
O

K
M
Y
a

b

c

d

e

f

A

K
K
M
O
P

C

1

i
d
e
p
s
t
t

h
R

SoftwareX 30 (2025) 102161

A
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

neeliverse: A universal knee-detection library for performance curves
ário Antunes a ,∗, Tyler Estro b, Pranav Bhandari c, Anshul Gandhi b, Geoff Kuenning e,
ifei Liu b, Carl Waldspurger f, Avani Wildani d,c, Erez Zadok b
Instituto de Telecomunicacoes, Universidade de Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
Stony Brook University, Computer Science Building, Engineering Dr., Stony Brook, 11794, NY, USA
Emory University, Mathematics & Science Center, Suite W401, 400 Dowman Drive, Atlanta, 30322, GA, USA
Cloudflare, 101 Townshend Rd, San Francisco, 94107, CA, USA
Harvey Mudd College, Department of Computer Science, 301 Platt Boulevard, Claremont, 91711, CA, USA
Carl Waldspurger Consulting, Palo Alto, CA, USA

 R T I C L E I N F O

eywords:
nee estimation
ulti-knee estimation
ptimization
ython

 A B S T R A C T

Identifying knee and elbow points in performance curves is a critical task in various domains, including
machine learning and system design. These points represent optimal trade-offs between cost and performance,
facilitating efficient decision-making and resource allocation. However, accurately determining the knees and
elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse, an open-
source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established
knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends
these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach.
Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee
detection.

ode metadata

Current code version Version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00437
Permanent link to Reproducible Capsule https://github.com/mariolpantunes/knee/releases/tag/1.0
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used python
Compilation requirements, operating environments & dependencies OS-independent with only 2 dependencies: numpy and pyUTSAlgorithms
If available, link to developer documentation/manual https://mariolpantunes.github.io/knee/kneeliverse.html
Support email for questions mario.antunes@ua.pt

. Motivation and significance

Identifying knee and elbow points in performance curves is crit-
cal for efficient decision making and resource allocation in various
omains, including Machine Learning (ML) and systems design. For
xample, Yao et al. used knee detection to identify optimal controller
arameters, maximizing performance while minimizing resource con-
umption [1]. In multi-objective optimization, targeting knee points on
he Pareto front [2] improves efficiency and accuracy by focusing on
he most optimal trade-offs.

∗ Corresponding author.
E-mail address: mario.antunes@av.it.pt (M. Antunes).

Although the terms ‘‘knee’’ and ‘‘elbow’’ are sometimes used inter-
changeably to refer to inflection points, a distinction is often made.
A knee signifies a downward bend in the curve (negative concavity),
whereas an elbow indicates an upward bend (positive concavity). For
simplicity, we use ‘‘knee’’ to refer to both types of points, since our
library handles both equally well.

A knee point is typically defined as the point with maximum cur-
vature. For continuous functions, curvature can be defined mathemat-
ically as in Eq. (1), where 𝑓 (𝑥) represents a specific instance of a
ttps://doi.org/10.1016/j.softx.2025.102161
eceived 14 August 2024; Received in revised form 3 April 2025; Accepted 7 April 2025
vailable online 14 May 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
c/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0002-6504-9441
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00437
https://github.com/mariolpantunes/knee/releases/tag/1.0
https://mariolpantunes.github.io/knee/kneeliverse.html
mailto:mario.antunes@ua.pt
mailto:mario.antunes@av.it.pt
https://doi.org/10.1016/j.softx.2025.102161
https://doi.org/10.1016/j.softx.2025.102161
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

M. Antunes et al. SoftwareX 30 (2025) 102161
Fig. 1. Clustering the Iris dataset using the elbow method.

parameterized curve and 𝑥 denotes the parameter along the curve.

𝐾𝑓 (𝑥) =
𝑓 ′′(𝑥)

(1 + 𝑓 ′(𝑥)2)
3
2

(1)

However, in most real-world scenarios, we work with discrete sets
of points instead of continuous functions, which prohibits direct ap-
plication of the curvature equation [3]. As such, most knee-detection
algorithms were developed to operate on discrete datasets. Several
methods exist that utilize the curvature of a discrete sequence to
identify knees: Menger curvature [3], 𝐿-method [4], Kneedle [5], and
Dynamic First Derivative Thresholding (DFDT) [3].

Due to the importance and utility of knee detection we introduce
Kneeliverse, a comprehensive, open-source library designed for univer-
sal knee detection. The library provides reference implementations of
the most well-known knee-detection methods. In addition, Kneeliverse
offers recent methods specifically designed for multi-knee detection.

In the concrete example of cluster analysis, finding the optimal
number of clusters in distinct datasets poses a challenging, yet essential
task. (e.g., K-means [6]). A popular approach, typically called the
elbow method [7], involves finding knees using within-cluster dispersion
curves. According to this method, the number of clusters is found by
plotting the explained variation as a function of the number of clusters,
and then choosing the cluster count that matches the elbow in that
curve. The same method can be used to choose various parameters in
other data-driven models, such as the number of principal components
needed to describe a dataset.

To illustrate this application, consider clustering the Iris dataset [8],
which consists of 50 samples from each of three species of Iris plants
(Setosa, Virginica, and Versicolor). Four features were measured for
each sample: the lengths and widths, in centimeters, of the sepals and
petals. This dataset has been widely used as an example dataset for
classification and clustering problems.1

Fig. 1(a) plots the resulting clusters from the Iris dataset, where each
color represents a different cluster. Six clusters were selected through
the elbow method [7], as depicted in Fig. 1(b).

