
Kefence: An Electric Fence for Kernel Buffers∗

Nikolai Joukov, Aditya Kashyap, Gopalan Sivathanu, and Erez Zadok
Stony Brook University

Computer Science Department
Stony Brook, NY 11794-4400

{kolya,aditya,gopalan,ezk}@cs.sunysb.edu

ABSTRACT
Improper access of data buffers is one of the most common
errors in programs written in assembler, C, C++, and sev-
eral other languages. Existing programs and OSs frequently
access the data beyond the allocated buffers or access buffers
that were already freed. Such programs and OSs may run
for years before their problems can be detected because im-
proper memory accesses frequently result in a silent data
corruption. Not surprisingly, most computer worms exploit
buffer overflow errors to gain complete control over computer
systems. Only after recent worm epidemics, did code devel-
opers begin to realize the scale of the problem and the num-
ber of potential memory-access violations in existing code.

Due to the syntax and flexibility of many programming
languages, memory access violation problems cannot be de-
tected at compile time. Tools that verify correctness before
every memory access impose unacceptably high overheads.
As a result, most of the developed techniques focus on pre-
venting the hijacking of control by hackers and worms due
to stack overflows. Consequently, hidden data corruption is
given less attention.

Memory access violations can be efficiently detected us-
ing the hardware support of the paging and virtual memory.
Kefence is the general run-time solution we developed that
allows to detect and avoid in-kernel overflow, underflow, and
stale access problems for internal kernel buffers. Kefence is
especially applicable to file system code because file systems
operate at a high level of abstraction and require no direct
access to the physical memory. At the same time, file sys-
tems use a large number of kernel buffers and file system
errors are most harmful for users because users’ persistent
data can be corrupted.

Categories and Subject Descriptors
D.4.5 [Software]: Operating Systems—Reliability

∗This work was partially made possible by NSF CAREER
EIA-0133589 and CCR-0310493 awards and HP/Intel gifts
numbers 87128 and 88415.1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

General Terms
Reliability, Security, Design

Keywords
Security, Buffer overflow, File systems

1. INTRODUCTION
Improper memory accesses are a common software prob-

lem. Erroneous buffer accesses include accesses outside of
the buffer (buffer overflow or underflow) and accesses to
data buffers that were already freed (stale data accesses).
Invalid data writes can corrupt the data stored in some
other buffer—either adjacent to the intended buffer or a
completely different one, allocated in the same place of the
freed buffer. On read, such accesses can furnish the execut-
ing process with wrong data that is not part of the legitimate
buffer and thus corrupt and affect some related information
later on. Many of these problems go unnoticed or result
in hidden data corruption and can stay undetected for long
periods of time.

Only after recent outbreaks of many computer worm epi-
demics did programmers begin to realize how widespread
these bugs are. Indeed, the vast majority of the existing
worms use stack overrun vulnerabilities to gain complete
control over the computer systems.

Unfortunately, compile time solutions cannot detect all
memory-access–related problems whereas all existing run-
time solutions have non-negligible overheads. As a result,
several solutions were proposed that either randomize the
memory image or hide the return address pointer stored on
the stack. Hardware developers started to include mech-
anisms that prevent the execution of code in stack mem-
ory [6]. All these methods prevent control hijacking but do
not help detect or prevent the in-memory data corruption.

Most modern processors support paging and virtual mem-
ory. A kernel exception is generated once a virtual page that
is not mapped to a physical one is accessed. Such a guard
page can be aligned after or before a buffer to detect buffer
overflow or underflow errors. In addition, a guard page can
be used to detect accesses to stale memory buffers that were
already freed. This method trades virtual address space for
CPU cycles. In fact, this method allows checking all memory
accesses with no CPU overheads.

User mode libraries that protect user buffers with guard
pages are available for a number of OSs. For example, the
libgmalloc library [8] and the ElectricFence malloc de-
bugger [16] can be linked with an application and used to

Table 1: Usage of kmallocs and vmallocs in
Linux 2.6.11.7 kernel.

vmalloc kmalloc
Total calls in the kernel code 505 4,469
Total calls in file system code 63 748
Invoked during boot up 68 134,223
Buffers still in memory after boot 7 3,827

detect heap and stack buffer access violations. Some OSs
themselves support certain forms of guard page protection
too. However, only large, specially allocated buffers are pro-
tected that way. For example, in Linux only the buffers al-
located using the vmalloc function are protected. However,
the vast majority of buffers are allocated using the kmalloc

function as shown in Table 1. Moreover, only underflow
events can be detected even for the buffers allocated with
the vmalloc function. All this leaves most of the memory-
related problems undetected and renders the existing invalid
memory access detection functionality useless.

