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Abstract of the Dissertation Proposal
Using Machine Learning to Improve Operating Systems’ I/O Subsystems

by

Ibrahim Umit Akgun

Doctor of Philosophy
in

Computer Science
Stony Brook University

2022

Despite the ever-changing nature of computing systems, operating systems
and storage systems are still following the architectures, algorithms, and structures
built decades ago. Modern software stacks generate complicated and dynamic
workloads which are running on statically configured storage stacks. To provide
the best performance for various dynamic workloads, we need self-adaptive, dy-
namically configured storage systems. However, considering the current design
principles of storage and operating systems, there is no support system to achieve
self-adaptability.

One of the possible solutions to fulfill the self-adaptability needed in storage
and operating systems is approaching operating system problems with machine
learning assistance. Researchers have tried using machine learning to solve op-
erating system problems; however, existing solutions are either not practical or
not versatile enough. Therefore, we propose a complete pipeline to build machine
learning models to improve operating system components, especially I/O subsys-
tems and their performance. First, we provide a low-overhead and high-fidelity
data-collection framework to trace and collect data from inside operating systems.
We then develop a lightweight and efficient machine learning (ML) framework
that can run at the kernel level and tune kernel parameters to improve 1/O perfor-
mance.
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We have applied our machine learning framework, called KML, to tune disk
readahead sizes according to workload-type predictions. We used RocksDB as
our benchmarking platform. We can improve 1/O performance for RocksDB’s
benchmark workloads, including realistic ones (e.g., Facebook’s mixgraph), by
up to 2.3x. We also include another use case: NFS rsize. We observed as much
as 15 x performance improvements for the NFS rsize use-case.

It is our thesis that operating systems have many heuristics built largely by
hand over many years, and yet operating systems cannot easily adapt to chang-
ing environment and workload conditions; therefore, we believe that compact and
efficient machine learning engines should become a first-class citizen inside oper-
ating systems and be used to improve I/O subsystems.

v
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Chapter 1

Introduction

Computer hardware, software, storage, and workloads are constantly changing.
Storage performance heavily depends on workloads and the precise system con-
figuration [32, 157]. Storage systems and OSs include many parameters that can
affect overall performance [33, 31, 198]. Yet, users often do not have the time
or expertise to tune these parameters. Worse, the storage and OS communities
are fairly conservative and resist making significant changes to systems to prevent
instability or data loss. Thus, many techniques currently used were historically de-
veloped with human intuition after studying a few workloads; but such techniques
cannot easily adapt to ever-changing workloads and system diversities.

For example, readahead values, while tunable, are often fixed and left at their
defaults. Correctly setting them is important and difficult when workloads change:
too little readahead wastes potential throughput and too much pollutes caches—
both hurting performance. Some OSs let users pass hints (e.g., fadvise, madvise)
to help recognize files that will be used sequentially or randomly, but these often
fail to find optimal values for complex, mixed, or changing workloads. We exper-
imented with a variety of modern workloads and many different values of read-
ahead: in our prior work, we confirmed that no single readahead value is optimal
for all workloads [8]. Another example of tunable parameters in the network stor-
age settings is the default read-size (rsize) parameter in NFS: if set too small or
large, performance suffers. In addition to storage and file system layers, network
and block device layers also have a lot of important knobs to tune.

Machine Learning (ML) techniques can address this complex relationship be-
tween workloads and tunable parameters by observing actual behavior and adapt-
ing on-the-fly, and hence may be more promising than fixed heuristics. ML tech-
niques were recently used to predict index structures in KV stores [109, 48], for
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database query optimization [108], improved caching [170], cache eviction poli-
cies [187], I/0O scheduling [80], and more.

In this thesis proposal, we describe our ML approach to improve storage per-
formance by dynamically adapting to changing 1/O workloads. We designed and
developed a versatile, low-overhead, light-weight system called KML, for con-
ducting ML training and prediction for I/O subsystems. KML defines generic ML
APIs that can be used for a variety of subsystems; we currently support several
deep neural networks and decision-tree models. We designed KML to be embed-
dable inside an OS or the critical path of the storage system: KML imposes low
CPU and memory overheads. KML can run synchronously or asynchronously,
giving users the ability to trade-off prediction accuracy vs. overhead.

Developing and tuning ML-based applications can be its own challenge. There-
fore, we designed KML to run identically in user- or kernel-level. Users can de-
velop and debug ML solutions easily in the user level, then upload the same model
to run identically in the kernel. To start developing ML models with KML, users
who are OS developers should gather data from target I/O subsystem.

One of the most crucial parts of the ML pipeline is generating input data.
Collecting input data from the target subsystem without introducing overheads in
the operating system is critical. Because when the tracing systems impose over-
heads on the operating system, input data for the ML applications contains noise.
Therefore noisy input data may lead to building unstable and even incorrect ML
models. To address this problem, we designed a low-overhead, high-fidelity, data-
collection framework called Re-Animator, to gather input data for ML pipeline.

Re-Animator is designed to trace operating system internals, and system calls
with the capability of capturing buffer contents. Context-aware tracing enables
operating system developers to study how workloads interact with operating sys-
tems and design workload-specific optimizations. Re-Animator also includes a
system call replayer to replay system call traces in an as-is manner; this helps
operating system developers to reproduce the same scenarios for debugging and
testing purposes. Re-Animator’s system call replayer can also be used as a bench-
marking tool to mimic realistic workloads.

We propose that machine learning algorithms can be a viable solution for
building self-adaptive I/O subsystems and improving I/O performance. To support
our theory, we demonstrate KML’s usefulness with two case studies: (i) adapting
readahead values dynamically and (ii) setting NFS rsize values automatically.
In both cases, we aim to adapt these values within one second, yet under changing
and even mixed workloads. We also plan to build ML models to improve fairness
and performance for TCP congestion control algorithms and 1/O schedulers. This

2
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way we will provide more proofs to demonstrate KML’s generalization capability
and versatility.

The rest of this thesis proposal is organized as follows. In Chapter 2, we
outline our thesis statement; we also provide background information about ma-
chine learning frameworks and how the KML machine learning pipeline works.
In Chapter 3, we discuss related works. In Chapter 4, we explain the details
of Re-Animator design and provide performance analysis and evaluation of Re-
Animator. In Chapter 5, we describe the KML machine learning framework and
two use cases. We then go over our proposed and future work in Chapter 6 and
conclude this thesis proposal in Chapter 7.



Chapter 2

Motivation

In this chapter, we discuss our vision (Section 2.1). In Section 2.2, we explain
why we built a new ML framework from scratch instead of using off-the-shelf
ones. We then describe what type of operating system components can be a good
candidates for in-kernel ML applications (Section 2.3).

2.1 Thesis Statement

KML is designed to replace OS-level I/O subsystem heuristics and system param-
eter tuning. Thus, a KML application first observes the target component by col-
lecting data from probes that are placed in the kernel. The data collected is used
to train an ML model using KML’s functionality APIs. The KML application
then uses the model to predict and tune system parameters. Our use cases follow
the observe-and-tune paradigm to reduce overhead introduced by the ML models.
Therefore, we do not impose extra overheads on I/O and storage components that
require low latency and predictable performance. The two KML use-cases that
we detail in this thesis proposal are ML models developed (1) to tune readahead
sizes on a per-disk and per-file basis and (2) to tune NFS rsize value. We chose
these two examples because: (i) their storage components can significantly bene-
fit from fine-tuned parameters, (ii) they require adaptation to a variety of different
workloads, which is crucial in providing optimal performance, and (iii) it proves
that adding asynchronous ML computation (see Section 5.3.3) will not negatively
impact critical I/O paths.
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2.2 Machine Learning Framework

Developing new solutions and optimizations for storage and OSs requires a highly
efficient design that carefully considers the needs of the OS. Modern ML libraries
are designed for building general-purpose ML approaches, and tend to rely on
many third-party libraries (e.g., in C++ or Python) to handle core ML compo-
nents. This is why porting an existing ML framework to run in the kernel requires
redesigning the entire ML core. Instead of porting a relatively large and compli-
cated existing ML framework, we designed and implemented KML from scratch,
enabling a low-overhead, light-weight, and offering versatility for OSs and storage
systems.

We considered three different modes of operation for KML and implemented
two of those. KML supports either user-space or kernel-space training—both per-
forming kernel-space inference. One can consider moving the inference to user-
space as well. However, user/kernel co-operated machine learning frameworks
can become unnecessary complicated. For example, if user-space library-training
threads cannot get scheduled in time, the user-space library can start losing criti-
cal training data. While this problem may still occur in our modes of operation,
operating in kernel space gives us with more control over thread scheduling. Con-
sidering the high data sampling rate needed in our use cases, placing data pro-
cessing and normalization in user space results in greater loss of data compared to
inside the kernel. In the case of inferencing in user space, losing observation data
can also cause performance problems. Because losing observation data can lead
to inaccurate predictions, which creates misconfigurations for target components,
these misconfigurations often end up causing performance degradation. However,
KML'’s in-kernel architecture supports both synchronous and asynchronous in-
ferencing with negligible latency. We still believe that a user-kernel co-operated
design might be beneficial for some cases that do not require high data sampling.
However user-kernel co-operated mode is not a critical feature for building func-
tioning ML models for operating systems. That is why we are leaving the imple-
mentation of a user-kernel co-operated design to future work.

2.3 Machine Learning Applications

Operating system developers design low-latency and efficient algorithms to keep
up with the desired performance expectations. That is why it is hard to for ML
models to run in the critical path or decision-making parts of core OS algorithms.
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Therefore, we chose I/0 subsystems as an early adopter and observe-and-tune as
our paradigm. We can utilize the I/O waiting time to collect data and run ML
inferences. In this way, we can integrate ML models to I/O subsystems without
adding too much overhead. To this end, we chose our proposed work related to
other I/0 subsystems such as networking and block device layer. We discuss use
cases that are already implemented in Section 5.2 and outline our proposed work
in Chapter 6.



Chapter 3
Related Work

In this chapter, we survey related works about data collection frameworks and ML.
approaches for operating systems.

3.1 Data Collection Framework

System calls can be traced by using ptrace, by interposing shared libraries, or
with in-kernel methods.

Ptrace. Because ptrace [75] has been part of the Unix API for decades, it is an
easy way to track process behavior. strace [190], released for SunOS in 1991,
was one of the earliest tools to build upon pt race; a Linux implementation soon
followed, and most other Unix variants offer similar programs such as t russ [65]
and tusc [21]. On Microsoft Windows, StraceNT [71] offers a similar facility.
All of these approaches share a similar drawback: because the trace is col-
lected by a separate process that uses system calls to access information in the
target application, the overhead is unusually high (as much as an order of magni-
tude).! In most cases, the CPU cost of collecting information overwhelms the I/O
cost of writing trace records. In theory, the cost could be reduced by modifying
the pt race interface, e.g., by arranging to have system-call parameters collected

"We initially considered using st race for this project, but our evaluations showed that its
overhead was at least 5-15x and often exceeded two orders of magnitude. We therefore did
not consider st race a viable alternative for our purposes, as the overhead was too high to be
considered practical.
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and reported in a single ptrace operation. To our knowledge, however, there
have been no efforts along these lines.

Many modern applications use mmap to more efficiently read and write files,
but pt race-based systems cannot capture mmaped events (e.g., page faults and
dirty-page flushes). In-kernel tracers (e.g., TraceFS [16]) can do so. RA-LTTng
also captures and replays mmaped events with a minimal Linux kernel modifica-
tion; see Section 4.2.2.

Shared-library interposition. A faster alternative to pt race that still requires
no kernel changes is to interpose a shared library that replaces all system calls
with a trace-collecting version [47, 128]. Since the shared library runs in the
same process context as the application, data can be captured much more effi-
ciently. However, there are also a few drawbacks: (1) the technique does not
capture early-in-process activity (such as loading the shared libraries themselves;
(2) interposition can be difficult in chrooted environments where the special li-
brary might not be available; (3) trace collection in a multi-threaded process might
require additional synchronization; and (4) interposing other libraries as well can
be challenging.

In-kernel techniques. The lowest-overhead approach to capturing program ac-
tivity is to do so directly in the kernel, where all system calls are interceptable and
all parameters are directly available. Several BSD variants, including Mac OS
X, offer ktrace [69], which uses kernel hooks to capture system-call information.
Solaris supports DTrace [29] and Windows offers Event Tracing for Windows
(ETW) [133]. All of these approaches capture into an in-kernel buffer that is later
emptied by a separate thread or process. Since kernel memory is precious, all of
these tools limit the memory they use to store traced events, and drop events if not
enough memory is available. We have verified this event-drop phenomenon ex-
perimentally for both DTrace and ktrace. ETW further limits any single captured
event to 64KB.

The Linux Kprobes facility [45] has been used to collect read and write opera-
tions [171], but the approach was complex and incomplete. A more thorough im-
plementation is FlexTrace [186], which allows users to make fine-grained choices
about what to trace; FlexTrace also offers a blocking option so that no events are
lost. However, it does not capture data buffers, and the fine-grained tracing can
be a disadvantage if the traces are later used for a different purpose, since desired
data might not have been captured.
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Linux’s LTTng allows the user to allocate ample kernel buffers to record sys-
tem calls, limited only by the system’s RAM capacity. However, as we noted in
Section 4.2.3, vanilla LTTng does not capture data buffers. RA-LTTng captures
those buffers directly to a separate file for later post-processing (and blocks the
application if the buffers are not flushed fast enough, ensuring high fidelity).

Finally, unlike strace and RA-LTTng, which have custom code to capture
every ioctl type, neither ktrace nor DTrace can capture buffers unless their
length is easily known (e.g., the 3 argument to read), and thus neither cap-
tures ioct1 buffers at all. Moreover, ktrace flushes its records synchronously: in
one experiment we conducted (FIO 8GB random read using one thread), ktrace
imposed higher overheads than RA-LTTng, consuming at least 70% more system
time and at least 50% more elapsed time.

Replayer fidelity. To the best of our knowledge, no system-call replayer exists
that can replay the buffers’ data (e.g., to write). ROOT [188], which is based on
st race, concentrates on solving the problem of correctly ordering multi-threaded
traces. It does not capture or replay actual system-call buffers. /TRACE [132]
also concentrates on parallel replay but does not reproduce the data passed from
read and to write. We attempted to compare ROOT and //TRACE to RA-
Replayer but were unable to get them to run, even with the help of their original
authors.

RA-Replayer has options to verify that each replayed system call returned the
same status (or error if traced as such), and to verify each buffer (e.g., after a
read). If any deviation is detected, we can log a warning and either continue or
abort the replay. We are not aware of any other system-call replayer with such
run-time verification capabilities.

Thus, RA-Replayer faithfully reproduces the logical POSIX file system state:
file names and namespaces, file contents, and most inode metadata (e.g., inode
type, size, permissions, and UID and GID if replayed by a superuser). Because
replaying happens after the original capture, one limitation we have is that we do
not reproduce inode access, change, and modification times accurately—but the
relative ordering of these timestamps is preserved.