The quality of the clusters (computed with a centroid-based method,
such as K-Means) can be measured with the Within-Cluster Sum of

1 https://scikit-learn.org/stable/datasets/toy_dataset.html

Squares (WCSS), defined as the sum of the squared distance between
the average point (i.e., the centroid) and each point of the cluster

𝑊𝐶𝑆𝑆 =
𝑘
∑

𝑖=1

(

∑

𝑥∈𝐶𝑖

|

|

|

𝑥 − 𝜇𝑖
|

|

|

2
)

, (2)

where 𝑘 is the number of clusters, 𝐶𝑖 is the 𝑖th cluster, 𝑥 is a data point
in cluster 𝐶𝑖, and 𝜇𝑖 is the centroid (mean) of cluster 𝐶𝑖. The blue curve
in Fig. 1(b) represents the WCSS measure and the orange line represents
the knee as selected by the Kneedle algorithm [5].

Conversely, multi-knee scenarios involve curves with several inflec-
tion points. The previous definition for a single knee point (see Eq. (1))
cannot be directly applied to detect these multi-knee points [9]. To
address this, we propose a procedure to detect multi-knee points. Our
procedure segments the functions after identifying the knee point, and
recursively evaluates each new segment (see Definition 1).

Definition 1. An admissible algorithm for finding multi-knee points,
acting on discrete function , is a recursive procedure that takes as
input a subset of  and a linearity threshold 𝜏, and applies the following
routine. The linearity threshold 𝜏 is a value between [0.0, 1.0] that
measures how close a subset of points is to a straight line.

 Admissible recursive routine to find multi-knee points
1: function FindMultiKnee(discrete function , left index 𝑥𝑖, right
index 𝑥𝑗 , linearity threshold 𝜏)

2: 𝑘𝑛𝑒𝑒 = 𝑚𝑎𝑥(𝐾𝐶(𝑥𝑖 ,𝑥𝑗)) // Find knee 𝑘 in range [𝑥𝑖, 𝑥𝑗]
3: if linearity(𝑥𝑖, 𝑘𝑛𝑒𝑒) ≤ 𝜏 then
4: 𝑘𝑛𝑒𝑒𝑠𝑙𝑒𝑓 𝑡 = FindMultiKnee(C, 𝑥𝑖, 𝑘𝑛𝑒𝑒, 𝜏)
5: end if
6: if linearity(𝑘𝑛𝑒𝑒, 𝑥𝑗) ≤ 𝜏 then
7: 𝑘𝑛𝑒𝑒𝑠𝑟𝑖𝑔ℎ𝑡 = FindMultiKnee(C, 𝑘𝑛𝑒𝑒, 𝑥𝑗 , 𝜏)
8: end if
9: return 𝑘𝑛𝑒𝑒𝑠𝑙𝑒𝑓 𝑡 + 𝑘𝑛𝑒𝑒 + 𝑘𝑛𝑒𝑒𝑠𝑟𝑖𝑔ℎ𝑡
10: end function

A concrete example of multi-knee detection is to identify ‘‘key
points’’ in a Miss Ratio Curve (MRC) for cache simulation. A cache’s
miss ratio is an important predictor of its performance [10]. Recent
methods, such as Z-Method [9], have been used to efficiently explore
the design of multi-tier storage caches.
2

https://scikit-learn.org/stable/datasets/toy_dataset.html

M. Antunes et al.

,

SoftwareX 30 (2025) 102161
Fig. 2. Miss ratio curve (MRC) for trace web0, annotated to illustrate several key points: useful ‘‘knees’’ (points A and D), a useless ‘‘cliff’’ (B) and a non-relevant knee point (C).

To illustrate this, we plotted an MRC corresponding to the web0
trace from Microsoft Research in the SNIA public dataset [11]. Intu-
itively, the most promising candidates are points where a little extra
cache space produces a relatively large drop in the miss ratio; such
points are often visible as ‘‘knees’’ in the MRC—e.g., points A and D
in Fig. 2. Note that although B has sharp curvature, it is not as useful
since B is a ‘‘cliff’’. Finally, although the C point also represents a well-
defined knee, its relevance in the overall trace is lower when compared
with either A or D.

2. Software description

Kneeliverse [12] is an open-source library for single- and multi-knee
detection in 2D performance curves. The code is distributed under the
MIT license and is also available for easy installation via PyPI.2

The library provides reference implementations of the traditional
single-knee-detection methods Menger, L-Method, Kneedle, and DFDT,
which offer comparable performance to existing implementations. It
also offers two recently developed multi-knee-detection methods: an
extended version of Kneedle, and Z-Method. In addition, it includes a
novel recursive algorithm capable of using any single-knee-detection
algorithm for multi-knee detection.

The library also includes pre-processing routines that rely on an im-
proved Ramer-Douglas-Peucker (RDP) curve-simplification algorithm
and post-processing filters that select and rank the output of a multi-
knee algorithm.

2.1. Architecture

Kneeliverse was written entirely in Python 3 with a minimal number
of dependencies. It uses NumPy [13], which provides efficient numer-
ical routines for large vectors, as well as pyUTSAlgorithms [14], a
library that offers vector operations for unevenly spaced sequences of
points.

