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Abstract of the Dissertation

Advancing File System Model Checking: Coverage, Framework, and Scalability

by

Yifei Liu

Doctor of Philosophy

in

Computer Science

Stony Brook University

2025

File systems serve as the foundation for data storage and access, making their
reliability crucial to maintaining system correctness and data integrity. However,
building robust file systems remains a significant challenge. Despite numerous
testing and verification techniques, file system bugs continue to emerge. To detect
file system bugs and improve reliability, we tackle three key aspects: new coverage
metrics for testing, a novel model checking approach, and enhanced scalability
for file system verification. We begin by introducing input and output coverage
(IOCov) as metrics for evaluating and improving file system testing, along with
IOCov to compute them. We integrated IOCov into existing file system testing
workflows, achieving broader input coverage and improving the detection of crash
consistency bugs. Next, we present Metis, a file system model checking framework
designed to explore diverse inputs under different file system states. Using a
reference file system (RefFS), Metis compares the behaviors of two file systems and
reports any discrepancies as potential bugs. Metis leverages Swarm Verification
(SV) to scale state exploration by distributing parallel verification tasks (VTs)
across multiple cores and machines. Finally, we describe Containerized Swarm
Verification (CoSV), in which each VT runs in a container and is managed by an
orchestrator. CoSV enhances the scalability of SV by packaging each VT as a
self-contained unit, allowing for easy adaptation to dynamic resource availability.
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In addition, CoSV ensures fault isolation across VTs to prevent faults in one task
from interfering with the execution of others.

Our thesis is that effective file system testing requires coverage metrics to
guide evaluation, new techniques for thorough checking, and scalable parallelism
to explore large state spaces. Overall, input/output coverage helps developers
evaluate file system testing, while model checking systematically verifies states,
and containerized swarm verification scales this process through efficient, fault-
isolated parallelism.
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Chapter 1

Introduction

File systems are a crucial component of operating systems, serving as the back-
bone of the modern storage hierarchy and supporting a wide range of applica-
tions including databases [28], cloud storage [130, 52, 53, 7], big data process-
ing [131, 214, 132, 192, 122, 175], and virtualization technologies [140]. Their
dependability and robustness directly impact the overall system’s reliability, mak-
ing thorough testing of file systems essential to ensure data integrity, fault tolerance,
and system stability [168, 182, 127, 124]. Although many file system testing tech-
niques have been developed, new bugs continue to surface [107]. Compounding
the issue is the emergence of new file systems that often receive limited testing,
posing challenges to traditional techniques [200, 50, 123, 124].

There are three directions to address these challenges: (1) improving existing
testing through better coverage, (2) developing new checking techniques for easier
and more comprehensive file system validation, and (3) enhancing test scalability
through increased parallel execution on computing resources. All three aim to
improve file system reliability and reduce bugs.

First, given the abundance of existing testing techniques, coverage metrics
(e.g., code coverage and other coverage metrics) can be used to assess and enhance
these methods in order to uncover more hidden bugs [109]. Given the distinct
semantics of file systems such as persistent state, POSIX compliance, and crash
consistency, there is a need to develop new and effective coverage metrics [92]
specifically designed for file system testing.

Second, new techniques for testing file systems should be developed to enable
more comprehensive test cases and better coverage for uncovering bugs, while
minimizing constraints such as the need for kernel instrumentation or modification
when testing newly emerging file systems [200, 107].
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CHAPTER 1. INTRODUCTION

Third, the complexity of file systems and the need to validate many properties
and states make thorough testing computationally demanding. Scalable testing
enabled by parallel execution is essential to efficiently explore large file system
state spaces, reduce testing time, and uncover subtle bugs that might otherwise go
undetected [123, 124, 127, 182].

Nevertheless, each of the three aspects—coverage metrics, testing methodol-
ogy, and scalability—requires further improvement. Regarding coverage metrics,
most testing tools employ code coverage to assess test completeness. Despite its
prevalence, the effectiveness of code coverage in file system testing remains under-
investigated [128, 129]. Additionally, even though the developer knows which
lines were not covered, it is challenging to modify tests to cover them [8, 2].

Different tools have been developed for testing file systems using various ap-
proaches, but new bugs continue to emerge on a regular basis [107, 203, 106]. The
limitations of these tools stem from three main factors: poor coverage [8], diffi-
cult applicability to new file systems [203], and the effectiveness of bug-finding
checkers [206]. In terms of coverage, some testing tools are manually devel-
oped [172, 150] but they struggle to exercise enough cases across file systems;
other tools fail to properly handle corner cases involving diverse operations and
uncommon file system states [207, 206, 127, 182, 123, 124]. Regarding applicabil-
ity, as new file systems emerge, testing tools frequently face challenges adapting to
them because of inherent design differences [115, 200]. As for the effectiveness of
checkers, different bug types require different tools (e.g., POSIX [168] and crash
consistency checkers [151]), and using ineffective ones can leave bugs undetected.

Scalability remains a core limitation in many existing testing tools. Many
rely on single-threaded or sequential execution [206, 107]; this significantly limits
their time efficiency and ability to check sufficient file system behaviors, states,
and corner cases within a practical time-frame.

In this thesis, we address challenges in file system testing by leveraging cover-
age metrics and enabling more thorough, versatile, and scalable checking through
three main thrusts: (1) designing new coverage metrics that assess and enhance file
system testing, based on insights from a real-world bug study; (2) developing a file
system model checking framework for comprehensive input and state exploration
to effectively check file systems; and (3) improving the scalability of file system
model checking through containerization and orchestration of swarm verification.

We achieve the first thrust by conducting a study of existing file system bugs in
Ext4 and Btrfs to evaluate the effectiveness of the most widely used coverage metric
in file system testing: code coverage [2]. Our findings indicate a weak correlation
between code coverage and test effectiveness in file system testing. Based on our
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CHAPTER 1. INTRODUCTION

bug analysis, we formulate two new coverage metrics, input coverage and output
coverage, to evaluate file system testing tools by examining the coverage of system
call inputs and outputs. We also developed IOCov, a framework for computing
input and output coverage of file system testing tools. Using IOCov, we enhanced
the input coverage of the crash consistency testing tool CrashMonkey [151], result-
ing in CM-IOCov, which retains the original design while achieving higher input
coverage. We show that IOCov uncovers untested inputs, outputs, and value ranges
in existing tools, and that CM-IOCov improves bug detection through enhanced
input coverage. Notably, CM-IOCov detected bugs that the original CrashMonkey
failed to find on both Linux 6.12 and 5.6.

To achieve the second thrust, we created Metis, a novel model-checking frame-
work that enables thorough and versatile input and state space exploration of file
systems. Metis combines the exhaustive state-space exploration of model check-
ing with the cross-implementation validation of differential testing to check file
systems without requiring an abstract model. This design allows users to check file
systems without deep expertise in file systems or model checking and eliminates
the need to create a model for each new file system. We also developed RefFS, a
fast, lightweight, and reliable reference file system designed to accelerate model
checking and enhance bug reproducibility through innovative ioctlAPIs. Using
RefFS as the reference, Metis successfully identified over 15 bugs across multiple
file systems.

To realize the third thrust, we integrated Swarm verification [86] into Metis to
enable parallel exploration across multiple CPU cores and machines. Moreover,
we designed CoSV to use containers for packaging verification tasks (VTs), which
are managed by an orchestrator [147]. We implemented two CoSV variants using
different container technologies: Docker [47] and Kata Containers [104], referred
to as CoSV-Docker and CoSV-Kata, respectively. CoSV streamlines packaging
with a single effort and enables easy deployment of VTs as computing resources
are added for improved scalability. CoSV uses different containers to provide
varying fault isolation: CoSV-Docker handles resource contention among VTs,
while CoSV-Kata isolates kernel-level faults caused by Metis or other low-level
model checking.

It is our thesis that input and output coverage metrics are essential for effective
file system testing, and that new model checking techniques should be employed
to enable more thorough, scalable, and more easily applicable validation across
diverse file systems. To realize our thesis, we first introduce new coverage metrics
to evaluate and improve file system testing, along with IOCov for efficiently com-
puting these metrics and CM-IOCov that demonstrates enhanced input coverage

3



CHAPTER 1. INTRODUCTION

for crash consistency testing. We then develop the model-checking framework
Metis and the reference file system RefFS to enable more thorough and effective
testing of file systems. Finally, we present CoSV, which enhances Swarm verifi-
cation to improve the scalability of model checking task deployment, enabling the
exploration of large state spaces such as those in file systems.

To promote reproducibility and future research, we have open-sourced most of
the artifacts associated with this dissertation, including:

• IOCov [128, 129]: https://github.com/sbu-fsl/ IOCov

• CM-IOCov [128, 129]: https://github.com/sbu-fsl/CM-IOCov

• Metis [125, 127]: https://github.com/sbu-fsl/Metis

• RefFS [126, 127]: https://github.com/sbu-fsl/RefFS

The rest of the thesis is organized as follows. Chapter 2 outlines our thesis
statement and describe our motivation. Chapter 3 discusses related works. Chap-
ter 4 describes our input and output coverage metrics, the IOCov framework, and
CM-IOCov as a practical application of input coverage. Chapter 5 presents the
Metis model checking framework and the RefFS reference file system. Chap-
ter 4 elaborates on CoSV and how it enhances Swarm verification, and Chapter 7
concludes this thesis and discusses directions for future research.

4
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Chapter 2

Motivation

In this chapter, we describe the vision and motivations behind this thesis. Specif-
ically, we aim to improve the effectiveness and scalability of file system model
checking by: developing new coverage metrics to better evaluate and guide file
system testing, designing a new model checking framework tailored for file sys-
tems to enable systematic and efficient checking, and enhancing the scalability of
Swarm verification to enable broader exploration of complex system behaviors.

2.1 Thesis Statement
The problems addressed in this thesis are threefold: (1) to define and compute
effective coverage metrics for file system testing that facilitate bug detection; (2) to
develop a new file system model checking framework that overcomes limitations of
existing tools, such as inadequate coverage and poor adaptability to emerging file
systems; and (3) to enable scalable swarm verification for file system model check-
ing and other tasks by concurrently exploring large state spaces and improving
verification efficiency.

To address the first problem, this thesis introduces input and output coverage
metrics for file system testing, along with the IOCov framework for computing
these metrics and CM-IOCov for applying them to improve crash consistency
testing in practice. To tackle the second problem, this thesis presents the Metis
model checking framework, which incorporates the RefFS reference file system
to integrate implementation-level model checking with the concept of differential
testing for detecting bugs in Linux kernel file systems. To resolve the third problem,
this thesis presents CoSV, an improved version of Swarm verification that leverages
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CHAPTER 2. MOTIVATION

containers and an orchestrator to improve scalability.
The goal of this thesis is to streamline the entire process of file system model

checking—ranging from coverage and framework design to scalability—to assist
developers in identifying hard-to-detect bugs and improve file system reliability
across multiple dimensions.

2.2 Coverage Metrics for File System Testing
Software testing requires coverage metrics to measure effectiveness, ensure com-
prehensive testing, identify untested components, and improve and prioritize test-
ing efforts [102]. File system testing is no exception. Various types of coverage
metrics are applied in file system testing. For example, regression test suites
(e.g., xfstests [172]) typically focus on functionality coverage, seeking to test
as many functions and features of the file system as possible. Some black-box
testing tools [151, 31], while not guided by an explicit coverage metric, still man-
age to achieve comprehensive coverage of syscall combinations. Among various
metrics, code coverage and its variants are the most widely used in file system
testing [68, 201, 107]. However, despite the prevalence of code coverage, its
effectiveness in file system testing has not been well studied. Effectiveness of
coverage metrics can be described in multiple ways. In this context, we define
it as the ability to assist in identifying bugs. For example, the effectiveness of
code coverage should be measured by its capacity to detect hidden bugs within the
covered code.

In addition to effectiveness, another important dimension for evaluating a
coverage metric is how easily developers can use it to improve their testing tools,
which we refer to as the usability of coverage metrics [2]. However, due to the
complexity of file systems, the utility of coverage metrics presents an additional
challenge in evaluating and improving file system testing tools. In this thesis,
we explore the effectiveness and usability of code coverage and introduce input
and output coverage metrics that offer both high effectiveness and usability in file
system testing. We also demonstrate that improving input coverage alone can help
uncover more bugs and enhance test effectiveness.

6
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2.3 File System Model Checking
Model checking is an automated technique used to verify finite-state concurrent
systems by exhaustively exploring a bounded state space to determine if the sys-
tem’s model adheres to its specification [39]. Model checking is well-suited for file
systems due to their complex operations (e.g., links, renaming), their use of diverse
storage devices, and their execution under extreme conditions (e.g., disk failures,
crashes). These factors generate a wide range of file system states, including many
corner cases [207, 206]. Model checking excels at exploring all possible states
and transitions, ensuring that even rare or hard-to-reach states are checked, min-
imizing the chance of missing subtle bugs [40]. Given this, model checking has
been successfully applied to identify many file system bugs and improve overall
reliability. However, several challenges still need to be addressed in file system
model checking, including: (1) the difficulty in building an abstract file system
model, (2) limitations in detecting non-crash bugs, and (3) challenges in exploring
large state spaces.

In this thesis, we aim to address the limitations of existing file system model
checking and fully explore the potential of model checking techniques [123, 124,
182, 127]. Specifically, unlike conventional model checking, we do not man-
ually create models for file systems, as they are too complex to construct ac-
curate, practical, and universally applicable models. We adopt the approach of
implementation-level model checking [72] to overcome the limitations of existing
methods: eliminating the need for users to manually create checkers, enabling the
detection of a wide range of bug types, and simplifying the process of checking
emerging file systems.

2.4 Scalability and Fault Isolation in Swarm Verifi-
cation

Swarm Verification (SV) [84, 86] is a technique for the SPIN model checker [79]
that generates multiple parallel verification tasks (VTs) by varying search param-
eters, causing each VT to explore different portions of the state space. SV aims
to utilize available computing resources, including CPU cores and machines, to
enable collective and parallel state-space exploration. Therefore, the scalability
of VTs directly affects the efficiency and practicality of SV across various model
checking tasks. However, SV focuses on generating multiple VTs but lacks ef-
ficient mechanisms to deploy them at scale on computing resources, particularly
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when resource availability is dynamic. When model checking tasks involve com-
plex configurations and dependencies, SV requires environment setup on each
deployment machine, limiting scalability due to high manual effort. Moreover,
SV executes VTs on the same machine without isolation, making it possible for
faults in one VT to affect others, which is a frequent concern in model checking
scenarios.

In this thesis, we address scalability and fault isolation in SV through container-
ization, packaging each VT in a container managed by an orchestrator. Different
containers offer varying levels of isolation and performance, making them suitable
for different types of model checking. Standard containers like Docker [47] are
lightweight and offer better performance, but provide limited isolation. This is
suitable for most user-space model checking tasks, which do not require isolation at
the operating system kernel level. However, for model checking low-level software
such as file systems, which may trigger kernel-level errors, sandboxed containers
like Kata Containers [104] provide stronger isolation by running each container
with a separate operating system kernel, at the cost of reduced performance. We
implemented both variants of containerized swarm verification to evaluate their
scalability and fault isolation compared to standard SV in realistic model checking
scenarios.

8



Chapter 3

Related Work

In this chapter, we survey related work on test coverage metrics, file system testing
and debugging, verified file systems, and distributed parallel model checking.
Section 3.1 reviews related work on test coverage metrics in file system testing and
prior studies evaluating the effectiveness of code coverage. Section 3.2 surveys
related work on file system testing for bug detection, as well as verified file systems
that employ formal techniques to ensure correctness and reliability. Section 3.3
discusses related work on parallel techniques for SPIN and swarm verification, as
well as parallel and distributed approaches to model checking.

3.1 Test Coverage Metrics
This section discusses related work on test coverage metrics, code coverage effec-
tiveness, and file system testing.

Test Coverage Metrics Coverage metrics have long been a cornerstone of soft-
ware testing, providing a quantitative method to evaluate the thoroughness of test
suites [217, 138]. There are general coverage metrics for most software and spe-
cialized ones for specific test targets [164]. As the most widely used general
metric, code coverage includes subtypes such as line, statement, function, and
branch coverage, categorized by the granularity of the code measured [94]. In
file system testing, however, developers primarily conduct tests by issuing syscalls
to file systems in kernel space. Due to the complex path between user-space test
suites and kernel-space file system implementations, it is unclear which syscalls
to issue to cover specific code [60, 8].
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Specialized coverage metrics [204] differ across testing techniques because
each technique targets different bug types, exercises different system features, and
uses distinct methods to generate and run test cases. For example, file system
model checking [127, 206] aims to achieve state coverage by exploring as many
file system states as possible. Similarly, testing crash consistency requires one to
cover diverse crash scenarios [151, 23, 161, 5]. Current approaches to file system
testing primarily rely on generic coverage metrics, such as code coverage, without
specifically evaluating their effectiveness for this domain [107]. Moreover, no
formal coverage metrics have been defined explicitly for file system testing.

Although input and output coverage metrics exist [112, 6, 189], they are de-
signed for different targets (e.g., quantum programs, network protocols) and are
not suited for file system testing, which relies on syscall inputs and outputs.

Effectiveness of Code Coverage Assessing the effectiveness of code coverage
is an active area, but the findings remain inconclusive and lack consensus. We
define effectiveness as the ability to detect faults or bugs in the test target. Some
studies [109, 64, 65] suggest that the effectiveness of code coverage is inconsistent
and depends on the specific target. For example, Kochhar et al. [109] found a strong
correlation between code coverage and test effectiveness for the Mozilla Rhino
JavaScript engine, whereas the correlation was moderate for Apache HTTPClient.
Some studies [56, 57, 69, 77] show that the correlation is contingent upon specific
subclass metrics of code coverage. According to Gopinath et al. [69], statement
coverage is the most effective metric for detecting faults, outperforming other code
coverage metrics. Hemmati et al. [77] observed, however, that statement coverage
is significantly weaker than other coverage metrics such as branch coverage.

Moreover, prior work [155, 25, 27, 92] indicates that code coverage has a
limited correlation with test effectiveness, and thus new, complementary coverage
criteria are needed [179]. Specifically, Inozemtseva et al. [92] analyzed 31,000
test suites for five systems and found a low-to-moderate correlation between code
coverage and effectiveness. Nevertheless, there is no existing research examining
this correlation for complex low-level systems, such as in-kernel file systems. This
work investigates the correlation for file system testing through the bug study
presented in Section 4.2.

File System Testing File system testing can be static or dynamic, depending on
whether it involves actively exercising the file system [149]. This thesis focuses
on dynamic testing, which generally has three steps: (1) generating test cases in
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the form of syscalls, (2) initializing the file system under test and executing the
tests, and (3) validating file system properties post-execution. Here, we consider
four representative methods: regression testing, model checking, fuzzing, and
automatic test generation, and explain how they achieve coverage.

Regression testing (e.g., xfstests [172] and LTP [150]) is a collection of tests
manually crafted to ensure that updates or new features do not introduce bugs or
failures. It often aims to achieve functionality coverage by testing as many file
system features as possible to verify the correctness of each. Given, however, the
continuous evolution of file system features and the handcrafted nature of regres-
sion testing, it is difficult to ensure complete functionality coverage or provide a
measure to assess the completeness of the testing [8].

Model checking [127, 182, 207, 206] is a formal verification technique used
to find bugs by automatically and systematically exploring a file system’s state
space. During exploration, model checking verifies whether each file system state
adheres to a specification. State coverage, however, is not a practical metric for
file system testing for two reasons: (1) due to the complexity of file systems,
the number of possible states grows exponentially with the number of system
components, a problem known as state explosion [39], and (2) state coverage does
not provide clear guidance to developers on how to improve their tests. As states
are often difficult to predict and accurately represent, developers may not know
which specific test cases or scenarios need improvement [127].

Fuzzing [203, 203, 201] uses code coverage as guidance and employs heuristics
to prioritize test inputs that increase coverage. However, it lacks guarantees for
achieving comprehensive coverage or accessing hard-to-reach code paths.

Automatic test generation [151, 31] creates rule-based syscall workloads to test
file system functionality and reliability, typically covering various combinations of
syscalls. For example, CrashMonkey [151] exhaustively permutes syscalls within
a defined bound to construct operation sequences for testing file system crash
consistency. However, focusing solely on syscall combinations is inadequate, as
each syscall can have different argument values, leading to different test cases for
the same syscall [62].

To our knowledge, no prior work exists on designing coverage metrics for file
system testing by studying real bugs, nor on enhancing testing using these metrics.
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3.2 File System Testing and Verification
File system testing and debugging We divide existing file system testing and
bug-finding approaches into five classes: Traditional Model Checking, Implemen-
tation level Model Checking, Fuzzing, Regression Testing, and Automatic Test
Generation. Table 5.3 summarizes these approaches across various dimensions.

Traditional model checking [60, 208] builds an abstract model based on the file
system implementation and verifies it for property violations. Doing so demands
significant effort to create and adapt the model for each file system, given the
internal design variations among file systems [133].

Implementation-level model checking [207, 206] directly examines the file
system implementation, eliminating the need for model creation. Due to file
systems’ complexity, however, this approach requires either intrusive changes to
the OS kernel [207, 206] or manually crafting system-specific checkers [206].
Additionally, existing work [207, 206] based on this approach generally only
identifies crash-consistency bugs and is incapable of detecting silent semantic
bugs.

Unlike these methods, Metis checks file systems for behavioral discrepancies
on an unmodified kernel. Thus, there is no need to manually create checkers when
testing a new file system [206]. Moreover, other model-checking approaches rely
on fixed test inputs [60, 206] and lack the versatility to accommodate different
input patterns. All model-checking approaches, including Metis, track file system
states to guarantee thorough state exploration [39], a feature often lacking in other
approaches.

Model checking and fuzzing are orthogonal approaches, each with its own
advantages and disadvantages. File system fuzzing [68, 201, 107, 203] continually
mutates syscall inputs from a corpus, prioritizing those that trigger new code
coverage for further mutation and execution, but they cannot make state-coverage
guarantees, risk repeatedly exploring the same system states, and require kernel
instrumentation. Some fuzzing techniques [107, 203] also corrupt metadata to
trigger crashes more easily and use library OS [162] to achieve faster and more
reproducible execution than VM-based fuzzers. However, such designs have their
own drawbacks: they require file-system–specific utilities to locate metadata blocks
and cannot test out-of-tree file systems unsupported by library OS. Hybridra [209]
enhances existing file system fuzzing with concolic execution, but it remains
fuzzing-based and has the same limitations of file system fuzzers, including the
lack of state-coverage guarantees.

Fuzzing mainly supplies inputs to stress file systems and commonly finds bugs
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using external checkers, such as KASan [67] (memory errors) and SibylFS [168]
(POSIX violations). Current fuzzers configure the tested syscalls but not their
arguments [68, 171], as testing is driven by code coverage. Compared to fuzzing,
Metis employs a test strategy that explores both the input and state spaces, rather
than solely maximizing code coverage.