We have designed a kernel tool to detect invalid mem-
ory accesses, which we call Kefence. It can detect invalid
memory accesses with negligible overheads, protecting most
of the kernel buffers from corruption and isolating kernel
processes from the influence of the wrong data reads.

Guard page protection is a compromise between mem-
ory consumption and run-time overheads. Therefore, it is
usually impractical to instrument the whole OS using Ke-
fence. However, certain data-critical components can always
be protected with minimal memory and CPU overheads.
Thus, Kefence is especially applicable to file systems be-
cause: (1) their errors are likely to result in the corruption
of the real persistent data; (2) they use a large number of
memory buffers, so manual verification is difficult and error
prone; (3) they use only the buffers which can be allocated
using vmalloc which is not the case, for example, for kernel
components that use DMA.

Moreover, the tremendous flexibility of the Linux Virtual
File System (VFS) [20] has made it a popular choice for
development of new file systems, and for porting existing
file systems from many other Unix and Windows systems.
For example, Linux 2.6.11.7 supports 53 different file sys-
tems, ranging from disk-based ones (Ext2, Ext3, Reiserfs,
XFS, UFS/FFS, and more), to network file systems (NFS,
SMB/CIFS, NCPFS), to distributed ones (e.g., Coda), and
many more specialized ones (/proc, /dev, debugfs, and more).
These file systems total 485,158 lines of complex code, out
of 2,997,507 lines of code in the entire Linux 2.6.11.7 kernel
(not counting device drivers). In addition, many file systems
are developed and maintained outside the Linux kernel [1, 2,
19]. This large variety and investment in Linux file systems
makes tools like Kefence ever more important.

Our preliminary evaluation showed that even an unopti-
mized version of Kefence adds less than 2% elapsed time
overheads and consumes less than 1% of the available mem-
ory for file systems that use buffers more intensively than
an average file system does.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 outlines the design of Ke-
fence. Section 4 describes some interesting implementation
details. Section 5 presents an evaluation of the current Ke-
fence prototype. We conclude in Section 6.

2. BACKGROUND
Nowadays, buffer overflows are the most notorious bugs.

Many programs and OS kernels are reported to have them [3].
In general, complete compile time detection of wrong mem-

ory accesses is impossible. However, run time detection re-
quires additional processing for every memory access oper-
ation. This leads to non-negligible overheads that can be as
high as several times for simple systems [9]. Modern com-
plicated systems that perform data flow analysis have over-
heads of about 20% [13]. Nevertheless, many modern pro-
gramming languages such as Java routinely check all mem-
ory accesses, trading efficiency for reliability.

Because detection of memory buffers boundary violations
is difficult, several techniques were developed to complicate
the control hijacking in case of a stack overflow. For ex-
ample, the function return address can be protected from
overwrites by keeping it in a nonstandard location [4]. Al-
ternatively, the whole memory image may be randomized
using Address Space Layout Randomization (ASLR) [17].
Processors such as Sun’s Sparc, Transmeta’s Efficeon, 64-bit
Intel, and AMD x86 provide hardware mechanisms to forbid
the execution of code stored in the stack space. Thus, the
AMD NX (No eXecute) bit and Intel XD (eXecute Disabled)
bit [6] were added to mark certain memory areas as non-
executable. However, all these techniques protect against
the execution of untrusted code but not against overwriting
of good data with bad data.

Using paging mechanisms to detect memory access viola-
tions is a well known technique for user level programs. The
ElectricFence [16] and the libgmalloc [8] libraries can in-
sert guard pages on one of the sides of allocated buffers and
detect stale memory accesses. Both libraries have a flexible
and convenient interface. For example, libgmalloc can be
controlled by setting values of several environment variables
such as MallocGuardEdges. The StackGuard [5] inserts a
guard page in the stack to protect against stack overflows.
In that case overheads are added on a per-function-call basis,
but not on a per-memory-access basis. On Windows, guard
pages can be created manually using the VirtualAlloc and
VirtualProtect functions [18]. However, all the described
libraries provide no information in case of a detected failure.
Once a page fault is generated, the corresponding program
must be inspected using a debugger.

