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 A B S T R A C T

Identifying knee and elbow points in performance curves is a critical task in various domains, including 
machine learning and system design. These points represent optimal trade-offs between cost and performance, 
facilitating efficient decision-making and resource allocation. However, accurately determining the knees and 
elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse, an open-
source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established 
knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends 
these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach. 
Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee 
detection.
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. Motivation and significance

Identifying knee and elbow points in performance curves is crit-
cal for efficient decision making and resource allocation in various 
omains, including Machine Learning (ML) and systems design. For 
xample, Yao et al. used knee detection to identify optimal controller 
arameters, maximizing performance while minimizing resource con-
umption [1]. In multi-objective optimization, targeting knee points on 
he Pareto front [2] improves efficiency and accuracy by focusing on 
he most optimal trade-offs.

∗ Corresponding author.
E-mail address: mario.antunes@av.it.pt (M. Antunes).

Although the terms ‘‘knee’’ and ‘‘elbow’’ are sometimes used inter-
changeably to refer to inflection points, a distinction is often made. 
A knee signifies a downward bend in the curve (negative concavity), 
whereas an elbow indicates an upward bend (positive concavity). For 
simplicity, we use ‘‘knee’’ to refer to both types of points, since our 
library handles both equally well.

A knee point is typically defined as the point with maximum cur-
vature. For continuous functions, curvature can be defined mathemat-
ically as in Eq.  (1), where 𝑓 (𝑥) represents a specific instance of a 
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Fig. 1. Clustering the Iris dataset using the elbow method.

parameterized curve and 𝑥 denotes the parameter along the curve. 

𝐾𝑓 (𝑥) =
𝑓 ′′(𝑥)

(1 + 𝑓 ′(𝑥)2)
3
2

(1)

However, in most real-world scenarios, we work with discrete sets 
of points instead of continuous functions, which prohibits direct ap-
plication of the curvature equation [3]. As such, most knee-detection 
algorithms were developed to operate on discrete datasets. Several 
methods exist that utilize the curvature of a discrete sequence to 
identify knees: Menger curvature [3], 𝐿-method [4], Kneedle [5], and 
Dynamic First Derivative Thresholding (DFDT) [3].

Due to the importance and utility of knee detection we introduce 
Kneeliverse, a comprehensive, open-source library designed for univer-
sal knee detection. The library provides reference implementations of 
the most well-known knee-detection methods. In addition, Kneeliverse 
offers recent methods specifically designed for multi-knee detection.

In the concrete example of cluster analysis, finding the optimal 
number of clusters in distinct datasets poses a challenging, yet essential 
task. (e.g., K-means [6]). A popular approach, typically called the
elbow method [7], involves finding knees using within-cluster dispersion 
curves. According to this method, the number of clusters is found by 
plotting the explained variation as a function of the number of clusters, 
and then choosing the cluster count that matches the elbow in that 
curve. The same method can be used to choose various parameters in 
other data-driven models, such as the number of principal components 
needed to describe a dataset.

To illustrate this application, consider clustering the Iris dataset [8], 
which consists of 50 samples from each of three species of Iris plants 
(Setosa, Virginica, and Versicolor). Four features were measured for 
each sample: the lengths and widths, in centimeters, of the sepals and 
petals. This dataset has been widely used as an example dataset for 
classification and clustering problems.1

Fig.  1(a) plots the resulting clusters from the Iris dataset, where each 
color represents a different cluster. Six clusters were selected through 
the elbow method [7], as depicted in Fig.  1(b).

The quality of the clusters (computed with a centroid-based method, 
such as K-Means) can be measured with the Within-Cluster Sum of 

1 https://scikit-learn.org/stable/datasets/toy_dataset.html

Squares (WCSS), defined as the sum of the squared distance between 
the average point (i.e., the centroid) and each point of the cluster 

𝑊𝐶𝑆𝑆 =
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2
)

, (2)

where 𝑘 is the number of clusters, 𝐶𝑖 is the 𝑖th cluster, 𝑥 is a data point 
in cluster 𝐶𝑖, and 𝜇𝑖 is the centroid (mean) of cluster 𝐶𝑖. The blue curve 
in Fig.  1(b) represents the WCSS measure and the orange line represents 
the knee as selected by the Kneedle algorithm [5].

