
A Long-Term User-Centric Analysis
of Deduplication Patterns

Appears in the proceedings of the 32nd IEEE Conference on Mass Storage Systems and Technologies (MSST 2016)

Zhen Sun,∗† Geoff Kuenning,‡ Sonam Mandal,† Philip Shilane,§ Vasily Tarasov,¶ Nong Xiao,∗‖and Erez Zadok†
∗State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, China.

†Stony Brook University. ‡Harvey Mudd College.
§EMC Corporation. ¶ IBM Research–Almaden.

‖School of Data and Computer Science, Sun Yat-sen University, China.

Abstract— Deduplication has become essential in disk-based
backup systems, but there have been few long-term studies of
backup workloads. Most past studies either were of a small
static snapshot or covered only a short period that was not
representative of how a backup system evolves over time. For
this paper, we collected 21 months of data from a shared user
file system; 33 users and over 4,000 snapshots are covered. We
analyzed the data set for a variety of essential characteristics.
However, our primary focus was individual user data. Despite
apparently similar roles and behavior in all of our users, we found
significant differences in their deduplication ratios. Moreover,
the data that some users share with others had a much higher
deduplication ratio than average. We analyze this behavior and
make recommendations for future deduplication systems design.

I. INTRODUCTION

The explosive growth of data in recent years [28] has made
deduplication a hot topic. Deduplication systems split data into
chunks and then use hashes to identify and eliminate redundant
chunks. This approach has proven highly effective in saving
space, especially in backup storage [35].

Many researchers have analyzed data sets from various
environments, such as disk [32] and tape [11] backup, pri-
mary [5], [15], [22], [26] and archival storage [14], and HPC
centers [25]. By understanding such data sets’ characteristics,
we can design more efficient storage systems [8], [9], [29].
However, data sets may vary significantly across different
environments (e.g., whole-file chunking efficiencies range be-
tween 20% and 87% compared to sub-file chunking [5], [25],
[32]). As a result, conclusions drawn from only few data sets
cannot be used to guide the design of an efficient deduplication
system. Thus, new, large-scale studies using different types of
data sets and investigating new metrics are desirable.

High redundancies in backups [12] make deduplication an
integral part of backup systems. The space savings of dedu-
plication made the transition from tape-based to disk-based
backup systems possible [35]. However, our understanding of
these systems’ real-life performance is still poor as there are
few long-term studies of large backup data sets: most prior
studies draw conclusions based on the entire data set, whereas
we show that studying per-user trends is valuable and produces
surprising results.

In this paper, we first introduce the data set we have been
collecting and releasing publicly (21 months of daily snapshots

taken over a 2.5-year period), and the tools we developed. Our
data set has longer duration than previous studies, which is
important for investigating realistic, long-term trends.

We then present an analysis of this data set, with sometimes
unexpected results. For example, we found that because of the
size of the chunk index itself, smaller chunk sizes are not
always better at saving space. However, we found that whole-
file chunking is much worse than sub-file chunking, because
larger files tend to dominate space usage and have a small
deduplication ratio (defined as the logical storage space divided
by the physical storage space after deduplication).

Next, we studied the data set from the users’ point of view.
Given that our users were largely similar in their background,
behavior, and job function, we found and investigated three
surprising results: (1) The deduplication ratios of each user’s
own data set varied significantly, and their sensitivity to chunk-
ing size was also different. This suggests that even similar
users behave quite differently, which should be accounted
for in future deduplication systems. (2) Deduplication ratios
across users ranged widely, but in combination with other
information, can help us group users together to improve the
effectiveness of clustered deduplication systems. (3) The data
that users share with each other had a higher deduplication
ratio than average, and the duplicate data tended to be hot. This
knowledge can benefit the caching and prefetching components
of deduplication systems.

The rest of this paper is organized as follows: Section II
provides background and related work. In Section III, we give
a brief introduction of our data set and the tools that collected
these snapshots. We discuss our results in Section IV, and
Section V concludes.

II. BACKGROUND AND RELATED WORK

Now that deduplication has become essential in both
backup and primary storage, researchers have tried to improve
its performance, e.g. by enhancing storage efficiency [13], [33],
enabling scaling [1], [3], [4], [6], [10], [19], [30], and resolving
bottlenecks [2], [8], [16], [18], [23], [35]. Among these studies,
those that analyzed real-world data played important roles
because they helped improve design decisions based on data
characteristics [5], [15], [25], [27], [32].