Manually written regression-testing suites like xfstests [172] and LTP [150]
check expected outputs and ensure that code updates do not [re]introduce bugs.
Because they are hand-created, they are not easily extensible and do not attempt
to automate or systematize their input or state exploration. Compared to their
XFS-specific tests, xfstests’ “generic” tests can be used with any file system.
Nevertheless, from our past experience (including building RefFS), even when
adopting the generic tests, some setup functions must be manually modified.

Automatic test generation [151, 31, 115] creates rule-based syscall work-
loads (e.g., opening a file before writing) and employs external checkers (e.g.,
KASan [67]) or an oracle [151] to identify file system defects. This technique is
easily adapted to new file systems and extensible with new operations, owing to
the universality of syscalls. Nevertheless these implementations have lacked the
versatility needed to explore diverse inputs and do not explore the state space like
Metis. Furthermore, these testing methods typically identify only a limited range
of bugs; for instance, CrashMonkey [151] exclusively detects crash-consistency
bugs. We do not include a comparative analysis of testing for other storage sys-
tems, such as NVM libraries [58] and data structures [59], given their different
testing targets and goals.

Ultimately, Metis is not designed to replace any existing technique; rather, we
believe that it is an additional tool that offers a complementary combination of
capabilities not found elsewhere.

Verified file systems For Metis, a reliable and ideally bug-free reference file sys-
tem is critical. Verified file systems are built according to formally verified logic
or specifications. For example, FSCQ [33] uses an extended Hoare logic to define
a crash-safe specification and avoid crash-consistency bugs. Yggdrasil [176] con-
structs file systems that incorporate automated verification for crash correctness.
DFSCQ [32] introduces a metadata-prefix specification to specify the properties of
fsync and fdatasync for avoiding application-level bugs. SFSCQ [90] offers a
machine-checked security proof for confidentiality and uses data non-interference
to capture discretionary access control to preclude confidentiality bugs. However,
the specifications of verified file systems have only been used to verify particular

13



CHAPTER 3. RELATED WORK

properties (e.g., crash consistency [33, 176, 32] or concurrency [218]), so other
unverified components can still contain bugs. Worse, even after rigorous verifica-
tion, bugs can still hide due to erroneous specifications (e.g., a crash-consistency
bug reported on FSCQ [107]). None of these verified file systems include the
extra APIs that RefFS provides, which are crucial for optimizing model-checking
performance. While RefFS has not been formally verified, it relies on long-term
Metis testing to attain high robustness. Thus, we chose it, rather than a verified
file system, as the reference.

3.3 Parallel and Distributed Model Checking
SPIN and Swarm Verification. The SPIN model checker has evolved over time
by adopting various strategies to harness parallel computing resources for faster
state exploration. The initial effort extended SPIN to leverage multicore process-
ing [83, 81, 54] and distributed memory [118], followed by the development of
algorithms to partition the state space for distributed processing [17], implement
random-walk state search [178], and parallelize its execution [26, 16], ultimately
leading to the invention of SV. Recent research on SV has focused on enhancing
its parallel-execution performance using hardware such as FPGAs [38, 159] and
GPUs [42], but challenges related to scalability, isolation, and resource manage-
ment have remained unaddressed until now.

Parallel and Distributed Model Checking. Unlike the diversification technique
used in SV, other methods parallelize model checking on multi-core or distributed
systems through state-space partitioning and construction [61, 93], as well as using
search algorithms such as parallel breadth-first search [15] and parallel depth-first
search [14]. There are also non-SPIN-based model checkers that support both
intra-node and inter-node parallel execution. Specifically, DiVinE [13] supports
both shared and distributed execution models to address the state explosion prob-
lem, using multi-threading for shared-memory systems and MPI for distributed
environments. Mur𝜑 [180] partitions the global state space by hashing each state
to a designated worker, uses a parallel BFS algorithm, and employs message
passing to exchange states between workers on a multicore machine or a cluster.
Eddy [146] improves Mur𝜑’s architecture by introducing two threads per node:
one for state generation and one for communication, reducing synchronization and
context-switching overhead while improving intra-node parallelism.

14



CHAPTER 3. RELATED WORK

VTs in SV and CoSV are not coordinated, eliminating communication and
synchronization overhead. Model checkers like Mur𝜑 incorporate load balancing
into their parallel execution [113], whereas SV requires manual effort to configure
resource limits and availability on each machine. CoSV enhances SV by adding
automatic VT assignment to nodes, dynamically monitoring resource availability
to assign VTs accordingly. Additionally, CoSV offers fault isolation and runtime
consistency, which are often lacking in those approaches.
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Chapter 4

Enhanced File System Testing
through Input and Output Coverage

Effective file system testing relies on coverage to detect bugs and enhance relia-
bility. We analyzed real file system bugs and found a weak correlation between
code coverage, the most commonly used metric, and test effectiveness; many bugs
were in covered code but remained undetected. Our study also showed that cov-
ering diverse file system inputs and outputs—system call arguments and return
values—can be key to detecting the majority of observed bugs.

We present input coverage and output coverage as new metrics for evaluating
and improving file system testing, and have developed the IOCov framework for
computing these metrics. Unlike existing system call tracers, IOCov computes
coverage using only the calls relevant to testing, excluding unrelated ones that
should not be counted. To demonstrate IOCov’s utility, we used it to extend the
existing testing tool CrashMonkey into CM-IOCov, which achieves broader input
coverage and more thorough detection of crash consistency bugs. Our experimental
evaluation shows that IOCov computes input and output coverage accurately with
minimal overhead. IOCov is applicable to different types of file system testing
and can provide insights for improvement as well as identify untested cases based
on coverage results. Moreover, the bugs found exclusively by CM-IOCov are 2.1
and 12.9 times more than those found exclusively by CrashMonkey on the 6.12
and 5.6 kernels, respectively, demonstrating the effectiveness of the IOCov-based
coverage approach.
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4.1 Introduction
File systems serve as the backbone of modern storage, supporting numerous ap-
plications such as databases, cloud platforms, and local computing devices [133].
Given their critical role, file system bugs pose significant risks to overall system
reliability [71, 149], including data loss, data corruption, and system crashes.
Consequently, various testing techniques have been developed to detect file system
bugs and improve system reliability [203, 127, 151]. File system testing, however,
remains a challenge due to the complexity of file systems and their stringent re-
quirements, such as data integrity, fault tolerance, and POSIX compliance [168].
Despite the availability of a number of testing tools, such bugs continue to emerge
on a regular basis [107], indicating that existing testing methods are inadequate
and there is room for improvement.

Various coverage metrics have been proposed based on specific testing ap-
proaches. For example, regression testing [172, 150] seeks to achieve function-
ality coverage, while model checking targets state coverage [127, 182]. Code
coverage is the most widely used metric in file system testing [107]. However, the
effectiveness of code coverage for file systems remains insufficiently studied. It
is still unclear whether increased code coverage leads to identifying more bugs.
Additionally, even when developers know which code segments are not covered,
modifying tests to enhance coverage is a challenge due to the complexity of file
system code [60, 8].

Most existing analyses of code coverage effectiveness [69, 92] focus on small
user applications rather than large, low-level systems like file systems. Further-
more, no coverage metrics have been specifically designed for file system testing
to help developers improve testing and detect more bugs.

Our Contributions. We first conducted an analysis of recent file system bugs
that led to the discovery of a weak correlation between code coverage and test
effectiveness. In terms of triggering file system bugs, we then identified the
importance of covering both (a) diverse test inputs, including system calls (syscalls)
and their arguments, and (b) test outputs, such as syscall returns and errors. The
majority of these bugs require specific inputs to be triggered and typically occur
along an exit path, which affects the output. Hence, we define input and output
coverage as criteria for evaluating and improving file system testing tools. We
partition the input and output spaces according to syscall argument and return
types, and measure input and output coverage by analyzing the frequency of
segments exercised by testing tools.
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Computing input and output coverage involves tracing tested syscalls while
excluding unrelated noise that is not part of the test workload. Because existing
syscall tracers [4] cannot solely focus on tracing file system calls, we designed
and implemented IOCov to compute input and output coverage for testing tools.
We applied IOCov to various file system testing tools, including black-box testing,
regression testing, fuzzing, and model checking, uncovering untested input/output
partitions in all of them and gaining insights into how they can be improved.

To demonstrate the utility of IOCov, we enhanced the crash consistency testing
tool CrashMonkey [151] by 1) significantly improving its input coverage while
keeping the rest of the system unchanged, and 2) having it run IOCov. The
improvement in input coverage comes from a driver that provides more diverse
syscall arguments (i.e., inputs) than the original CrashMonkey. We refer to this
new version of CrashMonkey as CM-IOCov. We compared CM-IOCov to the
original CrashMonkey in terms of the ability to detect crash-consistency bugs in
the Btrfs file system [169], and found that CM-IOCov identified 74.1% more test
failures (potential bugs) than the unmodified CrashMonkey on the new Linux 6.12
kernel.

In summary, this chapter makes the following contributions:

1. By using xfstests to analyze real bugs, we revealed the limitations of code
coverage (it often misses bugs even in covered code) and highlighted the
importance of covering diverse syscall inputs and outputs.

2. We formalized input and output coverage, allowing us to evaluate and im-
prove file system testing by partitioning input and output spaces, thereby
addressing the limitations of code coverage.

3. We designed and implemented IOCov to evaluate the input and output
coverage of file system testing tools. We applied IOCov to a number of
testing tools, in the process deriving insights for their improvement.

4. We created CM-IOCov to enhance crash-consistency testing (i.e., Crash-
Monkey). CM-IOCov detects more bugs than CrashMonkey and demon-
strates the effectiveness of input coverage in real-world bug detection.

The rest of this chapter is organized as follows. Section 4.2 considers the
effectiveness (or lack thereof) of code coverage when it comes to bug detection,
and underscores the role inputs and outputs can play here. Section 4.3 defines
input/output coverage, and presents the design and implementation of the IOCov
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framework. Section 4.4 focuses on the role CM-IOCov plays in improving crash
consistency testing. Section 4.6 presents our experimental results, Section 3.1
discusses related work, and Section 4.7 offers our concluding remarks.

4.2 File System Bug Study
This section addresses two questions: (1) whether code coverage is effective for
file system testing, and (2) which aspects of testing are crucial for detecting bugs.
To answer these questions, we analyzed recent file system bugs which led us to
devise input and output coverage criteria for file system testing. Unlike previous
file system bug studies that focused on bug patterns and classification [133, 212],
our study not only examined the effectiveness (or lack thereof) of code coverage
in finding bugs, but also identified the key factors that contribute to bug detection.

4.2.1 Code Coverage in FS Testing
A common approach to assessing code coverage effectiveness is mutation testing,
which involves introducing small faults and checking whether test suites with
increased code coverage can detect more faults than those with lower coverage [92,
69]. This method, however, is not applicable to in-kernel file systems, where even
small faults can lead to serious OS errors, make the file system unmountable, or
damage basic file utilities, preventing us from executing any further tests. As a
result, we adopt a different approach to evaluating the correlation between code
coverage and bug detection by studying known file system bugs [109, 77]. If
covering the buggy part of the code helps a test detect the underlying bug, it
suggests that code coverage is effective.

Developers identify and resolve Linux kernel file system bugs by submitting
patches, which, after review, are merged into the kernel repository [96]. Therefore,
analyzing accepted patches in the form of Git commits can reveal information
about previously buggy file system code [184]. We collected the 100 most recent
Git commits [187] from 2022 for each of the two popular Linux file systems,
ext4 [144] and Btrfs [169], amounting to 200 commits in total. These were the
latest commits available when we began this project. Some commits were not
bug fixes; instead they introduced new features, performance optimizations, or
maintenance changes [133].

We then applied Lu et al.’s taxonomy [133] to identify bug-fix commits, finding
51 ext4 bugs and 19 Btrfs bugs. (The lower count for Btrfs is due to major code
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refactoring in December 2022.) These 70 bugs span all four file system bug
categories of Lu et al.’s taxonomy: 37 semantic, 3 concurrency, 20 memory, and
10 error-code bugs. Next, we ran xfstests, a widely used test suite, on ext4 and Btrfs
using Linux kernel v6.0.6, the latest version in which the extracted bugs remained
unfixed. We executed all generic and file system-specific tests and used Gcov [91]
to measure line, function, and branch coverage of the file system sources.

For each bug fix, we inspected the Gcov reports to determine if xfstests cov-
ered the pertinent code, and then reviewed the test logs and commit messages to
determine if the suite detected the bug. Our aim was to assess code coverage
effectiveness at different levels (line, function, and branch) to determine if xfstests
could detect bugs in the covered code. Two individuals with a strong understanding
of file systems independently cross-validated our results to ensure accuracy.

The results of our study showed that xfstests failed to detect any of the 70 bugs
even though it covered many code segments related to these bugs. Specifically,
xfstests covered relevant lines of code for 37 of the 70 bugs (53%) but did not
detect those bugs, indicating that line coverage does not ensure bug detection.
Additionally, it covered the functions of 43 of the 70 bugs (61%) and the branches
of 20 of the 70 bugs (29%) without detecting the bugs. Consequently, all three
code-coverage metrics reveal that merely covering code does not mean bugs that
lie within it will be detected. Worse, among all of the bugs that we studied, xfstests
executed each buggy line of code an average of over 13.8 million times per bug, but
remained unable to uncover the bug concealed within those lines. This indicates
that repeatedly covering code may not be useful for bug detection. We conclude
that, at least for file systems, code coverage metrics do not strongly correlate with
test effectiveness, i.e., the ability to detect bugs.

4.2.2 Keys for Bug Detection
Given the limited effectiveness of code coverage, we further investigated why
covering code does not always reveal bugs, and identified key factors for detection.
To this end, we analyzed each bug to determine the test cases (including syscalls
and their arguments) needed to find it. We observed that many bugs can only be
detected when specific syscalls and particular arguments are used. Executing calls
with ineffective argument values may cover the code but fail to expose the bug.
We refer to bugs that require specific argument values to trigger them as input
bugs. Moreover, we found that many bugs occur in the exit or error paths of kernel
functions, potentially affecting syscall return values and error codes [139, 78];
we refer to these as output bugs. Covering syscall return behavior is crucial for
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Bug fix in fs/ext4/xattr.c, v6.0-rc1

lsetxattr(size, ...)

 sys_lsetxattr(size, ...)
…
  vfs_setxattr(size, ...)
…
   ext4_xattr_set(value_len, ...)
…
    int ext4_xattr_ibody_set(inode, ...) {
-     if (EXT4_I(inode)->i_extra_isize == 0)
+     if (!EXT4_INODE_HAS_XATTR_SPACE(inode))
       return -ENOSPC;

User Space

Kernel Space

Figure 4.1: An ext4 bug that qualifies as both an input and output bug. The bug
was fixed by checking whether the inode has room to store additional xattrs in
ext4_xattr_ibody_set.

revealing them.
Figure 4.1 shows an ext4 bug [190], fixed in Linux kernel version v6.0-rc1,

which qualifies as both an input and an output bug. It is an input bug because it
occurred only when lsetxattr used the maximum legal size argument, causing
the minimum offset (min_offs) between two block groups to overflow. Although
its lines, function, and branches are all covered by xfstests, the test suite failed to
detect it. It is also an output bug because it occurs on a function’s exit path and
affects the behavior of an error code (i.e., ENOSPC).

To determine a bug’s classification as an input bug, output bug, both, or neither,
we analyzed each bug in terms of the inputs required to trigger it and the outputs it
can impact. Of the 70 bugs analyzed, we identified 50 as input bugs (71%), 41 as
output bugs (59%), and 57 as either input or output bugs (81%). The prevalence
of input and output bugs (or both) underscores the necessity of ensuring thorough
coverage of inputs and outputs in file system testing. Additionally, of the 37 bugs
missed by xfstests despite covering their lines of code, 28 (76%) are input or output
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bugs. Among them, 24 (65%) are input bugs that require specific syscall argument
values to be triggered. These argument values often involve corner cases, such as
out-of-bound reads [21], less-tested inputs such as extended attributes [20, 103],
and links [19], and boundary values that trigger overflow [190, 196] or are zero-
length [197].

Code-coverage metrics typically do not take into account the diversity of in-
put cases, with lightly tested inputs often following the same execution paths as
well-tested ones [188]. Consequently, code coverage does not weight repeatedly
executing the same code path with varying inputs [77]. Similarly, bugs in various
output cases, such as error codes [139, 119], are not properly evaluated by such
metrics.

Thus, we need to consider comprehensive coverage of input types, including
syscalls and their arguments, as well as outputs such as return values and error
codes. Given the lack of established metrics and tools for measuring input and
output coverage in file system testing [112], we propose input and output coverage
metrics and present IOCov as a means for evaluating them. In summary, code
coverage alone is insufficient for testing, as many bugs rely on specific inputs and
outputs that may be missed. Covering syscall inputs and outputs during testing
helps address these limitations.

4.3 IOCov Metrics and Framework
We present new coverage metrics for file system testing: input coverage and output
coverage, along with the IOCov framework for computing these metrics in testing
tools. We begin with the input and output partitioning scheme we use for defining
input and output coverage. We then formalize these coverage metrics and describe
the architecture of IOCov, highlighting the filtering mechanism it uses to ensure
accurate coverage computation.

4.3.1 Input and Output Coverage
Linux provides over 400 system calls, with many specifically related to file sys-
tems [12, 188]. Each system call can take multiple arguments, and both the
arguments and the outputs can assume arbitrary values from large domains. Con-
sequently, it is infeasible to evaluate whether all possible inputs and outputs are
covered by testing. We observed, however, that file system calls exhibit structured
input and output patterns, which can be partitioned into categories containing
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semantically similar cases. For example, the open syscall has a bitwise flags

argument, where each flag represents a specific behavioral option. Enabling a par-
ticular flag triggers behavior tied to a distinct aspect of the syscall. For example,
setting O_CREAT causes a file to be created if it does not already exist. Instead
of analyzing all flag combinations, which would be exponentially complex, we
treat each flag independently and check whether it appears in any test input. This
reveals how well a testing tool covers the behaviors encoded by open flags. This
partitioning strategy can also be applied to other inputs and outputs, but different
input and output types require different methods.

For inputs, we classified syscall arguments into five categories: identifier,
pointer, bitmask, numeric, and categorical. Identifiers include file and directory
pathnames, as well as file descriptors that specify the object on which the syscall
operates, such as pathname in open and fd in write. Pointer arguments refer
to memory addresses that point to buffers or structures, such as buf in write.
Bitmasks are arguments that can be logically or-ed, such as open’s flags and
chmod’s mode. Numeric arguments are scalars, often representing quantities such
as the number of bytes in write’s count argument. Categorical arguments are
discrete values chosen from a small set of options, such as lseek’s whence.

For input coverage, we exclude identifiers and pointers because their values
correspond to specific operands or memory addresses and do not represent seman-
tically distinct test cases. We partition numeric arguments using boundary-value
analysis [167, 157, 46, 213], selecting powers of 2 as boundaries since they are
commonly used in file systems [100]. Each partition is defined as the range between
two adjacent boundaries. In the case of categorical arguments, each predefined
option corresponds to a unique input partition.

We partition the outputs in a manner similar to categorical and numeric inputs.
Most syscall outputs return either success or an error code. Accordingly, we divide
the output space into success and failure, and further subdivide the failure cases by
specific error codes. For syscalls that return a byte count on success (e.g., write),
we again partition outputs using powers of 2 as boundaries.

Partitioning the input/output space enables us to define coverage based on
semantic groupings, eliminating the need to examine every possible value. As
such, we define input coverage and output coverage as metrics that describe the
extent to which a testing tool exercises the input and output partitions of file
system calls. Input and output coverage offer insights for improvement in both
completeness, which measures how thoroughly the tool exercises all defined input
and output partitions, and balance, which measures how evenly test cases are
distributed across those partitions. Ideally, a tool should cover as many input
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and output partitions as possible to ensure comprehensive coverage and achieve
completeness. Moreover, given limited resources, it is important to avoid over-
testing certain partitions and under-testing others to ensure balanced coverage.

Achieving both objectives is often challenging in practice. For example, the
open flag O_LARGEFILE is intended for legacy 32-bit systems and is rarely used on
modern 64-bit computers. It is therefore difficult to justify testing it as extensively
as commonly used flags like O_RDONLY. Triggering hard-to-reach outputs such as
ENOMEM requires a system with limited memory, making such cases more difficult
to test.

As such, the goal of input and output coverage is not to achieve perfectly
balanced 100% coverage, but to help developers evaluate and improve testing by
providing insights that code coverage alone cannot offer, such as which tests should
be added and what error scenarios should be exercised.

4.3.2 IOCov Architecture

LTTng Kernel 
Session

File System 
Testing Tool

Syscall Variant Handler

Input  
Coverage

Output 
Coverage

IOCov Analyzer

Syscall 
Filter

Input/Output 
Partitioner

Syscalls 
traced

Figure 4.2: IOCov architecture and components.

With input and output coverage defined, the next step is to enable testing tools
to compute these metrics accurately and efficiently. Doing so involves tracking
the syscall inputs and outputs exercised by the tool. A concern is that although
existing tracers can capture the syscalls exercised by the tool, not all captured
syscalls originate from the test workload itself. Examples include open and read
for loading libraries, or write for logging. These should not be included in
coverage computation, as they do not exercise the tested file system. In particular,
these calls are not directly triggered by the test input and therefore should not be
included in input coverage; likewise, their outputs should not be considered part
of output coverage.
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We designed and implemented IOCov to address the limitations of existing
tracers and to accurately compute input and output coverage. Figure 4.2 illus-
trates IOCov’s architecture, its core components, and the workflow for computing
coverage with a file system testing tool. We leverage LTTng [43] to trace the
syscalls. Compared to other tracers such as strace [181] (which incurs high
overhead), ftrace [121] (which may require manual processing for interpreta-
tion), and bpftrace [24] (which requires custom scripts and may face scalability
challenges under high-frequency, multi-threaded workloads), LTTng offers low-
overhead, out-of-band tracing with full syscall input/output capture and good
scalability [4]. IOCov executes a given file system testing tool within an LTTng
Kernel Session, allowing all syscalls invoked by the tool, including their inputs
and outputs, to be recorded.

The IOCov Analyzer then processes the syscalls traced by LTTng. It has
three components: the Syscall Filter, the Input/Output Partitioner, and the Syscall
Variant Handler. The Syscall Filter, described in detail in Section 4.3.3, analyzes
raw traces and removes noisy or unrelated syscalls. Once the syscalls relevant
for testing are identified, the Input/Output Partitioner collects their inputs from
syscall_entry events and outputs from syscall_exit events, determines
which partition each input and output value belongs to based on the method
described in Section 4.3.1, and counts the occurrences of each input and output
partition.

