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Abstract
E!ective "le system testing relies on coverage to detect bugs
and enhance reliability. We analyzed real "le system bugs
and found a weak correlation between code coverage, the
most commonly used metric, and test e!ectiveness; many
bugs were in covered code but remained undetected. Our
study also showed that covering diverse "le system inputs
and outputs—system call arguments and return values—can
be key to detecting the majority of observed bugs.
We present input coverage and output coverage as new

metrics for evaluating and improving "le system testing, and
have developed the IOCov framework for computing these
metrics. Unlike existing system call tracers, IOCov computes
coverage using only the calls relevant to testing, excluding
unrelated ones that should not be counted. To demonstrate
IOCov’s utility, we used it to extend the existing testing tool
CrashMonkey into CM-IOCov, which achieves broader input
coverage and more thorough detection of crash consistency
bugs. Our experimental evaluation shows that IOCov com-
putes input and output coverage accurately with minimal
overhead. IOCov is applicable to di!erent types of "le system
testing and can provide insights for improvement as well as
identify untested cases based on coverage results. Moreover,
the bugs found exclusively by CM-IOCov are 2.1 and 12.9
times more than those found exclusively by CrashMonkey
on the 6.12 and 5.6 kernels, respectively, demonstrating the
e!ectiveness of the IOCov-based coverage approach.
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1 Introduction
File systems serve as the backbone of modern storage [19, 20,
48], supporting numerous applications such as databases [13],
cloud platforms [52], and big data analytics [49, 50, 90]. Given
their critical role, "le system bugs pose signi"cant risks to
overall system reliability [29, 56], including data loss, data
corruption, and system crashes. Consequently, various test-
ing techniques have been developed to detect "le system
bugs and improve system reliability [44–46, 58, 83]. File sys-
tem testing, however, remains a challenge due to the com-
plexity of "le systems and their stringent requirements, such
as data integrity, fault tolerance, and POSIX compliance [66].
Despite the availability of a number of testing tools, such
bugs continue to emerge on a regular basis [38], indicating
that existing testing methods are inadequate and there is
room for improvement.
Various coverage metrics have been proposed based on

speci"c testing approaches [47]. For example, regression test-
ing [57, 68] seeks to achieve functionality coverage, while
model checking targets state coverage [46, 73]. Code coverage
is the most widely used metric in "le system testing [38].
However, the e!ectiveness of code coverage for "le systems
remains insu#ciently studied. It is still unclear whether in-
creased code coverage leads to identifying more bugs. Addi-
tionally, even when developers know which code segments
are not covered, modifying tests to enhance coverage is a
challenge due to the complexity of "le system code [4, 23].

Most existing analyses of code coverage e!ectiveness [28,
33] focus on small user applications rather than large, low-
level systems like "le systems. Furthermore, no coverage
metrics have been speci"cally designed for "le system testing
to help developers improve testing and detect more bugs.

https://doi.org/10.1145/3757347.3759138
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Our Contributions. This paper addresses the following
unique challenges: (1) conduct a practical bug study to eval-
uate the e!ectiveness of code coverage in "le system testing;
(2) design coverage metrics tailored for "le system testing
that are both e!ective and developer-friendly; and (3) lever-
age these metrics to improve testing and uncover more crash
consistency bugs.

We "rst conducted an analysis of recent "le system bugs
that led to the discovery of a weak correlation between code
coverage and test e!ectiveness. In terms of triggering "le
system bugs, we then identi"ed the importance of covering
both (a) diverse test inputs, including system calls (syscalls)
and their arguments, and (b) test outputs, such as syscall re-
turns and errors. The majority of these bugs require speci"c
inputs to be triggered and typically occur along an exit path,
which a!ects the output. Hence, we de"ne input and output
coverage as criteria for evaluating and improving "le system
testing tools. We partition the input and output spaces ac-
cording to syscall argument and return types, and measure
input and output coverage by analyzing the frequency of
segments exercised by testing tools.
Computing input and output coverage involves tracing

tested syscalls while excluding unrelated noise that is not
part of the test workload. Because existing syscall tracers [1]
cannot solely focus on tracing "le system calls, we designed
and implemented IOCov to compute input and output cov-
erage for testing tools. We applied IOCov to various "le
system testing tools, including black-box testing, regression
testing, fuzzing, and model checking, uncovering untested
input/output partitions in all of them and gaining insights
into how they can be improved.
To demonstrate the utility of IOCov, we enhanced the

crash consistency testing tool CrashMonkey [58] by 1) sig-
ni"cantly improving its input coverage while keeping the
rest of the system unchanged, and 2) having it run IOCov.
The improvement in input coverage comes from a driver
that provides more diverse syscall arguments (i.e., inputs)
than the original CrashMonkey. We refer to this new version
of CrashMonkey as CM-IOCov. We compared CM-IOCov
to the original CrashMonkey in terms of the ability to de-
tect crash-consistency bugs in the Btrfs "le system [67], and
found that CM-IOCov identi"ed 74.1% more test failures (po-
tential bugs) than the unmodi"ed CrashMonkey on the new
Linux 6.12 kernel.

In summary, this paper makes the following contributions:

1. By using xfstests to analyze real bugs, we revealed the
limitations of code coverage (it often misses bugs even
in covered code) and highlighted the importance of
covering diverse syscall inputs and outputs.

2. We formalized input and output coverage, allowing us
to evaluate and improve "le system testing by parti-
tioning input and output spaces, thereby addressing
the limitations of code coverage.

3. We designed and implemented IOCov to evaluate the
input and output coverage of "le system testing tools.
We applied IOCov to a number of testing tools, in the
process deriving insights for their improvement.

4. We created CM-IOCov to enhance crash-consistency
testing (i.e., CrashMonkey). CM-IOCov detects more
bugs than CrashMonkey and demonstrates the e!ec-
tiveness of input coverage in real-world bug detection.

To promote reproducibility and future research, we have
open-sourced both IOCov and CM-IOCov at: https://github.
com/sbu-fsl/ IOCov and https://github.com/sbu-fsl/CM-IOCov. The
rest of this paper is organized as follows. Section 2 considers
the e!ectiveness (or lack thereof) of code coverage when
it comes to bug detection, and underscores the role inputs
and outputs can play here. Section 3 de"nes input/output
coverage, and presents the design and implementation of
the IOCov framework. Section 4 focuses on the role CM-
IOCov plays in improving crash consistency testing. Sec-
tion 6 presents our experimental results, Section 7 discusses
related work, and Section 8 o!ers our concluding remarks.

2 File System Bug Study
This section addresses two questions: (1) whether code cover-
age is e!ective for "le system testing, and (2) which aspects
of testing are crucial for detecting bugs. To answer these
questions, we analyzed recent "le system bugs which led us
to devise input and output coverage criteria for "le system
testing. Unlike previous "le system bug studies that focused
on bug patterns and classi"cation [51, 87], our study not
only examined the e!ectiveness (or lack thereof) of code
coverage in "nding bugs, but also identi"ed the key factors
that contribute to bug detection.