A study of Microsoft primary storage [26] collected data
from 857 users across 4 weeks. They found that whole-
file chunking works well in their specific environment, and978-1-4673-9055-2/16/$31.00 c©2016 IEEE

fragmentation is not a serious problem when a defragmenter
runs weekly. Follow-on work by Microsoft [5] implemented a
scalable deduplication system in Windows Server 2012, based
on the findings from primary deduplication analysis. Wallace
et al. [32] investigated EMC’s Data Domain backup systems,
showing that the backup characteristics vary significantly with
primary workloads. Backup workloads tend to have a high
churn rate, a lot of stream locality, a high demand for writing,
and high redundancy.

Other studies focused on file analysis [22]; conclusions
about file type and size distributions, and about deduplication
and compression ratios, have helped improve the design of
deduplication systems. Data sets from different storage envi-
ronments, such as HPC [25] and VDI [15], have also been
collected and analyzed, and many of their conclusions are also
applicable to other storage systems.

Most of the aforementioned data sets are static snapshots
of storage systems or only cover a short time period. Our
work extends these studies by using a long-term workload that
extends from March 2012 to November 2014. Because backup
systems are designed for long-term storage, our results—based
on a long history—offer new valuable insights.

III. METHODOLOGY

We now describe the tools we developed, the data set itself,
and the limitations of this study. Both the tools and the data-
set have been publicly available online [7]; the data-set will
be updated periodically as we continue to collect snapshots.
Our data-set has already been used in a number of research
papers [17], [20], [21], [31], [34].

A. Tools

To conduct our analysis, we developed tools that collect
and parse file-system snapshots. Fs-hasher scans a file system
and collects snapshots that contain both file system data and
rich meta data. It does not collect actual file content; instead,
it chunks each file and collects the hashes, similar to real-
world deduplication systems. Fs-hasher supports both fixed
and variable chunking. Users can specify various parameters
(e.g., expected average chunk size for variable chunking) and
hash functions (e.g., MURMUR, MD5, and SHA1) when
collecting snapshots. Hash files collected by Fs-hasher can
be parsed by a purpose-written program or by Hf-stat, which
prints hash files in a human-readable and post-processable
format. Hf-stat provides options to control and filter its output.
Fs-hasher does not anonymize the snapshots; the released data
set, however, is anonymized during post-processing.

B. Data set

The Homes data set contains almost-daily snapshots of our
users’ home directories on a shared file system; we collected
one daily snapshot per user for a total of over 4,000 snapshots.
The users are all Linux systems software developers who work
on several joint projects. The snapshots have been collected
since March 2012, with collection planned to continue into
the foreseeable future, and with periodic releases of updated
data sets. We used variable chunking with 7 average chunk
sizes (2–128KB) and whole-file chunking (WFC) to allow
a detailed comparison of performance and overhead among

common chunking methods. To speed the snapshot collection
procedure and reduce the data-set size, we chose a 48-bit MD5-
based hash function. We used a short hash, but our collision
rate is still acceptable for research purposes [32], because even
with 2KB chunking the number of unique hashes is about
108, so the expected number of collisions in our data set is
only about 4,000 (or 0.004%). Although this number would
be unacceptable in commercial deduplication systems, it has a
negligible impact on our findings. For larger chunk sizes, our
collision rate was even lower.

Previous data sets have used static snapshots or have
covered a short time period. Our data set contains 21 months
of daily snapshots from a 2.5-year period. It includes data
on 33 users, allowing us to analyze deduplication on a per-
user basis. Although we did not collect the full file content,
the rich meta data and extensive hashes make it possible to
conduct a wide range of studies. For example, by examining
modification and access times we can simulate various backup
methods, including full and incremental backups at different
periods. Table I shows the details of the Homes data set.