Conversely, multi-knee scenarios involve curves with several inflec-
tion points. The previous definition for a single knee point (see Eq. (1)) 
cannot be directly applied to detect these multi-knee points [9]. To 
address this, we propose a procedure to detect multi-knee points. Our 
procedure segments the functions after identifying the knee point, and 
recursively evaluates each new segment (see Definition  1).

Definition 1.  An admissible algorithm for finding multi-knee points, 
acting on discrete function , is a recursive procedure that takes as 
input a subset of  and a linearity threshold 𝜏, and applies the following 
routine. The linearity threshold 𝜏 is a value between [0.0, 1.0] that 
measures how close a subset of points is to a straight line.

 Admissible recursive routine to find multi-knee points
1: function FindMultiKnee(discrete function , left index 𝑥𝑖, right 
index 𝑥𝑗 , linearity threshold 𝜏)

2:  𝑘𝑛𝑒𝑒 = 𝑚𝑎𝑥(𝐾𝐶(𝑥𝑖 ,𝑥𝑗 )) // Find knee 𝑘 in range [𝑥𝑖, 𝑥𝑗 ]
3:  if linearity(𝑥𝑖, 𝑘𝑛𝑒𝑒) ≤ 𝜏 then
4:  𝑘𝑛𝑒𝑒𝑠𝑙𝑒𝑓 𝑡 = FindMultiKnee(C, 𝑥𝑖, 𝑘𝑛𝑒𝑒, 𝜏)
5:  end if
6:  if linearity(𝑘𝑛𝑒𝑒, 𝑥𝑗) ≤ 𝜏 then
7:  𝑘𝑛𝑒𝑒𝑠𝑟𝑖𝑔ℎ𝑡 = FindMultiKnee(C, 𝑘𝑛𝑒𝑒, 𝑥𝑗 , 𝜏)
8:  end if
9:  return 𝑘𝑛𝑒𝑒𝑠𝑙𝑒𝑓 𝑡 + 𝑘𝑛𝑒𝑒 + 𝑘𝑛𝑒𝑒𝑠𝑟𝑖𝑔ℎ𝑡
10: end function

A concrete example of multi-knee detection is to identify ‘‘key 
points’’ in a Miss Ratio Curve (MRC) for cache simulation. A cache’s 
miss ratio is an important predictor of its performance [10]. Recent 
methods, such as Z-Method [9], have been used to efficiently explore 
the design of multi-tier storage caches.
2 
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Fig. 2. Miss ratio curve (MRC) for trace web0, annotated to illustrate several key points: useful ‘‘knees’’ (points A and D), a useless ‘‘cliff’’ (B) and a non-relevant knee point (C).

To illustrate this, we plotted an MRC corresponding to the web0
trace from Microsoft Research in the SNIA public dataset [11]. Intu-
itively, the most promising candidates are points where a little extra 
cache space produces a relatively large drop in the miss ratio; such 
points are often visible as ‘‘knees’’ in the MRC—e.g., points A and D 
in Fig.  2. Note that although B has sharp curvature, it is not as useful 
since B is a ‘‘cliff’’. Finally, although the C point also represents a well-
defined knee, its relevance in the overall trace is lower when compared 
with either A or D.

2. Software description

Kneeliverse [12] is an open-source library for single- and multi-knee 
detection in 2D performance curves. The code is distributed under the 
MIT license and is also available for easy installation via PyPI.2

The library provides reference implementations of the traditional 
single-knee-detection methods Menger, L-Method, Kneedle, and DFDT, 
which offer comparable performance to existing implementations. It 
also offers two recently developed multi-knee-detection methods: an 
extended version of Kneedle, and Z-Method. In addition, it includes a 
novel recursive algorithm capable of using any single-knee-detection 
algorithm for multi-knee detection.

