Moving Beyond Host Based Virtualization: New Techniques for
Performance Measurement and Data Management in Cloud Native Environments

A Dissertation Proposal presented
by
Alex Merenstein
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science

Stony Brook University

Technical Report FSL-24-01

January 2024

Stony Brook University
The Graduate School

Alex Merenstein

We, the thesis committee for the above candidate for the
degree of Doctor of Philosophy, hereby recommend
acceptance of this thesis proposal

Erez Zadok - Dissertation Advisor
Professor, Computer Science Department

Anshul Gandhi - Chairperson of Dissertation Proposal
Associate Professor, Computer Science Department

Dongyoon Lee
Associate Professor, Computer Science Department

Ali Anwar
Assistant Professor, Computer Science & Engineering Department, University of Minnesota

Vasily Tarasov
Research Scientist, IBM Research

i

Abstract of the Dissertation Proposal

Moving Beyond Host Based Virtualization: New Techniques for
Performance Measurement and Data Management in Cloud Native Environments

by
Alex Merenstein
Doctor of Philosophy
in
Computer Science
Stony Brook University

2024

Host-based virtualization has long been the technology that cloud applications
were built on. This remains the case: host-based virtualization is still a core part
of the cloud-computing stack. However, modern clouds now have several layers
of additional services built on top of the host-virtualization layer. These layers
include services used for building applications, such as Function as a Service
(FaaS) and serverless platforms, as well as entire applications managed on behalf
of the user (e.g., Software as a Service, or SaaS).

The introduction of these layers is a part of a larger trend towards “cloud
native” applications and platforms. In cloud native environments, applications are
supposed to be more dynamic and ephemeral. FaaS and SaaS systems enable these
characteristics by shifting the burden of application management from the user
to the service provider, performing operations that might be too cumbersome or
difficult for users to do on their own. For example, Amazon Web Services’ (AWS)
Lambda is a popular FaaS platform that automatically scales compute resources to
closely match current demand, avoiding over-provisioning, reducing user’s costs.
AWS Elastic File System (EFS) is a popular SaaS product, providing an NFS
server that automatically scales to fit a user’s data requirements.

This thesis proposal has two thrusts. In the first thrust, we begin by explor-

11

ing the unique challenges to measuring performance in these new cloud native
environments. We developed CNSBench, which enables developers to assess the
performance of their application and infrastructure by allowing developers to cre-
ate test workloads that are representative of real cloud native environments: they
are dynamic and consisting of a diverse set of individual workloads.

Once we are able more accurately to measure the performance of cloud native
applications, we turn to improving performance. Therefore, in the second thrust,
this proposal introduces new techniques for managing data that are tailored to
the usage patterns common in cloud native environments, reducing costs to users
while maintaining required levels of data durability. Data exchange between in-
dividual components has been identified as a frequent bottleneck in cloud native
applications, especially those deployed on serverless platforms.

We propose F3, a file system designed to optimize data exchange in serverless
platforms. F3 introduces new methods for handling ephemeral data and modifica-
tions to a serverless-scheduling algorithm so that data-locality is considered when
scheduling serverless actions. These changes help to adapt existing file-based
storage options to modern, cloud native applications and use cases.

By introducing new methods for handling ephemeral data, F3 makes a tradeoff
between durability and performance. It does so by using data stores with higher
performance that are less durable, for storing ephemeral data passed between ap-
plication components. We plan to further explore how lower durability storage
can be used, trading off durability for (dollar) cost. We propose to develop a
model that determines the durability level most appropriate for an application and
its data. We plan to introduce an application architecture that utilizes this model
to place data in cheaper storage while still meeting the data’s durability require-
ments, thereby reducing overall costs to users.

Cloud native environments offer significant benefits over more traditional host
virtualization based cloud environments. Many of these benefits are driven by the
adoption of FaaS and SaaS platforms that provide features such as on-demand
computing, fine grained resource allocation and billing, and quick and easy de-
ployments. Therefore, it is our thesis that to fully realize these benefits, new
performance measurement techniques and efficiency approaches to data handling
are required.

v

Contents

1 Introduction

2 Motivation

2.1
2.2

Cloud Native Benchmarking
File System for Serverless

3 Related Work

3.1
3.2

Storage Benchmarking
Storage for Serverless L L.

4 CNSBench: A Cloud Native Storage Benchmark

4.1
4.2
4.3

4.4

4.5

4.6

Introduction o
Kubernetes Background
Need for Cloud Native Storage Benchmarking
4.3.1 New Workload Properties
4.3.2 DesignRequirements
CNSBench Design and Implementation
44.1 Benchmark Custom Resource
442 Benchmark Controller
Evaluation
45.1 Methodology
4.5.2 Performance of Control Operations
4.5.3 Impactson /O Workloads
454 Orchestration
4.5.5 Benchmark Usability
Conclusion L

CONTENTS

5 F3: Serving Files Efficiently in Serverless Computing
5.1 Introduction
5.2 Background

5.3 Storage for Serverless Computing

5.3.1 Object Stores vs. File Systems
5.3.2 Shortcomings of Existing File Systems
54 Design e
5.5 Implementation,
5.5.1 Unmodified Applications in Serverless
5.6 Evaluation

5.6.1 Cluster and Storage Setup

5.6.2 Data Transfer Micro-Benchmarks
5.6.3 Case Study: Bioinformatics Pipeline
5.7 Conclusion s

6 Proposed and Future Work

6.1 ProposedWork o
6.2 FutureWork

7 Conclusions

vi

39
40
43
45
45
46
48
53
55
55
56
58
64
66

70
70
72

74

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9

Basic topology of a Kubernetescluster
CNSBench overview
Kubernetes cluster with CNSBench components
CDF of volume create and attach times
Rate of volume creations and attachments
Impact of snapshotting on I/O workload
CDF of snapshot creation times
Performance of different mixes of workload

Blueprint architecture of edge serverless platform
CNSBench architecture and locality-aware data operations

System call latencies
System call latenciesCDF
Impact of data aware scheduling
Latency and throughput
Read-while-write performance
Bioinformatics use case architecture
Runtime of Cutadapt + Trimmomatic pipeline

Vil

List of Tables

4.1 Size in lines of benchmark specifications

viil

Chapter 1

Introduction

Modern clouds have undergone a significant evolution over the past few years. An
explosion of cloud deployment options (e.g., edge [45], hybrid [53], multi [53])
and architectures (e.g., microservice [120], function-as-a-service [57] serverless [32]).
All that means that making deployment decisions for an application has become
complex and difficult. Being able to assess the performance of an application in a
particular configuration and on a particular platform is difficult and yet crucial to
being able to make the correct choices.

At the same time, the adoption of cloud native principles has changed the way
that applications are deployed and run. The rise of management automation and
orchestration tools such as Kubernetes [71] means that workloads have several
new operating characteristics that distinguish them from pre-cloud native work-
loads. These new characteristics make it more difficult than ever to accurately
assess the performance of a workload or platform.

The first of these new characteristics in cloud native environments is the in-
creased importance of storage control operation such as volume creation and at-
tachment. These operations have become much more frequent in cloud native
environments thanks to a higher rate of workload churn and the increased ability
for users—not just administrators—to manage storage volumes [81, 72].

Another new characteristic is an increase in the diversity of workload mixes
on each host. This is driven by the adoption of microservice and function-as-a-
service—based architectures [134, 120, 57]. These highly diverse workload mixes
and found on hosts in cloud native environments; they make it difficult to under-
stand or predict the performance of each individual workload.

Finally, cloud native applications tend to be highly dynamic: new versions of
applications are frequently rolled out and individual services are scaled rapidly to

CHAPTER 1. INTRODUCTION

closely match demand.

In addition to new operating characteristics, cloud native applications have
new data-access patterns as well. As applications are split into many short-lived
services, increased amount of data must now be passed between these services.
This data is often short lived and can be easily re-generated if lost. Existing stor-
age systems are designed to store data durably; they lack the optimizations and
data-handling techniques that are appropriate for this kind of ephemeral data.

In this thesis, we propose addressing these new properties of cloud native plat-
forms and applications with two thrusts: (1) by developing a benchmark suite ca-
pable of assessing the performance of cloud native workloads and (2) developing
new data-management techniques tailored for access patterns common in cloud
native environments

We address the first challenge, of benchmarking in cloud native environments,
with CNSBench, a benchmark framework designed for cloud native applications
and environments. CNSBench enables users to create benchmarks that orches-
trate the execution of multiple applications. In addition, CNSBench allows users
to specify a “control workload,” which consists of actions such as scaling an ap-
plication deployment or snapshotting a storage volume. By orchestrating the com-
bination of multiple applications and control workloads, CNSBench can generate
workloads that are representative of real cloud native workloads. This enables
users to evaluate how their application will perform under cloud native conditions
(e.g., frequent scaling or the presence of other workloads) on a particular platform.
We show how CNSBench can be used to assess the performance of cloud native
storage systems and applications.

To address the second challenge, the existence of new data access patterns in
cloud native applications, we developed F3. F3 is a file system that introduces new
data-handling techniques tailored for the kind of ephemeral data common to cloud
native applications, especially those deployed on serverless platforms. F3 enables
serverless applications to use file-based storage, and enables serverless platforms
to use data locality information when scheduling the execution of serverless ac-
tions. Additionally, F3 makes a tradeoff between performance and durability,
using lower durability storage for ephemeral data that can be re-generated if lost.

We plan to continue to explore the use of durability features for ephemeral
serverless data. Specifically, we plan to develop a model that calculates the ap-
propriate level of durability for an application’s data, given parameters such as
the cost to generate the data and the cost of different durability levels. We be-
lieve that a large portion of serverless data does not need the highest levels of
durability currently being used and that users can save money and increase per-

2

CHAPTER 1. INTRODUCTION

formance by using lower durability, faster storage for certain data. We plan to
demonstrate this by developing proof-of-concept applications and showing how
these applications can be executed with lower costs when using our model for
making data-placement decisions.

It is our thesis that the characteristics of new cloud native environments and
applications require new tools and techniques. We first develop a benchmarking
tool capable of measuring performance in a realistic manner, with all of the storage
control operations, application dynamism, and diverse workloads found in these
new cloud native environments. We then develop new techniques for handling
ephemeral data, which is frequently generated by cloud native applications.

The rest of this thesis proposal is organized as follows: In Chapter 2 we de-
scribe our motivation. In Chapter 3 we describe related works. In Chapter 4 we
describe our benchmark framework CNSBench and provide an evaluation of its
use. In Chapter 5 we describe F3, a storage system optimized for serverless ap-
plications. We describe our proposed future work in Chapter 6 and conclude this
proposal in Chapter 7.

Chapter 2

Motivation

In this chapter, we describe our motivation behind creating a new benchmark
framework and new a serverless-oriented file system.

2.1 Cloud Native Benchmarking

As described previously, cloud native environments and applications have signif-
icantly different properties compared to previous clouds and cloud applications.
For example, storage control operations are more common and applications are
much more dynamic.

In our evaluation of CNSBench, we found that storage system performance
varies widely across different storage systems, with some storage providers ex-
hibiting especially low performance when executing control operations like snap-
shotting a volume. We also found that workloads consisting of different mixes of
applications exhibited different performance, depending on the specific mix of ap-
plications. Both of these findings show the importance of being able to benchmark
platforms and applications in a cloud-native way. Existing benchmarks do not
generate storage control operations, making it difficult to assess the performance
of storage systems under realistic cloud native conditions. Existing benchmarks
also do not make it easy to orchestrate different mixes of applications, making it
difficult to understand the performance implications when many different services
are run on the same host or cluster.

CHAPTER 2. MOTIVATION

2.2 File System for Serverless

Serverless and Function as a Service (FaaS) platforms have become popular plat-
forms for building and deploying cloud native applications. These platforms en-
courage breaking larger applications into many individual services. Communica-
tion between services is difficult though: many cloud platforms do not allow direct
service to service network connections, and many do not offer file-based storage.
The result is that applications often resort to using object stores as a means for
transferring data between components: one service writes data to an object store,
and then a second service reads that data from the object store.

Using an object store for communication is often not ideal. Existing object
stores often forbid or have poor performance when there are simultaneous readers
and writers accessing the same data. In serverless applications, this is a common
pattern. Specifically, it is common for one service to consume data as it is being
written by another service.

Additionally, existing applications might require access to file-based storage.
Relying solely on object storage for data transfer precludes these applications
from being ported to a serverless platform.

With F3, we were able to run unmodified applications, despite these appli-
cations requiring file-based storage interfaces. This, as well as the performance
improvements we demonstrate with F3, support our decision to develop a file sys-
tem with data management techniques tailored for serverless applications.

Chapter 3
Related Work

In this chapter, we survey related works about storage benchmarking and storage
for serverless.

3.1 Storage Benchmarking

Classic storage benchmarks Storage benchmarking is an old and complex topic
with many applicable techniques and intricate nuances [130]. Therefore, it is not
surprising that the array of tools for benchmarking and corresponding studies is
extensive. Filebench [131], fio [41], SPEC SFS [125], and I0Zone [18] are just
a few examples of popular file system benchmarks. For a comprehensive survey
of file system and storage benchmarks we refer the reader to a study by Traeger
et al. [135].

The majority of such benchmarks generate a single, stationary workload per
run, which is not representative of cloud native environments. Few benchmarks
have built-in mechanisms to dynamically increase the load, in order to discover the
peak throughput where diminishing returns (e.g., due to thrashing) begin to take
over. For example, measuring NFS throughput via SPEC SFS [126] and process
scheduling throughput using AIM7 [132].

Filebench [131, 1] comes with several canned configurations [107] and even
has its own Workload Modeling Language (WML) [145]. It, however, is not
distributed (cannot run in a coordinated manner across multiple containers) and,
though WML is flexible for encoding stationary workloads, is still limited in cre-
ating dynamically changing workloads. In our experience, adding support for dis-
tributed and temporally varying workloads to Filebench’s WML is a difficult task.

CHAPTER 3. RELATED WORK

Therefore, in CNSBench, we exploited the orchestration capabilities of cloud na-
tive environments and delegated these tasks to a higher level (i.e., the CNSBench
controller and the Kubernetes orchestrator itself). This further allowed us to sup-
port any existing benchmarks as canned I/O generators.

RocksDB [39] is a popular key-value store with canned, preconfigured work-
loads using a db_bench driver to create random/sequential reads/writes and mixes
thereof. One can run these workloads in any order and configure their working-set
size. However, that is still a manual process with little flexibility, and no support
for control operations (which is true for the previously mentioned benchmarks as
well).

Object storage benchmarks In recent years the need to test the performance
of cloud storage has motivated academia and industry to develop several micro-
benchmarks for that task such as YCSB [28] and COSBench [147]. YCSB is an
extensible workload generator that evaluates the performance of different cloud-
serving key-value stores. COSBench measures the performance of cloud object
storage services and comes with plugins for different cloud providers. Unlike
these benchmarks, CNSBench focuses on workloads that run in containers and
require a file system interface.

Cloud native benchmarks TailBench [63] provides a set of interactive macro-
benchmarks: web servers, databases for speech recognition, and machine trans-
lation systems to be executed in the cloud. Similarly, DeathStarBench [44] is a
benchmark suite for microservices and their hardware-software implications for
cloud and edge systems. Both TailBench and DeathStarBench target cloud appli-
cations and are not explicitly storage benchmarks.

3.2 Storage for Serverless

Jonas et al. [60] implemented PyWren, which enables the massive parallelization
of Python applications using AWS Lambda. This is one of the first cases of re-
searchers using serverless platforms for use cases beyond web applications, and
they found that existing storage solutions were lacking. In particular, they re-
ported that the existing storage solutions are incapable of supporting large scale
data operations. Following PyWren, Klimovic et al. [66] examined the storage
use of several FaaS applications and proposed the design of a storage system suit-

CHAPTER 3. RELATED WORK

able for these new use cases. Unlike F3, these works do not consider file-based
storage for serverless.

Several papers introduce new storage systems for serverless platforms: Lo-
cus [112], Pocket [67], and Cloudburst [127]. Other frameworks for writing or
running applications on serverless platforms handle storage by abstracting access
to one of many possible storage backends. Examples include gg [42] and Ray [99].
In all of these cases, access to storage was exposed via a custom API interface
which would require porting existing applications in order to run. Conversely, F3
allows existing applications to run unmodified. Also, F3 could be integrated into
frameworks like gg or Ray as an alternative storage backend, or could be layered
on top of one of the existing storage backends supported by those frameworks.

Schleier-Smith et al. [123] make a similar argument as we do in favor of a file
interface for serverless applications. However, they assert that existing shared file
systems are too slow and are incompatible with cloud environments where failures
and high latencies are common; and they propose a transactional interface. We
believe that small edge data centers will have fewer random failures and lower
latency than cloud data centers, and that shared file systems can achieve high
performance in this setting (see Section 5.6).

Wukong [20] and SONIC [88] aim to accelerate data transfer in serverless en-
vironments by scheduling connected actions together on the same node. However,
they require prior knowledge of the workload, such as the graph of which actions
call other actions in order to schedule actions that share data together on the same
node. F3 does not require prior knowledge about workloads in order to schedule
actions close to their data.