Data set Homes
Total size 456TB
Start and end time 03/09/2012–11/23/2014
Number of users 33
Number of snapshots 4,181 dailies (about 21 months)
Chunking method Content-defined chunking (CDC),

Whole-file chunking (WFC)
Average chunking size 2, 4, 8, 16, 32, 64, and 128KB
Hash function 48-bit MD5
Number of files 1.3×108

Number of logical chunks 1.9×1010 (2KB chunk size)
4.0×108 (128KB chunking)

Number of unique chunks 9.8×107 (2KB chunk size)
3.3×106 (128KB chunking)

Meta-data included File pathname, size, atime, ctime,
mtime, UID, GID, permission bits,
device ID, inode number

TABLE I. FEATURES OF THE HOMES DATA SET.

C. Limitations

Since storing full file contents would consume too much
space, we record only hashes and meta data. Thus, we are un-
able to analyze content-based properties, such as compression
performance. For other properties like backup throughput, we
can calculate simulated results from other metrics, such as the
cache miss ratio and average disk I/O latency.

Although we attempted to collect daily snapshots for 2.5
years, some periods were missed, mainly due to major power
outages (severe weather), hardware failures, and long breaks
when most data remain unchanged due to user absence. Still,
we believe that our data set is sufficiently large and long-term
to serve as the basis of a valuable study.

IV. RESULTS OF ANALYSIS

We begin by describing results from analyzing the entire
data set: deduplication ratio analysis (Section IV-A) and file-
based analysis (Section IV-B). Then, in Section IV-C, we
present the results of the user-centric analysis.

2

A. Deduplication Ratios

One of the key measures of a deduplication system is the
deduplication ratio, defined as the size of original data set
divided by the size of what is physically stored on the media.
In Homes, the variety of meta-data that we collected makes it
possible to simulate a number of realistic backup situations.
For this paper we chose three typical backup strategies: Full,
Incremental, and Weekly-Full (a full backup each Saturday and
incrementals for the rest of the week). Since full snapshots
were collected daily, they inherently represent full backups.
For incremental and weekly-full backups we needed to detect
newly added and modified files. By comparing two consecutive
snapshots we identified whether a file was newly added. By
checking the mtime we determined the files that were modified
since the previous snapshot. Table II shows the deduplication
ratios when using different backup strategies and chunk sizes.

Full Incremental Weekly-full
Chunk size backup backup backup

2KB 218.5 13.6 42.8
4KB 197.0 12.6 39.4
8KB 181.9 11.7 36.5
16KB 167.4 10.7 33.6
32KB 153.3 9.8 30.8
64KB 139.1 8.9 27.9
128KB 128.0 8.2 25.7
WFC 16.4 1.1 2.3
TABLE II. RAW DEDUPLICATION RATIOS FOR VARIOUS CHUNKING
METHODS AND BACKUP STRATEGIES. WFC STANDS FOR WHOLE-FILE

CHUNKING.

The deduplication ratios in our data set are relatively high
compared with other studies, primarily because for the purpose
of the long-term study, snapshots are accumulated daily and
never deleted. To cap storage costs, many deployed backup
systems periodically delete snapshots, yet there is a clear
benefit in preserving as many historical snapshots as possible.

The numbers shown in Table II are raw deduplication
ratios. However, a smaller chunk size implies higher meta-data
overhead, since more hashes must be stored. To calculate the
efficiency of various chunking sizes, we adopted the approach
proposed by Wallace et al. [32]. Suppose L is the size before
deduplication, P is the raw data size afterwards, and f is the
size of each chunk’s meta-data divided by the chunk size.
Then the raw deduplication ratio is D = L/P . The meta-
data size is f × (L + P): f × L is the size of a file’s
recipe (needed to reconstruct its original contents) and f × P
is the size of the hash index. Thus the overall stored size
is P + f × (L + P). Based on this formula, the practical
deduplication ratio including all costs, D′, is:

D′ =
L

P + f × (L+ P)
=

D

1 + f × (D + 1)
(1)

Although our snapshots used a 6-byte (48-bit) MD5-based
hash function, in this analysis we assume 30 bytes per chunk
to show what would happen in a real deduplication system
that stores longer hashes and other information such as chunk
pointers and file recipes. This value is chosen from the middle
of a range of common meta-data sizes [24], [32].