The library also includes pre-processing routines that rely on an im-
proved Ramer-Douglas-Peucker (RDP) curve-simplification algorithm 
and post-processing filters that select and rank the output of a multi-
knee algorithm.

2.1. Architecture

Kneeliverse was written entirely in Python 3 with a minimal number 
of dependencies. It uses NumPy [13], which provides efficient numer-
ical routines for large vectors, as well as pyUTSAlgorithms [14], a 
library that offers vector operations for unevenly spaced sequences of 
points.

A simplified version of Kneeliverse’s pipeline is shown in Fig.  3. 
Depending on the complexity of the curve, one can choose whether 
to apply the pre-processing line simplification method (step A). The 
next step consists of applying either a single-knee or multi-knee de-
tection method (step B). For multi-knee detection, one can use either 
of the two methods specially designed for that purpose (Kneedle or Z-
Method), or alternatively apply the recursive approach that enables a 
single-knee algorithm to find multiple knees. Finally, we can apply the 
post-processing filter to reduce the number of knee candidates (step C).

2 https://pypi.org/project/kneeliverse/

2.1.1. Pre-processing
A curve can contain an arbitrary number of data points. However, 

knee-detection algorithms are prone to smoothing errors [9], as most 
were originally designed to work with small or partial data, such as for 
clustering analysis.

Kneeliverse provides pre-processing methods to reduce the number 
of points in a curve while preserving those that define its shape. 
This reduces the computational costs of subsequent steps while also 
improving knee-detection accuracy.

The RDP algorithm modifies a curve by finding a similar one with 
fewer points [15]. The main drawback of RDP is the need to define 
a threshold, which can be understood as the maximum allowed re-
construction error. We modified the original RDP algorithm to address 
this issue. Instead of a fixed threshold for perpendicular distance, we 
adopted a relevance-based cost metric that measures the difference 
between the fitted line and data points.

2.1.2. Knee-detection methods
Several methods exist for finding single knee points in a curve. 

Menger curvature [5,16] defines the curvature for a sequence of three 
points as the curvature of the circle circumscribed by those points. 
The 𝐿-method [4] fits two straight lines from the head of a curve to 
a candidate point, and from the candidate point to the curve’s tail. 
The candidate that minimizes the Root Mean Square Error (RMSE) 
between the straight lines and the points of the curve is returned as 
the knee point. Similar to the 𝐿-method, DFDT [3,17] tries to identify 
the point where the function has a sharp angle. Instead of fitting two 
straight lines, this method relies on the first derivative of the curve. 
After computing that derivative, a thresholding algorithm is used to 
identify the threshold that separates the derivative values as ‘‘high’’ or 
‘‘low.’’ The knee is then the point with a derivative value that is closest 
to the previously computed threshold. Kneedle [5] uses the point on 
the curve that is furthest away from a line, defined by the head and 
tail points of the curve.

Except for Kneedle, the previously mentioned algorithms were not 
designed to detect multiple knees. Even the original Kneedle has some 
limitations [9]. Thus, we developed a recursive algorithm that can be 
used to adapt any single-knee-detection technique to handle multiple 
knees. The basic idea is to use a single-knee technique to select the 
best knee in a segment. We then split the current segment at that knee, 
and for each new segment check whether it is sufficiently linear. If not, 
we repeat the process recursively.

Finally, we also include our recently developed method Z-Method [9]
which was inspired by the DFDT [17] and DSDT [3] knee-detection 
algorithms. In statistics, z-score (also known as standard score) is a 
3 

https://pypi.org/project/kneeliverse/


M. Antunes et al. SoftwareX 30 (2025) 102161 
Fig. 3. Kneeliverse pipeline. This pipeline offers multiple options for knee detection. It supports three steps: (A) Pre-processing the curve (optional); (B) Applying the selected 
knee algorithm (mandatory) and (C) Post-processing filtering (optional).