Other work has explored transferring data using direct network connections
between two serverless actions, made possible via NAT hole-punching [140]. This
addresses the issue of data transfer between actions but does not address the need
for file-based storage.

Our location-aware data scheduling is similar to the ideas implemented by
Hadoop [2] and HDFS [3]. Hadoop and HDFS are designed for map-reduce en-
vironments and fit well for data analytics tasks. It is not possible to access HDFS
data through the usual read and write system calls. F3 is created specifically for
serverless computing and is suitable for running generic, unmodified applications.

Apache Crail [129] makes a similar argument to us, that some intermediate
data generated by applications do not need the durability provided by most storage
systems. They introduce an architecture and implementation of a system that
provides fast data transfer for ephemeral data. However, unlike F3, Crail exposes
a custom API that requires applications to be modified to use.

8

CHAPTER 3. RELATED WORK

In HPC environments, burst buffers such as BurstFS [139], and GekkoFS [138]
accelerate access to temporary data by adding a faster, less durable storage layer
between the application and the cluster’s persistent data store. Unlike F3, burst
buffers treat all data as ephemeral and do not provide a shared namespace with
both ephemeral and non-ephemeral data.

Using non-persistent storage such as RAM for ephemeral data is common
(e.g., using Redis [115] or Memcached [93]). These solutions also have no shared
namespace with both ephemeral and non-ephemeral data. Additionally, popular
memory-based storage systems that are accessible from multiple servers all use
object interfaces, rather than file interfaces.

Like F3, the Google File System (GFS) [47] has special support for the read-
while-write use case. However, GFS implements a limited number of file opera-
tions, making it potentially unsuitable for running unmodified applications. Also,
the special support for reading-while-writing is exposed via a new, non-standard
operation called record append. Unmodified applications therefore cannot benefit
from this new feature. In F3, even unmodified applications can benefit from our
read-while-write optimizations.

Chapter 4

CNSBench: A Cloud Native Storage
Benchmark

Modern hybrid cloud infrastructures require software to be easily portable be-
tween heterogeneous clusters. Application containerization is a proven technol-
ogy to provide this portability for the functionalities of an application. However,
to ensure performance portability, dependable verification of a cluster’s perfor-
mance under realistic workloads is required. Such verification is usually achieved
through benchmarking the target environment and its storage in particular, as I/0
is often the slowest component in an application. Alas, existing storage bench-
marks are not suitable to generate cloud native workloads as they do not generate
any storage control operations (e.g., volume or snapshot creation), cannot easily
orchestrate a high number of simultaneously running distinct workloads, and are
limited in their ability to dynamically change workload characteristics during a
run.

In this chapter, we present the design and prototype for the first-ever Cloud
Native Storage Benchmark—CNSBench. CNSBench treats control operations as
first-class citizens and allows to easily combine traditional storage benchmark
workloads with user-defined control operation workloads. As CNSBench is a
cloud native application itself, it natively supports orchestration of different con-
trol and I/O workload combinations at scale. We built a prototype of CNSBench
for Kubernetes, leveraging several existing containerized storage benchmarks for
data and metadata I/O generation. We demonstrate CNSBench’s usefulness with
case studies of Ceph and OpenEBS, two popular storage providers for Kubernetes,
uncovering and analyzing previously unknown performance characteristics.

10

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

4.1 Introduction

The past two decades have witnessed an unprecedented growth of cloud comput-
ing [92]. By 2020, many businesses have opted to run a significant portion of their
workloads in public clouds [12] while the number of cloud providers has multi-
plied, creating a broad and diverse marketplace [48, 54, 4, 96]. At the same time,
it became evident that, in the foreseeable future, large enterprises will continue
(1) running certain workloads on-premises (e.g., due to security concerns), and
(i1) employing multiple cloud vendors (e.g., to increase cost-effectiveness or to
avoid vendor lock-in). These hybrid multicloud deployments [53] offer the much
needed flexibility to large organizations.

One of the main challenges in operating in a hybrid multicloud is workload
portability—allowing applications to easily move between public and private clouds,
and on-premises data centers [69]. Software containerization [56] and the larger
cloud native [26] ecosystem is considered to be the enabler for providing seamless
application portability [14]. For example, a container image [36] includes all user-
space dependencies of an application, allowing it to be deployed on any container-
enabled host while container orchestration frameworks such as Kubernetes [71]
provide the necessary capabilities to manage applications across different cloud
environments. Kubernetes’s declarative nature [77] lets users abstract application
and service requirements from the underlying site-specific resources. This allows
users to move applications across different Kubernetes deployments—and there-
fore across clouds—without having to consider the underlying infrastructure.

An essential step for reliably moving an application from one location to an-
other is validating its performance on the destination infrastructure. One way
to perform such validation is to replicate the application on the target site and
run an application-level benchmark. Though reliable, such an approach requires
a custom benchmark for every application. To avoid this extra effort, organiza-
tions typically resort to using component-specific benchmarks. For instance, for
storage, an administrator might run a precursory I/O benchmark on the projected
storage volumes.

A fundamental requirement for such a benchmark is the ability to generate
realistic workloads, so that the experimental results reflect an application’s actual
post-move performance. However, existing storage benchmarks are inadequate
to generate workloads characteristic of modern cloud native environments due to
three main shortcomings.

First, cloud native storage workloads include a high number of control opera-
tions, such as volume creation, snapshotting, etc. These operations have become

11

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

much more frequent in cloud native environments as users, not admins [81, 72], di-
rectly control storage for their applications. As large clusters have many users and
frequent deployment cycles, the number of control operations is high [95, 64, 84].

Second, a typical containerized cluster hosts a high number of diverse, si-
multaneously running workloads. Although this workload property, to some ex-
tent, was present before in VM-based environments, containerization drives it to
new levels. This is partly due to higher container density per node, fueled by the
cost effectiveness of co-locating multiple tenants in a shared infrastructure and
the growing popularity of microservice architectures [134, 120]. To mimic such
workloads, one needs to concurrently run a large number of distinct storage bench-
marks across containers and coordinate their progress, which currently involves a
manual and laborious process that becomes impractical in large-scale cloud native
environments.

Third, applications in cloud native environments are highly dynamic. They
frequently start, stop, scale, failover, update, rollback, and more. This leads to
various changes in workload behavior over short time periods as the permutation
of workloads running on each host change. Although existing benchmarks allow
one to configure separate runs of a benchmark to generate different phases of
workloads [34, 39], such benchmarks do not provide a versatile way to express
dynamicity within a single run.

In this chapter we present CNSBench—the first open-source Cloud Native
Storage Benchmark capable of (i) generating realistic control operations; (ii) or-
chestrating a large variety of storage workloads; and (iii) dynamically morphing
the workloads as part of a benchmark run.

CNSBench incorporates a library of existing data and metadata benchmarks
(e.g., fio [41], Filebench [131], YCSB [28]) and allows users to extend the li-
brary with new containerized I/O generators. To create realistic control operation
patterns, a user can configure CNSBench to generate different control operations
following variable (over time) operation rates. CNSBench can therefore be seen
as both (i) a framework used for coordinating the execution of large number of
containerized 1/0 benchmarks and (i1) a benchmark that generates control oper-
ations. Crucially, CNSBench bridges these two roles by generating the control
operations to act on the storage used by the applications, thereby enabling the
realistic benchmarking of cloud native storage.

As an example, consider an administrator evaluating storage provider perfor-
mance under a load that includes frequent snapshotting. Conducting an evaluation
manually requires the administrator to create multiple storage volumes, run a com-
plex workload that will use that volumes (e.g., a MongoDB database with queries

12

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

generated by YCSB), and then take snapshots of the volumes while the workload
runs. The same evaluation with CNSBench requires just that the administrator
specify which workload to run, which storage provider to use, and the rate with
which snapshots should be taken. CNSBench handles instantiating each compo-
nent of the workload (i.e., the storage volume, the MongoDB database, and the
YCSB client) and then executing the control operations to snapshot the volume as
the workload runs.

While developing CNSBench, we have also been building out a library of pre-
defined workloads. The previous example uses one such workload, which con-
sists of YCSB running against a MongoDB instance. If the administrator instead
wanted to instantiate a workload not found in our library, it is easy to package an
existing application into a workload that can be used by CNSBench. In that case,
we would also encourage the administrator to contribute their new workload back
to our library so that it could be used by a broader community.

To demonstrate CNSBench’s versatility, we conducted a study comparing cloud
native storage providers. We pose three questions in our evaluation: (A) How fast
are different cloud storage solutions under common control operations? (B) How
do control operations impact the performance of user applications? (C) How
do different workloads perform when run alongside other workloads? We use
Ceph [21] and OpenEBS [102] in our case study as sample storage providers.
Our results show that control operations can vary significantly between storage
providers (e.g., up to 8.5 x higher Pod creation rates) and that they can slow down
I/0O workloads by up to 38%.

In summary, this chapter makes the following contributions:

1. We identify the need and unique requirements for cloud native storage bench-
marking.

2. We present the design and implementation of CNSBench, a benchmark that
fulfills the above requirements and allows users to conveniently benchmark
cloud native storage solutions with realistic workloads at scale.

3. We use CNSBench to study the performance of two storage solutions for
Kubernetes (Ceph and OpenEBS) under previously not studied workloads.

CNSBench is open-source and available for download from https://github.com/
CNSBench.

13

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

4.2 Kubernetes Background

We implemented our benchmark for Kubernetes and so in the following sections
we use many Kubernetes concepts to contextualize CNSBench’s design and use
cases. Therefore, we begin with a brief background on how Kubernetes operates.

Overview A basic Kubernetes cluster is shown in Figure 4.1. It consists of con-
trol plane nodes, worker nodes, and a storage provider (among other components).
Worker and control plane nodes run Pods, the smallest unit of workload in Kuber-
netes that consist of one or more containers. User workloads run on the worker
nodes, whereas core Kubernetes components run on the control plane nodes. Core
components include (1) the API server, which manages the state of the Kubernetes
cluster and exposes HTTP endpoints for accessing the state, and (2) the scheduler,
which assigns Pods to nodes. Typically, a Kubernetes cluster has multiple worker
nodes and may also have multiple control plane nodes for high availability.

The storage provider is responsible for provisioning persistent storage in the
form of volumes as required by individual Pods. There are many architectures, but
the “hyperconverged” model is common in cloud environments. In this model, the
storage provider aggregates the storage attached to each worker node into a single
storage pool.

The state of a Kubernetes cluster, such as what workloads are running on what
hosts, is tracked using different kinds of resources. A resource consists of a de-
sired state (also referred to as its specification) and a current state. It is the job
of that resource’s controllers to reconcile a resource’s current and desired states,
for example, starting a Pod on node X if its desired state is “running on Node X”.
Pods and Nodes are examples of resources.

Persistent Storage Persistent storage in Kubernetes is represented by resources
called Persistent Volumes (PVs). Access to a PV is requested by attaching the
Pod to a resource called a Persistent Volume Claim (PVC). Figure 4.1 depicts this
process: @) A Pod that requires storage creates a PVC, specifying how much
storage space it requires and which storage provider the PV should be provisioned
from. @) If there is an existing PV that will satisfy the storage request then it is
used. Otherwise, @) a new PV is provisioned from the storage provider specified
in the PVC. A PVC specifies what storage provider to use by referring to a par-
ticular Storage Class. This class is a Kubernetes resource that combines a storage
provider with a set of configuration options. Examples of common configuration

14

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Control Plane
Node

Pod

Worker Node Worker Node

Figure 4.1: Basic topology of a Kubernetes cluster, with a single control plane
node, multiple worker nodes, and a storage provider which aggregates local stor-
age attached to each worker node. Also shows the operations and resources in-
volved in providing a Pod with storage.

options are what file system to format the PV with and whether the PV should be
replicated across different nodes.

Once the PV has been provisioned, a it is bound to the PVC, and e the
volume is mounted into the Pod’s file system.

Kubernetes typically communicates with the storage provider using the Con-
tainer Storage Interface (CSI) specification [146], which defines a standard set of
functions for actions such as provisioning a volume and attaching a volume to a
Pod. Before CSI, Kubernetes had to be modified to add support for individual stor-
age providers. By standardizing this interface, a new storage provider needs only
to write a CSI driver according to a well-defined API, to be used in any container
orchetrator supporting CSI (e.g., Kubernetes, Mesos, Cloud Foundry).

Although Kubernetes has good support for provisioning and attaching file and
block storage to pods via PVs and PVCs, no such support exists for object stor-
age. Therefore, CNSBench currently supports benchmarking only file and block
storage.

4.3 Need for Cloud Native Storage Benchmarking

In this section we begin with describing the properties of cloud native workloads,
which current storage benchmarks cannot recreate. We then present the design

15

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

requirements for a cloud native storage benchmark.

4.3.1 New Workload Properties

The rise of containerized cloud native applications has created a shift in workload
patterns, which makes today’s environments different from previous generations.
This is particularly true for storage workloads due to three main reasons: (i) the in-
creased frequency of control operations; (ii) the high diversity of individual work-
loads; and (iii) the dynamicity of these workloads.

Control Operations Previously infrequent, control operations became signifi-
cantly more common in self-service cloud native environments. As an example,
consider the frequent creations and deletions of containers in a cloud native en-
vironment. In many cases, these containers require persistent storage in the form
of a storage volume and hence, several control operations need to be executed:
the volume needs to be created, prepared for use (e.g., formatted with a file sys-
tem), attached to the host where the container will run (e.g., via iISCSI), and finally
mounted in the container’s file system namespace. Even if a container only needs
to access a volume that already exists, there are still at least two operations that
must be executed to attach the volume to the node where the container will run
and mount the volume into the container.

To get a better idea of how many control operations can be executed in a cloud
native environment, consider these statistics from one container cluster vendor: in
2019 they observed that over half of the containers running on their platform had
a lifetime of no more than five minutes [19]. In addition, they found that each
of their hosts were running a median of 30 containers. Given these numbers, a
modestly sized cluster of 20 nodes would have a new container being created every
second on average. We are not aware of any public datasets that provide insight
into what ratio of these containers require storage volumes. However, anecdotal
evidence and recent development efforts [73] indicate that many containers do in
fact attach to storage volumes.

In addition to being abundant, control operations, depending on the underly-
ing storage technology, can also be data intensive. This makes them slow and in-
creases their impact on the I/O path of running applications. For example, volume
creation often requires (i) time-consuming file system formatting; (ii) snapshot
creation or deletion, which, depending on storage design, may consume a signifi-
cant amount of I/O traffic; (iii) volume resizing, which may require data migration

16

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

and updates to many metadata structures; and (iv) volume reattachment, which
causes cache flushes and warmups.

Now that data-intensive control operations are more common, there is a new
importance to understanding their performance characteristics. In particular, there
are two categories of performance characteristic that are important to understand:
(1) How long does it take a storage provider to execute a particular control op-
eration? This is important because in many cases, control operations sit on the
critical path of the container startup. (2) What impact does the execution have on
I/0 workloads? This impact can be significant either due to the increased load on
the storage provider or the particular design of the storage provider. For example,
some storage providers freeze 1/O operations during a volume snapshot, which
can lead to a spike in latency for I/O operations [109].

Existing storage benchmarks and traces focus solely on data and metadata
operations, turning a blind eye to control operations.

Diversity and Specialization The lightweight nature of containers allows many
different workloads to share a single server or a cluster [19]. Workload diver-
sity is fueled by a variety of factors. First, projects such as Docker [35] and
Kubernetes [71] have made containerization and cloud native computing more
accessible to a wide range of users and organizations, which is apparent in the
diversity of applications present in public repositories. For example, on Docker
Hub [37] there are container images for fields such as bioinformatics, data science,
high-performance computing, and machine learning—in addition to the more tra-
ditional cloud applications such as web servers and databases. Additionally, the
popularity of microservice architectures has caused traditionally monolithic appli-
cations to be split up into many small, specialized components [134]. Finally, the
increasingly popular serverless architecture [S], where functions run in dynam-
ically created containers, takes workload specialization even further through an
even finer-grained split of application components, each with their own workload
characteristics.

The result of these factors is that the workloads running in a typical shared
cluster (and on each of its individual hosts) have a highly diverse set of character-
istics in terms of runtime, I/O patterns, and resource usage. Understanding system
performance in such an environment requires benchmarks that recreate the prop-
erties of cloud native workloads. Currently, such benchmarks do not exist. Hence,
realistic workload generation is possible only by manual selection, creation, and
deployment of several appropriate containers (e.g., running multiple individual

17

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

storage benchmarks that each mimic the characteristics of a single workload). As
more applications of all kinds adopt containerization and are broken into sets of
specialized microservices, the number of containers that must be selected to make
up a realistic workload continues to increase. Making this selection manually has
become infeasible in today’s cloud native environments.

Elasticity and Dynamicity Cloud native applications are usually designed to
be elastic and agile. They automatically scale to meet user demands, gracefully
handle failed components, and are frequently updated. Although some degree of
elasticity and dynamicity has always been a trait of cloud applications, the cloud
native approach takes it to another level.