A simplified version of Kneeliverse’s pipeline is shown in Fig. 3.
Depending on the complexity of the curve, one can choose whether
to apply the pre-processing line simplification method (step A). The
next step consists of applying either a single-knee or multi-knee de-
tection method (step B). For multi-knee detection, one can use either
of the two methods specially designed for that purpose (Kneedle or Z-
Method), or alternatively apply the recursive approach that enables a
single-knee algorithm to find multiple knees. Finally, we can apply the
post-processing filter to reduce the number of knee candidates (step C).

2 https://pypi.org/project/kneeliverse/

2.1.1. Pre-processing
A curve can contain an arbitrary number of data points. However,

knee-detection algorithms are prone to smoothing errors [9], as most
were originally designed to work with small or partial data, such as for
clustering analysis.

Kneeliverse provides pre-processing methods to reduce the number
of points in a curve while preserving those that define its shape.
This reduces the computational costs of subsequent steps while also
improving knee-detection accuracy.

The RDP algorithm modifies a curve by finding a similar one with
fewer points [15]. The main drawback of RDP is the need to define
a threshold, which can be understood as the maximum allowed re-
construction error. We modified the original RDP algorithm to address
this issue. Instead of a fixed threshold for perpendicular distance, we
adopted a relevance-based cost metric that measures the difference
between the fitted line and data points.

2.1.2. Knee-detection methods
Several methods exist for finding single knee points in a curve.

Menger curvature [5,16] defines the curvature for a sequence of three
points as the curvature of the circle circumscribed by those points.
The 𝐿-method [4] fits two straight lines from the head of a curve to
a candidate point, and from the candidate point to the curve’s tail.
The candidate that minimizes the Root Mean Square Error (RMSE)
between the straight lines and the points of the curve is returned as
the knee point. Similar to the 𝐿-method, DFDT [3,17] tries to identify
the point where the function has a sharp angle. Instead of fitting two
straight lines, this method relies on the first derivative of the curve.
After computing that derivative, a thresholding algorithm is used to
identify the threshold that separates the derivative values as ‘‘high’’ or
‘‘low.’’ The knee is then the point with a derivative value that is closest
to the previously computed threshold. Kneedle [5] uses the point on
the curve that is furthest away from a line, defined by the head and
tail points of the curve.

Except for Kneedle, the previously mentioned algorithms were not
designed to detect multiple knees. Even the original Kneedle has some
limitations [9]. Thus, we developed a recursive algorithm that can be
used to adapt any single-knee-detection technique to handle multiple
knees. The basic idea is to use a single-knee technique to select the
best knee in a segment. We then split the current segment at that knee,
and for each new segment check whether it is sufficiently linear. If not,
we repeat the process recursively.

Finally, we also include our recently developed method Z-Method [9]
which was inspired by the DFDT [17] and DSDT [3] knee-detection
algorithms. In statistics, z-score (also known as standard score) is a
3

https://pypi.org/project/kneeliverse/

M. Antunes et al. SoftwareX 30 (2025) 102161
Fig. 3. Kneeliverse pipeline. This pipeline offers multiple options for knee detection. It supports three steps: (A) Pre-processing the curve (optional); (B) Applying the selected
knee algorithm (mandatory) and (C) Post-processing filtering (optional).

Fig. 4. Post-processing methods applied to the web0 trace (subsets of the trace). The 𝑋-axis represents cache size, and the 𝑌 -axis represents miss ratio (lower values indicate
better performance). (a) Removal of unwanted knees: 𝐾1 is removed since 𝐾0 achieved better performance (lower on the y-axis) at a lower cache size (lower on the x-axis). (b)
Overlapping rectangles used by the corner-detection algorithm. Cliff point 𝐶 is removed due to the area of the overlapping rectangles created by its adjacent points 𝑃0 and 𝑃1
exceeding the threshold. (c) Clustering and ranking elements. The gray ellipse represents the cluster of knee candidates. The orange candidates are filtered out, while the green
knee is selected as the best representative. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transformation that normalizes a data value by quantifying how many
standard deviations away it is from the mean; typically, a point whose
z-score has an absolute value greater than three is considered an
outlier [18]. For the purpose of detecting knees, such outliers in the
second derivative indicate a significant change in the curve’s slope. For
more details, see [9].

2.1.3. Post-processing
We developed three filters to further reduce and rank the knee

points. These filters were created due to (1) the differences between
single- and multi-knee-detection and (2) the large number of points pro-
duced by our recursive strategy with some knee-detection algorithms.

The first filter, shown in Fig. 4(a), removes useless knees. When
dealing with non-monotonic curves, a knee-detection algorithm can
incorrectly choose a knee that is above a previously detected one. We
remove such knees since they are sub-optimal and do not add useful
information.

The second filter, shown in Fig. 4(b), removes cliff points located af-
ter a smooth, near-horizontal area that precedes a sharp descent. These
points are found using a corner-detection algorithm that computes the
overlapping area of two rectangles. The filter computes the percentage
overlap between these two rectangles, and a knee candidate is removed
if the overlap exceeds a threshold. Point B in Fig. 2 is a good example
of a cliff.

The third and final filter, shown in Fig. 4(c), uses a hierarchical
clustering algorithm to group knees by their distance along the 𝑥-axis,
using a percentage of the 𝑥 range as a threshold. After creating clusters,
the knees within each cluster are ranked based on their relevance score,
computed using two metrics: (i) the improvement given by the knee
(i.e., how much it decreases on the 𝑦-axis compared to the highest knee
in the cluster) and (ii) the smoothness of the improvement, computed
using the coefficient of determination (𝑅2). For each cluster, the knee
with the highest value of 𝑆 is selected as its representative.