We observed that the testing tool can trigger file system calls that perform
equivalent functions. For example, the openat syscall serves a similar purpose
as open but allows one to specify a directory file descriptor for more flexible path
resolution. We refer to the original or earliest form of a syscall, such as open, as
a base syscall, and to the extended or modified versions derived from it as syscall
variants. Since these variants share much of the same kernel implementation as
their corresponding base syscalls [188, 163], the Syscall Variant Handler groups
the base syscall and its variants together and merges their input and output spaces
when computing coverage in the IOCov analyzer.

Table 4.1 lists the supported syscalls, along with their arguments and cate-
gories as defined in Section 4.3.1. IOCov supports 23 syscalls (nine base and
14 variants) for coverage computation, and also collects additional syscalls (e.g.,
close, chdir) to help identify file descriptors and pathnames associated with
the test workload. After processing by the IOCov Analyzer, a report of the testing
tool’s input and output coverage is produced using a nested JSON key-value for-
mat, capturing the occurrence count of each input and output partition for every
syscall supported by IOCov.
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Table 4.1: Base syscalls and their variants supported by IOCov, along with the
arguments used for input coverage. Each argument is annotated with its type: B
(bitmask), N (numeric), and C (categorical).

Base Syscall Variants Supported Arguments
open openat, creat, openat2 flags (B), mode (B)

read pread64 count (N), offset (N)

write pwrite64 count (N), offset (N)

lseek llseek offset (N), whence (C)

truncate ftruncate length (N)

mkdir mkdirat mode (B)

chmod fchmod, fchmodat mode (B)

setxattr lsetxattr, fsetxattr size (N), flags (B)

getxattr lgetxattr, fgetxattr size (N)

4.3.3 IOCov Filtering Mechanism
A key procedure in IOCov that differentiates it from other syscall tracers is its
filtering mechanism, which retains only calls relevant to the test workload. IOCov
exploits the fact that most testing tools use a dedicated mount point to exercise
the tested file system. This approach provides an isolated and controlled testing
environment while preventing any impact on existing file systems. For example,
xfstests uses /mnt/test as the default mount point for executing tests, and Crash-
Monkey uses /mnt/snapshot. File system calls specify the target object using
either file descriptors or pathnames. By checking whether the accessed object
resides under the test mount point, we can determine whether a syscall belongs to
the testing workload or is unrelated noise.

Algorithm 1 illustrates how IOCov filters syscalls. The LTTng trace file is
generated during execution to log each syscall_entry event (recording inputs)
and each syscall_exit event (recording outputs), along with additional infor-
mation such as a strictly increasing timestamp. IOCov parses each line to obtain
the type (entry or exit), syscall name, and arguments (including file descriptors and
path names) or return values. Using this information, we determine whether each
line is related to testing by examining its file descriptor (fd) or pathname (path).
The IsTesting function in Algorithm 1 constructs the full pathname from the
path and the current working directory (cwd), which is necessary for handling
syscalls such as openat that may interpret paths relative to a directory fd (e.g.,
AT_FDCWD). The function then checks whether the resulting path belongs to the
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Algorithm 1: Syscall filtering in IOCov to retain only those related to
testing.

Input: trace_file: trace output of the testing tool
Output: filtered_syscalls: test-related traces

1 Initialize filtered_syscalls← [ ] ;
2 Initialize fd_set← ∅ ; // A set of file descriptors (fd)

used for testing
3 Initialize cwd← current working directory
4 foreach line in trace_file do
5 Parse line to get event_type, syscall, fd/path;
6 if fd ∈ fd_set or IsTesting(cwd, path) then
7 if event_type = syscall_entry then
8 if IsOpen(syscall) then
9 Add fd to opened_fd;

10 else if IsClose(syscall) then
11 Add fd to closed_fd;
12 else if IsFSCall(syscall) then
13 Add syscall inputs to filtered_syscalls;

14 else if event_type = syscall_exit then
15 if IsOpen(syscall) and return ≠ −1 then
16 Add opened_fd to fd_set;
17 else if IsClose(syscall) and return = 0 then
18 Remove closed_fd from fd_set;
19 else if IsChdir(syscall) and return = 0 then
20 Update cwd;
21 else if IsFSCall(syscall) then
22 Add syscall outputs to filtered_syscalls;
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test mount point. If the syscall is open or one of its variants, and both IsTesting
returns true and the syscall completed successfully, the returned file descriptor is
added to fd_set to represent file descriptors associated with testing.

Additionally, we handle close and close_range syscalls to remove expired
testing-related file descriptors. Upon a successful close, the closed file descriptor
is removed from fd_set. We also process chdir and fchdir syscalls, updating
cwd to reflect changes to the current working directory. In this way, when a
file system call is detected (i.e., IsFSCall returns true), and its file descriptor
is in fd_set or its pathname passes the testing check, the syscall is considered
testing-related, and its inputs and outputs are added to filtered_syscalls for
coverage computation.

4.4 CM-IOCov: IOCov for CrashMonkey
This section demonstrates how IOCov can be used to improve CrashMonkey, a file
system testing tool for crash consistency. We created CM-IOCov as an improved
version of CrashMonkey with greater input coverage, and present its design and
architecture in this section.

4.4.1 CM-IOCov Architecture
CrashMonkey [151, 152], which tests file system correctness under crash scenarios,
does not actually crash the file system. Instead, it simulates crashes by recording
I/O and replaying it up to a persistence point (e.g., after an fsync() call). It
generates test workloads as short sequences of syscalls, each followed by an explicit
persistence operation such as an fsync or a global sync. It then compares the file
system state after a simulated crash to a corresponding oracle, which represents the
expected state after a safe unmount, and treats any mismatch as a crash consistency
bug.

CM-IOCov improves CrashMonkey’s test workload generation while reusing
its crash simulation, oracle generation, and state comparison components. By only
improving input coverage, we isolate its impact from other potential improvements
to clearly observe its effect. Figure 4.3 illustrates the CM-IOCov architecture.
The original CrashMonkey workload generator first builds syscall sequences and
then fills in the arguments to satisfy operation dependencies (e.g., creating a file
before accessing it). CM-IOCov uses the same syscall sequences and dependency
resolution strategy for file and directory objects as CrashMonkey, but employs
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Figure 4.3: CM-IOCov architecture: improves CrashMonkey’s test workload
generation by introducing an input driver that provides syscall inputs with higher
input coverage.

the CM-IOCov Input Driver to generate argument values that offer better input
coverage for syscalls supported by IOCov.

CrashMonkey’s argument selection for syscalls relies solely on manually spec-
ified fixed values. For example, when creating a file using open(), it always
uses mode 0777, which grants read, write, and execute permissions to everyone,
without considering the diversity of permission settings that may affect file system
behavior. Thus, by using the CM-IOCov Input Driver instead of CrashMonkey’s
fixed argument-selection strategy, CM-IOCov generates test workloads with bet-
ter input coverage, while reusing the other CrashMonkey components to simulate
crashes, verify post-crash states against the oracle, and detect bugs.

4.4.2 CM-IOCov Input Driver
CM-IOCov’s key component is its Input Driver, designed to generate more diverse
syscall arguments than CrashMonkey, thereby achieving improved input coverage
and finding bugs that CrashMonkey misses. Table 4.2 provides a list of syscalls
and their inputs where CM-IOCov improves upon CrashMonkey. In particular,
for open(), CrashMonkey uses fixed values for the mode and flags arguments,
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0777 and O_CREAT | O_RDWR respectively, which always creates a file with
full permissions and read-write access for all users, but fails to explore other file
creation scenarios. CM-IOCov creates files using a broader combination of modes
and flags than CrashMonkey, including various read, write, and execute permission
settings for non-owner users and groups, as well as additional file creation flags
such as O_TRUNC, which truncates a file to zero length if it already exists, and
O_APPEND, which ensures that all writes are appended to the end of the file.
For numeric arguments such as the size in write/fallocate and the length in
truncate, CrashMonkey uses a fixed value across all cases. For example, when
appending to a file, it always writes 32,768 bytes, regardless of the file system type
or underlying disk size.

By contrast, CM-IOCov incorporates multiple input generators tailored to each
scenario involving byte arguments, including power-of-two values for aligned cases
and 2𝑛 ± 1 values to capture unaligned cases and edge conditions near alignment
boundaries. This enables exploration of a wider range of numeric byte values,
achieving better input coverage than CrashMonkey in cases such as appending
to a file, overwriting, or truncating a file. For test cases involving file extension
via write, CM-IOCov uses two input generators: one for the offset and one for
the write size. This ensures coverage of both overlapping writes and writes that
extend the file. CM-IOCov also takes the file system’s disk size into account
when generating byte arguments so that file writes stay within the available space,
thereby avoiding ENOSPC failures. CM-IOCov also supports additional file system
operations present in CrashMonkey that are not shown in Table 4.2, such as direct-
IO write and mmap write, for which the input driver can improve syscall inputs.

For each argument supported by IOCov, CM-IOCov constructs a value pool
containing relevant inputs, such as those produced by the byte argument generators
mentioned above, to achieve high input coverage for various test scenarios. Once
the syscall sequence is determined, CM-IOCov randomly selects a value from the
corresponding argument pool for each argument.

Unlike semantic file system testing, which also examines error cases [168],
crash consistency testing requires syscalls to execute successfully in order to verify
crash-time properties [33], such as whether a successfully created file persists
after a crash. Therefore, CM-IOCov excludes inputs that could cause file system
operations to fail, such as invalid flags that prevent file creation or write sizes that
exceed the available disk space. Due to the vast number of syscall sequences [151],
randomized input selection from value pools enables coverage of diverse input
spaces and improves overall input coverage.
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4.5 Implementation
IOCov is implemented in three main components: (1) a parser that analyzes and
extracts coverage information from LTTng trace logs; (2) a coverage visualizer that
plots and displays input and output coverage to aid developer analysis; and (3) a
set of scripts that run various file system testing tools within an LTTng session
and perform component integration. The implementation of IOCov comprises
3,045 lines of code, of which 2,990 are written in Python and 55 in Bash. The
parser for log processing and syscall filtering contains 1,029 lines of Python code.
The visualizer, implemented in 410 lines of Python code, displays input and
output coverage to help developers identify uncovered areas and improve testing
accordingly. The remaining lines of code are supporting scripts and essential
utilities used to automate and integrate the various components.

Implementing CM-IOCov required us to modify the original CrashMonkey
and add an input driver. We modified 381 lines of CrashMonkey, including its
workload generation unit and shell scripts, and implemented the CM-IOCov input
driver in 211 lines of Python code. The CM-IOCov input driver automates input
generation for multiple syscalls and can potentially support diverse inputs for other
analysis tools as well. Additionally, the original CrashMonkey includes two kernel
modules: one for I/O recording and another for taking block device snapshots. It
supports Linux kernel versions only up to 5.6.

To evaluate CM-IOCov on Linux kernel version 6.12, the latest version at the
start of our kernel migration, and uncover realistic bugs, we updated the system
to be compatible with that kernel. The modifications consist of 573 insertions
and 944 deletions in C source files, headers, and the Makefile related to the
CrashMonkey kernel modules. To support Linux kernel 6.12, we updated kernel
APIs and macros for compatibility, improved block I/O dispatch, simplified disk
and queue handling, and removed obsolete code.

Implementation Challenges While the input and output coverage metrics pro-
vided by IOCov help developers evaluate and enhance testing, and CM-IOCov
improves existing crash consistency testing, several challenges still remain. First,
the coverage metrics depend on how we partition the input and output space, which
may leave certain cases uncovered. For example, we compute coverage of the open
syscall by considering all of its flags individually. We do not, however, account
for combinations of flags, which is also important for generating meaningful test
cases. Computing coverage over all flag combinations is infeasible, as the flag
field in open can represent up to 223 possible values (many illegal) due to bitwise
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combinations. A second challenge is that the capability of certain file system
testing tools to improve input and output coverage is constrained. For example,
CrashMonkey mandates that syscalls succeed, which prevents it from exploring
outputs in the form of error codes.

Therefore, the effectiveness of testing improvements depends on the nature of
the testing goal. Output coverage is important for semantic testing [168, 149], but it
is not essential for crash consistency testing [151, 115, 176]. Additionally, different
testing tools may focus on specific input or output partitions, such as writing many
small files or a single large file [150]; thus, aligning input/output coverage with
test goals still requires domain knowledge and manual effort. Nevertheless, input
and output coverage, along with IOCov, provide an effective methodology for
developers to use to evaluate and enhance testing more easily than traditional code
coverage. We demonstrated the utility of our approach by using it to develop
CM-IOCov and thereby improving existing crash consistency testing.

4.6 Evaluation
In this section, we address the following questions: (1) What are the overhead
and performance impacts of applying IOCov to file system testing tools (§4.6.1)?
(2) How accurately does IOCov compute input and output coverage in file system
testing (§4.6.2)? (3) How can IOCov be utilized to assess the coverage of exist-
ing testing tools and provide developers with insights for improvement (§4.6.3)?
(4) Can CM-IOCov improve bug detection and discover bugs that the original
CrashMonkey fails to detect (§4.6.4)?

Experimental setup We conducted all IOCov experiments on two virtual ma-
chines (VMs), each equipped with 8 CPU cores and 128GB of RAM. Both VMs
ran Ubuntu 22.04 with Linux kernel version 5.19.6. We ran all CM-IOCov and
CrashMonkey experiments on two additional VMs configured identically to the
IOCov machines, except that one used Linux kernel version 5.6 (the latest version
supported by the original CrashMonkey) and the other used version 6.12, which
is the kernel we migrated the system onto. Each VM was equipped with a 1TB
disk partition used to store all generated executables and log files. To evaluate
IOCov, we employed four file system testing tools: xfstests [172], Metis [127],
Syzkaller [68], and CrashMonkey [151]. These tools were selected as representa-
tives of different testing techniques: regression testing, model checking, fuzzing,
and automatic test generation, respectively. As the tools vary in design and capa-
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Figure 4.4: Performance overhead of IOCov on xfstests and Metis, measured using
completion time and operation rate, respectively.

bilities, we selected appropriate tools for each evaluation task, while measuring
input and output coverage across all of them.

4.6.1 IOCov Overhead
Applying IOCov to testing tools to compute input/output coverage introduces
additional overhead that may slow testing. First, IOCov relies on LTTng to trace
system call inputs and outputs, introducing additional CPU and I/O overhead
for capturing events and writing trace logs. Second, computing the final input
and output coverage requires analyzing the logs to extract the relevant coverage
information.

To evaluate overhead, we applied IOCov to two testing tools: xfstests and
Metis, which respectively rely on manually crafted test cases and automated testing
(state exploration). The xfstests suite includes two test-case categories: generic
tests, applicable to all file systems, and specialized tests, designed for specific file
systems and their unique features. Metis generates diverse inputs to systematically
explore file system states and in the process check if the system behavior is as
expected. The tests in xfstests are fixed, so we measure overhead by comparing
the completion time with and without IOCov. Metis, in contrast, explores states
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Figure 4.5: Log10-scaled input coverage counts (𝑦-axis) for each open flag (𝑥-
axis), measured across CrashMonkey, xfstests, Syzkaller, and Metis.

dynamically at runtime and can run for extended periods. Therefore, overhead is
measured as the difference in Metis’s speed (operations per second) when run with
and without IOCov.

Figure 4.4 compares the performance of xfstests and Metis with and without
IOCov. Using three file systems (ext4 [144], XFS [177], and Btrfs [169]), we
executed all of xfstests’ generic tests and ran Metis for one hour. With IOCov,
the overhead from LTTng increased xfstests’ completion time by 7.8–13.4%. For
Metis, more operations per second indicates better performance; with IOCov, the
operation rate dropped by 2.1–5.3%. Metis runs faster on ext4 than on XFS and
Btrfs because it uses the minimum allowed device size: 2 MiB for ext4 compared
to 16 MiB for the others. Metis takes longer to save and process states for larger
devices. For post-tracing analysis, IOCov took 22.5 minutes to extract coverage
information for xfstests applied to ext4 and 17.4 minutes for Metis.

The extracted input and output coverage data for all supported syscalls, format-
ted as nested JSON, was only 2.8 MB, whereas the raw LTTng trace from xfstests
was 41 GB, indicating that IOCov efficiently extracts coverage information from
large traces. In summary, IOCov introduces a small and acceptable compute and
storage overhead when extracting input and output coverage.

4.6.2 IOCov Accuracy
It is important that IOCov accurately filter syscalls related to file system testing for
coverage computation, a property we refer to as its accuracy. To evaluate accuracy,
we compared its reported coverage with the verified inputs and outputs exercised
during testing, which served as the ground truth. Many file system testing tools do
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not log the syscalls they execute for testing (e.g., xfstests), or retain only incomplete
information (e.g., CrashMonkey). As such, we applied Metis to this task, as it
records file system calls along with their inputs and outputs, capturing only those
relevant to testing.

This accuracy experiment compared the coverage reported by IOCov for Metis
against the inputs and outputs recorded in Metis logs. We ran Metis for one hour
on ext4 while using LTTng to trace syscalls. We then computed input/output
coverage using IOCov and measured the expected coverage based on Metis logs.
For the comparison, we counted the file system calls captured by IOCov (computed
coverage) and those recorded in the Metis logs (expected coverage). We found
that both recorded similar counts for most file system syscalls. IOCov recorded
39,641 calls to write, 523,152 to truncate, 29,280 to mkdir, and 54,486 to
chmod while Metis reported 41,935 calls, 523,047 calls, 29,261 calls, and 54,475
calls, respectively. The highest error rate among the syscalls was for write at
5.47%, which is acceptable for understanding the testing tool’s input and output
coverage. The mismatch comes from slight LTTng instrumentation limitations
or timing discrepancies, which may cause certain syscalls to be missed or logged
inaccurately compared to ground-truth execution.

Additionally, we examined partitions of syscall inputs and outputs in detail to
further assess accuracy. IOCov relies on the open syscall to filter other syscalls
and compute coverage. To compare open flags between IOCov and the Metis logs,
we examined the coverage of each of the 21 flags individually. We found that 13
flags had identical coverage in both; for example, O_WRONLY appeared 3,397 times,
O_EXCL 913 times, and O_DIRECT 729 times. The remaining flags showed slight
variations; for example, O_RDWR appeared 11,160 times in Metis logs and 11,166
times in IOCov, O_CREAT 3,397 vs. 3,398, and O_APPEND 3,929 vs. 3,931. Among
the flags with discrepancies, the largest difference is with O_DIRECTORY, where
Metis reported 1,693,264 occurrences and IOCov computed 1,711,525, resulting
in a 1.08% error rate. The O_DIRECTORY flag, used for opening directories,
appeared far more frequently than the others because Metis traverses the entire
file system after each operation to compute a hash of the resulting state. Overall,
IOCov accurately retains test-related syscalls and thereby computes input and
output coverage for file system testing tools with high accuracy.

4.6.3 IOCov Use Cases in Testing
We used IOCov to measure input and output coverage for different types of testing
tools in order to evaluate them and deliver insights on how they can be im-
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proved. Our evaluation covers four tools: CrashMonkey [151], xfstests [172],
Syzkaller [68], and Metis [127]. These tools vary in their characteristics and run-
time behavior. CrashMonkey generates grouped workloads based on test length;
xfstests runs a fixed set of workloads, with total duration depending on the selected
test groups; Syzkaller and Metis continuously generate workloads and can run for
extended periods. To ensure fairness, we selected workloads for CrashMonkey (in-
cluding seq-1 and other default workloads) and xfstests (the quick group) that
complete within one hour. We then ran Syzkaller and Metis for the same duration.
Each tool was evaluated using the same underlying file system, ext4. Specifi-
cally, Metis allows flexible configuration of syscall input distributions; however,
we used its default settings without additional customization. Although Syzkaller
is not a dedicated file system fuzzer, it can trigger file system bugs through rele-
vant syscalls, so we restricted it to generate only file system-related calls. While
IOCov is capable of generating comprehensive coverage data for all supported
syscall inputs and outputs, due to space constraints we report and analyze only a
representative subset.

Figure 4.5 shows input coverage for open flags across these four tools. The
𝑥-axis shows individual flags, each representing a single bit, and the 𝑦-axis (log10
scale) indicates how frequently each flag was exercised by the testing tool. Input
coverage for open flags is measured over all input partitions, i.e., the individual
flags that compose the bitmask. Among the four tools, Syzkaller achieves the most
thorough input coverage for open flags—exercising all flags and being the only
tool that covers both FASYNC and O_LARGEFILE. Although Metis and xfstests
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cover many commonly tested flags, they miss certain ones that are also worth
testing. For example, O_LARGEFILE, which enables support for large files, may
still expose bugs [195] in modern systems. CrashMonkey covers the fewest flags
and even misses common ones such as O_APPEND, indicating a need for improved
input coverage (which led to the development of CM-IOCov). Furthermore, our
results show that some flags are exercised millions of times, while others are never
tested, revealing a significant imbalance in test coverage. Such information can
inform the reallocation of test efforts to under-tested cases.

Figure 4.6 shows the input coverage for the write size argument (count in
bytes), partitioned by boundary values based on powers of 2. The 𝑥-axis represents
the log2 of the write size, while the 𝑥2-axis shows the corresponding actual size.
For example, 𝑥 = 8 represents all sizes from 28 to 29−1 (i.e., 256–511 bytes), with
the corresponding 𝑥2-axis value shown as 256 B. The 𝑦-axis (log10) shows how
many times each 𝑥-axis bucket was tested by a given tool. As shown in Figure 4.6,
all four tools prioritize testing small sizes (less than 4 KiB) and lack coverage for
larger sizes. While Syzkaller and xfstests covered a broader range of write size
partitions than Metis and CrashMonkey, all four tools completely missed some
partitions. Similarly, all tools showed uneven testing of write sizes. For instance,
xfstests exercised some size partitions millions of times, while others were not
tested at all. This coverage information provides developers with direct insights
into how to improve test cases and address untested scenarios.

We omit output coverage results for brevity, but our observations showed
that all testing tools prioritized successful syscall returns and missed many error
scenarios, such as ETXTBSY related to concurrency and EOVERFLOW for oversized
values in open.

4.6.4 CM-IOCov Bug Finding
IOCov’s ultimate objective is to enhance existing test tools to uncover file system
bugs that the originals miss. We developed CM-IOCov to enhance CrashMonkey’s
crash consistency testing by leveraging IOCov’s coverage reports, and evaluated
whether it finds more bugs than the original CrashMonkey on Linux kernel versions
5.6 and 6.12. Linux 5.6 is the latest kernel that the unmodified CrashMonkey
supports, but bugs in this version may already be fixed in newer kernels. We
ported both CrashMonkey and CM-IOCov to Linux 6.12 by updating their code
and kernel API usage, allowing them to run on the newer kernel and discover more
recent bugs. We evaluated the Btrfs file system, which is the main file system
targeted by CrashMonkey [151], on both kernels.
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To validate CM-IOCov’s effectiveness, we generated the same set of test work-
loads for both CM-IOCov and CrashMonkey. Each workload consists of a short
sequence of syscalls, followed by crash simulation and a checker to verify file
system correctness after crashes. If a test workload fails, meaning the checker
detects an incorrect state after a crash, it indicates a potential crash consistency
bug. However, the number of failed workloads does not reflect the number of
unique bugs, because one bug can cause multiple failures.