2.1 Code Coverage in FS Testing
A common approach to assessing code coverage e!ective-
ness is mutation testing, which involves introducing small
faults and checking whether test suites with increased code
coverage can detect more faults than those with lower cov-
erage [28, 33]. This method, however, is not applicable to
in-kernel "le systems, where even small faults can lead to
serious OS errors, make the "le system unmountable, or
damage basic "le utilities, preventing us from executing any
further tests. As a result, we adopt a di!erent approach to
evaluating the correlation between code coverage and bug
detection by studying known "le system bugs [30, 39]. If
covering the buggy code region leads to bug detection, this
indicates a correlation between code coverage and the test’s
e!ectiveness in exposing the bug [39].
Developers identify and resolve Linux kernel "le system

bugs by submitting patches, which, after review, are merged
into the kernel repository [35]. Therefore, analyzing accepted
patches in the form of Git commits can reveal information
about previously buggy "le system code [74]. We collected

https://github.com/sbu-fsl/IOCov
https://github.com/sbu-fsl/IOCov
https://github.com/sbu-fsl/CM-IOCov
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the 100 most recent Git commits [75] from 2022 for each of
the two popular Linux "le systems, ext4 [55] and Btrfs [67],
amounting to 200 commits in total. Thesewere the latest com-
mits available when we began this project. Some commits
were not bug "xes; instead they introduced new features,
performance optimizations, or maintenance changes [51].

We then applied Lu et al.’s taxonomy [51] to identify bug-
"x commits, "nding 51 ext4 bugs and 19 Btrfs bugs. (The
lower count for Btrfs is due to major code refactoring in
December 2022.) These 70 bugs span all four "le system bug
categories of Lu et al.’s taxonomy: 37 semantic, 3 concur-
rency, 20 memory, and 10 error-code bugs. Next, we ran xf-
stests, a widely used test suite, on ext4 and Btrfs using Linux
kernel v6.0.6, the latest version in which the extracted bugs
remained un"xed. We executed all generic and "le system-
speci"c tests and used Gcov [32] to measure line, function,
and branch coverage of the "le system sources.
For each bug "x, we inspected the Gcov reports to de-

termine if xfstests covered the pertinent code, and then re-
viewed the test logs and commit messages to determine if the
suite detected the bug. Our aim was to assess code coverage
e!ectiveness at di!erent levels (line, function, and branch)
to determine if xfstests could detect bugs in the covered
code. To ensure accuracy, two individuals with "le system
expertise independently cross-validated the results.
The results of our study showed that xfstests failed to

detect any of the 70 bugs even though it covered many code
segments related to these bugs. Speci"cally, xfstests covered
relevant lines of code for 37 of the 70 bugs (53%) but did
not detect those bugs, indicating that line coverage does not
ensure bug detection. Additionally, it covered the functions
of 43 of the 70 bugs (61%) and the branches of 20 of the
70 bugs (29%) without detecting the bugs. Consequently, all
three code-coveragemetrics reveal that merely covering code
does not mean bugs that lie within it will be detected. Worse,
among all of the bugs that we studied, xfstests executed each
buggy line of code an average of over 13.8 million times
per bug, but remained unable to uncover the bug concealed
within those lines. This indicates that repeatedly covering
code may not be useful for bug detection. We conclude that,
at least for "le systems, code coveragemetrics do not strongly
correlate with test e!ectiveness, i.e., the ability to detect bugs.

2.2 Keys for Bug Detection
Given the limited e!ectiveness of code coverage, we further
investigated why covering code does not always reveal bugs,
and identi"ed key factors for detection. To this end, we ana-
lyzed each bug to determine the test cases (including syscalls
and their arguments) needed to "nd it. We observed that
many bugs can only be detected when speci"c syscalls and
particular arguments are used. Executing calls with ine!ec-
tive argument values may cover the code but fail to expose
the bug. We refer to bugs that require speci"c argument
values to trigger them as input bugs. Moreover, we found

Bug fix in fs/ext4/xattr.c, v6.0-rc1

lsetxattr(size, ...)

 sys_lsetxattr(size, ...)
…
  vfs_setxattr(size, ...)
…
   ext4_xattr_set(value_len, ...)
…
    int ext4_xattr_ibody_set(inode, ...) {
-     if (EXT4_I(inode)->i_extra_isize == 0)
+     if (!EXT4_INODE_HAS_XATTR_SPACE(inode))
       return -ENOSPC;

User Space

Kernel Space

Figure 1. An ext4 bug that quali"es as both an input and
output bug. The bugwas "xed by checkingwhether the inode
has room to store additional xattrs in ext4_xattr_ibody_set.

that many bugs occur in the exit or error paths of kernel
functions, potentially a!ecting syscall return values and er-
ror codes [31, 54]; we refer to these as output bugs. Covering
syscall return behavior is crucial for revealing them.
Figure 1 shows an ext4 bug [78], "xed in Linux kernel

version v6.0-rc1, which quali"es as both an input and an
output bug. It is an input bug because it occurred only when
lsetxattr used the maximum legal size argument, causing
the minimum o!set (min_offs) between two block groups to
over$ow. Although its lines, function, and branches are all
covered by xfstests, the test suite failed to detect it. It is also
an output bug because it occurs on a function’s exit path and
a!ects the behavior of an error code (i.e., ENOSPC).

To determine a bug’s classi"cation as an input bug, output
bug, both, or neither, we analyzed each bug in terms of the
inputs required to trigger it and the outputs it can impact. Of
the 70 bugs analyzed, we identi"ed 50 as input bugs (71%), 41
as output bugs (59%), and 57 as either input or output bugs
(81%). The prevalence of input and output bugs (or both)
underscores the necessity of ensuring thorough coverage of
inputs and outputs in "le system testing. There are 13 non-
input/output bugs (19%) that cannot be reliably triggered
solely by inputs, nor do they occur on an exit path. For
example, the bug [88] arises from a race condition; i.e., not
directly from how a syscall is invoked, but rather due to
timing, thread interleaving, and mistaken dirtying of inodes
during eviction.

Additionally, of the 37 bugs missed by xfstests despite cov-
ering their lines of code, 28 (76%) are input or output bugs.
Among them, 24 (65%) are input bugs that require speci"c sys-
call argument values to be triggered. These argument values
often involve corner cases, such as out-of-bound reads [8],
less-tested inputs such as extended attributes [7, 37], and
links [6], and boundary values that trigger over$ow [78, 80]
or are zero-length [81].
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Code-coverage metrics typically do not take into account
the diversity of input cases, with lightly tested inputs often
following the same execution paths as well-tested ones [76].
Consequently, code coverage does not weight repeatedly exe-
cuting the same code path with varying inputs [30]. Similarly,
bugs in various output cases, such as error codes [42, 54],
are not properly evaluated by such metrics.
Thus, we need to consider comprehensive coverage of

input types, including syscalls and their arguments, as well
as outputs such as return values and error codes. Given the
lack of established metrics and tools for measuring input and
output coverage in "le system testing [40], we propose input
and output coverage metrics and present IOCov as a means
for evaluating them. In summary, code coverage alone is
insu#cient for testing, as many bugs rely on speci"c inputs
and outputs that may be missed. Covering syscall inputs and
outputs during testing helps address these limitations.

3 IOCov Metrics and Framework
We present new coverage metrics for "le system testing:
input coverage and output coverage, along with the IOCov
framework for computing these metrics in testing tools. We
begin with the input and output partitioning scheme we use
for de"ning input and output coverage. We then formalize
these coverage metrics and describe the architecture of IO-
Cov, highlighting the "ltering mechanism it uses to ensure
accurate coverage computation.