2.2. Functionality

Next we describe Kneeliverse’s main functionality. More complete
documentation is available online.3

2.2.1. Pre-processing
The pre-processing functionality is in the module knee.rdp. There

are two variants of the RDP algorithm, where the main difference is in
how the reconstruction cost is computed (either by segment or on the
whole curve).

The functions are the following:

3 https://mariolpantunes.github.io/knee/kneeliverse.html
4

https://mariolpantunes.github.io/knee/kneeliverse.html

M. Antunes et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

SoftwareX 30 (2025) 102161
• rdp: Decimates a curve composed of line segments into a similar
curve with fewer points. It uses different cost functions to decide
when to keep or remove a line segment.

• mapping : Computes the reverse of the RDP method. It maps the
indexes from the simplified curve (using the RDP algorithm) into
the indexes of the original points, and returns the original 2D
numpy vector.

2.2.2. Methods
Each knee-detection method is in a separate module with a similar

interface. In any module, the functions are the following:

• knee: Single-knee detection. This function utilizes the chosen
knee-detection algorithm to identify the optimal single knee
point.

• knees: For methods that support native multi-knee detection, this
function executes the method to identify the existing knees.

• multi_knee: This function is available for knee-detection methods
that lack native multi-knee support. It employs our recursive
approach to identify all existing knees.

2.2.3. Post-processing
The functionality for post-processing is contained within a module

named knee.postprocessing, which provides a set of filters designed to
improve the quality of the knee candidates. The functions are the
following:

• filter_worst_knees: Filter the worst knee points. A worse knee is a
knee that is higher on the 𝑦-axis than a previous one.

• filter_corner_knees: Filter the upper-left corner knee points. An
upper-left knee corner does not provide a significant improvement
to be considered.

• filter_clusters: Filter the knee points based on clustering. For each
cluster, a single point is selected based on a ranking that is
computed based on the slope and the improvement on the 𝑦-axis.

2.3. Performance comparison

We compared the Kneeliverse’s single-knee detection methods on
a small, synthetic dataset generated with scikit-learn. Multi-knee eval-
uation is detailed in [19,20]. We measured MAE (average difference
between the expected knee values and the predicted knee value) and
runtime (nanoseconds), summarized in Table 1.

DFDT and Kneedle achieved the highest performance (lower MAE),
with a slight advantage for Kneedle. 𝐿-method and Menger have similar
performance in this synthetic dataset. When considering execution
time, the reverse trend was observed.

3. Illustrative examples

This example illustrates the standard workflow employed with this
library. To demonstrate this, consider the trace initially presented in
Fig. 2. We developed an example that identifies significant knees in
the trace. The following is the source code for this example:
#!/usr/bin/env python3

__author__ = ’Mario Antunes’
__version__ = ’1.0’
__email__ = ’mario.antunes@ua.pt’
__status__ = ’Development’
__license__ = ’MIT’
__copyright__ = ’’’
Copyright (c) 2021-2024 Stony Brook University
Copyright (c) 2021-2024 The Research Foundation of SUNY
’’’

import argparse

14 import numpy as np
15 import matplotlib.pyplot as plt
16

17 import kneeliverse.rdp as rdp
18 import kneeliverse.kneedle as kneedle
19 import kneeliverse.postprocessing as pp
20 import kneeliverse.clustering as clustering
21 import kneeliverse.knee_ranking as knee_ranking
22

23

24 def main(args):
25 # Open the input file
26 points = np.genfromtxt(args.i, delimiter=’,’)
27

28 # Apply the global RDP line simplification
29 # algorithm as a pre-processing step (Step A) to
30 # reduce the number of data points while preserving
31 # the essential shape of the data.
32 reduced, removed = rdp.mp_grdp(points,
33 t=0.001, min_points=20)
34 points_reduced = points[reduced]
35

36 # Utilize the Kneedle algorithm to identify all
37 # potential knee points (Step B).
38 knees = kneedle.knees(points_reduced,
39 p=kneedle.PeakDetection.All)
40

41 # Filter the knee candidates using the previously
42 # mentioned post-processing filters (Step C).
43 knees = pp.filter_worst_knees(points_reduced, knees)
44 knees = pp.filter_corner_knees(points_reduced,
45 knees, t=0.33)
46 knees = pp.filter_clusters(points_reduced, knees,
47 clustering.average_linkage,
48 0.05, knee_ranking.ClusterRanking.left)
49

50 # Transform the knee points, represented in the
51 # reduced space, back to their corresponding
52 # locations in the original trace space.
53 knees = rdp.mapping(knees, reduced, removed)
54

55 # Plot the original trace, overlaying the locations
56 # of the final knee points.
57 plt.plot(x, y)
58 plt.plot(x[knees], y[knees], ’o’, markersize=7)
59 plt.show()
60

61

62 if __name__ == ’__main__’:
63 parser = argparse.ArgumentParser(
64 description=’Plot the Multi-Knees using kneedle’)
65 parser.add_argument(’-i’, type=str,
66 required=True, help=’input file’)
67 args = parser.parse_args()
68 main(args)

Code 1: Sample code to estimate the multi-knee points in a complex
trace.

To gain a clearer understanding of the individual steps outlined in
Code 1, we have included a sequence of figures depicting the results of
each step (see Fig. 5).