Fig. 4. Post-processing methods applied to the web0 trace (subsets of the trace). The 𝑋-axis represents cache size, and the 𝑌 -axis represents miss ratio (lower values indicate 
better performance). (a) Removal of unwanted knees: 𝐾1 is removed since 𝐾0 achieved better performance (lower on the y-axis) at a lower cache size (lower on the x-axis). (b) 
Overlapping rectangles used by the corner-detection algorithm. Cliff point 𝐶 is removed due to the area of the overlapping rectangles created by its adjacent points 𝑃0 and 𝑃1
exceeding the threshold. (c) Clustering and ranking elements. The gray ellipse represents the cluster of knee candidates. The orange candidates are filtered out, while the green 
knee is selected as the best representative. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transformation that normalizes a data value by quantifying how many 
standard deviations away it is from the mean; typically, a point whose 
z-score has an absolute value greater than three is considered an 
outlier [18]. For the purpose of detecting knees, such outliers in the 
second derivative indicate a significant change in the curve’s slope. For 
more details, see [9].

2.1.3. Post-processing
We developed three filters to further reduce and rank the knee 

points. These filters were created due to (1) the differences between 
single- and multi-knee-detection and (2) the large number of points pro-
duced by our recursive strategy with some knee-detection algorithms.

The first filter, shown in Fig.  4(a), removes useless knees. When 
dealing with non-monotonic curves, a knee-detection algorithm can 
incorrectly choose a knee that is above a previously detected one. We 
remove such knees since they are sub-optimal and do not add useful 
information.

The second filter, shown in Fig.  4(b), removes cliff points located af-
ter a smooth, near-horizontal area that precedes a sharp descent. These 
points are found using a corner-detection algorithm that computes the 
overlapping area of two rectangles. The filter computes the percentage 
overlap between these two rectangles, and a knee candidate is removed 
if the overlap exceeds a threshold. Point B in Fig.  2 is a good example 
of a cliff.

The third and final filter, shown in Fig.  4(c), uses a hierarchical 
clustering algorithm to group knees by their distance along the 𝑥-axis, 
using a percentage of the 𝑥 range as a threshold. After creating clusters, 
the knees within each cluster are ranked based on their relevance score, 
computed using two metrics: (i) the improvement given by the knee 
(i.e., how much it decreases on the 𝑦-axis compared to the highest knee 
in the cluster) and (ii) the smoothness of the improvement, computed 
using the coefficient of determination (𝑅2). For each cluster, the knee 
with the highest value of 𝑆 is selected as its representative.

2.2. Functionality

Next we describe Kneeliverse’s main functionality. More complete 
documentation is available online.3

2.2.1. Pre-processing
The pre-processing functionality is in the module knee.rdp. There 

are two variants of the RDP algorithm, where the main difference is in 
how the reconstruction cost is computed (either by segment or on the 
whole curve).

The functions are the following:

3 https://mariolpantunes.github.io/knee/kneeliverse.html
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• rdp: Decimates a curve composed of line segments into a similar 
curve with fewer points. It uses different cost functions to decide 
when to keep or remove a line segment.

• mapping : Computes the reverse of the RDP method. It maps the 
indexes from the simplified curve (using the RDP algorithm) into 
the indexes of the original points, and returns the original 2D 
numpy vector.

2.2.2. Methods
Each knee-detection method is in a separate module with a similar 

interface. In any module, the functions are the following:

• knee: Single-knee detection. This function utilizes the chosen 
knee-detection algorithm to identify the optimal single knee 
point.

• knees: For methods that support native multi-knee detection, this 
function executes the method to identify the existing knees.

• multi_knee: This function is available for knee-detection methods 
that lack native multi-knee support. It employs our recursive 
approach to identify all existing knees.

2.2.3. Post-processing
The functionality for post-processing is contained within a module 

named knee.postprocessing, which provides a set of filters designed to 
improve the quality of the knee candidates. The functions are the 
following:

• filter_worst_knees: Filter the worst knee points. A worse knee is a 
knee that is higher on the 𝑦-axis than a previous one.