OSs usually have small stacks and allocate buffers using
special functions. These memory-allocation functions are
usually divided into functions for fast allocation of small
memory buffers and relatively slow functions for the alloca-
tion of larger contiguous areas of virtual memory. The Linux
kernel has two functions that serve this purpose: kmalloc

and vmalloc. The kmalloc function allocates physically
contiguous memory which is not swappable. The vmalloc

function allocates memory that is contiguous in the vir-
tual address space, but could potentially be physically non-
contiguous, and can be swapped out.

The Linux kernel has an optional feature where each buffer
allocated using kmalloc can be followed by a word (called a
red zone) with a specific value. Whenever the buffer is freed,
the kernel checks the value of the red zone; if the value is
modified, it can detect that a buffer overrun has occurred.
The disadvantage of this method is that it can only detect
buffer overruns long after the fact, and cannot prevent them.

Most modern OSs support some form of guard page pro-
tection for functions that allocate large contiguous regions

of virtual memory. The Linux kernel inserts a guard page
between buffers allocated using the vmalloc function. Un-
fortunately, it aligns the guard page and the beginning of
the buffers and therefore detects only underflow events [11].
FreeBSD can optionally protect buffers allocated using the
in-kernel malloc function for overflows, underflows, and stale
accesses using the memguard debugging component [10].
In addition, FreeBSD kernels can protect existing mem-
ory buffers by setting them into read-only state using the
memguard guard function. However, all these features are
only enabled for buffers allocated with the M SUBPROC flag
set. FreeBSD version 6, for example, allocates only three
buffers with this flag set. A feature called Kernel Special
Pool is included on Windows NT 4.0 Service Pack 4. This
feature can check for either overflows or underflows of virtual
memory regions (pools) allocated with the AllocatePool

function in the Windows kernel [14]. The protection can be
enabled or disabled via a special registry key.

3. DESIGN
Kefence is designed to detect memory buffer access viola-

tions at the hardware level and therefore impose negligible
run-time CPU overheads. Most modern CPUs support vir-
tual memory. They generate a page fault if a virtual page
that is not mapped to a physical page is accessed. Such a
guard page is in fact, a page table entry (pte) that is not
associated with any single physical page. If the guard page
is not accessed, then the whole system operates as if no run-
time checking is going on. To detect the out-of-boundary
accesses to a memory buffer, the buffer and the guard page
are aligned together on the page boundary.

Because the alignment of the buffers to page boundaries
can be done either at the beginning or at the end, Kefence
cannot normally detect buffer overflows and underflows si-
multaneously. Kefence checks a buffer for overflow if the
buffer and the guard page are aligned at the beginning of
the buffer; it checks for underflows if the buffer and the
guard page are aligned with the buffer’s end as shown in
Figure 1. Simultaneous checks for overflow and underflow
conditions is only possible if the allocation is in multiples of
the page size.

Virtual page

Virtual page

Virtual page

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Guard page

Guard page

Data buffer

Guard page

Data buffer

Guard page

Data buffer

Virtual page

Data buffer

Low addresses
High addresses

Figure 1: Buffers are aligned on the lower bound-
ary to detect buffer underflow events (left) and on
the upper boundary to detect buffer overflow events
(right). The addresses increase from bottom to up.

Just-freed virtual pages become guard pages to detect
stale memory accesses because they are not mapped to any
physical memory anymore. Kefence marks just-freed virtual
pages so that in case of a fault, these stale accesses can be
distinguished from the boundary violations and analyzed.

The Linux kernel’s vmalloc function allocates the num-
ber of requested pages (one or several) for each request. By
default it aligns the buffers at the beginning and therefore
it only checks the virtual buffers for underflows. Kefence
supports buffer alignment on either of the buffer’s sides. Ke-
fence can align all virtual buffers on one particular side or it
can decide randomly how to align a particular buffer. Ran-
dom alignment allows using the same kernel to check buffers
for underflows and overflows, thus increasing the chances of
detecting bugs.