The source code loads a trace from a CSV file and utilizes the RDP
algorithm to reduce the number of points in the trace. The original trace
has approximately 250,000 points, whereas the reconstructed trace
contains only 20 (see Fig. 5(a)). Following point reduction, the Kneedle
algorithm is applied (Fig. 5(b)), and the identified knee candidates are
filtered to remove irrelevant knees (Fig. 5(c)). Finally, the indices of
the selected knee points are mapped back to the original trace (since
they were calculated on the reduced trace) and visualized (Fig. 5(d)).
5

M. Antunes et al. SoftwareX 30 (2025) 102161
Table 1
Analysis of the knee detection methods. The performance was measured using MAE and the execution time as measured in nanoseconds.
 Method/ Menger L-method DFDT Kneedle

 #Knees Time Error Time Error Time Error Time Error
 5 4.23E4 10 4.23E4 3 2.24E5 3 1.20E5 1
 6 3.90E4 9 3.90E4 4 1.19E5 4 7.26E4 2
 7 3.46E4 8 3.46E4 4 1.16E5 5 9.09E4 3
 8 3.16E4 4 3.16E4 5 1.23E5 6 6.92E4 4
 9 3.18E4 6 3.18E4 5 1.23E5 7 6.91E4 4
 3.59E4 7.4 3.59E4 4.2 1.41E5 5 8.44E4 2.8

Fig. 5. A visual representation of each step in a typical pipeline using Kneeliverse, in the web0 trace.

4. Impact

Kneeliverse is an accessible and well-documented library targeting
a wide range of applications. We initially developed it to simplify
configuring and tuning multi-tier caching (MTC) systems, where ex-
ponential configuration growth demands efficient solutions. MTC is

an important research topic that spans many areas, including VM
management [21], heterogeneous networks [22], cloud storage [23],
hardware design [24,25], and data centers [26,27].

In our previous work [9], our Kneeliverse-based framework reduced
the number of points needed to accurately identify optimal two-tier
6

M. Antunes et al. SoftwareX 30 (2025) 102161
cache hierarchies for a diverse real-world dataset by an average factor
of 5.5× for ARC and 7.7× for LRU eviction policies.

Knee detection is widely used in a variety of other domains to
speed up computation or improve accuracy. Yeh et al. identified knees
to find the ideal rank of 𝑘-dimensional motifs [28], reducing their
solution search space. Jiang et al. proposed KT-DMOEA, a knee-based
transfer learning method for solving dynamic multi-objective opti-
mization problems [29]. Yue et al. developed a knee-based particle
swarm optimization algorithm to solve sparse reconstruction prob-
lems [30]. In power system optimization, knees help determine the op-
timal number of capacitors to minimize losses and maximize economic
efficiency [31].

In time series forecasting, finding knees in the objective space can
guide the search and improve the prediction accuracy [32]. In drug
combination therapy [33], knees are selected on Pareto fronts gener-
ated by optimization algorithms to identify treatments that optimally
balance multiple objectives.

In lane detection, knees represent optimal edge detection thresh-
olds for robust performance [34]. In rumination analysis, knee detec-
tion refines the identification of rumination periods in accelerometer
data [35]. In symmetry detection, they help to determine the optimal
level of human–machine agreement [36].

Knee detection also optimizes the number of labeling functions in
data programming systems like Snorkel [37], improves decision-making
in COVID-19 risk assessment [38], and enhances video streaming qual-
ity by identifying optimal trade-offs between video quality and user
engagement [39]. In network anomaly detection [40], knees refine
anomaly detection thresholds for improved accuracy and efficiency.

Finally, several other domains apply knee detection successfully: i)
evaluating lithium-ion batteries [41–44], ii) network congestion con-
trol [5], iii) structural building modeling [45,46], iv) efficient drainage
design and water management [47,48]

5. Conclusion

We have developed Kneeliverse, an open-source library that iden-
tifies knee points. Our library caters to a wide range of applications,
spanning educational, academic, and industrial settings. One promi-
nent use case lies in determining the optimal number of clusters for
unsupervised learning tasks.

The growing challenge of identifying multiple knee points in highly
intricate curves has driven the evolution of Kneeliverse. The current
iteration provides a comprehensive pipeline capable of accurately de-
tecting multiple knees in complex performance curves.

CRediT authorship contribution statement

Mário Antunes: Writing – review & editing, Writing – original
draft, Validation, Software, Investigation, Data curation, Conceptual-
ization. Tyler Estro: Writing – review & editing, Writing – origi-
nal draft, Software, Investigation, Data curation, Conceptualization.
Pranav Bhandari: Writing – original draft. Anshul Gandhi: Writing
– review & editing, Writing – original draft, Validation. Geoff Kuen-
ning: Writing – review & editing, Writing – original draft, Validation.
Yifei Liu: Supervision, Data curation. Carl Waldspurger: Writing –
review & editing, Writing – original draft, Validation. Avani Wildani:
Writing – review & editing, Writing – original draft, Validation. Erez
Zadok: Writing – review & editing, Writing – original draft, Validation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.
This work was made possible in part thanks to Dell-EMC, NetApp, Face-
book, and IBM support; a SUNY/IBM Alliance award; and NSF awards
CCF-1918225, CNS-1750109, CNS-1900589, CNS-1900706, CNS-1951
880, CNS-2106263, CNS-2106434, and CNS-2214980. This work is
also partially funded by FCT - Fundação para a Ciência e Tecnologia,
I.P. by project reference UIDB/50008, and DOI identifier
10.54499/UIDB/50008.