In one example, when a company adopted cloud native practices for building
and operating their applications, their deployment rate increased from rolling out
a new version 2-3 times per week to over 150 times in a single day [141]. Other
examples include companies utilizing cloud native architectures to achieve rapid
scalability in order to meet spikes in demand, for example in response to breaking
news [30] or the opening of markets [15].

Currently, benchmarks lack the capability to easily evaluate application per-
formance under these highly dynamic conditions. In some cases, benchmark users
resort to creating these conditions manually to evaluate how applications will
respond—for example manually scaling the number of database instances [28].
However, the high degree of dynamicity and diversity found in cloud native envi-
ronments makes recreating these conditions manually nearly impossible.

4.3.2 Design Requirements

The fundamental functionality gap in current storage benchmarks is their inability
to generate control-operation workloads representative of cloud native environ-
ments. At the same time, the I/O workload (data and metadata, not control oper-
ations) remains an important component of cloud native workloads, and is more
diverse and dynamic than before. Therefore, the primary goal for a cloud native
storage benchmark is to enable combining control-operation workloads and I/0O
workloads—to better evaluate application and cluster performance. This goal led
us to define the following five core requirements:

1. I/O workloads should be specified and created independently from control
workloads, to allow benchmarking (i) an I/O workload’s performance under

18

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

different control workloads and (ii) a control workload’s performance with
different I/O workloads.

2. It should be possible to orchestrate I/O and control workloads to emulate a
dynamic environment that is representative of clouds today. In addition, it
should be possible to generate control workloads that serve as microbench-
marks for evaluating the performance of individual control operations.

3. 1/0 workloads should be generated by running existing tools or applications,
either synthetic workload generators like Filebench or real applications such
as a web server with a traffic generator.

4. It should be possible for users to quickly configure and run benchmarks,
without sacrificing the customizability offered to more advanced users.

5. The benchmark should be able to aggregate unstructured output from di-
verse benchmarks in a single, convenient location for further analyses.

A benchmark which meets these requirements will allow a user to understand
the performance characteristics of their application and their cluster under realistic
cloud native conditions.

4.4 CNSBench Design and Implementation

To address the current gap in benchmarking capabilities in cloud native storage,
we have implemented the Cloud Native Storage Benchmark—CNSBench. Next,
we describe CNSBench’s design and implementation. We first overview its archi-
tecture and then describe the new Kubernetes Benchmark custom resource and its
corresponding controller in more detail.

Overview In Kubernetes, a user creates Pods (one of Kubernetes’ core resources)
by specifying the Pod’s configuration in a YAML file and passing that file to the
kubectl command line utility. Similarly, we want CNSBench users to launch
new instances by specifying CNSBench’s configuration in a YAML file and pass-
ing that file to kubect 1. To achieve that, our CNSBench implementation follows
the operator design pattern, which is a standard mechanism for introducing new
functionality into a Kubernetes cluster [78]. In this pattern, a developer defines an
Operator that comprises a custom resource and a controller for that resource. For
our implementation of CNSBench, we defined a custom Benchmark resource and

19

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Storage Provider

I/0 V;or(ljdoad Control Plane
O

1/0 Workload
Pod

Worker Node

Node

N

Worker Node

\

Benchmark Controller

|Rate Generatorl:bIAction Executor|

————

er Node

Figure 4.2: CNSBench overview with its components in blue

implemented a corresponding Benchmark Controller. Together, these two com-
ponents form the CNSBench Operator. The Benchmark resource specifies the I/O
and control workloads, which the controller is then responsible for running.

Figure 4.2 shows the Kubernetes cluster depicted in Figure 4.1 with added
CNSBench components shown in blue. The overall control flow is as follow:
@ The Benchmark controller watches the API server for the creation of new
Benchmark resources. @ When a new Benchmark resource is created, the con-
troller creates the resources described in the Benchmark’s I/O workload: the
I/0 Workload Pods for running the workloads and the Persistent Volume Claims
(PVCs) for the Persistent Volumes (PVs) against which the workloads are run.
@ For running the control operation workload, the Benchmark includes a Rate
Generator, which triggers an Action Executor in user-specified intervals to invoke
the desired control operations (actions).

4.4.1 Benchmark Custom Resource

The Benchmark custom resource lets users specify three main benchmark prop-
erties: (1) the control operation workload; (2) the I/O workloads to run; and
(3) where the output should be sent for collection.

20

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Control operation workload One of CNSBench’s primary requirements is the
ability to create realistic control workloads. However, microbenchmarks that pur-
posefully stress only one component or operation of a system are also valuable
(e.g., for an in-depth analysis and point optimization of system performance).
Useful insights can be derived, for instance, from a benchmark that executes some
control operation at a regular interval. Our control workload specification satis-
fies both use cases, by making it easy to create simple control workloads without
sacrificing the ability to define realistic ones.

In CNSBench, control workloads are specified using a combination of actions
and rates. Actions execute operations, for instance create resource (e.g., create
Pod or Volume), delete resource (e.g., delete snapshot), snapshot volume, and
scale resource (e.g., scale database deployment). Rates trigger associated actions
at some interval. For our evaluations we used a simple rate which runs actions
every 1" seconds, but more sophisticated rates could be implemented to enable the
creation of more realistic control workloads. For example, given a set of cluster
traces that logged when different operations were executed, a rate could be imple-
mented that reads those traces and generates a control workload mimicking their
specific operating conditions. Actions and rates are deliberately decoupled, so that
these more sophisticated rates can be developed independently from CNSBench
and then plugged in later.

I/0 workload Often, a benchmark’s goal is to understand how a particular
workload or set of workloads will perform under various conditions. The role
of CNSBench’s I/0 workload component is to either instantiate those workloads
or to instantiate a synthetic workload with the same I/O characteristics of a real
workload. Specifying these I/O workloads requires defining all of the different
resources (e.g., Pods and PVCs) that must be created in order to run the I/O work-
load. This can be difficult and make benchmark specifications long and complex.

To ease the burden on users and to help them focus on the overall benchmark
specification, rather than the specific details of the I/O workload, CNSBench sep-
arates the I/O workload specification from the rest of the benchmark specification.
The I/0 workload specification is defined using a ConfigMap—a core Kubernetes
resource for storing configuration files and other free-form text. These files con-
tain the specifications for the Pods that will run the I/O workloads, as well as spec-
ifications for supporting resources such as PVCs. In addition, they use metadata
annotations to specify information such as what output files should be collected
and what parsers should be used to process them. Since the specification uses

21

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

a core Kubernetes resource, it can be accessed using standard Kubernetes tools
from anywhere in the cluster.

Users specify which I/O workloads to run in a Benchmark custom resource us-
ing a create resource action that references (by name) the I/0 workload to create.
To enable reuse across various use cases and benchmarks, fields in an I/O work-
load specification can be parameterized and given a value when the workload is
instantiated by a specific benchmark.

We are building out an open source Workload Library, available at https://
github.com/CNSBench/workload-library, which offers pre-packaged I/O workloads
including fio [41], Filebench [131], pgbench [108], YCSB [28], and RocksDB’s
db_bench [39].Ideally, most users will be able to find a suitable I/O workload in
the library and hence, do not need to define their own. We hope that community
members will contribute the I/0O workloads that they develop to this library as
well.

Control and data operations In some cases control and I/O operations can be
intertwined. For example, an increase in I/O operations can cause a workload
to scale out, which in turn can execute more control operations. Reproducing
such events with CNSBench would require a feedback mechanism that conveys to
CNSBench information about the I/O operations executed by the I/O workloads.
CNSBench’s design and implementation do not preclude such mechanism but we
leave its implementation to future work.

Benchmark output Many of the results of a CNSBench benchmark will be
generated by the I/0 workload Pods. Collecting this output presents three chal-
lenges. First, Kubernetes currently lacks the ability to extract files from Pods in
a clean and generic manner [74]. Second, the output produced by some tools can
be large, especially for long-running processes that produce output throughout the
run. Third, in our experience, many I/O workloads produce output as unstruc-
tured text. This can make it difficult to analyze the results using tools such as
Kibana [65], especially if the benchmark consists of multiple I/O workloads that
all report results in a different unstructured output formats.

To address these issues, we allow 1/0 workload authors to specify which files
should be collected from the workload Pods and to provide a parser script to pro-
cess the output. Parsing the output allows large files to be reduced to a more suc-
cinct size and to output results in a standard fashion. The output files are collected
and parsed using a helper container, described in more detail in Section 4.4.2.

22

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Parsers for common I/O benchmarking tools can be included in the Workload Li-
brary, either packaged with the tool’s workload specification or as a standalone
entry. For instance, we include parsers for fio and YCSB in the Workload Library.

The user specifies where the final, parsed results should be sent to in the output
section of the Benchmark custom resource. Results do not all need to be sent to the
same output. For instance, a benchmark with both fio and YCSB 1/0O workloads
could send the fio results to one location and the YCSB results to another. The
benchmark metadata, including the Benchmark resource specification and the start
and end times, can be sent to an output as well.Currently CNSBench supports
sending the results to a collection server via an HTTP POST request to a user-
specified URL. Support for additional kinds of output, such as simply writing the
output to a file, can be easily added.

In addition to workload output, it is also important to collect metrics such as
Pod or Node resource utilization during a benchmark run. We defer the collection
of these metrics to any of the many tools that are commonly used to collect such
metrics in a Kubernetes cluster [82].

Example An example Benchmark custom resource is shown in Listing 4.1 and
an example of an I/O workload specification is shown in Listing 4.2. Due to
space constraints, many of the details of the I/O workload specification are omit-
ted. Figure 4.3 shows the Kubernetes resources that are created as a result of this
Benchmark specification.

Lines 613 of Listing 4.1 specify the benchmark’s I/O workload. Line 8 refer-
ences the name of the I/O workload that should be run, labeled e in both listings.
Lines 6-11 of Listing 4.2 specify the resources that make up the I/O workload.
These correspond to the Pods and PVCs in Figure 4.3 labeled @

I/0 workload specifications can be parameterized to enable their reuse across
different use cases and benchmarks. An example of this is on line 10 of List-
ing 4.2, where the PVC’s Storage Class field is parameterized. Label @ in the
two listings and in Figure 4.3 shows how this parameter is set in the Benchmark
custom resource specification (line 11 in Listing 4.1), and then how that value is
used in the workload’s PVCs.

Lines 14-18 of Listing 4.1 specify a snapshot volume action. In Kubernetes,
volume snapshots are created using a Snapshot resource which references a PVC
to use as the source of the snapshot. The user indicates which action’s PVCs
should be snapshotted by referencing the target action by name (line 17 of List-
ing 4.1). Since all resources created by an action are labeled with that action’s

23

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

1 | kind: Benchmark

2 | metadata:

3 name: fio -benchmark

4 |spec:

5 actions:

6 - name: fio@®

7 createObjSpec:

8 workload: fio@Q)

9 count: 3

10 vars:

11 storageClass: obs-r1(@®
12 outputs:

13 outputName: es

14 - name: snapshots

15 rateName: minuteRate

16 snapshotSpec:

17 actionName: fio(@®

18 snapshotClass: obs-csi
19 rates:
20 - name: minuteRate

21 constantRateSpec:

22 interval: 60s

23 outputs:

24 — nhame: es
25 httpPostSpec:

26 url: http://es:9200/fio/_doc/

Listing 4.1: Sample Benchmark Custom Resource Specification

1 | kind: ConfigMap

2 | metadata:

3 name: fio@)

4 |spec:

5 data:

6 pod.yaml: |@)

7

8 pvc.yaml: [@)

9

10 storageClass: {{storageClass}}(@®
11

Listing 4.2: Sample 1/0O workload specification

24

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Storage Class
Name: obs-r1

Volume Replicas: 1
Filesystem: ext4

Storage Provide-? OpenEBj

Class: obs-csi

Label: action=snapshots

J

I/O Workload
Name: fio
Pod: ...

PVC: ...

Benchmark
Actions: ...
Rates: ...

Outputs: ...

OpenEBS
Storage
Provider

/

fio

\Worker Node)

Size: 10 Gi

| | Label: action=fio

Storage Class: obs-r1

Figure 4.3: Subset of a Kubernetes cluster with a single worker node and a PV.
Shows the CNSBench resources that are involved (the I/O Workload and Bench-
mark), as well as the core Kubernetes resources created by the CNSBench con-
troller according to the Benchmark specification (the Snapshots, PVCs, PV, and

workload Pods).

25

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

name, the controller can map an action name to a set of PVCs (label @). These
PVCs are then used as the source in the Snapshot resource (label @). Additional
examples can be found at https://github.com/CNSBench/CNSBench.

4.4.2 Benchmark Controller

The Benchmark Controller watches for newly created Benchmark objects and runs
their specified actions. The controller has three main responsibilities: (1) trigger-
ing control operations; (2) synchronizing the individual benchmark workloads;
and (3) collecting the output of the individual workloads.

Triggering control operations When a new Benchmark resource is created, the
Controller starts two goroutines (Go’s equivalent of a thread) for each of the spec-
ified rates: one is responsible for generating the rate, and the other is responsible
for running all of the actions using that rate. The rate goroutine uses a shared
channel to tell the executor goroutine when it is time to run an action. As de-
scribed in Section 4.4.1, decoupling the rates from the actions simplifies adding
new kinds of rates or actions later.

Actions not tied to any rate are run by the controller as soon as the Benchmark
resource is created. This is often how 1/O workloads are instantiated, since they
often use a long running process that generates I/0O throughout the benchmark’s
duration.

Synchronizing workloads In many cases, /O workloads require an initializa-
tion step such as loading data into a database or creating a working set of files.
When there are multiple I/O workloads being run, some workloads can finish their
initialization step faster than others and begin running their main workload earlier.
This can cause misleading and inconsistent results. If the purpose of the bench-
mark is to evaluate a storage provider’s performance under the concurrent load of
ten read-heavy I/0O workloads, then all ten should start at the same time.

To synchronize the I/O workloads, CNSBench leverages Kubernetes’ initial-
ization containers feature. Pods have a list of initialization containers which are
executed in order, each one running to completion before the next one starts. The
Pod’s main containers do not run until all of the initialization containers have
completed. CNSBench assumes that a workload’s initialization step has been put
into an initialization container, which is the responsibility of the I/O workload’s
author. Although this is usually a straightforward task, it is an example of why

26

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

separating the I/O workload specifications from the rest of the Benchmark speci-
fications is useful: it allows users to select existing workloads from the Workload
Library and not worry about how their workload’s initialization is implemented.
When the Benchmark controller instantiates the I/O workloads, it adds an ad-
ditional synchronization container at the end of the list of initialization containers.
This container runs a script that queries the Kubernetes API server for the status
of each instance of the I/O workload and checks to see if all of their initialization
containers have completed (all except for the other synchronization containers).
Once all of the non-synchronization initialization containers have completed, the
script exits and the synchronization containers stop successfully, allowing Kuber-
netes to run each Pods’ main container. Since all instances of the I/O workload
have this synchronization container added, all instances begin running their main
containers simultaneously. Many workloads support running for a set amount of
time, so synchronizing the finish of each workload is generally not an issue.

Output and metrics collection As described in Section 4.4.1, I/O workload
authors can specify which files to extract from a workload’s Pods and provide
a script to parse those files. Extracting these files from the workload Pods is
difficult since there is no standard interface for doing so [74]. The approach used
by the official Kubernetes command-line client kubectl involves running the
tar utility inside the target container, and does not work after the container has
finished running [75].

To work around these difficulties, the controller modifies the workload Pod to
add both a helper container responsible for running the parser script, and also a
volume mounted by both the helper and workload containers. The I/0O workload
author must ensure that the workload’s output is written to this volume, which will
be mounted at /output. Similar to how the synchronization container works, the
helper container queries the Kubernetes API server to find out when the workload
container has finished; thereafter, the output is ready to be parsed.

4.5 Evaluation

To demonstrate both the need for and the utility of CNSBench, we ran several
benchmarks to look at different aspects of cloud native storage performance. We
examine the performance of individual control operations, the impact that control
operations have on I/O workloads, and the impact that different combinations of
I/0 workloads can have on overall performance.

27

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

4.5.1 Methodology

To evaluate our benchmark, we instantiated an 11-node Kubernetes v1.18.6cluster
in an on-premises OpenStack environment: one control plane node and 10 work-
ers. Each worker node is a virtual machine with 4 vCPUs, 8GB of RAM, and
384GB of locally attached storage. The control plane node is a VM with 4 vC-
PUs, 12GB of RAM, and 100GB of local storage. The VM hosts were located in
multiple racks, with racks connected via a 10Gbps network and individual hosts
connected to the top of rack switch via 1Gbps links.

We used two storage providers: OpenEBS and Ceph. Our requirements for
the storage systems were that they be open-source, free, and not based on cloud-
as-a-service model—so we could install and test them locally, and to enable more
repeatable results. Additionally, they had to have a CSI driver. These require-
ments eliminated many existing storage systems. Out of the remaining options,
we selected Ceph and OpenEBS due to their popularity.