In the kernel 5.6 experiment, both CM-IOCov and CrashMonkey executed
426,238 test workloads. CM-IOCov found 3,200 failures compared to CrashMon-
key’s 2,831, showing CM-IOCov’s improved bug-finding capability. Both versions
detected 2,800 common failures. In addition, CM-IOCov uncovered 400 failures
missed by CrashMonkey, while CrashMonkey found only 31 that CM-IOCov did
not. The results demonstrate that, with improved input coverage in CM-IOCov
compared to CrashMonkey and all other factors unchanged, CM-IOCov achieves
better bug detection, as evidenced by the higher number of failures identified.

For the 6.12 kernel, we ran 391,134 test workloads using both CM-IOCov
and CrashMonkey. During that experiment, CM-IOCov reported 390 failures,
compared to 224 found by CrashMonkey. CM-IOCov found 323 failures missed
by CrashMonkey, while CrashMonkey found only 157 missed by CM-IOCov, again
demonstrating CM-IOCov’s superior bug detection ability. Table 4.3 presents five
representative Btrfs bugs identified by CM-IOCov but missed by CrashMonkey,
along with their consequences and the syscalls that triggered them. Across the
bugs in Table 4.3 as well as the failures uniquely identified by IOCov, most
of the involved syscalls benefited from CM-IOCov’s improved input generation;
these syscalls are underlined in the table. This highlights the importance of input
coverage for bug detection. The crash-consistency bugs found by CM-IOCov
have serious consequences, such as allocated blocks being lost despite explicit
persistence via fsync(), file content or hard link counts not being persisted, and
files missing after a crash. Since these bugs were found on Linux kernel 6.12, they
are likely to be real and still present. We are actively investigating them and plan
to report them to Btrfs developers with detailed diagnostic information. While
CrashMonkey did detect some failures that CM-IOCov missed under the same
workload count, its inputs are a subset of CM-IOCov’s. Therefore, with enough
workloads, we believe CM-IOCov can also reveal those failures.
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4.7 Chapter Conclusion
In this chapter, we first analyzed known file system bugs to reveal the limitations
of traditional code-coverage metrics. We then presented two new metrics, input
coverage and output coverage, for evaluating and improving file system testing.
We created the IOCov framework to measure these metrics and developed CM-
IOCov, an enhanced version of CrashMonkey with higher input coverage, enabling
more effective detection of crash consistency bugs. Our evaluation shows that,
with low overhead, IOCov accurately measures input and output coverage for
file system testing tools, and identifies untested and unbalanced test cases to
guide tool improvement. Our results with CM-IOCov show that improving input
coverage can substantially enhance file system testing with modest effort, such as
supplying an input driver with broader coverage, and yielding significant gains in
test effectiveness and bug discovery. CM-IOCov discovered Btrfs bugs in recent
Linux kernels that the unmodified version, CrashMonkey, failed to find.
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Table 4.2: Comparison of syscall inputs generated for testing in CrashMonkey and
CM-IOCov, showing how CM-IOCov improves input coverage over CrashMonkey.
Syscall File System

Operation
Input CrashMonkey CM-IOCov

open() Create
writable file

mode 0777: full per-
missions

Multiple read-
/write modes

flags O_CREAT |

O_RDWR: read-
write

Various flags
and combina-
tions

mkdir() Create
writable di-
rectory

mode 0777: full per-
missions

Multiple direc-
tory modes

write()/
fallocate()

Append to file
end size

(in bytes)

Write: fixed
size 32768

Aligned writes
with varied
sizes

Overwrite
from file start

Write: offset 0,
size 5000

Unaligned
writes with var-
ied sizes

Overwrite
near file end

Write: size
5000 near file
end

Unaligned
writes with var-
ied sizes near
file end

Overwrite and
extend file

Offset before
EOF, size 5000,
extends by 3000

Multiple sizes
and offsets to
overlap and ex-
tend

truncate() Block-aligned
truncate

length
(in bytes) Truncate to

length 0
Multiple
aligned sizes

Unaligned
truncate

Truncate to
length 2500

Multiple un-
aligned sizes
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Table 4.3: Crash consistency bugs in Btrfs, their consequences, and the triggering
call sequences. These bugs were detected by CM-IOCov but missed by Crash-
Monkey on Linux 6.12. Underlines indicate inputs improved by CM-IOCov over
CrashMonkey.
No. Bug Consequence System Call Sequence
1 Allocated blocks lost after fsync open, write, falloc
2 File content did not match after fsync open, write, mmapwrite
3 Data block missing after rename open, write, falloc,

rename

4 Rename not persisted by fsync opendir, close, rename,
mkdir

5 Incorrect number of file hard links after
fsync

mkdir, open, link,
rename
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Chapter 5

Metis: File System Model Checking
via Versatile Input and State
Exploration

We present Metis, a model-checking framework designed for versatile, thorough,
yet configurable file system testing in the form of input and state exploration. It
uses a nondeterministic loop and a weighting scheme to decide which system calls
and their arguments to execute. Metis features a new abstract state representation
for file-system states in support of efficient and effective state exploration. While
exploring states, it compares the behavior of a file system under test against
a reference file system and reports any discrepancies; it also provides support
to investigate and reproduce any that are found. We also developed RefFS, a
small, fast file system that serves as a reference, with special features designed
to accelerate model checking and enhance bug reproducibility. Experimental
results show that Metis can flexibly generate test inputs; also the rate at which
it explores file-system states scales nearly linearly across multiple nodes. RefFS
explores states 3–28× faster than other, more mature file systems. Metis aided the
development of RefFS, reporting 11 bugs that we subsequently fixed. Metis further
identified 15 bugs from seven other file systems, six of which were confirmed and
with one fixed and integrated into Linux.
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5.1 Introduction
File system testing is an essential technique for finding bugs [107] and enhanc-
ing overall system reliability [71], as file-system bugs can have severe conse-
quences [133, 212]. Effective testing of file systems is challenging, however, due
to their inherent complexity [8], including many corner cases [207], myriad func-
tionalities [22], and consistency requirements (e.g., crash consistency [161, 176]).
Developers have created various testing technologies [206, 172, 151] for file sys-
tems, but new bugs (both in-kernel and non-kernel) continue to emerge on a regular
basis [107, 203, 106].

To expose a file-system bug, a testing tool must execute a particular system call
using specific inputs on a given file-system state [133, 207, 128, 129]. For example,
identifying a well-known Ext4 bug [116] requires a write operation on a file ini-
tialized with a 530-byte data segment. In this case, the write operation is an input,
and the file with a specific size constitutes (part of) the file-system state. Recent
work [128, 129, 23] also underscored the importance of adequately covering both
file-system inputs and states during testing. While existing testing technologies
seek to cover a broad range of file systems’ functionality, they often do not, how-
ever, integrate coverage of both file-system inputs and states [107, 203, 151, 31].
For example, handwritten regression tools like xfstests [172] can achieve good test
coverage of specific file-system features [150, 8], but do not comprehensively cover
syscall inputs; similarly, fuzzing techniques (e.g., Syzkaller [68]) are designed to
maximize code—not input—coverage [102].

Both the input and state spaces of file systems are too vast to be completely
explored and tested [60, 29], so it is better to leverage finite resources by focusing on
the most pertinent inputs and states [128, 129, 208, 206]. For example, metadata-
altering operations, such as link and rename, and states with a complex directory
structure are more frequently utilized in POSIX-compliance testing [168]. Existing
testing technologies also lack the versatility to test specific inputs and states [172,
151, 68]. Thus, new testing tools and techniques are needed [128, 129, 133]
to avoid under-testing (which could miss potential bugs) or over-testing (which
wastes resources that may be better deployed elsewhere).

This chapter presents Metis, a novel model-checking framework that enables
thorough and versatile input and state space exploration of file systems. Metis runs
two file systems concurrently: a file system under test and a reference file system
to compare against [70]. Metis issues file-system operations (i.e., system calls
with arguments) as inputs to both file systems while simultaneously monitoring
and exploring the state space via graph search (e.g., depth-first search [79]).
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To compare the relevant aspects of file-system states, we first abstract them
and then compare the abstractions. The abstract states include file data, directory
structure, and essential metadata; abstract states constitute the state space to be
explored. Metis first nondeterministically selects an operation and then fills in
syscall arguments through a user-specified weighting scheme. Next, it executes
the same operation in both file systems and then compares both systems’ abstract
states. Any discrepancy is flagged as a potential bug. Metis evaluates the post-
operation states to decide if a state has been previously explored; if so, it backtracks
to a parent state and selects a new state to explore [79]. Metis continuously
tests new file-system states until no additional unexplored states remain, logging
all operations and visited states for subsequent analysis. Metis’s replayer can
reproduce potential bugs with minimum time and effort.

Metis effectively addresses the common challenges of model checking [40, 79]
file systems. It checks file-system implementations directly, eliminating the need
to build a formal model [154]. To manage large file-system input and state spaces,
Metis enables parallel and distributed exploration [86] across multiple cores and
machines. Metis works with any kernel or user file system, and does not require
any specific utilities nor any modification or instrumentation of the kernel or the
file system. It detects bugs by identifying behavioral discrepancies between two
file systems without the need for oracles or external checkers, thus simplifying the
process of applying Metis to new file systems. With few constraints, Metis is well
suited for testing file systems that are challenging for other testing approaches,
e.g., file system fuzzing [107], that require kernel instrumentation and utilities.
Nevertheless, the quality of the reference file system is pivotal for assessing the
behavior of other file systems [70]. We therefore developed RefFS as Metis’s
reference file system. RefFS is an in-memory user-space POSIX file system
with new APIs for efficient state checkpointing and restoration [182, 206]. Prior
to using RefFS as our reference file system, we used Ext4 as the reference to
check RefFS itself; Metis identified 11 RefFS bugs that we fixed during that
process. Subsequently, we deployed 18 distributed Metis instances to compare
RefFS and Ext4 for one month, totaling 557 compute days across all instances and
executing over 3 billion file-system operations without detecting any discrepancy.
This ensured that RefFS is robust enough to serve as Metis’s (fast) reference file
system.

Our experiments show that Metis can configure inputs more flexibly and cover
more diverse inputs compared to other file-system testing tools [172, 151, 68].
Metis’s exploration rate scales nearly linearly with the number of Metis instances,
also known as verification tasks (VTs). Despite being a user-level file system,
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Figure 5.1: Metis architecture and components. From left to right, Metis generates
syscalls and their arguments that are executed by both file systems, determines
resulting states, and checks for discrepancies between states. The Logger records
all the operations for convenient bug replay by the Replayer. The SPIN model
checker stores previous state information for state exploration.

RefFS’s states can be explored by Metis 3–28× faster than other popular in-kernel
file systems (e.g., Ext4, XFS, Btrfs). Using Metis and RefFS, we discovered 15
potential bugs across seven file systems. Of these, 13 were confirmed as previously
unknown bugs, six of which were confirmed by developers as real bugs. Moreover,
one of those bugs—which the developers confirmed existed for 16 years—and the
fix we provided, was recently integrated into mainline Linux.

In sum, this chapter makes the following contributions:

1. We designed and implemented Metis, a model-checking framework for ver-
satile and thorough file-system input and state-space exploration.

2. We designed and implemented an effective abstract state representation for
file systems and a corresponding differential state checker.

3. We designed and implemented the RefFS reference file system with novel
APIs that accelerate and simplify the model-checking process.

4. Using RefFS, we evaluated Metis’s input and state coverage, scalability,
and performance. Our results show that Metis, together with RefFS, not
only facilitates file-system development but also effectively identifies bugs
in existing file systems.

5.2 Background and Motivation
In this section, we first introduce the procedures and challenges for testing and
model-checking file systems. We then discuss two vital dimensions for file system
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testing: input and state. We demonstrate the challenges of achieving versatile and
comprehensive coverage of both inputs and states.

File system testing and model checking File systems can be tested statically
or dynamically. Static analysis [149, 23] evaluates the file system’s code without
running it; while useful, it struggles with complex execution paths that may depend
on runtime state. Our work therefore emphasizes dynamic testing—executing and
checking file systems in real-time scenarios [168, 31, 151]. Generally, dynamic
testing involves (1) crafting test cases using system calls, (2) initializing the file
system, (3) running the test cases, and (4) post-execution validation of file system
properties. Hence, the quality of test cases directly affects the testing efficacy.

Model checking is a formal verification technique that seeks to determine
whether a system satisfies certain properties [40, 191]. The model is typically a
state machine, and the properties, usually expressed in temporal logic, are checked
using state-space exploration [39]; here, each state represents a snapshot of the
system under investigation. To automate this process, model checkers (such as
SPIN [79]) are used to generate the state space, verify property adherence, and
provide a counterexample when a property is violated.

Extracting a model from a system implementation can be challenging, es-
pecially for large systems like file systems [207, 206]. Thus, recent work on
implementation-level model checking [207, 206] seeks to check the implemen-
tation directly (without a model). Such approaches [206] require one to create
new, specialized checkers to test new file systems, and these checkers are typically
focused on a limited range of bugs, such as crash-consistency bugs [207, 206]. The
ongoing challenge is to simplify implementation-level file-system model checking
so that using it does not require extensive effort or significant expertise in model
checking and file systems, while at the same time being able to identify a wide
range of bugs.

Covering system calls and their inputs We refer to the system calls (syscalls)
and their arguments as inputs or test inputs because syscalls are commonly used by
user-space applications—and thus testing tools—to interact with file systems [62,
199]. Thoroughly testing file system inputs is challenging. While file-system–
related syscalls represent only a subset of all Linux syscalls [188, 12], each syscall
has multiple arguments, and the potential value range for these arguments is
vast [188, 128, 129]. For example, open returns a file descriptor, accepting user-
defined arguments for flags and mode in addition to pathname. Both flags and
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mode are bitmaps with 23 and 17 bits, respectively, representing many possible
combinations. The bits represented in flags alone have 223 possible values,
leading to an aggregate input space of 240. Similarly, write and lseek take
64-bit-long byte-count arguments that have a large input domain of 264 possible
values. Nevertheless, it is vital to test as many representative syscall inputs as
possible.

Fully testing all syscalls with every potential argument is impractical [68, 99].
Instead, a sensible approach [112, 128, 129] is to segment a large input space
into multiple, disjoint input partitions—called input space partitioning [194, 128,
129, 101]. How much a testing tool examines input partitions is called input
coverage [76, 189, 112]. Utilizing input partitions and coverage, testing tools can
target the coverage of different partitions—each representing a subset of analogous
test inputs. Intuitively, file system developers recognize the need to, say, separately
test critical I/O write sizes of 512 and 4096; conversely, once one tests an I/O size
of, say, 5000 bytes, the gains from testing subsequent adjacent sizes (e.g., 5001,
5002, . . .) quickly diminish.

To compute input coverage, we categorized each syscall’s arguments into
four classes [128, 12, 188]: (i) identifiers (e.g., file descriptors), (ii) bitmaps
(e.g., open flags), (iii) numeric arguments (e.g., write size), and (iv) categorical
arguments (e.g., lseek “whence”). We partitioned the input space using type-
specific methods. For example, bitmaps are partitioned by each flag and certain
combinations thereof. Numeric arguments are partitioned by boundary values
(e.g., powers of 2 [100]). Our goal is to achieve thorough input coverage while
configuring it based on test strategies to customize the overall search space. To
the best of our knowledge, no existing file system testing method is specifically
designed for comprehensive input coverage, nor are there any techniques to flexibly
define the input’s coverage.

Challenges of testing file system states In file system testing, the state refers
to the content, status, and full context of the file system at a given point in
time [182, 60]. Comprehensive state exploration is important as certain bugs
manifest exclusively under specific states [133, 116, 190]. Numerous file system
states can be explored when some existing testing approaches [172, 151] exe-
cute operations. Yet the majority of these approaches lack state tracking—the
ability to record and identify previously or similarly visited states—thus wasting
resources [206]. The challenges are thus twofold: state definition and efficient
state tracking.
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Defining file system states involves a tradeoff, because components such as
on-disk content, in-memory data, configuration, kernel context, and device types
are all candidates for inclusion in the state [60]. An overly detailed state definition
can render state exploration infeasible due to resources spent on visiting multiple
states that should be treated as if they were identical [40]. Conversely, an overly
narrow definition can skip key states and potentially miss defects [30]. Therefore,
one should be able to define the state space flexibly, so it contains all desired file
system attributes while maintaining a manageable state space.

Due to massive state spaces, state tracking incurs considerable overhead, thus
slowing the entire exploration process. While model checkers provide a mecha-
nism for state exploration [79] with state tracking and certain optimizations, they
still have to contend with the state explosion problem—a significant challenge
where the number of system states grows exponentially with the number of system
variables, making state exploration computationally impractical [40]. In file sys-
tems, this issue is exacerbated by the inherently slow nature of I/O. An alternative
approach is to partition the state-exploration process across multiple instances,
with each instance exploring a certain portion of the state space; doing so requires
a sophisticated design for diversified, parallel exploration [86].

5.3 Design
In this section, we describe Metis’s design principles and operation. We explain
how Metis meets the challenges of exploring file system inputs and states, and how
it provides versatility.

Metis architecture As shown in Figure 5.1, Metis has five main components:
(1) Input Driver, (2) State Explorer, (3) Differential State Checker, (4) Event Log-
ger, and (5) Optimized Replayer. Each component is designed to be independent,
allowing for modularity and extensibility.

The Input Driver (§5.3.1) generates syscalls and arguments to serve as the test
inputs to both file systems. Metis is built on top of the SPIN model checker [79]
to combine input selection with state exploration. The State Explorer (§5.3.2)
extracts concrete and abstract states from both file systems and interfaces with
SPIN to explore new states. The Differential State Checker (§5.3.3) verifies that
both file systems have identical behavior after each operation, by comparing their
abstract states, syscall return values, and error codes. Any discrepancies are
reported by the checker and treated as potential bugs. The Event Logger and the
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Optimized Replayer (§5.3.4) help analyze reported discrepancies and reproduce
potential bugs more efficiently.

5.3.1 Input Driver
Metis’s Input Driver maintains a list of operations from which the SPIN model
checker can repeatedly and nondeterministically choose what to execute, including
individual syscalls (e.g., unlink) as well as meta-operations comprising a (small)
sequence of syscalls (e.g., the write_file operation opens a file and writes to it
at a specific offset). From a given file system state, multiple potential successor
states may arise. Through its nondeterministic choices of operations, Metis can
effectively explore many of these options, ensuring thorough state exploration. To
bound the input space, each operation randomly picks a file or directory name from
a predetermined set of pathnames. The Input Driver is flexible and can generate
files or directories with arbitrarily deep directory structures, long pathnames, and
other unexpected scenarios such as many files inside a single directory.

We focus on state-changing operations [70] (i.e., not read-only ones) as the
Input Driver seeks to maximize the exploration of file system states. Currently,
the Input Driver supports five meta-operations (create_file, write_file,
chown_file, chgrp_file, and fallocate_file), and 10 individual syscalls
(truncate, unlink, mkdir, rmdir, chmod, setxattr, removexattr, rename,
link, and symlink). Adding a new operation has minimal effort of about 10
LoC. Metis exercises read-only operations such as read, getxattr, and stat

after each state-changing operation, when computing file system abstract states in
the State Explorer (§5.3.2).

After selecting the operation, Metis chooses its arguments based on a series of
user-specified weights that control how often various argument partitions (§5.2) are
tested. In the Input Driver, weights represent the probabilities assigned to different
input partitions, which control testing frequencies. The method of assigning
weights varies based on the argument type [12, 128]. For bitmap arguments, each
bit receives a probability of being set. The number of input partitions in a bitmap
argument is equivalent to its individual bit count. Given the ubiquity of powers of
2 in file systems [100], numeric arguments like write size (requested byte count)
have input partitions segmented by these numbers as boundary values, rounding
down to the nearest boundary. For example, write sizes ranging from 1024 to 2047
bytes (210 to 211 − 1) are grouped in the same partition. Assigning a weight (e.g.,
15%) to this partition implies a 15% chance of selecting a write size between 1024
and 2047 bytes. The total weight of all write-size partitions equals 100%. We
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placed 0 bytes as a distinct partition (unusual but allowed under POSIX) because
the smallest power of 2 is 1, which is greater than 0. Additionally, Metis can also
be configured to test only boundary values (powers of 2) such as 4096 as well as
near-boundary values (±1 from the boundary, e.g., 4095/4097) that are useful for
testing underflow and overflow conditions.

The choice of weights depends on the user’s objectives. For example, while
O_SYNC is common in crash-consistency testing [151], it is used infrequently for
POSIX compliance [168]. Due to disk I/O’s slow speed, many tests focus on
small write sizes [31]. However, testing larger sizes can uncover size-specific
bugs [190, 168]. Our objective is to ensure that Metis remains versatile and to
allow one to adjust the input weights in line with the test focus.

5.3.2 State Exploration and Tracking

Problem Cause of discrepancies Solution
Different directory size for
same contents Size calculation methods Ignore directory sizes

Different orders of direc-
tory entries Internal data structures Sort the output of

getdents

FS-specific special files
and directories Internal implementations Create an exception list of

special entries
Different usable data ca-
pacities

Space reservation and uti-
lization

Equalize free space among
file systems

Table 5.1: Examples of false positives identified and addressed by Metis.

State explorer The objective of Metis’s State Explorer is to use graph traversal
to conduct thorough and effective “state graph exploration,” where the nodes
correspond to file-system states and the edges represent transitions caused by
operations [39]. Metis supports depth-first search (DFS) as the main search
algorithm.

The State Explorer relies on the SPIN model checker [79] to conduct the state-
space exploration. SPIN supports the Promela model-description language, and
allows embedding C code in Promela code. This capability allows us to seamlessly
issue low-level file-system syscalls and invoke utilities. SPIN’s role is to provide
optimized state-exploration algorithms (e.g., DFS) and data structures to track and
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store the status of the state graph; thus, we do not have to implement these features
in the State Explorer.

In model checking, there are two types of states: concrete and abstract. Con-
crete states contain all the information that describes the states of the file system
being checked. Abstract states serve as signatures to identify different system
states of interest during the exploration.

After each operation, the State Explorer calls the abstraction function to extract
abstract states as hash values from both file systems. Every time an abstract state is
created, SPIN checks whether it has already been visited by looking up the abstract
state in SPIN’s hash table and decides on the next action, either backtracking to a
previous concrete state or continuing from the current one. Meanwhile, the State
Explorer mmaps the full file-system image into memory to be tracked by SPIN as a
concrete state. Concrete states are stored in SPIN’s stack to allow the State Explorer
to restore the full file-system state as required. To improve the performance of
state exploration, we use RAM disks as backend devices for on-disk file systems.
In Metis, we create both file systems with the minimum device sizes to reduce
the memory consumption of maintaining concrete states and to make it easier to
trigger corner cases such as ENOSPC.