Like hfplayer [76, 77], we use heuristics to determine how to replay events
across multiple threads: any calls whose start-to-end times did not overlap are
replayed in that order.

We have also investigated other types of recording and replaying frameworks,
such as Mozilla RR [138]. Mozilla RR is designed for deterministic recording and
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debugging; it replays a traced execution alongside an actual binary: for any system
call in the binary, Mozilla RR emulates it from the traced data and skips executing
the actual call. RA-LTTng is different because (1) we do not require having a
binary to replay, and (2) we actually want to re-execute the original system calls
so as to reproduce OS and file system behavior as faithfully as possible.

Scalability. All system-call tracers can capture long-running programs, but us-
ing a binary trace format (e.g., as all in-kernel tracers do) allows such tools to
reduce I/O bottlenecks and the chance of running out of storage space.

ROQT [188] parses traces from several formats and then produces a C pro-
gram that, when compiled and run, will replay the original system calls. We
believe this compiler-based approach is limited: whereas RA-Replayer can replay
massive traces (we replayed traces that were hundreds of GB in size), compiling
and running such huge programs may be challenging if not impossible on most
systems.

Portable trace format. DTrace [29], ktrace [69], and ETW [133] use their
own binary trace formats. Strace does not have a binary format; its human-
readable output is hard to parse to reproduce the original binary system-call
data [72, 188, 86]. (In fact, one of the reasons we could not get ROOT to run, de-
spite seeking assistance from its authors, is that the text output format of strace
has changed in a fashion that is almost imperceptible to humans but incompatible
with ROOT’s current code.) Only LTTng uses a binary format, CTF [126], that
is intended for long-term use. However, CTF is relatively new and it remains to
be seen whether it will be widely adopted; in addition, because it is a purely se-
quential format, it is difficult to use with a multi-threaded replayer. Non-portable,
non-standard, and poorly documented formats have hampered researchers inter-
ested in system call analysis and replay (including us) for decades. Thus, we chose
DataSeries [14], a portable, well documented, open-source, SNIA-supported stan-
dard trace format. DataSeries comes with many useful tools to repack and com-
press trace files, extract statistics from them, and convert them to other formats
(e.g., such as plain text and CSV). The SNIA Trace Repository [168] offers ap-
proximately 4TB of traces in this format. We left LTTng’s CTF format in place
so as not to require massive code changes or complex integration of C++ into the
kernel; instead, we wrote a standalone tool that converts CTF files to DataSeries
ones offline.

10
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Low-overhead networked storage tracing Another approach to tracing stor-
age systems is network monitoring [22, 101]. However, it is limited only to
network file-systems and is limited to capturing information transmitted between
nodes: system calls intercepted by client-side caches do not produce network ac-
tivity and hence are not caught. Re-Animator, however, offers richer traces, such
as capturing mmap-related reads and writes. Conversely, collecting traces by pas-
sive network monitoring can have low overheads.

3.2 Machine Learning Framework

Machine learning in systems and storage In follow-up work to Mittos [79],
a custom neural network was built that makes inferences inside the OS’s I/O
scheduler queue. The neural network decides synchronously whether to submit
requests to the device using binary classification [80]. There are notable differ-
ences between that system and our KML. That system was trained offline using
TensorFlow and exclusively trained in user space. Additionally, each of their two
layers were custom built. Conversely, KML provides a more flexible architecture.
KML training, retraining, normalization, repeated inference—all are possible and
accomplished with ease in any combination of online, offline, synchronous, or
asynchronous settings. Lastly, KML easily supports an arbitrary number of gen-
eralizable neural network layers; our experiments demonstrate more expressive
classification abilities on a more diverse set of devices.

Laga et al. [112] improved readahead performance in the Linux Kernel with
Markov chain models, netting a 50% 1/O performance improvement in TPC-
H [181] queries on SATA-SSDs. In contrast, our experiments ran on a wider se-
lection of storage media (NVMe-SSD and SATA-SSD) and workloads. In TPC-H,
we show improvements up to 39% despite TPC-H being a completely new work-
load for our readahead model. Moreover, our results illustrate that our readahead
model can improve I/O throughput by as much as 2.4 x—all while keeping mem-
ory consumption under 4KB, in comparison to Laga et al.’s much larger 94MB
Markov chain model.

Parameter tuning for storage and operating systems has been a challenge and
researchers approached this problem using control theory [161] and data dis-
tribution analysis for storage clusters [4]. Some research has attempted to ap-
ply ML techniques to OS task scheduling [136, 39], with small reported perfor-
mance improvements (0.1-6%). Nevertheless, it is becoming increasingly popu-
lar to apply ML techniques to storage and OS problems including: tuning SSD
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configurations [117], memory allocation [129], TCP congestion [61], building
smart NICs [160], predicting index structures in key-value stores [109, 48], of-
fline black-box storage parameter optimization [34], reconfigurable kernel data-
paths [148], local and distributed caching [187, 170], database query optimiza-
tion [108], and cloud resource management [46, 51, 52, 164].

Machine learning libraries for resource-constraint systems A myriad of ML
libraries exist—some general purpose and others more specialized. Popular general-
purpose ML libraries include Tensorflow [2], PyTorch [141], and CNTK [44].
Conversely, libraries like ELL [63], Tensorflow Lite [177], SOD [163], and Dlib [58]
specialize to run on resource-constrained or on-device environments, KML differ-
entiates itself by targeting OS-level applications and designed for OS and storage
systems specifically. Inside the OS, resources are highly constrained, prediction
accuracy is vital, and even small data-path overheads are unacceptable.

Adapting readahead and prefetching Readahead and prefetching methods are
both well-studied problems [158, 159, 56, 110] and see use in distributed sys-
tems [114, 180, 38, 59, 121, 135, 120, 42]. Many have attempted to build sta-
tistical models to optimize and tune systems [158, 159, 68]. However, the main
limitation of statistical models is their inability to adapt to novel new workloads
and devices. We have shown that our model can adapt to never-before-seen work-
loads and devices. Another way to improve a readahead system is to predict in-
dividual I/O requests and file accesses by observing workload patterns [56, 110,
194, 183, 87, 11, 189, 196]. Predicting file accesses using hand-crafted algo-
rithms is a reasonable first approach. However, such manual labor simply cannot
keep up with the diversity and complexity of ever-changing modern workloads.
Conversely, as long as we have training data, ML models can adapt, retrained as
needed, and optimize much faster. Simulations are also viable solutions for read-
ahead and prefetching problems [70, 36, 151, 195, 203]. However, simulations
are computationally expensive and are limited to the datasets that the models are
trained and tested with. Additionally, the models produced in simulations are not
designed for resource-constrained environments, making it non-trivial to migrate
such models to the kernel. It is possible to use a user-space library to intercept file
accesses [193] or to require application-level changes [199]. In contrast, KML
requires no application changes and is capable of intercepting mmap-based file
accesses.

Finally, while techniques exist to improve NFS performance, we are unaware
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of automated ones that use ML [96].
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Chapter 4

Re-Animator: Data collection
framework

Modern applications use storage systems in complex and often surprising ways.
Tracing system calls is a common approach to understanding applications’ behav-

ior, allowing offline analysis and enabling replay in other environments. But cur-
rent system-call tracing tools have drawbacks: (1) they often omit some information—
such as raw data buffers—needed for full analysis; (2) they have high overheads;

(3) they often use non-portable trace formats; and (4) they may not offer useful
and scalable analysis and replay tools.

We have developed Re-Animator, a powerful system-call tracing tool that fo-
cuses on storage-related calls and collects maximal information, capturing com-
plete data buffers and writing all traces in the standard DataSeries format. We
also created a prototype replayer that focuses on calls related to file-system state.
We evaluated our system on long-running server applications such as key-value
stores and databases. Our tracer has an average overhead of only 1.8-2.3x, but
the overhead can be as low as 5% for I/O-bound applications. Our replayer ver-
ifies that its actions are correct, and faithfully reproduces the logical file system
state generated by the original application.

4.1 Introduction

Modern applications are becoming ever more intricate, often using 3"-party li-
braries that add further complexity [81]. Operating systems have multiple layers
of abstraction [18, 156] and deep network and storage stacks [149, 19, 83]. In ad-
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dition, storage systems employ techniques like compression, deduplication, and
bit-pattern elimination [192, 107, 162, 130, 182, 23, 62, 106, 166, 176, 167]. The
result is that applications interact with the rest of the system in complex, unpre-
dictable ways, making it difficult to understand and analyze their behavior.

System-call tracing is a time-honored, convenient way to study an applica-
tion’s interaction with the OS; for example, tools such as strace [190] can
record events for human analysis. Such traces can be replayed [188] to repro-
duce behavior without needing to recreate input conditions and rerun the appli-
cation, exploring its behavior in different situations (e.g., performance tuning or
analysis [178, 25, 95, 204, 175, 77, 86, 98, 116, 137, 143]), or to stress-test other
components (e.g., the OS or storage system) [1, 6, 7, 17, 41, 73, 88, 90, 100, 144,
143, 147, 174, 179, 202, 201]. Traces can also be analyzed offline (e.g., using
statistical or machine-learning methods) to find performance bottlenecks, secu-
rity vulnerabilities, etc. [146, 85, 145], or identify malicious behavior [67, 105].
Historical traces can help understand the evolution of computing and applications
over long intervals. Such long-term traces are useful in evaluating the effects of
I/O on devices that wear out quickly (SSDs) or have complex internal behavior
(e.g., garbage collection in shingled drives) [40, 50, 118, 82, 94, 197, 200].

However, existing system-call tracing approaches have drawbacks: (1) They
often do not capture all the information needed to reproduce the exact system
and storage state, such as the full data passed to read and write system calls.
(2) Tracing significantly slows traced applications and even the surrounding sys-
tem, which can be prohibitive in production environments. Thus, tracing is often
avoided in mission-critical settings, and traces of long-running applications are
rare. (3) Traces often use custom formats; documentation can be lacking or non-
existent, and sometimes no software or tools are released to process, analyze, or
replay the traces. Some traces (e.g., those from the Sprite project [140]) have
been preserved but can no longer be read due to a lack of tools. (4) Some tools
(e.g., strace [190]) produce output intended for human consumption and are not
conducive to automated parsing and replay [72, 188, 86].

In this chapter, we make the following six contributions: (1) We have designed
and developed Re-Animator, a system-call tracing package that uses Linux tra-
cepoints [53] and LTTng [127, 54] to capture traces with low overhead. (2) Our
tracing system captures as much information as possible, including all data buffers
and arguments. (3) We write the traces in DataSeries [14], the format suggested
by the Storage Networking Industry Association (SNIA) for I/O and other traces.
DataSeries is compact, efficient, and self-describing. Researchers can use existing
DataSeries tools to inspect trace files, convert them to plain text or spreadsheet for-
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mats, repack and compress them, subset them, and extract statistical information.
(4) Our system adds an average overhead of only 1.8-2.3 x to traced applications
(in the best case, only 5%). (5) We developed a prototype replayer that supports
70 selected system calls, including all that relate to file systems, storage, or persis-
tent state. The replayer executes the calls as faithfully and efficiently as possible
and can replay traces as large as hundreds of GB. (6) All our code and tools for
both tracing and replaying are planned for open-source release. In addition, we
have written an extensive document detailing the precise DataSeries format of our
system-call trace files to ensure that this knowledge is never lost; this document
will also be released and archived formally by SNIA.

4.2 Design

Re-Animator is designed to: (1) maximize the fidelity of capture and replay,
(2) minimize overhead, (3) be scalable and verifiable, (4) be portable, and (5) be
extensible and easy to use. In this section, we first justify these goals, and then
explain how we accomplish them.

Any tracing tool can capture sensitive information such as file names, inter-file
relations, and even file contents. Re-Animator is intended for environments where
such capture and processing of such traces is acceptable to all parties. When
privacy is a concern, anonymization may be required [111, 16], but privacy is
outside this chapter’s scope.

4.2.1 Goals

Fidelity. State-of-the-art techniques for recording and replaying system calls
have focused primarily on timing accuracy [15, 27, 204, 95, 132, 81, 188]. Our
work considers three replay dimensions: (1) timing, (2) process—thread interde-
pendencies, and (3) the logical POSIX file-system state. Because correct replay
requires accurately captured data, this chapter focuses primarily on trace capture;
our prototype replayer demonstrates this accuracy but does not seek optimality.
Of the three dimensions above, timing is probably the easiest to handle; the
tracer must record accurate timestamps, and the replayer should reproduce them
as precisely as possible [15]. However, many researchers have chosen a simpler—
and entirely defensible—option: replay calls as fast as possible (AFAP), imposing
maximum stress on the system under test, which is often the preferred approach
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when evaluating new systems. For that reason, although we capture precise time-
stamps, our prototype uses AFAP replay.

Dependencies in parallel applications are more challenging; replaying them
incorrectly can lead to unreasonable conclusions or even incorrect results. Pre-
vious researchers have used experimental [132] or heuristic [188] techniques to
extract internal dependencies. The current version of Re-Animator uses a con-
servative heuristic similar to hfplayer [76]: if two requests overlap in time, we
assume that they can be issued in any order; if there is no overlap then we pre-
serve the ordering recorded in the trace file.

Finally, most prior tracing and replay tools discard the transferred data to speed
tracing and reduce trace sizes. However, modern storage systems use advanced
techniques—such as deduplication [172, 124], compression [107, 28], repeated
bit-pattern elimination [167], etc.—whose performance depends on data content.
We thus designed Re-Animator to optionally support efficient capture and replay
of full buffer contents so as to accurately reproduce the original application’s re-
sults.

Since capturing data buffers can generate large trace files, Re-Animator can
optionally replace the data with summary hashes. However, full data capture can
enable future research into areas such as (1) space-saving storage options (e.g.,
compression, deduplication); (2) copy-on-write and snapshot features; (3) com-
plex program behaviors; and (4) security. We discuss the details of our features in
Section 4.2.2.

Minimize overhead. Since our goal is to record realistic behavior, anything that
affects the traced application’s performance is undesirable. Tracing necessarily
adds overhead in several ways: (1) as each system call is made, a record must be
created; (2) any data associated with the call (e.g., a pathname or a complete write
buffer) must be captured; and (3) the information must be written to stable stor-
age. To reduce overhead, some tracing systems, such as DTrace [29], ktrace [69],
and SysDIG [24]—all of which we tested—drop events under heavy load; this is
clearly harmful to high fidelity. Some tools can be configured to block the appli-
cation instead of losing events, which is also undesirable since it can affect the
application’s timing. Re-Animator’s primary tracing tool, RA-LTTng, is based
on LTTng [127, 54], an efficient Linux tracing facility [53]. However, LTTng
does not capture buffer contents, so we had to add that feature. RA-LTTng uses
a combination of blocking, asynchronous, and lockless mechanisms to ensure we
capture all events, including data buffers, while keeping overhead low.
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Scalable and verifiable. Tracing tools should always avoid arbitrary limita-
tions. It should be possible to trace large applications for long periods, so traces
must be captured directly to stable storage (as opposed to fast but small in-memory
buffers). In addition, it must be possible to verify that replay has been done cor-
rectly. We use three verification methods: (1) when a system call is issued, we
ensure that it received the same return code (including error codes) as was cap-
tured; (2) for calls that return information, such as st at and read, we validate the
returned data; and (3) after replay completes, we separately compare the logical
POSIX file system state with that produced by the original application.