3.1 Input and Output Coverage
Linux provides over 400 system calls, with many speci"-
cally related to "le systems [5, 76]. Each system call can
take multiple arguments, and both the arguments and the
outputs can assume arbitrary values from large domains.
Consequently, it is infeasible to evaluate whether all possi-
ble inputs and outputs are covered by testing. We observed,
however, that "le system calls exhibit structured input and
output patterns, which can be partitioned into categories
containing semantically similar cases. For example, the open

syscall has a bitwise flags argument, where each $ag repre-
sents a speci"c behavioral option. Enabling a particular $ag
triggers behavior tied to a distinct aspect of the syscall. For
example, setting O_CREAT causes a "le to be created if it does
not already exist. Instead of analyzing all $ag combinations,
which would be exponentially complex, we treat each $ag
independently and check whether it appears in any test in-
put. This reveals how well a testing tool covers the behaviors
encoded by open $ags. This partitioning strategy can also be
applied to other inputs and outputs, but di!erent input and
output types require di!erent methods.
For inputs, we classi"ed syscall arguments into "ve cate-

gories: identi"er, pointer, bitmask, numeric, and categorical.
Identi"ers include "le and directory pathnames, as well as
"le descriptors that specify the object on which the syscall

operates, such as pathname in open and fd in write. Pointer
arguments refer to memory addresses that point to bu!ers or
structures, such as buf in write. Bitmasks are arguments that
can be logically !"-ed, such as open’s flags and chmod’s mode.
Numeric arguments are scalars, often representing quanti-
ties such as the number of bytes in write’s count argument.
Categorical arguments are discrete values chosen from a
small set of options, such as lseek’s whence.
For input coverage, we exclude identi"ers and pointers

because their values correspond to speci"c operands or mem-
ory addresses and do not represent semantically distinct
test cases. We partition numeric arguments using boundary-
value analysis [18, 61, 65, 89], selecting powers of 2 as bound-
aries since they are commonly used in "le systems [36]. Each
partition is de"ned as the range between two adjacent bound-
aries. In the case of categorical arguments, each prede"ned
option corresponds to a unique input partition.
We partition the outputs in a manner similar to categori-

cal and numeric inputs. Most syscall outputs return either
success or an error code. Accordingly, we divide the output
space into success and failure, and further subdivide the fail-
ure cases by speci"c error codes. For syscalls that return a
byte count on success (e.g., write), we again partition outputs
using powers of 2 as boundaries.
Partitioning the input/output space enables us to de"ne

coverage based on semantic groupings, eliminating the need
to examine every possible value. As such, we de"ne input
coverage and output coverage as metrics that describe the
extent to which a testing tool exercises the input and output
partitions of "le system calls. To formalize input coverage,
consider a "le system call 𝐿 that has an argument 𝑀 whose
input space is partitioned into a set I of input classes. For a
testing tool 𝑁 , we de"ne 𝑂in (𝑁) ↑ I as the set of input parti-
tions for 𝑀 that are exercised by 𝑁 . Then, the input coverage
of argument 𝑀 for syscall 𝐿 is de"ned as:

InputCoverage𝐿𝑀 (𝑁) =
|𝑂in (𝑁) |

|I|
.

Similarly, consider a syscall 𝐿 whose observable outputs can
be partitioned into a set O of output classes. For a testing
tool 𝑁 , let 𝑂out (𝑁) ↑ O denote the set of output partitions
observed during test execution. Then, the output coverage
of 𝐿 is de"ned as:

OutputCoverage𝑀 (𝑁) =
|𝑂out (𝑁) |

|O|
.

Input and output coverage o!er insights for improvement
in both completeness, which measures whether all de"ned
input and output partitions are exercised at least once (i.e.,
coverage equals 1), and balance, which measures how evenly
test executions are distributed across those partitions. There-
fore, coverage quanti"es how much of the partition space is
exercised, while completeness ensures all partitions are cov-
ered and balance re$ects how evenly they are tested. Ideally,
a tool should cover as many input and output partitions as
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possible to ensure comprehensive coverage and achieve com-
pleteness. Moreover, given limited resources, it is important
to avoid over-testing certain partitions and under-testing
others to ensure balanced coverage.
The practical use of input and output coverage depends

on the speci"c strategies and objectives of the testing pro-
cess. Some tests tend to prioritize widely used partitions (e.g.,
O_RDONLY for the open $ag) because they are more likely to
trigger common behaviors or bugs observed in real-world us-
age, while others prioritize less-used partitions (e.g., O_LARGE-
FILE) to increase the likelihood of exposing rare or corner-
case bugs. For output coverage, tests can de"ne the expected
output semantics and verify whether the observed results
(e.g., error codes) are correct. Exercising a wide range of
output classes can uncover diverse test behaviors.
As such, the goal of input and output coverage is not to

achieve perfectly balanced 100% coverage, but to help devel-
opers evaluate and improve testing by providing insights that
code coverage alone cannot o!er, such as which tests should
be added and what error scenarios should be exercised.

3.2 IOCov Architecture

LTTng Kernel 
Session

File System 
Testing Tool

Syscall Variant Handler

Input  
Coverage

Output 
Coverage

IOCov Analyzer

Syscall 
Filter

Input/Output 
Partitioner

Syscalls 
traced

Figure 2. IOCov architecture and components.

With input and output coverage de"ned, the next step is
to enable testing tools to compute these metrics accurately
and e#ciently. Doing so involves tracking the syscall inputs
and outputs exercised by the tool. A concern is that although
existing tracers can capture the syscalls exercised by the tool,
not all captured syscalls originate from the test workload
itself. Examples include open and read for loading libraries, or
write for logging. These should not be included in coverage
computation, as they do not exercise the tested "le system.
In particular, these calls are not directly triggered by the
test input and therefore should not be included in input
coverage; likewise, their outputs should not be considered
part of output coverage.

We designed and implemented IOCov to address the lim-
itations of existing tracers and to accurately compute in-
put and output coverage. Figure 2 illustrates IOCov’s ar-
chitecture, its core components, and the work$ow for com-
puting coverage with a "le system testing tool. We lever-
age LTTng [17] to trace the syscalls. Compared to other
tracers such as strace [72] (which incurs high overhead),
ftrace [43] (which may require manual processing for inter-
pretation), and bpftrace [10] (which requires custom scripts
and may face scalability challenges under high-frequency,

Table 1. Base syscalls and their variants supported by IOCov,
along with the arguments used for input coverage. Each
argument is annotatedwith its type: B (bitmask), N (numeric),
and C (categorical).