• filter_corner_knees: Filter the upper-left corner knee points. An 
upper-left knee corner does not provide a significant improvement 
to be considered.

• filter_clusters: Filter the knee points based on clustering. For each 
cluster, a single point is selected based on a ranking that is 
computed based on the slope and the improvement on the 𝑦-axis.

2.3. Performance comparison

We compared the Kneeliverse’s single-knee detection methods on 
a small, synthetic dataset generated with scikit-learn. Multi-knee eval-
uation is detailed in [19,20]. We measured MAE (average difference 
between the expected knee values and the predicted knee value) and 
runtime (nanoseconds), summarized in Table  1.

DFDT and Kneedle achieved the highest performance (lower MAE), 
with a slight advantage for Kneedle. 𝐿-method and Menger have similar 
performance in this synthetic dataset. When considering execution 
time, the reverse trend was observed.

3. Illustrative examples

This example illustrates the standard workflow employed with this 
library. To demonstrate this, consider the trace initially presented in 
Fig.  2. We developed an example that identifies significant knees in 
the trace. The following is the source code for this example:
#!/usr/bin/env python3

__author__ = ’Mario Antunes’
__version__ = ’1.0’
__email__ = ’mario.antunes@ua.pt’
__status__ = ’Development’
__license__ = ’MIT’
__copyright__ = ’’’
Copyright (c) 2021-2024 Stony Brook University
Copyright (c) 2021-2024 The Research Foundation of SUNY
’’’

import argparse

14 import numpy as np
15 import matplotlib.pyplot as plt
16

17 import kneeliverse.rdp as rdp
18 import kneeliverse.kneedle as kneedle
19 import kneeliverse.postprocessing as pp
20 import kneeliverse.clustering as clustering
21 import kneeliverse.knee_ranking as knee_ranking
22

23

24 def main(args):
25 # Open the input file
26 points = np.genfromtxt(args.i, delimiter=’,’)
27

28 # Apply the global RDP line simplification
29 # algorithm as a pre-processing step (Step A) to
30 # reduce the number of data points while preserving
31 # the essential shape of the data.
32 reduced, removed = rdp.mp_grdp(points,
33 t=0.001, min_points=20)
34 points_reduced = points[reduced]
35

36 # Utilize the Kneedle algorithm to identify all
37 # potential knee points (Step B).
38 knees = kneedle.knees(points_reduced,
39 p=kneedle.PeakDetection.All)
40

41 # Filter the knee candidates using the previously
42 # mentioned post-processing filters (Step C).
43 knees = pp.filter_worst_knees(points_reduced, knees)
44 knees = pp.filter_corner_knees(points_reduced,
45 knees, t=0.33)
46 knees = pp.filter_clusters(points_reduced, knees,
47 clustering.average_linkage,
48 0.05, knee_ranking.ClusterRanking.left)
49

50 # Transform the knee points, represented in the
51 # reduced space, back to their corresponding
52 # locations in the original trace space.
53 knees = rdp.mapping(knees, reduced, removed)
54

55 # Plot the original trace, overlaying the locations
56 # of the final knee points.
57 plt.plot(x, y)
58 plt.plot(x[knees], y[knees], ’o’, markersize=7)
59 plt.show()
60

61

62 if __name__ == ’__main__’:
63 parser = argparse.ArgumentParser(
64 description=’Plot the Multi-Knees using kneedle’)
65 parser.add_argument(’-i’, type=str,
66 required=True, help=’input file’)
67 args = parser.parse_args()
68 main(args)

Code 1: Sample code to estimate the multi-knee points in a complex 
trace.

To gain a clearer understanding of the individual steps outlined in 
Code 1, we have included a sequence of figures depicting the results of 
each step (see Fig.  5).