Portability. Tools are only effective if they are usable in the desired environ-
ment. To enhance portability, we chose the DataSeries trace format [14] and de-
veloped a common library that standardizes trace capture.

Ease of use and extensibility. User-interface design, flexibility, and power are
all critical to a tool’s effectiveness. Our framework requires a kernel patch, but
capture and replay use simple command-line tools. It is easy to add support for
new system calls as necessary.

422 Fidelity

Re-Animator is based on LTTng [127], an extensible Linux kernel tracing frame-
work. LTTng inserts tracepoints [53] in functions such as the system-call entry
and exit handlers. When a tracepoint is hit, information is captured into a buffer
shared with a user-level daemon, which then writes it to a file. For parallelism,
the shared buffer is divided into sub-buffers, one per traced process; the LTTng
daemon uses user-space RCUs [55] for lockless synchronization with the kernel.
The data is written in Linux’s Common Trace Format (CTF) [126], which the
babeltrace tool converts to human-readable text.

Figure 4.1 shows LTTng’s flow for tracing and capturing calls; green compo-
nents denote our changes. For ease of use, a wrapper (Figure 4.1, step 1) auto-
mates the tasks of starting the LTTng components and the traced application.

Since the sub-buffers were designed for small records, it is hard to capture
large data buffers, such as when a single I/O writes megabytes. Instead, we capture
those directly to a secondary file (Figure 4.1, step 7) in a compact format that
contains a cross-reference to the CTF file, the data, and its length. An advantage
of the separate file is that it can be placed on a different, larger or faster storage
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Figure 4.1: LTTng architecture using Linux kernel tracepoints. Green boxes de-
note our additions or changes. Our wrapper (1) launches the LTTng configurator
(2), which invokes an LTTng session daemon (3) to control the operation and the
consumer daemon (4) to collect events. LTTng tracepoints place events into sub-
buffers (5) and invoke Re-Animator, which collects data buffers and writes them
to a separate disk file (7).

device. For parallelism, when we capture one of the 38 system calls that involve
data, we copy the user buffer, choose a file offset under a spinlock, and then write
the data asynchronously. In the rest of this chapter, we refer to this enhanced CTF
format with secondary buffer-data files as RA-CTF.

We modified babeltrace to generate the DataSeries format [14], which can
group events on a per-thread basis and includes the captured data, simplifying
replay.

To correctly capture system calls in multi-threaded and multi-process applica-
tions, we modified LTTng to follow forked processes. (LTTng’s developers are
working on a more complete solution to the problem of process tracking.)
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Memory-mapped files. Many modern applications use mmap to access for effi-
cient file access. Unlike user-level system-call tracers [16], RA-LTTng can cap-
ture and replay mmaped operations. To do so, we integrated two new kernel trace-
points into LTTng’s framework. When an application reads an mmaped file for the
first time, a page fault fetches its data. RA-LTTng tracks every insertion into the
page cache; if it is to an mmaped file, we add it to a map of inode numbers to page
lists and capture the page contents. We also capture page cache insertions caused
by readahead operations.

When an application writes to an mmaped file, the cached page is marked dirty,
to be later flushed. RA-LTTng monitors all cache write-backs for mmaped files and
writes a copy of the page’s contents to the secondary trace file; this is performed
asynchronously along with regular write and related system calls as described in
Section 4.2.3. We avoid duplicate writes; for example, if a write causes a page
cache write-back operation, we record only the write event and its data.

RA-Replayer fully supports tracing the entire mmap API by replaying reads
and writes captured from mmaped file accesses. We use pseudo-system-call records,
mmap_pread and mmap_pwrite, for these operations. RA-Replayer can replay
mmap_pread and mmap_pwrite “natively” by accessing related pages and caus-
ing page faults accordingly, or it can emulate the mmap system calls’ actions by
calling pread and pwrite. RA-Replayer manages the virtual memory layout for
each replayed process; it keeps track of replayed virtual memory areas and where
they map to traced processes’ virtual address spaces. RA-Replayer can also replay
supporting functions for mmap such as msync, madvise, and mprotect.

4.2.3 Low-Overhead and Accurate

One of the biggest drawbacks of tracing is that it slows the application, chang-
ing execution patterns and timings. Server applications can experience timeouts,
dropped packets, and even failed queries. Re-Animator minimizes overhead while
maintaining high fidelity.

We detailed RA-LTTng’s mechanisms for capturing system calls and their data
into two separate files in Section 4.2.2. LTTng allocates a fixed amount of sub-
buffer memory; it was designed to cap overheads even if events are dropped (it
counts and reports the number of drops). By default, LTTng allocates 4MB for
the sub-buffers. We verified that by expanding them to just 64MB—negligible in
today’s computers—none of our experiments lost a single event.

In addition, we implemented a pseudo-blocking mode in RA-LTTng to ensure
that it never loses events. When the sub-buffers fill, RA-LTTng throttles appli-
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cations that produce too much trace data. First, we try to switch contexts to the
user-level process that drains sub-buffers (1ttng—consumerd) using the Linux
kernel’s yield_to APIL However, yielding to a specific task inside the kernel
succeeds only if the target is in the READY or RUNNING queues. If we are unable
to activate the consumer daemon, we sleep for Ims and then yield to the sched-
uler. This gives the consumer time to be (re-)scheduled and drain the sub-buffers.
We detail the overhead of blocking mode in Section 4.3.3.

We took a different approach to capturing data buffers, which are much larger
than LTTng’s event records. When RA-LTTng gets the buffer’s content, it of-
floads writing to a Linux workqueue (currently configured to 32 entries). Linux
spawns up to one kernel thread per workqueue entry to write the data to disk. This
asynchrony allows the traced application to continue in parallel. When tracing
an application that generates events at an unusually high rate, it is possible that
the OS will not be able to schedule the trace-writing kthreads frequently enough
to flush those records. To avoid losing any data, RA-LTTng configures the work
queues to block (throttle) the traced application until the queue drains, which can
slow the application but guarantees high fidelity. The overhead can be further
reduced by increasing the maximum size of the work queue (at the cost of more
kernel memory and CPU cycles).

In the future we plan to integrate LTTng’s capture mechanism with our data-
buffer workqueues while maintaining the goal of capturing all events.

4.2.4 Verifiable

We have explained how Re-Animator captures buffers accurately and efficiently in
Sections 4.2.2 and 4.2.3. Re-Animator leverages LTTng’s architecture to collect
as much data as it can without adding significant overhead. Capturing complete
buffer data allows RA-Replayer to verify system calls on the fly and generate the
same logical disk state.

During replay, Re-Animator checks that return values match those from the
original run and that buffers contain the same content. Here, “buffers” refers to
any region that contains execution-related data, including results from calls like
stat, getdents, ioctl, fentl, etc. Since the trace file tracks all calls that pass
data to the kernel and change the logical POSIX file system state, we can perform
the same operations with the same data to produce the same logical state as the
original execution. Furthermore, RA-Replayer verifies that each call produces
the same results (including failures and error codes). We have confirmed that
Re-Animator generates the same content as the traced application by running sev-
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eral micro- and macro-benchmarks (see Section 4.3) and comparing the directory
trees after the replay run. Note that bit-for-bit identity cannot be achieved, since a
generated file’s timestamps will not be the same (absent a ut imes call), and the
results of reading procfs files like /proc/meminfo might be different. Thus,
when we use the term “logical state” we are referring to those parts of the state
that can reasonably be recreated in a POSIX environment, and RA-Replayer’s
verification checks only those fields. Both Re-Animator and RA-Replayer are
configurable. For example, if Re-Animator is run with data-buffer capture dis-
abled, RA-Replayer allows the user to replay writes using either random bytes
or repeated patterns. In that case, RA-Replayer automatically adapts to the cap-
tured trace (e.g., it does not try to verify buffer contents that were never captured).
RA-Replayer also supports logging with multiple warning levels, and logs can be
redirected to a file. Lastly, the aforementioned checks to verify buffer contents
and return values can be enabled (displaying warnings or optionally aborting on
any mismatch).

Our current work has focused primarily on accurate trace capture, so RA-
Replayer is only a prototype. Nevertheless, we have ensured that its design will
support future enhancements to minimize overhead, reproduce inter-thread depen-
dencies, and maximize accuracy and flexibility. These features remain as future
work.

4.2.5 Portable

To allow our tools to be used as widely as possible, we capture and replay in
DataSeries [14], a compact, flexible, and fast format developed at HP Labs; a
C++ library and associated tools provide easy access. A DataSeries file contains
a number of extents, each with a schema defined in the file header. We devel-
oped an updated version of the SNIA schema for system-call traces [169], which
SNIA plans to adopt. Each extent stores records of one system-call type. Unlike
prior tools, which often captured only the information of interest to a particular
researcher, we have chosen a maximalist approach, recording as much data as pos-
sible. Doing so has two advantages: (1) it enables fully accurate replay, and (2) it
ensures that a future researcher—even one doing work we did not envision—will
not be limited by a lack of information.

In particular, in addition to all system call parameters, we record the precise
time the call began and ended, the PID, thread ID, parent PID, process group ID,
and errno. By default we also record the data buffers for reads and writes.

When replaying, we reproduce nearly all calls precisely—even failed ones.
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The original success or failure status of a call is verified to ensure that the replay
has been accurate, and we compare the returned information (e.g., stat results
and data returned by read) to the original values.

However, there are certain practical exceptions to our “replicate everything”
philosophy: for example, if it were followed slavishly, replaying network activity
would require that all remote computers be placed into a state identical to how
they were at the time of capture. Given the complexities of the Internet and sys-
tems such as DNS, such precise reproduction is impossible. Instead, we simulate
the network: sockets are created but not connected, and I/O calls on socket file
descriptors are simply discarded.

Source code size. Over a period of 3.5 years, we wrote nearly 20,000 lines of
C/C++ code (LoC). We added 3,957 LoC for the library that integrates the tracer
with DataSeries, 8,422 for the replayer and another 1,005 for the record-sorter
tool. We added or modified 2,124 LoC in LTTng’s kernel module, 1,696 LoC
for the LTTng user-level tools, and finally 2,565 LoC for the babeltrace2ds
converter.

4.3 Evaluation

Our Re-Animator evaluation goals were to measure the overhead of tracing, demon-
strate that accurate replay is possible, and get a taste for other practical uses of the
portable trace files we have collected (e.g., useful statistics).

Testbed. Our testbed includes four identical Dell R-710 servers, each with two
Intel Xeon quad-core 2.4GHz CPUs and configured to boot with a deliberately
small 4GB of RAM. Each server ran CentOS Linux v7.6.1810, but we installed
and ran our own 4.19.19 kernel with the RA-LTTng code changes. Each server
had three drives to minimize I/O interference: (1) A Seagate ST9146852SS 148GB
SAS as a boot drive. (2) An Intel SSDSC2BA200G3 200GB SSD (“test drive”)
for the benchmark’s test data (e.g., where MySQL would write its database). We
used an SSD since they are becoming popular on servers due to their superior
random-access performance. (3) A separate Seagate ST9500430SS 500GB SAS
HDD (“trace-capture drive”) for recording the captured traces, also used for read-
ing traces back during replay onto the test drive. Our traces are written (appended)
sequentially in two different file streams (CTF and RA-CTF). But from the disk’s
perspective, we are generating random accesses because a single HDD head has
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to seek constantly between those two streams, to append to two different files.
This seeking is compounded by the fact that CTF records are small and written
frequently whereas RA-CTF records are comparatively large but produced less
often. For that reason, we also experimented with writing the trace files to a faster
device (Samsung MZ1LV960HCJH-000MU 960GB M.2 NVMe).

Although all servers had the same hardware and software, we verified that
when repeated, all experiments yielded results that did not deviate by more than
1-2% across servers.

4.3.1 Benchmarks

We ran a large number of micro- and macro-benchmarks. Micro-benchmarks
can highlight the worst-case behavior of a system by focusing on specific opera-
tions. Macro-benchmarks show the realistic, real-world performance of applica-
tions with mixed workloads. For brevity, we describe only a subset of our tests in
this chapter, focusing on the most interesting trends, including worst-case scenar-
10s. All benchmarks were run at least five times; standard deviations were less than
5% of the mean unless otherwise reported. Each benchmark was repeated under
two different conditions: (1) an unmodified program (called “Vanilla”) without
any tracing, to serve as a baseline; and (2) the program traced using our modi-
fied LTTng, which directly records results in RA-CTF format (“RA-LTTng”) (see
Section 4.2.2).

Micro-benchmarks. To capture traces, we first ran the FIO micro-benchmark [66],
which tests read and write performance for both random and sequential patterns;
each FIO test ran with 1, 2, 4, and 8 threads. We configured FIO with an 8GB
dataset size to ensure it exceeded our server’s 4GB of RAM and thus exercised
sufficient I/Os. (We also ran several micro-benchmarks using Filebench [13] but
omit the results since they did not differ much from FIO’s.)

Macro-benchmarks. We ran two realistic macro-benchmarks: (1) LevelDB [115],
a key-value (KV) store with its own dbbench exerciser. We ran 8 different pre-
configured I/O-intensive phases: fillseq, fillsync, fillrandom, overwrite, readran-
doml, readrandom?2, readseq, and readreverse. We selected DB sizes of 1GB,
2GB, 4GB, and 8GB by asking dbbench to generate 10, 20, 40, and 80 million
KV pairs, respectively; and for each size we ran LevelDB with 1, 2, 4, and 8
threads. Finally, although LevelDB uses mmap by default, we also configured it to
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use regular read and write calls, which exposed different behavior that we cap-
tured and analyzed. (2) MySQL [139] with an 8GB database size. We configured
sysbench [173] to run 4 threads that issued MySQL queries for a fixed one-hour
period.

Format conversion. Recall that RA-LTTng stores traces using our enhanced
RA-CTF format (Linux’s CTF for system calls, slightly enhanced, plus separate
binary files to store system-call buffers); therefore we wrote babeltrace2ds,
which converts RA-CTF traces to DataSeries format before replaying the latter.
Babeltrace2ds can consume a lot of I/O and CPU cycles, but the conversion
is done only once and can be performed offline without affecting an application’s
behavior. In one large experiment, babeltrace2ds took 13 hours to convert a
255GB RA-CTF file (from a Level DB experiment) to a 214GB DataSeries file; the
latter is smaller because the DataSeries format is more compact than RA-CTF’s.
The conversion was done on a VM configured with 128GB RAM. At its peak,
babeltrace2ds’s resident memory size exceeded 60GB. These figures justify
our choice to perform this conversion offline, rather than attempting to integrate
the large and complex DataSeries library, all written in C++, into the C-based
Linux kernel. Optimizing babeltrace2ds—currently single-threaded—was not
a goal of this project.

