workloads within
a few percent of local DRAM performance.

14

Chapter 4

Desperately Seeking ... Optimal
Multi-Tier Cache Configurations

Modern cache hierarchies are tangled webs of complexity. Multiple tiers of het-
erogeneous physical and virtual devices, with many configurable parameters, all
contend to optimally serve swarms of requests between local and remote applica-
tions. The challenge of effectively designing these systems is exacerbated by con-
tinuous advances in hardware, firmware, innovation in cache eviction algorithms,
and evolving workloads and access patterns. This rapidly expanding configura-
tion space has made it costly and time-consuming to physically experiment with
numerous cache configurations for even a single stable workload. Current cache
evaluation techniques (e.g., Miss Ratio Curves) are short-sighted: they analyze
only a single tier of cache, focus primarily on performance, and fail to exam-
ine the critical relationships between metrics like throughput and monetary cost.
Publicly available I/O cache simulators are also lacking: they can only simulate a
fixed or limited number of cache tiers, are missing key features, or offer limited
analyses.

It is our position that best practices in cache analysis should include the evalu-
ation of multi-tier configurations, coupled with more comprehensive metrics that
reveal critical design trade-offs, especially monetary costs. We are developing an
n-level I/0 cache simulator that is general enough to model any cache hierarchy,
captures many metrics, provides a robust set of analysis features, and is easily
extendable to facilitate experimental research or production level provisioning.
To demonstrate the value of our proposed metrics and simulator, we extended
an existing cache simulator (PyMimircache). We present several interesting and
counter-intuitive results in this paper.

15

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

4.1 Introduction

The vast configuration space of multi-tier caching enables the design of very com-
plex systems. Several tiers of cache and persistent storage can be allocated in
numerous arrangements. Moreover, devices can be partitioned into many differ-
ently sized cache segments for separate applications. All of these devices can be
implemented within, and interact with, any number of independent, large-scale
infrastructures (e.g., cloud services, virtual machines, big data warehouses, dis-
tributed systems). Furthermore, new storage technologies are constantly emerg-
ing (e.g., NVM, 3D flash), introducing additional complexity, greater capacities,
and different cost/performance profiles. Our ability to dynamically change hard-
ware in live systems (e.g., adding or deleting RAM, SSD, NVM) has also been
increasing, particularly in cloud environments and virtual machines [49, 27, 28],
making it significantly easier to reconfigure a cache hierarchy. Workloads con-
tinue to evolve as well, with complex and diverse access patterns that affect the
frequency of data reuse and the size of working sets, two of the most influential
factors in any caching system [121, 147, 116, 10, 24].

Research in cache algorithms and policies is also trying to keep up with these
changes. Machine learning and similar techniques that leverage historical data
are being incorporated into caching systems to bolster prefetching [156], dynami-
cally switch between replacement algorithms [114, 139, 116], or enhance existing
eviction policies [5]. I/O classification has been used to enforce caching policies
and improve file system performance [95]. Multi-tier cache eviction algorithms
that are aware of some or all layers in the hierarchy at any given time are being
developed [24]. The challenges of cache resource allocation and provisioning are
being investigated as well [71, 13]. Zhang et al. introduced CHOPT, a choice-
aware, optimal, offline algorithm for data placement in multi-tier systems [160].
Algorithms such as CHOPT are promising solutions for efficiently finding optimal
multi-tier configurations, but their bounding assumptions and inability to model
all parameters limit the configuration space they can explore.

Physically experimenting with various cache configurations is costly and time-
consuming, with so many parameters to consider (e.g., number of tiers, device
types and models, caching policies). A well-known technique for evaluating cache
performance without running experiments is Miss Ratio Curve (MRC) analy-
sis [141, 54, 15, 58]. MRC:s plot the cumulative miss ratio of all requests in a given
workload for some cache eviction algorithm(s) as a function of cache size. Cache
size usually ranges from one data block to the size required to store every unique
block accessed in the workload, also known as the working set. This technique

16

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

has many uses, such as comparing eviction algorithms’ performance for a given
workload or identifying optimal cache size allocations. However, MRCs evaluate
the performance of only a single cache and are not capable of accurately modeling
the complicated interactions between devices in a multi-tier cache. Recent studies
have shown that traditional MRCs are even sub-optimal for resource allocation in
a single layer, since they admit data with poor locality into the cache. [41].

It is vital that our methods of evaluating caches mature as storage technolo-
gies and cache hierarchies continuously evolve. For example, examining perfor-
mance metrics such as latency or using an MRC to analyze miss ratio as cache
size increases may be misleading without also considering the monetary cost of
purchasing and using the cache. Cost has a non-linear, positive correlation with
cache size, and is fundamentally the primary constraint when deciding how much
cache to include in a system. If this were not the case, everyone would cache
all data in copious amounts of the fastest DRAM money can buy and back it up
with a huge battery. Furthermore, improved performance does not directly trans-
late into cost efficiency, especially in a multi-tier system where devices’ cost and
performance characteristics can vary wildly. The purchase cost of hardware is a
simple example. Ideally, we should be evaluating more comprehensive metrics
such as the total cost of ownership, which combines other metrics such as power
consumption, the cost of labor to maintain a system, and the projected lifetime of
devices given access patterns. It is also essential that we can freely evaluate the
relationship between metrics (e.g., throughput/$) so we can make educated design
decisions with full awareness of the inherent trade-offs.

The most complete solution would be an n-level I/O cache simulator that could
quickly and accurately evaluate many configurations. While there are some ad-
vanced CPU cache simulators available [63, 35, 104, 143, 91], storage cache simu-
lators are scarce and lacking. State-of-the-art storage cache simulators are mostly
outdated; they either can simulate only a single layer or some fixed set of layers,
have limited analysis features, are not easily extendable, or are simply not released
to the public [148, 51, 1]. PyMimircache [155] is a popular open-source storage
simulator with several useful features that is actively maintained. However, even
this simulator is inadequate; it also can simulate only a single layer of cache with
no implementation of back-end storage, has no concept of write policy, and its
analysis features are limited. The main strength of PyMimircache is its ability to
perform MRC analysis on multiple cache replacement algorithms.

It is our position that best practices in cache research need to be broadened to
reflect the growing multi-tier configuration space. This paper makes the following
contributions:

17

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

1. We explore current trends in cache analysis and propose that best practices
in cache research including the analysis of multi-tier configurations and a
more comprehensive set of evaluation metrics (e.g., monetary cost).

2. We describe the critical features an n-level I/O cache simulator should have
and outline the design of a simulator we began to develop.

3. We extended PyMimircache to function as a multi-tier cache simulator, ex-
perimented with many configurations on a diverse set of real-world traces,
and present initial results that support our position.

4.2 Cache Analysis

The fundamental strategy in engineering a cache hierarchy involves placing faster
and typically lower-capacity devices in front of slower devices to improve the
overall latency of accessing frequently reused data. There is a tangible dollar cost
per byte increase when purchasing hardware with better performance attributes.
Therefore, it follows that the cache size and speed are closely correlated with the
purchase cost. Straightforward logic dictates that performance is constrained by
cost, so unless money is in endless supply, the best practice should be to evaluate
these metrics together. Surprisingly though, cost is often overlooked during anal-
ysis in favor of performance metrics such as raw throughput, latency, or hit/miss
ratio [144, 27, 24, 109, 41, 23, 19].

The argument can be made that any improvement in cache performance trans-
lates into a reduction in cost when designing a cache, such that the relationship
between cost and performance does not necessarily need to be considered. This
is situationally true, particularly when evaluating performance in a single-tier
caching system. However, in a more realistic, multi-tier storage or CPU cache
hierarchy, the large configuration space and complex interactions between tiers
produce scenarios where the relative performance per dollar between two config-
urations is vastly different, necessitating a more complex analysis (see Section 4.4
for examples).

Performance metrics have long been the standard in cache analysis. Recently,
additional metrics that are more relevant and informative for specific applications
have gained popularity in storage research. The 95 (P95) or 99" (P99) percentile
latency, often referred to as tail latency, is an important quality of service (QoS)
metric for cloud [153, 125] and web [64, 34, 52, 13] services, as well as at the
hardware level [77, 18, 82, 36]. Inter-cache traffic analysis has been used to design

18

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

more efficient cache hierarchies in modern microprocessors [102]. Reducing the
energy consumption of storage systems is beneficial for the environment, lowers
operation costs, and promotes advancements in hardware design [20, 80, 118,
137]. Even the total cost of ownership (TCO) can be difficult to calculate when
considering all the factors that contribute to capital and operational expenditures
(CapEx and OpEXx) [81, 79].

It is our position that cache analysis should be conducted using a diverse set of
metrics whenever possible. These metrics should be evaluated at various level of
granularity: at each individual layer, some subset of layers, or globally. Moreover,
we need to create complex metrics (e.g., throughput/$) that allow for analysis of
their informative relationships and reveals critical design trade-offs.

4.3 Multi-tier Cache Simulation

Simulator Design A general, n-level I/O cache simulator with a rich set of fea-
tures is necessary to thoroughly explore the multi-tier caching configuration space
and analyze our proposed metrics. We are developing such a simulator that in-
cludes (but is not limited to) the following capabilities: (1) Write policy that de-
termines where data is placed upon write requests. We will support traditional
write policies (e.g., write through, write back, write around), but also allow user-
defined policies. (2) Admission policy that controls if and how data is promoted
and demoted throughout the hierarchy by request size, address space, or simply
whether layers are inclusive or exclusive of each other. (3) Eviction policy that
decides which data to evict when a cache is full and new data needs to be brought
in. There will be support for single-layer or global policies, as well as the ability
to easily add new policies. (4) Trace sampling techniques (e.g., Miniature Sim-
ulations [142]) that reduce the size of a trace to greatly decrease simulation time
while maintaining similar cache behavior. (§) Prefetching to retrieve data before
it is requested with techniques like MITHRIL [157] that exploit historical access
patterns.

The associated API will fully expose all data structures at request-level gran-
ularity or for any given real timestamp or virtual ones (where the trace has only
ordered records without their original timing). This will allow users to perform
important analysis such as examining clean and dirty pages at any level, measure
inter-reference recency, calculate stack distance metrics when relevant, or perform
any type of analysis offered by our simulation framework on a subset of a trace.
The simulator will also be coupled with modern visualization tools that enable

19

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

users to efficiently explore the large amount of data it produces.

Multi-tier Cache Reconfiguration A major motivation for simulation is seek-
ing optimal cache configurations. However, efficiently reconfiguring a multi-tier
cache hierarchy is another challenging problem. In this work, we analyze vari-
ous physical devices for simplicity, but manually swapping out devices is often
not a feasible solution. More likely, multi-tier caches may be dynamically recon-
figured in cloud, distributed, and virtual environments, where storage can more
easily be allocated through virtualization abstractions. For example, distributed
memory caching systems (e.g., Memcached) can greatly benefit from automat-
ically reconfiguring cache nodes in response to changes in workload; but this
process can significantly degrade performance as nodes are retired and data is
migrated. Hafeez et al. developed ElMem, an elastic Memcached system that
uses a novel cache-merging algorithm to optimize data migration between nodes
during reconfiguration [50]. Moving between configurations in any caching sys-
tem has a temporarily negative impact on performance, until the new caches are
fully warmed [166, 22]. Therefore, efficient reconfiguration methods are essen-
tial to fully leverage any techniques that find optimal configurations (including
simulations).

PyMimircache Extension To demonstrate the utility of our proposed simula-
tor, we extended PyMimircache [155], a storage cache simulator with an easily
extendable Python front-end and efficient C back-end. We made several simplify-
ing assumptions for this extension and experimented with a subset of the possible
features we are proposing. (1) We implemented a traditional write-through policy
and an “optimistic” write-back policy as global write policies. The write-through
policy is consistent and reliable: a block is written to every cache layer and the
back-end storage whenever there is a write request. Our write-back policy is op-
timistic: it only writes to the first layer and assumes this data will be flushed to
persistent storage at some point in time, outside of the critical path where it does
not affect performance (i.e., we do not account for the write in any other layer).
This simplified version of write-back models the best-case performance scenario,
which we found useful for exploring the potential effects of write policy. A more
realistic write-back would require asynchronous functionality that is not available
in PyMimircache, and is a limitation of this work. (2) All evicted blocks are
discarded rather than demoted (moved or copied) to some lower layer of cache
or back-end storage. (3) Layers of DRAM are included in our simulations even

20

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

though we are using block traces, which capture requests for data that was not
found in DRAM. This is a limitation of the traces we are using; the simulator
we implement will be able to operate on any data item from any trace that in-
cludes some form of address accesses. The simulator will support traces obtained
from networks (e.g., NFS, HTML), distributed systems (e.g., HPC, Memcached),
system calls, block traces, and potentially more. (4) Throughput is limited by
the system where traces were actually captured since we experiment with block
traces. For demonstration purposes, we ignore this limitation and assume requests
are fed as fast as possible without using the original request timestamps. This
allows us to show how we can potentially evaluate throughput when using differ-
ent hardware configurations. (5) We consider each layer to have a portion of its
capacity partitioned for caching to emulate various cache sizes at each layer using
the specifications of a single device.

A high-level description of how we extended PyMimircache is as follows:
(1) We feed an original block I/O trace to an instance of PyMimircache, this is the
top layer (“L1”) of our cache hierarchy. (2) This instance generates two output
files: 1) A log file “L1-log” containing counters for the following: read hits, write
hits, read misses, write misses, data read, data written. ii) We specify a new trace
file called “L1-trace” which contains read requests that missed in L1, as well as
all write requests. As per our assumptions, write requests are not included when
using write-back policy and evicted blocks from L1 are never included. These
intermediate trace files are stored in memory using Python-based virtual files to
avoid disk I/O costs. (3) After the L1 instance of PyMimircache completes, we
feed the generated “L1-trace” from step 2 as input into another, separate instance
of PyMimircache. This emulates our L2 layer. (4) We repeat steps 2-3 for L2, L3,
etc. (5) When all layers have been processed, we aggregate all the log data into a
single log file for that experiment. (6) We have a higher-level script that we pass
parameters to for each layer’s device: purchase cost, capacity, and average read
and write latencies. This script records and calculates the following metrics for
the cache configuration of an experiment: total purchase cost, partitioned device
capacities, miss ratio per layer, and total read and write latency incurred. It can
be [re]run at any time using previously obtained simulation logs, and is separate
from the actual simulation process.

21

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

4.4 Evaluation

Workloads In this section, we evaluate simulation results gathered using the
Microsoft Research (MSR) traces. These 36 traces, each about a week long, were
collected from 36 different volumes on 13 production servers at MSR in Cam-
bridge, Massachusetts, as described in detail by Narayanan et al. [99]. The per-
centage of total requests that access unique blocks (i.e., data used for the first time)
in these traces range from 1% to 97%, which is representative of the frequency of
data reuse. The percentage of total requests that are writes range from nearly 0%
to almost 100%, and is ideal for evaluating the effects of write policies.

We are continuing to run additional experiments using 9 traces from the De-
partment of Computer Science at Florida International University (FIU) [137] and
106 traces from CloudPhysics [141], but do not present results here due to space
limitations.

Experimental setup We ran simulations on the MSR traces using between 1
and 3 layers of cache, in addition to the back-end storage device. Each simula-
tion consisted of a configuration of several parameters: cache and back-end sizes,
eviction algorithms, and global write policy. The capacity required to hold the
entire working set of a trace dictated the cache and back-end storage sizes for
every configuration. The back-end size was always fixed to be the same size as
the working set, since the data initially resides in the back-end. The cache sizes
selected for the first layer of cache are 100 evenly spaced sizes between 1 block
(512 bytes) and the size of the working set for that trace. 100 is the default number
of points for plotting MRCs with PyMimircache. The second and third layers of
cache are 10 evenly spaced sizes within the same range. Using 10 cache sizes for
these layers rather than 100 drastically reduced the time required to complete each
experiment while still revealing the entire range of metrics (albeit with fewer data
points within that range).

In this work, we only present results for configurations using a Least Recently
Used (LRU) eviction policy at every layer, although we are varying these policies
in our ongoing simulations. We simulated each of the MSR traces using our exten-
sion of PyMimircache (see Section 4.3) and then calculated cost and performance
metrics using the device specifications described in Table 4.1.

While these comprehensive traces represent a wide variety of workloads, they
have only a relatively small working-set size that can easily fit in a modern server’s
RAM. Therefore, to simulate larger workloads (e.g., bigdata, HPC), we treat the
original MSR traces as if they were scaled-down spatial samples of larger traces.

22

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

300

0

) 250 1

X

= 200 A

o

e

S 150 A

3 —e— DI1-H3 (wt)

= 100 1 —— D2-H3 (wt)

g 504k —w»— D3-H3 (wt)

< D2-S2-H3 (wt)
0 1 1 1

1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

Figure 4.1: Effects of an intermediate SSD tier (Workload MSR hm-1)

We call this technique reverse-mini-sim: the reverse of the miniature simulations
technique for down-scaling traces introduced by Waldspurger et al. [142]. Minia-
ture simulations was shown to be fairly accurate at a sampling rate of 0.001 on the
MSR traces, so we multiply the purchase cost (X axis) by a factor of 1,000 times:
this simulates a workload whose working set size is 1,000 larger.

Each data point in our figures represents a configuration with some set of cache
sizes. We assume that each layer consists of an independent device with a portion
of its capacity partitioned for caching and the remaining capacity as unused. For
example, a cyan triangle in Figure 4.1 at Total Scaled Purchase Cost of around
$235 represents the average throughput of all requests in a single simulation of
the hm-1 trace with an L1 LRU cache of 61,865 blocks partitioned in device D2,
an L2 LRU cache of 199,344 blocks partitioned in device S2, and back-end storage
of device H3 partitioned to fit the working set of 687,396 blocks.

Cache hierarchy depth Figure 4.1 shows (D1-H3, red) that too little RAM
hurts performance but too much wastes money. Adding a bit of SSD cache (D2-
S2-H3, cyan) between DRAM and HDD (D2-H3, green) can help, but not always
(some cyan dots are below the green line). Consider the knee of D1-H3 (around
X=3%$500): there are D2-S2-H3 configurations that provide higher throughput for
the same cost, same throughput for less cost, and even both higher throughput and
less cost. Surprisingly, we also see that purchasing more of a cheaper DRAM (D3-

23

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

—~ 300 A —e— DI1-H2 (wt) % D1-S2-H2 (wb,2x)
Et? A D1-S2-H2 (wb) D1-S2-H2 (wb,3x)
¥ 250 A
- A A
5 2004 2 2
[=)) b4
S1s0% %X %X X ¥ % %X % X
= £ £ £ £ £ £ £ £
'; 1001 % =2 =2 =2 = = =x
Z 50
0 1 1 1 1 1 1 1 1
0 25 50 75 100 125 150 175 200

Total Scaled Purchase Cost ($1000's)

Figure 4.2: SSD Aging Effects (Workload MSR src2-1). 2x and 3 X indicate
configurations where S2 has 2-3 x increased latency due to the potential effects
of SSD aging

H3, blue) for the same cost of a more expensive DRAM (D1-H3) yields overall
better performance. Therefore, we can sacrifice DRAM performance for a larger
amount of DRAM to get better results.

Solid-state drive (SSD) degradation Storage devices have an expected lifetime
which is typically defined by some amount of I/O. For example, it is well-known
that the memory cells within SSDs can only be written to a finite number of times
before they are no longer usable [65, 88, 101]. While the lifespan of devices is a
parameter that should be considered when estimating the total cost of ownership
of a storage system over some period of time, it is also important to evaluate the
performance impact this aging process can have. Studies have shown that SSD
aging can increase average latency by around 2-3 x [67]. To simulate this effect,
we multiplied the latency specifications of device S2 and analyzed the results
alongside simulations using its original specifications. Figure 4.2 shows that while
anew SSD (D1-S2-H2, green triangles) improves performance when inserted into
a D1-H2 tier (red), when the SSD is aged (blue and cyan), performance is actually
worse than not having the SSD at all. For users with write-heavy workloads or
infrastructures where these devices are expected to receive a lot of I/O traffic over
a short period of time, choosing to exclude SSDs completely may not only save

24

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

50

v

€ 40 1

)

2

2 30 -

g

2 20 - —e— D2-H3 (wt,bench)
<

= —»— D2-H3 (wt,vendor)
g 10 A D2-S2-H3 (wt,bench)

D2-52-H3 (wt,vendor)

0 I I I I I I I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Total Scaled Purchase Cost ($1000's)

Figure 4.3: Variation between vendor-reported specs and independently operated
benchmarks (Workload MSR web-3)

money, but also yield a similar or better average throughput over time.