Base
Syscall

Variants Supported
Arguments

open openat, creat, openat2 flags (B), mode (B)

read pread64 count (N), offset (N)

write pwrite64 count (N), offset (N)

lseek llseek offset (N), whence (C)

truncate ftruncate length (N)

mkdir mkdirat mode (B)

chmod fchmod, fchmodat mode (B)

setxattr lsetxattr, fsetxattr size (N), flags (B)

getxattr lgetxattr, fgetxattr size (N)

multi-threaded workloads), LTTng o!ers low-overhead, out-
of-band tracing with full syscall input/output capture and
good scalability [1]. IOCov executes a given "le system test-
ing tool within an LTTng Kernel Session, allowing all syscalls
invoked by the tool, including their inputs and outputs, to
be recorded.
The IOCov Analyzer then processes the syscalls traced

by LTTng. It has three components: the Syscall Filter, the
Input/Output Partitioner, and the Syscall Variant Handler. The
Syscall Filter, described in detail in Section 3.3, analyzes raw
traces and removes noisy or unrelated syscalls. Once the
syscalls relevant for testing are identi"ed, the Input/Output
Partitioner collects their inputs from syscall_entry events
and outputs from syscall_exit events, determines which
partition each input and output value belongs to based on the
method described in Section 3.1, and counts the occurrences
of each input and output partition.
We observed that the testing tool can trigger "le system

calls that perform equivalent functions. For example, the
openat syscall serves a similar purpose as open but allows
one to specify a directory "le descriptor for more $exible
path resolution. We refer to the original or earliest form of a
syscall, such as open, as a base syscall, and to the extended or
modi"ed versions derived from it as syscall variants. Since
these variants sharemuch of the same kernel implementation
as their corresponding base syscalls [63, 76], the Syscall Vari-
ant Handler groups the base syscall and its variants together
and merges their input and output spaces when computing
coverage in the IOCov analyzer.
Table 1 lists the supported syscalls, along with their ar-

guments and categories as de"ned in Section 3.1. IOCov
supports 23 syscalls (nine base and 14 variants) for cover-
age computation, and also collects additional syscalls (e.g.,
close, chdir) to help identify "le descriptors and pathnames
associated with the test workload. After processing by the
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IOCov Analyzer, a report of the testing tool’s input and out-
put coverage is produced using a nested JSON key-value
format, capturing the occurrence count of each input and
output partition for every syscall supported by IOCov.

3.3 IOCov Filtering Mechanism
A key procedure in IOCov that di!erentiates it from other
syscall tracers is its "ltering mechanism, which retains only
calls relevant to the test workload. IOCov exploits the fact
that most testing tools use a dedicated mount point to exer-
cise the tested "le system. This approach provides an isolated
and controlled testing environment while preventing any
impact on existing "le systems. For example, xfstests uses
/mnt/test as the default mount point for executing tests, and
CrashMonkey uses /mnt/snapshot. File system calls specify
the target object using either "le descriptors or pathnames.
By checking whether the accessed object resides under the
test mount point, we can determine whether a syscall be-
longs to the testing workload or is unrelated noise.
Algorithm 1 illustrates how IOCov "lters syscalls. The

LTTng trace "le is generated during execution to log
each syscall_entry event (recording inputs) and each
syscall_exit event (recording outputs), along with addi-
tional information such as a strictly increasing timestamp.
IOCov parses each line to obtain the type (entry or exit),
syscall name, and arguments (including "le descriptors and
path names) or return values. Using this information, we
determine whether each line is related to testing by examin-
ing its "le descriptor (fd) or pathname (path). The IsTesting
function in Algorithm 1 constructs the full pathname from
the path and the current working directory (cwd), which is
necessary for handling syscalls such as openat that may in-
terpret paths relative to a directory fd (e.g., AT_FDCWD). The
function then checks whether the resulting path belongs
to the test mount point. If the syscall is open or one of its
variants, and both IsTesting returns true and the syscall
completed successfully, the returned "le descriptor is added
to fd_set to represent "le descriptors associated with testing.
Additionally, we handle close and close_range syscalls

to remove expired testing-related "le descriptors. Upon a
successful close, the closed "le descriptor is removed from
fd_set. We also process chdir and fchdir syscalls, updat-
ing cwd to re$ect changes to the current working direc-
tory. In this way, when a "le system call is detected (i.e.,
IsFSCall returns true), and its "le descriptor is in fd_set or
its pathname passes the testing check, the syscall is consid-
ered testing-related, and its inputs and outputs are added to
filtered_syscalls for coverage computation.

4 CM-IOCov: IOCov for CrashMonkey
This section demonstrates how IOCov can be used to improve
CrashMonkey, a "le system testing tool for crash consistency.

Algorithm 1: Syscall "ltering in IOCov to retain
only those related to testing. opened_fd tracks de-
scriptors opened for testing, and closed_fd tracks
those pending closure; once a close syscall succeeds,
the descriptor is no longer considered valid or open.
Input: trace_"le: trace output of the testing tool
Output: "ltered_syscalls: test-related traces

1 Initialize "ltered_syscalls ↓ [ ] ;
2 Initialize fd_set ↓ ↔ ; // A set of file

descriptors (fd) used for testing

3 Initialize cwd ↓ current working directory
4 foreach line in trace_"le do
5 Parse line to get event_type, syscall, fd/path;
6 if fd ↗ fd_set or I!T"!#$%&(cwd, path) then
7 if event_type = syscall_entry then
8 if I!O’"%(syscall) then
9 Add fd to opened_fd;

10 else if I!C()!"(syscall) then
11 Add fd to closed_fd;
12 else if I!FSC*(((syscall) then
13 Add syscall inputs to "ltered_syscalls;

14 else if event_type = syscall_exit then
15 if I!O’"%(syscall) and return ω ↘1 then
16 Add opened_fd to fd_set;
17 else if I!C()!"(syscall) and return = 0

then
18 Remove closed_fd from fd_set;
19 else if I!C+,$-(syscall) and return = 0

then
20 Update cwd;
21 else if I!FSC*(((syscall) then
22 Add syscall outputs to "ltered_syscalls;

We created CM-IOCov as an improved version of CrashMon-
key with greater input coverage, and present its design and
architecture in this section.

4.1 CM-IOCov Architecture
CrashMonkey [58, 59], which tests "le system correctness
under crash scenarios, does not actually crash the "le system.
Instead, it simulates crashes by recording I/O and replaying
it up to a persistence point (e.g., after an fsync() call). It
generates test workloads as short sequences of syscalls, each
followed by an explicit persistence operation such as an
fsync or a global sync. It then compares the "le system state
after a simulated crash to a corresponding oracle, which
represents the expected state after a safe unmount, and treats
any mismatch as a crash consistency bug.
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Table 2. Comparison of syscall inputs generated for testing in CrashMonkey and CM-IOCov, showing how CM-IOCov
improves input coverage over CrashMonkey.

Syscall File System Operation Input CrashMonkey CM-IOCov
open() Create writable "le mode 0777: full permissions Multiple read/write modes

$ags O_CREAT | O_RDWR: read-write Various $ags and combinations
mkdir() Create writable directory mode 0777: full permissions Multiple directory modes

write()/
fallocate()

Append to "le end
size
(in bytes)

Write: "xed size 32768 Aligned writes with varied sizes
Overwrite from "le start Write: o!set 0, size 5000 Unaligned writes with varied

sizes
Overwrite near "le end Write: size 5000 near "le end Unaligned writes with varied

sizes near "le end
Overwrite and extend "le O!set before EOF, size 5000,

extends by 3000
Multiple sizes and o!sets to
overlap and extend

truncate() Block-aligned truncate length
(in bytes) Truncate to length 0 Multiple aligned sizes

Unaligned truncate Truncate to length 2500 Multiple unaligned sizes

Crash Generator

Oracle Generator

Crash State

Oracle

Property 
Checker

Bug Report 
and Output

Unchanged CrashMonkey Components 

CM-IOCov Input Driver 

Test Workloads with Improved Input Coverage

Original CrashMonkey Workload Generator

Target File 
System

Syscall sequences

Arguments

Arguments

Figure 3. CM-IOCov architecture: improves CrashMonkey’s
test workload generation by introducing an input driver that
provides syscall inputs with higher input coverage.