File system abstract states A concrete state is a reflection or snapshot of the
entire (and highly detailed) file-system image, which renders it inappropriate for
distinguishing a previously visited state [30]. This is because any small change
to the file-system image leads to a new concrete state, even though there may be
no “logical” change in the file system. For example, Ext4 updates timestamps
in the superblock during each mutating operation, even if no actual change to a
user-visible file was made. This substantially expands the state space, with many
states differing only by minor timestamp changes, and leads to wasted resources
on logically identical states. Additionally, because file systems are designed with
different physical on-disk layouts, we cannot use concrete states to compare their
behaviors. Therefore, we need a different state representation that includes only
the essential and comparable attributes common to both file systems.

To address this problem, we defined an abstraction function to calculate file-
system abstract states to distinguish unique states, and to compare file system
behaviors. The abstract state contains pathnames, data, directory structure, and
important metadata for all files and directories (e.g., mode, size, nlink, UID, and
GID); we exclude any noisy attributes such as atime timestamps. We then hash
this information to compact the abstract state for a more effective comparison.
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Metis supports several hash functions to compute abstract states; we evaluated the
speed and collision resistance of each hash function (results elided for brevity) and
chose MD5 by default as it had the best tradeoff of those characteristics.

The abstraction function deterministically aggregates key file system data and
metadata, enabling comparison across different file systems. Specifically, the
abstraction function begins by enumerating all files and directories in the file
system by traversing it from the mount point. Their pathnames are sorted into a
consistent, comparable order. We then read each file’s contents and call stat
to extract its important metadata mentioned above, following the pathname order.
Finally, we compute the (MD5) hash based on the files’ content, directory structure,
important metadata, and pathnames to acquire the abstract state. Using abstract
states not only prevents visiting duplicate states but also significantly reduces
the amount of memory needed to track previously-visited states, owing to our
lightweight hash representation, which in turn boosts Metis’s exploration speed.

Tracking full file system states In addition to abstract states, another complexity
in tracking file system states is saving and restoring the concrete states when Metis
needs to backtrack to a previous state (i.e., when reaching an already visited state);
this involves State Save/Restore (SS/R) operations for concrete states. Concrete
states must contain all file system information including persistent (on-disk) and
dynamic (in-memory) states. Metis can feasibly save and restore on-disk states
by copying the on-disk device and subsequently copying it back. Kernel file
systems (e.g., Ext4 [144]) maintain states in kernel space, which is inaccessible to
Metis, a user process. Similarly, user-space file systems built on libFUSE (e.g.,
fuse-ext2 [3]) are separate processes with separate address spaces, so again Metis
cannot directly track their internal state. Tracking only persistent on-disk state
leads to cache incoherency, because cached in-kernel information is inconsistent
with the on-disk content.

We tried and evaluated several approaches to tracking full file system states (per-
formance results elided for brevity) including fsync syscall, sync mount option,
process snapshotting [41, 202], VM snapshotting [108, 114], and LightVM [140].
None of these approaches were effective due to their functional deficiencies or
inefficient performance. For those reasons, we adopted the approach presented
in [182] to unmount and remount the file system between each operation in Metis.
An unmount is the only way to fully guarantee that no state remains in kernel
memory. Remounting guarantees loading the latest on-disk state, ensuring cache
coherency between each state exploration. This unmount-remount method was
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a compromise that ensures data coherency yet provides reasonable performance
(§5.6.2), especially coupled with our specialized RefFS (§5.4).

5.3.3 Differential State Checker
Metis checker goals and approaches Using only the Input Driver and State
Explorer would constrain the detection of bugs to those manifesting as visible
symptoms [31], such as kernel crashes. We thus needed a dedicated checker
to identify cases where file systems fail silently [107] (e.g., data corruption).
Moreover, existing checkers usually require considerable effort to be applied to
newly developed or constantly-evolving file systems. For example, since many
checkers are hand-written (e.g., xfstests), the testing of new file systems involves
redesigning and refactoring test cases. Some checkers depend on an exact (e.g.,
POSIX) specification or an oracle for bug detection [151, 168]: they are difficult
to adapt to continuously-evolving file systems.

File systems vary considerably in terms of their developmental stages [210,
133]: mature file systems are typically more stable than new, emerging, or less
popular ones [133]. Yet many still share common (POSIX) features and data-
integrity requirements. Therefore, we rely on a differential testing approach [145],
to check emerging file systems for silent bugs, eliminating the need for a detailed
specification or an oracle.

We developed Metis’s Differential State Checker to identify a broad range of
file system bugs and facilitate file system development. Our checker can easily
adapt to test new file systems; it requires no modification to the checker, only a
replacement of the file system under test. Metis uses a well-tested, reliable file
system as the reference file system and a less-tested, emerging one as the file
system under test. After each file system operation, the Differential State Checker
compares the resulting states of both file systems to detect any discrepancies. To
prevent false positives, it only compares the common attributes of file systems,
including their abstract states, return values, and error codes.

Eliminating false positives As any discrepancy is reported as a potential bug,
when developing Metis we found that it sometimes identified discrepancies that
were not bugs (i.e., false positives). We implemented measures to avoid these
false positives. Table 5.1 summarizes several such cases including their problems,
causes, and solutions.

All these discrepancies arose due to different file system designs and imple-
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mentations. For instance, Ext4 has a special lost+found directory and computes
directory sizes by a multiple of the block size. In contrast, other file systems report
sizes by the number of active entries and do not have a lost+found directory.
Despite the same device sizes for different file systems, the available space varies
due to different utilized and reserved space (e.g., for metadata). To address this,
we equalize free space among file systems by creating dummy files based on the
differences in their available spaces.

While developing Metis, we analyzed every discrepancy we encountered and
addressed all false positives. Whenever a false positive was identified, we updated
the state abstraction function or file system initialization code to eliminate such
instances, an infrequent process that was conducted manually. None of these solu-
tions introduce false negatives, because they all deal with non-standardized behav-
ior. For example, an application should not expect sorted output from getdents.
Nevertheless, if a change introduces any misbehavior, Metis’s Differential State
Checker will report and handle it.

5.3.4 Logging and Bug Replay
When detecting a discrepancy, it is important to be able to analyze the operations
executed by the file systems to identify and reproduce the potential bug. Thus,
Metis’s Event Logger records details of all file-system operations and outcomes,
comprising every syscall and their arguments, return values, error codes, SS/R
operations, and resultant abstract state. Additionally, the Event Logger logs file-
system information such as the directory structure and important metadata to
pinpoint the deviant behavior as soon as a discrepancy is detected. To reduce disk
I/O, we store the runtime logs in an in-memory queue and periodically commit
them to disk. Leveraging the Event Logger, we can reproduce the precise sequence
of operations leading to a discrepancy found by Metis.

Metis can replay identified bugs by re-executing the operations from the start of
Metis’s run. This process can be time-consuming, however, if the discrepancy was
detected after executing many operations and passing through numerous states [4].
So we needed a way to reproduce a discrepancy quickly. Existing test-case min-
imization techniques [211, 107] remove one operation from a sequence until the
remaining operations can reproduce the bug; but this trial-and-error process is
slow due to the abundance of I/O operations.

To replay bugs efficiently, the Optimized Replayer reproduces them using only
a few operations (recorded in logs) and one (concrete state) file system image.
Using SPIN, we retain concrete states in a stack, thereby capturing all file-system
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images along the current exploration path and allowing for bug reproduction from
any desired location in the stack. Recent findings [151, 107] indicate that most
bugs can be reproduced on a newly created file system using a sequence of eight
or fewer operations. Accordingly, Metis uses an in-memory circular buffer to
retain pointers to a few of the most recent file-system images (defaults to 10,
but configurable) for quick post-bug processing. In practice, we first attempt to
reproduce the bug using the most recent image (immediately preceding the bug
state) along with the latest operation. If unsuccessful, we turn to the previous
image and the two last operations, and so on in a similar pattern. This eliminates
the need for Metis to replay the entire operation sequence from the beginning.

5.3.5 Distributed State Exploration
Along with performing state abstraction and setting limits on the number of files
and directories, we also restrict the search depth to control the exponential growth
of the state space. We set the maximum search depth to 10,000 by default [79].
If the search hits the 10,000𝑡ℎ level, Metis reverts to the prior state rather than
exploring deeper. Thus, the state space becomes bounded, allowing Metis to
perform an exhaustive search. Still, even with this depth restriction, the state space
remains large because of the variety in test inputs and file system properties [60].
Exploring this space using a single Metis process (called a verification task, or
VT) requires significant time.

To parallelize the state-space exploration [83] we use Swarm verification [86],
which generates parallel VTs based on the number of CPU cores. Each VT
examines a specific portion of the state space. To prevent different VTs from re-
exploring the same states, and to avoid having to coordinate states across VTs, SPIN
employs several diversification techniques [86], where every VT receives a unique
combination of bit-state hash polynomials, number of hash functions, random-
number seeds, search orders (e.g., forward or in reverse) and search algorithms
(e.g., DFS), ensuring varied exploration paths.

We enabled these parallel and distributed exploration capabilities for Metis.
The setup uses a configuration file to determine the machine and CPU core count;
Metis then produces the exact VT count based on the configuration file. When
Metis runs on distributed machines, each runs a handful of VTs, one per CPU core.
Each VT is automatically configured with a distinct combination of diversification
parameters, guiding them to explore different state space areas. Utilizing multiple
Metis VTs across multiple cores and machines increases the overall speed of state
exploration while testing more inputs. Every Metis VT operates independently,
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with its own device, mount point, and logs, without interference with other VTs.
Given that VTs explore states autonomously without inter-VT communication,
there is a risk of resource wastage if several VTs examine the same state [86].
We deployed multiple VTs on several multi-core machines and evaluated Metis
extensively under Swarm verification (§5.6.2).

5.3.6 Implementation Details
Metis uses SPIN to achieve basic model-checking functions. The Promela mod-
eling language [79] serves as the main interface with SPIN. We wrote 413 lines
of Promela, consisting of do...od loops that repeatedly select one of a number
of cases in a nondeterministic fashion. Each case issues file-system operations,
performs differential checks, and records logs. The main part of Metis comprises
7,911 lines of C/C++ code that implement Metis’s components and its communi-
cation with SPIN. We also created 1,230 lines of Python/Bash scripts to manage
different Metis VTs and runtime setup, such as invoking mkfs, and creating mount
points and devices. We created RAM block devices as backend storage for on-disk
file systems. Linux’s RAM block device driver (brd) requires all RAM disks to be
the same size. We modified it (renamed brd2), to allow different-sized disks for
file systems with different minimum-size requirements. We used brd2 to create
devices for on-disk file systems during the evaluation.

We changed 72 lines of SPIN’s code (Aug 2020 version) to add dedicated hook
functions for file system SS/R operations. Lastly, we added 31 lines of code to
the original Swarm verification tool (Mar 2019 version) to enable more flexible
compilation options and smoother compatibility with Metis.

In our experience, adding a new file system operation to Metis is straightfor-
ward. It requires only one additional case in the Promela code, amounting to about
10 lines. Most functionality in Metis is file-system-agnostic, e.g., deploying the
file system and computing abstract state. To test a new file system, we need to
specify only the device type (e.g., RAM disk for most file systems, MTD block
device for JFFS2) and the desired device size in Metis.

5.3.7 Limitations of Metis
False negatives Like many other tools, Metis might experience false negatives:
it could fail to detect an existing bug. First, since Metis’s abstract state excludes
time-related attributes, it cannot detect, e.g., atime-related bugs. Though that is
an unavoidable consequence of abstraction, we strive to make the abstract state as
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comprehensive as possible. Second, Metis identifies bugs by detecting behavioral
discrepancies between the reference file system and the file system under test.
Given the nature of differential testing [70, 145], Metis could fail to detect bugs
shared between both file systems as no discrepancy would be found. To address
this problem, one can either use a flawless reference file system or leverage N-
version programming [11], comparing more than two file systems, to reduce the
probability that the same bug is present across all of them. Unfortunately, a
completely bug-free file system does not exist. Despite recent efforts to formally
verify certain file system properties, these verified file systems may still hide
bugs [33]. Furthermore, while Metis was programmed to test any number of file
systems concurrently, employing a majority voting scheme on more than two adds
overhead and slows exploration. (That is one reason why we support distributed
verification: to increase the overall exploration rate.)

Test overhead As Metis tracks both abstract and concrete states, it inevitably
introduces extra overhead due to memory demands and the time taken for compar-
isons. Metis retains file system images in memory for state backtracking, although
we limited memory consumption to the extent possible by choosing a minimum
device size and restricting search depth. For file systems with a relatively small
device-size requirement, such as Ext4 (256KiB minimum), Metis’s peak memory
consumption remains relatively low (2.4GiB). However, a file system with a larger
minimum device size inherently consumes more memory. For example, XFS has
a minimum size of 16MiB, leading to a potential memory use of 156GiB when
we use a maximum depth of 10,000. To mitigate this issue, we reduced SPIN’s
maximum search depth below the default 10,000, decreasing resource and memory
consumption while concomitantly reducing the size of the state space. Although
we experimented with memory compression (i.e., zram [73]) and added swap
space to increase effective memory capacity, these choices actually reduced the
overall state-exploration rate. The necessity of mounting and unmounting between
each operation introduces additional time overhead to Metis. Since doing so is
necessary for tracking full file system states, we mitigated this cost by deploying
more VTs on multiple machines and using RAM disks.

Bug detection and root-cause analysis At present, Metis lacks the capability
to identify crash-consistency and concurrency bugs in file systems. Due to the
absence of crash state emulation [151, 115], Metis cannot find bugs that arise
solely during system crashes. We plan to provide the option of invoking utili-
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Figure 5.2: RefFS architecture and its interaction with Metis and kernel space.
RefFS supports standard POSIX operations and provides snapshot services with a
snapshot pool and four new APIs.

ties such as fsck [160] between each Metis unmount/mount pair to help detect
crash-consistency bugs. Given that Metis operates on file systems from a single
thread, it tends to miss concurrency bugs (e.g., race conditions [201]). While
Metis’s replayer assists in reproducing bugs, another limitation is Metis’s inabil-
ity to precisely identify the root cause of detected state discrepancies within the
code [170].

5.4 RefFS: The Reference File System
In Metis, the reference file system must reliably represent correct behaviors and
ensure efficiency in the file system and SS/R operations. We initially chose Ext4 as
the reference file system due to its long-standing use and known robustness [144].
Still, no file system, including Ext4, is absolutely bug-free. Additionally, Ext4
lacks optimizations for model-checking state operations, limiting its suitability. We
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believe that a reference file system should be lightweight [176, 33], easily testable
and extensible, robust, and optimized for SS/R operations in model checking.
Originally, we tried to modify small in-kernel file systems (e.g., ramfs), to track
their own state changes. However, capturing and restoring their entire state proved
extremely challenging because the state resides across many kernel-resident data
structures [10]. Consequently, we developed a new file system, called RefFS,
specifically designed to function as the reference system.

RefFS architecture RefFS is a RAM-based FUSE file system. Figure 5.2 shows
the architecture of RefFS and its interplay with Metis and relevant kernel compo-
nents. It incorporates all the standard POSIX operations supported by the Input
Driver along with the essential data structures for files, directories, links, and
metadata. We developed RefFS in user space to avoid complex kernel interactions
and have full control over its internal states. Comprising 3,993 lines of C++ code,
RefFS uses the libFUSE user-space library together with /dev/fuse to bridge
user-space implementations and the lower-level fuse kernel module. Metis han-
dles file system operations on RefFS in the same manner as other in-kernel file
systems. Most importantly, RefFS also provides four novel snapshot APIs to man-
age the full RefFS file system state via ioctls: ioctl_SAVE, ioctl_RESTORE,
ioctl_PICKLE, and ioctl_LOAD. These are described next.

5.4.1 RefFS Snapshot APIs
RefFS shows how file systems themselves can support SS/R operations in model
checking through snapshot APIs. The essence of SS/R operations lies in their
ability to save, retrieve, and restore the concrete state of the file system. Although
RefFS is an in-memory file system lacking persistence, it possesses a concrete
state (i.e., snapshot) that includes all information associated with the file system.
Existing file systems like BtrFS [169] and ZFS [22], which support snapshots, can
only clone (some of) the persistent state but not their in-memory states. In contrast,
RefFS can capture and restore the in-memory states through its own APIs. Since
RefFS stores all its data in memory, it guarantees saving and restoring the entire
file system state.

Snapshot pool The snapshot pool is a hash table that organizes all of RefFS’s
snapshots; the key is the current position in the search tree. The value associated
with each key is a snapshot structure that saves the full file system state including
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all data and metadata such as the superblock, inode table, file contents, directory
structures, etc. The memory overhead of the snapshot pool is low because the size
of the pool is smaller than Metis’s maximum search depth. Because RefFS is a
simple file system, the average memory footprint for each state is just 12.5KB.

Save/Restore APIs The ioctl_SAVE API causes RefFS to take a snapshot of
the full RefFS state and add an entry to the snapshot pool. The ioctl_RESTORE
does the reverse, restoring an existing snapshot from the pool. When Metis calls
ioctl_SAVEwith a 64-bit key, RefFS locks itself, copies all the data and metadata
into the snapshot pool under that key, and then releases the lock. Similarly,
ioctl_RESTORE causes RefFS to query the snapshot pool for the given key. If it
is found, RefFS locks the file system, restores its full state, notifies the kernel to
invalidate caches, unlocks the file system, and then discards the snapshot.

Pickle/Load APIs Unlike other file systems, RefFS maintains concrete states by
itself in the snapshot pool, so Metis does not need to keep RefFS’s concrete states in
its stack. To ensure good performance, RefFS’s snapshot pool resides in memory.
However, this means that all snapshots are lost when RefFS is unmounted, which
would make it challenging to analyze and debug RefFS from a desired state. Thus,
committing these snapshots to disk before Metis terminates is important to ensure
they are available for post-testing analysis and debugging. Given a hash key, the
ioctl_PICKLEAPI writes the corresponding RefFS state to a disk file. It can also
archive the entire snapshot pool to disk. Likewise, the ioctl_LOAD API retrieves
a snapshot from disk, loading it back into RefFS to reinstate the file system state.
Using the ioctl_PICKLE and ioctl_LOAD APIs, RefFS can flexibly serialize
and revert to any file system state both during and after model checking, aiding bug
detection and correction. Specifically, these APIs allow RefFS to gain the same
benefits as Metis’s post-bug replay and processing, enabling bug reproduction
from any point in a Metis run.

5.5 The Case of Checking Distributed File Systems
In this section, we outline the structure and procedure for checking the NFS kernel
server and NFS-Ganesha using Metis, as well as the benefits of using RefFS as
both the NFS local and reference file systems.
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Figure 5.3: The structure of model checking NFS with Metis. We set up one client
and one server on the same machine to simplify SPIN’s management of concrete
and abstract states. The local file system type used by NFS should be identical to
the reference file system. Similar to Metis for other file systems, the differential
checker compares the abstract state between the NFS client and the reference file
system, and any discrepancy is considered a potential bug.

5.5.1 The Architecture of Checking NFS
Distributed file systems (DFSs) are another important category of file systems that
need thorough checking. However, adapting local file system testing techniques
for DFSs is difficult due to factors [183] like network communication, load redis-
tribution, data replication, distributed concurrency, and scalability, which are not
notable concerns in local file systems [89]. Although Metis is designed for local
file systems, it has the potential to be applied to DFSs due to its general-purpose
state definition and exploration method, as well as the flexibility of its differential
checker [127]. As a classic example of a distributed file system, NFS (Network File
System) [174] has been widely used for over 40 years and continues to be actively
maintained and utilized today. Here, we present our efforts to use Metis to check
two NFSv4 implementations: NFS kernel server [51] and NFS-Ganesha [156].

NFS has a client-server architecture where the server exports shared directories
over the network, and the client mounts these remote directories, so that the client
can access and perform file operations on them as if they were part of the local
file system, with communication managed using RPCs (Remote Procedure Calls).
NFS relies on a local file system (e.g., Ext4) as backend storage on the server to
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store and manage files. Therefore, checking NFS primarily involves examining
the interaction between the server and clients, as the local storage is handled by
underlying local file systems like Ext4.

We extended Metis to check NFS using a simple setup, with one client and one
server both running on the same machine and connected via the localhost network.
Figure 5.3 illustrates the structure of model checking process for NFS in Metis.
Similar to how Metis checks local file systems, Metis generates test inputs (file
system syscalls and their arguments) for both the NFS client (i.e., the file system
under test) and the reference file system. We selected the reference file system
to be the same as the local file system used by NFS because it ensures that any
differences detected in behavior are attributable solely to the NFS protocol rather
than to inconsistencies between different (local) file system implementations.

The operations generated by Metis are executed on both the NFS client and the
reference file system. Once the NFS client receives the syscall, it communicates
with the NFS server, which processes the request on its local file system and
returns the result to the client. This allows us to fetch the result value and error
code from the client side and compare them against those from the reference file
system. After each operation, we compute the abstract state on the NFS client side,
which involves another round of network communication with the server. If there
is a bug in the NFS protocol implementation, it can be detected through abstract
state comparison in the differential checker, similar to how Metis checks local
file systems. For state save/restore operations (SS/R) in NFS, the same challenge
exists as with other local file systems—we cannot save the in-memory kernel state
from a user process, so we must flush all memory to disk and checkpoint only
the persistent disk state. Because all information is stored on the NFS server
side, we access the concrete state by memory-mapping the NFS server’s device
and saving it with SPIN. It is worth noting that we attempted to use CRIU [41]
to save and restore NFS-Ganesha’s concrete state, given that NFS-Ganesha is a
user-space server; however, this attempt was unsuccessful because it still depends
on kernel-level resources.

5.5.2 NFS Checking Implementation and Discussion
Two file systems, Ext4 and RefFS, have been integrated as the reference and
local NFS file systems for checking the NFS kernel server and NFS-Ganesha. We
implemented different procedures for the two reference file systems when checking
NFS due to differences in saving and restoring concrete states. While using Ext4,
before each file system operation, we must first export the NFS server path, then
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mount it with Ext4, followed by mounting the client path. Conversely, after each
operation, we have to unmount the client path, unexport the server path, and then
unmount the server path to clear in-memory state and save the concrete state.

In contrast, RefFS can considerably simplify the process by virtue of its ioctl
snapshot APIs. Using RefFS as the local file system eliminates the need for
constant mounting and unmounting before and after each operation, as RefFS
can save and restore its entire state on its own. Without requiring mount/unmount
operations, there is no need to export/unexport the NFS server path either, resulting
in significantly better performance compared to Ext4 as the local file system. This
highlights the advantages of RefFS in facilitating model checking not only for local
file systems, but also its potential to enhance checking of distributed file systems.