Table III shows the effective deduplication ratio for each
strategy. We can see that 32KB chunking performed best for

Full Incremental Weekly-full
Chunk size backup backup backup

2KB 50.9 11.1 25.8
4KB 79.3 11.4 30.2
8KB 107.9 11.1 32.0
16KB 127.2 10.5 31.6
32KB 133.9 9.7 29.9
64KB 130.5 8.9 27.6
128KB 124.3 8.2 25.7

TABLE III. EFFECTIVE DEDUPLICATION RATIOS AFTER ACCOUNTING
FOR META-DATA OVERHEADS.

full backups; 4KB for incrementals; and 8KB for weekly-full
ones. This suggests that the best chunk size may depend on
the backup strategy and frequency. Table III also shows that as
chunk sizes increase, a decrease in deduplication ratio is not
obvious or guaranteed. A larger chunk size can reduce meta-
data size significantly enough to compensate for missing some
duplicates. Moreover, reducing the amount of meta-data also
reduces the number of I/Os to the chunk index.

B. File-Based Analysis

0.0

 0.2

 0.4

 0.6

 0.8

1.0

1KB 512KB 1MB 512MB 1GB 512GB
0.0

 0.2

 0.4

 0.6

 0.8

1.0
Fr

a
ct

io
n
 o

f
fi
le

 c
o
u
n
ts

Fr
a
ct

io
n
 o

f
fi
le

 s
y
st

e
m

 s
iz

e

File Size

CDF of file counts
CDF of file size

Fig. 1. Distribution of file sizes (blue) and counts (red).

 0

 50

 100

 150

 200

 250

 300

1KB 512KB 1MB 512MB 1GB 512GB

D
e
d

u
p

lic
a
ti

o
n
 R

a
ti

o

File Size

Fig. 2. Whole-file chunking deduplication ratio of files of different sizes.

The performances of whole-file chunking varies widely
based on the characteristics of different data sets [26], [32],
but it is clearly not a good choice in Homes, as shown in
Table II. The reason can be found in Figures 1 and 2. Figure 1
shows the distribution of files in size and count. The upper line
of Figure 1 shows that more than 99% of the files are smaller
than 1MB, but the lower line demonstrates that in aggregate,
these small files consume less than 4% of total space. When
we grouped files by size and calculated a separate whole-file
deduplication ratio for each group (Figure 2), we observed
a large variance. Files between 2KB and 256KB deduplicate
well—all higher than 100× and the highest at about 290×. In

3

Fig. 3. Distribution of total storage by file type before deduplication. The
Rest bar comprises the file types that independently contributed less than 0.4%
of total storage each.

contrast, the average deduplication ratio is smaller than 50×
for files larger than 1MB. Thus we can draw a conclusion
that the total size of our data set is mainly occupied by large
files that have a low deduplication ratio. As a result, whole-file
chunking is ineffective at saving space in our data-set.

Figure 3 shows the percentage of total space occupied by
various common file types; we can see that virtual machine
images (vmdk) consume nearly 60% of the entire data size.

Figure 4 shows the raw deduplication ratio of different
file types at various chunking sizes; here we selected the file
types that occupied the most disk space. We can see that the
deduplication ratio of different file types varies significantly:
using 8KB chunking, the ratio ranges from 50 (.vdi) to 877
(.h). In addition, file types also have different sensitivities to
the chunking size. For some file types, increasing the chunking
size from 8KB to 128KB leads to a large drop in deduplication
ratio, e.g., drop by 43% (.disk), 34% (.vmdk), and 26%
(.vmem). However, for most file types this decrease is not
significant, with some types showing no drop at all (e.g., .gz,
.mp3, .zip). There are two reasons for this phenomenon.
First, some file types such as compressed files, MP3, and
video might be rarely changed in the software development
environment, so the chunking size will not have a great effect
on the deduplication ratio. Second, when collecting snapshots
we did not combine multiple small files into a single larger
chunk, which means that when a file is smaller than the
chunking size, the file itself is a chunk. As a result, for file
types that tend to be small, the chunks will not change once
the chunking size has exceeded the file size.

We define chunk popularity as the number of duplicate
occurrences of a chunk. In Figure 5 we present the cumulative
chunk popularity distribution for incremental backup and a
4KB chunk size. (We also evaluated all other chunk sizes
and did not find any significant difference from what we
present here.) The upper curve shows that about 60% of all
chunk hashes appear only once in the data set, and according
to the lower curve these chunks consume less than 10% of
the entire non-deduplicated data size. In contrast, chunks that
appear at least 20 times take more than 70% of the total non-
deduplicated space (lower curve, center to right-hand side) but
account for fewer than 9% of all chunks (upper curve, right-
hand portion). Chunks that appear at least 100 times are fairly
popular: they take less about 0.6% of the unique chunks but
occupy nearly 30% of the whole space.