CM-IOCov improves CrashMonkey’s test workload gen-
eration while reusing its crash simulation, oracle generation,
and state comparison components. By only improving input
coverage, we isolate its impact from other potential improve-
ments to clearly observe its e!ect. Figure 3 illustrates the
CM-IOCov architecture. The original CrashMonkey work-
load generator "rst builds syscall sequences and then "lls in
the arguments to satisfy operation dependencies (e.g., cre-
ating a "le before accessing it). CM-IOCov uses the same
syscall sequences and dependency resolution strategy for
"le and directory objects as CrashMonkey, but employs the
CM-IOCov Input Driver to generate argument values that
o!er better input coverage for syscalls supported by IOCov.
CrashMonkey’s argument selection for syscalls relies

solely on manually speci"ed "xed values. For example, when
creating a "le using open(), it always uses mode 0777, which
grants read, write, and execute permissions to everyone,
without considering the diversity of permission settings
that may a!ect "le system behavior. Thus, by using the

CM-IOCov Input Driver instead of CrashMonkey’s "xed
argument-selection strategy, CM-IOCov generates test work-
loads with better input coverage, while reusing the other
CrashMonkey components to simulate crashes, verify post-
crash states against the oracle, and detect bugs.

4.2 CM-IOCov Input Driver
CM-IOCov’s key component is its Input Driver, designed to
generate more diverse syscall arguments than CrashMonkey,
thereby achieving improved input coverage and "nding bugs
that CrashMonkey misses. Table 2 provides a list of syscalls
and their inputs where CM-IOCov improves upon CrashMon-
key. In particular, for open(), CrashMonkey uses "xed values
for the mode and flags arguments, 0777 and O_CREAT | O_RDWR

respectively, which always creates a "le with full permis-
sions and read-write access for all users, but fails to explore
other "le creation scenarios. CM-IOCov creates "les using
a broader combination of modes and $ags than CrashMon-
key, including various read, write, and execute permission
settings for non-owner users and groups, as well as addi-
tional "le creation $ags such as O_TRUNC, which truncates a
"le to zero length if it already exists, and O_APPEND, which
ensures that all writes are appended to the end of the "le.
For numeric arguments such as the size in write/fallocate
and the length in truncate, CrashMonkey uses a "xed value
across all cases. For example, when appending to a "le, it
always writes 32,768 bytes, regardless of the "le system type
or underlying disk size.
By contrast, CM-IOCov incorporates multiple input gen-

erators tailored to each scenario involving byte arguments,
including power-of-two values for aligned cases and 2𝑁 ± 1
values to capture unaligned cases and edge conditions near
alignment boundaries. This enables exploration of a wider
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range of numeric byte values, achieving better input cov-
erage than CrashMonkey in cases such as appending to a
"le, overwriting, or truncating a "le. For test cases involving
"le extension via write, CM-IOCov uses two input gener-
ators: one for the o!set and one for the write size. This
ensures coverage of both overlapping writes and writes that
extend the "le. CM-IOCov also takes the "le system’s disk
size into account when generating byte arguments so that
"le writes stay within the available space, thereby avoiding
ENOSPC failures. CM-IOCov also supports additional "le sys-
tem operations present in CrashMonkey that are not shown
in Table 2, such as direct-IO write and mmap write, for which
the input driver can improve syscall inputs.
For each argument supported by IOCov, CM-IOCov con-

structs a value pool containing relevant inputs, such as those
produced by the byte argument generators mentioned above,
to achieve high input coverage for various test scenarios.
Once the syscall sequence is determined, CM-IOCov ran-
domly selects a value from the corresponding argument pool
for each argument. The development e!ort for writing new
tests in CM-IOCov is minimal, as users can either use the
CM-IOCov driver directly or create their own tests based
on input and output partitions. Compared to CrashMonkey,
CM-IOCov generates the same syscall sequences but varies
argument values to achieve broader coverage.

Unlike semantic "le system testing, which also examines
error cases [66], crash consistency testing requires syscalls
to execute successfully in order to verify crash-time proper-
ties [15], such as whether a successfully created "le persists
after a crash. Therefore, CM-IOCov excludes inputs that
could cause "le system operations to fail, such as invalid
$ags that prevent "le creation or write sizes that exceed the
available disk space. Due to the vast number of syscall se-
quences [58], randomized input selection from value pools
enables coverage of diverse input spaces and improves over-
all input coverage.

5 Implementation
IOCov is implemented in three main components: (1) a parser
that analyzes and extracts coverage information from LTTng
trace logs; (2) a coverage visualizer that plots and displays
input and output coverage to aid developer analysis; and (3) a
set of scripts that run various "le system testing tools within
an LTTng session and perform component integration. The
implementation of IOCov comprises 3,045 lines of code, of
which 2,990 are written in Python and 55 in Bash. The parser
for log processing and syscall "ltering contains 1,029 lines
of Python code. The visualizer, implemented in 410 lines
of Python code, displays input and output coverage to help
developers identify uncovered areas and improve testing
accordingly. The remaining lines of code are supporting
scripts and essential utilities used to automate and integrate
the various components.

Implementing CM-IOCov required us to modify the origi-
nal CrashMonkey and add an input driver. We modi"ed 381
lines of CrashMonkey, including its workload generation
unit and shell scripts, and implemented the CM-IOCov input
driver in 211 lines of Python code. The CM-IOCov input dri-
ver automates input generation for multiple syscalls and can
potentially support diverse inputs for other analysis tools as
well. Additionally, the original CrashMonkey includes two
kernel modules: one for I/O recording and another for taking
block device snapshots. It supports Linux kernel versions
only up to 5.6.
To evaluate CM-IOCov on Linux kernel version 6.12, the

latest version at the start of our kernel migration, and un-
cover realistic bugs, we updated the system to be compatible
with that kernel. The modi"cations consist of 573 insertions
and 944 deletions in C source "les, headers, and the Make-
"le related to the CrashMonkey kernel modules. To support
Linux kernel 6.12, we updated kernel APIs and macros for
compatibility, improved block I/O dispatch, simpli"ed disk
and queue handling, and removed obsolete code.