We present here some preliminary evaluation findings related to the perfor-
mance and bug detection of the NFS checking process. For performance eval-
uation, we used Metis to check kernel NFS with RefFS and Ext4 as the local
file systems for NFS, respectively. During a 10-hour experiment, using RefFS
as the local file system resulted in over 42 million file system operations and 11
million unique abstract states, with a processing rate of 1184.6 ops/sec and 306.5
states/sec. However, using Ext4 as the NFS backend yielded only 0.07 operations
per second, significantly slower than using RefFS as the backend. This is because
the constant mounting and unmounting of both the NFS client and server, as well
as the repeated exporting and unexporting, take considerable time to complete
even a single operation. Therefore, using Ext4 as the local file system for checking
NFS in Metis is impractical, and we claim that RefFS is the suitable option for the
task.

We observed two discrepancies in both NFS implementations, which turned
out to be expected behaviors rather than real bugs. Consequently, we categorized
them as false positives and handled them in our abstract state method. The first
discrepancy we found is that for devices smaller than 1MB, NFS reports the size
as 1MB instead of the actual device size. This difference is due to configuration
settings. By adjusting the NFS rsize and wsize, we can obtain the correct size
that reflects the actual backend device size. We identified a second discrepancy
where temporary files were found on the NFS client but were absent from the
reference file system. These temporary files are created by NFS when a file is
deleted but still open by a process. We have modified our abstraction function to
exclude them when computing the abstract state for NFS. Despite this, we believe
that the Metis model checking approach with RefFS offers a promising method for
checking distributed file systems like NFS.
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Figure 5.4: Input coverage counts (𝑙𝑜𝑔10, 𝑦-axis) of open flags (𝑥-axis) for Crash-
Monkey, xfstests, Syzkaller, and Metis with 3 different weight distributions.

5.6 Evaluation
We evaluated the efficacy and performance of Metis and RefFS, specifically:
(1) Does Metis have the versatility to test different input partitions compared to
other testing tools? (See §5.6.1.) (2) What is Metis’s performance? How does
it scale with the number of VTs when using Swarm verification? (See §5.6.2.)
(3) What is RefFS’s performance compared to other file systems? How reliable
and stable is RefFS, as Metis’s reference file system? (See §5.6.3.) (4) With
RefFS set as the reference file system, does Metis find bugs in existing Linux file
systems? (See §5.6.4.)

Experimental setup We evaluated Metis on three identical machines, trying
various configurations, particularly with multiple distributed VTs. Each machine
runs Ubuntu 22.04 with dual Intel Xeon X5650 CPUs and 128GB RAM. We also
allocated a 128GB NVMe SSD for swap space. We evaluated Metis’s performance
using RAM disks, HDDs, and SSDs by comparing Ext4 with Ext2. The results
showed that RAM disks were 20× faster than HDD and 18× than SSD. Also,
Metis performs best when the file system device is as small as possible. Therefore,
we used RAM disks as backend devices for on-disk file systems and minimum
mountable device sizes for all file systems in all evaluations that follow.

5.6.1 Test Input Coverage
We assessed input coverage (§5.2) for Metis and other file system tests on two
dimensions: completeness and versatility. Completeness considers whether a
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testing tool covers all input partitions (§5.2) in test cases. Versatility is the ability
to tailor test cases for any desired input coverage. Metis outperforms existing
checkers and a fuzzer [68] on both dimensions.

Comparison with existing testing tools We selected three testing tools, each
representing a unique technique: CrashMonkey [151] for automatic test generation,
xfstests [172] for (hand-written) regression testing, and Syzkaller [68] for fuzzing.
To ensure fairness, we ran all of them and Metis (with one VT) to check Ext4 for
40 minutes each, because this time length was sufficient to complete all xfstests
test cases and CrashMonkey’s default test cases [153].

Measuring input coverage requires tracking the file system syscalls executed by
the testing tool, including their associated arguments. Traditional syscall tracers
(e.g., ptrace-based ones) cannot distinguish the syscalls used on the file systems
under test, because a testing tool makes many testing-unrelated syscalls, such as
opening and reading dynamically linked libraries or logging statistics. CrashMon-
key and xfstests do not inherently log their test inputs. Hence, we used a tool [128]
specifically designed for measuring input coverage in file system testing to assess
coverage for CrashMonkey and xfstests. Syzkaller’s debug option and Metis’s log-
ger record all syscalls and arguments, enabling us to compute their input coverage
using their internal mechanisms.

Input coverage for open flags Figure 5.4 shows the input coverage of open,
partitioned by individual flags, for CrashMonkey, xfstests, Syzkaller, and Metis.
In Metis, we set weights according to three input partition distributions: Uni-
form, RSD (Rank-Size Distribution [166]), and IRSD (Inverse Rank-Size Distri-
bution [158]). Metis-Uniform denotes that Metis tests each input partition (i.e.,
open flag) with a fixed weight (i.e., probability). Both RSD and IRSD represent
non-uniform distributions. We adopted the core principle of RSD, such that flags
with higher ranks have higher test frequencies. Conversely, in IRSD, lower-ranked
flags have higher frequencies. We analyzed the frequency of individual open flags’
appearance in the 6.3 Linux kernel source. Metis employed those flags based on
their proportional (Metis-RSD) and inverse-proportional (Metis-IRSD) frequen-
cies. These distributions attempt to model two contrasting strategies: (1) Flags
that appear more frequently in the kernel sources warrant proportionally more
testing because they are used more frequently; conversely, (2) Flags with fewer
occurrences in the kernel should be tested more thoroughly because they are more
rarely used and hence could hide bugs for years.
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In Figure 5.4, the 𝑥-axis labels every single-bit open flag and the 𝑦-axis (𝑙𝑜𝑔10)
counts how often each was exercised by the testing tool. A higher 𝑦-value means
more testing was conducted. We see that only Syzkaller and Metis covered allopen
flags. For instance, neither CrashMonkey nor xfstests tested the O_LARGEFILE

flag, which could lead to missing related bugs [195]. Metis-Uniform test all flags
equally; its coefficient of variation (CV) [1] (standard deviation as percentage of
the mean) is only 1.2% (40-minute run). For its non-uniform test distributions,
close examination of Figure 5.4 shows that O_CREAT (the most common open

flag in the kernel source) is indeed tested most often in Metis-RSD and least in
Metis-IRSD. __O_TMPFILE, the least-frequent flag, exhibits the opposite trend.
Other tools lack the versatility to adapt their test input partitions to the desired
amount of testing.

Moreover, we observed that xfstests tested certain input values millions of times
(e.g., O_DIRECTORY) while others (e.g., FASYNC) are not tested at all. However,
other tools sometimes have a higher total operation count than Metis because Metis
has to unmount and remount the file system to achieve state tracking and verify
state equality after each operation, slowing its syscall execution speed. Given the
essential role of unmount/mount for state tracking (§5.3.2) and the need for state
comparison (§5.3.3), we use Swarm verification to improve the overall operation
efficiency (§5.3.5).
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Figure 5.5: Input coverage (counts, 𝑙𝑜𝑔10, 𝑦-axis) of write size (in bytes) for
CrashMonkey, xfstests, Syzkaller, and Metis with three different weight distribu-
tions. The 𝑥-axis denotes the power of 2 of the write size (shown as 𝑥2-axis). Note
a special “Equals 0” 𝑥-axis value for writes of size zero.

Input coverage for write size Figure 5.5 shows the input coverage for the write
size (requested byte count). The 𝑥-axis represents the 𝑙𝑜𝑔2 of the size, correspond-
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Figure 5.6: Input coverage of write size (in bytes) for Metis-Uniform, Metis-XD,
and Metis-IXD, each running for 4 hours. The 𝑥-axis and 𝑥2-axis here are the
same as in Figure 5.5, but the 𝑦-axis shows counts on a linear scale. As observed,
extended run times produce distributions that align more closely with the intended
distribution, compared to the shorter experiment shown in Figure 5.5.

ing to the write size partitions (see §5.3.1). For example, 𝑥 = 10 represents all
sizes from 210 to 211 − 1 (or 1024–2047). The 𝑦-axis (𝑙𝑜𝑔10) shows the number of
times each 𝑥 bucket was tested by a given tool. Only Metis ensured complete input
coverage across all write size partitions. All other tools primarily tested sizes
under 16MiB (𝑥 ≤ 24). Certain partitions (e.g., 𝑥 = 26) were omitted by all these
tools, even though systems with many GBs of RAM are now common. As with the
open flags above, here Metis-Uniform also assigns uniform test probabilities to
each write size partition. To illustrate Metis’s versatility, we chose exponentially
decaying distributions for write sizes. Metis-XD prioritizes testing smaller sizes
more often, because they tend to be more popular in applications. The probability
of each input partition is set to 0.9× smaller than the previous one (in frequency
order); all probabilities are then normalized to sum to 1.0. Metis-IXD empha-
sizes the inverse: testing input partitions with larger write sizes, on the hypothesis
that they are less used by applications and thus latent bugs may exist. Here, the
probability of each test partition is 0.9× that of the next larger partition.

In Figure 5.5, the trend does not precisely align with the probabilities due to
the relatively short 40-minute runtime and a correspondingly limited number of
write operations, so the CV was 17.0%. When we ran Metis six times longer (4
hours), however, the CV dropped to 3.9% as seen in Figure 5.6; and when we ran
it six times longer still (24 hours), the CV fell to a mere 2.6%. For brevity, we
omit showing the input coverage for other Metis-supported syscalls.
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Figure 5.7: Metis performance with Swarm (distributed) verification, measured in
terms of the number of operations and unique abstract states (in millions). Each
node runs 6 VTs (one per CPU core), for a total of 18 unique VTs that collectively
explored the state space. As seen, performance scales generally linearly with the
number of VTs.

5.6.2 Metis Performance and Scalability
To evaluate performance with distributed Metis VTs, we deployed it on three phys-
ical nodes, comparing Ext4 (reference) to Ext2 (system under test) for 13 hours.
Each node (machine) operated six individual VTs, totaling 18 VTs. Figure 5.7
shows the aggregate performance of the six VTs on each node, as well as the
overall performance across all 18 VTs. We measured both file system operations
(left) and unique abstract states (right). All VTs exhibited a linear increase in the
number of operations executed over time. Over 13 hours, these 18 VTs executed
more than 164 million operations, with each VT averaging 195 ops/s.

The count of explored states also increased steadily over time, although not
exactly linearly. This is because executing operations does not always produce
new, unseen states. For example, if a file exists, creating it again will not change
the state. Thus, the number of unique states is fewer than the number of operations
in a given time frame. Collectively, these VTs explored over 30 million unique
states. On average, each explored 2.7 million states. Using 18 VTs resulted in
exploring 11.2×more unique states than with a single VT. This experiment shows
Metis’s almost linear performance scalability with the number of VTs.

Different VTs might explore the same states, as each VT operates independently
and without communicating with others. We evaluated the proportion of states
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Figure 5.8: Performance comparison between RefFS and other mature file systems
while being checked by Metis. The 𝑦-axis applies to both ops/sec and states/sec.

explored by more than one VT, which represents “wasted” effort, a figure we want
minimized. Our results showed that only about 1% of all states were duplicated
across all VTs. Therefore, the redundancy of states explored by multiple VTs is
relatively small and acceptable.

5.6.3 RefFS Performance and Reliability
To evaluate RefFS’s performance, we used Metis to check it against a single file
system. We also considered four other mature file systems (Ext4, Ext2, XFS, and
BtrFS) as potential references. For a fair comparison, we use RAM disks as the
backend devices and adopted the smallest allowed device size for each. Figure 5.8
shows that RefFS outperformed the others in terms of both operations and unique
states per second. Even though RefFS is a FUSE file system—generally slower
than in-kernel ones—it was 3.0×, 2.9×, 28.4×, and 27.7× faster than Ext4, Ext2,
XFS, and BtrFS, respectively. This is primarily because Metis was able to use the
save/restore APIs (§5.4.1) and thus did not have to unmount and remount RefFS.

Ext4 and Ext2 were faster than XFS and BtrFS due to the difference in minimum
device sizes: the former require just 256KiB, whereas the latter need 16MiB.
Mapping and copying larger devices in memory naturally increased time overheads.

Reliability To serve as a reference, RefFS must be highly reliable. While devel-
oping RefFS and Metis, we made necessary changes (110 lines of code) to xfstests
so that we also could use it to debug RefFS. While we used xfstests to find certain
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Bug# FS Causes & Consequences D C N

1 BetrFS Repeated mount and unmount caused a kernel
panic ✔ ✔ ✔

2 BetrFS statfs returned an incorrect f_bfree ✔ ✔ ✘

3 BetrFS truncate failed to extend a file ✔ ✔ ✔

4 F2FS A file showed the wrong size after another file was
deleted ✘ ✘ ✔

5* JFFS2 Data corruption occurred in a truncated file when
writing a hole ✔ ✔ ✔

6 JFFS2 A deleted directory remained after unmounting ✘ ✘ ✔

7 JFFS2 GC task timeouts and deadlocks during operations ✔ ✔ ✘

8 JFS NULL pointer dereference on
jfs_lazycommit

✔ ✘ ✔

9 JFS After writing to one file, another file’s size changes ✘ ✘ ✔

10 NILFS2 NULL pointer dereference on
mdt_save_to_shadow_map

✔ ✘ ✔

11 NILFS2 Failed to free space on a small device with cleaner ✔ ✘ ✔

12 NILFS2 Unmount operation hung after using creat on an
existing file ✔ ✘ ✔

13 NOVA Kernel hang due to improper snapshot cleaner
kthread implementation ✔ ✔ ✔

14 NOVA Incorrect file size after writing to a different file ✘ ✘ ✔

15 PMFS Incorrect file size after creating a file ✘ ✘ ✔

Table 5.2: Kernel file system bugs discovered by Metis. In the table header, FS, D,
C, and N represent the file system name, whether it is deterministic (D), confirmed
(C), and new bug (N), respectively. This list excludes the 11 RefFS bugs that Metis
detected and fixed. JFFS2 bug fix #5 (marked by *) was integrated into the Linux
mainline recently.
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bugs in RefFS, xfstests often misreported the bug information. For example, al-
though we implemented RefFS’s link operation, it still did not pass generic test
#2, incorrectly indicating that the operation was unsupported. This indicates that
xfstests can produce false negatives when testing RefFS and provides limited util-
ity for guiding bug reduction efforts. For that reason, we also used Metis to check
RefFS with Ext4 as the reference. We discovered and fixed 11 RefFS bugs, aided
by Metis’s logs and replayer. Those bugs included failure to invalidate caches,
inaccurate file size updates, erroneous ENOENT handling, and improper updates to
nlink, among others. After fixing them, we evaluated RefFS against Ext4 using
18 distributed Metis VTs for 30 days, executing over 3.1 billion operations and
exploring 219 million unique states. No discrepancies were reported, demonstrat-
ing that RefFS’s reliability and robustness are similar to Ext4’s—but with better
performance when used as Metis’s reference file system.

5.6.4 Bug Finding
With RefFS as our reference file system, we applied Metis to check seven exist-
ing file systems: BetrFS [98], BtrFS [169], F2FS [117], JFFS2 [198], JFS [95],
NILFS2 [44], XFS [177], and two persistent memory file systems: NOVA [200],
and PMFS [50], discovering potential bugs in seven. Table 5.2 summarizes these
bugs, including causes and consequences, whether they were confirmed by devel-
opers, and whether they were new or previously known. Metis found bugs using
both uniform and non-uniform input distributions, but some distributions found
bugs faster. Some bugs were detected within minutes, while others took up to 22
hours, which is reasonable for long-standing bugs. The bugs we identified were
not detected by xfstests [172] or Syzkaller [68]. Metis identified an F2FS bug that
was not detected by Hydra [107]. We also checked file systems (e.g., BetrFS) that
are not currently supported by Hydra [107].

We found bugs using Metis through different indicators. Discrepancies re-
ported by the differential checker accounted for nine out of fifteen detected bugs (#
2–6, 9, 11, 14, and 15). The remaining six caused a kernel panic (Linux “oops”) or
hung syscall (due to a deadlock). After analyzing each discrepancy using Metis’s
logger and replayer, we verified that all behavior mismatches originated from in-
correct behavior in the file system under test—the reference file system, RefFS,
was consistently correct.

We reported five bugs to BetrFS’s and JFFS2’s developers, all of which were
confirmed as real bugs; however, one bug each in BetrFS and JFFS2 had already
been fixed in the latest code base. Of the remaining unconfirmed bugs, four were
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FS Testing Ap-
proach Input FS effort Ops effort ST CC BD

Metis: this
work ��� � � ✔ ✘

Behavioral
discrepancies

Traditional
Model
Checking:
CVFS [60],
CREFS [208]

� ��� ��� ✔ ✘
User-specified
assertions

Implementation-
level Model
Checking:
FiSC [207],
eXplode [206]

� �� �� ✔ ✘
User-written
checkers

Fuzzing:
Syzkaller [68],
Hydra [107]

�� �� � ✘ ✔
External
checkers

Regression
Testing:
xfstests [172],
LTP [150]

� �� ��� ✘ ✘

Preset
expected
outcome

Automatic Test
Generation:
CrashMon-
key [151],
Dogfood [31]

�� � �� ✘ ✘

External
checkers or an
oracle

Table 5.3: Comparison of representative file system testing tools. In the table
header, Input, FS effort, Ops effort, ST, CC, and BD represent versatility to set test
inputs, the effort required to test new file systems, the effort required to add new
FS operations to testing, the ability to track states (state tracking, ST), the ability
to track code coverage (CC), and the checker for bug detection (BD), respectively.
In column 2, the more � symbols, the more relatively versatile the system is;
conversely, in columns 3–4, more � symbols denote more effort.

deterministic and five were nondeterministic. Deterministic bugs are those easily
reproducible after Metis reported a discrepancy or the kernel returned errors (e.g.,
hang or BUG). We are currently pinpointing the faulty code for the deterministic
bugs and preparing patches for submission to the Linux community. Metis also
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detected nondeterministic bugs that its replayer could not reproduce. For instance,
after using unlink to delete file d-00/f-01, the size of another file f-02 in
F2FS incorrectly changed to 0 instead of the correct value. Replaying the same
syscall sequence did not reproduce this bug. To trigger it, we had to rerun Metis,
but the time and number of operations needed varied across experiments. Given
the bug’s nondeterminism, we suspect a race condition between F2FS and other
kernel contexts. We verified that these unconfirmed bugs persist in the Linux
kernel repository (v6.3, May 2023) without any fixes, thus classifying them as
unknown bugs.

To detect them, all these potential bugs require specific operations on a partic-
ular file system state, underscoring the value of both input and state exploration.
JFFS2 bug #5 is an example of the interplay between input and state. After 4.3
hours of comparing JFFS2 with RefFS, Metis reported a discrepancy due to differ-
ing file content. We observed the bug occurred when truncating a file to a smaller
size, writing bytes to it at an offset larger than its size, and then unmounting the
file system to clear all caches. Uncovering this multi-step, data-corruption bug
required specific inputs (truncate, write) and then unmounting and remount-
ing, because there was a cache incoherency between the JFFS2 in-memory and
on-disk states. Ironically, the fact that Metis was “forced” to un/mount, is exactly
why we found this bug, which was present in the 2.6.24 Linux kernel and remained
hidden for 16 years. We fixed this long-standing bug, and our patch has since been
integrated into the Linux mainline (all stable and development branches).

5.7 Chapter Conclusion
File system development is difficult due to code complexity, vast underlying state
spaces, and slow execution times due to high I/O latencies. Many tools and
techniques exist for testing file systems, but they cannot be easily updated to test
specific conditions at a configurable level of thoroughness. Moreover, they tend to
require code or kernel changes or cannot easily adapt to testing new file systems.

In this chapter, we presented Metis, a versatile model-checking framework
that can thoroughly explore file-system inputs and states. Metis abstracts file-
system states into a representation that can be used to compare the file system
under test against a reference one. We designed and built RefFS, a reference
POSIX file system with novel features that accelerate the model-checking process.
When used with Metis, RefFS is 3–28× faster than other, more established, file
systems. We extensively evaluated Metis’s input and state coverage, scalability,
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and performance. Metis, helped by RefFS, can speed file-system development:
we already found a dozen bugs across several file systems. Overall, we believe
that Metis, with its unique features, serves as a valuable addition to file system
developers’ tool suite. Finally, Metis’s framework is versatile enough to be adapted
to other systems (e.g., databases).
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Chapter 6

CoSV: Containerized Swarm
Verification for Scalable and
Fault-Isolated Model Checking

Swarm Verification (SV) uses multiple diversified Verification Tasks (VTs) to
parallelize SPIN-based model checking. SV, however, suffers from several lim-
itations, including complex deployment, interference among VTs, and resource-
management difficulties. We present Containerized Swarm Verification (CoSV),
where each VT runs in a self-contained, isolated container managed by an orches-
trator to handle deployment, scaling, and life-cycle automation. CoSV follows a
Controller-Worker architecture, with a single controller node and multiple worker
nodes, and can be easily scaled to both cloud and on-premise compute environ-
ments. To apply CoSV to a new model or scale the number of VTs, one only needs
to configure dependencies (such as external libraries and tools) and specify the
resource requirements for each VT, both of which can be accomplished in a single
step. We evaluated CoSV on two SPIN-based models: the Metis file system model
checker and the Dining Philosophers problem. Our results show that CoSV’s per-
formance compares favorably with standard SV. We also demonstrate how CoSV
effectively isolates faults among VTs and facilitates scalable deployment of VTs
on multi-core servers and in hybrid cloud environments.
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6.1 Introduction
Swarm Verification (SV) [84, 86] is a powerful technique that generates multiple
parallel verification tasks (VTs) to collectively verify complex software systems
and efficiently explore large state spaces. SV employs diversification techniques
to assign varying search parameters (e.g., hash polynomials, random seeds) to the
VTs generated by the SPIN model checker [79]. As such, VTs are likely to explore
different portions of the state space, thereby collectively increasing state-space
coverage.

VTs can be executed in parallel across multiple CPU cores and machines, en-
hancing efficiency and scalability. However, using SV presents several challenges.
For example, SV pre-generates VTs based on a static configuration file and relies
on ssh to distribute them to remote machines [82]. This approach poses challenges
in deploying VTs efficiently across heterogeneous and dynamically changing en-
vironments, such as a hybrid cloud with fluctuating server availability [105].1
Further, VTs running on the same machine lack isolation in terms of their exe-
cution environment and resources, leading to potential interference and resource
contention. Additionally, VTs operate without a centralized system to monitor
their status and coordinate their deployment and resource usage. This results in
wasted resources and hinders the identification of property violations within cer-
tain VTs [85]. Finally, when SV is scaled to more machines, each machine running
VTs must be individually configured with dependencies such as required libraries,
tools, and environments. This reduces scalability and adds deployment overhead.