Device specification variance Storage vendors want to convince consumers
that their latest device is competitive. They do so by publishing many device
specifications: storage capacity, physical dimensions, hardware interface, dura-
bility, energy consumption, and performance metrics. While most specifications
are fairly standard, a wide variation of performance metrics can be found, even
amongst the same type of device and vendor. Some commonly found metrics
are the minimum, average, median, or maximum values for latency, bandwidth,
or throughput. These metrics may also be further refined as random or sequen-
tial workloads, or separated by reads and writes. These measurements are ob-
tained via benchmarks using some specific workload(s), software environment,
and hardware configuration, which are sometimes disclosed at varying levels of
detail. This poses a significant problem for consumers, who often are unable to
reproduce vendors’ performance results. Given such a vast configuration space
of variables that can affect performance and the understandable motivation for
vendors to publish optimistic results, how can storage devices be reliably com-
pared for their own usage? A handful of independent, reputable websites have
emerged by fixing these variables and benchmarking devices from different ven-
dors, and producing realistic, trustworthy specifications: AnandTech [6], Tom’s

25

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

1200 X X
_ ¥ X P X E*
(2]
3 1000 - ;‘ X #
- Do
ER g x X —e— DI1-H3 (wt)
§ 600 4% A D1-S2-H3 (wt)
o % x D1-S2-H3 (wb)
= 400 %
o
$ 200 {f SR

0 I I I

1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

Figure 4.4: Write-through vs. Write-back policy effects (Workload MSR hm-1)

Hardware [131] and UserBenchmark [135].

In this experiment we show the difference between numbers reported by ven-
dors and others. Figure 4.3 shows that inserting an SSD tier between DRAM and
HDD provides equal or better performance when using vendor reported specifi-
cations (green and cyan). However, specifications obtained from Anandtech [6]
(red and blue) show that the majority of the configurations yield worse average
throughput.

Write Policy The write policy of a cache hierarchy determines how and where
data is written whenever there is a write request. Write-through policy ensures
data consistency by writing data to every cache and storage device in the hierarchy.
However, this incurs the write latency of every device and negatively impacts
overall performance. The write-back policy improves performance over write-
through by only writing to the cache and then flushing data to back-end storage
at a more favorable time. The downside of write-back is that data is at risk of
being lost in the event that a cache device fails or whole system loses power. If
reliability is more important, a write-through policy is the obvious choice, but how
much impact will this have on performance? Figure 4.4 compares write-through
and write-back policies (policy implementations described in Section 4.3). Using
an optimistic write-back (wb) policy we achieve up to 6 x better throughput for the
same cost as write-through (wt) with the same devices. Note that a more accurate

26

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE
CONFIGURATIONS

write-back policy will account for the delayed writes, which will tie up the storage
devices even during idle times.

4.5 Conclusion

Designing and evaluating cache hierarchies has become incredibly complex due
to the expanding multi-tier configuration space. In this work, we analyzed the de-
ficiencies of single-tier cache analysis and common cache evaluation metrics. We
propose that best practices in cache research should include the analysis of multi-
tier systems, as well as the evaluation of a more comprehensive set of metrics
(particularly monetary cost) and their relationships. We are developing an n-level
I/O cache simulator with a rich set of features and analysis tools that is capable
of modeling any cache hierarchy. We extended PyMimircache to function as a
multi-tier cache simulator and experimented with a wide variety of workload. We
presented interesting and counter-intuitive results that demonstrate the need for
our proposed simulator and multi-tier analysis.

27

CHAPTER 4. DESPERATELY SEEKING ... OPTIMAL MULTI-TIER CACHE

CONFIGURATIONS
D Device Type | Price | Capacity Average Latency
(Benchmark Source)
D1 | G. Skill TridentZ DRAM | $150 16GB 0.0585us r/w
DDR4 (UserBenchmark)
3600 MHz C17
D2 | G. Skill TridentZ DRAM | $97 16GB 0.0642us t/w
DDR4 3000 MHz (UserBenchmark)
C15 0.01us r/w
(Vendor)
D3 | Corsair Vengeance | DRAM | $59 16GB 0.0726us t/w
LPX DDR4 (UserBenchmark)
2666 MHz C16
S2 | HP EX920 M.2 SSD $118 ITB 292 us read
NVMe 1,138us write
(AnandTech)
20us read
2218 write
(Vendor)
H2 | WD Black HDD $60 1TB 2,857 us read
7200 RPM 12,243 s write
(AnandTech)
H3 | Toshiba HDD $65 750GB 17,000us read
MK7559GSXP 22,600us write
(Tom’s HW)
17,550us read
17,550us write
(Vendor)

Table 4.1: Device specifications and parameters. Each device is denoted with a

letter and number for brevity (1 is high-end, 2 is mid-range, and 3 is low-end). De-
vices S1, S3, and H1 are skipped for space considerations. Prices were obtained
from Amazon in September 2019. Benchmarked specifications were correlated

from device vendors, AnandTech [6], Tom’s Hardware [131], and UserBench-

mark [135].

28

Chapter 5

Accelerating Multi-Tier Storage
Cache Simulations Using Knee
Detection

Storage cache hierarchies include diverse topologies, assorted parameters and
policies, and devices with varied performance characteristics. Simulation enables
efficient exploration of their configuration space while avoiding expensive phys-
ical experiments. Miss Ratio Curves (MRCs) efficiently characterize the perfor-
mance of a cache over a range of cache sizes, revealing “key points” for cache
simulation, such as knees in the curve that immediately follow sharp cliffs. Un-
fortunately, there are no automated techniques for efficiently finding key points
in MRCs, and the cross-application of existing knee-detection algorithms yields
inaccurate results.

We present a multi-stage framework that identifies key points in any MRC,
for both stack-based (e.g., LRU) and more sophisticated eviction algorithms (e.g.,
ARC). Our approach quickly locates candidates using efficient hash-based sam-
pling, curve simplification, knee detection, and novel post-processing filters. We
introduce Z-Method, a new multi-knee detection algorithm that employs statistical
outlier detection to choose promising points robustly and efficiently.

We evaluated our framework against seven other knee-detection algorithms,
identifying key points in multi-tier MRCs with both ARC and LRU policies for
106 diverse real-world workloads. Compared to naive approaches, our framework
reduced the total number of points needed to accurately identify the best two-tier
cache hierarchies by an average factor of approximately 5.5x for ARC and 7.7 X
for LRU.

29

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

We also show how our framework can be used to seed the initial population
for evolutionary algorithms. We ran 32,616 experiments requiring over three mil-
lion cache simulations, on 151 samples, from three datasets, using a diverse set of
population initialization techniques, evolutionary algorithms, knee-detection al-
gorithms, cache replacement algorithms, and stopping criteria. Our results showed
an overall acceleration rate of 34% across all configurations.

5.1 Introduction

A cache’s miss ratio is one of the most important predictors of its performance.
A miss-ratio curve (MRC) for a given cache and replacement algorithm plots the
cumulative miss ratio for all accesses as a function of the cache size, providing a
powerful tool for analyzing the performance of live systems and dynamically ad-
justing cache configurations as workload conditions change [142, 13]. MRCs can
also inform offline evaluations such as comparing caching algorithms or analyzing
monetary cost vs. storage-system performance [38].

There are many efficient techniques for generating MRCs [93, 126, 149, 141,
128, 57, 142, 41]. MRC-reported miss ratios are good indicators of expected
performance (e.g., throughput), but real system performance can vary due to addi-
tional factors including device characteristics, write policies, and admission poli-
cies [38]. Alas, repeatedly reconfiguring and testing a real caching system, with
all possible cache sizes, is prohibitively expensive due to the slowness of storage
I/0.

Since experimenting with physical devices is costly and time-consuming, sim-
ulation offers a more practical way to explore this large search space and eval-
uate trade-offs such as latency vs. cost. A common first step is to sample a
workload: approximation algorithms enable accurate simulation of cache behav-
ior using only a fraction of the original trace data. Small sampled traces can
then be used to construct an MRC accurately, enabling quick evaluation of cache
performance [141, 142]. Many storage-cache simulators have been developed
that replay traces while attempting to faithfully reproduce real system behav-
ior [1, 89, 155]. However, even simulations can be too expensive to allow ex-
ploring a large number of configurations or optimizing live systems in real time.
For example, consider a cache with a maximum size of 100GB. Simulating every
1GB size step would require 100 experiments. In a multi-tier setup, the number of
simulations grows with the number of tiers; a two-tier configuration would require
1002 experiments, three tiers would need 1003, and so on. Thus, it is essential to

30

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

1.0 A
\ —— MRC (LRU)
0.8 4
A B
Re]
S 0.6 / /
o
a 04 Large range of cache space with
s U7 gradual miss-ratio improvement
c/
0.2 A
004 . . . _° .
0 100 200 300 400 500

Cache Size (GB)

Figure 5.1: MRC for trace w10, annotated to illustrate several key points: useful
“knees” (points A, C, and D), a useless “cliff” (B), and a large range of cache
sizes with relatively gradual miss-ratio improvement.

explore this vast configuration space efficiently.

Creating an MRC requires a sequence of cache references. In a multi-tier
cache, references to level n + 1 come from misses in—and write evictions and
flushes from—Ievel n; thus the MRC for n + 1 directly depends on the cache
size chosen for level n. A naive exploration of multi-tier configurations would
require a separate simulation for each point in level n’s MRC to identify misses
that become references at level n + 1, and hence to compute the level n + 1
MRC. Since an MRC may contain hundreds of points (one for each potential cache
size), this approach quickly becomes intractable. Thus, a crucial second step for
evaluating multi-tier caches is to limit the number of simulations by intelligently
selecting the cache sizes to evaluate at each level.

Intuitively, the most promising candidates are points where a little extra cache
space produces a relatively large drop in the miss ratio; such points are often
visible as “knees” in MRCs—e.g., points A, C, and D in Figure 5.1. (Note that
although B has sharp curvature, it is not of interest since C provides a much lower
miss rate.) Given enough computational resources, we may be interested in also
selecting some points in the large gradually sloping regions that cover a significant
range of cache sizes. We refer to both types of points as key points from here on.

In this article we describe a multi-stage framework designed to pick an appro-
priate yet small number of key points in MRCs: (1) We first approximate the MRC
accurately using a hash-based sampling technique [141, 142]; (2) Next, we use

31

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

the Ramer-Douglas-Peucker (RDP) line simplification algorithm [110] to reduce
noise by eliminating minor variations in the curve; (3) We then run a multi-knee
detection algorithm on the remaining points to find cache sizes that provide the
greatest miss-ratio improvement for the lowest cost. Our framework currently im-
plements eight different knee-detection algorithms, including our novel Z-Method
and modified, multi-knee versions of five widely used single-knee detection algo-
rithms [8, 117, 115, 129]; and (4) Finally, in post-processing we remove less inter-
esting points, add points in gradually-sloped regions (if desired), and then select
the final points based on a ranking that uses hierarchical clustering and relevance
metrics.

This article is an extension of our previous work [37]: we additionally provide
a more in-depth analysis of our Z-Method algorithm and we demonstrate how our
framework can accelerate the optimization of multi-tier caching systems using
evolutionary algorithms. This collective work makes several contributions:

1. We establish the novel methodology of using multi-knee detection to effi-
ciently identify optimal multi-tier cache configurations;

2. We present a framework that combines several techniques to find a mini-
mal number of key points in MRCs for both stack and non-stack caching
algorithms;

3. We introduce Z-Method, a new multi-knee detection algorithm that uses
statistical outlier detection;

4. We demonstrate that, compared to naive approaches, our framework signif-
icantly reduces the number of 2-tier cache evaluations needed to identify
good configurations by a factor of 5.5x for ARC and 7.7x for LRU;

5. We evaluate our framework for the additional application of seeding the
initial population of evolutionary algorithms. Our results show an overall
acceleration rate of 34% across a highly diverse set of configurations and
datasets; and

6. We release the code library containing all techniques used in this work [37].

The next section provides some background on MRCs, knee-detection al-
gorithms, and MRC cliff removal techniques. Section 5.3 presents the point-
selection techniques used in our framework, leading to the design of the Z-Method
algorithm in Section 5.4. We evaluate all of our techniques ability to find key

32

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

points in MRCs in Section 5.5. We then present an additional evaluation of how
our framework can be used to optimize multi-tier caching systems using evolu-
tionary algorithms in Section 5.6. Finally, we summarize our conclusions and
highlights in Section 4.5.

5.2 Background

5.2.1 Miss Ratio Curves (MRCs)

A key feature of some MRCs is their monotonicity. Cache replacement algo-
rithms such as LRU are stack-based, which means they satisfy the cache-inclusion
property: the content of a cache of size n is always a subset of a cache of size
n + 1. Ultimately, this property ensures that the miss ratio will never degrade as
we increase the size of the cache, producing a monotonically decreasing curve.
However, more sophisticated algorithms such as ARC [94] are not stack-based
and thus the inclusion property does not hold, causing them to produce MRCs
that may contain both convex and concave regions [142]. Thus, non-stack-based
MRCs need not be strictly decreasing.

5.2.2 Knee-Detection Algorithms

Many heuristic algorithms have been developed that find a single knee in a curve,
although the precise definition of a “knee” varies. One can define a knee point as
the point with the maximum curvature in a function. For continuous functions,
curvature [44] is mathematically defined as follows:

f"(x)
(1+ f'(2)?)2
However, knee-detection algorithms are applied to discrete sets of points, instead
of a well-defined continuous function. As such, there are several methods to mea-
sure the curvature of the discrete sequence. Menger curvature [129, 117] defines
the curvature for a sequence of three points as the curvature of the circle circum-
scribed by those points. This method relies only on a local criterion, using only
three points to estimate the knee point without considering any others. As such,
noisy data can lead to poor accuracy when estimating the knee point. We use this
method as a baseline reference to compare with other methods.

K@) = (5.1)

33

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

The L-method [115] fits two straight lines from the head of a curve to a can-
didate point, and from the candidate point to the curve’s tail. The candidate that
minimizes the Root Mean Squared Error (RMSE) between the straight lines and
the points of the curve is returned as the knee point; this represents the sharpest
angle in the curve.

Similar to the L-method, Dynamic First Derivative Thresholding (DFDT) [8,
9] tries to identify the point where the function has a sharp angle. Instead of
fitting two straight lines, this method relies on the first derivative of the curve.
After computing that derivative, a thresholding algorithm is used to identify the
value that separates the derivative values as “high” or “low.” The knee is then the
point with a derivative value that is closest to the previously computed threshold.

Kneedle [117] uses the point on the curve that is furthest away from a line
defined by the head and tail points of the curve. Both axes of the original curve
are normalized to [0, 1] to easily find the point with maximum curvature. Kneedle
was designed for single or multi-knee detection in a streaming scenario where new
data is arriving continuously. The authors used this technique to detect relevant
points for network congestion control and latency.

There are several algorithms that can find multiple knee points in a curve, but
they have limitations that make them unsuitable for MRCs. The Kneedle algo-
rithm’s primary use case is anomaly detection, where it serves as an initial filter to
reduce the number of candidates needing further analysis. As such, for Kneedle,
recall is more important than precision: it aggressively captures all anomalies,
producing many false positives. In some cases it is possible to reduce the number
of false positives, but doing so requires extensive tuning of its sensitivity parame-
ter.

A few multi-knee detection algorithms have been developed for use in multi-
objective optimization problems, where the notion of a knee guides the explo-
ration of meaningful candidate solutions [158]. However, these problems use a
stricter definition of a knee that assumes a set of well-behaved, Pareto-optimal
points. Several other knee-detection methods [115, 8, 9, 129, 7] are only effective
at finding a single knee in a small and relatively smooth set of points. In contrast,
MRC:s can consist of a relatively large number of points, can be noisy or non-
monotonic, and commonly contain more than one significant knee. In this work,
we had to develop techniques to overcome these limitations (see Section 5.3) by
enabling these algorithms to find multiple knee points.

34

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

5.2.3 CIiff Removal Techniques

An alternative to detecting knees in an MRC is to modify the underlying cache-
replacement policy so that it does not have any cliffs, yielding a convex MRC.
Talus [12] removes cache performance cliffs by dividing the cache into two shadow
partitions, each receiving a fraction of the input load. Varying the sizes and input
loads of each partition emulates the behavior of smaller or larger caches. Given an
MRC as input, Talus computes the partition sizes and their respective input frac-
tions to ensure that their combined aggregate miss ratio lies on the convex hull
of the original MRC. Originally proposed for processor caches, Talus inspired the
SLIDE [142] technique for removing performance cliffs from software caches that
employ sophisticated non-LRU replacement policies. CliffHanger [28] applied a
similar idea to key-value web caches, but instead estimated the MRC gradient
without explicitly constructing one.

The recent eMRC [87] technique generalized Talus’s cliff removal to multi-
dimensional miss ratio functions, such as the three-dimensional miss-ratio surface
for a two-tier cache. The eMRC convex-hull approximation technique leverages
the absence of cliffs to efficiently generate the miss ratio function for a multi-tier
cache. However, eMRC requires convexity, which limits its applicability to mod-
eling multi-tier cache systems that employ cliff removal. As real-world multi-tier
cache systems do not yet perform cliff removal, eMRC is unable to approximate
their non-convex MRCs. In contrast, our approach does not require convexity to
accelerate multi-tier cache evaluations, making it broadly applicable to production
deployments of existing caches.

5.2.4 Evolutionary Algorithms: Population Initialization

The initial population of an evolutionary algorithm functions as the first guess at
a set of good solutions to an optimization problem. The quality of this first set
can significantly influence the quality of the final solution and the speed at which
an algorithm converges [3, 68]. Studies have shown that some evolutionary algo-
rithms, such as Genetic Algorithms, are more sensitive to the initial population,
while other algorithms like Particle Swarm Optimization are less dependent on
the initial population [40]. This sensitivity has also been shown to be problem-
dependent, such that an algorithm may be influenced by the initial population for
certain functions, numbers of dimensions, or population sizes [3].

There are several categories of population-initialization techniques. Common
stochastic variants, such as random initialization, are favored for their simplicity,

35

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

generic nature, and applicability to a wide range of problems [90]. They are also
popular because they produce a relatively uniform distribution as the population
size increases. But statistical methods such as Latin Hypercube sampling [98]
and quasi-random sequences (e.g., Halton sequence [136]) have been shown to
outperform random initialization for most problems [11].

There are also application-specific techniques aimed at specific, narrow prob-
lems. They often exploit domain knowledge or use a problem’s characteristics
with specific evolutionary algorithms. These methods have been applied to im-
prove convergence speed in problems such as grammar-guided genetic program-
ming [42] and flexible job-shop scheduling [159]. Initialization techniques in this
class typically perform better than more generic variants, but they are usually lim-
ited to specific problems.

Lastly, there are domain-agnostic, general heuristics applicable to problems
that meet some set of conditions. Examples include approaches developed to
optimize any two-stage stochastic mixed-integer problem [130]. Such techniques
can be applied to any problem where some of the variables are constrained to
integer values.

The techniques described in this article focus on a domain-agnostic, generic
approach that can be applied to any problem where a curve that is correlated to
the solution can be derived from features of the input data. We show how such
techniques can be used on miss ratio curves to optimize a cache with evolutionary
algorithms.