This skew in chunk popularity has also been found in

primary storage [5], [22] and HPC systems [25]; those re-
searchers found that chunks that appear 2–32 times contribute
the most to the deduplication ratio in primary storage, while
in our data set, the popularity is much higher. Identifying such
popular chunks would be useful in optimizing performance.
For example, keeping hot chunks in memory could accelerate
chunk indexing and improve cache hit ratios.

We also found that most of the shared data among different
users belongs to such popular chunks, a phenomenon that we
discuss in Section IV-C2.

To study the distribution of file sizes, we chose several
representative users. Figure 6 shows that the sizes of most files
are between 1 and 64KB. However, the average file size in our
data set is 366KB due to large vmdk files. Our average file size
is smaller than has been reported in backup workloads [32]
because backup software often combines many smaller files
into larger tar files.

C. User-Based Analysis

Past studies have often focused on whole data sets and
did not study the data from the users’ perspective. Although
each user’s data forms a basic unit that is part of the data
set, per-user data can have its own special characteristics. In
this section, we show some interesting results from our 33
users. We have studied our data carefully, both individually and
in various groupings. Due to space limitations, we present a
representative sample of these individuals and groups, carefully
chosen to highlight key findings seen repeatedly. For example,
when studying each user’s deduplication ratio, we selected
accounts that covered different characteristics, such as the total
size or lifetime of the user’s data. To show how deduplication
ratios change over time, we selected users who have matching
start times.

1) Per-User Analysis: Due to users joining and leaving
our system, their snapshots have varying start and end times.
When users leave, we keep all their previous snapshots but stop
collecting new ones. The duration of each user’s observations
varied from 1–20 months. The data-set sizes are also different;
the largest user’s data is about three orders of magnitude larger
than the smallest.

The deduplication ratio for each user at different chunk
sizes is shown in Figure 7. Here we chose 7 representative
users based on characteristics such as size and duration; user 15
has both the longest duration (20 months) and the largest data-
set size (8.3TB). Figure 7 shows large differences among users’
effective deduplication ratios considering meta-data overhead.
Using 128KB chunking, the highest deduplication ratio is
over 2,400 (uncommon for most users) while the lowest
is less than 40. Moreover, each user’s sensitivity to chunk
size also varies significantly. For Users 18 and 21, the raw
deduplication ratio is so large that meta-data takes a large
fraction of the space after deduplication; as a result, their
effective deduplication ratio at 2KB chunking is only about
33% of that achieved by 128KB chunks. But for User 1, the
2KB-chunking deduplication ratio is about 76% of the 128KB
one. The best chunking sizes for each user are also different:
User 1 does well at 16KB, User 18 at 128KB, and several
others are in between. User 18 is special, as we can see a
steady increase in deduplication ratio as the chunking size

4

 0

 200

 400

 600

 800

 1000

.vm
dk

.vdi
.vm

em

.iso
.gz

.o .disk
.pack

.c .log
.tar

.txt
.im

g
.h .pdf

.m
p3

.zip

D
ed

u
p
 R

at
io

File Type

8KB

16KB

32KB

64KB

128KB

Fig. 4. Deduplication ratio of different file types at different chunking sizes

0.0

 0.2

 0.4

 0.6

 0.8

1.0

 1 10 100 1000

Fr
a
ct

io
n

Popularities (log)

CDF of chunk counts

CDF of combined non-deduplicated size

Fig. 5. Chunk popularities (red) and their sizes (blue).

increases. This is because several large and highly redundant
benchmarking data files take over 98% of the total size. This
user’s raw deduplication ratio is over 5,000; thus the meta-data
takes a large fraction of the total post-deduplication space.