Because RA-Replayer is a prototype, we omit results for it here, as they would
not be indicative of the performance of a production version.

4.3.2 FIO Micro-Benchmark

We report the time (in minutes) to run FIO with 1 or 8 threads. (The results with 2
and 4 threads were between the reported values, but we do not have enough data
to establish a curve based on the number of threads.) We report elapsed, user, and
system times separately. The results include the time for flushing all dirty data
and persisting trace records.

Figures 4.2 and 4.3 show FIO’s read and write times, respectively. Several
trends in this data were the same for sequential reads and both random and se-
quential writes. These trends (some of which are unsurprising) are: (1) Compared
to Vanilla, all tracing takes longer. (2) Running FIO with 8 threads instead of
one reduced overall times thanks to better I/O and CPU interleaving. Our servers
have 8 cores each, and their SSDs are inherently parallel devices that can process
multiple I/Os concurrently [99, 57, 37]. We focus on the single-threaded results
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Figure 4.2: FIO random and sequential read times in minutes (elapsed, user, and
system). Vanilla denotes FIO without tracing; RA-LTTng denotes FIO with full
tracing enabled. Note that the Y-axis scales differ between the random and se-
quential pairs of figures.

below. (3) RA-LTTng is low-overhead thanks to its efficient, in-kernel, asyn-
chronous tracing and logging. Compared to Vanilla, RA-LTTng’s elapsed times
are only 8-33% slower. This is because RA-LTTng performs most of its actions
in the kernel, and we use asynchronous threads to permit interleaved I/O and CPU
activities. (4) The FIO random-read test is the most challenging; unlike writes,
which can be processed asynchronously, uncached reads are synchronous. Se-
quential reads are easier to handle than random ones thanks to read-ahead, which
is why even the Vanilla elapsed time for random reads (Figure 4.2(a)) was about
10x longer than the other three FIO runs. This made all elapsed times in Fig-
ures 4.2(a) and 4.2(b) longer than their counterparts in other figures. Because the
system was more frequently blocked on I/Os in FIO’s random-read benchmark,
the overheads imposed by tracing, relative to Vanilla, were lower: only 1.1 x.
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Figure 4.3: FIO random and sequential write times in minutes (elapsed, user,
and system). Vanilla denotes FIO without tracing; RA-LTTng denotes FIO with
full tracing enabled. Note that the Y-axis scales differ between the random and
sequential pairs of figures.

4.3.3 LevelDB Macro-Benchmark

We ran LevelDB on a 1GB database, using 4 threads and the default sequence
of phases described in Section 4.3.1. The LevelDB benchmarks took 36 minutes
without tracing and 78 minutes with RA-LTTng tracing enabled (2.2x longer).
Note that the 1GB DB is smaller than our 4GB system memory; this is actually a
worst-case benchmark compared to larger DB sizes because more system calls can
execute without blocking on slow I/Os, while Re-Animator still needs to persis-
tently record every system call, including its buffers, to a dedicated trace-capture
drive. Thus, the relative overhead of Re-Animator is higher in this case. Nev-
ertheless, RA-LTTng had an overhead of only 2.2, thanks to its asynchronous
in-kernel tracing infrastructure.
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Figure 4.4: LevelDB read-random latency for different-sized databases (in mil-
liseconds per operation).

Figure 4.4 shows LevelDB’s random-read performance (in ms/operation) for
different-sized databases. We chose to report detailed results for LevelDB because
the random-read phase showed the most interesting patterns and also exercised
both the I/O subsystem and the OS intensely.

As expected, latency grew with the DB size. Once the DB size reached 8GB—
double the 4GB RAM of our test servers—significant swapping and paging activ-
ity took place; even for vanilla instances, the latency for 8GB was more than 10 x
larger than for the 4GB DB.

Relative to Vanilla, when the DB fit in memory (1GB), RA-LTTng was 3.5 X
slower; when the DB was large enough to cause more I/O activity (8GB), this
overhead dropped to only 9% slower, thanks to RA-LTTng’s scalability.

RA-LTTng showed a latency jump going from the 2GB to the 4GB DB—an
increase not seen in the vanilla benchmark (db_bench). The reason is that the
4GB DB mostly fits in memory under Vanilla, and hence incurs few paging 1/Os,
especially because db_bench generates its data on the fly (in memory). Tracing,
however, requires additional I/Os to write the trace itself: therefore, db_bench and
these I/0s compete with the benchmark itself for page-cache space (and shared
I/0 buses).

We captured a small trace of LevelDB running on a 250MB database, using
one thread, with the default sequence of phases described in Section 4.3.1; the
elapsed time was 81 seconds. The DataSeries file for this experiment was 25GB.
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We verified the logical POSIX file system state after replaying this trace; it was
identical to the original LevelDB run.

We also captured a LevelDB workload with 80M KV pairs, running on a server
with 24GB RAM (instead of 4GB). We found that runtime did not change sub-
stantially, because LevelDB was surprisingly CPU-bound: 30-32% of the cycles
were to compress and decompress its own data, and 25-26% were to memcpy
buffers before decompression and then look up keys.

LevelDB using mmap vs. read/write. LevelDB uses mmap by default, but it
can also use regular read and write system calls. To briefly demonstrate RA-
LTTng’s utility in investigating application behavior, we traced LevelDB using
both modes. We ran LevelDB benchmarks with a 10M KV database configu-
ration. In mmap mode, RA-LTTng captured around 100,000 4KB-sized page-
read operations; in read/write mode, we captured nearly 9.8 million operations,
mostly small pread requests, around 2.2-2.3KB in size (LevelDB writes small
KV pairs). Many of these preads read the same page-cached data repeatedly.
As anticipated, we also observed that the captured DataSeries file in read/write
mode was 56 larger than in mmap mode. These figures demonstrate RA-LTTng’s
usefulness: a LevelDB application developer may want to investigate running it
with mmap (seeing only unique reads and writes) or without (seeing all repeated,
cached reads, with their original sizes)—and then optimize the program.

Replaying LevelDB on different file systems. We also ran a short experiment
to test RA-Replayer’s utility for evaluating other file systems. We captured a
trace of LevelDB with SM KV pairs running on Ext4 and replayed it on differ-
ent file systems. On XFS the system time for this workload was 18% lower,
whereas on Btrfs the system time was 31% higher. Btrfs supports data com-
pression options; when replaying with the base (LZO) compression, no space
was saved on disk, because LevelDB by default already compresses its data, but
Btrfs’s compress-force=z1ib option was able to save 17% further space—but
the system time was 10% higher than without compression.

RA-LTTng blocking mode. Section 4.2.3 explained how we integrated block-
ing mode into RA-LTTng. We now show how much overhead blocking mode can
introduce with different sizes of sub-buffers, as seen in Figure 4.5. We traced
db_bench with its default configuration (100MB database size). We found out
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Figure 4.5: RA-LTTng blocking-mode overheads for tracing LevelDB db_bench
with its default database configuration. We used 3 different RA-LTTng sub-buffer
sizes (4MB, 2MB, and 1MB); we show user, system, and elapsed times for each
experiment. The table below also shows the elapsed time overheads relative to the
4MB baseline and the number of yield calls executed.

that without any blocking functionality, the minimum amount of sub-buffer mem-
ory we needed to ensure that RA-LTTng will not lose any events is 4MB. Con-
sidering the 4MB sub-buffer configuration as a baseline, we calculated overheads
based on the elapsed time for tracing under the default event-dropping mode and
our enhanced blocking mode (which does not lose any events). If we put memory
pressure on RA-LTTng in blocking mode, RA-LTTng throttles the application,
and we then see higher system and elapsed times. The additional system time is
explained by correlation with the number of yields that RA-LTTng performed.
Note that the reason there were (just) 53 yields in the 4MB configuration is
that RA-LTTng starts throttling just before the sub-buffers get 100% full. The
threshold for the throttling system is also configurable (we used 80%).

Tracing LevelDB on NVMe vs. HDD. Initially our experiments used a large,
inexpensive, SAS HDD to store traces. But, as we found the HDD to be too
slow for large-scale tracing, we wanted to show how much performance can be
improved by using a faster tracing device such as an NVMe SSD (Figure 4.6).
Although Re-Animator was designed for high fidelity and thus to capture full data
buffers, for many users it is enough to capture just system-call meta-data events
(and perhaps small buffers). To explore these options, we also compared cases
where we captured data buffers, captured only system-call metadata, and captured
with and without mmap support. We configured db_bench for a 1GB database
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Figure 4.6: Results of HDD vs. NVMe devices used to record traces, along three
dimensions: (i) capturing traces on HDD vs. NVMe (yellow vs. blue bars); (ii)
capturing with data buffers vs. only system-call metadata (hatched pattern vs.
clear); and (iii) capturing LevelDB using mmap vs. read/write (separated by
vertical dotted line).

and ran ten different experiments. We repeated each experiment five times and
ensured that the standard deviation was below 5% of the mean. Figure 4.6 shows
that tracing with data buffers added anywhere from 20% overhead (best case of
mmap enabled & NVMe) to 126% overhead (worst case of mmap disabled & HDD)
The higher overheads were because when LevelDB is configured to not use mmap,
it issues a (p) read or £ (p) write for each access and therefore invokes a large
number of system calls. That causes Re-Animator to add 22-79% more over-
head compared to the mmap-enabled versions of the same configurations. If a user
wants to reduce overheads and does not need to capture data buffer contents, Re-
Animator offers trace capturing with only 5-17% overhead. We observed that
switching the trace-capture device from HDD to NVMe reduced the tracing over-
head by 14-30% when data-buffer capturing was enabled. However, if we only
captured system-call metadata (no data buffers), there was a negligible overhead
difference between using HDD and NVMe as trace-capture device; that is be-
cause the HDD is fast enough when the amount of data written to it sequentially
is smaller.

During these experiments, we also discovered an example of interactions be-
tween tracing performance and the behavior of the traced program. The Lev-
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elDB benchmark uses a foreground thread to exercise the database; a background
thread compacts data and pushes it down the LSM tree. The foreground thread
monitors the progress of compaction and uses two heuristics if compaction falls
behind: (1) when a threshold of uncompacted data is reached, the foreground
thread sleeps for 1ms to let the background thread run, and (2) if a higher thresh-
old is reached, the foreground thread blocks until compaction has made significant
progress. In addition, these compactions might create an avalanche of multi-level
compactions [102]. By their nature, these two threads issue different numbers of
system calls, which in turn means they are delayed by different amounts when we
trace them. In the benchmark, the compaction thread issued more calls. When
we ran the test with mmap disabled, we observed different behavior depending on
the device used to store traces. Storing traces on the HDD slowed the compaction
thread significantly more, and hence the 1ms sleep happened more frequently. In
contrast, storing traces to the faster NVMe device had less impact, so that the com-
paction did not fall so far behind. However, while this case did complete faster
than when tracing to the HDD, we also observed around 20 million more pread
calls when storing traces on the NVMe. Interestingly, when we increased Lev-
elDB’s in-memory buffers from the default 4MB to 100MB, the behavioral dif-
ference between recording traces on HDD and NVMe disappeared. While we are
still investigating the exact reasons for these effects, we believe they are due to the
number of compactions: with less memory, LevelDB has to perform compaction
more often, which moves more data across its layers. Kannan et al. [102] have
also reported that increasing the in-memory buffer sizes can reduce compaction
frequency. We believe that LevelDB should not be hard-coding its buffer sizes
but rather should adapt them to the workload (or at least permit users to configure
that amount at run time). Nevertheless, this somewhat counter-intuitive finding
highlights the usefulness of tracing applications to understand their behavior.

4.3.4 MySQL Macro-Benchmark

Figure 4.7 shows the counts of total queries and transactions completed within one
hour by sysbench issuing requests to MySQL. One or more queries were sent
as a single transaction; hence the number of transactions is lower than the total
number of queries. In one hour, Vanilla completed 38.5M queries. On the same
test, RA-LTTng completed 21.2M queries (about 55% of Vanilla) in one hour.
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Figure 4.7: Counts (Millions) of MySQL queries and transactions completed
within a one-hour period.

4.3.5 Trace Statistics

DataSeries comes with a tool called dsstatgroupby, which can calculate use-
ful statistics from trace files. As an example of its utility, we highlight a few
helpful metrics that we extracted in our experiments. For example, the Level DB
experiment executed a total of 6,378,938 system calls (23 unique calls). 99.87%
of those were to write and pread. The distribution of buffer sizes passed to
write ranged from 20B to 64KB, with many odd and sub-optimal sizes just above
4KB. We noted that over 3M write calls used a specific—and inefficient—size
of 138B. We hypothesize that the odd-sized writes are related to atomic transac-
tions in this KV store, suggesting that there may be significant room for improving
LevelDB’s performance with an alternate data structure.

Similarly, the MySQL experiment executed 8,763,035 system calls (37 unique)
in total. Four dominating calls—pwrite, pread, £sync, and write—accounted
for 99.95% of the operations. Most preads were exactly 16KB in size and thus
highly efficient. There were 2.5M fsyncs (e.g., to flush transaction logs). We
further explored the latency quantiles of £sync: about 20% of all calls took less
than 1ms, but 0.01% (about 250) took over 100ms to complete, exhibiting tail
latencies also observed by other researchers [50, 118, 82, 94].

4.4 Conclusions and Future Work

Tracing and trace replay are essential tools for understanding systems and analyz-
ing their performance. We have built Re-Animator, which captures system-call
traces in a portable format and replays them accurately. Our capture method,
based on LTTng, requires small kernel modifications but has and average over-
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head of only 1.8-2.3x compared to an untraced application; the lowest overhead
was just 5%. Unlike previous systems, we capture all information, including data
buffers for system calls such as read and write, needed to reproduce the original
application exactly.

Our replayer is designed for precise fidelity. Since it has access to the original
data, it correctly reproduces behavior even on systems that employ data-dependent
techniques such as compression and deduplication. The replayer verifies its ac-
tions as it performs them, ensuring that the final logical POSIX file system state
matches the original. We have traced and replayed a number of popular applica-
tions and servers, comparing outputs to ensure that they are correct.