Implementation Challenges. While the input and out-
put coverage metrics provided by IOCov help developers
evaluate and enhance testing, and CM-IOCov improves ex-
isting crash consistency testing, several challenges still re-
main. First, the coverage metrics depend on howwe partition
the input and output space, which may leave certain cases
uncovered. For example, we compute coverage of the open

syscall by considering all of its $ags individually. We do not,
however, account for combinations of $ags, which is also
important for generating meaningful test cases. Computing
coverage over all $ag combinations is infeasible, as the $ag
"eld in open can represent up to 223 possible values (many
illegal) due to bitwise combinations. A second challenge
is that the capability of certain "le system testing tools to
improve input and output coverage is constrained. For ex-
ample, CrashMonkey mandates that syscalls succeed, which
prevents it from exploring outputs in the form of error codes.
Therefore, the e!ectiveness of testing improvements de-

pends on the nature of the testing goal. Output coverage is
important for semantic testing [56, 66], but it is not essen-
tial for crash consistency testing [41, 58, 69]. Additionally,
di!erent testing tools may focus on speci"c input or out-
put partitions, such as writing many small "les or a single
large "le [57]; thus, aligning input/output coverage with test
goals still requires domain knowledge and manual e!ort.
Nevertheless, input and output coverage, along with IOCov,
provide an e!ective methodology for developers to use to
evaluate and enhance testing more easily than traditional
code coverage. We demonstrated the utility of our approach
by using it to develop CM-IOCov and thereby improving
existing crash consistency testing.
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Figure 4. Performance overhead of IOCov on xfstests and
Metis, measured using completion time and operation rate,
respectively.

6 Evaluation
In this section, we address the following questions: (1)What
are the overhead and performance impacts of applying IOCov
to "le system testing tools (§6.1)? (2) How accurately does
IOCov compute input and output coverage in "le system
testing (§6.2)? (3) How can IOCov be utilized to assess the
coverage of existing testing tools and provide developers
with insights for improvement (§6.3)? (4) Can CM-IOCov
improve bug detection and discover bugs that the original
CrashMonkey fails to detect (§6.4)?

Experimental setup. We conducted all IOCov experi-
ments on two virtual machines (VMs), each equipped with 8
CPU cores and 128GB of RAM. Both VMs ran Ubuntu 22.04
with Linux kernel version 5.19.6. We ran all CM-IOCov and
CrashMonkey experiments on two additional VMs con"g-
ured identically to the IOCov machines, except that one used
Linux kernel version 5.6 (the latest version supported by
the original CrashMonkey) and the other used version 6.12,
which is the kernel we migrated the system onto. Each VM
was equipped with a 1TB disk partition used to store all gen-
erated executables and log "les. To evaluate IOCov, we em-
ployed four "le system testing tools: xfstests [68], Metis [46],
Syzkaller [27], and CrashMonkey [58]. These tools were
selected as representatives of di!erent testing techniques:
regression testing, model checking, fuzzing, and automatic
test generation, respectively. As the tools vary in design and
capabilities, we selected appropriate tools for each evalua-
tion task, while measuring input and output coverage across
all of them.

6.1 IOCov Overhead
Applying IOCov to testing tools to compute input/output
coverage introduces additional overhead that may slow test-
ing. First, IOCov relies on LTTng to trace system call inputs
and outputs, introducing additional CPU and I/O overhead

for capturing events and writing trace logs. Second, comput-
ing the "nal input and output coverage requires analyzing
the logs to extract the relevant coverage information.
To evaluate overhead, we applied IOCov to two testing

tools: xfstests andMetis, which respectively rely onmanually
crafted test cases and automated testing (state exploration).
The xfstests suite includes two test-case categories: generic
tests, applicable to all "le systems, and specialized tests, de-
signed for speci"c "le systems and their unique features.
Metis generates diverse inputs to systematically explore "le
system states and in the process check if the system behavior
is as expected. The tests in xfstests are "xed, so we measure
overhead by comparing the completion time with and with-
out IOCov. Metis, in contrast, explores states dynamically at
runtime and can run for extended periods. Therefore, over-
head is measured as the di!erence in Metis’s speed (opera-
tions per second) when run with and without IOCov.

Figure 4 compares the performance of xfstests and Metis
with and without IOCov. Using three "le systems (ext4 [55],
XFS [70], and Btrfs [67]), we executed all of xfstests’ generic
tests and ran Metis for one hour. With IOCov, the overhead
from LTTng increased xfstests’ completion time by 7.8–13.4%.
ForMetis, more operations per second indicates better perfor-
mance; with IOCov, the operation rate dropped by 2.1–5.3%.
Metis runs faster on ext4 than on XFS and Btrfs because it
uses the minimum allowed device size: 2 MiB for ext4 com-
pared to 16 MiB for the others. Metis takes longer to save and
process states for larger devices. For post-tracing analysis,
IOCov took 22.5 minutes to extract coverage information for
xfstests applied to ext4 and 17.4 minutes for Metis.

The extracted input and output coverage data for all sup-
ported syscalls, formatted as nested JSON, was only 2.8 MB,
whereas the raw LTTng trace from xfstests was 41 GB, indi-
cating that IOCov e#ciently extracts coverage information
from large traces. In summary, IOCov introduces a small and
acceptable compute and storage overhead when extracting
input and output coverage.

6.2 IOCov Accuracy
It is important that IOCov accurately "lter syscalls related to
"le system testing for coverage computation, a property we
refer to as its accuracy. To evaluate accuracy, we compared
its reported coverage with the veri"ed inputs and outputs
exercised during testing, which served as the ground truth.
Many "le system testing tools do not log the syscalls they
execute for testing (e.g., xfstests), or retain only incomplete
information (e.g., CrashMonkey). As such, we applied Metis
to this task, as it records "le system calls along with their
inputs and outputs, capturing only those relevant to testing.

This accuracy experiment compared the coverage reported
by IOCov for Metis against the inputs and outputs recorded
in Metis logs. We ran Metis for one hour on ext4 while using
LTTng to trace syscalls. We then computed input/output
coverage using IOCov and measured the expected coverage
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Figure 5. Log10-scaled input coverage counts (𝑃-axis) for each open $ag (𝑄-axis), measured across CrashMonkey, xfstests,
Syzkaller, and Metis.

based on Metis logs. For the comparison, we counted the "le
system calls captured by IOCov (computed coverage) and
those recorded in the Metis logs (expected coverage). We
found that both recorded similar counts for most "le system
syscalls. IOCov recorded 39,641 calls to write, 523,152 to
truncate, 29,280 to mkdir, and 54,486 to chmod while Metis
reported 41,935 calls, 523,047 calls, 29,261 calls, and 54,475
calls, respectively. The highest error rate among the syscalls
was for write at 5.47%, which is acceptable for understanding
the testing tool’s input and output coverage. The mismatch
comes from slight LTTng instrumentation limitations or
timing discrepancies, which may cause certain syscalls to
be missed or logged inaccurately compared to ground-truth
execution.

Additionally, we examined partitions of syscall inputs and
outputs in detail to further assess accuracy. IOCov relies on
the open syscall to "lter other syscalls and compute coverage.
To compare open $ags between IOCov and the Metis logs, we
examined the coverage of each of the 21 $ags individually.
We found that 13 $ags had identical coverage in both; for ex-
ample, O_WRONLY appeared 3,397 times, O_EXCL 913 times, and
O_DIRECT 729 times. The remaining $ags showed slight vari-
ations; for example, O_RDWR appeared 11,160 times in Metis
logs and 11,166 times in IOCov, O_CREAT 3,397 vs. 3,398, and
O_APPEND 3,929 vs. 3,931. Among the $ags with discrepancies,
the largest di!erence is with O_DIRECTORY, where Metis re-
ported 1,693,264 occurrences and IOCov computed 1,711,525,
resulting in a 1.08% error rate. The O_DIRECTORY $ag, used
for opening directories, appeared far more frequently than
the others because Metis traverses the entire "le system af-
ter each operation to compute a hash of the resulting state.
Overall, IOCov accurately retains test-related syscalls and
thereby computes input and output coverage for "le system
testing tools with high accuracy.