5.3 Point Selection Techniques

In this section, we introduce our framework for finding multiple key points in
MRCs. We first designed a pre-processing stage to deal with the large volume
of data (Section 5.3.1). Next, we made substantial modifications to each point-
selection technique, enabling them to output a set of multiple knees instead of just
one (Section 5.3.2). Finally, we added a post-processing stage (Section 5.3.3) that
filters and ranks knees based on an appropriate definition.

5.3.1 Pre-Processing

A curve can contain an arbitrary number of data points. The largest MRC that we
evaluated contains 276K points even after sampling-based size reduction [142];

36

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

the original MRC is 10,000 x larger. However, the knee-detection algorithms eval-
uated in this work were originally designed to work with small or partial data, such
as for clustering optimizations. Our main idea is to reduce the number of points
while preserving those that follow the shape of the curve; this greatly reduces
the computational costs of subsequent steps while also improving knee-detection
accuracy by minimizing irrelevant fine-grained variation.

The Ramer-Douglas-Peucker (RDP) algorithm modifies a curve by finding a
similar one with fewer points [110]. RDP fits a line between the curve’s endpoints
and then finds the point in between that is farthest from this line. If the distance
between that point and the line is over a given threshold, the curve is split there
and the algorithm is reapplied recursively on the two new segments. Once the
distance is smaller than the threshold, all intermediate points are removed. The
main drawback of RDP is the need to define a threshold, which can be understood
as the maximum allowed reconstruction error. The choice of threshold is difficult
because it depends on the curve’s complexity.

We modified the original RDP algorithm to address this difficulty. Instead of
defining a threshold for the maximum allowed perpendicular distance between a
point and the fitted straight line, we use a relevance-based cost metric that com-
putes the difference between the fitted straight line and the data points in the cur-
rent segment.

We evaluated four different metrics that assess how far our linear reduction is
from the original data: Root Mean Squared Log Error (RMSLE), Root Mean
Squared Percentage Error (RMSPE), Relative Percent Difference (RPD), and
symmetric mean absolute percentage error (SMAPE). Of these four, the best per-
formance came from SMAPE: it found the smallest set of points that minimized
the reconstruction error.

5.3.2 Methods

Except for Kneedle, the algorithms we evaluate in this work (see Section 5.2.2)
were not designed to detect multiple knees. Thus, we developed a recursive al-
gorithm that can be used to adapt any single-knee detection technique to handle
multiple knees. The basic idea is to use a single-knee technique to select the best
knee in a segment. We then split the current segment at that knee, and for each
new segment check whether it is sufficiently linear (computed using the SMAPE
metric). If not, we repeat the process recursively. Apart from applying this recur-
sive generalization, we do not alter the core knee-detection technique, using it as
a black box. All of the methods we evaluated, even Kneedle, require our pre- and

37

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

o 1z 3 45 o 1 2 3 4 5 (c) Knee clustering and
(a) Undesirable knee filter. (b) Cliff-point removal filter. ranking.

Figure 5.2: Graphical representation of the post-processing methods. (a) Repre-
sentation of the filter that removes unwanted knees, knee K is removed since
knee K achieved better performance. (b) Representation of the overlapping rect-
angles used by the corner detection algorithm. Point C' is identified as a cliff point
and then removed. (c) Representation of the clustering and ranking elements. The
orange ellipse represents the cluster of knee candidates. The orange candidates
are filtered out, while the green knee is selected as the best representative based
on Equation 5.2.

post-processing methods to work properly on MRCs.

5.3.3 Post-Processing

Given the differences between single- and multi-knee detection and the large
number of points produced by using our recursive strategy on some of the knee-
detection algorithms, we developed three different filters to further reduce and
select the most relevant knees.

The first filter, shown in Figure 5.2a, removes useless knees. When dealing
with non-monotonic curves, a knee-detection algorithm can incorrectly choose a
knee that is above a previously detected one. We remove such knees since they
are sub-optimal and do not add useful information.

The second filter, shown in Figure 5.2b, removes cliff points located after
a smooth, near-horizontal area that precedes a sharp descent. These points are
found using a corner-detection algorithm that computes the overlapping area of
two rectangles. The first rectangle, shown in green, is drawn from the neighbor
points F and P; (assuming that RDP pre-processing was used, these are the pre-
vious and following points) that are adjacent to the knee candidate point C'. The
second rectangle, drawn in orange, has its corners placed at C' and the lower left of

38

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

the green rectangle. The filter computes the percentage overlap between these two
rectangles, and a knee candidate is removed if the overlap exceeds a threshold.

The third and final filter, shown in Figure 5.2c, uses a hierarchical clustering
algorithm to group knees by their distance along the x-axis, using a percentage
of the x range as a threshold. After grouping the knees into clusters, the knees
within each cluster are ranked based on their relevance score, computed from two
metrics: (i) the improvement given by each knee (i.e., how much it decreases on
the y-axis from the highest knee in the cluster) and (ii) the smoothness of the
improvement, computed using the coefficient of determination (R?). Specifically,
the relevance score S is given by Equation (5.2):

S(K;, L) = |Ky — Ki| - R¥(L), (5.2)

where K is the i'" knee, and K, is the knee with the highest value on the y-axis
(in a single cluster). L is a vector containing all the knees in the cluster up to and
including the *" one: L= (Ko, ..., K;]. The highest-ranked knee in each cluster
is selected as its representative knee.

5.4 Z-Method

5.4.1 Design Concepts

Our design for Z-Method was inspired by the DFDT [8] and DSDT [9] knee-de-
tection algorithms, which use first and second derivatives, respectively. In statis-
tics, a z-score (also known as a standard score) is a transformation that normal-
izes a data value by quantifying how many standard deviations away it is from the
mean; typically, a point whose z-score has an absolute value greater than three
is considered an outlier [2]. For the purpose of detecting knees, such outliers in
the second derivative indicate a significant change in the y-axis. The foundation
of our Z-Method technique is in detecting such outliers and intelligently selecting
knees among them.

Although the second derivative is useful, we found that large and small knees
often tend to cluster, causing several points in close proximity to be selected,
rather than the single most optimal knee in the vicinity. To remedy this, we in-
troduced two hyper-parameters, dz and dy, that specify the minimum x and y
distances, respectively, between all selected points. These parameters limit the
total number of knees selected and give users control over the algorithm. For ex-

39

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

ample, users interested only in large knees can give relatively high values for dx
and dy to minimize the number of points.

Z-Method was designed to function independently of the techniques described
in Sections 5.3.1 and 5.3.3. As such, it works for curves that are non-monotonic,
with both convex and concave regions (see Section 5.2.1).

5.4.2 Algorithm Description

Algorithm 1: Z-Method Multi-Knee Detection
Input: Data D with (z,y) points, dx, dy, dz
Output: List of (x,y) points corresponding to knees
1 Az < length(D) - (dz/100)
2 Ay + (max(y) — min(y)) - (dy / 100)
D" <« calculate second derivative of D
7 < calculate z-scores for D"
K + empty list
zLimit < 3 # standard outlier threshold [2]
while TRUE do
C < points in Z with z-score > zLimit
and at least Az and Ay apart from all points in K
10 Z+—7Z-C
11 if zLimit < 0 and length(C') == 0 then

e 0 NN Nt AW

12 Remove points from K to ensure that y always decreases as x
increases
13 return /

14 G <« group all points in C' such that all adjacent points in each group
are < Ax apart

15 sort GG in descending order by max z-score of each group
16 foreach group in G do

17 p < point in group with the lowest y value

18 if p is at least Ay from all points in K then

19 L K.append(p)

20 zLimit < zLimit — dz

As shown in Algorithm 1, Z-Method takes as input a discrete curve D consist-

40

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

ing of an ordered list of (z,y) points, along with parameters dz, dy, and dz. The
parameters dx and dy both influence the size and number of selected knees, while
dz controls the maximum number of iterations in the main selection loop (lines
7-20).

We first convert dx and dy, specified as percentages, into absolute values Ax
and Ay for the input curve (lines 1-2). This normalization ensures that these
parameters function similarly for different curves. We then approximate a list of
second derivatives of the curve, D", using second-order polynomial fitting [21];
next we calculate the z-scores of all points in D" as Z, both of which are found in
linear time (lines 3—4). We initialize a list K to contain all selected knees, and set
our starting value of zLimit to 3, since a z-score > 3 is a widely accepted value
for outliers [2] (lines 5-6).

We then enter the main selection loop (lines 7-20), which selects points and
progressively decrements the zLimit value. First, we create a new list C' that
contains candidate points: points in Z that have a z-score greater than the current
zLimit and are at least a minimum Az and Ay distance from all other already-
selected points (lines 8-9). The complexity of this step is O(|C| x |K|). All
candidate points C' are removed from Z so that we will not consider them again
in future iterations (line 10). The termination clause is then checked (lines 11-13)
to ensure that we have candidate points to operate on.

We next group the candidate points C' into (G, such that the adjacent points in
each group are less than Ax apart, based on the dx parameter constraint (line 14).
This takes O(|C'|) time, effectively forming groups of points such that there is at
least Ax distance between every group. We then sort the groups in G in descend-
ing order by the maximum z-score of each group (line 15). Here, we are sorting
the location of each group in the list of groups G rather than the points within each
group. From each group, we select the point with the lowest y value (line 17); we
then check that the selected point is not within a minimum Ay distance from other
points that have already been selected, enforcing the dy parameter (line 18). The
complexity of this loop is O(|G| x |K]|). A point is added to the list of knees K
if it satisfies this constraint (line 19). We then decrement the zLimit by dz and
continue with the next loop iteration (line 20).

This loop terminates only after we have reached a zLimit < 0 and there are no
remaining points that can be selected given the dx and dy parameters (line 11). At
zLimit = 0, we consider all points in D that have not already been considered in
previous iterations. By starting at z-score > 3 and iteratively approaching 0, we
select the largest knees first and gradually lower our threshold for how big a knee
should be.

41

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

1.0 1 —— MRC (LRU) 1o 1.0 1 —— MRC (LRU) 10
® Z-Method (dx: 1%, dy: 5%) ® Z-Method (dx: 5%, dy: 1%)
0.8 1 2nd Derivative Z-Score re 0.8 2nd Derivative Z-Score r8
H dx: 1% (5.2GB) —dy: 1% (.005)
0.6 L6 0.6 e
0.4 La 0.4 A B c 4
02 L2 02 L2
0.0 4 Lo 0.0 4
1.0 1 —— MRC (LRU) 1o 1.04 —— MRC (LRU) o
® Z-Method (dx: 5%, dy: 5%) ® Z-Method (dx: 5%, dy: 5%)
0.8 2nd Derivative Z-Score e 0.8 2nd Derivative Z-Score e
o i dx: 5% (26.2GB) ° dy: 5% (.025)
206 L6 2 2 06 b6 o
< S « S
% 0.4 ba 3 804 ba 3
S 0. N £ 0. E N
02 L2 0.2 L2
0.0 Lo 0.0
1.0 1 — MRC (LRU) [1o 1.01 — MRC (LRU) o
® Z-Method (dx: 10%, dy: 5%) ® Z-Method (dx: 5%, dy: 10%)
0.8 2nd Derivative Z-Score F8 0.8 2nd Derivative Z-Score 8
—— dx: 10% (52.3GB) Tdy: 10% (.051)
0.6 L6 0.6 e
0.4 1 La 0.4 La
E
02 L2 02 L2
0.0 Lo 0.0 Lo
0 100 200 300 400 500 0 5 10 15 20 25 30 35
Cache Size (GB) Cache Size (GB)
(a) Effects of Z-Method parameter dz. (b) Effects of Z-Method parameter dy.

Figure 5.3: (a) Effects of dr = 1% (top panel), 5%, and 10% on trace w09. Red
arrows denote points in a panel that were not selected when the dz value increased
(next panel down). (b) Effects of dy = 1% (top panel), 5%, and 10% on trace wo62.
Red arrows denote points in a panel that were not selected when the dy value
increased (next panel down). The minimum distance that Z-Method enforces be-
tween points is shown below the legends in green.

Finally, we eliminate any points that may have been poorly selected due to
non-monotonicity in the curve. A final pass removes points where increasing the
x value makes the y value worse (line 12); in our MRC application, such points
are clearly undesirable. This simple pass requires time linear in the size of K.
The overall complexity of this algorithm is therefore O(|D| x |K]|), where D is
the size of the input curve and K is often a trivially small value. For example, with
dz set to 5%, enforcing at least 5% distance on the x-axis between each selected
knee point, the maximum size of K would be 20.

5.4.3 Parameters

We present qualitative evaluations of the algorithm’s parameters dz and dy, as
well as its overall success at finding key points. Furthermore, we demonstrate that

42

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

Z-Method is effective for both stack and non-stack algorithms, by evaluating with
LRU and ARC cache replacement policies.

Parameter: dx The dz parameter has several functions within Z-Method. It is
provided as a percentage of the maximum cache size in the given MRC. The most
transparent effect of dx is that it constrains the minimum x distance, or cache size,
between selected points. Since no two points can have an z distance less than dx
between them, this provides an upper bound on the total number of selected points,
and also influences the number of points that are actually selected. Because it
affects the “grouping” stage of the algorithm, dz also effectively defines the width
of the knees.

Figure 5.3a shows the effects of dz on workload w09 with LRU cache replace-
ment, with dy fixed and dx set to 1%, 5%, and 10%. The black line in each plot
represents the MRC for LRU cache replacement. The green dots are the points
selected by Z-Method when using the dx and dy parameters indicated in the leg-
end. The vertical orange lines show the second derivative z-score of the MRC
at each cache size. Because the z-score values have a large, workload-dependent
dynamic range, we truncate them at 10 in this plot and for the remainder of this
article. A z-score range up to 10 is sufficient to identify all points considered as
outliers (e.g., z-score > 3).

For the MRC plotted in Figure 5.3a, we will focus on the knee(s) in the region
of cache sizes between approximately 425GB and 475GB. In the top plot with
dr = 1%, Z-Method considers this region to contain four separate knees, since
their distances from each other are at least 1% of the maximum cache size. When
we move from 1% to 5% in the middle plot, we can see that points A and B from
the top plot have been removed. Those points are no longer within dz of each
other, so they are grouped together; we are now left with two points at wider,
more prominent, knees.

A similar effect is seen when we increase dz from 5% to 10% in the bottom
plot. The two knees at points C and E are grouped together and C is removed.
Point D is also removed, since its cache size is less than 10% away from point E.
Significantly, the knee point E was favored rather than the less interesting point
D.

Parameter: dy The dy parameter is also specified as a relative percentage,
which is then converted into an absolute value for the given MRC. It functions
similarly to dz, except that it constrains the y distance, or delta miss ratio, be-

43

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

tween any two selected points. This effectively influences the height of knees
and how many points are selected, while providing an upper bound on the total
number of points that can be selected.

Figure 5.3b shows the effects of dy using workload w62 with LRU cache
replacement by fixing dz and varying dy between 1%, 5%, and 10%. The format
is otherwise the same as in Figure 5.3a. In the top and middle plots, the most
interesting change occurs at point C. With dy = 1% in the top plot, this very
small knee is considered significant and is selected. However, when we increase
dy from 1% to 5% in the middle plot, points A, B, and C are removed, as the
y distance between these points and adjacent points is no longer less than dy.
Similarly, point E is removed when we move from 5% to 10% in the bottom plot,
while the taller knee point F is retained. We can also see that point D is removed
as well, as increasing dy reduces the number of selected points.

It is important to note that for both of these parameters, we are not guaranteed
to always have a point that is dz or dy apart from every other point. Enforcing a
hard separation rule would add a great deal of complexity and would provide little
benefit, since we already select points by their order of importance.

Parameter: dz The dz parameter controls the amount that the zLimit variable
is decremented in each iteration of Z-Method. This affects the overall running
time by influencing the total number of iterations. It can also affect the size of
candidate point groups. For example, with a starting zLimit of 3, dz = 0.1 would
only consider points with a z-score > 2.9 on the second iteration, but dz = 0.5
would consider a potentially larger set of points that have a z-score > 2.5. While
this may seem significant, the dr and dy parameters are still the predominant in-
fluence on how groups are formed, so we did not observe any trends or significant
changes when modifying dz.

Finding key points In Figure 5.4, we show the points selected by Z-Method
with dz and dy set to 5%, for multiple workloads using both LRU and ARC cache
replacement policies. We evaluated these plots based on whether or not they se-
lected all of the points that we consider key points. To reiterate, Z-Method should
first select the largest knee points and then eventually select those within any re-
gions that cover at least 5% of the x and y axes. The first row of plots (LRU1-3)
shows examples where Z-Method performed well for LRU. All prominent knees
were selected and large ranges of cache space with gradual decreases in miss ratio
also contained an adequate number of points. The second row of plots (LRU4-6)

44

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

LRU1 (w105) LRU2 (w61) LRU3 (w97)
LRU4 (w20) LRU5 (w02) LRU6 (w50)
—— MRC (LRU)
® Z-Method (dx: 5%, dy: 5%)
x Z-Method (dx: 3.2%, dy: 5%)
C
B
ARC1 (w02) ARC2 (w44) ARC3 (w101)
ARC4 (w104) ARC5 (w54) \e-
D
ARC6 (w81)

Figure 5.4: From the top: the first row shows LRU plots where Z-Method picked
fairly good points; the second row has LRU plots where Z-method missed a few,
better points. The third and fourth rows are the same but for ARC (third row good
points selected; fourth row missed some points). The plot labeled LRU4 shows
points selected by Z-Method using a dz of both 5% (green) and 3.2% (blue). Sub-
optimal points A and B in LRU4 were selected using dz of 5%, missing nearby
knee points. The knees were appropriately selected when dx was lowered to 3.2%.
Sub-optimal point C in LRUS was selected due to the extreme shape of the curve
and the standard z-score threshold of 3. The knee was appropriately selected when
lowering the threshold. Sub-optimal point D in ARC4 was selected due to the
ARC MRC being generated with too few points. The knee point to the immediate
right was selected when the number of points in the MRC was increased from 100
to 220.

45

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

shows examples where Z-Method missed key points. For example, in plot LRU4,
points A and B missed the knee points directly to their left. There were similar
issues in LRUS and LRUS6.

We show how to improve the lower-quality points A and B in LRU4 by modi-
fying Z-Method parameters. The green points were selected using the default dx
of 5%, while the blue points were selected using a dz of 3.2%. These blue points
more accurately capture these two knees, and are more optimal than A and B.

There were also cases where Z-Method could pick slightly less optimal points
due to extreme shapes in a curve and the nature of the z-score metric. This can be
observed in plot LRUS, which exhibits a nearly flat region followed by a massive,
steep knee, then another nearly flat region. Point C is not quite at the bottom of
the knee because the z-score at the very bottom was slightly below the standard
threshold for an outlier of 3. This could be remedied by lowering the threshold
(and modifying Z-Method’s parameters if needed). It should be noted that Z-
Method will still pick a point that is relatively close to the knee in these edge
cases.

The third row of plots (ARC1-3) shows where Z-Method performed well for
ARC. In addition to always selecting prominent knees and points in gradually
sloped regions, we also see that points were never selected in concave regions
where the miss ratio increased due to the non-monotonicity of ARC. A key feature
of Z-Method is that it will never select points with a higher miss ratio that any
other previously selected points with a lower cache size.