3.1 Reporting Problems
Buffer allocation and the related buffer boundary viola-

tions can happen in completely different parts of the kernel
and can be separated by long time durations. To address
this, Kefence stores extra information about every virtual
buffer in the buffer’s private structure. In particular, Ke-
fence stores information about the kernel module, file name,
and source code line where the buffer was allocated. We
modified the page fault handler of the Linux kernel such
that whenever there is an access to a guard page, it reports:
(1) if the fault is caused by an overflow, underflow, or an
access to a stale memory address; (2) the exact source code
location of the buffer allocation; (3) the stack trace of the
operation that caused the page boundary violation. In addi-
tion, all these details are logged through syslog. An example
Kefence output is shown in Figure 2.

Buffer OVERFLOW detected!

Buffer allocated in module : wrapfs

file: dentry.c

function: wrapfs_alloc_dentry

line: 97

Figure 2: Information printed out by Kefence upon
a detected buffer overflow event. The output pro-
vided is followed by a standard register dump and
stack trace.

The modified page fault handler can be configured to per-
form various additional tasks. When security is critical, Ke-
fence can be configured to crash the module upon a mem-
ory overflow, thereby preventing further malicious opera-
tions and further potential data corruptions. The system
administrator can look at the logs to determine the location
of the overflow. For critical production systems, Kefence
can be configured to just log the buffer overflow without
terminating the module. Kefence can auto-map a read-only
or a read-write page to the guardian page table entry when-
ever there is an overflow. This way the code which caused
the overflow can be allowed either to write or to just read
the out-of-bounds memory locations. This allows critical
servers to run even if a bug is detected, until a scheduled
system reboot and application of patches can be afforded.
Because the logs contain full information about the loca-
tion and the code that caused the overflow, buffer overflows
in kernel code can be diagnosed easily and multiple errors
can be found. Kefence can do this in real time, making it
suitable for security critical applications.

3.2 Protection Scope
As shown in Table 1, virtual memory buffers are used in-

frequently. Most of the time the kernel uses the kmalloc

and kfree functions to allocate and free buffers. Because
Kefence can only protect virtually-mapped buffers, it does
not protect the buffers allocated using kmalloc. Therefore,
to add bounds checking to the kernel code, one must use
vmalloc instead of kmalloc for memory allocations. We
have modified the Linux header files in such a way that this
replacement is done automatically if a -DKEFENCE compiler
option is given. This option can be set for some kernel com-
ponents or for particular kernel modules.

Unfortunately, not all the kmalloc operations can be con-
verted to the vmalloc ones. For example, drivers use DMA
for data transfers and therefore require access to the physi-
cal memory. Moreover, some DMA systems can access only
a small portion of the available physical memory. Also,
vmalloc cannot be used in the context of interrupts, and
in some parts of the kernel which could cause a potential
deadlock while swapping virtual pages in or out. vmalloc

consumes more virtual memory, since it allocates at least a
page for each memory allocation. This is partly mitigated
by the fact that modern 64-bit architectures are more widely
used in enterprise settings and they make the address space
a virtually inexhaustible resource. However, replacement
of kmallocs with vmallocs results in extra consumption of
physical memory because the memory is allocated in units
of pages. This is an additional restriction which compli-
cates using Kefence for the whole Linux kernel. Therefore,
Kefence is mostly suitable to protect a subset of the kernel
components or modules that undertake serious code modi-
fications or are in the development stage. File systems are
ideal candidates for Kefence protection because they do not
require direct access to the physical memory but they still
use a large enough number of memory buffers to make man-
ual code-verification impractical.

3.3 Performance Scalability
The vmalloc and vfree functions are used infrequently.

As a result, they are not optimized for performance. Every
allocated buffer of virtual memory has an associated struc-
ture named vm struct. This structure describes buffer’s
properties such as its starting address and size. All these
structures are linked together in an ascending buffer-address
order. Both vmalloc and vfree scan this entire list on ev-
ery request. The vmalloc function scans the list looking for
a contiguous virtual memory hole that can be used for the
current allocation. The vfree function searches the entire
linked list for the buffer with the current starting address.
This is a simple and relatively efficient solution if there are
only a few allocated virtual memory buffers, which is usu-
ally the case. However, the number of buffers allocated us-
ing the kmalloc function that are simultaneously present in
memory can be as high as tens or even hundreds of thou-
sands. Therefore, the vmalloc and vfree functions require
improved scalability for Kefence purposes. A straightfor-
ward and simple solution is to use different data structures.
For example, the vfree function can scale as O(1) instead
of O(N) if the vm struct entries are hashed based on the
buffer address. The vmalloc function can be accelerated by
caching the recently used vm struct structures in a separate
linked list.