OpenEBS [102] is a new storage provider built specifically to be cloud native.
OpenEBS uses the Container Attached Storage paradigm [111], where controllers
that provision volumes and manage features such as data replication, themselves
run in containers. This provides storage with all of the advantages of the cloud
native methodology, such as agility and flexibility. It also enables the storage to
be managed like any other resource in a cloud native cluster. We used OpenEBS’s
cStor storage engine version 2.0.0.

Ceph [142] is a widely used file storage system that is built on top of the
RADOS object store [143]. We used the Rook operator for Ceph [119], which
handles the deployment and management of a Ceph cluster. The Rook manage-
ment layer allows Ceph to be managed in a cloud native fashion, using Kubernetes
objects and standard Kubernetes management tools. We used Rook version 1.4.1
and Ceph version 15.2.4, with Ceph’s BlueStore storage backend.

Both Ceph and OpenEBS provide storage by aggregating the local storage at-
tached to each cluster node. Volumes are provisioned from this combined storage
pool and are formatted with Ext4 prior to being attached to a Pod. Ceph and
OpenEBS both come with CSI drivers that interface with Kubernetes.

Both OpenEBS and Ceph also offer volume replication for high availability
use cases. With volume replication, data written to a volume by a Pod is transpar-
ently copied across several volume replicas, which are ideally situated in different
availability zones. This enables the cluster to tolerate the loss of one or more
hosts—depending on the replication factor—without suffering any data loss. The
trade-off is that volume replication often comes at a cost of increased I/O latencies

28

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

and an increase in network and disk utilization.

Ceph has an additional high availability mechanism using erasure coding,
which encodes data into chunks using a forward error-correction code and then
replicates those chunks. The use of a forward error-correction code means that
fewer replicas are needed to provide the same availability guarantees, and hence
less disk space is needed overall. However, erasure coding uses more CPU and
RAM than basic data replication.

In our experiments, we use Ceph and OpenEBS in three ways: without repli-
cation, in triple-replication mode, and Ceph (only) in erasure-coded mode (ec).
In addition to Ceph and OpenEBS, in some evaluations we used a null storage
provider that implements the CSI functions involved in provisioning and attach-
ing volumes. The null driver simply returns success to most CSI functions without
performing actual work. The null driver does, however, maintain a list of provi-
sioned volumes so the ListVolumes CSI function returns an accurate result. We
use the null driver as a baseline to show the maximum possible performance of
the underlying Kubernetes cluster.

Each evaluation was conducted five times and unless otherwise noted has a
standard deviation of less than 20%.

4.5.2 Performance of Control Operations

In Section 4.3.1 we described the importance of control operations in cloud native
workflows. In this section, we demonstrate how the performance of these opera-
tions can vary across different storage providers and configurations. We looked at
two common storage control operations: volume provisioning and attaching.

Our goal was to time how long it took each storage provider configuration to
provision a volume and attach that volume to a Pod. To do so, we timed how long
it took to create and run new Pods that were attached to volumes. The time to
create and run a Pod with an attached volume includes the time taken by the stor-
age provider to provision and then attach that volume. Any additional overhead
related to running the Pod is constant across storage configurations.

We ran this test with 1, 10, 20, 30, 40, 50, 60, and 70 parallel Pod creations.
Each test ran for five minutes, where we maintained a fixed parallelism level N
by starting a new Pod whenever one Pod was created; there were always N Pods
in the process of being created. The workload run by each Pod simply exited
immediately, so Pods finished running as soon as they started.

We repeated each run five times. Figure 4.4 shows CDFs for Pod start time
across all of the Pods created during each of the five runs, for six storage provider

29

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

—+— OpenEBS no replication —+— Null driver —+— Ceph no replication

OpenEBS three replicas —+— Ceph three replicas —+— Ceph erasure coding

1
/ H
<
0
1

CDF
n=30

n=70

0 50 100 150 200 250 300 350
time (s)

Figure 4.4: CDFs of time required to create and attach volumes for different stor-
age provider configurations. n is the number of simultaneous volume creations.
For all storage configurations, increasing the number of simultaneous volume op-
erations increased the average time to create and attach an individual volume.

configurations. We show CDFs only for three degrees of parallelism (1, 30, and
70) because the CDFs for the intermediate parallelism values follow the trends
that are visible from these three. Figure 4.5 shows the overall volume creation
and attachment rate per minute for different parallelism levels. These rates are
averaged across each of the five runs and had a standard deviation under 11% of
the mean, except for OpenEBS which had standard deviations of up to 30% of the
mean. This higher standard deviation can be attributed to the polling architecture
which is used throughout Kubernetes and OpenEBS [103], which causes some
actions to take sometimes significantly different amounts of time depending on
which side of the poll the resource becomes available.

As expected, Pod creation is fastest with the null storage provider. The storage
provider configurations with no replication are slightly faster than their replicated
counterparts. This is also expected, since volumes with replication require addi-
tional resources to be allocated during provisioning.

As the number of simultaneous Pod creations increases, we noticed that sub-
sets of Pods took an increasingly long time to start (see Figure 4.5). Eventually,
each of the six storage configurations reached a point where its Pod creation rate
plateaus. Note that Pod creation goes through three states: initially it is in a “Pend-
ing” state before it can be assigned to a Node. Once the Kubernetes scheduler has

30

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

—4— OpenEBS no replication —4— Ceph three replicas
=+ OpenEBS three replicas —4— Ceph no replication

—4— Null driver —}— Ceph erasure coding
400 . + .
3
2300
=
&
£ 200
(2]
©
S 100
0

Simultaneous Pod Creations

Figure 4.5: Volume creations and attachments per minute, for different numbers
of simultaneous operations. The vertical lines at each point shows the standard
deviation for volume creation and attachment rate at that point.

assigned the Pod a Node to run on, it moves it to a “Creating” state where con-
tainer images are downloaded and volumes are mounted. Then, the Pod enters the
“Running” state.

As an initial investigation, we counted how many Pods were in each state to
identify the bottleneck. We observed that for the null storage provider and the
three Ceph configurations, the rate that Pods moved from “Pending” to “Creat-
ing” and then from “Creating” to “Running” equalizes when the number of simul-
taneous Pod creations reaches around 50. At this point, increasing the number of
simultaneous Pod creations only increased the number of Pods in the “Pending”
state, and did not increase the overall Pod creation rate.

The situation is different for the two OpenEBS configurations. As shown in
Figure 4.5, these configurations plateau at a lower rate of around 30 simultaneous
Pod creations. When observing the Pod transitions for these configurations, we
saw that the rate at which Pods moved from “Creating” to “Running” was low
compared to the rate that Pods moved from “Pending” to “Creating” resulting in

31

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

all Pods being in either “Creating” or “Running” states throughout the test. The
Pods in the “Creating” state were all waiting for OpenEBS to finish provisioning
and attaching a volume for the Pod. So, increasing the number of simultaneous
Pod creations did not increase the overall Pod creation rate, since that rate was
limited by how fast OpenEBS was able to provision and attach volumes.

From these experiments we see that although all three storage providers have
scalability limits in terms of how many simultaneous Pod creations they support,
the source of their limits appear to be different. Whereas the null storage provider
and Ceph are limited by the scheduling stage of Pod creation, OpenEBS is limited
by its own volume creation and attachment rate.

Overall, the experiment shows that there can be significant differences in the
performance of control operations across different storage providers and configu-
rations. This highlights the need to systematically benchmark these kinds of op-
erations to understand their bottlenecks and improve upon them. Conducting this
experiment without CNSBench would require starting different numbers of Pods
using a tool such as kubect 1. Whenever a Pod finishes being created, a new one
needs to be started, which would be cumbersome to coordinate manually.

4.5.3 Impacts on I/O Workloads

In this section, we demonstrate the impact that control operations, in particular
snapshotting a volume, can have on the I/O workload that uses the volume. As
described in Section 4.3.1, control operations are executed far more often in cloud
native environments than they are elsewhere. Snapshotting is especially common
and users take frequent snapshots of their volumes for a number of reasons: peri-
odically, during a long running task to checkpoint progress, prior to making some
significant change so rollback to a known good point is possible, or to protect
themselves against attacks such as ransomware.

Although previously these operations were executed too infrequently to have
a noticeable effect on an I/O workload, this is no longer guaranteed to be the case
in cloud native environments. Due to differences in the design and architecture of
different storage providers, the degree to which these control operations impact
an I/O workload can vary significantly.

To evaluate the impact of snapshotting operations, we used CNSBench to run
three instances of MongoDB [116] with ten clients each. The clients ran YCSB
Workload A [28] (consisting of a mix of reads and updates) for twenty minutes to
reach steady state; the volumes holding the MongoDB databases were snapshotted
every thirty seconds.

32

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

B No snapshots B Snapshots

F
T
a 400
<
5
o
iy
80 200
o
=
|_
0
Ceph Ceph Ceph OBS OBS
r=0 r=3 r=ec r=0 r=3

Figure 4.6: Effect of snapshotting on I/O workload. r=0 indicates zero volume
replicas, r=3 indicates three volume replicas, and r=ec indicates erasure coding.

Figure 4.6 shows the per-client throughput in terms of operations per sec-
ond for five storage provider configurations, with and without snapshotting. The
throughput values are averaged across all thirty YCSB clients.

Overall the results show that snapshotting reduces the throughput across all
configurations. The decrease in throughput is more noticeable for OpenEBS (27%
and 38% for zero and three volume replica configurations, respectively) than for
Ceph (up to 22% for three volume replicas but as low as 5% and 6% for erasure
coding and zero replication configurations, respectively). We found that although
the average throughput decreased with snapshotting across all OpenEBS YCSB
clients, the decrease was more pronounced for some clients than others. For
those clients, we observed that the maximum latency reported by YCSB was much
higher than the average maximum latency. In addition, these clients reported ex-
tended periods (30+ seconds) when zero operations were executed. During these
periods with zero operations, the Mongo database reported that some queries were
taking a long time to be processed.

One possible explanation is the fact that OpenEBS quiesces and suspends I/O
while a snapshot operation is in progress [104]. During that time, any writes
issued by Mongo cannot complete. Some of these periods of suspended I/O lasted
several seconds, which could explain the periods when no operations could be

33

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

1.00
0.75 OpenEBS no replication
5 050 J_ OpenEBS three replicas
' J —+— Ceph three replicas
0.25| | —+— Ceph no replication
| —+— Ceph erasure coding
0.00
0 200 400 600 800 1000
Time (s)

Figure 4.7: CDF of snapshot creation times for different storage provider config-
urations.

executed by the clients and the reduction in overall throughput. We analyzed the
distribution of throughputs for all clients and found a long tail with many clients
timing out after several quiescing periods, then retrying.

Ceph does not quiesce [22] I/O during a snapshot and we did not observe
the same spikes in maximum latency that we observed with OpenEBS. We did
observe some of the same periods with zero completed operations that we saw
with OpenEBS, and also observed the same complaints of slow queries from the
Mongo logs. One possible explanation is that there was an increased load on
Ceph: with snapshots, around four times as many objects were created in the
underlying RADOS object pools compared to no snapshotting.

To create a new snapshot in Kubernetes, users create a Snapshot resource. This
resource is created immediately. However, the underlying snapshot is not neces-
sarily ready right away. Figure 4.7 shows a CDF of how long it took after creating
a new Snapshot resource until the storage provider reported that the snapshot was
actually ready to be used.

Both Ceph and OpenEBS implement copy-on-write snapshots, so it is ex-
pected that for most storage configurations, snapshots became available nearly
as fast as the Snapshot resources were created. However, some configurations
exhibited a long tail where snapshots took several minutes to become ready. For
example, although the median time to become ready for snapshots on OpenEBS
with three volume replicas was 12 seconds, 10% took longer than 310 seconds and

34

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

5% took longer than 702 seconds. The interface between Kubernetes and the stor-
age provider’s CSI driver is the Kubernetes Snapshot Controller [80]. When we
analyzed the logs for this container, we found that the CreateSnapshot CSI calls
for some snapshots were timing out due to slow I/O on the underlying disks used
by the storage provider. For some unlucky snapshot instances the CreateSnap-
shot call would repeatedly timeout, resulting in snapshot creation times of several
minutes. One interesting observation was that even when the Snapshot Controller
aborted its CreateSnapshot call (due to the timeout), the storage provider would
still finish creating a snapshot. However, the Kubernetes Snapshot Controller had
already timed out, thus missing the successful response from the storage provider.

Running this experiment without CNSBench would require specifying and
creating each of the resources required to run MongoDB and YCSB (Pods, PVCs,
Services, etc.). Then, while YCSB ran, the user would need to create snapshots
of each of the volumes being used by specifying the snapshot resources in YAML
and instantiating the resources with a tool such as kubect1.

4.5.4 Orchestration

5 pgbench, 10 MEGAHIT, 10 fio 10 pgbench, 5 MEGAHIT, 10 fio 10 pgbench, 10 MEGAHIT, 5 fio

1.25

1.50 08
0.6
1.00
8
075 0.4 B pgbench
6 MEGAHIT
0.50 0.2 I I - fio
|
025 0.0 - |
[| - - u 2
0.00 | I
— =3 N N -

-
r=3

Performance change from baseline

0

Ceph Ceph Ceph OBS OBS Ceph Ceph Ceph OBS OBS Ceph Ceph Ceph OBS OBS
=0 r=3 r—ec =0 r=3 =0 r=3 r—ec =0 r=3 =0 r—ec =0 r=3

0.25

Figure 4.8: Change in performance compared to baseline, for three different ratios
of I/0 workload on five different storage configurations.

One of the core CNSBench capabilities is to make it easy to run various mixes
of I/O workloads. This is needed since the alternative, to manually choose and
assemble workloads together to form a representative combined workload, is in-
feasible due to the diversity of workloads in cloud native environments.

One potential use case for this task is to determine which storage configuration
is best suited for a particular set of workloads. Another might be to help influence
scheduling decisions, such as which workloads to run simultaneously.

35

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

To demonstrate CNSBench’s orchestration capabilities, we ran multiple in-
stances of three different workloads: (1) MEGAHIT [85], a bioinformatics tool
that processes genetic data; (2) fio [41] for generating an intense I/O workload of
mixed random reads and writes; and (3) the PostgreSQL [110] database with a
workload generated using its benchmark tool pgbench [108]. Each instance of the
PostgreSQL workload ran a distinct pair of database and client. Out of each of
the workloads, fio was the most I/O intensive, followed by pgbench. Both fio and
pgbench spent most of their time waiting for I/O, whereas MEGAHIT was mostly
CPU bound.

We tested four different workload mixes: a baseline with ten independent in-
stances of each workload, and then three additional mixes with ten instances of
two of the workloads and five of the third. For MEGAHIT and fio we measured
the total time to run a fixed load; for pgbench we measured the average through-
put after running for ten minutes. This was necessary since the different storage
provider configurations performed significantly different, so it would be imprac-
tical to evaluate using a fixed amount of work.

Figure 4.8 shows the changes in runtime and throughput, normalized to the
baseline values, for different workload mixes and storage providers. The baseline
throughputs for pgbench are 5.2, 0.37, 0.38, 85, and 16 operations per second for
Ceph (no volume replication), Ceph (three volume replicas), Ceph (erasure cod-
ing), OpenEBS (no volume replication), and OpenEBS (three volume replicas),
respectively. MEGAHIT had baseline runtimes of 309, 910, 609, 185, and 324
seconds, and fio had baseline runtimes of 427, 816, 699, 923, and 2478 seconds,
respectively.

The largest increase in performance of 3.2 is for pgbench when the number
of fio instances is reduced. This makes sense: the Ceph storage configurations
shows the largest increase in pgbench performance, since pgbench’s baseline per-
formance on Ceph is much worse than on OpenEBS so there is a larger potential
for improvement. Also, pgbench and fio are both I/O-intense workloads, i.e., re-
ducing the number of fio instances would help pgbench, but not MEGAHIT.

The workload that had the overall smallest impact on performance is MEGAHIT.
This is also expected as fio and pgbench are mainly I/O bound while MEGAHIT
is mainly CPU bound and hence reducing the number of MEGAHIT instances
does not free up significant I/O resources.

These results demonstrate the variability in storage provider performance, and
the utility of being able to easily compose and run diverse sets of workloads at
various mixes. Conducting this experiment on Kubernetes without CNSBench
would require creating all of the resources required for a workload (PVCs, Pods,

36

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

Benchmark Lines
Volume creation and attachment § 4.5.2 19
YCSB and MongoDB, no snapshots § 4.5.3 35
YCSB and MongoDB, with snapshots § 4.5.3 54
Multiple workloads § 4.5.4 72-117

Table 4.1: Number of lines needed to specitfy CNSBench benchmarks used during
evaluation.

Services, etc.) manually, for example by specifying them in YAML and passing
the YAML to a tool such as kubect 1. To run multiple instances of a workload, the
user would need to specify multiple copies of each resource, making sure to give
each copy a unique name and updating references to resources accordingly. This
would need to be repeated for each workloads mix being evaluated. Synchronizing
the start of each workload would need to be done manually. For example, to
synchronize the start of multiple MongoDB+YCSB workloads the user would
need to first start each MongoDB database pod, then wait for the databases to be
initialized, and then run each instance of their YCSB benchmark.