The fourth row of plots (ARC4-6) depicts a situation where Z-Method missed
key points. In cases such as ARCS, modifying the parameters was sufficient for
identifying higher quality points, but plots ARC4 and ARCG6 exhibit a problem
that is unique to non-stack-based cache eviction algorithms (i.e., ARC). Unlike
stack-based algorithms (e.g., LRU), we cannot easily generate a fine-grained MRC
that includes every potential cache size. Instead, best practice is to sample the
workload [142] and then generate the MRC using a subset of points that still
preserves the shape of the curve. This is typically done using 100 points. We
used 100 points to generate all ARC MRCs during the point selection process
throughput this work, but plotted the z-score and points selected against MRCs
generated using 1000 points to better show how Z-Method selects points in MRCs
that more closely represent the “true” curves. This value worked well for the
majority of our workloads, but there were edge cases (e.g., ARC4 and ARC6)
where the z-score did not accurately capture important knees present at the very
end of the curve. For example, point D in ARC4 was selected because there was
a very small knee with a positive z-score at the top of the cliff, but there was a

46

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

much larger knee to its immediate right. This could be remedied by increasing the
number of points used to generate the MRC. 220 points were enough to remedy
this value for both ARC4 and ARC6 (not shown in the plots due to complexity).
The task of generating an MRC is separate from Z-Method, so we did not include
this value as a parameter.

In all cases where Z-Method missed key points, there were slight modifica-
tions that enabled those points to be be selected. We fixed dz and dy to 5%, the
z-score outlier threshold to 3, and generated ARC MRCs using 100 points for this
evaluation, since we do not yet have a way of automatically selecting the ideal
values. Even so, the overwhelming majority of MRCs we looked at still found all
key points with these values.

5.5 Evaluation: Miss Ratio Curves

In this section, we evaluate our framework’s ability to find key points in miss ratio
curves. We first compared the accuracy of 8 different knee-detection algorithms,
including Z-Method, for identifying knees in single-tier MRCs, and then evaluated
our framework’s ability to quickly find optimal multi-tier configurations.

5.5.1 Experimental Setup

We evaluated our techniques on 106 real-world block traces collected by Cloud-
Physics [141], each representing a week of virtual disk activity from production
VMware environments. We used hash-based spatial sampling [141, 142], with a
size-based sampling rate ranging from 0.1 to 0.0001, to reduce these workloads
and thus the running time while maintaining an accurate representation of the
originals. We dynamically varied the rate by powers of 10, such that each sam-
pled trace was guaranteed to contain between 100K and 1M requests. The traces
contain heterogeneous request sizes, so we also transformed all requests into 4KB
block-aligned operations to facilitate accurate sampling, consistent with previous
work [87].

To evaluate multi-tier systems, we extended PyMimircache [155], a cache sim-
ulator with an easily modifiable Python front end and an efficient C back end. Our
extension generates two-tier MRCs by simulating an L1 cache with the original
sampled trace, then simulating L2 with the requests that missed in L1. L1 cache
sizes were selected using the MRC of the original trace, while L2 sizes were cho-
sen using the MRCs of each intermediate trace. The total miss ratio of the two-tier

47

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

1.04 © o %) p—
8 ° —
0.8 1 T
0.6 1
g r B
2044 |_:| I_
L L L
0.2 1
004 + L L L
1 1 1 1 1 1 1 1
@ A IS o > N >
§ ‘<Q ?30 @b\ §/\O¢ «‘50 ¢§’J «So
F 9 e ¢ ISy ¥ ¥
< >
S AR N

Figure 5.5: An MCC evaluation of 8 knee detection algorithms using our opti-
mized hyper-parameters for accurately identifying knees that were manually se-
lected by experts. Higher MCC values and lower standard deviations are better.
Kneedle and Z-Method have the highest median MCC values of 0.45 and 0.5, re-
spectively, with Z-Method achieving much tighter bounds.

configuration was calculated as the product of the miss ratios of L1 and L2. We
modeled a simple write-back policy by treating both reads and writes as cache
references, as done in previous work [87]. The cache eviction policy was config-
ured as either LRU or ARC and was the same in both tiers. We generated two-tier
MRC:s for each trace, for both LRU and ARC replacement policies, resulting in a
total of 212 MRCs.

5.5.2 Knee-Detection Algorithms

We evaluated the accuracy of our framework using Z-Method and several other
knee-detection algorithms: Curvature, DFDT, Kneedle, L-Method, and Menger.
We also included the Fusion method, which considers all points retained by RDP
and relies on our post-processing filters to select relevant knees.

Kneedle finds knees using peak-detection methods, and can be used for single-
knee detection by selecting only the highest possible peak; we call that approach
Kneedle Recursion. We analyzed each method’s ability to find knee points that
had been manually curated in the 212 single-tier MRCs by four domain experts.

Most of our techniques have one or more hyper-parameters that can influence
which points are selected. To achieve the best performance for each MRC, it is
necessary to tune the hyper-parameters of each algorithm appropriately. While

48

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

the default parameters offered acceptable performance, a more complete evalua-
tion requires optimized parameters [17]. Therefore, we developed a cost function
and ran an optimization algorithm for each knee-detection method using all 212
MRCs.

When designing the cost function, we carefully considered the target use case
of our framework. We want to find the ideal parameters that have the lowest error
globally across all MRCs, while keeping the number of knees as close as possible
to the number of knees identified manually. Constraining the number of knees is
necessary since our framework is designed to pick only the most relevant points.
A technique that finds parameters that correctly identify all knee points but also
selects many non-relevant points, while having a high precision score, would be
inefficient for our use case.

We use the Matthews correlation coefficient (MCC) [25] as the basis of our
cost function. MCC measures classification quality by considering the balance ra-
tios of the four confusion matrix categories: true positives and negatives, and false
positives and negatives. Although the knee-detection problem is better modeled as
a regression, we based our evaluation on binary classification, since we wanted to
control the impact of false positives and negatives (i.e., non-relevant points being
classified as knees and vice-versa). Prior work [25] has shown that the MCC is
more informative than an F1-score for evaluating accuracy in binary classification
problems. As such, the cost function we used was the following:

1 — 1 —
Cost(E,K) = - ZMCC(Ei, K;) + max ((E Z yzq) - K, 0) . (5.3)
=0

=0

where E represents the expected (manually selected) knees for all MRCs, and K
represents knees picked for all MRCs (n defines the number of MRCs) by our
framework using some configuration of hyper-parameters and a knee-detection
algorithm. MCC(FE;, K;) represents the MCC computed from the expected and
detected knees of the i MRC. Finally, |K;| represents the number of knees de-
tected in the i MRC, and K represents a threshold for the acceptable number of
knees.

Figure 5.5 shows our evaluation. Three techniques stand out: Fusion, Knee-
dle, and Z-Method. Fusion achieves tighter margins than all other techniques,
spanning only 0.23 MCC between the upper and lower quartiles, suggesting that
the expected performance in unseen traces would be well-bounded. Kneedle and
Z-Method achieve the highest median MCC values of 0.45 and 0.50, respectively,
with Z-Method having a smaller standard deviation when compared with Kneedle.

49

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

m
2 107 1 °
(]
u1
9 10! A
o
S 100 A
810
@ 1071 +
£
€ 10-2
glO—
o
T T T T T T T T
A <
& § §F gs8 & 8
F & §F & sF5d & &
5 ¢ gy ¥ S
G g Y N

Figure 5.6: Running times for 8 knee-detection algorithms. The y-axis scale is
logarithmic. L-Method displays a considerably higher running time than other
methods, due to its high complexity. Other methods are comparable, with Kneedle
and Z-Method having the lowest median running times.

The much tighter bounds of Z-Method are more significant than the improvement
in median, making Z-Method the ideal candidate for our multi-tier evaluation.

We also experimentally measured the time and memory usage of our frame-
work using each knee-detection algorithm for all MRCs. We used the default
hyper-parameters for each algorithm, as they do not significantly impact the over-
heads. The results of the running-time benchmarks are shown in Figure 5.6.

All of the algorithms have comparable execution times across all MRCs with
the exception of L-method. This is especially true for the upper quartile of L-
Method, which is 1307.79 ms. The second highest upper quartile is Kneedle Re-
cursion, which is 74.4% lower than L-Method at 334.62 ms. This is expected
since L-method uses straight-line fitting (O(n?)) for each point to detect the ideal
knee, leading to a time complexity of O(n?). Combined with our recursive algo-
rithm that enables it to detect multiple knees, the expected time complexity for L-
method is O(n?logn). Note that Kneedle (non-recursive version) and Z-Method
have the lowest median running times of 38.59 ms and 40.81 ms, respectively.

The memory overhead is nearly linear in the file size for each MRC, ranging
from approximately 53KB to 71MB after sampling. There were no significant
differences across any of the techniques, so we do not present any further memory
overhead analysis.

50

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

5.5.3 Multi-Tier MRCs

Miss-ratio curves are typically used to find configurations that minimize both miss
ratio and cache size(s). We seek multiple configurations that are optimal in two or
more objectives.

Consider designing a multi-tier cache, with many device options, for a large
workload. With an unlimited budget, one could simply purchase enough DRAM
to hold the entire data set, but that is rarely economical. Instead, most system
administrators will want to trade cost off against performance, meaning that they
will be interested in Pareto-optimal solutions, i.e., those where a given objective
cannot be improved without making one or more others worse.

Only a subset of all possible cache configurations are Pareto-optimal. When
a set contains every Pareto-optimal configuration for a given workload and no
others, it is called the true Pareto-optimal front. Any point in this front minimizes
the cache size(s) and the miss ratio; the front as a whole can be considered to mark
the “best” points.

However, it is often not feasible to find the true Pareto front for a large con-
figuration space. Instead, the space can be sampled in an attempt to find opti-
mal points, creating a Pareto approximation. Our work aims to find a minimal
number of key points in MRCs. Thus, we are trying to find the most significant
Pareto-optimal points by efficiently generating accurate Pareto approximations of
multi-tier MRCs.

There are multiple metrics for evaluating the quality of Pareto approxima-
tions [78]; the most commonly used is the HyperVolume Indicator (HVI) [16],
which measures the size of the space between the points in a front and a user-
defined reference point; a larger space is better.

Figure 5.7 shows an example of how HVI is measured in a 3-dimensional
space. The blue shape represents a simple linear series descending from (0,0,10)
to (10,10,0). If this were a two-tier MRC, the x-axis would be the L1 size, y-axis
the L2 size, and the z-axis the miss ratio. The hypervolume is the volume between
points on the Pareto front (here, the blue shape) and a user-defined reference point,
here the nadir point1 at (10,10,10), where all objectives are maximized. To find
the hypervolume of the point at (5,5,5), we draw a rectangular prism from it to the
reference point. The resulting 5 x 5 x 5 cube has a hypervolume of 125. If we were
to instead find the hypervolume of the point (4,4,4), we would have a 6 x 6 x 6

! Although the reference point is placed at the largest coordinates, prior literature on hypervol-
ume indicators uses the term “nadir” rather than “zenith” because it represents the worst perfor-
mance; we follow that convention.

51

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

10

[ee]

o N » O

8 o 10

Figure 5.7: An example of how the HyperVolume Indicator (HVI) is calculated
for a single point of a 3-dimensional data series. A cube is drawn from the ref-
erence point (10,10,10) to the data point (5,5,5) creating a 5 X 5 x 5 cube with a
hypervolume of 125.

cube with a hypervolume of 216. Thus, configurations with lower cache sizes and
miss ratios result in larger hypervolumes. The total hypervolume of a dataset is
the non-overlapping hypervolume of all points on its Pareto front, making HVI a
useful metric for our multi-knee detection framework.

Another metric highly relevant to our problem is the Ratio of Non-Dominated
Individuals (RNI) [127], which is the fraction of dataset points that are on the
Pareto front. As discussed earlier, points not on the front represent sub-optimal
configurations, so a higher ratio is better. RNI does not measure the magnitude of
quality; instead, it informs us of a point selection technique’s efficiency. There-
fore, evaluating HVI and RNI together is a comprehensive approach to analyzing
techniques that find the minimal number of key points in MRC:s.

We evaluated our framework across all 212 two-tier MRCs using Z-Method,
compared to a naive approach of selecting evenly-spaced points. We also tried
geometrically-spaced points, but this yielded worse results than even spacing so
we omit them from this analysis. It was not practical to evaluate every point
in MRCs containing thousands of points, so we used 50 evenly-spaced points
(Even50) as a reasonable approximation of the full configuration space and the
true Pareto front. We varied the number of evenly-spaced points to most closely
match Z-Method’s average HVI or number of points, resulting in Even4, 10, and

52

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

Avg. Points | Avg. HVI % Avg. RNI
Method "ARCTLRU| ARC | LRU |ARC|LRU
Evend| 20| 20| 59.63 | 61.00 | 0.30| 0.28
Evenl0| 110| 110| 86.43 | 83.31 | 0.39] 0.40
Evenl3| 182| 182] 90.41 | 91.07 | 0.41] 0.34
Even50| 2550 2550[100.00 [100.00 | 0.33] 0.34

Z-Method | 23.33[20.33| 86.99 | 90.75 | 0.94] 0.97

Table 5.1: Evaluation results of our framework using Z-Method across 2-tier ARC
and LRU MRC:s, derived from 106 real-world block traces collected from Cloud-
Physics. The averages of 3 metrics are presented for each algorithm: number of
points (lower is better), HyperVolume (HVI) as a percentage of Even50’s Hyper-
Volume (higher is better), and Ratio of Non-Dominated Individuals (RNI) (higher
is better).

13.

In Table 5.1, we show the averages across all 212 MRCs of the number of
points selected, HVI as a percentage of Even50’s HVI, and RNI. When measuring
the efficiency of a method, a lower number of points and a higher RNI are better;
when measuring the accuracy of a method, higher HVI is better. The number
of points for even spacing is always constant, calculated as X + X? for two-tier
MRC:s using EvenX. Z-Method has HVI similar to that of Even10 for ARC and to
Evenl3 for LRU, but Z-Method evaluates 5.5x fewer points for ARC and 7.7 %
for LRU to get those results. This efficiency is also reflected in Z-Method’s RNI
of 0.94 for ARC and 0.97 for LRU. Conversely, the RNI of the evenly-spaced
methods ranges from 0.28 to 0.41, meaning that the majority of points they select
are sub-optimal and uninteresting to explore.

In Figure 5.8, we show box plots for all 212 MRCs. Figure 5.8a displays
the number of points selected by each technique. We can see that Z-Method and
Even4 selected approximately the same median number of points. A significant
result is that in the worst case, Z-Method still picked fewer points than Evenl10.
We can also see cases where Z-Method picked very few points. There are times
when such a low number of points is appropriate, but this can also represent cases
where the default parameters were too conservative, resulting in too few points
and a low HVL

Figure 5.8b displays the HVI as a percentage of Even50’s HVI. This figure

53

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

1.0 ~ Ml
3 | 100 A ’_-L
10 T L
g S 801 ° g
< 271 T 0 °
wn
< 102 A - [(4] 0.6 1
£ & 60 - e 8 |=
: 4 :
e : £ 40 g 8 0.4 1
K 10! A S o '—T_l
: 18 ° ° T
=2 20 - o 0.2 1
8 °
10° ~ 0 - 8 0.0 -
T T T T T T T T T T T T T T T
F L L & & F 9L L & & F 9L & &
«fw A‘Z’C AQ’Q AQ? ‘Z§ «fw A‘Z’Q AQ’Q Aé\ <Z§ «fw A‘Z’Q A'Z’Q A‘Z’Q <Z§
¢ ¢ @ & ¢ ¢ @ X ¢ ¢ @ X
v v v
(a) (b) (c)

Figure 5.8: Evaluation results of our framework using Z-Method across 2-tier
ARC and LRU MRC:s, derived from 106 real-world block traces collected from
CloudPhysics. Box plots of 3 metrics are presented: (a) number of points (lower
is better), (b) HyperVolume (HVI) as a percentage of Even50’s HyperVolume
(higher is better), and (c) Ratio of Non-Dominated Individuals (RNI) (higher is
better).

reveals several outliers where Z-Method performed poorly, but also many cases
where it had a higher HVI than Even50. These results inform us about Z-Method’s
sensitivity to its hyper-parameters. The default parameters worked well for the
majority of our workloads, but needed to be tuned better for others. With the right
parameters, Z-Method performed better than naive approaches while selecting
a minimal number of points. Lastly, Figure 5.8c displays the RNI. Z-Method
consistently had a greater RNI than all of the evenly spaced methods, indicating
that it properly identified key points. We can also see that there were diminishing
returns when increasing the number of evenly spaced points. The median RNI
decreased from Evenl3 to Even50, meaning that Even50 selected many points
that did not contribute to the Pareto front.

In Figure 5.9, we show visualizations of the points chosen by each method for
a few selected two-tier MRCs with fairly different characteristics.> Figure 5.9a
(top row) displays the MRCs for workload w04 using LRU replacement, where
several knees of various sizes are followed by gradually-sloped regions. We can

2A similar figure that appeared as Figure 4 in an earlier version of this paper [37] inadvertently
showed visualizations for Even5 instead of Even4.

54

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE

SIMULATIONS USING KNEE DETECTION

D
LRI

>
5 3?QS§

l", 2S5 :s’.::. \
TR

(c)

P: 25
H: 1.0
R:

oy
e
o33

Even50

Miss Ratio

o

onN
(

- 0.4

- 0.3

- 0.2

0.1

N
&
@

0.0

~

T
row®
oL

Z-Method

Figure 5.9: Examples of point selection on two-tier MRCs that highlight three dif-
ferent commonly observed scenarios. Each point represents the total miss ratio of
a configuration of some L1 and L2 sizes. The x and y axes are the normalized L1
and L2 sizes, respectively, while the z-axis is the miss ratio. Axis labels are omit-
ted to reduce clutter. Each row contains MRCs of a single workload using 4 dif-
ferent point-selection methods, listed at the bottom of each column. The P value
indicates the total of number of points (lower is better), H is the HyperVolume as
a percentage of Even50 (higher is better), and R is the Ratio of Non-Dominated

Individuals (higher is better).

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

see that Z-Method accurately selects each knee, achieving 92% of Even50’s HVI
while evaluating over 100 x fewer points. Conversely, Even13 and Even4 perform
poorly, selecting points at the tops of the cliffs before the knees, resulting in lower
HVT’s of 86% and 49%, respectively. When several knees are present, Z-Method
has more opportunities to exploit these significant improvements in miss ratio,
performing much better than evenly-spaced points.

Figure 5.9b (middle row) displays the MRCs of workload w66 using ARC
replacement, which exhibits large amounts of non-monotonicity, creating several
hilly regions. Z-Method finds the interesting knee points at the hill bottoms, while
the post-processing filter prevents selecting any points at the hilltops. Z-Method
is even more efficient here than in the previous figure while still being highly
accurate, selecting only 20 points and achieving 93% of Even50’s HVI. Evenl3
gets close to Z-Method’s HVI, but requires 9.1 X more points.

Finally, Figure 5.9¢ (bottom row) displays the MRCs of workload w06 using
ARC replacement, which contains only a couple of interesting points at the very
beginning of the plot. Z-Method finds 3 points in this tiny space that are more op-
timal than those found by Even4 or Even13; it also does not waste time exploring
the large, flat MRC region that offers almost no improvement in miss ratio. With
only 9 points, Z-Method achieves 97% of Even50’s HVI, while Even13 evaluates
20.2x more points but achieves only 94% of Even50’s HVI. MRCs that contain
only a handful of good points are fairly common, even in multi-tier settings, and
our framework dramatically reduces the time spent exploring them.

5.6 Evaluation: Population Initialization

In this section, we show how our multi-tier knee detection framework can also
be applied to population initialization for evolutionary algorithms, to search large
configuration spaces more efficiently [43, 33]. In many cases, evaluating the fit-
ness of a configuration is an expensive operation, making the speed of conver-
gence particularly important. The initial population of an evolutionary algorithm
functions as the first guess at a set of good solutions, so the population’s qual-
ity can significantly influence the quality of the final solution and the speed at
which an algorithm converges [3, 68]. As such, heuristics to intelligently select a
population have been developed for a variety of scenarios and optimization prob-
lems [136, 11]. Evaluating multi-tier caching systems fits this scenario well; re-
playing a workload repeatedly on numerous cache configurations can be costly in
both time and money. We demonstrate how the key points found by our multi-knee

56

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

detection framework can be used to seed the initial population of evolutionary al-
gorithms.