4. IMPLEMENTATION
Kefence is implemented as Linux 2.4 and Linux 2.6 source

patches because it requires substitution of the core kernel
functions and therefore cannot be implemented as a module.
Fortunately, the patch itself is relatively small because some
of the required functionality is already in the Linux kernel
and in most of the cases it was sufficient only to modify
existing code as follows:

• we instrumented the vmalloc function to align the
buffers on the upper boundary by default;

• we modified the vfree function to locate such buffers
instead of raising an error;

• we modified the page fault handler to print out the
details about the buffer that caused the fault such as
its allocation place in the kernel source;

• a relatively large portion of the changes was related to
adding new members to the vm struct structure and
defining new macros which replace kmalloc and kfree

with vmalloc and vfree pairs to store information
about memory allocation call locations in the source
and control the page alignment policy of vmalloc for
the whole kernel or only for a set of modules;

• some code was added to cache the most recently used
vm struct structures to speed up the vmalloc function
and catch stale memory accesses.

• another substantial contribution, in terms of added C
code size, was the hash table to speed up the vfree

function.

The default vmalloc function is slow because it sequen-
tially scans the whole linked list of vm struct structures.
This adds substantial CPU overheads, and it also purges
the CPU data cache because every vm struct structure is
brought into the CPU cache. Also, the vmalloc and vfree

functions call the kmalloc and kfree functions respectively,
to allocate these structures. Caching the most recently used
vm struct structures in a separate linked list resolves these
problems. No scanning or structure allocation is necessary
in case of a vm struct cache hit. Note that we even do
not unlink the vm struct structures from the default list of
these structures. In addition, cached structures are not as-
sociated with any physical memory but still can be used to
get the buffer allocation information in case of a stale buffer
access violation. The memory consumed by our cache is
small because the vm struct buffers are allocated using the
original kmalloc function. For example, a 1,024-entry cache
consumes only about 64KB of memory, and improves perfor-
mance for many buffers that are allocated and deallocated
frequently.

To improve the scalability of the default vfree function
we, added a hash table over the existing list of virtual mem-
ory areas. Most of the buffers in the Linux kernel are allo-
cated using the kmalloc function and are smaller or equal
to a page size. In addition, there is a guard page between
every buffer. Therefore, our hash function can safely divide
the buffer address (by shifting it) by 2×PAGE SIZE. Our
current hash table is PAGE SIZE big, which is 4K by de-
fault on x86 architecture. Overall, the hash function that

Table 2: Per-file counts of C lines added or changed.
File Lines added Added functionality

or changed
arch/i386/mm/fault.c 6 page fault handler hook
include/linux/gfp.h 1 upper or lower page edge alignment flag
include/linux/vmalloc.h 51 macros and vm struct members to store extra information about the buffer
init/Kconfig 27 new kernel configuration options
mm/vmalloc.c 281 virtual memory areas cache and hash table, page fault report generation
Total: 366

we used is

hash(a) = (a � (PAGE SHIFT + 1))&
PAGE SIZE

sizeof(void∗)

which translates into hash(a) = (a � 13)&0x3ff for 4KB
pages with 4-byte long pointers. This is a good hash func-
tion: (1) it is simple; (2) it equally distributes the load
among buckets assuming that most of the allocated buffers
are less than or equal to PAGE SIZE; and (3) it results
in high CPU data cache hit rates because several buffers
are likely to be allocated and deallocated sequentially. We
resolve hash collisions with per-bucket linked lists. The av-
erage linked list size is PAGE SIZE

sizeof(void∗)
times smaller than the

one of the original vfree. For example, for large numbers of
allocated pages, 4KB memory pages, and 4-byte long point-
ers, our vfree function is approximately 1,000 times faster
than the default one.

Table 2 shows the total number of lines modified or added
to implement the Kefence functionality. As we can see,
a substantial portion of the changes is related to making
Kefence configurable and providing as much information as
possible about the boundary violations. Although, the Ke-
fence code is architecture dependent, porting it to new ar-
chitectures is trivial and requires an addition of only several
lines of code.