4.5.5 Benchmark Usability

Requirement 4 in Section 4.3.2 states that CNSBench should be easy for users
to configure and run. Although usability is often subjective, one metric that can
be used to estimate ease of use is the number of lines necessary for specifying
a workload. Table 4.1 shows the number of lines needed to specify each of the
benchmarks used in this evaluation section.

Overall a user can specify the complex, distributed, and diverse workloads in
just 19—117 lines of configuration. The workloads used in Section 4.5.4 require
slightly longer specifications as they contain multiple instances of the same sub-
workload, which currently results in duplication in the CNSBench’s benchmark
specification. We plan to eliminate such repetitions in the future to make using
CNSBench even simpler.

4.6 Conclusion

Although measuring storage performance was always an important topic, its rele-
vance has escalated in recent years due to the increased demand to reliably move

37

CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

containerized applications across clouds. Furthermore, I/O patterns of applica-
tions have evolved, exhibiting higher density, diversity, dynamicity, and special-
ization than before. Perhaps most importantly, storage services now experience a
high rate of control operations (e.g., volume creation, formatting, snapshotting),
which directly impact the performance of applications that call them and indirectly
influence the I/O of other applications in a cluster. Existing storage benchmarks,
however, are not able to model these new cloud native scenarios and workloads
holistically and faithfully.

In this chapter we presented the design of CNSBench—a storage benchmark-
ing framework that containerizes legacy I/O benchmarks, orchestrates their con-
current runs, and concurrently generates a stream of control operations. CNSBench
is easy to configure and run, while still being versatile enough to express a high
variety of real-world cloud native workloads. We used CNSBench to evaluate
two cloud native storage backends—OpenEBS and Ceph—and found several dif-
ferences. For example, our evaluation shows that the maximum rate of control
operations varies significantly across storage technologies and configurations by
a factor of up to 8.5x.

Future work We plan to work on extending the library of I/O workloads with
I/O “kernels” that represent microservices, and also improve the benchmark spec-
ification language to make the syntax more concise and avoid having to dupli-
cate sub-workloads. Further, we will work on collecting I/O and control opera-
tion traces from production environments, analyze them, and create corresponding
profiles for CNSBench. Our longer term plans including finding and fixing per-
formance bugs using CNSBench, and even developing our own efficient storage
solution.

We hope our benchmark will be adopted by storage and cloud native commu-
nities, and look forward to contributions.

38

Chapter 5

F3: Serving Files Efficiently in
Serverless Computing

Serverless platforms offer on-demand computation and represent a significant
shift from previous platforms that typically required resources to be pre-allocated
(e.g., virtual machines). As serverless platforms have evolved, they have become
suitable for a much wider range of applications than their original use cases. How-
ever, storage access remains a pain point that holds serverless back from becoming
a completely generic computation platform.

Existing storage for serverless typically uses an object interface. Although
object APIs are simple to use, they lack the richness, versatility, and performance
of file based APIs. Additionally, there is a large body of existing applications
that relies on file-based interfaces. The lack of file based storage options prevents
these applications from being ported to serverless environments.

In this chapter, we present F3, a file system that offers features to improve
file access in serverless platforms: (1) efficient handling of ephemeral data, by
placing ephemeral and non-ephemeral data on storage that exists at a different
points along the durability-performance tradeoff continuum, (2) locality-aware
data scheduling, and (3) efficient reading while writing. We modified OpenWhisk
to support attaching file-based storage and to leverage F3’s features using hints.
Our prototype evaluation of F3 shows improved performance of up to 1.5-6.5x
compared to existing storage systems.

39

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

5.1 Introduction

Serverless platforms have already proven their utility in running small web-oriented
tasks. They are approaching a turning point, however, where their on-demand
computation is expanding to a wider range of applications [60, 101, 29]—possibly
any application. To this end, serverless platforms have been relaxing constraints
and adding features, for instance, allowing users to run arbitrary containers and
increasing execution time limits to support longer-running actions. Here, an “ac-
tion” is a snippet of code or a standalone executable, and a serverless application
is made up of one or more actions [6, 13, 9].

Storage access, however, remains a pain point for generic applications in
serverless environments. Serverless platforms typically support only object-based
storage. Object is a natural choice for the short, stateless, web-oriented tasks for
which serverless platforms were originally designed and used; but more generic
applications frequently need functionality not supported by traditional object storage—
for example file-based access to data, the ability to perform in-place modifications,
support for concurrent writers, and the ability to read data as it is being written.
The lack of support for these features has held serverless computing back from
becoming a generic computational platform.

Although most serverless platforms still do not offer a way to connect file
based storage to serverless applications (e.g., IBM Cloud Functions [55], Google
Cloud Functions [49], OpenWhisk [105], or Knative [68]); some (e.g., AWS
Lambda) have recently added support for file-based storage [7]. This is encour-
aging, as it indicates that industry has recognized the need for file-based storage
in serverless applications. Existing file systems, however, were not designed for
serverless platforms and lack important features that would benefit serverless ap-
plications. In particular, existing file systems lack functionalities that could ac-
celerate intermediate data transfer between the individual actions that make up a
serverless application.

Applications in serverless environments are often split into multiple compo-
nents forming pipelines, where one component writes its output data sequentially
to storage, the next component reads the data as input, then the system discards
the intermediate data. By specifically facilitating this usage pattern, a storage sys-
tem can improve data access and transfer performance. We identified three ways
a storage system can aid this pattern: (1) storing the intermediate data on less
durable, lower-latency local storage, (2) providing hints about the location of data
to serverless schedulers so that subsequent stages of a pipeline can be scheduled
close to the data, and (3) making it possible for the next stage of a pipeline to

40

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

begin reading before the previous stage has finished writing.

Durability vs. performance tradeoff Durability provided by storage systems
often comes at the cost of performance. For instance, in our experiments, dis-
abling durability features (e.g., erasure coding) increased read/write bandwidth
by 42-45%, and using a local disk rather than networked file system further in-
creased read/write bandwidth by 39-86%.

The data transferred in serverless applications is usually ephemeral (i.e., short
lived) and is needed only until it has been consumed by the reader. This enables
a different durability-performance tradeoff to be made. For example, ephemeral
data does not necessarily need strong durability features such as replication or
erasure coding that are provided by many storage systems. Although durability
features can sometimes be disabled in a given storage system, they are typically
configurable only at volume or file system granularity. As a result, it is difficult to
optimize for workloads that store both ephemeral and non-ephemeral data: both
must exist at the same point along the durability-performance continuum.

Locality For data to remain local to a server, the serverless platform’s scheduler
needs to know where the data a serverless application will consume are located
within the cluster. Current storage systems either do not convey this information
to serverless platforms, or are designed such that the information is not even ap-
plicable (e.g., if, for data protection, the data is distributed across multiple nodes
in the cluster). Either way, the result is that data transfers between components
within a serverless application consume network bandwidth and incur the perfor-
mance penalty associated with transmitting data across the cluster’s network.

Reading while writing Finally, it is often desirable to process data in a stream-
ing fashion, i.e., to read and process data while it is written to a file. Doing so
speeds up end-to-end processing because a subsequent stage can begin without
having to wait for the previous stage to finish. In object storage, it is not possible
for an object to be open by a writer and reader at the same time. In distributed
file systems, however, it is possible but file systems often make the conservative
assumption that when a file is open for reading by one client and for writing by
another client, that both clients must use unbuffered file accesses to ensure that
readers and writers maintain consistency [23].

Unbuffered access significantly slows both the reader and the writer, negating
any performance benefit of the read-while-writeaccess pattern. For data transfer

41

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

in serverless applications, this is an overly conservative assumption since both
reader and writer access the data only sequentially (i.e., data is never modified
once written).

In this chapter we address the storage access and data transfer problems for
serverless environments. First, we added file system support to a popular open-
source serverless platform, OpenWhisk [105], to demonstrate how existing file
storage solutions can work with a serverless platform. Next, we implemented a
stackable file system, F3, that is designed to optimize the transfer of data between
serverless applications and the individual components of a serverless application.
F3 distinguishes ephemeral data from that requiring high durability, and transpar-
ently directs ephemeral data to node-local disks. This enables F3 to perform up to
6.5x faster when writing data and 2.7 faster when reading data compare to the
traditional durable storage.

F3 further optimizes data transfer by tracking the location of ephemeral files
and exposing that information to serverless schedulers. We modified OpenWhisk’s
scheduler to use data location information when selecting the server to run the
function, which in one experiment reduced network traffic used for data transfer
from 2GB down to zero.

We designed F3 to stack over existing durable storage systems (e.g., Ceph [23],
Lustre [25], and GPFS [50]), making F3 a flexible and transparent extension to ex-
isting storage solutions. The resulting file system namespace makes both durable
and ephemeral files visible to serverless applications.

Though F3 is generic and can be applied in different environments, we focused
our empirical evaluation on a specific, rapidly growing use case—Edge Comput-
ing. Industrial edge computing is a new market that is predicted grow from $18B
to $31B by 2025 [46]. Edge data centers are smaller facilities that range in size
from street-side cabinets to cargo container-like structures that house a limited
amount of server infrastructure. By having a smaller form factor than typical
data centers (typically only 3—10 servers), edge data centers are relatively easy to
move and deploy, making them a good fit for housing IT infrastructure at the edge.
Serverless computing enables higher resource usage efficiency in these resource
constrained environments through its fine-grained sharing [43]. Our experimental
platform, workloads, and evaluation methodology are tailored to serverless com-
puting at the edge.

This chapter makes the following contributions:

1. We describe the case for using file systems in serverless computing and
extended OpenWhisk to enable attaching actions to file-based storage;

42

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

.

) i Serverless
Action Container | "5 ime

Interface

Trigger - 4)

FaaS Controller Containers

.

Storage provider containers

Container

Infrastructure Containers y \ Storage

o

Container orchestrator platform

Figure 5.1: Blueprint architecture of edge serverless platform

2. We designed and implemented F3, a file system that extends existing storage
systems to enhance data transfers between serverless actions;

3. We evaluated F3 and several alternatives for edge computing; and

4. We have made F3 and our modifications to OpenWhisk available as open-
source software: https://github.com/filesystems-for-serverless.

5.2 Background

In this section we give an overview of how serverless platforms operate (e.g.,
AWS Lambda [5], Apache OpenWhisk [105]). Figure 5.1 depicts a serverless
platform running on top of a container orchestrator.

Operation Serverless platforms run processing @) on demand in a container-
ized environment [10]. Traditionally this processing consisted of snippets of code
referred to as “functions.” As serverless platforms have become more generalized,
more and more of the processing is done by standalone executables (e.g., an en-
tire webserver or video processing utility). The term “function” seems insufficient
for these more generalized and complex workloads, so we use the more generic
term “action” to refer to both traditional function-style processing and newer more
generic processing.

43

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

Actions run when triggered @) by a request to an HTTP endpoint. The trigger
can be initiated in response to an event such as an upload to an object store. Infor-
mation related to the trigger is passed to the action as parameters (e.g., uploaded
object name).

Running actions The containers that run actions @) are often managed by a
container-orchestration platform such as Kubernetes [117]. When an action is
triggered, if there is an appropriate container already running, then that container
runs the action. This is referred to as a warm start. If no suitable container exists,
the serverless platform creates a new container for the action by making a request
to the container orchestrator 6; this is a cold start. In either case, a scheduling
decision has to be made. If there are multiple warm containers suitable for an
action, the serverless platform’s scheduler must choose that container to run the
action. If a cold start is required, then the containers orchestrator’s scheduler must
decide the cluster node on which to start the container, possibly using hints from
the serverless platform’s scheduler.

To avoid the overhead of cold starts, serverless platforms keep action contain-
ers running for some time after an action has executed. If the container’s resources
are needed for something else, however, then the container can be stopped as soon
as the action ends. In either case, cluster resources are reserved and paid for only
while the action is actually running.

Building and deploying actions In early serverless offerings, actions were built
by writing a snippet of code in a language such as JavaScript or Python. When
triggered, the code was run using a container image built by the serverless plat-
form. This approach allowed developers to focus solely on their code, but was
somewhat restrictive in that it limited the languages supported. Also, because
the serverless platform provided the execution environment, developers had little
flexibility in the choice of libraries, runtimes, and other external resources.

The simplicity inherent in this approach is still sometimes desirable, and “Func-
tion as a Service” (FaaS) platforms continue to offer this method of building and
deploying actions. For many use cases, however, more sophisticated actions are
needed. These actions might use external libraries, have multiple executables, or
require a specific execution environment (e.g., a specific Linux distribution). To
support these actions, most modern serverless platforms now allow developers to
run an arbitrary container image in response to a trigger. On startup, these con-
tainers run a “Serverless Runtime Interface” executable @) that interfaces with the

44

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

serverless platform. When triggered, the container image runs the Serverless Run-
time Interface, which retrieves the action’s input parameters, executes the action,
and returns the results to the serverless platform. Thus, any application that can
be containerized can be run as an action on a serverless platform. This approach
opens serverless platforms to many more use cases than were originally designed.

Storage Early code snippet-based actions were completely stateless, thus did
not require access to persistent storage. When stateful serverless actions were
later introduced, object stores were the recommended [87, 27] means to hold the
state.

This made sense because (1) early serverless applications appeared mainly in
web environments where object storage has been the norm, and (2) object stores
are easy to access, requiring only the ability to form an outbound HTTP connec-
tion.

Although there are a wide variety of file and block storage options [62, 94]
that container orchestrators can provision @ and attach 0 to containers, current
serverless platforms have not taken advantage of them.

5.3 Storage for Serverless Computing

In this section we first discuss the differences between file and object storage,
then describe features existing file systems lack that would improve efficiency for
serverless applications.

5.3.1 Object Stores vs. File Systems

In most serverless platforms, the only storage option available to actions is object
storage. Object-based storage uses a key to identify an item of data, is typically
accessed using through HTML requests, and supports operations PUT, GET, and
DELETE. For many serverless applications, this interface is completely adequate
and appropriate. We are not suggesting that the option of object storage in server-
less platforms should be taken away.

But many applications that run in generic container images expect a file based
interface, where files are identified by their names in a hierarchical namespace,
and are accessed using operations such as open, read, and write. While file-
to-object translation layers that can be embedded with the application exist, they

45

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

generally do not support the richer functionality of files—including in-place mod-
ification, read-after-write consistency and directory-level operations—thus are not
adequate for all applications.

Further, file systems typically provide higher performance than object stores [58,
113, 114]. Although high performance object stores could be implemented, ap-
plications that require high performance today are mainly file based [100].

One of the commonly cited benefits of serverless platforms is their near-limitless
scalability. It might therefore seem counter-intuitive to suggest bringing file sys-
tems, often regarded as having limited scalability, to serverless platforms. Nev-
ertheless, several major cloud providers have added file system support to their
serverless platforms. This reinforces our belief that file system support is neces-
sary, and that if serverless platforms are to take the next step toward becoming a
generic computing platform, they must support file in addition to object interfaces.

5.3.2 Shortcomings of Existing File Systems

Existing shared file systems such as NFS and CephFS can provide storage for
serverless applications. However, these file systems were not designed with server-
less platforms in mind and lack features that would benefit serverless environ-
ments. Three such features are: (1) support for ephemeral (short-lived) data,
(2) the ability to schedule actions based on where their data is located, and (3) sup-
port for reading files as they are being written.

Ephemeral data Serverless applications make heavy use of ephemeral data—
one that is short lived and that can be easily recreated. Ephemeral data comes
from a variety of sources. For example, pipelines that span multiple actions may
produce intermediate results generated by one action, consumed by another, and
then discarded. Sensor and other user data generated at the edge is often filtered
and pre-processed, with much of the original raw data not retained. Moreover,
resources such as machine-learning models are frequently replaced with updated
versions.

Many storage systems provide durability and reliability features such as repli-
cation or erasure coding. These features come with a performance cost. Since
ephemeral data does not need these features, there is an opportunity to trade off
decreased data reliability for increased performance.

In the case of node or disk failure, ephemeral data can be recreated by rerun-
ning the original actions that created it. Detecting an action failure and rerunning

46

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

the original actions requires a serverless execution framework that is beyond the
scope of this chapter; but we note that a file system could reasonably identify
when a disk fails (e.g., EIO errors) and inform the serverless execution frame-
work. This would allow the execution framework to differentiate between regular
action failures (e.g., due to an application error) and action failures due to missing
or corrupted data caused by disk failure. How a serverless execution framework
handles such errors is part of the larger problem of serverless application orches-
tration (see Section 5.7).

Data locality-aware scheduling When running an action, the serverless plat-
form must decide where to run that action. Assuming the platform uses containers
to run actions, this entails either (1) finding an available already running container
and assigning the action to that container, or (2) starting a new container to run
the action.

There has been a significant amount of work done in trying to avoid cold
starts, since starting up a new container to run the action can significantly increase
action latency and overall runtime. However, another factor that must be taken
into account is the location of the data needed by the application. Running the
action close to the data avoids the delay and overhead of moving the data to where
the action runs.