One reasonable explanation for the difference in deduplica-
tion ratios is the varying user lifetimes in the system. For full
backups, a user’s deduplication ratio will probably increase
over time as more snapshots are added. However, we found
that the large differences in deduplication ratios among users
in our dataset were independent of their lifetimes. Figure 8
shows how ratios changed as snapshots accumulated. The
snapshots of these five users had the same start times. But
as we can see, User 17’s deduplication ratio increased rapidly
from the start. Although User 17 had fewer snapshots, the
final deduplication ratio was over 1,000, far greater than the
others, mainly due to high internal redundancy. Conversely,
User 5’s deduplication ratio dropped over time, mainly because
a high file churn rate led to the addition of many new chunks.
From Figure 8, we can see that the number of snapshots is not
the sole factor affecting a user’s overall deduplication ratio.
We also found that the file type is not the main reason for
differences in deduplication ratios. Even users with similar
file type distributions (e.g., heavy users of VMDK files) also
varied significantly in deduplication ratio, while some users
with similar deduplication ratios had different file types. The
important factors seems to be the characteristics of the users’
own data, such as internal redundancy, and the user’s activity
level. Overall, we conclude that “not all users are created
equal,” even when they are performing similar jobs. Therefore,
future deduplication systems should account for such behavior
to improve efficiency.

2) Analysis of Groups of Users: We now turn to cross-
user redundancies. We used a representative sample of users,
as shown in Figure 9. Each number in the heat map is the

percentage of a user’s data that is also found in another’s. For
example, for User 1, more than 40% of that user’s data can
be found in User 15’s data, and the same is true for User 28’s
(though precisely what is shared might differ between the two).
This figure is not symmetric because each user’s own data size
is different. The figure shows that for each user, redundancies
with others varied significantly. We confirmed these results for
all users and found no obvious pattern.

While studying inter-user duplication, we found that users
can be divided into groups in which the shared data of any
two members occupies a large fraction of their total space. To
analyze the characteristics of the shared data, we selected four
representative users (13, 15, 19, and 28) as a group. Here we
define a user’s unique data set as S; |S| means the number of
chunks in S; and the data shared between users X and Y is
SX ∧ SY . Our results showed that 98% of the chunks shared
between Users 13 and 19 could also be found in the shared
data between Users 13 and 15. Stated mathematically:

|(S13 ∧ S19) ∧ (S13 ∧ S15)|
min(|S13 ∧ S19|, |S13 ∧ S15|)

= 0.98 (2)

We checked this number for other combinations in this
4-user virtual group, and the results were between 91–98%.
Thus, the data shared by the users in this group is fairly similar,
so in a cluster deduplication system, grouping them into one
storage node would improve the overall deduplication ratio.

Lastly, we found that chunks shared among users tended
to have much higher popularity than average, as shown in
Figure 10. For User 13, for example, the average chunk popu-
larity was 22 (shown as the blue bar), while the popularities of
chunks shared with Users 15, 19, and 28 were 189, 262, and
192, respectively. This means there was a 8.6–11.9× increase
in these shared chunks’ popularity compared with the average
popularity of all chunks in User 13’s data. Our results for
other users and groups supported this conclusion. This means
that shared user data has a higher deduplication ratio than one
user’s own data.

V. CONCLUSION AND FUTURE WORK

We studied a locally collected data set that spans a period of
2.5 years (over 4,000 daily user snapshots accounting for over
21 months). Our data is publicly available, with continuing
release updates. The long time span and rich meta-data make
the data valuable for studies of realistic long-term trends. Our
findings can help inform future deduplication storage designs.

In our analysis, we found that a smaller chunk size does
not always save space, given the cost of additional meta-

5

 0
 5

 10
 15
 20
 25
 30
 35

0B 0B
--8B

8B
--32B

32B
--128

128B
--256B

256B
--512B

512B
--1K

B

1B
--4K

B

4B
--16K

B

16K
B
--64K

B

64K
B
--128K

B

128K
B
--256K

B

226K
B
--1M

B

>1M
B

P
er

ce
n

ta
g

e

File Size

User-0

User-3

User-5

User-11

User-14

Fig. 6. Distribution of counts of different file types for a few users.

 16

 64

 256

 1024

 4096

User1 User11 User15 User18 User21 User28 User36D
ed

u
p
li

ca
ti

o
n
 R

at
io

 (
lo

g
)

User Number

2KB

4KB

8KB

16KB

32KB

64KB

128KB

Fig. 7. Effective deduplication ratios of seven users at different chunking sizes, considering meta-data overheads.

Fig. 8. Users’ deduplication ratio (log) vs. number of snapshots.