5. EVALUATION
We evaluated Kefence on a P4 1.7GHz machine with 1GB

of memory. Its system disk was a 30GB 7200 RPM West-
ern Digital Caviar IDE and was formatted with Ext2. In
addition, the machine was equipped with one more simi-
lar dedicated IDE disk formatted with Ext2 to conduct our
compile benchmark.

We rebooted the machine before every benchmark run to
purge file system caches and restore the memory subsystem
state. We ran each test at least ten times and used the
Student-t distribution to compute the 95% confidence in-
tervals for the mean elapsed, system, user, and wait times.
Wait time is the elapsed time less CPU time used and con-
sists mostly of I/O, but process scheduling can also affect it.
In each case, the half-widths of the confidence intervals were
less than 5% of the mean. The test machine was running
a Fedora Core 3 Linux distribution with a vanilla 2.6.11.7
kernel.

5.1 Micro-benchmarks
First we conducted a set of micro-benchmarks to mea-

sure the individual execution times of the kmalloc, kfree,
vmalloc, and vfree functions. We created a kernel mod-
ule that invoked these functions directly. We performed the
experiments after a reboot (under the conditions described

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

vfree-hot

vfree-cold

vmalloc-hot

vmalloc-cold

kfree-hot

kfree-cold

kmalloc-hot

kmalloc-cold
O

pe
ra

tio
n

la
te

nc
y

(C
PU

 c
yc

le
s)

792
236 456 216

8148

2096

2924 2884

Latency

Figure 3: kmalloc, kfree and vmalloc, vfree execution
times in CPU cycles with cold and hot CPU cache
states with 7 pre-allocated virtual memory buffers
under vanilla 2.6.11.7 Linux kernel.

in Table 1) to avoid interference with other kernel activity.
The measurement module read the contents of the i386 CPU
counter register before and after the calls to the measured
functions. Figure 3 shows the number of CPU cycles con-
sumed for every function in case of cold and warm CPU
caches. As we can see, the virtual memory management
functions are an order of magnitude slower even if only a
few virtual memory buffers are allocated. This is not sur-
prising given that vmalloc calls kmalloc and also performs
many other actions.
kmalloc and kfree execution time is almost independent

of the number of allocated buffers. However, vmalloc and
vfree considerably slow down if the number of allocated
buffers increases because both of them need to scan the list
of allocated buffers sequentially. Even worse, list scanning
requires accessing data scattered throughout memory. Not
only does this result in increased scanning times due to CPU
cache misses, but it also purges the CPU caches during every
vmalloc and vfree operation.

Our second micro-benchmark measured the scalability of
the original and our improved vmalloc and vfree functions.
Figure 4 shows the dependence of the latency of these func-
tions on the number of preallocated buffers. In particular,
we sequentially allocated 5,000 buffers and then sequentially
deallocated them starting from the last allocated buffer.
To measure the effectiveness of our vm struct structures
cache, we warmed it up by running the same test before
the measurement. As we can see, both the original vfree
and vmalloc functions’ latency grows linearly while the list
of allocated memory buffers fits in the CPU cache. After

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 1000 2000 3000 4000 5000

O
pe

ra
tio

n
la

te
nc

y
(C

PU
 c

yc
le

s)

Number of preallocated buffers

vmalloc
vmalloc-KEFENCE

vfree
vfree-KEFENCE

Figure 4: Dependence of vmalloc and vfree execu-
tion times on the number of already allocated buffers
for the original and instrumented functions.

approximately 3,000 allocated buffers the list of buffers no
longer fits in the CPU cache and the latency grows much
faster. We can see that the hash table and the vm struct

cache that we added resolves the problem. In particular,
the Kefence versions of vmalloc and vfree have latency
that is independent of the number of allocated buffers (for
vmalloc requests satisfied from the vm struct cache). Even
the vfree requests that miss the CPU cache result in no
more than 1,024 CPU cache misses because our hash table
decreases the list scanning length by 1,024 times.