Future work. The work described in this chapter concentrated on building a
powerful tool, and we have provided a few examples of RA-LTTng’s research
usefulness. Re-Animator can be applied to research such as application perfor-
mance analysis, cyber-security, and machine learning, among others, and we now
plan to use it to collect and analyze long-term application traces. We also plan to
integrate Linux workqueues to RA-LTTng for capturing CTF records and unifying
the trace capturing system.
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Chapter 5

KML.: ML Framework for
Operating Systems

Operating systems include many heuristic algorithms designed to improve overall
storage performance and throughput. Because such heuristics cannot work well
for all conditions and workloads, system designers resorted to exposing numerous
tunable parameters to users—thus burdening users with continually optimizing
their own storage systems and applications. Storage systems are usually respon-
sible for most latency in I/O-heavy applications, so even a small latency improve-
ment can be significant. Machine learning (ML) techniques promise to learn pat-
terns, generalize from them, and enable optimal solutions that adapt to changing
workloads. We propose that ML solutions become a first-class component in OSs
and replace manual heuristics to optimize storage systems dynamically. In this
chapter, we describe our proposed ML architecture, called KML. We developed a
prototype KML architecture and applied it to two case studies: optimizing read-
ahead and NFS read-size values. Our experiments show that KML consumes less
than 4KB of dynamic kernel memory, has a CPU overhead smaller than 0.2%, and
yet can learn patterns and improve I/O throughput by as much as 2.3x and 15X
for two case studies—even for complex, never-seen-before, concurrently running
mixed workloads on different storage devices.
This chapter makes five contributions:

1. We show that lightweight ML can indeed become a first-class citizen inside
storage systems and OSs;

2. We offer flexibility through synchronous or asynchronous training and the
ability to offload training to the user-level,
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3. We introduce the idea of generic ML APIs that can be expanded to support
additional and future ML techniques;

4. We apply KML to two important optimization problems (readahead and
NES rsize values); and

5. We evaluate our solutions using multiple, complex, and even mixed work-
loads, as well as two different storage devices. We demonstrate throughput
improvements up to 2.3 for readhead and up to 15 x for rsize. We show
that ML models trained on a few workloads can generalize and optimize
throughput for never-before-seen workloads or devices. And finally, we
show that KML has small CPU overheads (< 0.2%) and dynamic memory
footprint (4KB), well worth the overall I/O improvements.

Next, Section 5.1 describes KML’s design. Section 5.2 describes our two use
cases (readahead and NFS rsize). Detailed evaluation of KML and two use cases
are in Section 5.3. We describe possible future works in Section 5.4.

5.1 KML'’s Architecture

Modern ML libraries are often general-purpose, rely on many large third-party li-
braries (e.g., in C++ or Python), and designed to process lots of data using massive
processing power (e.g., GPU clusters). Porting such ML systems to an OS kernel
would be impractical, because an OS is a highly constrained and unforgiving en-
vironment. Thus, we chose to develop an ML framework from scratch—designed
for low-overhead, light-weight, and highly tailored to OSs and storage systems
and OS developers.

KML high-level design choices Figure 5.1 demonstrates two different operat-
ing modes that we built. KML supports (a) in-kernel training and inference and
(b) user space offline training and in-kernel inference. Once a model is built in
user space, it can be loaded into the kernel as is. KML has a highly modular de-
sign: the core ML code base is shared by both user and kernel space. Operation
mode (a) is designed for performance and accuracy, especially under high-1/0
rates, because collecting and copying lots of I/O event data out of the kernel im-
poses high overheads. Operation mode (b) is designed to simplify ML model
development for OS/storage developers. Users can develop and test an ML model
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Figure 5.1: Two different operational modes that we built to achieve a high ef-
ficiency ML framework for tuning OS-level storage systems: (a) kernel space
training and inference and (b) offline user space training and kernel space infer-
ence.

design more easily in user space, testing different features, ML architectures, and
hyper-parameters to reach a stable and accurate model.

5.1.1 Design Overview

Easy to develop and extend In Figure 5.1(b), KML is compiled and linked
with an application for both kernel and user space. u-MLib.a and k-MLib.ko
are built using the same KML source code. We developed a wrapper layer for the
KML development API: KML'’s core code is uniform across both user and kernel
APIs. This identical abstraction speeds up development, eases debugging, and
facilitates extensibility (see Section 5.1.3). Nevertheless, we recognize that while
we aim to make ML-based solutions easier to use, developers still require a good
understanding of OS and storage system internals.

Low overhead To make ML approaches practical for storage systems, they must
have low computational and memory overheads. ML solutions have three phases
that consume much memory/CPU resources: (i) inference (i.e., prediction), (ii)
training, and (iii) data processing & normalization. We support asynchronous
training and inference capabilities to reduce interference on the data path; KML
also uses efficient communications between the data collection and model training
& inference components, to help scalability and stability of ML-based designs.
To reduce the data collection overheads, developers can facilitate subsampling
techniques that are provided in KML. We detail our design choices to reduce these
overheads in Section 5.1.4.
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5.1.2 Fundamentals of Core ML library

KML provides primitives for building and extending ML models. This involves
building algorithms for training ML models (e.g., back-propagation, decision-tree
induction) and building the mathematical functions needed to implement them.
The library design allows for seamless extensibility of library functionality. Addi-
tionally, our ML functionality is easily debugged in user space as it uses identical
code and APIs in kernel space.

Mathematical and matrix operations Most ML algorithms rely heavily on ba-
sic mathematical functions and matrix algebra. For example, a neural network
classifier uses functions such as matrix multiplication/addition, softmax, and
exponentiation. Hence, we implemented kernel versions of such common ML
functions using well known approximation algorithms.

Layer and loss-function implementations One can think of a neural network
as a composition of layers and one or more loss functions. Many of these building
blocks are used across many different neural network architectures. Layers like
a fully connected layer, ReLU [134], or sigmoid are essential building blocks of
many neural networks; loss functions are also fairly common across many appli-
cations. Both layers and loss functions implement two main functionalities, one
during the inference (forward) phase and another during the back-propagation
(training) phase. We implemented these common components and their forward
and back-propagation functionality from scratch in KML: layer/loss functions,
data structures related to the layer/loss, etc.

Inference and training When stacked together, the elements of a conventional
neural network can form a DAG. Thus, a neural network inference means travers-

ing the DAG starting from the initial node(s) (where the inputs are provided), to-
ward the resulting nodes (where the neural network output is produced). KML im-
plements a standard training method used in neural networks—back-propagation [153].
KML also includes Stochastic Gradient Descent (SGD) which uses the gradients
computed using back-propagation to optimize the neural network weights.

5.1.3 KMUL’s Modular Design

We now elaborate on KML’s operation modes: (i) in-kernel training and infer-
ence (see Figure 5.1(a)), and (ii) user space training and in-kernel inference (see
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Figure 5.1(b)).
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Figure 5.2: KML kernel space training and inferencing architecture.

Training in kernel space We use the readahead use case to describe how KML
works in kernel training and inference mode. Figure 5.2 shows KML’s framework
(k-MLib.ko), a KML application (readahead.ko), and target storage compo-
nents (Block device and Memory Management subsystems). The yellow back-
ground denotes KML related components. The blue background depicts the target
storage components, which are specific to the readahead case. The green line rep-
resents execution and data flow. Numbered boxes refer to transitions happening
between the components.

As we mentioned in Section 4.1, we designed our use cases based on a contin-
uous observe-and-tune principle. In its first stage, the readahead module observes
and collects data. Since our target component is the memory management (e.g.,
page cache) system, the readahead module starts collecting data from this com-
ponent (Figure 5.2 @). The readahead module then extracts features and transfers
them to the KML framework to be normalized (Figure 5.2 @). After the data
processing and normalization stage is done, if the readahead module is operating
in training mode, it trains on the normalized data, and the execution flow ends
here. However, if the readahead module is operating in inference mode, it feeds
the normalized data to the readahead neural network model and tunes the target
components based on the model’s prediction (Figure 5.2 ®).
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How a KML application optimizes a target component depends on the problem
and its solution. Here, the readahead module updates readahead sizes on a per-file
basis (Figure 5.2 @) or a per-device basis (Figure 5.2 ®). When the readahead
module is inferencing, execution flow forms a closed-circuit. After the readahead
module changes readahead sizes, OS memory state changes; thereafter, new in-
puts go to the readahead neural network model, leading to updated predictions.
Therefore, ML is particularly suitable to solve problems that require an ongoing
cycle of observing and tuning.

In the ML ecosystem, data collection is a crucial part. One reason we offer
kernel training is to train on data collected with a high sampling rate. Tracing OSs
and storage systems with high accuracy and sampling rates is challenging [9].
Nevertheless, tracing tools like LTTng [127] can bring overhead down to as little
as 5%. Additionally, traces may still be inaccurate due to data loss. LTTng collects
trace data in shared user/kernel lockless circular buffers; under heavy sampling
loads, some trace events can be dropped if LTTng’s user-level processing threads
do not consume the samples fast enough. However, operating in kernel space
gives KML more control over thread scheduling to reduce loss of sampled events.
Since our use cases may require high sampling rates for I/O events, placing data
processing and normalization in user space would lose too much valuable data
than in the kernel. Still, we believe a user-kernel co-operated design may be
beneficial in some cases (part of our future work).

Training in user space Building ML solutions is an iterative process. To find
the essential features and build accurate models, we need to run multiple data
analyses, train, then test an ML model with different architectures and hyper-
parameters. To speed up model development and debugging, KML offers offline
user-space training and kernel inferencing mode (see Figure 5.1(b)). As KML’s
user- and kernel-space libraries use the same APIs and code base, models trained
in user space can be loaded into the kernel as is.

Figure 5.3 shows how the readahead model works in operation mode. Com-
ponents highlighted in yellow represent KML-specific implementations. The red
arrows denote the offline data collection and training paths.

We started by collecting training data using in-kernel tracing of the target stor-
age components [9]. Next was feature-extraction; this is where user-space training
was useful, because we could run various analyses, test different features, and im-
plement many data-normalization techniques without re-running I/O experiments.
After we finalized the feature selection, we trained and tested the readahead ML
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Figure 5.3: KML user-space training & kernel-space inference architecture.

model in user space, varying several hyper-parameters; we used Tune [122] to
optimize our hyper-parameters. When the readahead ML model was ready for
real-time testing, the only remaining step was to save the trained model to a KML-
specific file and load it into the readahead kernel module. KML APIs facilitate all
the functionality necessary for building, training, saving, and deploying ML mod-
els in-kernel.

To ensure identical kernel and user APIs, we use wrappers to abstract external
functionality. KML’s development API provides 30 functions that fall into five
categories: (1) memory management, (ii) threading, (iii) logging, (iv) atomic op-
erations, and (v) file operations. For example, we have a simple wrapper called
kml_malloc that calls malloc in user-level and kmalloc in kernel space. For
brevity, full API details and prototypes are omitted, but are included as part of our
released code (see Section 5.1.6); Table 5.1 presentes a few examples of the KML
APL

loss *build__loss(void *internal, loss_type type);
void add_layer(layers *existing_layers, layer *new_layer);
void create_async_thread(model_multithreading *multithreading,
model_data *data, kml_thread_func func, void *param);
sgd_optimizer *build_sgd_optimizer(float learning_rate,
float momentum, layers *layer_list, loss *loss);

Table 5.1: KML API examples

41



CHAPTER 5. KML: ML FRAMEWORK FOR OPERATING SYSTEMS

5.1.4 Computational & Memory Overheads

OSs and storage systems are susceptible to performance degradation and increased
latency if computational and memory resources are not carefully managed. There-
fore, we designed KML with efficient CPU and memory usage in mind. There is
often a positive correlation between the computational and memory footprint of
an ML model and its training and inference accuracy. Hence, KML is highly con-
figurable, letting users trade-off overheads vs. prediction accuracy to best suit the
problem at hand.

Reducing computational overheads Matrix manipulation is a computation-
ally intensive ML building block that relies on floating-point (FP) operations.
OSs often disable the floating-point unit (FPU) in the kernel to reduce context-
switching overheads. To address this, we considered three approaches: (1) quan-
tization, (2) fixed-point representations, and (3) temporarily enabling the FPU
unit in kernel space. Quantization provides compact representation, allows de-
velopers to compute matrix manipulation operations, and does not require an
FPU [43, 74, 154, 49, 80]. Quantization can help reduce computational and
memory overheads, but it reduces accuracy [89]. Fixed-point representation com-
putes FP operations using integer registers. Since all FP operations are emu-
lated, integration of fixed-point representation is fairly easy and even faster in
certain cases [39, 123]. However, fixed-point representation works within fixed
ranges which can result in numerical instability [113]. Since both accuracy and
stability are vital KML design goals, we chose a third alternative: KML tem-
porarily enables the FPU in the Linux kernel using kernel_ fpu_begin and
kernel_fpu_end. To avoid context-switch overheads, we minimize the num-
ber of code blocks that use FPs and keep these blocks small.

Reducing memory overheads Three factors affect KML’s dynamic memory
consumption: (1) ML model-specific data, (2) KML’s internal memory alloca-
tions at training and inference, and (3) data collection for both training and in-
ference. ML model-specific data and KML’s internal memory usage depends on
the number of layers, layer sizes, and layer types. KML uses dynamic memory
allocation for all internal usage purposes (e.g., layer gradients); this helps reduce
interference and memory pressure. KML gathers input data in a lock-free circu-
lar buffer; then, an asynchronous training thread trains on gathered data. When
collecting data with a high sampling rate, the size of the lock-free circular buffer
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is important to the ML model’s performance and accuracy. Users need to config-
ure the size of the circular buffer to account for the data sampling rate such that
the asynchronous training thread can catch up with processing. If the size of the
circular buffer is misconfigured, KML may lose useful training data, which can
reduce the resulting ML model’s accuracy.

Operating under resource-constrained conditions KML exposes a memory
allocation and reservation API for ML internals. The primary motivation behind
KML’s memory reservation capabilities is to ensure predictable performance and
accuracy, even under memory pressure. This allows KML to operate without
worry of memory allocation lagging or failing, which would hurt performance
and accuracy.

Data processing & asynchronous training To make ML solutions generaliz-
able, data normalization is often utilized. KML supports data normalization func-
tionalities such as moving average, standard deviation, and Z-score calculation.
However, data normalization often requires heavy FP computation. Thus, KML
supports offloading training, inference, and data normalization to a separate asyn-
chronous thread—away from the data path itself. This thread communicates with
other KML components (e.g., data collection) using a lock-free circular buffer. By
default, we let Linux schedule this kthread as needed; KML also supports pinning
the kthread to a CPU core, to ensure it gets higher scheduling priority when high
sampling rates are required.

Subsampling is another viable solution to reduce data collection overheads,
which KML supports. However, subsampling can reduce prediction accuracy, so
care is needed to select a suitable sampling rate. In Section 5.3.3 we evaluate the
impact of subsampling windows on overheads, prediction accuracy, and overall
I/O performance.

5.1.5 Stability & Explainability

Both the training and inference phases for ML solutions can be computationally
intensive. Except for model initialization and saving models to files, KML APIs
involve no other I/Os. KML’s impact on the stability of storage performance
is limited to memory-allocation latency and concurrency. Memory allocations
in both user and kernel space can use locking mechanisms, which could incur
unexpected latencies. To minimize these problems, KML allocates memory only
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in the asynchronous training thread. KML uses a lock-free circular buffer for data
communication and reserves 512 bytes of additional memory to further ensure
stability under memory-pressure conditions. Lastly, we applied standard k-fold
cross validation techniques to ensure the stability of our ML solutions.