6.3 IOCov Use Cases in Testing
We used IOCov to measure input and output coverage for
di!erent types of testing tools in order to evaluate them
and deliver insights on how they can be improved. Our eval-
uation covers four tools: CrashMonkey [58], xfstests [68],
Syzkaller [27], and Metis [46]. These tools vary in their char-
acteristics and runtime behavior. CrashMonkey generates
grouped workloads based on test length; xfstests runs a
"xed set of workloads, with total duration depending on
the selected test groups; Syzkaller and Metis continuously
generate workloads and can run for extended periods. To
ensure fairness, we selected workloads for CrashMonkey
(including seq-1 and other default workloads) and xfstests
(the quick group) that complete within one hour. We then
ran Syzkaller and Metis for the same duration. Each tool
was evaluated using the same underlying "le system, ext4.
Speci"cally, Metis allows $exible con"guration of syscall
input distributions; however, we used its default settings
without additional customization. Although Syzkaller is not
a dedicated "le system fuzzer, it can trigger "le system bugs
through relevant syscalls, so we restricted it to generate only
"le system-related calls. While IOCov is capable of generat-
ing comprehensive coverage data for all supported syscall
inputs and outputs, due to space constraints we report and
analyze only a representative subset.

Figure 5 shows input coverage for open $ags across these
four tools. The 𝑄-axis shows individual $ags, each repre-
senting a single bit, and the 𝑃-axis (log10 scale) indicates
how frequently each $ag was exercised by the testing tool.
Input coverage for open $ags is measured over all input par-
titions, i.e., the individual $ags that compose the bitmask.
Among the four tools, Syzkaller achieves the most thorough
input coverage for open $ags—exercising all $ags and be-
ing the only tool that covers both FASYNC and O_LARGEFILE.
Although Metis and xfstests cover many commonly tested
$ags, they miss certain ones that are also worth testing. For
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Figure 6. Log10-scaled input coverage counts (𝑃-axis) for write sizes (in bytes), measured across CrashMonkey, xfstests,
Syzkaller, and metis. The 𝑄-axis shows powers of 2 for write sizes, with a special entry labeled “Equals 0” for writes of size
zero.

example, O_LARGEFILE, which enables support for large "les,
may still expose bugs [79] in modern systems. CrashMonkey
covers the fewest $ags and even misses common ones such
as O_APPEND, indicating a need for improved input coverage
(which led to the development of CM-IOCov). Furthermore,
our results show that some $ags are exercised millions of
times, while others are never tested, revealing a signi"cant
imbalance in test coverage. Such information can inform the
reallocation of test e!orts to under-tested cases.

Figure 6 shows the input coverage for the write size argu-
ment (count in bytes), partitioned by boundary values based
on powers of 2. The 𝑄-axis represents the log2 of the write

size, while the 𝑄2-axis shows the corresponding actual size.
For example, 𝑄 = 8 represents all sizes from 28 to 29 ↘ 1
(i.e., 256–511 bytes), with the corresponding 𝑄2-axis value
shown as 256 B. The 𝑃-axis (log10) shows how many times
each 𝑄-axis bucket was tested by a given tool. As shown in
Figure 6, all four tools prioritize testing small sizes (less than
4 KiB) and lack coverage for larger sizes. While Syzkaller and
xfstests covered a broader range of write size partitions than
Metis and CrashMonkey, all four tools completely missed
some partitions. Similarly, all tools showed uneven testing
of write sizes. For instance, xfstests exercised some size par-
titions millions of times, while others were not tested at all.
This coverage information provides developers with direct
insights into how to improve test cases and address untested
scenarios.

We omit output coverage results due to space limitations,
but our observations showed that all testing tools prioritized
successful syscall returns and missed many error scenarios,
such as ETXTBSY related to concurrency and EOVERFLOW for
oversized values in open.

6.4 CM-IOCov Bug Finding
IOCov’s ultimate objective is to enhance existing test tools
to uncover "le system bugs that the originals miss. We de-
veloped CM-IOCov to enhance CrashMonkey’s crash consis-
tency testing by leveraging IOCov’s coverage reports, and
evaluated whether it "nds more bugs than the original Crash-
Monkey on Linux kernel versions 5.6 and 6.12. Linux 5.6 is
the latest kernel that the unmodi"ed CrashMonkey supports,
but bugs in this version may already be "xed in newer ker-
nels. We ported both CrashMonkey and CM-IOCov to Linux
6.12 by updating their code and kernel API usage, allowing
them to run on the newer kernel and discover more recent
bugs. We evaluated the Btrfs "le system, which is the main
"le system targeted by CrashMonkey [58], on both kernels.
To validate CM-IOCov’s e!ectiveness, we generated the

same set of test workloads for both CM-IOCov and Crash-
Monkey. Each workload consists of a short sequence of
syscalls, followed by crash simulation and a checker to verify
"le system correctness after crashes. If a test workload fails,
meaning the checker detects an incorrect state after a crash,
it indicates a potential crash consistency bug. However, the
number of failed workloads does not re$ect the number of
unique bugs, because one bug can cause multiple failures.

In the kernel 5.6 experiment, both CM-IOCov and Crash-
Monkey executed 426,238 test workloads. CM-IOCov found
3,200 failures compared to CrashMonkey’s 2,831, showing
CM-IOCov’s improved bug-"nding capability. Both versions
detected 2,800 common failures. In addition, CM-IOCov un-
covered 400 failures missed by CrashMonkey, while Crash-
Monkey found only 31 that CM-IOCov did not. The results
demonstrate that, with improved input coverage in CM-
IOCov compared to CrashMonkey and all other factors un-
changed, CM-IOCov achieves better bug detection, as evi-
denced by the higher number of failures identi"ed.
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Table 3. Crash consistency bugs in Btrfs, their consequences, and the triggering call sequences. These bugs were detected by
CM-IOCov but missed by CrashMonkey on Linux 6.12. Underlines indicate inputs improved by CM-IOCov over CrashMonkey.

No. Bug Consequence System Call Sequence
1 Allocated blocks lost after fsync open, write, falloc
2 File content did not match after fsync open, write, mmapwrite
3 Data block missing after rename open, write, falloc, rename
4 Rename not persisted by fsync opendir, close, rename, mkdir
5 Incorrect number of "le hard links after fsync mkdir, open, link, rename

For the 6.12 kernel, we ran 391,134 test workloads using
both CM-IOCov and CrashMonkey. During that experiment,
CM-IOCov reported 390 failures, compared to 224 found
by CrashMonkey. CM-IOCov found 323 failures missed by
CrashMonkey, while CrashMonkey found only 157 missed
by CM-IOCov, again demonstrating CM-IOCov’s superior
bug detection ability. Table 3 presents "ve representative
Btrfs bugs identi"ed by CM-IOCov but missed by Crash-
Monkey, along with their consequences and the syscalls that
triggered them. Across the bugs listed in Table 3, as well
as the failures uniquely identi"ed by IOCov, most of the
involved syscalls bene"ted from CM-IOCov’s improved in-
put generation; these syscalls are underlined in the table.
This highlights the importance of input coverage for bug
detection. The crash-consistency bugs found by CM-IOCov
have serious consequences, such as allocated blocks being
lost despite explicit persistence via fsync(), "le content or
hard link counts not being persisted, and "les missing after
a crash. Since these bugs were found on Linux kernel 6.12,
they are likely to be real and still present. We are actively in-
vestigating them and plan to report them to Btrfs developers
with detailed diagnostic information. While CrashMonkey
did detect some failures that CM-IOCov missed under the
same workload count, its inputs are a subset of CM-IOCov’s.
Therefore, with enough workloads, we believe CM-IOCov
can also reveal those failures.