5.6.1 Experimental Setup

We configured each experiment with choices for an input I/O trace, a population-
initialization technique, an evolutionary algorithm, a knee-detection algorithm, a
cache-replacement algorithm, and two parameters controlling the stopping criteria
for the optimization. For each configuration, we analyzed the convergence of an
evolutionary algorithm with each of the population-initialization techniques and
with our multi-knee detection framework.

We used our PyMimircache [155] cache simulator extension (see Section 5.5.1)
for all experiments. Simulation enabled us to study a wide variety of configura-
tions, as trace replay on real hardware would be far too slow and would limit the
configuration space we could explore. We optimized a single variable, cache size,
for the performance metric of I/O operations per second (IOPS) per dollar ($), or
IOPS/$. We calculated theoretical values for the IOPS using the same methodol-
ogy as eMRC [87], and computed dollar costs from a given configuration’s cache
size and current market values for that type of device [6, 131]. We normalized
both the IOPS and dollar cost and then combined them to determine IOPS/S$.

We evaluated this use case on three different sets of real-world block traces ob-
tained from CloudPhysics [141] and the publicly available FIU [138] and MSR [100]
traces, for a total of 151 individual traces. We used uniform randomized spa-
tial sampling [141, 142] with a size-based sampling rate R (ranging from 0.1 to
0.0001) on the larger traces to reduce the running time while maintaining an ac-
curate representation of the original trace. Our sampling produced a fairly diverse
set of MRC sizes, with a mean of 70,446 + 110, 014 blocks, ranging from 263 to
829,424 blocks.

We evaluated the speed of convergence of evolutionary algorithms using four
population-initialization techniques: our multi-knee detection framework, random
initialization, Latin Hypercube sampling (LHS) [98], and Halton sequences [136].
For techniques that include randomization (all but multi-knee), we ran them three
times with different random seeds to obtain stable results. Three seeds is generally
considered the minimum acceptable number for this type of analysis. However,
given the size of our dataset and configuration space, even three random seeds
resulted in experiments that required significant running time while still remain-
ing viable. We ran a total of over 3M experiments, which sufficiently covers the
search space, allowing us to evaluate our proposed solution with statistical confi-

57

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

dence. We experimented with three types of evolutionary algorithms: Generalized
Differential Evolution 3 (GDE3) [73], a Genetic Algorithm (GA) [56], and Parti-
cle Swarm Optimization (PSO) [69]. We focused on a subset of the knee-detection
algorithms available in our framework: Menger, Kneedle, and Z-Method. We se-
lected these three because Menger represents a baseline knee-detection method
that uses a local feature, Kneedle is a well-known algorithm that greatly bene-
fits from our framework, and Z-Method is our novel algorithm designed for this
specific application.

We used both Adaptive Cache Replacement (ARC) and Least-Recently Used
(LRU) cache replacement policies. These two popular policies present interesting
scenarios for multi-knee detection since the MRCs produced by LRU are guaran-
teed to be monotonically decreasing, while ARC’s MRCs can contain both convex
and concave regions (see Section 5.2.1). Lastly, we enforced two types of stopping
criteria for the optimization: (1) the number of evaluations and (2) an objective
value that was some percentage of the “best” value for that configuration. The
number-of-evaluations stopping criterion was fixed at 300. We found this value
sufficient to allow approximately 99% of our experiments to converge. To han-
dle the objective-based stopping criterion, for each trace we simulated 1,000 cache
sizes evenly spaced from the minimum to the maximum and calculated their [OPS
and dollar costs. We obtained the maximum IOPS/$ from these simulations, and
treated it as the “best” value when calculating the objective stopping criterion for
all optimizations involving that trace.

A rule of thumb for the population size is to use ten times the number of
parameters in the solution [123]. Since we are only trying to optimize a single
parameter (cache size), this implies a minimum population of size 10. If our
framework picks fewer points, we iteratively selected points in the center of the
largest gap in the curve until we reached 10. It is also possible to optimize the
hyper-parameters of the techniques in our framework to select a desired number
of points, but we did not explore hyper-parameter optimization in this work.

5.6.2 Acceleration Rate

We evaluated our experiments using the overall acceleration rate (AR) [108] to
quantify the increased convergence speed when using our framework to select an
initial population for evolutionary algorithms. This metric compares the number
of function calls (NFCs) made by two separate sets of optimization problems.
For our purpose, the NFCs will correspond to the number of epochs (iterations)
an evolutionary algorithm takes to converge. Each optimization problem uses an

58

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

evolutionary algorithm to optimize the IOPS/$ of a cache and has several param-
eters: an input trace, an evolutionary algorithm, a knee-detection algorithm, a
population-initialization technique, a threshold for the value-based stopping crite-
rion, and a cache-replacement algorithm. The AR compares two sets of problems
and reports the percent difference in convergence speed. For all of our evaluations,
we compared a set of problems P M that use our multi-knee detection framework
for population initialization, against a set PO that uses some other technique for
initialization. The AR is calculated as follows:

|PM| :
AR=(1- Zimlol NECIPAL)) 1009 (5.4)
>ii NFC(PO;)

i.e., an x% AR implies an x% reduction in running time.

We evaluated 151 traces, four population initialization techniques, two cache-
replacement algorithms, and three variations of all other parameters, resulting in
32,616 total problems and over three million cache simulations. The overall AR
achieved using our multi-knee detection framework for population initialization
was 34%. In the remainder of this section, we show the effects of each configura-
tion parameter by creating subsets of the total problems via parameter constraints.

Figure 5.10 presents bar plots showing the AR achieved using our multi-knee
detection framework for population initialization. Each bar represents a compar-
ison between two sets of optimization problems, PM and PO, which are dif-
ferent sets for each bar, depending on the constraints of the axes and legend.
P M uses our multi-knee detection framework for population initialization with
a knee-detection algorithm identified by the color of the bar (Menger, Kneedle,
or Z-Method). PO uses the initialization technique shown on the x2-axes (top
of figure): a pseudo-random number generator (Random), Latin Hypercube sam-
pling (LHS), or Halton sequences. The value of the objective threshold ¢ stopping
criterion for both problem sets is shown on the y2-axes.

In each plot, we show three knee-detection algorithms: Menger, Kneedle,
and Z-Method. The bars labeled “Menger” represent a baseline knee-detection
method; it was the least accurate of those depicted. “Kneedle” is the robust ver-
sion that we optimized for this scenario; we employed Global RDP (gRDP) be-
fore using Menger or Kneedle, reducing noise in the MRCs and improving knee
detection. After the knee-detection phase, we applied the post-processing filters
described in Section 5.3.1 to refine the selected knees.

We varied the objective-threshold stopping criterion ¢ between 99%, 98%
(omitted in Figure 5.10 for brevity), and 95% for all configurations. We observed

59

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

Random LHS Halton 60 Random LHS Halton

=99%
t=99%

t

2 201

[} o

= 5 101

o o

5 5.0

S 6 S 60

o B Menger o = Menger

% 501 1 1 m®m Kneedle % 501 1 === Kneedle

o v

£ 20 | == Z-Method 2 401 | mmm Z-Method

=95%
w
IS
=95%

t
t

N
o
L

-
o
L

o
|

o] < <
O O

g g g 2 g 2 ¢
o o o
Evolutionary Algorithm Cache Replacement Algorithm
(a) Acceleration rates using GA, GDE3, (b) Acceleration rates using ARC and LRU
and PSO algorithms. cache replacement.

Figure 5.10: The acceleration rate (AR) achieved using our multi-knee detection
framework for population initialization vs. other techniques. The height of each
bar represents the acceleration rate (y-axis), where higher is better. The bottom
row represents experiments using the objective threshold ¢ = 95%; the top row
is those using ¢ = 99% (the most challenging threshold to meet). Each group of
bars, from left to right, shows the AR using our framework for population initial-
ization with the baseline (Menger, in blue), with Kneedle (orange), and with our
Z-Method (green), each evaluated against three different initialization methods on
the x2-axis (Random, LHS, and Halton, at the top of the figure). (a) shows the AR
for three different Evolutionary Algorithms on the x-axis (GA, GDE3, and PSO),
with results included from both LRU and ARC cache replacement algorithms. (b)
shows the same results as in (a) but separated by LRU vs. ARC, with results in-
cluded from all three Evolutionary Algorithms.

60

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

that a lower threshold usually yielded a lower AR. A higher threshold makes op-
timization more difficult by requiring a solution closer to the most optimal value.
Thus, a lower threshold increases the number of acceptable solutions, giving less-
informed population initialization techniques a better chance at finding a solution.

Figure 5.10a shows the effects of using different evolutionary algorithms. The
optimization problems analyzed in each group of bars are shown on the x-axis:
Genetic Algorithm (GA), Generalized Differential Evolution 3 (GDE3), and Par-
ticle Swarm Optimization (PSO). Results in this figure include problem sets with
configurations using both ARC and LRU cache replacement. Therefore, in the
upper leftmost subfigure of Figure 5.10a, the first blue bar on the left represents,
for the 151 traces, the AR for all optimization problems using: (1) our framework
with Menger for population initialization vs. Random, (2) using a Genetic Algo-
rithm (GA), (3) with either ARC or LRU cache replacement, and (4) an objective
threshold ¢ = 99%.

Z-Method is our novel method designed for this task; it outperformed Kneedle
in most cases. Kneedle was still competitive, usually only a few percent behind
Z-Method and even winning by a small margin in three out of the 18 configu-
rations displayed. (It should be noted that Kneedle benefited greatly from our
framework’s pre- and post-processing filters, and that Kneedle on its own yielded
much poorer results; see Section 5.2.2). We also saw a wide range of AR values
in these configurations, from under 10% AR (Menger with PSO) to over 50% AR
(Z-Method with GA). Lastly, ranking the AR from highest to lowest yields GA
(best), GDE3, and then PSO. We attribute this ranking to the difference in effi-
ciency of the evolutionary algorithms. The more efficient algorithms have a lower
AR because they are less sensitive to the initial population.

Figure 5.10b shows the effects of using either ARC or LRU cache replacement.
Results in this figure include problem sets with configurations using any of the
three evolutionary algorithms. The most relevant difference between ARC and
LRU is that LRU MRCs always decrease monotonically, while ARC can have
both convex and concave regions (i.e., can go up and down). This poses a unique
challenge for knee detection, since a curve can have a knee that is less optimal than
a previous point. Said differently, in ARC and similar non-stack cache algorithms,
counterintuitively, adding more cache can actually hurt performance. This non-
monotonic property can also distort many metrics that knee-detection algorithms
use to detect or rank points. Z-Method significantly outperformed Kneedle for
all ARC cases in Figure 5.10b, while Kneedle beat Z-Method somewhat for all
but one of the LRU configurations. This is to be expected, as Z-Method was
originally designed with cache optimization for non-monotonic MRCs in mind,

61

CHAPTER 5. ACCELERATING MULTI-TIER STORAGE CACHE
SIMULATIONS USING KNEE DETECTION

enforcing constraints in a grid-like pattern to prevent proximal knees. Conversely,
Kneedle was designed under the assumption of monotonicity. Again, we note that
our pre- and post-processing filters were essential to Kneedle’s good results.

The population-initialization techniques did not alter any of the previous trends
we observed in Figure 5.10, but we did see an approximately 5% difference in
AR between the worst and best case: Random performed the worst, followed by
Halton, and then LHS. These results are consistent with those seen in previous
studies [98, 136, 11].

5.7 Conclusion

The many configurations of multi-tier caching systems produce a wide range of
performance and costs. As the configuration space continues to grow due to ad-
vancements in caching and storage technology, exploring the space through phys-
ical experiments or traditional simulation becomes infeasible.

We introduced the novel concept of applying multi-knee detection to MRCs
using a framework for selecting key points, reducing the cost of exploration signif-
icantly. We present Z-Method, an algorithm that robustly and efficiently identifies
multiple key points in MRCs with minimal overhead. We also designed a recur-
sive algorithm that enables any single-knee-detection algorithm to find multiple
knees. We demonstrated that our framework using Z-Method can be applied to
reduce the total number of points required to identify optimal two-tier cache con-
figurations by an average factor of approximately 5.5x for ARC and 7.7x for
LRU compared to naive approaches. Finally, we evaluated our framework across
a highly diverse set of configurations and datasets for the additional application
of seeding the initial population of evolutionary algorithms, showing an overall
acceleration rate of 34% compared to commonly used population-initialization
techniques.

62

Chapter 6

Visual Analytics and Performance
Modeling

This chapter presents additional techniques for exploring and analyzing complex
system design spaces. It focuses on interactive visualization methods for analyz-
ing high-dimensional configuration spaces, along with modeling techniques that
capture workload behavior to support performance reasoning. Together, these ap-
proaches support systematic reasoning about performance trade-offs and guide
more efficient system design.

6.1 Advanced Interactive Visualizations

To further support exploration, we developed advanced interactive visualizations,
including an interactive configuration explorer for studying how categorical pa-
rameters affect system performance, a parallel-coordinate axes-reordering frame-
work that reveals patterns and relationships among configuration parameters, and
an empty-space search algorithm to uncover promising configurations hidden in
sparsely sampled gaps of the space.

6.1.1 ICE: An Interactive Configuration Explorer for High Di-
mensional Categorical Parameter Spaces

Modern tiered storage and memory systems expose large, high-dimensional con-
figuration spaces dominated by categorical parameters, making it difficult to rea-
son about trade-offs using traditional plots or automated search alone. To address

63

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

= [a0k
40k | . .-
Max throughput <=
35k F 35k ax throughpy Max to 90 percentile
90" percentile ==
30k 30k
25k [Throughput .
25k distribution
= ° ™ | i - gom i n i
20k ‘ | = B o L 20k (Magenta feqlon) 90t percentile to 75t percentile
15 - = — =1 E E
i ° i . [15k - r# Mean Throughput
10k | F | | I 75m ! . "
= | m | | | [10k Lt 75 percentile to Median
5.0k | | | | edian Median to 25t percentile
25m
= an N son ||
s 23 s T 9 88z 3 x N 3 3 359 g 25t percentile to 10 percentile
g3 28 aSsazrgeg?” S &8 3 8 Scd 3
355 8 @ [- » = @ 3 2 g
5523 @ 3 23 g
2

10 percentile =
’ - ~ 10" percentile to Min
Min Throughput =

Journalop B D

A Workload FileSystem Biksize

N/

B
H

Figure 6.1: Interface of our Interactive Configuration Explorer (ICE) tool used to
explore high dimensional parameter spaces. This example shows the use of the
ICE in a computer systems performance optimization scenario. A is the Parameter
Explorer. It shows the distribution and statistics of the numerical target variable
in the context of the various categorical variables (or parameters), labeled by the
green buttons at the bottom of the interface (e.g., Workload, File System). Each
parameter has levels e.g., Workload has 4 levels (dbsrvr, filesrvr, mailsrvr, and
websrvr), and each level has an associated bar displaying the statistical informa-
tion about the numerical target variable (here, system throughput) for this level.
Analysts can interactively deselect (and select) parameter levels to filter out the
associated parameter configurations throughout. B is the Aggregate View, which
visualizes the joint distributions of all currently selected parameter levels. C is
the Provenance Terminal, to keep track of the changes in the target variable over
the course of the user interactions. D shows the information contained in each bar
inside the Parameter Explorer and Aggregate View.

64

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

this, we contributed to the design and evaluation of the Interactive Configuration
Explorer (ICE), a visual analytics tool developed to support performance-driven
configuration exploration [132]. ICE was motivated by the observation that com-
mon techniques such as parallel sets, dimensionality reduction, or dashboards
either lose information, obscure distributions, or do not scale as the number of
parameters grows.

ICE’s design is illustrated in Figure 6.1, which decomposes the exploration
workflow into four coordinated views. Figure 6.1 A shows the Parameter Explorer,
where each categorical parameter is expanded into its individual levels, and each
level is represented by a range-distribution bar encoding the full throughput dis-
tribution, key percentiles, extrema, and mean. This view allows direct comparison
of how individual configuration choices affect both performance and variability,
and supports interactive filtering by enabling analysts to deselect unpromising
levels. Figure 6.1B presents the Aggregate View, which collapses all currently
selected parameter levels into a single range-distribution bar, providing an im-
mediate summary of the joint performance distribution induced by the current
configuration. Figure 6.1C shows the Provenance Terminal, which records how
the maximum and minimum achievable throughput evolve as the analyst itera-
tively filters the space, enabling backtracking and comparison between alternative
exploration paths. Finally, Figure 6.1D annotates the internal structure of the
range-distribution bars, clarifying how percentiles, extrema, and the underlying
distribution are encoded. Together, these components allow analysts to reason
about multi-objective trade-offs, such as peak throughput versus stability, without
information loss or visual clutter, even in large, high-dimensional configuration
spaces.

We used ICE to analyze storage system configuration spaces derived from
multi-year performance measurements collected in our lab. The tool was devel-
oped around requirements we identified as systems researchers, including com-
paring full throughput distributions, reasoning about variability and stability, and
tracking iterative configuration filtering decisions. ICE enabled systematic ex-
ploration of performance trade-offs across large categorical parameter spaces that
were difficult to analyze using existing visualization techniques.

65

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

PC-Expo
roperties

Figure 6.2: PC-Expo is a real-time all-in-one Parallel Coordinate Plot (PCP) axes
reordering framework. PC-Expo detects local properties in high-dimensional data
that can be used to reorder the PCP axes automatically or with human-in-the-loop
(HIL) interactions A. We have implemented detectors for the 12 most common
data properties used to reorder PCPs, shown on the properties panel B. Users can
create their own optimization scheme using a weighted sum of these properties,
by selecting respective properties and weights from (B), summarized as a donut
chart E for automated axes reordering. PC-Expo also supports HIL axes reorder-
ing via a heatmap and local views D, C, and F. D summarizes the weighted sum of
user-selected properties detected locally for each axis pair. C shows where these
visualization properties were detected for a particular axis pair, with a linked scat-
terplot F for visualizing the 2D data points. Users can manually reorder the axes
using these local views by clicking on D sequentially. The granularity slider in
B lets users control the size of local regions used to detect the properties. Area
charts next to PCP axes in A show the local regions where the properties selected
on (B) are detected on the axis.

66

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

6.1.2 PC-Expo: A Metrics-Based Interactive Axes Reordering
Method for Parallel Coordinate Displays

Parallel coordinate plots are widely used for analyzing high-dimensional systems
data, but their effectiveness depends critically on axis ordering, which determines
which patterns are visually apparent. Existing automated reordering techniques
typically optimize for a single global metric and lack support for localized patterns
or human-in-the-loop refinement. PC-Expo addresses these limitations by provid-
ing a unified framework for real-time, explainable, and localized axes reordering
that supports both automated optimization and interactive exploration [133].

Figure 6.2 illustrates the PC-Expo interface and workflow. Figure 6.2A shows
the main parallel coordinate plot augmented with area charts that summarize where
selected properties are detected locally along each axis, supporting explainability
of the final ordering. Figure 6.2B presents the properties panel, where users select
from twelve common PCP properties and control both their relative weights and
the localization granularity. Figures 6.2C and F provide local views and linked
scatter plots that expose the specific data regions contributing to detected pat-
terns, allowing users to inspect and validate local structure before reordering. Fig-
ure 6.2D shows the heatmap that aggregates the weighted property scores for each
axis pair, enabling both automated reordering and human-in-the-loop selection.
Finally, Figure 6.2E summarizes the global optimization objective via a donut
chart that visualizes the contribution of each selected property.

We applied PC-Expo to systems datasets involving high-dimensional perfor-
mance and configuration parameters. The framework directly addresses the need
to identify local structure, balance multiple analytical objectives, and understand
why a particular axes ordering exposes specific patterns. Through evaluation, PC-
Expo enabled faster exploration and produced higher-quality axis orderings than
prior PCP reordering techniques, particularly for systems workloads with com-
plex, localized behavior.