Our contributions. This chapter presents Containerized Swarm Verification
(CoSV), in which each VT runs in an isolated container—a self-contained envi-
ronment that includes the application and its dependencies—and is managed by an
orchestrator (Kubernetes) that automates the deployment, management, scaling,
and operation of containerized VTs. CoSV uses a controller-worker architecture,
where a single controller node (machine) manages multiple worker nodes that run
all VTs as containers. CoSV packages all of the dependencies needed to con-
tainerize a VT into a single step, enabling easy and scalable deployment to worker
nodes. This also simplifies adapting CoSV to a new model, as dependencies and
VT resource limits only need to be configured once during setup. Once this step
is done, CoSV streamlines the packaging, deployment, and management of all

1A hybrid cloud is mixed computing environment made up of public and private clouds,
including on-premises data centers or “edge” locations.
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VTs without additional engineering, eliminating the need to configure environ-
ments and dependencies on each machine. This efficiency benefits all SPIN-based
models that utilize SV.

Additionally, containerized VTs ensure consistent execution across different
systems and environments without compatibility issues. This guarantees deter-
ministic and repeatable behavior, independent of external factors such as various
runtime configurations. Such an approach aids in the scalable deployment of VTs
and in being able to consistently reproduce bugs during model checking by elim-
inating environment-related variations (e.g., dependency configurations, machine
architecture, operating system). CoSV also provides fault and resource isola-
tion, preventing runtime issues in one VT from impacting others through fault
propagation or resource contention.

We designed and implemented two versions of CoSV: CoSV-Docker and
CoSV-Kata, using Docker [47] and Kata Containers [104], respectively, as the
underlying container technologies. Different containers offer varying levels of
resource and fault isolation, allowing them to be selected based on the needs of
different model checking applications. Docker provides higher performance with
lightweight isolation, whereas Kata Containers offer stronger isolation through
hardware virtualization at the cost of reduced performance. Therefore, CoSV-
Docker is suitable for most model-checking scenarios (e.g., Dining Philosophers)
that are unlikely to trigger operating system kernel-level failures, whereas CoSV-
Kata is more appropriate for system software model checking (e.g., file system
verification), where kernel errors could halt all VTs on the same host. We ap-
plied CoSV to two representative model-checking tasks: Metis file system model
checking [127] and the Dining Philosophers problem [45].

In sum, this chapter makes the following contributions:

1. We designed CoSV to leverage containers and Kubernetes, offering multiple
advantages over SV, including improved scalability, fault isolation among
VTs, simplified deployment and management, a consistent runtime envi-
ronment, and more efficient resource usage. Section 6.3.3 considers the
advantages of CoSV over SV.

2. We implemented two variants of CoSV using different container software:
CoSV-Docker and CoSV-Kata. We applied these variants to two SPIN-
based models: the Metis file-system model checker [127] and the Dining
Philosophers problem [45].

3. We compared CoSV’s performance against standard SV using multiple met-
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rics and evaluated its fault-isolation capabilities under two common faults:
memory leaks and kernel crashes. We also demonstrated how CoSV facil-
itates the deployment of VTs across multiple multi-core servers and hybrid
cloud environments.

The rest of the chapter is organized as follows: Section 6.2 provides back-
ground on Swarm Verification, containerization, and the Metis file system model
checker. Section 6.3 describes the architecture of CoSV, including its compo-
nents, container selection rationale, deployment process, and key advantages and
limitations. Section 6.4 presents our experimental results and compares CoSV (in-
cluding both CoSV-Docker and CoSV-Kata) with SV on the two models in terms
of deployment, performance, and fault isolation. Section 6.5 offers our concluding
remarks.

6.2 Background and Motivation
This section provides background on three areas relevant to this chapter: Swarm
Verification (SV), containerization, and the Metis platform for file system model
checking.

6.2.1 Swarm Verification
Given a system model 𝑀 and a temporal logic property 𝜑, Model Checking involves
systematically exploring 𝑀’s state space to determine whether 𝑀 satisfies 𝜑 [39].
SPIN [87] is a widely used model checker for verifying software systems using
the Promela (Process Meta Language) modeling language [80], with support for
embedded C code to simulate low-level system behaviors, such as those found in
file systems [70, 208]. Model checking faces the challenge of state explosion [40],
where the state space grows exponentially with the number of system components,
making it difficult for model checkers like SPIN to efficiently explore the entire
state space and complete verification in a reasonable amount of time. Swarm
Verification (SV), an enhancement technique for SPIN and other model checkers,
addresses large state spaces by generating multiple parallel VTs, each exploring
only a fraction of the space.

The core techniques used by SV to generate VTs are diversification and ran-
domization [84, 86]. A key diversification technique involves using different hash
polynomials per VT to generate unique hash collisions for each VT. Variations
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in hash collisions cause each VT to prune state exploration at different points by
avoiding revisited states, resulting in distinct exploration patterns. Randomization
affects scheduling, parameter selection, and state transitions, and thus each VT
follows a different search strategy determined by its random seed. In SV, each VT
consists of a series of commands, each of which specifies an executable verifier
called pan [79], equipped with different arguments defining the search and di-
versification strategies for the run. An example command is ./pan1 -k1 -w30

-m10000 -h93 -RS2745, where pan1 indicates the specific verifier being used,
as SV can generate multiple verifiers based on different compilation flags specified
in the SV configuration file [82]. The trailing arguments configure the number
of hash functions (-k), the size of hash table entries (-w), the maximum search
depth (-m), the hash function selection (-h), and the seed for the random number
generator (-RS). Although these techniques assist VTs in exploring different por-
tions of the state space, their deployment, distribution, and management remain
insufficiently studied.

In addition to specifying compilation flags for generating different verifiers,
the SV configuration file also defines the number of VTs to be launched and how
they are to be distributed across multiple machines. For example, specifying 3

remote1:4 remote2:5 indicates generating and executing 3 VTs on the local
machine, 4 VTs on remote machine 1, and 5 VTs on remote machine 2, respec-
tively, which requires password-less ssh access to all remote machines. This
method, however, limits the scalability and flexibility of VT deployment, as SV
pre-generates VTs based on a static configuration file. When additional nodes or
CPU cores become available, in SV one must update scripts manually to regenerate
the VTs and reconnect via ssh to the new remote machines.

6.2.2 Metis File System Model Checking
Metis [127] is a SPIN-based implementation-level model-checking framework for
Linux kernel file systems that has already discovered 15 bugs. We use Metis as an
example to demonstrate CoSV. Metis does not build or analyze abstract models;
instead, it directly mutates and explores file system states through file system calls
and state representations. Metis leverages SV to scale state exploration across
multiple machines, but its scalability and practicality are limited by the design of
the standard SV. First, running Metis requires numerous dependencies, including
file-system utilities and libraries, making manual distribution of VTs across mul-
tiple machines cumbersome. Second, deploying VTs on remote machines relies
on ssh and scp for file transfer and remote execution. This approach, however,
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lacks fault tolerance (e.g., to network failures [110]) and makes it difficult to in-
crementally add or remove VTs in a dynamic environment. Third, VTs on the
same machine run as collocated processes without isolation. Metis often triggers
different types of kernel bugs, causing VTs on the same machine to interfere with
each other [127, 182]. For example, a memory leak may cause the VT that triggers
it to consume excessive memory, leading to resource contention with other VTs.
A more severe bug can trigger a kernel crash or hang, disrupting all VTs on the
same machine.

6.2.3 Containerization
Containerization encapsulates an application and its dependencies into an iso-
lated, self-contained container, offering a more lightweight virtualization solution
than traditional virtual machines [18]. Central to containerization are tools like
Docker [47], a platform that builds and runs containers, and Kubernetes [111], a
system that automates the deployment and management of containerized applica-
tions.

In a non-containerized environment like standard SV, applications such as VTs
are executed using the shared resources and libraries of the host machine, all
running under the same OS kernel. Containers generally enable applications to be
packaged with their dependencies and run in isolated environments with dedicated
resource allocations (e.g., CPU, memory, disk). Container technologies vary in
the extent of isolation they provide at the OS and kernel levels. Shared-kernel
containers (e.g., Docker) share the host OS kernel, making them lightweight with
fast startup and low overhead; a kernel-level error, however, can affect all containers
on the same host. In contrast, sandboxed containers (e.g., Kata Containers [104])
run each container in a lightweight virtual machine (VM) with its own kernel,
providing stronger isolation so that a kernel-level error in one container does not
affect others on the same host, but at the cost of higher overhead. Another benefit
of container isolation is the consistent runtime environment it provides. This
consistency is important for model checking, which can expose nondeterministic
bugs that may not appear reliably across executions, such as race conditions
that depend on specific environmental contexts [127, 48]. Once such bugs are
identified, containerized environments facilitate more consistent reproduction and
help analyze the bugs in a controlled setting [186].
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Figure 6.1: CoSV architecture and components.

6.3 CoSV Architecture
This section describes the design and implementation of CoSV, explains how
it uses different containers to support diverse model-checking applications, and
summarizes its advantages and limitations.

6.3.1 CoSV Design and Implementation
CoSV, an extension and improvement of the original SV [84, 86], generates the
same set of VTs, but differs in terms of deployment, scalability, and resource man-
agement. CoSV, like SV, exploits the inherent independence of VTs by allowing
them to execute in parallel without any inter-VT communication overhead. There-
fore, packaging VTs in containers does not impact their behavior, while the isolated
environment ensures that they run consistently and securely. The independence
of VTs and minimal communication between them make them an excellent fit for
orchestrators like Kubernetes, which efficiently manage resources, monitor status,
and dynamically deploy or remove VTs as needed.

Figure 6.1 illustrates the architecture of CoSV and the deployment of VTs.
In CoSV, there are two types of nodes: Control and Worker. The Control Node
acts as the “brain” of the cluster and consists of two main components: the CoSV
Coordinator, which configures, generates, and packages all VTs with containers,
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and the Kubernetes Control Plane, which schedules and distributes the packaged
VTs across all Worker Nodes. CoSV begins by specifying configurations through
a static CoSV configuration file that includes all native SV configurations (number
of VTs, maximum search depth, etc.) and CoSV-specific configurations (e.g.,
resources, permissions, working directories, and the external libraries and tools
required for each VT). The VT Generator produces a set of VTs whose size is
chosen based on the availability of computing resources.

The CoSV Image Builder then packages each VT with all necessary libraries
and dependencies (e.g., block devices and file system utilities for Metis) and
creates a container specification file, such as a Dockerfile, with instructions on
how to automate the VT’s environment setup and image building. We publish the
resulting container images for each VT to the GitHub Container Registry [63],
storing them for easy deployment by Kubernetes, thereby removing the reliance
on scp and ssh for transferring and executing VTs on remote machines.

The CoSV Coordinator then defines batch-style Kubernetes jobs containing
everything needed to execute each VT and sends them to the Kubernetes Control
Plane for pod creation and scheduling. The Resource Allocator judiciously allo-
cates computing resources (e.g., CPU, memory, disks) to each VT, continuously
monitoring available resources (e.g., freed resources from a terminated VT, new
nodes, etc.) and dynamically allocating new VTs to maximize scalability and re-
source efficiency. The Kubernetes Control Plane includes native components such
as the API Server, Controller Manager, and Scheduler, which respectively handle
communication and requests, store configuration data and state, monitor the clus-
ter’s status, and place VTs on available nodes as pods, the smallest deployable unit
in Kubernetes. Thanks to the CoSV Control Node, CoSV can build and distribute
VTs across multiple Worker Nodes and effectively manage the entire life cycle of
these VTs.

Worker Nodes execute VTs packaged in containers and deployed as pods. Each
Worker Node can host one or more pods, depending on the available computing
resources. Worker Nodes are physical or virtual machines that can be hosted on-
premises (e.g., in private data centers), in a research cloud testbed (e.g., Chameleon
Cloud [105]), in the public cloud, or in a hybrid-cloud environment. Each pod
contains a single container, with each container encapsulating one VT. This pro-
vides stronger isolation among VTs and finer control over pod management. In
traditional SV, adding a new node to handle more VTs is cumbersome as it requires
editing the Swarm configuration file, regenerating the VTs, and using ssh and scp
for file transfer and remote execution, all without visibility into the execution status
of the VTs. CoSV, however, can easily add a new Worker Node by running the
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existing Kubernetes utility on the Control Node and then deploying new VTs using
pre-packaged containers.

The Control Node can monitor all Worker Nodes to identify those that have
terminated (e.g., due to assertion failures) and add new VTs accordingly. Some
model-checking tasks, like Metis, require a large amount of disk space to store
logs and generated files. CoSV uses Kubernetes Persistent Volumes (PVs) and
Persistent Volume Claims (PVCs) to manage storage for such VTs. We provision
PVs on worker nodes to abstract underlying storage resources, while PVCs enable
VTs to request storage configurations, including size and access modes, according
to their specific requirements. This decoupling allows CoSV to dynamically
provision storage without manual intervention, providing flexibility in handling
the large and persistent data produced by VTs.

We have implemented CoSV for two SPIN-based models: Metis and Dining
Philosophers. Both models adhere to the architecture and procedure outlined
above; the difference lies in specifying their dependencies and resource require-
ments. Since Metis performs file system checks at the implementation level using
extensive C/C++ code, it requires diverse dependencies. CoSV packages all Metis
dependencies into a single container, including development libraries (e.g., zlib),
block devices (e.g., ramdisks), root permissions, and sufficient memory and stor-
age for state tracking and logging. In contrast, the Dining Philosophers model,
implemented solely in Promela, requires few dependencies, generates minimal
logs, and maintains a small state footprint. For resource allocation, we ensure that
the number of VTs does not exceed the number of CPU cores on each node, so that
each VT has at least one core. We allocate memory based on the system state size
of the model, where a system state refers to a complete snapshot of all variable
values, process control information, and metadata at a given execution point. Each
VT is allocated sufficient memory to accommodate the product of the system state
size and the maximum search depth, along with additional space for SPIN’s hash
table, OS usage, and other overhead. Likewise, the disk space allocated to each
VT is chosen to be adequate, but not excessive, enabling fine-grained resource
management and preventing out-of-space errors.

6.3.2 CoSV Integration with Various Container Types
Given the variety of container types, it is important for CoSV to select the most
suitable one based on the model being verified. We implemented CoSV with two
representative container backends: Docker and Kata Containers. Both variants,
referred to as CoSV-Docker and CoSV-Kata, respectively, use the CoSV design
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Figure 6.2: VT isolation comparison of SV, CoSV-Docker, and CoSV-Kata in
terms of dependencies (Deps), resources (Res), and OS kernel (OS).

described in Section 6.3.1, but employ different container types to provide varying
levels of isolation. Docker provides process isolation using Linux namespaces and
resource control via cgroups [18], while Kata Containers offer stronger isolation
by encapsulating each container within a lightweight VM.

Figure 6.2 illustrates how SV, CoSV-Docker, and CoSV-Kata differ in man-
aging VTs, dependencies, resources, and the OS kernel. In SV, all VTs run in a
shared environment, using the same computing resources and host kernel, with de-
pendencies satisfied by the host system. This architecture lacks fault and resource
isolation among VTs and requires repeated effort to configure dependencies, such
as libraries and tools, on each machine in the cluster. In CoSV-Docker, each VT is
packaged with its required dependencies and resources into a container, helping to
isolate resource-related issues such as memory errors and contention. This isola-
tion is lightweight, as containers share the host OS kernel, avoiding the overhead
of loading and managing a separate kernel for each container. This approach also
means, however, that VTs are not isolated from OS kernel-level errors, including
kernel panics and crashes: if the host kernel fails, all containers and VTs running
on the host will be terminated. To address this issue, CoSV-Kata encapsulates all
dependencies and provides resource isolation through a VM, ensuring that each
VT runs with its own OS kernel. This also isolates kernel-level errors that may
occur during model checking, particularly in low-level system verification tasks.

With CoSV-Docker and CoSV-Kata, CoSV allows one to choose the container
type based on the model-checking task at hand, balancing overhead and isolation

84



CHAPTER 6. COSV: CONTAINERIZED SWARM VERIFICATION FOR
SCALABLE AND FAULT-ISOLATED MODEL CHECKING

needs. In general, CoSV-Docker is suitable for model-checking tasks that operate
primarily in user space, while CoSV-Kata is better suited for low-level system
verification that may trigger kernel-space restrictions or bugs.

6.3.3 CoSV Advantages and Limitations
To elucidate CoSV’s advantages, we compare it with SV across seven dimensions:
scalability, fault isolation, runtime environment stability, resource management,
deployment, model switchover, and orchestration.

Scalability. SV generates and distributes VTs under the assumption of a static
environment, where computing resources remain constant over time. Each VT
is allocated fixed resources, and the total number of VTs is predefined. This
approach is incompatible with modern computing infrastructures, where resources
are constantly changing [9]. In comparison, CoSV leverages containerized VTs
that can be easily deployed or removed in response to resource changes. By
integrating with an orchestrator to monitor resource availability, CoSV achieves
significantly better scalability than SV, particularly in dynamic environments.

Fault Isolation. SV does not account for fault isolation among VTs and assumes
they do not interfere with one another. In practice, this is often not the case [154].
Since the verifiers in VTs are implemented in C, they are prone to memory errors
such as leaks, especially when the model is improperly specified or contains design
flaws. Moreover, since a swarm of VTs aims to collectively explore most of the
system state space, some VTs are likely to uncover bugs that trigger system-level
errors, which may affect other processes on the same host, as observed in file-
system model checking [127, 206, 207]. CoSV provides fault isolation for both
user-level errors (e.g., memory leaks) and kernel-level errors (e.g., kernel crashes),
using CoSV-Docker and CoSV-Kata, respectively.

Runtime Environment Stability Model checking depends on a stable runtime
environment to ensure the reproducibility of detected bugs and counterexamples.
SV does not guarantee runtime stability because it relies on a shared, unman-
aged execution environment. In such cases, a bug found by a VT might not be
reproducible because the runtime environment is not consistent or fixed across
executions [127]. CoSV addresses this problem by packaging each VT within a
container. This preserves execution consistency across an environment change
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(e.g., changing a node) by ensuring that the VT runs in the same isolated and
reproducible context.

Resource Management Efficient resource utilization is essential for maximizing
the number of concurrently running VTs and achieving the highest possible state
exploration rate. In SV, each VT’s verifier is configured with a memory limit and
monitors its own memory usage to determine if it exceeds that limit. This method
alone, however, does not ensure optimal resource utilization. While it prevents
VTs from exceeding their limits, it does not guarantee that all available resources
are fully utilized. CoSV addresses this inefficiency by dynamically allocating and
reclaiming resources across the cluster. It adds or removes VTs based on real-time
resource availability to ensure more efficient utilization of system capacity.

Deployment and Model Switchover Traditional SV requires manual setup and
static configurations, making VT deployment and model switching inefficient due
to the repeated effort needed to configure machines and dependencies. CoSV
simplifies deployment by packaging each VT into a container along with its de-
pendencies and environment, requiring only a one-time setup regardless of the
number of machines or model switchovers.

Orchestration In standard SV, VTs lack orchestration; their status is not centrally
monitored, and completion is signaled only by the presence of a swarm_done

file. CoSV, in contrast, uses an orchestrator to manage VT lifecycles, providing
centralized status tracking, fault recovery, and synchronized termination detection.
It supports dynamic deployment, updating, and removal of VTs based on resource
availability and workload demands.

CoSV is not without limitations when compared to the standard SV. The most
significant limitation is the performance overhead introduced by the use of con-
tainers and the orchestrator. In terms of container overhead, CoSV incurs higher
overhead than SV across multiple dimensions, including system-level abstrac-
tion, network latency, and additional kernel bookkeeping and context-switching
costs associated with isolation [140]. Stronger isolation also comes with addi-
tional overhead. CoSV-Kata incurs higher overhead than CoSV-Docker because
it runs a dedicated kernel for each VT, resulting in increased CPU and memory
usage. The additional virtualization layer further introduces latency in network
and disk I/O operations. The orchestrator in CoSV introduces overhead by re-
quiring an additional dedicated control node and by adding scheduling latency,
resource monitoring load, and periodic health checks, all of which may impact
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overall system efficiency. A comprehensive performance evaluation is presented
in Section 6.4.

6.4 Evaluation
In this section, we consider the amount of human effort required to deploy CoSV
vs. standard SV. We also conduct a performance evaluation and comparison of the
two technologies on two SPIN-based models: Metis, a platform for file system
model checking, and the Dining Philosophers problem.

6.4.1 CoSV Deployment and Scalability
To compare their deployment processes and scalability, we ran CoSV and SV on
three machines in a hybrid cloud environment. For CoSV, we launched the control
node and one worker node on our private cloud, and two additional worker nodes
on the Chameleon Cloud [105], an open cloud platform. For SV, we used three
machines, including one from our private cloud and two from Chameleon Cloud,
which were the same machines used for CoSV’s worker nodes. We deployed
six VTs on each worker node for both CoSV and SV, totaling 18 VTs each. We
structured the deployment process into three phases: cluster setup, dependency
setup, and VT deployment. We also analyzed scalability in terms of the amount of
effort required to add VTs and nodes in dynamic environments, such as cloud-based
Spot VMs [205], which utilize idle resources reclaimed from other users.

Table 6.1 outlines the steps required for each deployment stage and the corre-
sponding manual deployment time (i.e., human effort), as reported by two users
who performed both SV and CoSV deployment. The cluster setup stage establishes
communication between machines, allowing them to form a cluster so that VTs
can be generated on one node and distributed to others. CoSV sets up the cluster
by creating a Kubernetes environment, installing Kubernetes and Calico [185] (for
networking) on each node, and joining the worker nodes to the control node. SV
needs to set up password-less ssh between all nodes in the cluster. We found that
CoSV takes slightly less deployment time than SV due to its automated setup pro-
cedure and avoidance of manual ssh configuration. The dependency setup stage
configures the environment and installs necessary dependencies on each node to
enable them to run VTs. Different models require different sets of dependencies,
leading to varying setup times. For this analysis, we estimate the manual effort
based on the Metis model. CoSV handles dependency setup by constructing a
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container image preloaded with all required components, allowing all VTs to run
in the desired environment without additional setup on other machines. SV, on the
other hand, must set up dependencies individually on each machine running VTs.
Therefore, SV requires 60 minutes of human effort—three times as long as CoSV’s
20 minutes—for dependency setup, as it needs to configure all three machines; in
contrast, CoSV configures dependencies only once. For VT deployment, CoSV
and SV generate VTs in a similar manner but deploy them differently: CoSV uses
Kubernetes pods, while SV runs them directly on the machine. Although the
deployment approaches differ, the required human effort is similar.

VTs can continue to be scaled post-deployment as new computing resources
are added. To add VTs in response to increased CPU availability, CoSV launches
new pods with the existing container image, whereas SV requires reconfiguring
the swarm, manually updating the script, and dispatching new VTs to the selected
node. When new nodes are added, CoSV integrates them into the cluster and
deploys VTs without reconfiguring dependencies. With SV, however, the user
must configure dependencies, set up password-less ssh, and manually deploy
VTs, as discussed previously. Adding VTs and adding nodes are both repetitive
tasks. Given that VTs can run for long durations and often need to be scaled
multiple times, CoSV’s more efficient handling of both scaling steps leads to
substantial (human) cumulative time savings compared to SV.