5.2 Compile Benchmark
To evaluate the performance of Kefence, we instrumented

a stackable file system [21] called Wrapfs. Wrapfs is a wrap-
per file system that just redirects the Virtual File System
(VFS) calls to a lower-level file system. The vanilla Wrapfs
uses kmallocs for allocation. Each Wrapfs object (inode,
file, etc.) contain private data fields which get allocated dy-
namically. In addition to this, temporary page buffers and
strings containing file-names are also allocated dynamically.
In the instrumented version of Wrapfs, we used vmalloc for
all memory allocations so that we could exercise Kefence
for all dynamically allocated buffers. Overall, we chose to
instrument Wrapfs because it executes many more memory
allocations than most other file systems such that Ext2; this
helps demonstrate the worst-case performance of Kefence.

We compiled the Am-utils [15] package version 6.1b3 over
Wrapfs (mounted over Ext2) and compared the time over-
head of the instrumented version of Wrapfs with vanilla
Wrapfs. Am-utils contains over 60,000 lines of C code in 430
files. The build process begins by running several hundred
small configuration tests to detect system features. It then
builds a shared library, ten binaries, four scripts, and docu-
mentation: a total of 152 new files and 19 new directories.
Although the Am-utils compile is CPU intensive, it contains
a fair mix of file system operations. We used Tracefs [1] to
measure the exact distribution of operations. The Am-utils
build process uses 25% writes, 22% lseek operations, 20.5%
reads, 10% open operations, 10% close operations, and the
remaining 12.5% operations are a mix of readdir, lookup,
etc. We used an Am-utils build benchmark because it al-

 0

 50

 100

 150

 200

Wrapfs-KEFENCEWrapfs

El
ap

se
d

tim
e

(s
ec

)

190s 193s Wait
User

System

Figure 5: Am-utils compilation results over the orig-
inal Wrapfs and the same file system instrumented
with Kefence.

lows us to estimate the Kefence overheads under a workload
similar to these generated by advanced Linux users.

Figure 5 shows the time taken for the Am-utils compila-
tion for vanilla Wrapfs and its instrumented version. The
instrumented version of Wrapfs had elapsed time overhead
of 1.4% and system time overhead of 5.9% over normal file
systems. This overhead has two main causes. First, the
vmalloc and vfree functions are slower than the kmalloc

and kfree functions as we discussed before. Second, allo-
cating an entire page for each memory buffer creates TLB
contention which reduces performance [12].

We found that the maximum number of outstanding al-
located pages during the compilation of Am-utils over the
instrumented Wrapfs was 2,085 and the average size of each
memory allocation was 80 bytes. That means that the vanilla
version of Wrapfs consumed 166,800 bytes of physical mem-
ory. The instrumented Wrapfs on average consumed 8,540,160
bytes of physical memory (less than 1% of total physical
memory on our system) and 17,080,320 bytes of virtual mem-
ory (less than 1% of available virtual memory).

5.3 I/O-Intensive Benchmark
Postmark [7] simulates the operation of electronic mail

servers. It performs a series of file appends, reads, cre-
ations, and deletions. We configured Postmark to create
20,000 files, between 512–10K bytes, and perform 200,000
transactions. We selected the create vs. delete and read vs.
write operations with equal probability.

Figure 6 shows the execution times of the Postmark bench-
mark over the Kefence-instrumented and vanilla Wrapfs.
Kefence reduces the amount of available physical memory
because it allocates the buffers in the units of pages. Natu-
rally, reducing the amount of available memory reduces the
amount of memory that can be used for file system caches.
As a result, more I/O operations require disk accesses. We
can see that in our Postmark benchmark, Kefence increased
the elapsed time by 2.5 times.

We conclude that Kefence performs well for normal user
workloads in terms of CPU overheads. However, I/O-intensive
code that uses a lot of memory may exhaust physical or vir-
tual memory.

 0

 100

 200

 300

 400

 500

 600

 700

Wrapfs-KEFENCEWrapfs

El
ap

se
d

tim
e

(s
ec

)

292s

725s Wait
User

System

Figure 6: Postmark benchmark times for original
and Kefence-instrumented Wrapfs.

6. CONCLUSIONS
We have designed, implemented, and evaluated a new

in-kernel tool we call Kefence. Kefence can detect out-
of-bounds and stale buffer accesses using hardware paging
mechanisms. It protects most of the kernel memory buffers
against corruption and prevents invalid data reads from af-
fecting the internal kernel state. Upon detection of a memory-
access violation, Kefence provides enough information to
identify and resolve the problem easily.