6.1.3 Into the Void: Mapping the Unseen Gaps in High Dimen-
sional Data

High-dimensional configuration spaces are often sparsely sampled, leaving large

regions unexplored despite the potential for high-quality configurations. Gap-

Miner addresses this problem by explicitly identifying and exploiting empty spaces
in configuration datasets, treating them as opportunities rather than artifacts of

67

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

File Selector System_€) Overview Display) Progress Tracker
- 16384+ © Bug Reward
() Target Configurator 3000

Target variable: [avg_throughput/$ v 81924
037

() DNN training status display

o
£
g g
2 2048 <
g §
' H Bl e .
Outcome Variable Intervals i i
s =
@ ESA Configurator 2 sioef H : T v
Method: [ESA | [Search || Verify(s) E - @ Parcto frontier plot
1 < 26
Sensing size: 150 emmm—t) 2
%
() ESC Range Selector 2 12
Real Data | [Emply Data | [Neighbors(@) | + § —9.20
EXISTING configurations: 2
Size: 1000 Use global PCA g »
2~40] 4~60) <
6~8 8~108 2 16
10~12 12-14 Z
8 4 LEGEND
PROPOSED configurations: :
24019) 4-601(66) ® — proposed configurations
6-88(53) 8-108(7) oo '"XN | existing configurations
10~1200(0) 12~140)(0)

ESC Editor
L,

2 13 L 2 13
\! ea Teg, \'Ed " ~Wrig “~Write ;. ~Wrig, Durg
L2, g, ten, " aten, " atene, ‘Ja;e,,cy latep, ey ¢

ey
:

| Y

!

V&mm ghp.,,

» © Overview Quality Monitor -

o8 24ck4
06 2en
04 e
02 0.146730.130.130.120120120.11 Lsers

00
01 25 405 68
ipal Components

0
7
]
5
i I N

() PCP dioplay - (Neighborhood display

-dﬁ—h

L 2 =0
- mme

;SZZZEQEE;

Figure 6.3: GapMiner visual interface where a selected ESC is reflected in all dis-
plays. (A) Control Panel. From top to bottom: (a) File Selector to load a dataset
of initial verified configurations with values for all parameter variables. (b) Target
Variable Configurator with an interface for breaking its value range into discrete
intervals. (c) Empty-space Search Algorithm (ESA) Configurator to select the
ESA and a slider to set the ESC batch size. (d) Empty-Space Configuration (ESC)
Range Selector to control which target variable intervals are used for display and
ESC proposals. (e) Overview Quality Monitor screeplot that shows the amount of
data variance captured by the Overview (PCA) Display. (B) Overview (PCA) Dis-
play with data distribution contours, raw or modified ESCs rendered as points, and
color legend. (C) Empty-space Configuration (ESC) Editor. From left to right: (a)
Parallel Coordinate Plot Display where users can configure ESCs starting from a
raw ESC or an existing configuration. (b) Neighbor Display of the selected ESC
providing a local view of the distribution of its nearest existing configurations.
(D) Progress Tracker. From top to bottom: (a) Budget/Reward Display that cap-
tures the aggregated evaluation cost and merit of the ESC exploration so far. (b)
Training Status Display of the assistive DNN. (c) Pareto Frontier plot that shows
the Pareto frontiers of existing configurations (red) and ESCs (gray) with respect
to two user-chosen merit (target) variables.

68

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

sparsity [162]. The system combines a physics-inspired Empty-space Search Al-
gorithm (ESA) with interactive visual analysis, enabling systematic discovery of
novel configurations that are far from existing samples yet promising with respect
to target objectives.

Figure 6.3 shows the GapMiner interface and its coordinated views. Fig-
ure 6.3A presents the Control Panel, which allows users to load verified con-
figurations, define target variables and value intervals, configure the ESA, and
monitor how well the PCA-based overview captures data variance. Figure 6.3B
shows the Overview (PCA) Display, where density contours summarize exist-
ing configurations and proposed Empty-Space Configurations (ESCs) appear as
points, providing global context for sparsity and clustering. Figure 6.3C is the
ESC Editor, combining a parallel coordinate plot for refining configurations with
a neighborhood display that reveals the local geometry and topology of the sur-
rounding empty space. Figure 6.3D shows the Progress Tracker, which integrates
budget tracking, DNN training status, and a Pareto frontier view to support multi-
objective evaluation and guide verification effort.

We used GapMiner to explore multi-tier cache configuration spaces derived
from real system workloads, where the number of possible cache size and latency
combinations makes exhaustive evaluation infeasible. The interface supported
reasoning about how candidate ESCs relate to existing cache designs, exposing
trade-offs between average throughput and purchase cost and revealing which
cache parameters mattered despite contributing little to global variance. In the
caching case study, this process led to the discovery of previously unsampled
cache configurations that expanded the throughput-cost Pareto frontier more ef-
fectively than random sampling or ESA-only search, while limiting the number of
expensive system evaluations required.

6.2 Distribution Fitting

Accurately modeling storage system performance requires realistic representa-
tions of request inter-arrival and service-time behavior. Commonly used distribu-
tions, such as Exponential or Normal, offer analytical simplicity but fit real storage
workloads poorly, while heavy-tailed alternatives often yield undefined moments
or unstable models. We addressed this gap by systematically evaluating which
distributions both fit real storage workloads well and remain suitable for practical
performance modeling [140].

We analyzed over 250 block-layer storage traces spanning five workload fam-

69

CHAPTER 6. VISUAL ANALYTICS AND PERFORMANCE MODELING

ilies and evaluated twenty widely used distributions using multiple goodness-
of-fit and complexity metrics, including (1?), Jensen-Shannon divergence, log-
likelihood, AIC, and BIC. Across workloads and metrics, a two-phase Hyper-
exponential distribution consistently provided the most accurate and robust fit,
outperforming commonly used alternatives while avoiding overfitting. Unlike
many heavy-tailed distributions that fit individual traces well but fail to general-
ize, the Hyper-exponential captured both burstiness and long-tail behavior across
diverse storage systems with a small number of parameters.

The structure of the Hyper-exponential distribution enabled exact Markov-
chain—based performance models that are not feasible with most other fitted dis-
tributions. Using H2/H2/1 queuing models, we predicted mean response time for
real mobile storage traces with a median error of 17.5%, compared to 48.8% for
Exponential-based models. This modeling approach supported efficient what-if
analyses of storage behavior, including workload variability, flash-induced delays,
and transient load spikes, without requiring costly system experimentation.

70

Chapter 7
Proposed Work

We introduce the proposed work in this section to describe the specific research
tasks and methodologies we plan to incorporate into the thesis. This section ex-
plains two main proposed works: CXL-based migration and tiered-memory mi-
gration.

Proof-of-concept prototype In this thesis proposal, we plan to extend QEMU
to enable live VM migration using both CXL and tiered memory. As a proof-
of-concept, we implemented a QEMU prototype that migrates over CXL using
QEMU’s native channel interface and transparently tiers guest memory in a CXL
Type 3 device that is shared by both machines.

Our prototype requires two host machines to be sharing a CXL Type 3 de-
vice in DAX mode. It utilizes the standard pre-copy algorithm (QEMU’s default
option), which still includes dirty page tracking and the retransmission of dirtied
pages. We designed a QEMU channel inspired by the SOSP 2025 paper Oasis,
consisting of decoupled control and data path structures [165]. Both structures
are stored on the shared CXL device: the control path consists of a fixed-size ring
buffer that is stored at the beginning of the device and is immediately followed
by the data buffers. Each control slot in the ring buffer contains the offset of the
payload, along with a control bit to indicate that it is ready to be accessed by the
destination machine (i.e., the stores to both the control slot and corresponding data
buffer are 100% complete).

Data transfers over the CXL device work as follows: For every chunk of data
needed to be migrated, the source machine stores the payload in the next available
data buffer and the pointer to that payload in the next available control slot of the
ring buffer. After both stores are complete, the source machine flips the control

71

CHAPTER 7. PROPOSED WORK

bit of the control slot it just accessed. Meanwhile, the destination machine has a
dedicated polling thread that is separate from the main QEMU thread. This thread
constantly polls on the ring buffer, checking for when the next slot is ready to
be accessed. When it detects a control bit has been flipped, it notifies the main
thread by incrementing an event £d. The destination’s main QEMU thread then
accesses the payload and flips the corresponding control bit.

Since CXL 2.0 does not implement coherent sharing, which is introduced in
CXL 3.0, both machines must carefully coordinate to manage coherency. For the
source machine, store instructions may remain in local CPU caches rather than
being stored in CXL memory. Therefore, they must issue a flush instruction for
every cache line they modify. In addition, after all stores to the data buffer and
corresponding control slot are complete, they must issue a fence instruction to
ensure proper ordering before the control bit is flipped. Likewise, when the reader
issues a load instruction, any cache lines that reside in their local CPU caches
will be read rather than the relevant data stored on the CXL device. The reader
must also issue flush and fence instructions to invalidate these stale cache lines,
ensuring data is loaded from the CXL device. Managing coherency in this way
adds a small amount of overhead.

We have gained access to servers with CXL hardware through a collabora-
tion with Microsoft Azure. Simple benchmarks revealed that we could achieve
23.53GB/s throughput on a x8 CXL link in one direction. This was reduced by
approximately 9.6% to 21.27 GB/s when we flushed and fenced every 64-byte
cache line. These results are consistent with those in the literature (see Chap-
ter 2.3).

While CXL bandwidth can technically be realized in both directions since
PCle supports bi-directional transfers, it is unlikely that we would achieve this
performance in practice due to the coordination required between hosts when
managing coherency. In the worst case, the destination machine would have to
wait for the source machine to completely finish writing all of its data to the CXL
device before it accessed it, effectively cutting the bandwidth in half. A more re-
alistic approach involves transferring data in chunks so that both machines can be
actively transferring data as much as possible.

While bandwidth may be somewhat reduced by the overhead of managing
coherency, CXL can still achieve much greater bandwidth than RDMA via inter-
leaving across multiple lanes and devices. CXL servers typically employ multiple
CXL devices, providing up to 64 lanes in total on current production systems such
as Intel Xeon 6 (Granite Rapids) [124, 70, 106, 107]. By default, the CPU inter-
leaves memory accesses at a 256-byte granularity, effectively combining the band-

72

CHAPTER 7. PROPOSED WORK

width of multiple CXL devices to achieve approximately 240GB/s [165]. In com-
parison, we measured approximately 11GB/s using RDMA write over 100Gbps
between Mellanox ConnectX-5 and Mellanox ConnectX-6 Ex RNICs. This re-
flects a fair comparison between 100Gbps RDMA and PCle 5.0 CXL configura-
tions, demonstrating that CXL can enable significantly higher bandwidth, making
it a stronger candidate for live VM migration.

CXL-based migration We first propose to implement a CXL-based migration
method that improves on our prototype, eliminating the overhead of the native
QEMU channel interface while removing the need for both dirty-page tracking
and the retransmission of dirtied pages. In traditional migration, pages that are
re-dirtied by the guest VM on the source machine after they are initially copied to
the destination machine must be retransmitted in the next iteration of the pre-copy
phase (see Chapter 2.1). The core reason for this is that the destination machine
does not have direct access to the local memory of the source machine (i.e., mem-
ory must be transferred over the network). We can overcome this limitation by
exploiting the fact that both machines can access pages directly from the shared
CXL device after they are transferred only once.

Our proposed migration method is inspired by Grapentin et al.’s work on
POWERD9-based disaggregated migration [46]. We propose to extend their work
to CXL and explore ways to improve on their techniques. Our method of migra-
tion will consist of three phases:

Phase 1: The first phase involves the source machine transferring all of the
VM’s memory pages to the shared CXL device. During this phase, the VM is
active and can freely access all pages. Traditional migration marks the entire
guest VM’s memory space as read-only, faulting on all writes so that it can track
which pages have been dirtied, and then iterating numerous times while retrans-
mitting dirtied pages. Instead, we iterate over every page a single time, issuing
amprotect (), amemcpy (), and then a mmap () with the MAP_FIXED ar-
gument. This effectively marks the page as read-only for the very brief duration
of the memcpy. The call to mmap () with MAP_FIXED remaps the hypervisor’s
pointer for the guest’s page to point to the CXL device rather than the source ma-
chine’s local DRAM. The active guest VM can then write to this page since it is
stored in CXL memory and has not been marked as read-only. In the unlikely
event that the guest accesses that page in this brief window of time, it will trig-
ger an interrupt. As a base method, we will implement an empty signal handler
that captures the fault and does nothing, which simply signals the machine to try

73

CHAPTER 7. PROPOSED WORK

the access again. We plan to explore if there are better ways to utilize the signal
handler, such as tracking these pages to assist in tiering decisions.

Phase 2: The second phase begins once all pages have been transferred to
CXL. At this point, the VM is paused and the remaining memory contents such
as VCPU states and device states are transferred to CXL. After this is complete,
the destination machine can immediately resume execution of the guest VM by
directly accessing the shared CXL memory.

Phase 3: The final phase consists of a tiering decision by the destination ma-
chine. It can leave all of the pages in CXL, or launch background thread(s) that
copy some or all pages from CXL to local DRAM. This phase also offers a unique
opportunity to make more intelligent decisions on which pages to migrate.

Our migration strategy is designed to significantly reduce total migration time,
limit blackout duration, and minimize data transfers between machines. In addi-
tion, we will implement custom RAM handlers that use direct load/store seman-
tics, avoiding the overhead of QEMU’s native channel interface. This design will
enable scalable performance as the number of CXL devices and PCle lanes in-
creases, delivering substantially higher throughput than traditional network-based
methods such as RDMA.

Tiered-memory migration Our second proposal is to implement tiered-memory
migration in QEMU. Tiering memory with CXL has been shown to substantially
increase memory capacity with minimal performance impact, improving resource
utilization while maintaining near-DRAM performance (see Chapter 3.4). The
benefits of tiered-memory migration are both straightforward and significant. By
tiering some amount of guest memory in a CXL device that is shared by both the
source and destination machines, this memory does not need to actually be trans-
ferred during live migration. Directly reducing the amount of data transferred
leads to a proportional reduction in total migration time, which should roughly
match the percentage of memory that is tiered.

We plan to implement tiering in a way that is entirely managed within the
hypervisor and completely transparent to the guest VM. The guest will see both
memory sources as a single device, unaware of whether pages are backed by lo-
cal DRAM or remote CXL memory. QEMU currently supports backing guest
system RAM entirely from a memory-backed file, but does not support tiering of
different types of memory (i.e., tiering local heap RAM and CXL memory). The
implementation requires new data structures for tiered memory, mechanisms to
migrate them without moving the data, and precise coordination of CXL memory

74

CHAPTER 7. PROPOSED WORK

pointers between both machines.

Our base design will naively place some portion of the guest memory on the
CXL device. We consider this approach to be adequate for demonstrating the
benefits of tiered-memory migration. However, we believe there are many oppor-
tunities to more intelligently tier guest memory as well as migrate that memory
(see Chapter 8). Ultimately, tiered-memory migration offers a simple yet power-
ful way to reduce migration time and memory movement without compromising
guest performance.

Evaluation plan Our evaluation will include experiments run on Microsoft Azure’s
CXL hardware, consisting of two physical servers sharing a Type 3 memory ex-
pansion device. If possible, we will also experiment with their servers that in-
terleave across multiple CXL devices to demonstrate CXL’s superior bandwidth
capabilities.

We will conduct both guest and hypervisor benchmarks. Guest benchmarks
will measure performance metrics from applications running inside the VMs, such
as the throughput of a database before, during, and after migration. We plan to test
a variety of applications: a database (MySQL), a key-value store (LevelDB), and a
web server (Apache). Hypervisor benchmarks will assess the time required to mi-
grate a VM from one server to another, the duration of any pause in VM execution
during migration, and the total amount of data transferred between servers.

We will compare CXL-based migration to both TCP- and RDMA-based mi-
gration, with and without tiering. Additionally, we will evaluate hybrid approaches
with tiering, where tiered memory resides on CXL but local memory is migrated
using TCP or RDMA. We believe there are still workloads and system configu-
rations where this could be beneficial, such as when the available RDMA hard-
ware is more advanced than the CXL hardware and when the guest workload is
relatively idle, resulting in minimal dirty page activity and retransmission over-
head. Together, these experiments will provide a comprehensive understanding of
the trade-offs between migration strategies and highlight the practical benefits of
CXL and tiered memory in real-world scenarios.

75

Chapter 8

Future Work

In this chapter, we discuss potential future work that extends beyond the scope of
this thesis. These future directions focus on intelligent page placement for CXL-
based migration and CXL-aware multi-VM placement to enhance performance,
scalability, and energy efficiency.

Migration with intelligent page placement Page placement is the process of
deciding which pages reside in each memory tier. In this work, we propose to im-
plement tiered migration with a naive page-placement baseline (see Chapter 7):
CXL remote memory is simply used to expand the memory capacity of the guest
VM, and no techniques are applied to actively manage placement across tiers.
Because CXL memory has roughly twice the latency of local DRAM (see Chap-
ter 3.4), minimizing accesses to it is critical for performance. Prior studies show
that with effective placement, CXL can expand capacity while keeping latency-
sensitive workloads within a few percent of DRAM performance [92, 164, 151,
86]. However, these studies focus on placement managed by the host operating
system or hardware, whereas in our design the hypervisor is responsible for man-
aging the guest’s memory tiering.

Our implementation presents some unique opportunities for collecting useful
placement information during migration. There is a very brief window during the
one-time copy when a page fault can occur if the guest VM accesses a page that
is currently being copied. While our CXL-based migration does not require dirty-
page tracking to ensure a complete transfer, we can still record these faults as hints
for future placement. Pages that trigger faults are likely to be accessed again and
should be promoted to the fastest tier, local DRAM.

In the final migration phase, the destination host decides whether to copy

76

CHAPTER 8. FUTURE WORK

memory staged on the CXL device into DRAM. Using the hints gathered ear-
lier, we can prioritize transferring hot pages into DRAM, reducing the likelihood
of expensive future accesses to CXL memory. In general, it is worth exploring
whether placement managed entirely within the hypervisor can be more effective
than techniques that rely on the host operating system or hardware.

Multi-VM placement Multi-VM placement refers to deciding where groups of
virtual machines should run so that service-level objectives (SLOs) are met while
resources are used efficiently. Future work can examine how CXL might improve
multi-VM placement in clusters that balance performance targets with operational
goals. Prior studies emphasize availability as the primary objective, defined as
the probability that a service remains operational and able to meet its SLOs, and
show how cluster-level placement decisions influence a system’s ability to sustain
required uptime and meet service targets [85, 4].

Placement models can be extended to reason about hosts that share access to
a CXL memory pool. When hosts share CXL memory, they can migrate VMs
while leaving some portion of their memory resident in the pool, which signifi-
cantly changes cost models for moving many VMs at once. These models could
assign VMs to hosts that share a CXL memory pool while accounting for capacity
limits, contention, and balancing pool usage with load distribution and availability
targets.

Placement policies could also be adapted to co-locate VMs that share datasets
residing on the same CXL memory to reduce data movement and improve ef-
ficiency. At the same time, these policies would need to manage the risks of
over-concentrating workloads within a single memory domain.

Another direction is to study multi-VM placement with energy and thermal
objectives. Energy- and thermal-aware strategies seek to reduce power consump-
tion and cooling requirements while keeping applications within their service
goals [84, 74]. With a CXL shared memory tier, placement decisions must weigh
trade-offs between consolidating workloads onto fewer active hosts to reduce
power usage, allocating each VM’s memory between local DRAM and CXL in
ways that optimize energy efficiency, and controlling the rate of VM rebalancing
across hosts to reduce avoidable energy overhead. Understanding these tradeoffs
requires models that capture how memory placement, host consolidation, and mi-
gration frequency interact to influence both power draw and thermal load. Such
models could guide policies that maximize the energy-saving potential of CXL
while preventing performance degradation in large-scale data centers.