References

[1] Yao Z, Yao J, Sun W. Adaptive RISE control of hydraulic systems with multilayer
neural-networks. IEEE Trans Ind Electron 2019;66(11):8638–47. http://dx.doi.
org/10.1109/tie.2018.2886773.

[2] Li W, Wang R, Zhang T, Ming M, Li K. Reinvestigation of evolutionary
many-objective optimization: Focus on the Pareto knee front. Inform Sci
2020;522:193–213. http://dx.doi.org/10.1016/j.ins.2020.03.007.

[3] Antunes M, Ribeiro J, Gomes D, Aguiar RL. Knee/elbow point estimation through
thresholding. In: 6th IEEE international conference on future internet of things
and cloud. Barcelona, Spain: IEEE; 2018, p. 413–9.

[4] Salvador S, Chan P. Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. In: 16th IEEE international conference on
tools with artificial intelligence. IEEE; 2004, p. 576–84.

[5] Satopaa V, Albrecht J, Irwin D, Raghavan B. Finding a ‘‘Kneedle’’ in a haystack:
Detecting knee points in system behavior. In: 31st international conference
on distributed computing systems workshops. Minneapolis, MN: IEEE; 2011, p.
166–71.

[6] Lloyd S. Least squares quantization in PCM. IEEE Trans Inform Theory
1982;28(2):129–37.

[7] Thorndike RL. Who belongs in the family? Psychometrika 1953;18(4):267–76.
http://dx.doi.org/10.1007/bf02289263.

[8] Fisher RA. Iris. 1988, http://dx.doi.org/10.24432/C56C76, UCI Machine
Learning Repository.

[9] Estro T, Antunes M, Bhandari P, Gandhi A, Kuenning G, Liu Y, et al. Accel-
erating multi-tier storage cache simulations using knee detection. Perform Eval
2024;164:102410. http://dx.doi.org/10.1016/j.peva.2024.102410, URL https://
www.sciencedirect.com/science/article/pii/S0166531624000154.

[10] Estro T, Bhandari P, Wildani A, Zadok E. Desperately seeking ... Optimal multi-
tier cache configurations. In: Proceedings of the 12th USeNIX workshop on hot
topics in storage. Boston, MA: USENIX; 2020.

[11] Narayanan D, Donnelly A, Rowstron A. MSR Cambridge traces (SNIA IOTTA
trace set 388). In: Kuenning G, editor. SNIA IOTTA trace repository. Storage
Networking Industry Association; 2007, URL http://iotta.snia.org/traces/block-
io?only=388.

[12] Antunes M, Estro T, Bhandari P, Gandhi A, Kuenning G, Liu Y, et al.
(Multi)Knee/Elbow point detection library. 2023, http://dx.doi.org/10.5281/
zenodo.10341887.

[13] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D,
et al. Array programming with NumPy. Nature 2020;585(7825):357–62. http:
//dx.doi.org/10.1038/s41586-020-2649-2.

[14] Antunes M, Liu Y. pyUTSAlgorithms (unevenly spaced time series algorithms).
2024, URL https://github.com/mariolpantunes/pyUTSAlgorithms.

[15] Ramer U. An iterative procedure for the polygonal approximation of plane
curves. Comput Graph Image Process 1972;1(3):244–56.

[16] Tolsa X. Principal values for the Cauchy integral and rectifiability. Proc Amer
Math Soc 2000;128(7):2111–9.

[17] Antunes M, Gomes D, Aguiar RL. Knee/Elbow estimation based on first derivative
threshold. In: Fourth IEEE international conference on big data computing service
and applications. Bamberg, Germany: IEEE; 2018, p. 237–40.

[18] Aggarwal CC. Outlier analysis. 3rd ed.. Springer Publishing Company; 2016,
Incorporated.

[19] Estro T, Antunes M, Bhandari P, Gandhi A, Kuenning G, Liu Y, et al. Guiding
simulations of multi-tier storage caches using knee detection. In: 31st interna-
tional symposium on the modeling, analysis, and simulation of computer and
telecommunication systems. 2023.

[20] Estro T, Antunes M, Bhandari P, Gandhi A, Kuenning G, Liu Y, et al. Guiding
simulations of multi-tier storage caches using knee detection. Tech. Rep.,
(FSL-23-01). Computer Science Department, Stony Brook University; 2023.

[21] Rajasekaran S, Duan S, Zhang W, Wood T. Multi-cache: Dynamic, efficient
partitioning for multi-tier caches in consolidated VM environments. In: IEEE
international conference on cloud engineering. IEEE; 2016, p. 182–91. http:
//dx.doi.org/10.1109/IC2E.2016.10.