ML solutions can suffer from unexpected behavior and are harder to explain.
Conversely, traditional heuristics have well-defined behaviors often expressed as
closed-form formulas. An ML algorithm may behave erratically when used in
new, unforeseen settings, which could hurt system performance where ML is de-
ployed. This type of issue is difficult to troubleshoot due to the long-standing
explainability problems that affect ML models [5]. KML currently supports two
ML models: neural networks and decision trees. Decision tree predictions are
more explainable because they are represented as a tree of successive IF-THEN
statements, bisecting the range of the features considered. Deep neural networks,
however, are more challenging to explain and verify. Nevertheless, recent work
focuses on explainability in ML [93, 155, 150, 5]. While we plan to improve
KML model stability using feedback-based control algorithms in the future, we
currently focus on demonstrating that ML can tune storage system parameters
better than existing heuristics.

5.1.6 Implementation

KML contains 12,213 lines of C/C++ code (LoC). KML’s core ML part has 5,539
LoC, which can be compiled in both user and kernel space. Our readahead neural
network model code is nearly 1K LoC long: 486 LoC for collecting data, ini-
tializing the model, creating an inference thread, and changing block-level and
file-level readahead sizes; and another 351 LoC for model definition, data pro-
cessing, and normalization. Our NFS neural network model also includes nearly
1K LoC: 435 LoC for data collection, model initialization, and running inference
to predict workload type; and 338 LoC for creating the model and manipulating
data.
All of our code has been released on GitHub (https://github.com/sbu-fsl/kernel-ml ),

which includes examples, sample data, models, and full APl documentation (all
30 methods).
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5.2 Use Cases

We now detail our two use cases: (1) readahead neural network and decision tree
models and (2) NFS neural network model. We describe the following for each:
(i) problem definition, (ii) data collection for training, (iii) data preprocessing and
feature extraction, and (iv) building the ML model.

5.2.1 Use Case: Readahead

Problem definition Readahead is a technique to prefetch an additional amount
of storage data into the OS caches in anticipation of its use in the near term. Deter-
mining how much to read ahead has always been challenging: too little readahead
necessitates more disk reads later and too much readahead pollutes caches with
useless data—both hurt performance. The readahead value is a typical example of
a storage system parameter: while tunable, it is often fixed and left at its default.
Some OSs let users pass hints via fadvise and madvise to help the OS recog-
nize files that will be used purely sequentially or randomly, but these often fail to
find optimal values for varied, mixed, or changing workloads. Next, we detail our
readahead neural network design (following Figure 5.3). Our goal is to predict
optimal readahead sizes while running under dynamic I/O workloads.

Studying the problem We experimented with running 4 different RocksDB [64]
benchmarks, each with 20 different readahead sizes (8—1024), and attempted to
determine the readahead sizes that yield the best performance (in ops/sec) for each
workload. This became our training data, which can help predict readahead val-
ues for other workloads and environments. This investigation revealed that each
workload has a unique behavior and requires a different readahead size to reach
optimal performance. We further investigated the correlations between file access
patterns, RocksDB workload labels, and performance. This helped us determine
the information and features needed to build a good model, as described below.

Data collection We used LTTng [127] to collect trace data, which we then used
for finding useful features for the readahead problem. We captured most page
cache tracepoints [53] (e.g., add_to_page_cache, writeback_dirty_page).
We collected and processed over 20GB of traces by running multiple 10-minute
RocksDB benchmarks on an NVMe-SSD device. Ten minutes was sufficient for
RocksDB to reach a steady state. After examining these traces, we selected a set
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of candidate features based on our domain expertise. We then picked the features
of interest and decided where to call hook functions which are responsible for
gathering necessary information (e.g., struct page) for inference. Our hook
functions provide three important raw values: (1) time difference from the begin-
ning of execution, (2) inode number, and (3) page offsets of the files that were
accessed in locations where the hooks were called.

Data preprocessing & normalization We summarize the input data at one-
second intervals to ensure we can quickly adapt to changing I/O workloads while
ensuring stability under short-term activity spikes. Based on our domain exper-
tise, and through model experimentation, we selected the following five features
for our model: the number of transactions taking place each second, the calcu-
lated cumulative moving mean and the cumulative moving standard deviation of
page offsets, the mean absolute page offset differences for successive transactions,
and the inode number (to ensure we process only RocksDB file accesses). Be-
fore we fed these features to our readahead neural network, we applied Z-score
normalization to each feature.
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Figure 5.4: t-SNE visualization of readahead normalized features that are gener-
ated from both NVMe-SSD and SATA-SSD traces. Axes are intentionally omitted

because the dimensions are generated by t-SNE and do not represent any specific
data.
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Why we chose machine learning for this use case After studying the read-
ahead problem, we wanted to explore whether machine learning would be suitable
for solving this problem or whether more traditional heuristics could still work.
Therefore, while extracting features from collected traces, we visualized the fea-
tures to investigate what type of patterns and clusters the data has. Figure 5.4
shows a t-SNE [184] visualization of normalized features that are generated from
both NVMe-SSD and SATA-SSD traces. t-SNE is a visualization technique that
applies dimension reduction and is often used for representing high-dimensional
data and cluster identification. We can observe that sequential and random work-
loads are somewhat separated; alas, data points from the same workload type are
distributed over multiple clusters, overlapping clusters of other types. Worse, ran-
dom workloads’ clusters overlap with some sequential workloads’ clusters, be-
cause RocksDB’s warm-up phases involve mostly sequential accesses—another
source of dynamism. All these findings strongly suggest that workload classi-
fication for the readahead problem would be fairly challenging using traditional
heuristics. Hence, we felt motivated to explore ML solutions to solving the read-
ahead problem.

Building neural network model We modeled the readahead problem as a clas-
sification problem and designed a neural network with three linear layers (with
hidden layer sizes of 5 and 15), using sigmoid non-linearities in between layers,
and with a cross-entropy loss method as the loss function. We used an SGD op-
timizer [152, 103], and set a learning rate of 0.01 and a momentum of 0.99 after
trying different values; all these values are common in the literature [20]. We
also used Tune [122] to optimize the learning rate and momentum. Our read-
ahead neural network trains on the aforementioned input data and predicts the
workload type. We trained on the following four types of RocksDB workloads on
NVMe-SSD because they provide a diverse combination of random and sequen-
tial operations: (i) readrandom, (ii) readseq, (iii) readrandomwriterandom, and
(iv) readreverse. Class frequencies were close, suggesting that classification ac-
curacy is a good metric to evaluate the performance, with the least frequent class
being 21.4% and most frequent class being 28.8%.

We tested the neural network’s performance with the aforementioned data via
k-fold cross validation with £ = 10, and found out that it achieved an average
accuracy of 95.5%. We also analyzed the contribution of each feature to the clas-
sification performance; we randomized the order of a feature of interest across
samples in the validation dataset, and then calculated the 10-fold validation perfor-
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mance [26]. Using Pearson correlation analysis [142], we found that two features
were highly correlated: the cumulative moving standard deviation and the cumu-
lative moving mean of page offsets. Including both would have over-emphasized
their importance in this analysis, so we excluded the cumulative standard devi-
ation of page offsets. Cross validation results were 69.6%, 76.4%, 42.6%, and
89.1% for number of transactions, cumulative moving mean of page offsets, mean
absolute page offset differences, and current readahead value, respectively. This
shows that mean absolute page offset differences is the most important feature,
because randomizing its order reduced the validation results the most (down to
42.6%)—followed by number of transactions, cumulative moving mean of page
offsets, and finally the currently used readahead value.

After obtaining classification predictions, we set the empirically determined
optimal readahead sizes according to the predicted workload type. In Section 5.3.4,
we evaluate the readahead neural network not only on workloads we trained on
but also on workloads that were not included in the training data and workloads
running on different devices (NVMe vs. SATA SSDs).

Figure 5.4 shows that the same type of workloads for SATA-SSD vs. NVMe-
SSD are not placed in the same clusters all the time. We use neural network
input data that is generated only from an NVMe-SSD to train the readahead neu-
ral network; nevertheless, we still get significant performance improvement even
for SATA-SSDs (see Section 5.3.4). This indicates that our readahead neural net-
work is indeed learning higher-level abstractions about the workloads, one that
traditional heuristics would struggle with.

Finally, we also experimented with the readahead neural network using TPC-
H [181] queries running on MySQL [139] to show how our readahead neural
network behaves on completely different types of workloads and applications and
how generalizable the models are.

Decision-tree models We also built a decision-tree (DT) model for workload
type classification based on the same features and training data. The readahead
DT model contains 59 nodes with a maximum depth of 9 (see Figure 5.5). We
tested the prediction accuracy of this DT using the same procedure with the read-
ahead neural network (10-fold cross-validation), and observed that it results in an
average prediction accuracy of only 75.4%. In the readahead decision-tree model,
decisions are made based on features. For example, the decision at the root node
is whether the Z-score of the mean absolute page offset was less than or equal to
—0.349 (represented as X [3] <= —0.349). Even though the worst case of classi-

48



CHAPTER 5. KML: ML FRAMEWORK FOR OPERATING SYSTEMS
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Figure 5.5: A readahead decision tree is built to classify RocksDB workloads
running on a NVMe-SSD backed device. Colors denote workload classes: orange
for readrandom workload, green for rw-random, blue for readseq, and purple
for readreverse.

fying a particular readahead workload takes nine IF-THEN decisions, we can ob-
serve that the readahead decision-tree model can separate sequential from random
workloads in only two levels of decision making; however, this speed of recogni-
tion comes at a significant cost of accuracy. As mentioned in Section 5.1.5, KML
supports DTs because DTs trees are more explainable than neural networks and
run considerably faster. Although the decision trees are more explainable, it is still
hard to interpret the readahead decision tree model. The reason is that the values
at each node have been normalized to avoid overfitting and numerical instability,
and such normalization loses the original values. It is possible that given a nor-
malized input data, we can get the original value and improve the explainability
of the decision-tree path. Nevertheless, even with an improve explainability, the
readahead neural network model proved more accurate. While it would be useful
to have both high predictive power and explainability, faced with a choice between
the two, we believe that prediction accuracy that leads to improved throughput is
more valuable to end users than explainability. We evaluated the readahead DT
using the same procedure as the neural networks (Section 5.3.4).
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Readahead in per-file basis So far, we have shown how we approach the read-
ahead problem when a single I/O workload is accessing one device. Storage sys-
tem developers recognize the challenge of handling mixed storage workloads run-
ning on the same system—a common occurrence [12]. In that case, readahead
values cannot be set at the device level, as that would be suboptimal in mixed
workloads. Instead, readahead values should be set at a higher abstraction level,
on a per-file basis. To show our neural network’s versatility, we use the same
model to tune readahead sizes not only on a per-disk basis but also on a per-file
basis. Whereas before we ran inference every second and set one readahead value
for an entire device, here we ran inference every second on each open file and set
a readahead value directly in Linux’s struct file. We evaluated the per-file
basis approach and found that it could predict and improve I/O throughput for
mixed workloads better than both the vanilla and per-disk basis approaches (see
Section 5.3.4).

5.2.2 Use Case: NFS rsize

Problem definition Networked storage systems such as NFS are popular and
heavily used. NFS is used for storing virtual machine disks [131], hosting NoSQL
databases [165], and more. A misconfiguration of NFS can hurt performance. We
experimented with different applications using NFS and found out that one crit-
ical NFS configuration parameter is the rsize—default network read-unit size.
Hence, we focus on predicting an optimal NFS rsize value based on workload
characteristics.

Studying the problem We tested NFS using the same methodology as for read-
ahead. The only difference here is tuning rsize instead of readahead. We used
NFSv4 for all of our tests. The NFSv4 implementation we used supports only
seven different rsize values (4K-256K). However, in the NFS use case, there
are additional external factors not present in the readahead problem that can af-
fect I/O performance (e.g., NFS server configuration, network speed, and num-
ber of clients connected to the same server). We experimented with four dif-
ferent RocksDB benchmarks under different NFS server configurations and net-
work conditions. We configured our server with two different NFS mount point
options—one backed by NVMe-SSD and one backed by SATA-SSD. We injected
artificial network delays to simulate slower networks. Our experiments revealed
that random and sequential workloads require different rsize values to achieve
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optimal performance.

Data collection We enabled NFS and page-cache related kernel tracepoints to

collect training data (e.g., nfs4_read, nfs4_readpage_done, vmscan— _lru_shrink_inactive,
and add_to_page_cache). Unlike the readahead neural network model, we

collected data from tracepoints not only to model page cache behavior, but also

network conditions. Similarly studying these traces, we chose our feature set

and placed our hook functions. Our feature set includes eight features (described

below) which are calculated using the following five data points: (i) time differ-

ence from the beginning of execution for each tracepoint transaction, (ii) NFS file

handles, (iii) file offsets in NFS requests, (iv) page offsets of the files that were

accessed, and (v) number of reclaimed pages during LRU scans.

Data preprocessing & normalization We applied the same data preprocess-

ing and normalization techniques that we used for the readahead neural network.

The NFS neural network model consists of eight features which are computed

every second: (1) number of tracepoint transactions, (2) average time difference

between each nfs4_read and nfs_readpage_done matching pair, (3) average

time difference between each consecutive nfs4_read request, (4) average time

difference between each consecutive nfs4_readpage_done request, (5) mean

absolute requested offset difference between each consecutive nfs4_read re-

quest, (6) mean absolute page offset difference between each consecutive add_to_page_cache,
(7) average number of reclaimed pages, and (8) current rsize.

Neural network model We trained and tested our NFS neural network model
using the same methodology as the readahead problem; for brevity, we detail
only the differences between the neural network models. We approached the NFS
problem as a workload characterization problem and constructed our NFS neural
network model with four linear layers (with hidden layer sizes of 25, 10, and 5)
with sigmoid activation functions in between. Similar to the readahead neural
network, we used cross entropy as the loss function and SGD as the optimizer.
We evaluated the NFS neural network model and found out that it results in a
prediction accuracy of 98.6% (using 10-fold cross-validation).
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5.3 Evaluation

Our evaluation proceeds as follows: First, we explain our evaluation goals in Sec-
tion 5.3.1. We then describe the testbed design and benchmarks that we used to
evaluate the readahead and NFS rsize neural networks in Section 5.3.2. In Sec-
tion 5.3.3 we provide performance details regarding KML’s training and infer-
ence. Section 5.3.4 shows how the readahead ML models improve performance.
Finally, in Section 5.3.5, we present our evaluation of the rsize neural network
model for NFS.

5.3.1 Evaluation Goals

Our primary evaluation goal is to show that using ML techniques inside the OS
can be used to to tune parameters dynamically and improve storage systems’ per-
formance.

We start by showing the practicality of using ML in kernel space. We evaluate
KML’s system overheads in terms of (i) data collection overhead, (ii) training cost,
(ii1) inference cost, and (iv) memory usage. Then, we evaluate both readahead and
NFS neural network models to show how they improve the I/O performance and
quickly adapt the system in the presence of changing workloads and conditions.
To show that our models can learn abstract workload patterns, we first present the
generalization power of our models by testing it on workloads not included in the
training dataset. Next, we present benchmarks on a device type that was not used
in the data collection phase or training. We also built a decision tree model for
the readahead problem to have comparable results since decision trees are more
explainable, still popular, and closer in operation to traditional heuristics.