Overall, CoSV requires less human deployment time than SV, especially in
dynamic environments where new VTs and nodes may be added. Thus, CoSV has
better scalability and a more streamlined deployment process than SV. We also
found that when switching from the Metis model to the Dining Philosophers model,
“model switchover” is easier with CoSV than with SV. This is because CoSV
allows the use of a container template, requiring updates only to dependencies and
resource specifications, without repeating the setup on every node.

6.4.2 Fault Isolation Case Study
A major benefit of using CoSV is fault isolation: the ability to prevent faults in one
VT from affecting other VTs on the same node. Each VT is designed to explore
different states and transitions, so some may trigger faults or encounter resource
contention that affects other VTs. We used Metis to demonstrate fault isolation in
CoSV, which as our results show, is a capability lacking in standard SV.

Since Metis uses SPIN to check file systems at the implementation level, it can
trigger bugs that cause memory errors, file loss, or kernel crashes. We studied
fault isolation using two common errors encountered by Metis VTs: (1) a memory
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leak leading to an Out-of-Memory (OOM) error, and (2) a kernel crash causing a
system failure. The experiments were conducted using four VMs, each equipped
with 8 CPU cores, 256 GB of RAM, and a 512 GB disk partition serving as
secondary storage for all VT data. One VM acted as the CoSV Control Node,
responsible for handling and managing VTs, while the remaining three served as
Worker Nodes running VTs for both CoSV and SV. We deployed a total of 18 VTs,
with six VTs on each Worker Node. We injected faults into a randomly-chosen
VT and observed their impact on the other VTs on the same machine. Ideally, we
seek fault isolation: a faulty VT should not affect other VTs by slowing them down
or even causing them to prematurely terminate. In the latter case, identifying the
faulty VT is difficult because all VTs halt, and no log or execution trail is generated
to explain the fault.

Table 6.2 compares the fault-isolation behavior of SV, CoSV-Docker, and
CoSV-Kata. Specifically, we injected memory-leak and kernel-crash faults into
one VT so that we could investigate their impact on the behavior of the other VTs
in the swarm. For memory-leak simulation, we employed two methods: an OOM
Trigger Program and a Memory Fill Attack, both of which induce high memory
usage in one VT, triggering OOM (out-of-memory), a likely scenario in Metis and
other model checkers due to (real) memory leak bugs and state explosion. Both
methods have similar effects. The C-based OOM Trigger Program aggressively
allocates memory until system resources are exhausted, leading to contention with
other processes and VTs. The Memory Fill Attack continuously writes to a file
in /tmp (a RAM-backed directory in our configuration) to exhaust memory and
swap space, triggering an OOM event.

As shown in Table 6.2, the other VTs in SV and CoSV responded differently
when a memory leak occurs in one VT. Due to the OOM condition caused by the
memory leak, the average performance (operations per second) of the other VTs
in SV decreased by 52.9% and 44.1% for the OOM Trigger Program and Memory
Fill Attack, respectively. Because of Linux’s memory protection mechanisms,
other VTs are not forcibly terminated, but do suffer from memory starvation and
performance degradation, as there is no isolation among VTs.

Our observations reveal that performance degradation among VTs is highly
sensitive to memory usage: other VTs slow down once a single VT starts increasing
its memory footprint. This highlights the lack of fault isolation in vanilla SV
under resource contention, which in turn causes inefficient resource allocation and
degrades the overall performance of the model-checking process. CoSV, whether
CoSV-Docker or CoSV-Kata, provides resource isolation among VTs on the same
host. As a result, a memory leak in one VT does not impact the resources or
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performance of the other VTs.
The other type of fault is a kernel crash, which occurs when the operating sys-

tem’s core (the kernel) encounters an unrecoverable error, leading to an unexpected
system halt or reboot. This type of fault is common in implementation-level model
checking of system software, such as file systems [207, 206]. Indeed, Metis has
found a number of file-system bugs that lead to kernel crashes, including memory
errors and kernel panics [127]. To evaluate the impact of a kernel crash in one
VT on the other VTs, we injected a faulty kernel module that triggers a kernel
panic—a form of kernel crash—into a single VT and observed its effect on the
remaining VTs under SV and CoSV. Table 6.2 also documents the system behavior
in response to a kernel crash. When using standard SV with Metis, the system halts
immediately after a VT triggers the faulty kernel module. This not only interrupts
all other VTs on the same host, but also prevents logging and trace generation,
making bug reproduction and analysis more difficult.

CoSV-Docker exhibits the same behavior as SV during a kernel crash: all VTs
halt even if the crash did not originate in them. This demonstrates that CoSV with
Docker (process-isolated containers with no kernel isolation) cannot protect VTs
from kernel-level crash faults, as all CoSV-Docker VTs share the same host kernel.
In contrast, in CoSV-Kata, the other VTs are unaffected and continue to function
normally after a kernel crash is triggered by one VT. This is expected because each
VT on the same host operates within its own isolated OS kernel, preventing a crash
in one from affecting the others. CoSV-Kata has proven effective in providing
fault isolation during model checking, particularly in scenarios where kernel-level
errors may be triggered by the checker.

6.4.3 CoSV for the Dining Philosophers Problem
The Dining Philosophers problem is modeled in SPIN as a collection of circularly
arranged concurrent processes, one per philosopher, where each philosopher al-
ternates between an arbitrarily long thinking phase and an eating phase in which
it attempts to acquire two forks (one to its left and one to its right) to eat. This
classic problem illustrates how synchronization can be used to avoid deadlock and
starvation. For this model, SPIN systematically explores all philosopher and fork
states across various action interleavings. The number of philosophers largely
determines the state-space size, as philosopher-fork configurations grow exponen-
tially with the philosopher count. We ran the Dining Philosophers model with
different numbers of philosophers on 18 VTs across three compute nodes, us-
ing CoSV and SV to compare performance. We used CoSV-Docker because the
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Dining Philosophers model operates entirely in user space and does not trigger
kernel-level errors. Of the three nodes, one was an on-premise virtual machine
while the other two were Chameleon Cloud instances, illustrating a hybrid cloud
environment, with each node running six VTs. SPIN’s default maximum depth
limit for depth-first search (DFS) is 10,000, but this value restricts state exploration
for the Dining Philosophers model, especially for a large number of philosophers;
instead we set it to 100,000 for all experiments.

Table 6.3 presents experimental results comparing traditional SV and CoSV-
Docker applied to the Dining Philosophers problem. The first column lists the
number of philosophers and the second shows the total states explored by SV
and CoSV-Docker for each philosopher count. We computed the total number of
states by summing the unique system states from SPIN’s output across all VTs.
Both SV and CoSV-Docker explore the same state space, resulting in identical
total-state counts. The elapsed time represents the duration required to complete
the longest-running VT. A shorter elapsed time indicates better performance. The
exploration rate measures the number of states explored per second, where a higher
rate signifies better performance.

As shown in Table 6.3, the performance of SV and CoSV-Docker is nearly iden-
tical, with SV outperforming CoSV-Docker by 0.2% to 1.4% in state-exploration
rate. This outcome is expected due to the additional overhead from VT container-
ization, but CoSV significantly reduces VT development and deployment effort,
especially in hybrid cloud environments.

6.4.4 CoSV for Metis
The hardware setup for evaluating standard SV, CoSV-Docker, and CoSV-Kata
on Metis used the same settings as in the previous fault isolation experiment in
Section 6.4.2: three Worker Nodes, each running six VTs (18 VTs in total) for both
CoSV and SV, and one additional CoSV-Docker and CoSV-Kata Control Node.
We allocated the 18 VTs evenly across the Worker Nodes, with six VTs on each.
We evaluated all three approaches by running Metis in swarm-verification mode
on ext4 [144], the default file system for many Linux distributions, backed by a
RAM disk to ensure high performance. The file system type does not impact the
evaluation results since Metis checks properties common to all Linux file systems
and explores the same state space regardless of the underlying file system.

Metis explores the state space by performing (mutating) file system operations
(i.e., system calls) using SPIN’s nondeterministic-loop construct. After each
operation, Metis checks whether the abstract state of the file system has been
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Figure 6.3: Total operations performed (averaged over 3 runs) for the Metis case
study: SV vs. CoSV-Docker vs. CoSV-Kata.

visited. The abstract state includes file data, directory structure, and important
metadata, but excludes irrelevant fields such as timestamps [127]. Based on this
state representation, Metis avoids revisiting already-explored states and instead
tries to explore new states in the state space. Our primary performance metrics for
comparing SV, CoSV-Docker, and CoSV-Kata are the total number of file-system
operations executed and the total number of unique states explored across all VTs.
Certain operations result in duplicate abstract states: for example, attempting to
create an existing file does not generate a new state. Thus, the number of unique
abstract states is always less than or equal to the total number of operations. These
two metrics are, however, closely related: a higher number of operations generally
leads to a higher number of unique abstract states.

We conducted three runs for each of the three approaches to reduce variance
from individual executions, ensuring that all experiments used the same configu-
rations, including the random seed. For each approach, we report the average total
number of operations executed and the number of unique abstract states explored
across all VTs over the three runs, measured over a 30-hour period. Figure 6.3
illustrates the trend in the total number of file system operations executed. The
X-axis represents elapsed time (in hours), and the Y-axis shows the total num-
ber of operations (in millions). CoSV-Kata consistently lagged behind both SV
and CoSV-Docker, with the divergence becoming noticeable around the 15-hour
mark. CoSV-Docker initially maintained an operation rate similar to SV but grad-
ually began to surpass it starting around hour 10. By the end of the 30-hour
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period, CoSV-Docker had issued a total of 472.9 million operations, compared to
406.4 million for SV and 100.9 million for CoSV-Kata, amounting to 16.4% more
operations than SV and 368.8% more than CoSV-Kata.

We observed similar trends in the number of unique abstract states; in fact,
a plot of the unique states is visually identical to Figure 6.3 except for scale,
and is thus omitted here due to space constraints. As before, with this metric,
CoSV-Docker began to outpace SV from the 10-hour mark onward. By the end
of the 30 hours, CoSV-Docker had explored 92.9 million unique states, while SV
reached 80.9 million and CoSV-Kata only 21.6 million, reflecting 14.8% higher
state coverage than SV and over 330.1% more than CoSV-Kata.

From our performance experiments, it is evident that CoSV-Kata consistently
trails behind SV and CoSV-Docker in terms of the total numbers of file system
operations and unique abstract states explored. This performance gap primarily
stems from the stronger isolation guarantees provided by CoSV-Kata, which incurs
higher I/O overheads due to its virtualization of hardware. To quantify this impact,
we computed the average file-system operations rate across all three experiments
and all 18 VTs over a 30-hour period. CoSV-Kata achieved an average rate of
118 operations/s, approximately 81.4% lower than that of SV (636 operations/s).
Despite this lower throughput, the standard deviations were relatively close, 9
operations/s for CoSV-Kata (7.62% of its average rate) versus 15 operations/s
for SV (2.35% of its average rate), indicating consistent performance albeit at a
reduced rate for CoSV-Kata.

In contrast, CoSV-Docker reached an average rate of 508 operations/s—about
20.1% lower than SV—yet exhibited higher variability (a standard deviation of 43
operations/s, i.e., 8.46% of its average rate) and a maximum observed rate of 677
operations/s, surpassing both SV (664 operations/s) and CoSV-Kata (149 opera-
tions/s). This variability, combined with the nondeterministic nature of SPIN’s
depth-first state space exploration, explains why CoSV-Docker outperformed SV
in two out of three experiments, ultimately leading in the aggregate results for
both total operations and unique states explored. We conclude that for workloads
like Metis, which involve continuous access to physical devices (such as a RAM
disk) on the host OS, CoSV-Docker can match or even exceed SV’s performance
on average, while still offering enhanced container-level isolation.

Importantly, CoSV-Kata represents a meaningful point on the performance-
isolation spectrum. While it may not deliver the same raw throughput as SV or
CoSV-Docker for I/O-intensive workloads, it excels in providing robust isolation
through hardware-assisted virtualization. This makes CoSV-Kata a compelling
choice for security-critical or multi-tenant environments, particularly in low-level
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system verification models where strong isolation is essential. These results under-
score the flexibility of the CoSV framework in accommodating diverse deployment
goals, whether maximizing performance, strengthening isolation, or achieving a
balanced trade-off between the two.

6.5 Chapter Conclusion
We have presented Containerized Swarm Verification (CoSV), an extension and
modernization of SV in which verification tasks (VTs) are executed in isolated con-
tainers managed by an orchestrator. CoSV addresses various limitations of SV by
improving deployment, scalability, fault isolation, and both resource and lifecycle
management. We developed two variants of CoSV, CoSV-Docker and CoSV-Kata,
leveraging different container technologies to offer varying levels of isolation for
diverse model-checking applications. Our experimental results demonstrate that:
(i) CoSV facilitates the deployment of VTs across multi-core servers and hybrid
cloud environments, (ii) CoSV achieves performance comparable to standard SV
while incurring only limited overhead, and, importantly, (iii) CoSV provides fault
isolation among VTs, preventing faults at both the user and kernel levels from
propagating throughout the swarm. We plan to open-source all CoSV artifacts,
including CoSV-Docker and CoSV-Kata, with the goal of advancing scalable and
parallel model checking in both academic and industrial settings.
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Deployment
Stage

SV Step
SV

Time
(min)

CoSV Step
CoSV
Time
(min)

Cluster
Setup

Set up password-
less ssh between
all nodes

20 Build Kubernetes
cluster and join
worker nodes to the
control node

15

Dependency
Setup

Install dependen-
cies on every ma-
chine running VTs

60 One-time effort to
build container im-
age

20

VT Deploy-
ment

Run VTs directly
on nodes

10 Launch pods using
the pre-built image

10

Adding VTs
(repetitive)

Reconfigure and
manually edit
Swarm script

15 Create pods from
existing container
images

3

Adding
Nodes
(repetitive)

Set up dependen-
cies and ssh con-
nection for every
new node

25 Join new nodes to
cluster without the
need to set up depen-
dencies

5

Table 6.1: Comparison of SV and CoSV deployment steps with estimated human
deployment times. Tasks such as adding nodes and VTs are repetitive, with time
proportional to the number of components. For example, adding nodes takes
approximately 25 × 𝑁 minutes, and adding VTs takes 15 ×𝑉 minutes, where 𝑁 is
the number of nodes and 𝑉 is the number of VTs. Note: SSH setup is included in
both the initial cluster setup and the node addition stage, and is required for each
node.
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Fault Type Fault
Injection SV CoSV-Docker CoSV-Kata

Memory Leak

Out-Of-
Memory
Trigger
Program

Performance
degraded by

52.9%

No
performance

impact

No
performance

impact

Memory Fill
Attack

Performance
degraded by

44.1%

No
performance

impact

No
performance

impact

Kernel
Crash

Kernel-
Crashing
Module

Stopped
immediately

Stopped
immediately

Operated
normally

Table 6.2: Behavioral comparison of other VTs after injecting a fault into one
VT under SV, CoSV-Docker, and CoSV-Kata. Bold entries indicate fault-isolated
results.

No. of
Philos.

Total
States

SV CoSV-Docker
Elapsed

Time
(secs)

Exploration
Rate

(states/sec)

Elapsed
Time
(secs)

Exploration
Rate

(states/sec)

10 521,156,491 279 1,867,944 283 1,841,542
20 1,554,682,594 1,570 990,244 1,573 988,355
30 1,651,535,265 2,652 622,751 2,657 621,579

Table 6.3: Performance comparison of SV and CoSV for varying nos. of philoso-
phers.
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Conclusions

Our thesis is that ensuring file system reliability through testing requires a multi-
faceted approach: effective coverage metrics to assess and enhance existing tests,
a new model checking framework for comprehensive and versatile testing, and
scalable techniques for parallel testing. As new file systems are developed and
bugs continue to emerge, testing must be an ongoing effort that evolves to accom-
modate new systems and features. File system testing faces three key problems
that require sustained effort and effective solutions: defining measurable cover-
age metrics, enabling thorough model checking with minimal manual effort, and
developing scalable approaches for deploying tests across computing resources.

To address the problem of coverage metrics, we have defined input and output
coverage and implemented IOCov framework to compute them. We demonstrate
how these metrics can identify untested parts of file system testing tools and provide
insights for improvement. We further introduce CM-IOCov, which enhances input
coverage for existing crash consistency testing and leads to improved bug detection.

To address the problem of file system model checking, we developed Metis,
which combines implementation-level model checking with differential testing.
Metis generates diverse inputs to explore a wide range of file system states and
compares their behaviors against a reference file system, RefFS. We demonstrate
the performance of Metis and RefFS and how they together can detect bugs across
multiple file systems. Metis uses Swarm verification to explore the file system’s
large state space in parallel, achieving broader coverage within a limited time.

To further improve model checking scalability, we created CoSV to simplify
deployment and provide fault isolation in Swarm verification. CoSV containerizes
verification tasks and manages them with an orchestrator, allowing each task to be
configured once and easily scaled out across multiple machines. CoSV isolates
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verification tasks at different levels: resource level isolation and kernel level
isolation, suited for user space and kernel space model checking, respectively.

In sum, through three dimensions of research advancement—coverage, frame-
work, and scalability—we improve the effectiveness and practicality of file system
testing and model checking, enabling the detection of more bugs and ultimately
enhancing file system and overall system reliability.

7.1 Future Work
This section outlines future work by providing an overview of open research
problems that can be derived from this thesis. These future directions aim to
enhance the capabilities of model checking and testing from multiple perspectives,
including universality, usability, effectiveness, and scalability, to facilitate bug
detection and further improve the reliability of file systems and broader systems.

7.1.1 File System Model Checking and Bug Detection
Model checking for distributed file systems (DFSs). The techniques in Metis
can also be applied to distributed and network file systems. To demonstrate this, we
have extended Metis to check both kernel NFS and NFS-Ganesha for NFS protocol
versions 3 and 4 [173]. In our setup, the NFS client and server are configured on
the same machine. We issue system calls and compute abstract states for the NFS
client, ensuring that the client properly communicates with the server and allowing
us to detect any bugs related to network connections.

However, this approach is insufficient for effectively finding bugs in distributed
file systems (DFSs), as DFSs typically involve multiple nodes across different
servers [165, 193, 148]. Currently, Metis and SPIN are not designed to compute
abstract states (from clients) and concrete states (from servers) on separate ma-
chines. Therefore, network techniques need to be integrated to connect abstract
and concrete states across different servers.

Moreover, fault injection techniques, such as network partitioning, node crashes,
and device failures, are crucial for finding bugs in DFSs [74, 134], as some bugs
only manifest during failure scenarios. Therefore, incorporating fault injection
into the model checking of DFSs can be beneficial. Additionally, introducing
faults into the backend local file systems of DFSs is worth exploring, with RefFS
being a strong candidate for this role.
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Model checking crash consistency and concurrency in file systems. A promis-
ing direction for extending Metis is to enhance its ability to check file systems for
more crash-consistency and concurrency bugs. For detecting crash-consistency
bugs, in addition to the input and state exploration used in Metis, it is necessary to
simulate and analyze the effects of crashes (e.g., power failures, system shutdowns)
on the file system’s state and data integrity [34, 176]. On top of that, injecting
simulated crashes at the appropriate points is essential to ensure that bugs can
manifest (e.g., after the fsync operation), and the crash state must be considered
as part of the overall state description to explore as many unique crash states
as possible [151, 115]. For detecting concurrency bugs, file system operations
should be executed concurrently using multiple threads. Additionally, checking
file system concurrency requires incorporating thread interleaving states [66, 201]
into the state representation and thoroughly exploring the states that could trigger
concurrency bugs, such as race conditions, deadlocks, and other problems. The
combination of concurrent syscalls and thread interleaving states significantly ex-
pands the state space, which requires more intelligent approaches to efficiently
explore this vast space or prioritize the exploration of critical states.

Root cause analysis and reproduction for file system bugs. Once a bug is
found, it is equally important to reproduce it, identify the root cause, and fix it
accordingly. However, based on our experience, there are certain types of bugs that
can be detected due to their incorrect behavior or consequences but are difficult
to reproduce. We refer to these as nondeterministic bugs. These nondeterministic
bugs cannot be reliably reproduced using specific file system operations, states,
or configurations, and we typically need to re-run the same syscalls multiple
times to trigger the bug occasionally. Future work could focus on studying the
characteristics of file system nondeterministic bugs and developing a method to
consistently reproduce them. Along with bug reproduction, root-cause analysis
plays a key role in resolving file system bugs [170]. Further exploration of root-
cause analysis in conjunction with model checking is a worthwhile avenue of
research.

7.1.2 Model Checking Applications and Enhancements
Model checking beyond file systems. Model checking has been applied to ver-
ify numerous types of software, and its potential is not limited to file systems.
Our approach of integrating implementation-level model checking with differen-
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tial testing shows potential for application to other software systems as well, as
long as the systems under verification meet the following criteria: (1) their be-
haviors can be compared across different implementations or versions; (2) their
internal states can be represented and explored by feeding inputs; and (3) their
correctness can be observed through those states. These software systems include
databases [97], compilers [120], and network protocols implementations (e.g.,
TLS libraries [137]). Moreover, this model checking approach can also be applied
to verify algorithm implementations, including concurrency and synchronization
algorithms [45]. It can also help detect and prevent security issues such as network
intrusions [37, 36] and backdoor attacks [136, 135], thereby improving the overall
reliability and security of computing systems.

We hope our approach opens the door to broader adoption of model checking
for previously unexplored tasks, enabling the discovery of bugs and vulnerabilities
across a wider range of applications, protocols, and both software and hardware
platforms.

Usability and scalability improvements in model checking. Applying model
checking requires constructing a model representation and capturing state infor-
mation, which can be difficult to obtain and thus limits its usability. A promising
future direction is to automatically extract model and state representations from
system code [88] or auxiliary sources such as documentation and logs, potentially
with the help of large language models (LLMs) [75]. Our experience with file
system abstract state indicates that retaining only essential properties and omitting
potentially noisy ones is key to reducing the state space and improving bug detec-
tion accuracy [182, 127]. Therefore, automatically identifying essential properties
and critical states worth exploring is a valuable research direction for improving
the usability of model checking. Additionally, the large size of state representa-
tions and the state explosion problem introduce significant overhead, potentially
leading to memory and storage issues, slower state exploration, and missed crit-
ical property checks [182, 127, 123, 124]. Future research on data compression
algorithms [142, 141, 143] to reduce state size, and optimization techniques such
as advanced partial order reduction [55] to shrink the state space, represents a
promising direction for addressing these challenges.

Enhancing the scalability of model checking is an ongoing effort that involves
not only improving existing techniques such as Swarm verification, but also design-
ing new scalable approaches that address its limitations. For example, coordinated
verification tasks can reduce redundant state exploration through inter-task com-
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munication. Furthermore, leveraging advanced hardware algorithms (e.g., CPU
scheduling [215, 216], NUMA-aware optimizations [49], and network optimiza-
tions [35]) and platforms (e.g., GPUs [42] and FPGAs [38, 159]) can further
increase parallelism.
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