[22] Li X, Wang X, Li K, Han Z, Leung VC. Collaborative multi-tier caching in
heterogeneous networks: Modeling, analysis, and design. IEEE Trans Wirel
Commun 2017;16(10):6926–39.
7

http://dx.doi.org/10.1109/tie.2018.2886773
http://dx.doi.org/10.1109/tie.2018.2886773
http://dx.doi.org/10.1109/tie.2018.2886773
http://dx.doi.org/10.1016/j.ins.2020.03.007
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb3
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb3
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb3
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb3
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb3
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb4
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb4
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb4
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb4
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb4
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb5
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb6
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb6
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb6
http://dx.doi.org/10.1007/bf02289263
http://dx.doi.org/10.24432/C56C76
http://dx.doi.org/10.1016/j.peva.2024.102410
https://www.sciencedirect.com/science/article/pii/S0166531624000154
https://www.sciencedirect.com/science/article/pii/S0166531624000154
https://www.sciencedirect.com/science/article/pii/S0166531624000154
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb10
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb10
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb10
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb10
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb10
http://iotta.snia.org/traces/block-io?only=388
http://iotta.snia.org/traces/block-io?only=388
http://iotta.snia.org/traces/block-io?only=388
http://dx.doi.org/10.5281/zenodo.10341887
http://dx.doi.org/10.5281/zenodo.10341887
http://dx.doi.org/10.5281/zenodo.10341887
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
https://github.com/mariolpantunes/pyUTSAlgorithms
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb15
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb15
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb15
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb16
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb16
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb16
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb17
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb17
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb17
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb17
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb17
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb18
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb18
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb18
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb19
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb20
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb20
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb20
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb20
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb20
http://dx.doi.org/10.1109/IC2E.2016.10
http://dx.doi.org/10.1109/IC2E.2016.10
http://dx.doi.org/10.1109/IC2E.2016.10
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb22
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb22
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb22
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb22
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb22

M. Antunes et al. SoftwareX 30 (2025) 102161
[23] Spillane RP, Shetty PJ, Zadok E, Archak S, Dixit S. An efficient multi-tier tablet
server storage architecture. In: Proceedings of the 2nd ACM symposium on cloud
computing. Cascais, Portugal; 2011.

[24] Nori AV, Gaur J, Rai S, Subramoney S, Wang H. Criticality aware tiered
cache hierarchy: A fundamental relook at multi-level cache hierarchies. In: 45th
ACM/IEEE annual international symposium on computer architecture. 2018, p.
96–109. http://dx.doi.org/10.1109/ISCA.2018.00019.

[25] Srikantaiah S, Kultursay E, Zhang T, Kandemir M, Irwin MJ, Xie Y. MorphCache:
A reconfigurable adaptive multi-level cache hierarchy. In: 2011 IEEE 17th
international symposium on high performance computer architecture. IEEE;
2011, p. 231–42.

[26] Yang Z, Hoseinzadeh M, Andrews A, Mayers C, Evans D, Bolt R, et al.
AutoTiering: Automatic data placement manager in multi-tier all-flash datacenter.
In: 2017 IEEE 36th international performance computing and communications
conference. 2017, p. 1–8. http://dx.doi.org/10.1109/PCCC.2017.8280433.

[27] Liu Z, Lee HW, Xiang Y, Grunwald D, Ha S. eMRC: Efficient miss rate
approximation for multi-tier caching. In: 19th USeNIX conference on file and
storage technologies. USENIX Association; 2021, URL https://www.usenix.org/
conference/fast21/presentation/liu.

[28] Yeh C-CM, Kavantzas N, Keogh E. Matrix profile VI: Meaningful multidimensional
motif discovery. In: 2017 IEEE international conference on data mining. 2017,
p. 565–74. http://dx.doi.org/10.1109/ICDM.2017.66.

[29] Jiang M, Wang Z, Hong H, Yen GG. Knee point-based imbalanced transfer
learning for dynamic multiobjective optimization. IEEE Trans Evol Comput
2021;25(1):117–29. http://dx.doi.org/10.1109/TEVC.2020.3004027.

[30] Yue C, Liang J, Qu B, Song H, Li G, Han Y. A knee point driven particle swarm
optimization algorithm for sparse reconstruction. In: Simulated evolution and
learning. Cham: Springer International Publishing; 2017, p. 911–9.

[31] Duong MQ, Lam LH, Tu BTM, Huy GQ, Hieu NH. A combination of K-mean
clustering and elbow technique in mitigating losses of distribution network. 2019,
URL https://api.semanticscholar.org/CorpusID:203634225.

[32] Du W, Leung SYS, Kwong CK. Time series forecasting by neural networks: A
knee point-based multiobjective evolutionary algorithm approach. Expert Syst
Appl 2014;41(18):8049–61. http://dx.doi.org/10.1016/j.eswa.2014.06.041.

[33] Spolaor S, Papetti DM, Cazzaniga P, Besozzi D, Nobile MS. A comparison of
multi-objective optimization algorithms to identify drug target combinations. In:
2021 IEEE conference on computational intelligence in bioinformatics and com-
putational biology. IEEE; 2021, p. 1–8. http://dx.doi.org/10.1109/cibcb49929.
2021.9562773.

[34] Suddamalla U, Kundu S, Farkade S, Das A. A novel algorithm of lane detection
addressing varied scenarios of curved and dashed lanemarks. In: 2015 interna-
tional conference on image processing theory, tools and applications. IEEE; 2015,
p. 87–92.

[35] Hamilton AW, Davison C, Tachtatzis C, Andonovic I, Michie C, Ferguson HJ, et
al. Identification of the rumination in cattle using support vector machines with
motion-sensitive bolus sensors. Sensors 2019;19(5):1165.

[36] Funk C, Liu Y. Symmetry reCAPTCHA. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, p. 5165–74.

[37] Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Ré C. Snorkel: Rapid training
data creation with weak supervision. Proc VLDB Endow Int Conf Very Large
Data Bases 2017;11:269.