Most existing storage systems do not provide the necessary data-locality schedul-
ing hints. Those that do, provide them only at a volume granularity, too coarse
for per-file-based scheduling. For example, with volume-level scheduling hints,
an application’s actions cannot simply write their output to a common output di-
rectory. Other systems that have incorporated data locality into serverless action
scheduling (i) require applications to be structured in a specific way (e.g., as a
DAG) [20] and (ii) require information about the structure of the application be-
fore the application runs [20, 88].

Reading-while-writing Pipelines where one process generates data as another
process consumes it are common in Unix environments, especially in the form
of Unix pipes (e.g., procA | procB). Such a pipeline can reduce end-to-end
application run times since the second process does not need to wait for the first
process to finish before starting its processing.

This technique requires the two processes to share a kernel to facilitate piping
the output from one process to the input of the next, and so porting such a pipeline
to a serverless platform is not trivial. Note that in Unix pipes, the pipe’s data is

47

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

itself ephemeral and lives temporarily in kernel buffers.

One workaround is to use a temporary file as an intermediary, e.g., procA
>/tmp/f & procB </tmp/f. This solution can fail, however, since procB
may read all of /tmp/ £ and exit before proca has finished writing, leaving some
data unprocessed by procB.

A better workaround is to use an intermediary file, but to also have procB
wait to exit until after procA closes /tmp/f. This is easy to do with the stan-
dard Unix utility tail: procA >/tmp/f & PID=$!; tail -pid=$PID -f
/tmp/f | procB. Here, tail waits for additional data until procA exits.

This works on a single system where tail is able to test if proca has exited.
However, if proca and procB are running in different serverless contexts, this
workaround does not work.

Because pipelines are such a common idiom in serverless workflows, a file
system that optimizes this pattern and increases parallelizablity between stages is
highly desirable. When an intermediate file is used to communicate data between
two actions, the file system is in a unique position to block the reader as necessary
to wait for a concurrently running writer to add additional data to the file, returning
end-of-file indication to the reader only after the writer has finished and closed the
file.

5.4 Design

We have designed a proof of concept file system, F3, that has all of the desired
properties identified in Section 5.3. Figure 5.2 depicts F3’s architecture. F3 is de-
signed to layer on top of an existing durable file system, extending it with features
benefiting serverless applications. F3 provides faster access to ephemeral data by
storing it separately from non-ephemeral data on local, less durable storage with-
out features like replication or erasure coding. Since ephemeral data is stored on
node-local devices, F3 interfaces with the serverless platform to aid in scheduling
actions on the nodes where their data resides. In the event that this is not possible
(e.g., because the load on that node is too high), F3 transparently and efficiently
handles transferring the data between nodes.

We describe the design of the three serverless data transfer features in more
detail below.

Ephemeral data support F3 provides a common file system interface for both
ephemeral and non-ephemeral data. To do this, F3 merges (1) a distributed, re-

48

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

liable, networked file system with (2) a file system on a fast local disk, and ex-
poses a single mount point. Applications use the mount point exposed by F3, and
F3 transparently writes file contents to either the networked file system or to the
faster local file system.

The networked file system should be a file system that is accessible by ev-
ery node in the cluster, such as CephFS or NFS. Each node should have its own
local data store for ephemeral data. This, for instance, is the case in a hypercon-
verged architecture, where storage is provided by aggregating disks attached to
each compute node rather than using dedicated storage servers.

In our current implementation, users can mark a file or directory as ephemeral
by setting the appropriate extended attribute on the file or directory or just use a
special predefined file name extension. All data under an ephemeral directory is
automatically marked ephemeral. In many workflows an application developer or
user can easily identify which files are intermediate hence contain ephemeral data.
In other cases some files (e.g., stored in /tmp) or opened with O_TMPFILE, could
be automatically designated as ephemeral. In the future, we can explore using
more advanced automation for identifying ephemeral data.

For each volume, F3 creates a different top level directory on the local and
networked file systems. This keeps the volume namespaces separate, so files in
separate volumes can share the same name and path. Under this top level directory,
F3 maintains the same directory hierarchy on both the local file system and the
networked file system: the only difference is where the a file’s contents are stored.
It creates an empty file as a placeholder in the underlying file system where the
file is not stored (e.g., the networked file system if the file is an ephemeral file).
However, if a F3 volume is created by extending an existing networked file system
volume, F3 does not require any initial synchronization. Instead, F3 lazily creates
the network file system’s directory hierarchy on the local disk as needed.

F3 uses extended attributes on the copies of the files on the networked file
system to track F3-specific metadata about a file. For example, we use extended
attributes to mark whether the file is ephemeral, and if so which nodes in the
cluster have a copy of that file’s data. Storing metadata in the network file systems
provides high durability for metadata. When a file is opened by an application,
F3 checks the file’s extended attributes to determine if the file is ephemeral: if
so, it opens the copy of the file on the ephemeral data store and returns the file
descriptor to the application. Otherwise, F3 opens the copy of the file on the
networked file system and returns that file descriptor. If the extended attributes
are missing, F3 assumes that the file is non-ephemeral. This can happen if F3 is
extending a networked file system that has already been populated with data, for

49

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

instance.

When F3 opens an ephemeral file, it first checks if the file contents are avail-
able locally. If not, F3 uses the extended attributes to find which nodes in the
cluster have the file’s contents. F3 then uses a per-node client/server communica-
tion to do a point-to-point, direct, efficient transfer of the file contents. As soon as
the network transfer is initiated, F3 begins transferring the entire file and returns
a file descriptor for the file to the application, which can then read the file as it is
being downloaded.

The original copy of data is not deleted, and the data on either node can be used
by subsequent actions. For our current implementation, we assume that ephemeral
data is written once [66] so this copy of data does not need to be updated. As most
ephemeral serverless data is written only once, this is a reasonable assumption. At
this time we consider it the responsibility of the application developer to ensure
that this assumption holds.

If a node or local disk fails and ephemeral data is lost, the action that created
the data has to be re-run. This is consistent with the typical requirement that
actions are idempotent [8, 59], and the fact that actions may be automatically
re-run by the serverless platform in the event of certain kinds of errors [83].

Our current implementation of F3 does not include any garbage collection to
delete old data on the local disk. A simple approach would be to delete data as
needed when the disk fills up, using an LRU algorithm to choose what data to
delete. If a single action writes enough ephemeral data to fill up the local disk by
itself, the current implementation of F3 would return ENOSPC to the application.
Other approaches might be to have F3 copy the ephemeral data to the shared
file system, store the data partially on the local disk and partially on the shared
file system, or to have the serverless platform rerun the action and have F3 treat
the data as non-ephemeral during the second run. We leave exploration of these
options, as well as an implementation of a garbage collection mechanism, to future
work.

Data locality hints for action scheduling Collectively, the F3 file system drivers
which run on each node in the cluster know what files are present in their local
ephemeral data store. If the serverless platform’s scheduler knows what files an
action will access, the scheduler can ask the F3 file system for the location of the
data and use that information in deciding where to schedule the action.

Rather than making the scheduler query each local instance of F3, F3 includes
a simple server that centralizes this data locality information. Each local instance

50

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

Action Name: xxx)
Params: /v/fin, /v/flout O Data transfer Data location
Vols: f3-vol [4) information

Mount points: /v/f

% f Naodao 2
{ Noda D)1

Shared
File
System

Serverless Platform Node 1

Scheduler F3 ————
ast Loca
=)

Iviflin, 2 GB, Node 1)
Data Locality Server]

Action
containers

(Iv/flin, IvIiTO

Figure 5.2: CNSBench architecture and locality-aware data operations

of F3 sends information about what files are on its node to this data locality server.
The locality information is sent to the server asynchronously, so the server should
not become a bottleneck in data operations.

Figure 5.2 details how the data locality feature in F3 works. When an ephemeral
file is written o to an F3 file system, the local instance of F3 on that node sends
9 the file name, file size, and node name to the data locality server. F3 sends lo-
cality information twice: once when the file is created, and again when the file is
closed. The locality information sent when the file is created allows the serverless
scheduler to schedule pipelined actions on the same node, since it tells the sched-
uler where the data will be. The locality information sent when the file is closed
allows the scheduler to make scheduling decisions based on the actual amount of
data that each host has.

When the serverless platform receives e a new action to run, its scheduler
has to choose where to run the action. If there are suitable warm containers avail-
able, it chooses one of them; otherwise, it creates a new container. When taking
data locality into account, the scheduler tries to identify all files that the action is
likely to access. Currently this is done by identifying strings in the action param-
eters that contain the mount point of the F3 file system @). This was sufficient
for the applications that we used for our evaluation. In the future, more sophisti-
cated methods such as predictions based on prior action invocations can be used
to identify files likely to be accessed. Additionally, a serverless orchestrator or
framework such as Kubeflow [70] that knows the relationship between actions

51

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

could explicitly provide information about what data an action will produce or
consume.

The scheduler then sends the list of files to the data locality server @). The
data locality server then uses the information supplied by the F3 file system drivers
to identify for each file in the list what nodes have the file locally and the size of
each file. It sums the amount of data available on each node, and returns this
information to the scheduler . The scheduler uses the information to choose
a container on a node with the largest amount of data available locally @. If
there are no suitable containers the scheduler then uses this information to tell the
container platform which node the new container should be created on.

Data locality is only one of several factors that the scheduler uses to place
actions. For instance, if the node with the best data locality is overloaded, then
the scheduler may instead decide to run an action on a less heavily utilized node.
Ideally, the serverless scheduler would provide a mechanism for letting users de-
cide how these different pieces of information are used when making scheduling
decisions, similar to the flexibility offered by the Kubernetes scheduler [79].

Reading-while-writing Usually a process consumes a file by issuing read sys-
tem calls in a loop, stopping when read returns zero (i.e., when the end of the
file is reached). If the file is being written at the same time as it is being read, the
reader would need to periodically poll for new data when read returns zero.

The challenge here is that the process needs to know when to stop polling
because the writer has finished and closed the file. Unix pipes handle this trans-
parently for a process: rather than returning zero, read blocks until more data is
available as long as the write end of the pipe remains open.

F3 replicates this behavior by blocking read calls from returning if read
would return zero but the file is open for writing by another process. When more
data has been added to the file or the writer closes the file, F3 allows read to
return to the caller. Since F3 spans the entire cluster, this works even if the writing
process is running in a different container or a different node.

This feature makes it possible for a serverless scheduler to schedule the next
stage of a pipeline before the previous stage has finished, thus improving concur-
rency. The same locality hints the scheduler uses to place the reader action can
also be used to wait for the previous pipeline stage to create the file. Thus pipeline
stages can be scheduled in parallel without code changes to either reader or writer.

If one of the pipeline steps fails, there may be subsequent stages that have al-
ready read part of the output from the failed step. If the pipeline previously ran on

52

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

a single node, then it likely already has logic for dealing with this case and such
logic can be reused in the serverless environment as well. For example, the ap-
plication might cleanup the output from failed steps and then rerun. Since objects
are written or read in their entirety, rather than incrementally as files are, addi-
tional logic may be needed for applications that currently use an object interface
for storage. Detecting when a failure occurs and what recovery steps are needed
(e.g., failing downstream actions that are currently reading data from the failed
action) is the responsibility of the serverless execution system and is out of scope
for F3.

5.5 Implementation

We implemented F3, following the design described in Section 5.4. We targeted
OpenWhisk [105] as the serverless platform, which we deployed on top of Ku-
bernetes as the container orchestration platform. F3’s implementation consists
of four components and a series of modifications to OpenWhisk, described be-
low. We plan to release these components publicly, as open source, available at
url-redacted.

1. F3file system driver The F3 file system driver is implemented using FUSE [137,
136]. We used FUSE for this prototype rather than implementing a kernel-based
driver due to FUSE’s relative simplicity and ease of development. We expect that
any performance penalty that FUSE imposes is insignificant compared to the ben-
efits provided by F3 (e.g., fewer network transfers). In the future, a kernel version
of F3 could be implemented for production uses.

The F3 FUSE driver is implemented in 2,406 lines of C and C++. An instance
of the FUSE driver runs on each node, for each F3 volume mounted on that node.

2. File transfer server & client Ephemeral data written on one node and read
on another node must be copied to the reader node via a network transfer. This
functionality is implemented in a Go-based client and server, each of which runs
on each node of the cluster. Go was chosen due to its strengths as a language for
networked applications like file transfer clients and servers [128]. Additionally,
Go’s ability to compile into a portable executable eases the containerization and
deployment of the file transfer and server [86].

The F3 FUSE driver communicates to the client via Unix domain sockets to
request that a file’s contents be downloaded from another node. The file transfer

53

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

server and client are written in 574 lines of Go.

3. CSI driver To integrate F3 with Kubernetes, we implemented a CSI (Con-
tainer Storage Interface) driver [62] to enable provisioning and attaching F3 vol-
umes to Kubernetes pods. The CSI driver is implemented in 811 lines of Go.For
example, the CSI specification website lists 83 CSI drivers with source code: of
those, 74 are implemented in Go [62]. When users create an F3 volume, they
must also create a volume for the networked file system that F3 will use. The
F3 volume definition indicates what networked file system volume to use with
the Kubernetes label [76] £3.target-pvc: foo, where foo is the name of the
network file system’s volume.

When the CSI driver is instructed to attach an F3 volume (i.e., receives a
NodePublishVolume CSI command), the driver checks to see if the target net-
worked file system volume is already mounted on the node where the F3 volume
is being attached. If not, the F3 CSI driver creates a pod on the target node that
is attached to the target networked file system. This forces the networked file sys-
tem to be mounted on the target node. F3’s FUSE file system can then access the
mount point. We assume that each node’s local data store is mounted in advance.

4. File locality server The file locality server aggregates data from each F3
file system driver in the cluster. It is implemented in 214 lines of Go. The lo-
cality information about ephemeral data is stored on disk in a JSON formatted
file. The durability of the locality information is not critical, since the data itself
is ephemeral and the serverless platform can always fall back to data-unaware
scheduling.

5. OpenWhisk Modifications In addition to the new components implemented
above, we had to modify the OpenWhisk serverless platform. These changes
included (1) adding support for attaching action containers to storage volumes, (2)
identifying what files will potentially be accessed by an action, and (3) modifying
the OpenWhisk scheduler to query the data locality server and using the response
when choosing a container for an action.

In total, we changed about 700 lines of OpenWhisk code, most of it in the
Scala language.

54

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

5.5.1 Unmodified Applications in Serverless

One of the advantages of file based storage for serverless is that it enables running
unmodified applications. To highlight this capability, we wanted to use unmodi-
fied, “off-the-shelf” applications in our evaluation of F3.

During our evaluation we tested many combinations of container images, ap-
plications, and application command line options. To simplify this process, we
implemented a mechanism that enables easily running a command as an Open-
Whisk action. The user runs a command with the ow-run utility that we created.

The user experience with ow-run is similar to that of running a command using
the command line on their local machine. For example, consider we want to run
this command, normally invoked locally, as follows:

trimmomatic /data/0.fastqg /data/0.fastqg.gz

To run that command on OpenWhisk using our ow-run utility, the command
line invocation would be:
ow—run -—-container—-image sunbeam:v0.0.7 -ow-action trim -vol-list
f3-pvc -mount-path-list /data trimmomatic /data/0.fastqg /data/0.fastqg.gz

In this example, the user needs to have already configured the resource limits
and requests for the trim action and created the F3 volume £3-pvc. However,
the user needs to make no modifications to t rimmomatic itself. This allowed us
to easily and efficiently test a wide range of applications and application settings.

5.6 Evaluation

Due to the growing amount of data produced by IoT devices, the rising demand
for low-latency on-the-spot computing, as well as privacy and security concerns,
applications and infrastructure are increasingly deployed at the Edge rather than
in the hyper-scale Clouds [133]. The umbrella project for F3 focuses on the grow-
ing Edge business opportunities: thus, we designed our experimental platform and
workloads to be representative of edge environments and workloads. Furthermore,
our analysis shows that thanks to its higher resource efficiency, the serverless ap-
proach could be even more attractive at the resource-constrained Edge than in the
Clouds with seemingly unlimited resources.

A typical edge data center is a cluster of only 1-10 servers located either at a
customer site (e.g., a factory or a retail sore) or at an Internet access point (e.g., 5SG
cell tower). The servers in a typical edge data center run standard operating sys-
tem (e.g., Linux), virtualization software (e.g., KVM), and container orchestrators

55

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

(e.g., Kubernetes). Due to constraints on clusters’ physical footprint, a popular
architecture for Edge data centers is hyperconverged setup, where each building
block (e.g., a server) provides both compute and storage resources. The testbed
described in the following section reflects these characteristics of edge data cen-
ters.

5.6.1 Cluster and Storage Setup

We ran our evaluation on CloudLab [38] using a cluster of nine machines con-
nected via a 1Gbps network, with each node running CentOS Linux 7.9.2009.
Each machine had two 2.60GHz, ten-core Intel CPUs with hyperthreading, 160GB
of RAM, and one 480GB SATA SSD. The cluster was connected via a private
1Gbps network. Our serverless platform was OpenWhisk 1.0.0, using Kubernetes
1.19.0 as the container orchestrator.