7 Related Work
This section discusses related work on test coverage metrics,
code coverage e!ectiveness, and "le system testing.

Test Coverage Metrics. Coverage metrics have long been
a cornerstone of software testing, providing a quantitative
method to evaluate the thoroughness of test suites [47, 53,
91]. There are general coverage metrics for most software
and specialized ones for speci"c test targets [64]. As the
most widely used general metric, code coverage includes
subtypes such as line, statement, function, and branch cover-
age, categorized by the granularity of the code measured [34].
In "le system testing, however, developers primarily con-
duct tests by issuing syscalls to "le systems in kernel space.
Due to the complex path between user-space test suites and

kernel-space "le system implementations, it is unclear which
syscalls to issue to cover speci"c code [4, 23].

Specialized coverage metrics [84] di!er across testing tech-
niques because each technique targets di!erent bug types,
exercises di!erent system features, and uses distinct meth-
ods to generate and run test cases. For example, "le system
model checking [46, 85] aims to achieve state coverage by
exploring as many "le system states as possible. Similarly,
testing crash consistency requires one to cover diverse crash
scenarios [2, 9, 58, 62]. Current approaches to "le system
testing primarily rely on generic coverage metrics, such as
code coverage, without speci"cally evaluating their e!ec-
tiveness for this domain [38]. Moreover, no formal coverage
metrics have been de"ned explicitly for "le system testing.
Although input and output coverage metrics exist [3, 40,

77], they are designed for di!erent targets (e.g., quantum
programs, network protocols) and are not suited for "le
system testing, which relies on syscall inputs and outputs.

E!ectiveness of Code Coverage. Assessing the e!ective-
ness of code coverage is an active area, but the "ndings
remain inconclusive and lack consensus. We de"ne e!ec-
tiveness as the ability to detect faults or bugs in the test
target [47]. Some studies [25, 26, 39] suggest that the e!ec-
tiveness of code coverage is inconsistent and depends on
the speci"c target. For example, Kochhar et al. [39] found
a strong correlation between code coverage and test e!ec-
tiveness for the Mozilla Rhino JavaScript engine, whereas
the correlation was moderate for Apache HTTPClient. Some
studies [21, 22, 28, 30] show that the correlation is contingent
upon speci"c subclass metrics of code coverage. According
to Gopinath et al. [28], statement coverage is the most e!ec-
tive metric for detecting faults, outperforming other code
coverage metrics. Hemmati et al. [30] observed, however,
that statement coverage is signi"cantly weaker than other
coverage metrics such as branch coverage.
Moreover, prior work [11, 12, 33, 60] indicates that code

coverage has a limited correlation with test e!ectiveness, and
thus new, complementary coverage criteria are needed [71].
Speci"cally, Inozemtseva et al. [33] analyzed 31,000 test
suites for "ve systems and found a low-to-moderate correla-
tion between code coverage and e!ectiveness. Nevertheless,
there is no existing research examining this correlation for
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complex low-level systems, such as in-kernel "le systems.
This work investigates the correlation for "le system testing
through the bug study presented in Section 2.

File System Testing. File system testing can be static or
dynamic, depending on whether it involves actively exer-
cising the "le system [56]. This paper focuses on dynamic
testing, which generally has three steps: (1) generating test
cases in the form of syscalls, (2) initializing the "le system
under test and executing the tests, and (3) validating "le
system properties post-execution. Here, we consider four
representative methods: regression testing, model checking,
fuzzing, and automatic test generation, and explain how they
achieve coverage.
Regression testing (e.g., xfstests [68] and LTP [57]) is a

collection of tests manually crafted to ensure that updates
or new features do not introduce bugs or failures. It often
aims to achieve functionality coverage by testing as many
"le system features as possible to verify the correctness of
each. Given, however, the continuous evolution of "le system
features and the handcrafted nature of regression testing, it is
di#cult to ensure complete functionality coverage or provide
a measure to assess the completeness of the testing [4].

Model checking [46, 73, 85, 86] is a formal veri"cation tech-
nique used to "nd bugs by automatically and systematically
exploring a "le system’s state space. During exploration,
model checking veri"es whether each "le system state ad-
heres to a speci"cation. State coverage, however, is not a prac-
tical metric for "le system testing for two reasons: (1) due to
the complexity of "le systems, the number of possible states
grows exponentially with the number of system components,
a problem known as state explosion [16], and (2) state cover-
age does not provide clear guidance to developers on how
to improve their tests. As states are often di#cult to predict
and accurately represent, developers may not know which
speci"c test cases or scenarios need improvement [46].
Fuzzing [82, 83, 83] uses code coverage as guidance and

employs heuristics to prioritize test inputs that increase cov-
erage. However, it lacks guarantees for achieving compre-
hensive coverage or accessing hard-to-reach code paths.
Automatic test generation [14, 58] creates rule-based sys-

call workloads to test "le system functionality and reliability,
typically covering various combinations of syscalls. For ex-
ample, CrashMonkey [58] exhaustively permutes syscalls
within a de"ned bound to construct operation sequences
for testing "le system crash consistency. However, focusing
solely on syscall combinations is inadequate, as each syscall
can have di!erent argument values, leading to di!erent test
cases for the same syscall [24].

To our knowledge, no prior work exists on designing cov-
erage metrics for "le system testing by studying real bugs,
nor on enhancing testing using these metrics.

8 Conclusion and Future Work
In this paper, we "rst analyzed known "le system bugs to
reveal the limitations of traditional code-coverage metrics.
We then presented two new metrics, input coverage and
output coverage, for evaluating and improving "le system
testing. We created the IOCov framework to measure these
metrics and developed CM-IOCov, an enhanced version of
CrashMonkey with higher input coverage, enabling more
e!ective detection of crash consistency bugs. Our evaluation
shows that, with low overhead, IOCov accurately measures
input and output coverage for "le system testing tools, and
identi"es untested and unbalanced test cases to guide tool
improvement. Our results with CM-IOCov show that im-
proving input coverage can substantially enhance "le system
testing with modest e!ort, such as supplying an input driver
with broader coverage, and yielding signi"cant gains in test
e!ectiveness and bug discovery. CM-IOCov discovered Btrfs
bugs in recent Linux kernels that the unmodi"ed version,
CrashMonkey, failed to "nd.

Future Work. We aim to extend IOCov to support input
and output coverage for additional "le system calls, includ-
ing ioctl and mount. We also seek to investigate which input
and output partitions are most e!ective at revealing bugs.
We believe that IOCov techniques can be extended to other
system software, including databases, distributed systems,
and operating system components. For example, measur-
ing the coverage of SQL queries and their results can help
improve database testing.
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