Furthermore, we evaluate KML’s versatility by applying the readahead neural
network model on a per-file basis. This demonstrates KML’s ability to optimize
individual I/Os in a mixed workload. Lastly, we evaluate our readahead ML mod-
els” behavior when they mispredict and how quickly they recover.

5.3.2 Testbed

We ran the benchmarks on two identical Dell R-710 servers, each with two Intel
Xeon quad-core CPUs (2.4GHz, 8 hyper-threads), 24GB of RAM and an Intel
10GbE NIC. In some experiments, we intentionally configured the system with
only 1GB of memory to force more memory pressure on the I/O system; but we
also show experiments with the full 24GB of system RAM. We used the CentOS
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7.6 Linux distribution. We developed KML for Linux kernel version 4.19.51, the
long-term support stable kernel; we added our readahead ML models to this ker-
nel and used it in all experiments. Because HDDs are becoming less popular in
servers, especially when I/O performance is a concern, we focused all of our ex-
periments on SATA and NVMe SSDs. We used Intel SSDSC2BA200G3 200GB
as our SATA-SSD device and a Samsung MZ1LV960HCJH-000MU 960GB as
our NVMe-SSD device, both formatted with Ext4. These two devices were used
exclusively for RocksDB databases. To avoid interference with the installed Cen-
tOS, the two servers have a dedicated Seagate ST9146852SS 148GB SAS boot
drive for CentOS, utilities, and RocksDB benchmark software. We used 10GbE
switches to connect the machines (useful for NFS experiments). We observed an
average RTT time of 0.2 milliseconds.

Benchmarks We chose RocksDB’s db_bench tool to generate diverse work-
loads for evaluating the readahead and NFS rsi ze neural networks. RocksDB [64]
is a popular key-value store and covers an important segment of realistic storage
systems; db_bench is a versatile benchmarking tool that includes a diverse set of
realistic workloads. Workloads can be run individually or in series, and the work-
ing set (database) size can be easily configured to generate more I/O pressure on a
system. On the 1GB RAM systems, we configured a RocksDB database of twice
the size (2GB). The two main reasons why we choose this configuration are (1)
to ensure that benchmarks can generate enough I/O operations that would not be
merely cached in memory and (2) to reduce the time of executing all benchmarks
considerably. Nevertheless, one may consider a system with only 1GB RAM
as not a realistic system configuration. Therefore, we also executed all the bench-
marks in this chapter with a 56 GB RocksDB database running on the same system
configured with 24GB RAM. The results are showing similar improvements and
there are no significant performance-trend differences (see Section 5.3.4). Nev-
erthless, because we ran experiments with more RAM and for a longer period of
time, we noticed some interesting findings which are explained in Section 5.3.4.

To demonstrate that our ML models can learn from and optimize for different
types of real-world workloads, we chose the following six popular yet different
db_bench workloads: (1) readrandom, (2) readseq, (3) readrandomwriterandom
(alternating random reads and writes), (4) readreverse, (5) updaterandom (read-
modify-write in random offsets), and (6) mixgraph (a complex mix of sequential
and random accesses, based on Facebook’s realistic data that follow certain Pareto
and power-law distributions [35]).
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We trained our readahead neural network on traces that contain only four of
these workloads: readrandom, readseq, readreverse, readrandomwriterandom—
all running only on the NVMe-SSD. These four tend to be the simpler workloads,
because we wanted to see whether KML can train on simpler workloads yet ac-
curately predict on more complex workloads not trained on. This also ensures a
balanced representation of randomness and sequentiality in the training dataset.

After the training phase completed, we tested our models on all six workloads
as well as different devices. This was done to show that our models not only
perform accurate predictions on the training set samples, but they also generalize
to two new and complex workloads (updaterandom and mixgraph as well as
a different device (SATA-SSD))—which were excluded from the training data.
We evaluated mixed workloads by running two concurrent db_bench instances,
each on a separate RocksDB database and using a different workload profile, both
stored on the same device. We kept the hardware configuration the same as before
(1GB RAM) to increase system and page-cache pressure.

We also experimented with our readahead network model using TPC-H [181]
queries running on MySQL [139], to evaluate how generalizable and effective the
readahead neural network is to an entirely different workload. In this chapter, we
do not claim that our readahead neural network model will work universally to
optimize readahead values for all possible workloads. Rather, these use cases are
meant to demonstrate the KML framework’s versatility. With more workloads
and datasets, one can build a wide range of ML models to optimize many storage
problems.

5.3.3 KML'’s Overheads

An ML model’s overhead depends on its architecture. Generally, deeper or higher-
dimensional neural networks consume more memory and CPU than, say, decision-
tree models. It is vital that an ML component, especially one that may run inside
the kernel, consume as little CPU and memory as possible. Next, we evaluate the
readahead neural network overheads.

Data gathering overheads The only inline operations that readahead neural
network inserts directly in the data path are data collection probes. Hence it is vi-
tal for these probes to be optimized. Figure 5.6(C) shows how the data collection
CPU overheads (percentage) change with subsampling window sizes. When there
is no subsampling in the system (X = 1), the CPU overheads of data collection
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probes is as high as 0.18%. Although this is a fairly low overhead considering the
multiplicative I/O benefits we report, this overhead can be reduced further by in-
creasing the subsampling window. However, increasing the subsampling windows
size can hurt prediction accuracy and performance improvements, as less data is
available to make rapid predictions. See Figure 5.6(A) and (B). Figure 5.6(B)
shows that workloads with a lot of randomness in them were the least affected,
because randomness is still predicted as random even with fewer samples; yet we
can reduce the already small CPU overheads even more.

The figure further shows that only sequential workloads are affected by sub-
sampling window changes: generally, as the sampling window widens, prediction
accuracy and normalized performance worsen. However, we noticed an unex-
pected behavior for the readseqg workload. Increasing the subsampling window
size from one to five or ten actually improved both prediction accuracy and perfor-
mance; this is because readseqg keeps the I/O subsystem busy at near maximum
bandwidth, and increasing subsampling window size reduced short-term noise
that resulted in more frequent mispredictions.
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Figure 5.7: Distribution of total data collection overhead (milliseconds) in every
second when readseqg and mixgraph workloads are running.

We can also observe that the data collection overheads depend on the workload
type. For example, readseq workload’s average data sampling frequency per-
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second is around 30K but its data collection overhead is still lower than mixgraph
workload which has 20K average data sampling frequency per-second. The reason
that data collection overheads change based on the workload type, is due to the
sudden I/O bursts resulting in some cache misses. In Figure 5.7, we show the his-
tograms of the data collection overheads for the readseqg and mixgraph work-
loads. We can observe that the mixgraph histogram shows that data collection
overheads for all data points are higher than readseq. In addition, mixgraph’s
data collection histogram displays outliers of add_to_page_cache data collec-
tion point: these result due to cache misses caused by sudden I/O bursts.

Inference/training overheads The readahead neural network performs infer-
ence (prediction) and changes the block-layer readahead value in 21 s on average
(std. dev. < 10%). This action executes in a separate, asynchronous kernel thread,
once in every second. Hence, it has negligible impact on the overall OS perfor-
mance. When the readahead neural network runs in per-file mode, KML runs
inferences an average 135 times a second (i.e., one per open file): inferencing
for all open files consumes 1.7ms on average. We measured that the readahead
decision tree inference takes only 8us (using the same feature vector). The read-
ahead neural network and decision tree have the same data pre-processing and
normalization implementation—the only difference between them is in the infer-
ence part. Overall, these overheads are fairly small and acceptable, considering
the multiplicative I/O performance benefits they enable.

As discussed in Section 5.2.1, our readahead neural network prototype of-
floads training to the user level. We measured the time to perform one training
iteration in user level at 51us on average; this training iteration includes the for-
ward pass, back-propagation, and weight update stages.

Memory overheads The readahead neural network allocates 3,916 bytes of dy-
namic memory during the model’s initialization phase. While inferencing, KML
temporarily allocates 676 bytes before returning the inference results. This over-
all memory footprint is negligible in today’s multi-GB systems. The readahead
decision tree occupies only 2,432 bytes of dynamic memory during initializa-
tion. The decision tree model does not allocate dynamic memory during infer-
ence. Lastly, the kernel module readhead.ko has a binary memory footprint
of 432KB and the kernel module nfs.ko is 636KB, while the KML framework
itself (k-M1ib.ko) has a memory footprint of 5.5MB.
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Practicality and scalability Our vision is KML could enable a future where tra-
ditional heuristics are gradually replaced with ML-based approaches to improve
storage and network I/O performance. In Section 5.3.4 we demonstrate, for ex-
ample, that our readahead neural network model improves I/O performance by
as much as 2.3, but consumes less than 0.2% additional CPU cycles: we be-
lieve this is a fairly acceptable trade-off for most users. Nevertheless, we tested
this model with 100 concurrent inferences and found that both overheads and I/0
improvements have scaled linearly; hence KML’s benefits still outweigh its over-
heads.

5.3.4 Readahead Evaluation

Readahead background There are two places in the Linux kernel where read-
ahead is defined: the block layer and the file system level. When a file is opened,
the VFS initializes an open struct file and copies the readahead value for that
file from the corresponding block layer. Upon a page fault for that file, the page-
cache layer uses the value stored in the file to initiate reading-ahead the desired
number of sectors of that file. However, the readahead value in the file structure
is initialized only once when the file is opened. So when KML changes the block
layer readahead value, the Linux kernel does not copy the new value to any file al-
ready opened. This means that open files may continue to use a sub-optimal read-
ahead value, even if better values are available (e.g., due to workload changes).
That is why we implemented a mechanism that changes the readahead size for
open files when KML changes the disk-level readahead value. This propagates
newer readahead values to each open file, improving our adaptability. Conversely,
if KML mispredicts the workload type and changes the readahead size to a sub-
optimal value, short-term performance degradation can happen, which might hurt
overall performance.

Back-to-back workloads on NVMe Figure 5.8 shows four workloads running
back to back with each subfigure comparing a vanilla run (colored orange) to our
KML-enabled readahead run (colored blue). The readahead value was left at the
default value (i.e., 256) at the start of both vanilla and KML-enabled runs, but
when the next workload started, it used the last readahead value from the previous
workload’s run (e.g., the readahead value at the end of the leftmost subfigure is
the same at the start of the subfigure immediately to its right). This experiment
evaluates KML’s ability to optimize the readahead values when the I/O workload
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Figure 5.8: Running four back-to-back RocksDB workloads in order from left to
right: readsequential, readrandom, readreverse, then mixgraph. Here, we started
with the default readahead value; thereafter, the last value set in one workload was
the one used in the next run. For each of the four graphs, we show their Y axes
(throughput, different scales). The readahead value is shown as the Y2 axis for the
rightmost graph (d) and is common for all four. Each workload ran 15-50 times
in a row, to ensure we ran it long enough to observe patterns of mis/prediction and
reach steady-state. Again, we see KML adapting, picking optimal readahead val-
ues, occasionally mis-predicting but quickly recovering, hence overall throughput
was better.

may change every few minutes. The X axes indicate the run time in minutes. The
Y axes indicate throughput in thousands of ops/sec (higher is better), and have
different scales for each experiment. The Y2 axes show the readahead values
used or predicted by KML over time in terms of number of sectors (denoted with
a green line and using the same scale). Each workload ran 15-50 times in a row,
so it ran long enough to observe mis/predictions patterns. As seen in Figure 5.8,
KML adapts quickly to changing workloads by tuning the readahead value in
about one second.

Although we observe some mis/prediction patterns, seen as sudden spikes,
overall throughput still improved across all four runs, averaging 63.25% improve-
ment: 140% improvement for readrandom, 2% for readsequential, 109% for mixgraph,
and 12% for readreverse. We note that even a small improvement in through-
put can yield significant cumulative energy and economic cost savings for long-
running servers [119].

Read-sequential workloads Out of the six workloads we ran, Figure 5.9 shows
the one where KML performed the worst: read-sequential. Reading data sequen-
tially directly from the raw SATA-SSD is nearly 1,000 x faster than the mixgraph
workload, and nearly 400x faster with the NVMe-SSD. Here, there is little op-
portunity for KML to improve throughput for a sequential workload that reads at
speeds near the maximum throughput of the physical device.
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Read-reverse workloads As we can see from the fluctuating green line (read-
ahead values in Figure 5.8) KML mispredicts readreverse as readseq and changes
the readahead value to something sub-optimal. These two workloads both access
files sequentially—one reading forward and one backward. Interestingly, readseq
and readreverse are quite close from a feature representation perspective, which
explains the mispredictions. But since both of these workloads access files se-
quentially, their optimal readahead values are also quite close to each other. Thus,
even when KML mispredicts readreverse as readseq or vice versa, this had a small
overall impact on performance.
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Figure 5.9: Readahead neural network performance improvements (x) for
RocksDB benchmarks on SATA-SSD and NVMe-SSD across all six workloads,
normalized to vanilla (1.0x).

Summary of readahead neural network results We summarize all readahead
neural network results in Figure 5.9. We observe that the average throughput
improvement for NVMe-SSD is ranging from 0% to 65%. We saw greater im-
provements in the SATA-SSD case, ranging from 2% to 130% (2.3 x). Lastly, we
ran the complex mi xgraph workload on NVMe-SSD with the system memory set
to the maximum (i.e., 24GB) and the database size set to be relatively large, 65GB
(compared to a 2GB baselines database size). This experiment ran for nearly an
hour (48.5 minutes) and resulted in an average throughput improvement of 38%.

Mixed workloads Mixed workloads are considered a challenging optimization
problem [12]. In Figure 5.10, we present a timeline performance comparison us-
ing the readahead neural network model running on a per-disk vs. per-file basis.
The per-file mode performs better overall because readahead values are set for
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Figure 5.10: Mixed workloads results on a timeline, comparing the readahead
neural network model running on per-file basis (" A’, left) vs. per-disk basis ("B’,
right).

each open file independently. Conversely, in the per-disk mode, a single read-
ahead value is set at the disk level and hence uniformly on all open files: a read-
ahead value good for one workload is likely to be sub-optimal for other open files.
One reason why the per-disk mode cannot predict workload types correctly is that
when different workloads are mixed—even sequential ones or ones with regular
patterns—the mix looks more like a purely random workload at the disk level.
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Figure 5.11: Mixed workloads results. We ran sequential and random workload
combinations on the same NVMe-SSD device. Each unique combination is tested
with the readahead neural network running in per-disk basis (kml disk) and per-
file basis (kml file) and compared against vanilla results. The model running in
per-file basis outperformed both vanilla and per-disk modes.

Figure 5.11 shows overall mixed workloads performance comparisons. Per-
file mode performed overall better in every combination of mixed workloads. If
we compare only the sequential parts of the mixed workload combination (orange
bars in Figure 5.11), in per-disk mode, we observe significant performance degra-
dation. However, in per-file mode, we can observe performance improvements
for both the sequential and random (blue bars in Figure 5.11) parts of the mixed
workload combination. The reason why per-disk mode performs better for the
random parts of the mixed workload combinations is for the same reason: mix-
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ing workloads looks more random-like at the disk level. KML predicts these as
readrandom or readrandomwriterandom which coincidentally fits this part of the
workload, but significantly hurts non-random workloads.
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Figure 5.12: Readahead decision tree performance improvements (x) for
RocksDB benchmarks on SATA-SSD and NVMe-SSD devices across all six
workloads, normalized to vanilla (1.0x).