One node was dedicated to running the etcd server used by Kubernetes to
store cluster state; another node was the Kubernetes control node; and a third
node was dedicated to running an NFS server used in evaluation. The remain-
ing six nodes were hyper-converged Kubernetes workers that ran both evaluated
workloads and storage systems—CephFS, MinlO, and F3.

In our CloudLab setup every node had only one attached disk. Since F3 re-
quires both a local disk and a shared file system, we used LVM to split the single
SSD attached to each node into two volumes. We formatted one volume with ext4
and used that as F3’s local disk; we used the other volume for CephFS and MinlO.

In our evaluation we assume the case when an edge cluster already has access
to durable storage: CephFS (distributed file system), MinlO (object storage), or
central NFS server (NAS). F3 can be layered over these solutions (except MinlO)
to provide additional performance benefits in serving ephemeral data to serverless
functions. We evaluate MinlO to provide a reference point of how applications
perform with a popular object storage solution rather than a file system.

CephFS Ceph [23] is a popular storage system built on the RADOS object
store [143]. It aggregates storage from each node it is deployed on and exposes
a single pool of storage. There are several interfaces for Ceph including CephFS,
which exposes a file-system interface to applications. Ceph offers several data
durability schemes, such as replication and erasure coding. We evaluated three
different Ceph configurations: no replication, 3 x replication, and 2-1 erasure cod-
ing (two data blocks and one erasure block).

56

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

CephFS has both kernel- and FUSE-based user-space drivers. We used the
FUSE-based user-space drivers, which are typically more up to date and safer to
use than their kernel counterparts. We used Ceph version 15.2.7, deployed on
Kubernetes with the Rook [119] operator version 1.5.9.

MinIO MinlO [97] is a popular object store. Like Ceph, it can aggregate storage
across multiple nodes and expose a single storage pool. Also like Ceph, MinlO
offers several data durability modes. We chose EC-3, which was the default for
our sized cluster (six nodes, one disk per node). This mode splits data into three
data chunks with three coding chunks. We used MinlO release 2022-09-07T22-
25-027Z, deployed on Kubernetes with version 4.5.0 of the MinlO operator.

We used s3fs [121] to access MinlO’s object API and provide a file-based
interface over MinlO. This is representative of the current state of storage for
serverless: if a user wishes to run an application on a serverless platform but the
application requires a file based storage interface, they would need to use a tool
like s3fs to access an object store.

NFS NFS [124] is a well-established file system protocol. Although hyper-
converged configurations such as those used by Ceph and MinlO are common,
architectures that use standalone NAS storage appliances are still used. NFS is
mature, and easier to deploy and configure compared to more sophisticated, dis-
tributed or networked file systems like CephFS. We used NFS on a standalone,
dedicated server in our cluster—to represent this alternate architecture. We used
the standard NFS server included with the Linux kernel to export a local disk
formatted with ext4. The NFS version was 4.1, which was the default version
available on our operating system (CentOS Linux 7.9.2009).

F3 In most experiments we evaluated F3 using CephFS with no replication as
our networked file system. The local disks used as a per-node local data store
were formatted with ext4, which is a commonly recommended file system and the
default for many operating systems [118]. Although we mainly used CephFS as
the networked file system for our evaluations, F3 is capable of stacking on top of
any underlying networked file system that supports extended attributes. To test
this, we verified that F3 also works on a recent NFSv4.2 server with extended
attributes support.

We measured the impact of using different networked file systems (CephFS
with no replication, 3x replication, 2-1 erasure coding, and NFS) with F3. We

57

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

found that the choice of underlying file system had little to no impact on the per-
formance of ephemeral data operations: performance in each case was within
3.1% of each other for reads where the data was not available locally, and less than
0.03% and hence statistically indistinguishable. of each other in all other cases.
This is because F3 is designed to avoid the networked file system for ephemeral
operations. We used unreplicated CephFS as our networked file system through-
out our evaluation: any reference of “F3” in the evaluation means “F3, layered on
top of unreplicated CephFS.”

Since the focus of this evaluation was on F3’s features for ephemeral data,
all data in our evaluation was marked as being ephemeral. We leave to future
work evaluating the performance of mixed ephemeral and non-ephemeral data
operations, as well as how to automatically identify whether data is ephemeral or
non-ephemeral.

Disk vs. network speed ratios When selecting the server for a file system that
accesses disks over the network, disk speeds and network speeds should be on par
with each other so that neither dominates as the primary bottleneck. We chose
network and disk speeds that were representative of real-world ratios. Each of
our servers had only a single disk available for the storage systems under eval-
uation. We measured the disk speed to be 200MB/s, giving a disk to network
throughput ratio of approximately 1.6 with the 1Gbps network. Although 1Gbps
is slow compared to the networks found in many modern data centers, our disk to
network throughput ratio falls within the range typical of real world edge deploy-
ments [144]. If we instead had ten disks with a combined throughput of 2000MB/s
and a 10Gbps network, the ratio would remain the same.

5.6.2 Data Transfer Micro-Benchmarks

We evaluated the performance of data exchange and the impact of F3’s data ex-
change optimizations. We first show the performance impact of different replica-
tion and erasure coding levels, compared to a baseline of accessing a local disk.
This is the motivation behind F3’s use of a local disk for ephemeral data.

We then show the impact of data locality based scheduling, and avoiding the
overhead of transferring data across the network. Next, we show the combined im-
pact of F3’s data locality based scheduling and F3’s use of local disk for ephemeral
data. Finally, we show the impact of F3’s optimizations for reading-while-writing.

58

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

Writes Reads
6 i | Il Mean
—_ I Median
0
= £
O ~—
(@) c 4_ i
g0
ok
o
@ E 2- -
o
O
0- M

1x 3x b5x 2-1 3-3Local 1x 3x 5x 2-1 3-3Local
EC EC disk EC EC disk

Figure 5.3: Mean and median system call latencies for different configurations of
storage system. 1x, 3%, and 5x refer to the degree of replication; 2-1 and 3-3 EC
refer to the erasure coding configuration (2 data and 1 coding chunk, and 3 data
and 3 coding chunks, respectively).

Impact of replication & local disk storage We evaluated the impact of repli-
cation and erasure coding on the latency of read and write system calls. We
ran several experiments to time 100,000 reads and 100,000 writes on CephFS vol-
umes with varying replication and erasure coding options, and compared with the
same workload on an ext4 file system on a local disk. Since CephFS uses a FUSE
driver, we used a passthrough FUSE file system to access the ext4 file system.
This ensured that all read and write system calls went through a FUSE layer
for a more fair comparison. System call times were measured with st race, and
were generated with dd with bs=4K and [o|i] flag=direct.

Figure 5.3 shows the mean and median system call latency across multiple
storage configurations. The distribution of latencies exhibited a long tail, as can
be seen in Figure 5.4 (note the log scale). This is expected, as there are multiple
sources of variability in the storage and networking stacks, and have been ob-
served before [61, 52, 17, 98]. As the degree of replication increases, we see the
tail grow longer, which also makes sense as the number of sources of variability
increases.

As expected, the local disk performed significantly better than CephFS, espe-
cially when writing: 0.1ms vs. 2.2ms for 1x replication). We also see that as the

59

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

== 1X == 3x == 5x —e— 2-1EC 3-3 EC Local disk
Writes Reads
1.00 A SEPG—HUC o
1
1
0.75 A - {
i
5 0.50 - |]
o }
]
0.25 - T 1
)
’1
O.OO—""“I LR | LELELELRRRY | LI | T "-""I T LEELELELLLAY | T T "c;"'l T T
107* 10° 10' 102 1072 1071 10°
System call completion System call completion
time (ms), log scale time (ms), log scale

Figure 5.4: CDFs of read and write system call latencies, for different storage
configurations. We used log scale for the x-axis because the system calls exhibited
long tails at higher replication degrees.

replication degree increased, generally so did system latency. The exception was
that for reads, 3x and 5x replication perform about the same or slightly better
than 1 x replication.

Impact of data locality considerations during action scheduling To demon-
strate the impact of locality aware data scheduling, we wrote and then read six
ephemeral files. Writers were run manually on each node, one per node, with
each writing a unique 400MB file. For each writer, a corresponding reader was
run in an OpenWhisk action that read the entire 400MB file. When the reader and
writer both run on the same node, the reader reads its file from F3’s local disk.
However, when the reader and writer each run on separate nodes, the data must be
transferred from the writer node to the reader node over the network.

The left-hand side of Figure 5.5 depicts the case where OpenWhisk’s default
scheduling is used. Here, the readers are assigned to nodes without regard to
where the input file they need to read is located; we see that only a single reader
(green line) ended up running on the same node as its corresponding writer. The

60

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

I Data read via network M Data read locally from F3 ephemeral data store

7 >< 7 7 7
g 6 6?6 o 6 6?6
25 5% S 5 5%
g 4 4§ g 4 4%
g 3 3% g 3 3%

2 / \ 2 2 2

Without data With data
aware scheduling aware scheduling

Figure 5.5: Impact of data aware scheduling. Each line connects a writer with its
corresponding reader, with the numbers along each side showing what node in the
cluster the writer or reader ran on. Red lines indicate that the reader needed to
transfer its file from the writer node via a network transfer. Green lines indicate
that the reader and writer ran on the same node and the file was read from F3’s
local ephemeral data store, with no network transfer was needed.

red lines depict instances where the reader ran on a different node from its writer,
necessitating a 400MB network transfer to copy the data from the writer node
to the reader node. In total, using the default OpenWhisk scheduler resulted in
5 % 400 = 2000MB of data being transferred across the cluster network.

The right side of Figure 5.5 shows the impact of our modified OpenWhisk
scheduler that utilizes F3’s data locality hints. All six readers were scheduled on
the same node as the corresponding writer, and hence no data was transferred over
the network.

Impact of replication, local disk storage, and data locality We used fio [41]
to measure sequential and random read and write performance of the storage sys-
tems. fio ran in a pod (container) via a serverless action. Write and read work-
loads were generated by separate instances of fio running in separate pods. The
data written by £io was marked as ephemeral, and the reader instance ran after
the writer instance finished. We measured read performance where the reader pod

61

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

ran on the same node as the writer pod, as well as when the reader pod ran on a
different node. This demonstrates the difference in performance that data locality
can have on an I/O workload. We disabled F3’s data locality based scheduling
to be able to control whether the reader ran on the same or different node as the
writer. We used a large (200GB) dataset to mitigate the impact of caching.

Figure 5.6 shows the bandwidth reported by fio, in MB/s, and the mean la-
tencies, in milliseconds. We ran fio in each configuration three times. Error bars
show that variance was small, less than 5% of the mean, with one exception: F3
random reads on the same node, where the variation was 7%.

As expected, F3 had the highest read and write performance when the reader
was on the same node as the writer. F3’s write bandwidth ranged from 1.40x to
6.46x faster than other storage systems; read bandwidth ranged from 1.84x to
2.30x faster. Latency ranged from 1.40x to 2.64 x lower when writing and from
1.84x to 2.73 x lower when reading. These performance improvements were due
to F3’s use of local storage. By using local storage, F3 is not limited by the
cluster’s network capacity as other storage systems are.

F3’s read performance when readers and writers ran on different nodes was
similar to NFS. In both cases, the data had to be transferred over the network.

Each of the networked file systems was limited by the cluster’s 1Gbps (125MB/s)
network. The one exception was writing in the unreplicated configuration of Ceph.
This was expected because Ceph breaks files into blocks that are then distributed
across each of the storage nodes in the Ceph cluster. Because we were using a
hyperconverged architecture, the Ceph storage nodes were the same nodes that
run user workloads, including our instance of fio. Since we had six nodes in
our cluster, we expect then that % of the data written by fio resided on the node
running the £io program, and as a result was not limited by the cluster’s network.

Impact of reading-while-writing Passing data from one stage of a data pro-
cessing pipeline to the next is a common pattern. A straightforward implementa-
tion is to run the pipeline stages sequentially, where each stage produces an output
file that the next stage reads as input. A disadvantage of this approach, however,
is that it provides no parallelism between pipeline stages.

Another possible implementation is to run pipeline stages concurrently, stream-
ing the data between stages (e.g., using UNIX pipes to connect them). The added
parallelism of streaming can result in lower end-to-end processing times. A limi-
tation of using UNIX pipes, however, is that the stages must all be run on the same
node, which is not always convenient.

62

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

In this section, we use a third approach where a stage in the pipeline reads
input from a file in a shared file system while the previous stage writes the file.
We show below how we solved the problem of the reader reaching the end of file
before the writer has finished writing all data.

We ran experiments in a serverless environment using CephFS, NFS, and F3
as the shared file system—first with the reader on the same node as the writer,
then with the reader on a different node. We used a smaller data set (400MB) than
the server’s RAM (160GB), so the results reflect the ability of the storage systems
to leverage the kernel’s page cache rather than being disk bound.

To solve the early EOF problem, we made a few changes to our pipeline stages.
First, we modified the writer stage to create an empty file, /var/data/f.done,
on completion. Next, we split the reader into two parts. The first part was a
script that read from /var/data/f and wrote to a FIFO pipe, /tmp/f.pipe.
Whenever the script reached EOF on input, it checked for the existence of the
/var/data/f.done file, and if not found, slept one second (same duration as
tail -f), thenreturned to the top of the loop and continued reading. The second
part was the actual reader program (e.g., grep or cat), except that instead of
reading from /var/data/ £, itread from /tmp/f.pipe. Both parts of the reader
ran in the same action. This implementation enabled us to run a reading-while-
writing workflow in a serverless context.

Because F3 has special support for handling EOF in the reading-while-writing
access pattern, it did not require any of the additional implementation: the writer
action simply wrote to /var/data/f and the reader action simply read from
/var/data/f.

Note that because CephFS was not designed for this usage pattern, it does not
handle the reading-while-writing case efficiently when reader and writer run on
different nodes. In this pattern, it falls back to unbuffered reading and writing [24].

MinlO is not capable of reading from an object as it is being written to, so it
is omitted from these experiments. This example further highlights the limitation
of object-based interfaces.

Figure 5.7 shows the difference in same-node-reader vs. different-node-reader
performance. As expected, for all storage systems, read performance is worse
when the reader is on a separate node from the writer. However, Ceph’s write
performance is also lower when the reader is on a separate node. This is because
when both reader and writer are on the same node, Ceph can do buffered reading
and writing, as only a single client is accessing the file. When the reader and writer
are on separate Ceph nodes, however, there are now multiple clients accessing the
same file and Ceph falls back to its slower, unbuffered file accesses (plus the

63

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

additional overhead of network transfers).

5.6.3 Case Study: Bioinformatics Pipeline

We developed a bioinformatics case study in collaboration with an industry part-
ner specializing in large scale processing genetic sequence data. The advent of
new genetic-sequencing technologies (e.g., nanopore) has made sequencing more
portable, affordable, and accessible. Sequencing can now be done anywhere from
hospitals to sea-bound ships and is being used for an increasing number of appli-
cations [33].

Sequencing typically produces a large amount of data that is then processed
using a series of steps run in a pipeline. The pipeline typically begins by cleaning
and filtering the data, for example removing artifacts created as a byproduct of the
sequencing technology. After cleaning, the sequence data is then analyzed, for
example to identify the species present in a sample.

Running all or part of the analysis pipeline at the edge where the sequence
data is generated can save significant time and cost associated with moving a large
amount of data to the cloud. It is not always possible or desirable to run the entire
processing pipeline at the edge, for instance, when the analysis requires more
computing power than is available in the edge data center, or when the analysis
output is required in the cloud for other reasons (e.g., archival). But running at
least the cleaning portion of the pipeline at the edge can still significantly reduce
the amount of data uploaded to the cloud.

Because various stages in the pipeline have different resource requirements,
running the pipeline in a serverless environment where each stage is run as a
separate action provides better resource utilization.

Analysis pipelines are usually built using existing tools developed by other
bioinformatics researchers. These tools usually assume a file interface for their
inputs and outputs.

We implemented the cleaning stage of a genetic-sequencing pipeline using two
commonly used tools: Cutadapt [91] and Trimmomatic [16]. Cutadapt identifies
and removes portions of sequences that were added to support the sequencing
process and are unrelated to the data being analyzed. Trimmomatic removes se-
quences that fail to meet a given quality metric. Usually, Cutadapt is run first. Its
output becomes the input for Trimmomatic.

Figure 5.8 describes our implementation. We uploaded a 926MB file of genetic-
sequence data to a load-balanced web server o which wrote the file to a data
store as ephemeral data. Because the web server uses a load-balancer to distribute

64

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

requests among nodes, the server that receives and stores the sequence data can
be any of the worker nodes in the cluster.

Once the receiving node had saved the file, it ran Cutadapt @ and Trimmo-
matic @) as OpenWhisk actions. We ran the pipeline in two modes: sequential
and pipelined. In the sequential mode, Trimmomatic was started after the com-
pletion of Cutadapt. In pipelined mode, Trimmomatic was run at the same time
as Cutadapt, operating on Cutadapt’s output as it was being written. Cutadapt’s
output was 926MB and Trimmomatic’s output was 126MB. Together, the two
applications reduced the input data size by 7.3 x.