User-1

User-11

User-15

User-18

User-21

User-28

User-1 User-11 User-15 User-18 User-21 User-28

 0.78 44.00 2.20 0.15 43.00

0.25 23.80 8.00 1.80 19.00

5.30 4.90 3.80 0.51 1.30

0.80 4.20 7.10 0.07 8.90

0.60 12.20 3.90 0.15 1.30

10.80 25.00 30.00 13.70 0.38

 0

 10

 20

 30

 40

 50

P
e

rc
e

n
ta

g
e

Fig. 9. Data redundancies among users.

data. In our data set, a 32KB or even larger chunk size
made the system the most space-efficient. Whole-file chunking
produced the worst results in our study, because large files
tended to dominate the data and had much lower deduplication
ratios. Surprisingly, our user-centric studies showed that data
belonging to each user varies significantly in deduplication
ratio and sensitivity to chunk size. We also found a large
difference in deduplication ratios across users, which can help
in grouping users for future cluster storage. A detailed study
of users who shared data showed that they have a higher

Fig. 10. The popularity of users’ shared data. The shared chunks are much
more popular than the average.

deduplication ratio than average, which suggests that data
shared among users tends to be more popular in general.

In the future, we plan to further analyze our data set.
Cluster deduplication is a promising direction for future re-
search. Our study indicates that the chunks shared among
users in a group were similar, and those chunks also had high
popularity. Based on these characteristics as seen in the first
several snapshots of each user, we could group users together
to maximize deduplication.

Another interesting metric is fragmentation: since our data
set has a long duration, we can investigate how fragmentation
accumulates and how it affects restore speeds. While collecting
the snapshots, we also found that fragmentation decreases
backup throughput because a traditional depth-first scan of
the file system causes newly added or modified chunks to be
stored into new containers, leading to cache misses in future
scans. We are currently investigating alternative scan orders to
improve cache hit ratios and restore speeds.

6

ACKNOWLEDGMENTS

We thank the anonymous MSST reviewers for their useful
feedback. This work was made possible in part thanks to EMC
support, NSF awards CNS-1251137 and CNS-1302246, the
National Natural Science Foundation of China under Grants
No. 61433019 and U1435217, and China 863 program grant
2015AA015305.

REFERENCES

[1] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge. Extreme
binning: Scalable, parallel deduplication for chunk-based file backup.
In Proceedings of the MASCOTS Conference, 2009.

[2] B. Debnath, S. Sengupta, and J. Li. ChunkStash: Speeding up inline
storage deduplication using flash memory. In Proceedings of the
USENIX Annual Technical Conference, 2010.

[3] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane.
Tradeoffs in scalable data routing for deduplication clusters. In
Proceedings of the Ninth USENIX Conference on File and Storage
Technologies (FAST ’11), 2011.

[4] F. Douglis, D. Bhardwaj, H. Qian, and P. Shilane. Content-aware load
balancing for distributed backup. In Proceedings of USENIX Large
Installation System Administration Conference, 2011.

[5] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sengupta.
Primary data deduplication—large scale study and system design. In
Proceedings of the USENIX Annual Technical Conference, 2012.

[6] D. Frey, A. Kermarrec, and K. Kloudas. Probabilistic deduplication
for cluster-based storage systems. In Proceedings of the Symposium on
Cloud Computing (SOCC), 2012.

[7] FSL. Fslhomes data set and tools. tracer.filesystems.org.
[8] Min Fu, Dan Feng, Yu Hua, Xubin He, and Zuoning Chen. Accelerating

restore and garbage collection in deduplication-based backup systems
via exploiting history information. In Proceedings of Annual Technical
Conference, 2014.

[9] Y. Fu, N. Xiao, X. Liao, and F. Liu. Application-aware client-side data
reduction and encryption of personal data in cloud backup services.
Journal of Computer Science and Technology, 28(6), November 2013.

[10] Yinjin Fu, Hong Jiang, and Nong Xiao. A Scalable Inline Cluster
Deduplication Framework for Big Data Protection. In Proceedings of
International Conference on Middleware, 2012.

[11] A. Gharaibeh, C. Constantinescu, M. Lu, A. Sharma, R. Routray,
P. Sarkar, D. Pease, and M. Ripeanu. DedupT: Deduplication for tape
systems. Technical report, IBM, 2014.