Decision tree evaluation In addition to the neural network model, we imple-
mented a decision tree model for the readahead problem to compare the two ML
approaches on the same problem. We tested the readahead decision tree the same
way. Figure 5.12 shows that there is a performance improvement for workloads
with a random component. For the readahead decision tree, we measure average
throughput improvement for random workloads on NVMe-SSD as ranging from
48% to 59%; and in the SATA-SSD case, ranging from 99% to 119% (2.19x).
While good, the neural network model yielded greater improvements, as discussed
above.

The DT model, however, degraded performance for sequential workloads. it
degraded performance for sequential workloads on NVMe-SSD by 15-40%; and
in the SATA-SSD case, by 36-73% worse. We investigated this performance
degradation. Figure 5.13 shows the readseq workload running on a RocksDB
instance stored on an NVMe-SSD. Here, the readahead decision tree predicts the
workload correctly in the first three minutes, despite some fluctuations. After-
wards, the decision tree model’s predictions fluctuate wildly, and at around minute
10 it consistently makes wrong predictions. Overall, this was somewhat expected
for our I/O optimization problem: neural network models, while more complex
to train and use, are more adaptable than decision-trees [78]. Specifically, when
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Figure 5.13: Performance timeline graph for tuning with KML decision tree while
running readseq workload on NVMe-SSD.

the DT model mispredicts, and system conditions change (i.e., I/O activity), the
DT model continues to mispredict, and it cannot recover as quickly as the more
adaptable neural network model.

~
c

N SATA-SSD B NVMe-S!

1.38
" 1.18
106 1 1.07
101 0.99 0.95
0.64
0.47 I
11 13 14 15 22

TPC-H Query Number

g
wn

139

1.08

106 111

1.03 1.04

Performance Improvement (X)
o -
n o

g
=}

Figure 5.14: Readahead neural network performance improvements (x) for TPC-
H queries on SATA-SSD and NVMe-SSD devices, normalized to vanilla (1.0x).

TPC-H benchmarks As we mentioned in Section 5.3.2, we evaluated our read-
ahead neural network model—trained on RocksDB workloads—on TPC-H queries
running on MySQL database (both NVMe-SSD and SATA-SSD cases). This in-
tends to show the model’s accuracy limitations when presented with vastly dif-
ferent workload and application combinations. Figure 5.14 shows performance
improvements as much as 39% for most query types. For query 11, however,
the readahead neural network failed to characterize the workload correctly and re-
sulted in a 53% performance reduction. Nevertheless, overall TPC-H performance
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still improved by 6%. We expect that neural network models trained on more tra-
ditional SQL database workloads would likely yield even better predictions across

most similar databases.
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Comparison with LEAP Data prefetching and caching is a well-studied prob-
lem with many heuristics developed to optimize 1/O transactions. We compared
our readahead neural network with a recent data-prefetching heuristic, LEAP [10].
We evaluated both LEAP and our readahead neural-network model with the same
setup that we used to evaluate KML with RocksDB workloads running on NVMe-
SSD and SATA-SSD. We have integrated LEAP to work with a local page cache.
LEAP integration took only 243 LoC and was mostly a straightforward data-
aggregation code. Our readahead neural network achieves 16% better average
throughput improvements than LEAP, when workloads are executed on NVMe-
SSD. When running workloads on SATA-SSD, the readahead neural network
model’s average performance gain is 22% better than LEAP.

Figure 5.15 shows these results. We highlight two main takeaways. First,
LEAP causes a significant performance reduction for readseq workloads (-24%
for NVMe-SSD and -36% for SATA-SSD). Conversely, our readahead neural net-
work either improves the 1/0 performance across all the RocksDB workloads or
keeps the performance close to the same as running without the optimization. It is
important that any optimization technique that helps one workload would not hurt
another.

Second, there is only one workload where LEAP’s performance was better
than our readahead neural network’s performance: readreverse. The main rea-
son why LEAP outperformed us in the readreverse workload is that LEAP is
directly in charge of choosing pages that will be stored in memory. Conversely,
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our readahead neural network tunes only readahead value in the block layer. Thus,
LEAP can fetch pages in descending order while our readahead neural network re-
lies on the readahead subsystem—which generally cannot handle reading “ahead”
in reverse order.

Large memory experiments To test our readahead neural network model’s
abilities on significantly different hardware setup, we experimented with a 56GB
RocksDB database running on 24GB RAM configuration. This represents a more
realistic storage server scenario. Overall, we observed that performance improve-
ment trends have not changed. However, the larger memory experiments took a
significantly longer time which exposed numerical instabilities in our normaliza-
tion phase. We originally used floats to compute normalization statistics. Over
the course of longer-running experiments, we lost precision in numerical statis-
tics. We fixed this problem simply by switching to double floats. We measured
that switching to doubles did not add any extra computational overheads thanks
to modern CPUs’ advanced floating-point units.

In addition, we also adjusted our weighted-moving average. This adjustment
was needed because the large RAM size affected the number of transactions per
second which is one of our key features. Since this setup used a larger RAM, we
can keep fetching and updating KV pairs without writing them back for a longer
period of time in the beginning of benchmarking. As a result, we can perform
more transactions per second. This type of significant changes in hardware or
software setup can affect the features and their extraction process (e.g., moving
averages). Such significant changes in features can cause mispredictions which
leads to performance degradation.

We fixed this by adjusting the weighted moving average. We initially consid-
ered the runtime input data to contribute to the moving average equally as training
data (e.g., a uniform moving average). Then, we tuned the moving average weight
to 10%, meaning that we only take one-tenth each new sample into the moving
average. This ensures that sudden spikes in activity do not disturb the moving
average too much—Xkeeping its change smoother. We reached this final value by
testing different weights using binary search. In the future, we plan to integrate a
feedback control mechanism to adapt the moving average weight automatically in
case of drastic changes in hardware or software conditions. After the change, we
tested the readahead neural network model with different storage devices, mem-
ory sizes, workloads, mixed workloads, applications: it consistently performed
significantly better than baseline and LEAP.
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Figure 5.16: Throughput analysis for running mixgraph on 24GB memory with a
56GB RocksDB database. In (A) we show throughput timeline and improvements
for mixgraph running with KML. We can see three phases of mixgraph’s exe-
cution, demarcated by double vertical dashed lines: (1) startup, (2) stabilize and
gradually decline, and (3) restabilize. We explain these phases and why through-
put changes by showing page-reclamation numbers (B), triggering writeback op-
erations for dirty pages (C), and the number of page faults taking place due to file
operations from the OS’s perspective. In (D) we show the number of read opera-
tions and their standard deviation operations from RocksDB’s perspective.

66



CHAPTER 5. KML: ML FRAMEWORK FOR OPERATING SYSTEMS

By running experiments with larger memory and database sizes, we also ex-
perimented with how KML behaves over long-term executions. Since these exper-
iments took many hours and even days, we could evaluate the readahead neural
network behavior under different phases of the page cache. In Figure 5.16 we
show a mixgraph workload running on the large memory and database setup.
We see three phases separated by double vertical dashed lines.

First, the startup phase took around nine minutes to fill up the entire page
cache while the readahead neural network was in inference mode and optimizing
the readahead size for the storage device. We observe that the startup phase for
running the mixgraph workload without a readahead neural network took around
one minute due to poor use of the page cache with a sub-optimal readahead size
and resulted in a stable-looking, but sub-optimal throughput.

In the second phase, stabilization starts after filling the entire page cache and
beginning to trigger some page reclamation processes. In this stabilization phase,
we observed staircase-like throughput reductions, which are correlated with spikes
in write-back dirty page requests (see in Figure 5.16).

Third, a re-stabilization phase starts with sudden spike in the write-back ac-
tivity of reclaimed pages. This frees a large number of pages: we can observe
a sudden spike in page faults which are related to mmaped files. This page-fault
spike also indicates that a lot of new pages loaded into memory. Overall, this
improves performance with newly loaded data in the page cache being accessed.

Finally, We can notice that all these phase changes create variation in read
latency for the mixgraph workload (see Figure 5.16 D). Even though all these
variations and sudden spikes occur in the I/O subsystem, our readahead neural
network successfully predicted the workload and tuned the readahead size.

5.3.5 NFS Evaluation

Figure 5.17 shows the NFS rsize neural network performance improvements us-
ing the same evaluation techniques of readahead. Throughout these experiments,
we ran multiple iterations of the same workloads. Since rsize is a mount point
parameter for NFS, our NFS neural network can tune rsize values only in the
beginning of the iteration. (We plan to fix the Linux kernel to permit rsize to
change dynamically.) Hence, in sequential workloads, if the NFS neural network
makes even one misprediction, it will affect the entire iteration, leading to perfor-
mance degradation. Nevertheless, in random workload cases, we still measured
around 15X performance improvement; in separate experiments (not shown for
brevity), performance improvements for random workloads reached up to 20x.
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Figure 5.17: Performance improvements ( x) for RocksDB benchmarks on SATA-
SSD and NVMe-SSD devices across all six workloads running on NFS, normal-
ized to vanilla (1.0x).

This demonstrates the significant potential of KML.

5.4 Future Work

We are adding ML techniques to KML, such as reinforcement learning [97], which
can be a better fit for solving certain OS problems. To support more advanced
ML approaches (e.g., Recurrent Neural Networks (RNNs) [191]) and Long Short-
Term Memory (LSTM) [84]), we are extending KML to support arbitrary compu-
tation DAGs. We also plan to integrate user-kernel co-operated design into KML.
Finally, loading an unverified ML model into a running kernel opens up new at-
tack surfaces. We are exploring known techniques to digitally sign and certify
loadable models [125, 104].
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Proposed and Future Work

In this chapter we outline our proposed work that we intend to include in this
thesis. We then discuss the possible future work that is extends beyond this thesis.

6.1 Proposed Work

We have already demonstrated that ML solutions can be first-class citizens in
operating systems and storage systems. In this thesis proposal, we plan to apply
ML approaches to other I/0 and network subsystems to make this argument more
robust. We specifically chose these components because I/O is always the slowest
component of any system. Nevertheless, with a small computational overhead that
will be spent on ML, we can improve the I/O performance of these components
significantly. Moreover, these components have a lot of tunable parameters. In
addition, they have to be self-adaptive because of the workloads’ ever-changing
nature. One of the possible research problems that we will be working on is
predicting I/O latencies in the block layer to investigate and build a better 1/0
scheduler. Another proposed research project is building an assistive system for
TCP/IP or BBR congestion control and fairness to help these subsystems better
adapt to the environment and traffic conditions.

We also plan to extend KML’s capabilities with reinforcement learning (RL).
RL is one of the most important plans for KML. Because storage systems and
operating systems are constantly evolving, the likely best ML solutions for these
systems use RL models.
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TCP congestion control Researchers have been trying to optimize TCP conges-
tion control via ML [3, 92, 61, 60, 30, 185]. However, they approached the prob-
lem using off-the-shelf ML frameworks. To make this setup work, they had to col-
lect data from the kernel, move them to user-space, feed it to ML frameworks, and
pass back the inference results to kernel-space. Therefore, the solutions imposed
huge overheads (e.g., more than 100% even). Considering KML’s current capabil-
ities, we can build ML models for improving TCP congestion control algorithms’
performance, latency, and fairness with a much lower and acceptable computa-
tional overhead. We also theorize that we can tune the network layer to optimize
for applications. To this end, we can build an ML model to classify workloads
by their network usage characteristics. Hence we can apply application-specific
optimizations to the network layer.

I/0 latency predictor Large-scale storage applications are designed with con-
sideration of application-specific QoS metrics. One of the most critical QoS met-
rics is I/0O latency tails. Predicting the latency of individual I/O requests is crucial
to building latency-sensitive large-scale applications. First, we plan to utilize In-
tel Labs’ Open Storage Toolkit [91] to collect block traces with data access type
hints to investigate the correlations between data access types and I/O latencies.
We then try to build an ML model which takes advantage of knowing data ac-
cess type hint to predict latencies for I/O requests. Finally, we would like to
use I/O latency predictions to build latency-aware I/O schedulers. Researchers
have worked on similar problems on a specific setup that is either targeting par-
ticular hardware [79, 80] or designed for simulation and not practical in the real
world [36]. In addition, to our best knowledge, there has not been any research
trying to approach I/O latency prediction with data type hints.

6.2 Future work

KML opens countless possibilities for ML applications for operating systems.
There are more than a thousand knobs For example, on Linux 4.19.51+ sysct1l
—a alone reports 1,917 tunables; for net.ipv4 reports 435 tunables. I/O sub-
systems can be tuned by multiple ML models. Researchers will face interesting
challenges while tuning multiple knobs concurrently using KML. Multi-objective
optimizations will be an interesting research area which we leave to future work.

Our next possible future work is about integrating federated learning into
KML. In a modern data center environment, learning locally about the storage
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systems will not be practical, because modern workloads are fairly dynamic and
evolving; even a single machine can be running different workloads, which are
also constantly changing. To solve these challenges, ML models in OSs and stor-
age systems should learn distributively without sharing data. Security and privacy
in federated learning are well-studied research fields.

We believe that KML can be a starting point for practical ML applications
for storage and operating systems. In the long run, machine learning models can
assist the storage systems’ components and get us one step closer to truly and fully
self-adaptive systems.
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Conclusions

Operating systems and storage systems have to support many ever-changing work-
loads and devices. To provide the best performance, we have to configure storage
system knobs based on workloads’ needs and device characteristics. Unfortu-
nately, current heuristics cannot adapt to workload changes quickly enough and
require constant development efforts to support new devices. We propose KML
to solve these problems—an ML framework inside the OS that adapts quickly to
optimize storage performance. KML enables finer granularity optimizations for
individual files in even mixed workloads—a challenging problem.

We first built a tracing framework for operating systems to collect input data
for building ML models. It is necessary to have a low-overhead and high-fidelity
data-collection framework to model operating system problems correctly. We then
implemented a machine learning framework that is tailored for operating systems.
KML provides a low-overhead, easy-to-use ML development environment for op-
erating system developers to build machine learning models for optimizing OS
I/0O components. We have supported our vision of substituting heuristics with ML
models by implementing two use-cases: tuning readahead size (both per-disk
and per-file basis) and NFS rsize.

Our preliminary results show that, for a readahead problem, we can boost I/O
throughput by up to 2.3x with a mere 0.2% CPU overhead and 4KB memory
usage. For the NFS rsize problem, the improvement was up to 15x. These I/O
throughput improvements far outweigh the small memory and CPU overheads of
KML.

Our thesis is that tuning I/O subsystems knobs with a fine granularity using
ML models is promising and can bring significant improvements. KML is still
missing a couple of crucial capabilities (e.g., reinforcement learning); and we need
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more ML models to improve different I/O subsystems to provide more proofs for
generalizability.
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