77

Chapter 9

Conclusion

Tiered storage and memory systems combine diverse types of devices, each with
different characteristics, with the objectives of maximizing performance while
minimizing costs. As the configuration space expands and technology continues
to evolve, identifying and exploiting the most effective configurations has become
increasingly challenging. With CXL introducing a shared, byte-addressable mem-
ory tier between hosts, the tiering space grows more complex and requires novel
approaches to realize its benefits. To address this issue, we developed techniques
for evaluating tiered storage and memory systems and for efficiently identifying
promising configurations. We now propose to develop CXL-based live VM mi-
gration techniques that leverage shared memory to minimize data transfer, shorten
blackout periods, and lower overall migration overhead.

We first examined limitations in existing approaches for evaluating tiered stor-
age and memory systems, finding that they often focused on single-tier perfor-
mance and failed to analyze cost versus performance trade-offs. To address this,
we developed a general n-level cache simulator capable of modeling arbitrary
hierarchies and capturing both performance and cost, enabling analysis across
diverse metrics. We then developed a framework for efficiently exploring large
configuration spaces using miss-ratio curves, combining hash-based sampling,
curve simplification, knee detection, and our novel Z-Method to identify promis-
ing configurations more quickly. To support analysis at scale, we also developed
visual analytics and workload modeling techniques that enable systematic reason-
ing about high-dimensional design spaces and performance behavior derived from
real workloads. These results make it possible to explore the design space more
efficiently and effectively, reveal subtle trade-offs, and provide valuable insights.

We propose two methods for applying tiering to live virtual machine migration

78

CHAPTER 9. CONCLUSION

with CXL. The first is a CXL-based migration method designed to transfer each
memory page only once, thereby eliminating dirty-page tracking and retransmis-
sion. The second is a tiered-memory migration method that allocates guest mem-
ory across DRAM and shared CXL, transferring only the portion stored in DRAM
during migration. Both approaches work to decrease migration time, minimize
service disruption, and reduce overall data transfer requirements versus traditional
techniques.

Our prototype demonstrates the feasibility of live VM migration over CXL
while transparently tiering guest memory in a shared device. It uses QEMU’s na-
tive channel interface and preserves existing migration mechanisms, demonstrat-
ing compatibility with established virtualization frameworks. The design works
on currently available CXL 2.0 hardware by managing coherency in software
with simple, well-defined instructions. Access to Azure CXL servers provides
a production-grade testbed for end-to-end experiments and development, support-
ing the feasibility of our proposal.

It is our thesis that tiered storage and memory systems expose a vast config-
uration space with the potential for significant performance and cost optimiza-
tions. Fully realizing these benefits requires efficient techniques for exploring
and exploiting this space, particularly as the introduction of CXL shared memory
adds new and powerful opportunities for tiering. We plan to design and evaluate
CXL-based migration and tiered-memory migration methods that reduce migra-
tion time, blackout duration, and total data movement.

79

Chapter 10

Acknowledgments

I thank the many collaborators from both industry and academia for their insights,
discussions, and feedback throughout this work. I am also grateful to the under-
graduate and graduate students who assisted with implementation, experimenta-
tion, data collection, and analysis.

This work was made possible in part through support from Microsoft Azure,
Dell-EMC, NetApp, IBM, and Facebook, as well as a SUNY/IBM Alliance award
and a Stony Brook OVPR Seed Grant. Computational resources were provided by
the SeaWulf cluster at the Institute of Advanced Computational Science.

This research was supported by the National Science Foundation under awards
IIS-1527200, CCF-1918225, 1IS-1941613, CNS-1251137, CNS-1302246, CNS-
1305360, CNS-1622832, CNS-1650499, CNS-1729939, CNS-1730726, CNS-
1750109, CNS-1755958, CNS-1900589, CNS-1900706, CNS-1910327, CNS-
1951880, CNS-2106263, CNS-2106434, and CNS-2214980, as well as NSF SBIR
contract 1926949. Additional support was provided by the Office of Naval Re-
search under award N0O0OO14-16-1-2264.

This work was also supported by FCT - Fundagdo para a Ciéncia e Tecnologia,
LI.P., through UIDB/50008/2020-UIDP/50008/2020 (DOI 10.54499/UIDB/50008),
with national funds and, where applicable, co-funded European Union funds.

80

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

AccuSim: Accurate simulation of cache replacement algorithms, March
2020.

Charu C. Aggarwal. Outlier Analysis. Springer Publishing Company, In-
corporated, 2nd edition, 2016.

Jeffrey O. Agushaka, Absalom EI-Shamir Ezugwu, Laith Mohammad
Abualigah, Samaher Khalaf Alharbi, and Hamiden Abd El-Wahed Khal-
ifa. Efficient initialization methods for population-based metaheuristic al-
gorithms: A comparative study. Archives of Computational Methods in
Engineering, 2022.

Yanal Alahmad and Anjali Agarwal. Multiple objectives dynamic vm
placement for application service availability in cloud networks. J. Cloud
Comput., 13(1), February 2024.

Waleed Ali, Sarina Sulaiman, and Norbahiah Ahmad. Performance im-
provement of least-recently-used policy in web proxy cache replacement
using supervised machine learning. In SOCO, 2014.

Anandtech: Hardware news and tech reviews since 1997. www.anandtech.
com.

Mario Antunes, Henrique Aguiar, and Diogo Gomes. AL and S methods:
Two extensions for L-method. In 7th International Conference on Future
Internet of Things and Cloud (FiCloud), pages 371-376. IEEE, 2019.

Mario Antunes, Diogo Gomes, and Rui L Aguiar. Knee/elbow estimation
based on first derivative threshold. In Fourth IEEE International Confer-

ence on Big Data Computing Service and Applications (BigDataService),
pages 237-240, Bamberg, Germany, March 2018. IEEE.

81

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mario Antunes, Joana Ribeiro, Diogo Gomes, and Rui L Aguiar. Knee/el-
bow point estimation through thresholding. In 6th IEEE International Con-
ference on Future Internet of Things and Cloud (FiCloud), pages 413-419,
Barcelona, Spain, August 2018. IEEE.

Dulcardo Arteaga, Jorge Cabrera-Gdmez, Jing Xu, Swaminathan Sun-
dararaman, and Ming Zhao. CloudCache: On-demand flash cache man-
agement for cloud computing. In USENIX Conference on File and Storage
Technologies (FAST), 2016.

Adnan Ashraf, Sobia Pervaiz, Waqas Bangyal, Kashif Nisar, Ag Asri
Ag Ibrahim, Joel Rodrigues, and Danda Rawat. Studying the impact
of initialization for population-based algorithms with low-discrepancy se-
quences. Applied Sciences, 11:8190, 09 2021.

Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove
cliffs in cache performance. In IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 64-75, 2015.

Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor
Harchol-Balter. RobinHood: Tail latency aware caching — dynamic reallo-
cation from cache-rich to cache-poor. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

Md Israfil Biswas, Gerard Parr, Sally McClean, Philip Morrow, and Bryan
Scotney. A practical evaluation in openstack live migration of vms using
10gb/s interfaces. In 2016 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pages 346-351, 2016.

Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mPart: Miss-ratio curve
guided partitioning in key-value stores. In Proceedings of the 2018 ACM
SIGPLAN International Symposium on Memory Management (ISMM),
pages 84-95, Philadelphia, PA, June 2018.

Yongtao Cao, Byran J. Smucker, and Timothy J. Robinson. On using the
hypervolume indicator to compare Pareto fronts: Applications to multi-
criteria optimal experimental design. Journal of Statistical Planning and
Inference, 160:60-74, 2015.

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards bet-
ter understanding of black-box auto-tuning: A comparative analysis for

82

BIBLIOGRAPHY

[18]

[19]

[20]

[21]

[22]

[23]

[24]

storage systems. In USENIX Annual Technical Conference, (ATC), pages
893-907, Boston, MA, July 2018.

Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin
Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan,
and Onur Mutlu. Understanding latency variation in modern DRAM chips:
Experimental characterization, analysis, and optimization. In Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science, SIGMETRICS’ 16, pages 323-336,
New York, NY, USA, 2016. ACM.

Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long, Shuigiao Yang,
and Zonghiu Wang. A duplication-aware SSD-based cache architecture
for primary storage in virtualization environment. IEEE Systems Journal,
11(4):2578-2589, December 2017.

Xunchao Chen, Navid Khoshavi, Jian Zhou, Dan Huang, Ronald F. De-
Mara, Jun Wang, Wujie Wen, and Yiran Chen. AOS: Adaptive over-
write scheme for energy-efficient MLC STT-RAM cache. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6, June
2016.

Lerong Cheng, Jinjun Xiong, and Lei He. Non-Gaussian statistical tim-
ing analysis using second-order polynomial fitting. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(1):130-
140, 2008.

Yue Cheng, Aayush Gupta, Anna Povzner, and Ali R. Butt. High perfor-
mance in-memory caching through flexible fine-grained services. In Pro-
ceedings of the 4th Annual Symposium on Cloud Computing, SOCC 13,
New York, NY, USA, 2013. Association for Computing Machinery.

Yuxia Cheng, Wenzhi Chen, Zonghui Wang, Xinjie Yu, and Yang Xiang.
AMC: an adaptive multi-level cache algorithm in hybrid storage systems.
Concurrency and Computation: Practice and Experience, 27(16):4230-
4246, 2015.

Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan, and Abdul-
hameed Alelaiwi. Efficient cache resource aggregation using adaptive

83

BIBLIOGRAPHY

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

multi-level exclusive caching policies. Future Generation Computer Sys-
tems, 86:964 — 974, 2018.

Davide Chicco and Giuseppe Jurman. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classi-
fication evaluation. BMC Genomics, 21, 2020.

Anita Choudhary, Mahesh Chandra Govil, Girdhari Singh, Lalit K.
Awasthi, Emmanuel S. Pilli, and Divya Kapil. A critical survey of live
virtual machine migration techniques. J. Cloud Comput., 6(1), December
2017.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Dy-
nacache: Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015. USENIX
Association.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.
Cliffhanger: Scaling performance cliffs in web memory caches. In 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 379-392, Santa Clara, CA, March 2016. USENIX Asso-
ciation.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of
virtual machines. In Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2, NSDI’05, page
273-286, USA, 2005. USENIX Association.

Compute Express Link Consortium. Compute express link (cxl). https:
//computeexpresslink.org/, 2025. Accessed: 2025-07-27.

CXL Consortium Technical Task Force. Compute Express Link
2.0 Specification Now Available! https://computeexpresslink.org/blog/
compute-express-link-2-0-specification-now-available-2374/, December 2020.
Accessed: 2025-07-27.

Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An in-
troduction to the compute express link (cxl) interconnect. ACM Comput.
Surv., 56(11), July 2024.

84

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money
for nothing: Speeding up evolutionary algorithms through better initial-
ization. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15. ACM, July 2015.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56(2):74-80, February 2013.

Dinero IV trace-driven uniprocessor cache simulator. http://pages.cs.wisc.
edu/~markhill/Dinerol V/.

Nosayba El-Sayed, loan A. Stefanovici, George Amvrosiadis, Andy A.
Hwang, and Bianca Schroeder. Temperature management in data centers:
Why some (might) like it hot. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS’12, pages 163-174,
New York, NY, USA, 2012. ACM.

Tyler Estro, Mario Antunes, Pranav Bhandari, Anshul Gandhi, Geoff Kuen-
ning, Yifei Liu, Carl Waldspurger, Avani Wildani, and Erez Zadok. Guid-
ing simulations of multi-tier storage caches using knee detection. In 31st
Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems (MASCOTS ’23), Stony
Brook, NY, October 2023. IEEE Computer Society.

Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. Desper-
ately seeking ... optimal multi-tier cache configurations. In Proceedings
of the 12th USENIX Workshop on Hot Topics in Storage (HotStorage ’20),
Boston, MA, July 2020. USENIX.

Roja Eswaran, Mingjie Yan, and Kartik Gopalan. Template-aware live mi-
gration of virtual machines. In Proceedings of the Eighth ACM/IEEE Sym-
posium on Edge Computing, SEC °23, page 336-340, New York, NY, USA,
2024. Association for Computing Machinery.

Diogo Freitas, Luiz Guerreiro Lopes, and Fernando Morgado Dias. Particle
swarm optimisation: A historical review up to the current developments.
Entropy, 22, 2020.

Jianyu Fu, Dulcardo Arteaga, and Ming Zhao. Locality-driven MRC con-
struction and cache allocation. In Proceedings of the 27th International

85

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’18, pages 19-20, New York, NY, USA, 2018. ACM.

M. Garcia-Arnau, D. Manrique, J. Rios, and A. Rodriguez-Pat6n. Initializa-
tion method for grammar-guided genetic programming. Knowledge-Based
Systems, 20(2):127-133, 2007. Al 2006.

Patrice Godefroid and Sarfraz Khurshid. Exploring very large state spaces
using genetic algorithms. In Joost-Pieter Katoen and Perdita Stevens, ed-
itors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 266-280, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

Ron Goldman. Curvature formulas for implicit curves and surfaces. Com-
puter Aided Geometric Design, 22(7):632—658, October 2005.

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung.
Direct access, High-Performance memory disaggregation with DirectCXL.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
287-294, Carlsbad, CA, July 2022. USENIX Association.

Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze,
Michele Gazzetti, and Christian Pinto. Zero-Copy, Minimal-Blackout Vir-
tual Machine Migrations Using Disaggregated Shared Memory. In Jodo
Bispo, Sotirios Xydis, Serena Curzel, and Luis Miguel Sousa, editors,
15th Workshop on Parallel Programming and Run-Time Management Tech-
niques for Many-Core Architectures and 13th Workshop on Design Tools
and Architectures for Multicore Embedded Computing Platforms (PARMA-
DITAM 2024), volume 116 of Open Access Series in Informatics (OASIcs),
pages 3:1-3:13, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik.

Wei Lin Guay, Sven-Arne Reinemo, Bjgrn Dag Johnsen, Chien-Hua Yen,
Tor Skeie, Olav Lysne, and Ola Tgrudbakken. Early experiences with live
migration of sr-iov enabled infiniband. Journal of Parallel and Distributed
Computing, 78:39-52, 2015.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at scale.
In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,

86

BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

page 202-215, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. ElMem:
Towards an elastic memcached system. In Proceedings of the 38th IEEE

International Conference on Distributed Computing Systems, pages 278—
289, Vienna, Austria, 2018.

Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. ElMem:
Towards an elastic memcached system. In Proceedings of the 38th IEEE

International Conference on Distributed Computing Systems, pages 278—
289, Vienna, Austria, 2018.

Alireza Haghdoost. Sim-ideal, Dec 2013. https://github.com/arh/sim-ideal/
tree/master.

Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bian-
chini, and Kathryn S. McKinley. Few-to-many: Incremental parallelism for
reducing tail latency in interactive services. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’15, pages 161-175, New York,
NY, USA, 2015. ACM.

Raseena M. Haris, Mahmoud Barhamgi, Armstrong Nhlabatsi, and
Khaled M. Khan. Optimizing pre-copy live virtual machine migration in

cloud computing using machine learning-based prediction model. Comput-
ing, 106(9):3031-3062, July 2024.

Lulu He, Zhibin Yu, and Hai Jin. FractalMRC: Online cache miss rate curve
prediction on commodity systems. In IEEE 26th International Parallel and
Distributed Processing Symposium, pages 1341-1351, 2012.

Qinlu He, Pengze Gao, Fan Zhang, Genqing Bian, Weiqi Zhang, and Zhen
Li. Design and optimization of a distributed file system based on rdma.
Applied Sciences, 13(15), 2023.

John H. Holland. Adaptation in Natural and Artificial Systems. The MIT
Press, 1992.

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and
Zhenlin Wang. Kinetic modeling of data eviction in cache. In 2016 USENIX

87

BIBLIOGRAPHY

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Annual Technical Conference (USENIX ATC 16), pages 351-364, Denver,
CO, June 2016. USENIX Association.

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen
Ding, and Chencheng Ye. Fast miss ratio curve modeling for storage cache.
ACM Transactions on Storage (TOS), 14:12:1-12:34, 2018.

Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda. High perfor-
mance virtual machine migration with rdma over modern interconnects. In
2007 IEEE International Conference on Cluster Computing, pages 11-20,
2007.

Wei Huang, Jiuxing Liu, Matthew Koop, Bulent Abali, and Dhabaleswar
Panda. Nomad: migrating os-bypass networks in virtual machines. In Pro-
ceedings of the 3rd International Conference on Virtual Execution Environ-
ments, VEE 07, page 158-168, New York, NY, USA, 2007. Association
for Computing Machinery.

Khaled Z. Ibrahim, Steven Hofmeyr, Costin lancu, and Eric Roman. Op-
timized pre-copy live migration for memory intensive applications. In SC
"11: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-11, 2011.

C. Isci, J. Liu, B. Abali, J. O. Kephart, and J. Kouloheris. Improving server
utilization using fast virtual machine migration. IBM Journal of Research
and Development, 55(6):4:1-4:12, 2011.

Dr. Shaily Jain and Nitin Nitin. Memory map: A multiprocessor cache
simulator. Journal of Electrical and Computer Engineering, 2012, 09 2012.

Myeongjae Jeon, Sachoon Kim, Seung-won Hwang, Yuxiong He, Sameh
Elnikety, Alan L. Cox, and Scott Rixner. Predictive parallelization: Taming
tail latencies in web search. In Proceedings of the 37th International ACM

SIGIR Conference on Research & Development in Information Retrieval,
SIGIR’ 14, pages 253-262, New York, NY, USA, 2014. ACM.

N. Jeremic, G. M"uhl, A. Busse, and J. Richling. The pitfalls of deploying
solid-state drive RAIDs. In Proceedings of the 4th Annual International
Conference on Systems and Storage, SYSTOR *11. ACM, 2011.

88

BIBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Changyeon Jo, Hyunik Kim, and Bernhard Egger. Instant virtual machine
live migration. In Karim Djemame, Jorn Altmann, José Angel Banares,
Orna Agmon Ben-Yehuda, Vlado Stankovski, and Bruno Tuffin, editors,
Economics of Grids, Clouds, Systems, and Services, pages 155—170, Cham,
2020. Springer International Publishing.

M. Jung and M. Kandemir. Revisiting widely held SSD expectations and
rethinking system-level implications. In Proceedings of the ACM SIGMET-
RICS/International Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS 13, pages 203-216, New York, NY, USA,
2013. ACM.

Borhan Kazimipour, Xiaodong Li, and A. K. Qin. A review of popula-
tion initialization techniques for evolutionary algorithms. In 2014 IEEE
Congress on Evolutionary Computation (CEC), pages 2585-2592, 2014.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942-1948 vol.4, 1995.

Patrick Kennedy. Lenovo has a cx] memory monster with 128x 128 gb
ddr5 dimms. ServeTheHome, November 2024. Accessed: 2025-07-25.

Ricardo Koller, Akshat Verma, and Raju Rangaswami. Generalized ERSS
tree model: Revisiting working sets. Performance Evaluation, 67:1139—
1154, 2010.

Iwona Kotlarska, Andrzej Jackowski, Krzysztof Lichota, Michal Welnicki,
Cezary Dubnicki, and Konrad Iwanicki. InftyDedup: Scalable and Cost-
Effective cloud tiering with deduplication. In 2/st USENIX Conference on
File and Storage Technologies (FAST 23), pages 33—48, Santa Clara, CA,
February 2023. USENIX Association.

Saku Kukkonen and Jouni Lampinen. Gde3: The third evolution step of
generalized differential evolution. In 2005 IEEE congress on evolutionary
computation, volume 1, pages 443-450. IEEE, 2005.

Vaneet Kumar, Aleem Ali, Payal Mittal, Ibrahim Aqeel, Mohammed
Shuaib, Shadab Alam, and Mohammed Y. Aalsalem. E2svm: Electricity-
efficient sla-aware virtual machine consolidation approach in cloud data
centers. PLOS ONE, 19(6):1-17, 06 2024.