Contrary to previous assumptions, we have demonstrated
that guard-page-based protection can be applied to all mem-
ory buffers of substantial kernel components without seri-
ously degrading performance or consuming too much mem-
ory. We have demonstrated that Kefence imposes overheads
below 2% of elapsed time and below 1% of available memory
for instrumented file systems under normal user workloads.

Future work. Aside from the paging-based detection of
memory access violations, we are working on the kernel code
compiler that generates software-based bounds checking.

7. ACKNOWLEDGMENTS
We would like to acknowledge contributions of the follow-

ing people: Mohan-Krishna Channa-Reddy and Salil Gokhale
developed an early Kefence prototype. Devaki Kulkarni
ported Kefence to the 2.6 Linux kernel. Abhishek Rai par-
ticipated in some Kefence testing. We would like to thank
Charles P. Wright for useful discussions about the applicabil-
ity of Kefence and for his help with the paper’s preparation.
Finally, we would like to thank all FSL members for their
support and a productive environment.

8. REFERENCES
[1] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A

File System to Trace Them All. In Proceedings of the
Third USENIX Conference on File and Storage
Technologies (FAST 2004), pages 129–143, San
Francisco, CA, March/April 2004. USENIX
Association.

[2] P. J. Braam. The Lustre Storage Architecture.
www.lustre.org/documentation.html, October 2002.

[3] CERT Coordination Center. CERT/CC Overview
incident and Vulnerability Trends Technical Report.
www.cert.org/present/cert-overview-trends.

[4] T. Chiueh and F. Hsu. RAD: A Compile-time
Solution to Buffer Overflow Attacks. In Proceedings of
the 21rst International Conference on Distributed
Computing Systems (ICDCS), pages 409–420,
Phoenix, AZ, April 2001.

[5] C. Cowan, C. Pu, D. Maier, H. Hintongif, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Qian
Zhang. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In
Proceedings of the Seventh USENIX Security
Symposium, pages 63–78, San Antonio, TX, January
1998.

[6] Intel. Intel Itanium 2 Processor Reference Manual For
Software Development and Optimization. Intel
Corporation, 2004.

[7] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[8] BSD Library Functions Manual. libgmalloc(3).

[9] V. Markstein, J. Cocke, and P. Markstein.
Optimization of Range Checking. In Proceedings of the
17th Symposium on Compiler Construction
(SIGPLAN’82), pages 114–119, June 1982.

[10] B. Milekic. memguard(9).

[11] A. Morton. Re: [patch, 2.5] vmalloc allocates
spurious page?, October 2002. www.uwsg.iu.edu/
hypermail/linux/kernel/0210.1/2532.html.

[12] J. Navarro, S. Iyer, P. Druschel, and A. Cox.
Practical, transparent operating system support for
superpages. In Proceedings of the Fifth Symposium on
Operating System Design and Implementation (OSDI
’02), pages 89–104, Boston, MA, December 2002.
USENIX Association.

[13] T. Nguyen and F. Irigoin. Efficient and Effective Array
Bound Checking. ACM Transactions on Programming
Languages and Systems, 27(3):527–570, May 2005.

[14] W. Oney. Programming the Microsoft Windows Driver
Model. Microsoft Press, Redmond, WA, second
edition, 2003.

[15] J. S. Pendry, N. Williams, and E. Zadok. Am-utils
User Manual, 6.1b3 edition, July 2003.
www.am-utils.org.

[16] B. Perens. efence(3), April 1993.

[17] H. Shacham, M. Page, B. Pfaff, E. Goh,
N. Modadugu, and D. Boneh. On the Effectiveness of
Address-Space Randomization. In Proceedings of 11th
ACM Conference on Computer and Communications
Security (CCS), pages 298–307, October 2004.

[18] D. A. Solomon and M. E. Russinovich. Inside
Microsoft Windows 2000. Microsoft Press, Redmond,
WA, 2000.

[19] M. Szeredi. Filesystem in Userspace.
http://fuse.sourceforge.net, February 2005.

[20] E. Zadok and I. Bădulescu. A stackable file system
interface for Linux. In LinuxExpo Conference
Proceedings, pages 141–151, Raleigh, NC, May 1999.

[21] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the Annual
USENIX Technical Conference, pages 55–70, San
Diego, CA, June 2000. USENIX Association.