[12] Jhon Gratz and David Reinsel. The digital universe decade - are you
ready? IDC White Paper, www.idc.com, 2010.

[13] F. Guo and P. Efstathopoulos. Building a high-performance dedu-
plication system. In Proceedings of the USENIX Annual Technical
Conference, 2011.

[14] M. Jianting. A deduplication-based data archiving system. In Proceed-
ings of the International Conference on Image, Vision and Computing
(ICIVC), 2012.

[15] K. Jin and E. Miller. The effectiveness of deduplication on virtual
machine disk images. In Proceedings of the Israeli Experimental
Systems Conference (SYSTOR), 2009.

[16] R. Koller and R. Rangaswami. I/O deduplication: Utilizing content
similarity to improve I/O performance. In Proceedings of the Eighth
USENIX Conference on File and Storage Technologies (FAST ’10),
2010.

[17] M. Li, C. Qin, and P. Lee. Cdstore: Toward reliable, secure, and cost-
efficient cloud storage via convergent dispersal. In USENIX Annual
Technical Conference, 2015.

[18] M. Lillibridge and K. Eshghi. Improving restore speed for backup
systems that use inline chunk-based deduplication. In Proceedings of
the Eleventh USENIX Conference on File and Storage Technologies
(FAST ’13), 2013.

[19] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble. Sparse indexing: Large scale, inline deduplication
using sampling and locality. In Proceedings of the Seventh USENIX
Conference on File and Storage Technologies (FAST ’09), 2009.

[20] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone, and G. Wallace.
Metadata considered harmful ... to deduplication. In HotStorage’15,
2015.

[21] X. Lin, M. Hibler, E. Eide, and R. Ricci. Using deduplicating storage fot
efficient disk image deployment. In Proceedings of IEEE International
Conference on Software Testing, Verification and Validation, 2015.

[22] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu. Insights for
data reduction in primary storage: A practical analysis. In Proceedings
of the Israeli Experimental Systems Conference (SYSTOR), 2012.

[23] D. Meister and A. Brinkmann. dedupv1: Improving deduplication
throughput using solid state drives (SSD). In Proceedings of the MSST
Conference, 2010.

[24] D. Meister, A. Brinkmann, and T. Suss. File recipe compression in
data deduplication systems. In Proceedings of the Eleventh USENIX
Conference on File and Storage Technologies (FAST ’13), 2013.

[25] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel.
A study on data deduplication in HPC storage systems. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

[26] D. Meyer and W. Bolosky. A study of practical deduplication. In
Proceedings of the Ninth USENIX Conference on File and Storage
Technologies (FAST ’11), 2011.

[27] N. Park and D. Lilja. Characterizing datasets for data deduplication
in backup applications. In Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), 2010.

[28] C. Olofson R. Villars and M. Eastwood. Big data: What it is and why
you should care. A White Paper from www.idc.com, June 2011.

[29] V. Tarasov, A. Mudrankitony, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok. Generating realistic datasets for deduplication analysis. In
Proceedings of the USENIX Annual Technical Conference, 2012.

[30] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Calkowski,
C. Dubnicki, and A. Bohra. HydraFS: a high-throughput file system for
the HYDRAstor content-addressable storage system. In Proceedings of
the Eighth USENIX Conference on File and Storage Technologies (FAST
’10), 2010.

[31] C. Vaughn, C. Miller, O. Ekenta, H. Sun, M. Bhadkamkar, P. Efs-
tathopoulos, and E. Kardes. Soothsayer: Predicting capacity usage in
backup storage systems. In In Proceedings of MASCOTS conference,
2015.

[32] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness,
and W. Hsu. Characteristics of backup workloads in production systems.
In Proceedings of the Tenth USENIX Conference on File and Storage
Technologies (FAST ’12), 2012.

[33] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A similarity-locality
based near-exact deduplication scheme with low RAM overhead and
high throughput. In Proceedings of the USENIX Annual Technical
Conference, 2011.

[34] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Li.
Secdep: A user-aware efficient fine-grained secure dedupication scheme
with multi-level key management. In Proceedings of International
Conference on Massive Storage Systems and Technology, 2015.

[35] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the
Data Domain Deduplication File System. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies, 2008.

7