The source code loads a trace from a CSV file and utilizes the RDP 
algorithm to reduce the number of points in the trace. The original trace 
has approximately 250,000 points, whereas the reconstructed trace 
contains only 20 (see Fig.  5(a)). Following point reduction, the Kneedle 
algorithm is applied (Fig.  5(b)), and the identified knee candidates are 
filtered to remove irrelevant knees (Fig.  5(c)). Finally, the indices of 
the selected knee points are mapped back to the original trace (since 
they were calculated on the reduced trace) and visualized (Fig.  5(d)).
5 
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Table 1
Analysis of the knee detection methods. The performance was measured using MAE and the execution time as measured in nanoseconds.
 Method/ Menger L-method DFDT Kneedle

 #Knees Time Error Time Error Time Error Time Error 
 5 4.23E4 10 4.23E4 3 2.24E5 3 1.20E5 1  
 6 3.90E4 9 3.90E4 4 1.19E5 4 7.26E4 2  
 7 3.46E4 8 3.46E4 4 1.16E5 5 9.09E4 3  
 8 3.16E4 4 3.16E4 5 1.23E5 6 6.92E4 4  
 9 3.18E4 6 3.18E4 5 1.23E5 7 6.91E4 4  
 3.59E4 7.4 3.59E4 4.2 1.41E5 5 8.44E4 2.8  

Fig. 5. A visual representation of each step in a typical pipeline using Kneeliverse, in the web0 trace. 

4. Impact

Kneeliverse is an accessible and well-documented library targeting 
a wide range of applications. We initially developed it to simplify 
configuring and tuning multi-tier caching (MTC) systems, where ex-
ponential configuration growth demands efficient solutions. MTC is 

an important research topic that spans many areas, including VM 
management [21], heterogeneous networks [22], cloud storage [23], 
hardware design [24,25], and data centers [26,27].

In our previous work [9], our Kneeliverse-based framework reduced 
the number of points needed to accurately identify optimal two-tier 
6 
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cache hierarchies for a diverse real-world dataset by an average factor 
of 5.5× for ARC and 7.7× for LRU eviction policies.

Knee detection is widely used in a variety of other domains to 
speed up computation or improve accuracy. Yeh et al. identified knees 
to find the ideal rank of 𝑘-dimensional motifs [28], reducing their 
solution search space. Jiang et al. proposed KT-DMOEA, a knee-based 
transfer learning method for solving dynamic multi-objective opti-
mization problems [29]. Yue et al. developed a knee-based particle 
swarm optimization algorithm to solve sparse reconstruction prob-
lems [30]. In power system optimization, knees help determine the op-
timal number of capacitors to minimize losses and maximize economic 
efficiency [31].

In time series forecasting, finding knees in the objective space can 
guide the search and improve the prediction accuracy [32]. In drug 
combination therapy [33], knees are selected on Pareto fronts gener-
ated by optimization algorithms to identify treatments that optimally 
balance multiple objectives.

In lane detection, knees represent optimal edge detection thresh-
olds for robust performance [34]. In rumination analysis, knee detec-
tion refines the identification of rumination periods in accelerometer 
data [35]. In symmetry detection, they help to determine the optimal 
level of human–machine agreement [36].

Knee detection also optimizes the number of labeling functions in 
data programming systems like Snorkel [37], improves decision-making 
in COVID-19 risk assessment [38], and enhances video streaming qual-
ity by identifying optimal trade-offs between video quality and user 
engagement [39]. In network anomaly detection [40], knees refine 
anomaly detection thresholds for improved accuracy and efficiency.

Finally, several other domains apply knee detection successfully: i) 
evaluating lithium-ion batteries [41–44], ii) network congestion con-
trol [5], iii) structural building modeling [45,46], iv) efficient drainage 
design and water management [47,48]

5. Conclusion

We have developed Kneeliverse, an open-source library that iden-
tifies knee points. Our library caters to a wide range of applications, 
spanning educational, academic, and industrial settings. One promi-
nent use case lies in determining the optimal number of clusters for 
unsupervised learning tasks.

The growing challenge of identifying multiple knee points in highly 
intricate curves has driven the evolution of Kneeliverse. The current 
iteration provides a comprehensive pipeline capable of accurately de-
tecting multiple knees in complex performance curves.
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