[38] Cuevas E. An agent-based model to evaluate the COVID-19 transmission risks in
facilities. Comput Biol Med 2020;121:103827.

[39] Ahmed A, Shafiq Z, Bedi H, Khakpour A. Suffering from buffering? Detecting QoE
impairments in live video streams. In: 2017 IEEE 25th international conference
on network protocols. IEEE; 2017, p. 1–10.

[40] Dromard J, Roudière G, Owezarski P. Online and scalable unsupervised network
anomaly detection method. IEEE Trans Netw Serv Manag 2016;14(1):34–47.

[41] Fermín-Cueto P, McTurk E, Allerhand M, Medina-Lopez E, Anjos MF, Sylvester J,
dos Reis G. Identification and machine learning prediction of knee-point and
knee-onset in capacity degradation curves of lithium-ion cells. Energy AI
2020;1:100006. http://dx.doi.org/10.1016/j.egyai.2020.100006.

[42] Strange C, Li S, Gilchrist R, dos Reis G. Elbows of internal resistance rise
curves in Li-Ion cells. Energies 2021;14(4):1206. http://dx.doi.org/10.3390/
en14041206.

[43] Attia PM, Bills A, Brosa Planella F, Dechent P, dos Reis G, Dubarry M, et al.
Review—‘‘Knees’’ in Lithium-Ion battery aging trajectories. J Electrochem Soc
2022;169(6):060517. http://dx.doi.org/10.1149/1945-7111/ac6d13.

[44] Costa N, Anseán D, Dubarry M, Sánchez L. ICFormer: A deep learning model
for informed lithium-ion battery diagnosis and early knee detection. J Power
Sources 2024;592:233910. http://dx.doi.org/10.1016/j.jpowsour.2023.233910.

[45] Gong W, Tien YM, Juang CH, Martin JR, Zhang J. Calibration of empirical
models considering model fidelity and model robustness — Focusing on pre-
dictions of liquefaction-induced settlements. Eng Geol 2016;203:168–77. http:
//dx.doi.org/10.1016/j.enggeo.2015.11.003.

[46] Gong W, Tang H, Wang H, Wang X, Juang CH. Probabilistic analysis and
design of stabilizing piles in slope considering stratigraphic uncertainty. Eng Geol
2019;259:105162. http://dx.doi.org/10.1016/j.enggeo.2019.105162.

[47] Yu Y, Shen M, Sun H, Shang Y. Robust design of siphon drainage method for
stabilizing rainfall-induced landslides. Eng Geol 2019;249:186–97. http://dx.doi.
org/10.1016/j.enggeo.2019.01.001.

[48] Null SE, Olivares MA, Cordera F, Lund JR. Pareto optimality and compromise
for environmental water management. Water Resour Res 2021;57(10). http:
//dx.doi.org/10.1029/2020wr028296.
8

http://refhub.elsevier.com/S2352-7110(25)00128-1/sb23
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb23
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb23
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb23
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb23
http://dx.doi.org/10.1109/ISCA.2018.00019
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb25
http://dx.doi.org/10.1109/PCCC.2017.8280433
https://www.usenix.org/conference/fast21/presentation/liu
https://www.usenix.org/conference/fast21/presentation/liu
https://www.usenix.org/conference/fast21/presentation/liu
http://dx.doi.org/10.1109/ICDM.2017.66
http://dx.doi.org/10.1109/TEVC.2020.3004027
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb30
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb30
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb30
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb30
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb30
https://api.semanticscholar.org/CorpusID:203634225
http://dx.doi.org/10.1016/j.eswa.2014.06.041
http://dx.doi.org/10.1109/cibcb49929.2021.9562773
http://dx.doi.org/10.1109/cibcb49929.2021.9562773
http://dx.doi.org/10.1109/cibcb49929.2021.9562773
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb34
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb35
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb35
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb35
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb35
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb35
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb36
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb36
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb36
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb37
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb37
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb37
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb37
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb37
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb38
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb38
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb38
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb39
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb39
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb39
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb39
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb39
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb40
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb40
http://refhub.elsevier.com/S2352-7110(25)00128-1/sb40
http://dx.doi.org/10.1016/j.egyai.2020.100006
http://dx.doi.org/10.3390/en14041206
http://dx.doi.org/10.3390/en14041206
http://dx.doi.org/10.3390/en14041206
http://dx.doi.org/10.1149/1945-7111/ac6d13
http://dx.doi.org/10.1016/j.jpowsour.2023.233910
http://dx.doi.org/10.1016/j.enggeo.2015.11.003
http://dx.doi.org/10.1016/j.enggeo.2015.11.003
http://dx.doi.org/10.1016/j.enggeo.2015.11.003
http://dx.doi.org/10.1016/j.enggeo.2019.105162
http://dx.doi.org/10.1016/j.enggeo.2019.01.001
http://dx.doi.org/10.1016/j.enggeo.2019.01.001
http://dx.doi.org/10.1016/j.enggeo.2019.01.001
http://dx.doi.org/10.1029/2020wr028296
http://dx.doi.org/10.1029/2020wr028296
http://dx.doi.org/10.1029/2020wr028296

	Kneeliverse: A universal knee-detection library for performance curves
	Motivation and Significance
	Software Description
	Architecture
	Pre-Processing
	Knee-Detection Methods
	Post-Processing

	Functionality
	Pre-Processing
	Methods
	Post-Processing

	Performance Comparison

	Illustrative Examples
	Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