89

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Nikita Lazarev, Varun Gohil, James Tsai, Andy Anderson, Bhushan
Chitlur, Zhiru Zhang, and Christina Delimitrou. Sabre: Hardware-
Accelerated snapshot compression for serverless MicroVMs. In [8th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pages 1-18, Santa Clara, CA, July 2024. USENIX Association.

Scott Levy, Patrick Widener, Craig Ulmer, and Todd Kordenbrock. The
case for explicit reuse semantics for rdma communication. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 879888, 2020.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales
of the tail: Hardware, OS, and application-level sources of tail latency. In

Proceedings of the ACM Symposium on Cloud Computing, SOCC’ 14, pages
9:1-9:14, New York, NY, USA, 2014. ACM.

Miqing Li and Xin Yao. Quality evaluation of solution sets in multiobjec-
tive optimisation: A survey. ACM Comput. Surv., 52(2), March 2019.

Z. Li, M. Chen, A. Mukker, and E. Zadok. On the trade-offs among per-
formance, energy, and endurance in a versatile hybrid drive. ACM Trans-
actions on Storage (TOS), 11(3), July 2015.

Z. Li, M. Chen, and E. Zadok. Greendm: A versatile hybrid drive for
energy and performance. Technical report, Stony Brook University, 2013.
Paper under review.

Z. Li, A. Mukker, and E. Zadok. On the importance of evaluating storage
systems’ $costs. In Proceedings of the 6th USENIX Conference on Hot
Topics in Storage and File Systems, HotStorage’ 14, 2014.

Chieh-Jan Mike Liang, Jie Liu, Ligian Luo, Andreas Terzis, and Feng
Zhao. RACNet: A high-fidelity data center sensing network. In Proceed-
ings of the 7th ACM Conference on Embedded Networked Sensor Systems,
SenSys’09, pages 15-28, New York, NY, USA, 2009. ACM.

Hsu-Cheng Lin, Han-Chiang Chen, and Shun-Chieh Lin. A pre-registered
buffering method for iser-based storage over ip san. In INC2010: 6th In-
ternational Conference on Networked Computing, pages 1-4, 2010.

90

BIBLIOGRAPHY

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Jianpeng Lin, Weiwei Lin, Wentai Wu, Wenjun Lin, and Keqin Li. Energy-
aware virtual machine placement based on a holistic thermal model for
cloud data centers. Future Generation Computer Systems, 161:302-314,
2024.

Jiawei Liu, Gongming Zhao, Hongli Xu, Peng Yang, Baoging Wang, and
Chunming Qiao. Toward a service availability-guaranteed cloud through
vm placement. IEEE/ACM Trans. Netw., 32(5):3993—4008, May 2024.

Jinshu Liu, Hamid Hadian, Hanchen Xu, and Huaicheng Li. Tiered mem-
ory management beyond hotness. In 19th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2025.

Zhang Liu, Hee Won Lee, Yu Xiang, Dirk Grunwald, and Sangtae Ha.
eMRC: Efficient miss rate approximation for multi-tier caching. In /9¢h
USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association, February 2021.

Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-based storage
through reducing write amplification from file systems. In In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST
'13), 2013.

Edson Ramiro Lucas Filho, Lambros Odysseos, Yang Lun, Fu Kebo, and
Herodotos Herodotou. DITIS: A distributed tiered storage simulator. Info-
communications Journal, XIV(4):18-25, December 2022.

Zhongkun Ma and Guy A. E. Vandenbosch. Impact of random number
generators on the performance of particle swarm optimization in antenna
design. In 2012 6th European Conference on Antennas and Propagation
(EUCAP), pages 925-929, 2012.

Rano Mal and Yul Chu. A flexible multi-core functional cache simulator
(FM-SIM). In Proceedings of the Summer Simulation Multi-Conference,
SummerSim 17, San Diego, CA, USA, 2017. Society for Computer Sim-
ulation International.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket
Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury,
Shobhit Kanaujia, and Prakash Chauhan. Tpp: Transparent page placement

91

BIBLIOGRAPHY

[93]

[94]

[95]

[96]

[97]

[98]

[99]

for cxl-enabled tiered-memory. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page 742-755, New
York, NY, USA, 2023. Association for Computing Machinery.

Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger.
Evaluation techniques for storage hierarchies. [IBM Systems Journal,
9(2):78-117, 1970.

Nimrod Megiddo and Dharmendra Modha. ARC: A self-tuning, low over-
head replacement cache. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST ’03), pages 115-130, San Francisco, CA,
March 2003. USENIX Association.

Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. Differentiated
storage services. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 57-70, New York, NY,
USA, 2011. ACM.

Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan, Torsten
Hoefler, and Wolfgang Rehm. Analysis of the memory registration process
in the mellanox infiniband software stack. In Proceedings of the 12th Inter-
national Conference on Parallel Processing, Euro-Par’06, page 124133,
Berlin, Heidelberg, 2006. Springer-Verlag.

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting network
support for rdma. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM °18, page
313-326, New York, NY, USA, 2018. Association for Computing Machin-
ery.

Seyed Jalaleddin Mousavirad, Azam Asilian Bidgoli, and Shahryar Rahna-
mayan. Tackling deceptive optimization problems using opposition-based
DE with center-based Latin hypercube initialization. In 2019 14th Inter-
national Conference on Computer Science & Education (ICCSE), pages
394-400, 2019.

D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practi-
cal power management for enterprise storage. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST 2008), 2008.

92

BIBLIOGRAPHY

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. MSR
Cambridge traces (SNIA IOTTA trace set 388). In Geoff Kuenning, editor,
SNIA IOTTA Trace Repository. Storage Networking Industry Association,
March 2007.

Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura
Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine
Khessib, and Kushagra Vaid. SSD failures in datacenters: What? when?
and why? In Proceedings of the Ninth ACM Israeli Experimental Systems
Conference (SYSTOR ’16), pages 7:1-7:11, Haifa, Israel, May 2016. ACM.

Anant Vithal Nori, Jayesh Gaur, Siddarth Rai, Sreenivas Subramoney, and
Hong Wang. Criticality aware tiered cache hierarchy: A fundamental
relook at multi-level cache hierarchies. In 45th ACM/IEEE Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 96—109, June
2018.

Michael Oberg, Henry M. Tufo, Theron Voran, and Matthew Woitaszek.
Evaluation of RDMA over ethernet technology for building cost effective
linux clusters. In Proceedings of the 7" LCI International Conference on
Linux Clusters: The HPC Revolution, pages 1-13, Norman, Oklahoma,
USA, May 2006. Linux Clusters Institute.

Massachusetts Institute of Technology. DynamoRIO: Dynamic instrumen-
tation tool platform, February 2009. http://www.dynamorio.org/.

Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis,
Andrea Reale, Kostas Katrinis, and H. Peter Hofstee. Thymesisflow:
A software-defined, hw/sw co-designed interconnect stack for rack-scale
memory disaggregation. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 868—880, 2020.

Lenovo Press. ThinkSystem SR860 V3 Server Product Guide
(Form LP1606). https://lenovopress.lenovo.com/servers/thinksystemiASv3/
sr8604ASv3, 2025. Last updated: June 24 2025; Accessed: 2025-07-25.

ASRock Rack. ASRock Rack GNRDS8-2L2T CEB Server Mother-
board (Intel Xeon 6700-series support). https://www.asrockrack.com/general/
productdetail.asp? Model=GNRDS8-2L2T\#Specifications, 2025. Accessed:
2025-07-25.

93

BIBLIOGRAPHY

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M.A. Salama. A
novel population initialization method for accelerating evolutionary algo-
rithms. Computers & Mathematics with Applications, 53(10):1605-1614,
2007.

Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, and Timothy Wood.
Multi-cache: Dynamic, efficient partitioning for multi-tier caches in con-
solidated VM environments. In IEEE International Conference on Cloud
Engineering (IC2E), pages 182—-191. IEEE, April 2016.

Urs Ramer. An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing, 1(3):244-256,
1972.

Mohammad J. Rashti and Ahmad Afsahi. Improving rdma-based mpi eager
protocol for frequently-used buffers. In 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, pages 1-8, 2009.

Waleed Reda, Marco Canini, Dejan Kosti¢, and Simon Peter. RDMA is
turing complete, we just did not know it yet! In /9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 22), pages 71—
85, Renton, WA, April 2022. USENIX Association.

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spi-
vak, Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. Vm live
migration at scale. In Proceedings of the 14th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments, VEE ’18, page
45-56, New York, NY, USA, 2018. Association for Computing Machinery.

R. Salkhordeh, S. Ebrahimi, and H. Asadi. Reca: An efficient reconfig-
urable cache architecture for storage systems with online workload char-
acterization. [EEE Transactions on Parallel and Distributed Systems,
29(7):1605-1620, July 2018.

Stan Salvador and Philip Chan. Determining the number of clusters/seg-
ments in hierarchical clustering/segmentation algorithms. In /6th IEEE
International Conference on Tools With Artificial Intelligence, pages 576—
584. IEEE, 2004.

Ricardo Santana, Steven Lyons, Ricardo Koller, Raju Rangaswami, and
Jason Liu. To ARC or not to ARC. In HotStorage, 2015.

94

BIBLIOGRAPHY

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Find-
ing a “kneedle” in a haystack: Detecting knee points in system behavior.
In 31st International Conference on Distributed Computing Systems Work-
shops, pages 166—171, Minneapolis, MN, June 2011. IEEE.

Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating performance
and energy in file system server workloads. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST ’10), pages 253-266,
San Jose, CA, February 2010. USENIX Association.

Debendra Das Sharma and Siamak Tavallaei. Compute Express Link 1.1
Specification: Now Available to Members. https://computeexpresslink.org/
blog/compute-express-link- 1- 1-specification-now-available-to-members-2339/,
March 2020. Accessed: 2025-07-27.

Xiang Song, Jicheng Shi, Ran Liu, Jian Yang, and Haibo Chen. Paralleliz-
ing live migration of virtual machines. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE 13, page 85-96, New York, NY, USA, 2013. Association
for Computing Machinery.

Carl Staelin and Hector Garcia-molina. Clustering active disk data to im-
prove disk performance. Technical Report CS-TR-298-9, Princeton Uni-
versity, NJ, USA, 1990.

Dragan Stancevic. nilmigration: Nearly instantaneous live migration of vir-
tual machines over cxl. https://nil-migration.org/, September 2022. BoF pre-
sented at Linux Storage, Filesystem, Memory Management & BPF Sum-
mit, May 2023.

R. Storn. On the usage of differential evolution for function optimization.

In Proceedings of North American Fuzzy Information Processing, pages
519-523, 1996.

Supermicro. Supermicro X14 Systems: Max-Performance Servers with
Intel Xeon 6. https://www.supermicro.com/en/products/x14, 2025. Accessed:
2025-07-25.

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3:
Cutting tail latency in cloud data stores via adaptive replica selection. In

95

BIBLIOGRAPHY

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

Proceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation, NSDI’ 15, pages 513-527, Berkeley, CA, USA, 2015.
USENIX Association.

David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm.
RapidMRC: approximating L2 miss rate curves on commodity systems for
online optimizations. ACM Sigplan Notices, 44(3):121-132, 2009.

K.C. Tan, T.H. Lee, and E.F. Khor. Evolutionary algorithms for multi-
objective optimization: performance assessments and comparisons. In Pro-

ceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.0ITH8546), volume 2, pages 979-986 vol. 2, 2001.

Elvira Teran, Zhe Wang, and Daniel A. Jiménez. Perceptron learning for
reuse prediction. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1-12. IEEE, 2016.

Xavier Tolsa. Principal values for the cauchy integral and rectifiability. Pro-
ceedings of the American Mathematical Society, 128(7):2111-2119, 2000.

Thomas Tometzki and Sebastian Engell. Systematic initialization tech-
niques for hybrid evolutionary algorithms for solving two-stage stochastic

mixed-integer programs. I[EEE Transactions on Evolutionary Computation,
15:196-214, 2011.

Tom’s hardware: For the hardcore pc enthusiast. www.tomshardware.com.

Anjul Tyagi, Zhen Cao, Tyler Estro, Klaus Mueller, and Erez Zadok. ICE:
Interactive configuration explorer for high dimensional categorical parame-
ter spaces. In IEEE Conference on Visual Analytics Science and Technology
(VAST 2019), October 2019.

Anjul Tyagi, Tyler Estro, Geoff Kuenning, Erez Zadok, and Klaus Mueller.
PC-Expo: A metrics-based interactive axes reordering method for parallel
coordinate displays. IEEE Transactions on Visualization and Computer
Graphics, October 2022.

Musa Unal, Vishal Gupta, Yueyang Pan, Yujie Ren, and Sanidhya Kashyap.
Tolerate it if you cannot reduce it: Handling latency in tiered memory. In
Proceedings of the 2025 Workshop on Hot Topics in Operating Systems,

96

BIBLIOGRAPHY

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

HotOS 25, page 50-57, New York, NY, USA, 2025. Association for Com-
puting Machinery.

UserBenchmark. www.userbenchmark.com.

Nguyen Quang Uy, Nguyen Xuan Hoai, Rl McKay, and Pham Minh Tuan.
Initialising PSO with randomised low-discrepancy sequences: the compar-
ative results. In 2007 IEEE Congress on Evolutionary Computation, pages
1985-1992, 2007.

A. Verma, R. Koller, L. Useche, and R. Rangaswami. SRCMap: Energy
proportional storage using dynamic consolidation. In Proceedings of the
8th USENIX Conference on File and Storage Technologies, FAST’ 10, 2010.

Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami. FIU
traces (SNIA IOTTA trace set 390). In Geoff Kuenning, editor, SNIA IOTTA
Trace Repository. Storage Networking Industry Association, March 2009.

Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons,
Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. Driv-
ing cache replacement with ML-based LeCaR. In Proceedings of the 10th
USENIX Workshop on Hot Topics in Storage (HotStorage ’18), Boston,
MA, July 2018. USENIX.

Muhammad Wajahat, Aditya Yele, Tyler Estro, Anshul Gandhi, and Erez
Zadok. Analyzing the distribution fit for storage workload and internet
traffic traces. Performance Evaluation, pages 102—-121, 2020.

Carl A. Waldspurger, Nohhyun Park, Alex Garthwaite, and Irfan Ahmad.
Efficient MRC construction with SHARDS. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST ’15), Santa
Clara, CA, February 2015. USENIX Association.

Carl A. Waldspurger, Trausti Saemundson, Irfan Ahmad, and Nohhyun
Park. Cache modeling and optimization using miniature simulations. In
Proceedings of the 2017 USENIX Annual Technical Conference (ATC ’17),
pages 487-498, Berkeley, CA, USA, 2017. USENIX Association.

Han Wan, Xiaopeng Gao, Xiang Long, and Zhigiang Wang. GCSim: A
GPU-Based Trace-Driven Simulator for Multi-level Cache, pages 177-
190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

97

BIBLIOGRAPHY

[144]

[145]

[146]

[147]

[148]
[149]

[150]

[151]

[152]

Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng. An efficient design and
implementation of multi-level cache for database systems. In DASFAA,
2015.

Marcel Weisgut, Daniel Ritter, Pinar Tozun, Lawrence Benson, and
Tilmann Rabl. Cxl memory performance for in-memory data processing.
Proceedings of the VLDB Endowment, 18(9):3119-3133, 2025.

Wikipedia contributors. Compute Express Link. https://en.wikipedia.org/
wiki/Compute_Express_Link, 2025. Wikipedia, accessed 2025-07-27.

A. Wildani, E. L. Miller, and L. Ward. Efficiently identifying working
sets in block I/O streams. In Proceedings of the 4th Annual International
Conference on Systems and Storage, SYSTOR 11, pages 5:1-5:12. ACM,
2011.

John Wilkes. The Pantheon storage-system simulator, 1996.

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and
Andrew Warfield. Characterizing storage workloads with counter stacks.
In Proceedings of the 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2014), Broomfield, CO, October 2014.
USENIX Association.

Jiesheng Wu, P. Wyckoff, D. Panda, and R. Ross. Unifier: unifying cache
management and communication buffer management for pvfs over infini-

band. In IEEE International Symposium on Cluster Computing and the
Grid, 2004. CCGrid 2004., pages 523-530, 2004.

Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. Nomad: non-exclusive memory tiering via transactional
page migration. In Proceedings of the 18th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’24, USA, 2024. USENIX
Association.

Jun Xiao, Yaocheng Xiang, Xiaolin Wang, Yingwei Luo, Andy Pimentel,
and Zhenlin Wang. Floria: A fast and featherlight approach for predicting
cache performance. In Proceedings of the 37th ACM International Confer-
ence on Supercomputing, ICS °23, page 25-36, New York, NY, USA, 2023.
Association for Computing Machinery.

98

BIBLIOGRAPHY

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bob-
tail: Avoiding long tails in the cloud. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (NSDI ’13),
pages 329-342, Berkeley, CA, USA, 2013. USENIX Association.

Jian Yang, Joseph Izraelevitz, and Steven Swanson. FileMR: Rethink-
ing RDMA networking for scalable persistent memory. In /7th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 111-125, Santa Clara, CA, February 2020. USENIX Association.

Juncheng Yang. PyMimircache. https://github.com/1alal la/PyMimircache.
Retrieved April 17, 2019.

Juncheng Yang, Reza Karimi, Trausti Semundsson, Avani Wildani, and
Ymir Vigfusson. MITHRIL: mining sporadic associations for cache
prefetching. CoRR, abs/1705.07400, 2017.

Juncheng Yang, Reza Karimi, Trausti Semundsson, Avani Wildani, and
Ymir Vigfusson. Mithril: Mining sporadic associations for cache prefetch-
ing. In Proceedings of the 2017 Symposium on Cloud Computing, SoCC
17, pages 6679, New York, NY, USA, 2017. ACM.

Guo Yu, Lianbo Ma, Yaochu Jin, Wenli Du, Qiqi Liu, and Hengmin Zhang.
A survey on knee-oriented multiobjective evolutionary optimization. /EEE
Transactions on Evolutionary Computation, 26(6):1452—-1472, December
2022.

Guohui Zhang, Liang Gao, and Yang Shi. An effective genetic algorithm
for the flexible job-shop scheduling problem. Expert Systems with Appli-
cations, 38(4):3563-3573, 2011.

Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal data
placement for heterogeneous cache, memory, and storage systems. In Pro-
ceedings of the ACM SIGMETRICS/International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS °20, 2020.

Weida Zhang, King Tin Lam, and Cho Li Wang. Adaptive live vim migra-
tion over a wan: Modeling and implementation. In 2014 IEEE 7th Interna-
tional Conference on Cloud Computing, pages 368-375, 2014.

99

BIBLIOGRAPHY

[162]

[163]

[164]

[165]

[166]

Xinyu Zhang, Mdrio Antunes, Tyler Estro, Erez Zadok, and Klaus Mueller.
Smart starts: Accelerating convergence through uncommon region explo-
ration. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’25 Companion, pages 547-550, New York,
NY, USA, 2025. Association for Computing Machinery.

Xinyu Zhang, Tyler Estro, Geoff Kuenning, Erez Zadok, and Klaus
Mueller. Into the Void: Mapping the Unseen Gaps in High Dimensional
Data . IEEE Transactions on Visualization & Computer Graphics, (01):1—
13, May 2025.

Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar
Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,
Mosharaf Chowdhury, and Asaf Cidon. Managing memory tiers with CXL
in virtualized environments. In /8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pages 37-56, Santa Clara,
CA, July 2024. USENIX Association.

Yuhong Zhong, Daniel S. Berger, Pantea Zardoshti, Enrique Suarez, Jacob
Nelson, Dan R. K. Ports, Antonis Psistakis, Joshua Fried, and Asaf Cidon.
Oasis: Pooling pcie devices over cxl to boost utilization. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), October
2025. To appear.

Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and Michael A.
Kozuch. Saving cash by using less cache. In Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Computing, HotCloud 12,
page 3, USA, 2012. USENIX Association.

100