Additionally, running the tools in separate actions provided better resource
efficiency. The memory requirement of Trimmomatic is 1024MB, while that of
Cutadapt is only 32MB. If both steps ran in the same context, then the system
would have had to reserve the larger memory requirement for the duration of
both pipeline stages. By scheduling them as separate actions, however, the larger
memory reservation was needed only for the duration of the Trimmomatic stage.
Running in separate actions is enabled by providing access to shared, file based
storage.

Figure 5.9 shows the end-to-end runtimes of the pipeline. The pipeline ran
fastest on F3, ranging from 8% to 34% faster than on other storage systems for
the sequential mode, and 9% to 47% faster for the pipelined mode. Note that for
the pipelined mode, MinlO results are not shown because it is incapable of being
run in this mode (simultaneous reading and writing). The pipeline ran slowest
on MinlO, not surprising since the pipeline writes a large amount of data during
the Cutadapt stage and MinlO has the worst write performance of all evaluated
storage systems.

NFS performed similarly to F3, running only 8% slower. There are two factors
that contribute to this: the first is that the size of the data used in the experiment
is small. This means that the time spent on I/O compared to the overall runtime is
relatively small, and so improvements to that I/O time have a small impact on the
larger runtime.

Second, the experiment was conducted in what are close to “ideal” conditions
for NFS: only a single client and no other network traffic. This allowed the data
transfers that take place during the experiment to utilize the entire network ca-
pacity. As a quick test, we used iperf to generate network traffic and re-ran
the experiment for NFS: at 50% network utilization F3 performs 16% faster than
NEFS, 25% better at 75% utilization, and 59% better at 90% utilization. All net-
worked file systems will be subject to performance variation based on the overall
network utilization. F3, by using local disks and data locality scheduling, avoids

65

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

this problem—performing relatively better and better as the network gets more
congested.

5.7 Conclusion

Serverless platforms have been steadily growing in popularity. Although so far
they have been limited to relatively simple web-based tasks, users and researchers
are beginning to appreciate the potential of serverless platforms’ on-demand com-
puting capabilities. As serverless platforms make the shift to being a platform
for any generic task, two significant problems remain: access to storage and data
transfer.

Some advanced and existing applications require access to file-based storage.
To support these applications, serverless platforms need to allow attaching to file-
based storage systems. However, existing storage systems were not designed with
serverless applications in mind and lack key features that would accelerate the
kind of data transfers commonly found in serverless environments: (1) support
for ephemeral data, (2) data locality-aware action scheduling, and (3) support for
efficient simultaneous data access (i.e., reading files as they are written).

In this chapter, we presented F3, a file system that layers on top of existing
storage systems to provide these three key data-transfer features. We addition-
ally described modifications to an open source serverless platform, OpenWhisk,
to enable attachment of file-based storage and take advantage of data locality hints
provided by F3 when scheduling actions. We evaluated F3 and showed that it is
capable of 2.0-6.5x faster write bandwidths and 1.8-2.3 x better read bandwidths
compared to existing storage systems. Combined with our modifications to Open-
Whisk, we demonstrated that F3’s data locality hints totally eliminating network
traffic caused by data transfers, by enabling OpenWhisk to schedule actions on
the same node as the action’s data.

66

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

BN Ceph1x M Ceph3x B Ceph2-1EC Wl MinlO | NFSv4 [F3

Latency (ms)

Throughput (MB/s)

write randwrite read read randread randread
same node diff node same node diff node
as writer than writer as writer than writer

Figure 5.6: Mean latencies and bandwidths of Ceph, NFS, MinlO, and F3. “Ceph
1x” and “Ceph 3x” are configured with 1x and 3x replication, respectively.
“Ceph 2-1 EC” uses erasure coding (data split into two data chunks and one coding
chunk). F3 was layered on top of an unreplicated CephFS volume.

67

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

1000 1 mmm Write, reader same node
Il Read, writer same node
Bl Write, reader different node
5007 umm Read, writer different node

Bandwidth (MB/s)

o
1

Ceph Ceph Ceph Ceph Ceph NFSv4 F3
1x 3x 5x 2-1EC 3-3EC

Figure 5.7: Comparison of read-while-write performance, when readers and writ-
ers are on the same or different nodes. For CephFS, having the reader and writer
on different nodes significantly degrades both read and write performance. MinlO
is absent from this experiment due to its inability to read and write data concur-
rently. F3 was layered on top of an unreplicated CephFS volume.

p
Genetic (1] raad
S > balanced Cutadapt Trimmomatic
equencer
L web server
Constrained/ On-prem data
smart device center/access point

Figure 5.8: Bioinformatics use case architecture

68

CHAPTER 5. F3: SERVING FILES EFFICIENTLY IN SERVERLESS
COMPUTING

Sequential Pipelined

G EREETEEST!

Ceph Ceph Ceph MinlONFSv4 F3 Ceph Ceph Ceph MinlONFSv4 F3
1x 3x 2-1EC 1x 3x 2-1EC

o

runtime (s)
o

o

Figure 5.9: Runtime of Cutadapt + Trimmomatic pipeline. F3 was layered on top
of an unreplicated CephFS volume.

69

Chapter 6

Proposed and Future Work

In this chapter we outline our proposed work that we intend to include in this
dissertation. We then discuss possible future work that goes beyond the scope of
this thesis.

6.1 Proposed Work

With F3 we make a tradeoff between storage durability and performance, using
lower durability performance for ephemeral data. We claim that since this data
can be re-generated by re-running the function that created it, it is safe to store
in lower-durability storage that improves performance. While it is true that this
data can be re-generated, the situation is not actually that straightforward: re-
generating the data incurs an additional cost (e.g., time and dollar), potentially
offsetting the benefits of using lower-durability storage.

Correctly making this tradeoff between the likelihood and cost of needing to
re-generate data, versus the cost savings gained by using lower durability storage,
is difficult. There are several factors, such as the structure of the DAG being
executed, the platform’s compute and storage costs, and the size of the input to
the DAG.

We propose developing a mathematical model that considers these factors and
then makes this tradeoff, choosing the most cost effective storage for each piece of
data created by a DAG. By making this tradeoff, we will enable users to execute
DAGs at a lower overall cost. We plan to demonstrate this by building a system
that uses our model for choosing between storage classes with different degrees
of replication. We will then show that DAGs can be executed at lower cost when

70

CHAPTER 6. PROPOSED AND FUTURE WORK

using this system versus only using highly durable (i.e., replicated) storage.

Since there are no cloud storage options with low durability that we are aware
of, we will create “hypothetical” storage classes that have lower durability and
lower costs. This will be necessary to provide the model with low durability
options to choose from. We will use methods from prior work [51] for calculating
the rate of data loss for a particular durability configuration. For pricing, we will
start with the prices of publicly available cloud storage (e.g., Amazon S3) and then
make reasonable assumptions about how lower durability would reduce the price.
For example, we might price a “low durability” storage option as 3 x cheaper than
a real cloud storage option.

For evaluation, we will setup a test environment using OpenWhisk [105],
an open-source FaaS platform deployed on a Kubernetes cluster. We will use
Ceph [21] as our storage system, which is a popular storage system for Kuber-
netes clusters [122]. Ceph also has the advantage that it can be configured to have
many different storage tiers with different degrees of replication or erasure coding.

We will develop sample applications that run in this environment. The model
will require predictions for an application’s runtime, data size, and data lifetimes.
We will use profiling (i.e., run each application multiple times with different input
sizes) to make these predictions, which has been shown to be effective [89]. After
profiling, we will use the model to select storage tiers for all of the data created by
an application. On subsequent runs, data created by the application will be placed
in the storage tier chosen by the model.

To evaluate the accuracy of the model, we will use the model to predict the
cost of executing an application. We will then execute the application and use
the observed actual function runtimes and data sizes and lifetimes to calculate the
actual cost of executing the application. We will compare this actual cost to the
cost predicted by the model.

To demonstrate the utility of our model, we will calculate cost savings achieved
when data is placed in storage tiers chosen by our model. The baseline we com-
pare against will be the cost to execute if highly durable storage is used for all
data.

We plan to demonstrate how various changes in application or environment pa-
rameters affect the model’s storage-tier decisions. For example, what is the impact
of making compute costs higher? What is the impact of DAGs with more steps,
or more parallelism? We will endeavor to produce graphs that show the tradeoff
between cost vs. durability. We measure cost in in dollars per unit time, taking
into account the need to re-generate data occasionally; we measure durability as
an expected rate of data loss.

71

CHAPTER 6. PROPOSED AND FUTURE WORK

Although the model will be capable of deciding between an arbitrary num-
ber of storage tiers, we plan to limit its choices initially to three tiers ranging in
degrees from durable and expensive to and less durable but cheaper.

6.2 Future Work

There are several areas of investigation that could follow this dissertation, which
we leave to future work.

Serverless DAG execution Our work has involved executing DAG-structured
applications on serverless platforms. To do so, we have relied on a system of
custom shell and Python scripts to orchestrate the execution of each stage in the
DAG. Although there are some frameworks that aim to make the task of executing
DAGs on serverless platforms easier [11, 90, 20, 88], none of these satisfied all of
our requirements. In particular, maintaining a mapping between data generated by
the DAG and the specific action responsible for creating that data is not possible
with current frameworks. Additionally, existing frameworks have limited error-
handling capabilities and are not capable of re-executing actions to re-create lost
data. We believe that serverless DAG execution warrants further exploration.

Another area of potential research is how to re-execute actions to re-create
data. Although the requirement that actions be idempotent should mean that ac-
tions can simply be re-run to re-create data, idempotency is often difficult to guar-
antee in practice. Execution techniques that make it easier to ensure idempotency
would be helpful. For example, perhaps record and replay techniques could be
helpful here.

Serverless applications In addition to DAG structured applications, other generic
applications may benefit from the serverless, computation-on-demand paradigm
as well. However, limitations of the serverless environment such as limited run-
times and confined execution environments can make porting existing applications
to serverless platforms difficult. Further work is needed to examine how to make
the transition to a serverless environment more seamless.

Storage durability A general assumption with storage systems is that we want
to be able to store data durably. This assumption drives decisions such as what
storage mediums are used for storage and how storage systems are architected.

72

CHAPTER 6. PROPOSED AND FUTURE WORK

However, we propose developing a model that shows when lower degrees of dura-
bility are appropriate instead. If we no longer have the assumption that we always
want high degrees of durability, does that change some of these decisions? For
example, perhaps storage systems could be built using old, less reliable, but cheap
hard disks.

Another possible direction of future research is to examine how data can be
moved across different durability tiers. For example, as data ages it might become
appropriate to move the data to higher durability storage.

Serverless and emerging memory technologies New memory technologies
like CXL [31] enable new capabilities for serverless. For example, migrating
serverless functions from one host to another can potentially run much faster, al-
lowing for capabilities such as on demand memory ballooning. Memory buffers
that are accessible from multiple hosts could also change how data is transferred
between serverless actions. Further research will be needed to see how these
emerging technologies will impact serverless platforms and applications.

73

Chapter 7

Conclusions

It is our thesis that the new characteristics in modern clouds necessitate a reex-
amination of the tools and techniques that were designed for previous clouds. In-
creases in the number of storage control operations, in the diversity of workloads,
and in workload dynamism have made existing benchmarking tools insufficient
to understanding application and cluster performance. Increases in the amount
of ephemeral data used by applications make existing data-handing techniques
sub-optimal.

To address the problem of benchmarking in modern clouds, we have devel-
oped CNSBench. We demonstrate how CNSBench can be used to examine the
performance properties of applications and storage systems running in a modern,
cloud native environment.

To address the problem of ephemeral data handling, we have developed the
file system F3. F3 extends the functionality of existing shared file systems, adding
optimizations for the handling of data in common cloud native use cases. We show
how applications can lower their overall runtime by using F3 for data transfer.

We aim to continue to explore new tools and techniques are needed to adapt
to the traits found in modern clouds. Specifically, we aim to investigate the role
of durability in cloud storage, and the tradeoff between storage durability and
execution costs.

74

Bibliography

[1]

(2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]
[11]

George Amvrosiadis and Vasily Tarasov. Filebench github repository,
2016. https://github.com/filebench/filebench/ wiki.

Apache Foundation, The. Hadoop, January 2010. http://hadoop.apache.org.

Apache Foundation, The. Hdfs architecture guide, January 2010. https:
//hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

Amazon Web Services (AWS). https://aws.amazon.com/.

Building Applications with Serverless Architectures. https://aws.amazon.
com/lambda/serverless-architectures-learn-more/ .

Aws lambda now supports custom runtimes and en-
ables sharing common code between functions, November
2018. https: //aws.amazon.com/about-aws/whats-new/2018/11/
aws-lambda-now-supports-custom-runtimes-and-layers/.

Using amazon efs with lambda. https://docs.aws.amazon.com/lambda/ latest/
dg/services-efs.html.

How do I make my lambda function idempotent?, 2021. https://aws.amazon.
com/premiumsupport/ knowledge-center/lambda- function-idempotent/.

Aws lambda enables functions that can run up to 15 minutes,
October 2018. https://aws.amazon.com/about-aws/whats-new/2018/10/
aws-lambda- supports-functions-that-can-run-up-to- 15-minutes/.

Serverless computing. https://aws.amazon.com/serverless/.

What are durable functions?, August 2023. https://learn.microsoft.com/
en-us/azure/azure-functions/durable/ durable-functions-overview.

75

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

Andrew Bartels, Dave Bartolett, John Rymer, Matthew Guarini, Charlie
Dai, and Alyssa Danilow. The public cloud market outlook, 2019 to 2022:
Public cloud growth continues to power tech spending. Technical report,
Forrester, July 2019.

Michael Behrendt. Ibm cloud functions: we’re doubling the time
limit on executing actions, April 2018. https://www.ibm.com/cloud/blog/
ibm-cloud-tfunctions-doubling-time-limit-executing-actions.

David Bernstein. Containers and cloud: From 1xc to docker to kubernetes.
IEEE Cloud Computing, 1(3):81-84, 2014.

Bloomberg: An early adopter’s success with Kubernetes at scale. https:
//www.cnct.io/ case-studies/bloomberg/.

Anthony Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible
trimmer for illumina sequence data. Bioinformatics, 30:2114-2120, August
2014.

Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok.
On the performance variation in modern storage stacks. In fast2017 [40],
pages 329-343.

Don Capps and Tom McNeal. Analyzing NSF client performance with
I0zone. In NFS Industry Conference. NFS Industry Conference, 2002.

Eric Carter. Sysdig 2019 Container Usage Report. https://sysdig.com/blog/
sysdig-2019-container-usage-report/.

Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and
Yue Cheng. Wukong: A scalable and locality-enhanced framework for
serverless parallel computing. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 1-15, New York, NY, USA, 2020.
Association for Computing Machinery.

Ceph. https://ceph.io/.
Ceph Snapshots. https://docs.ceph.com/en/latest/rbd/rbd-snapshot/.
Ceph file system. https://docs.ceph.com/en/pacific/cephfs/index.html.

Capabilities in ceph. https://docs.ceph.com/en/latest/ cephfs/capabilities/ .

76

BIBLIOGRAPHY

[25] Cluster File Systems, Inc. Lustre home page. wiki.lustre.org, 2010.
[26] Cloud Native Computing Foundation. https://www.cncf.io/.

[27] Karen Coombs. Storing data in a serverless application, March 2019. https:
//www.oclc.org/developer/news/2019/ storing-data-in-a-serverless-application.
en.htm,.

[28] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[29] Rodrigo Crespo-Cepeda, Giuseppe Agapito, Jose Vazquez-Poletti Luis,
and Mario Cannataro. Challenges and opportunities of amazon serverless
lambda services in bioinformatics. In /0th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, 2019.

[30] Marcin Cuber and Kerry Kamil. News UK Keeps New
Content and Capabilities Coming Fast with Amazon EKS
and New Relic. https://blog.newrelic.com/product-news/

news-uk-content-capabilities-amazon-eks-new-relic/.

[31] Compute express link™: The breakthrough cpu-to-device interconnect
cxI™. https://www.computeexpresslink.org/.

[32] The state of serverless, May 2021. https://www.datadoghq.com/
state-of-serverless/.

[33] Carlos de Rojas. Portable sequencing is reshaping genet-
ics research, April 2022. https://www.labiotech.eu/in-depth/

portable-sequencing-genetics-research/.

[34] Paul Dix. Benchmarking LevelDB vs. RocksDB vs. HyperLevelDB
vs. LMDB performance for InfluxDB, 2014. https://www.influxdata.com/

benchmarkingleveldb-vs-rocksdb-vs-hyperleveldb- vs-Imdb-performance-forinfluxdb/
(visited on 05/26/2017).

[35] Docker. https://docker.com/.
[36] What is a Container? https://www.docker.com/resources/what-container.

[37] Docker Hub. https://hub.docker.com/.

7

BIBLIOGRAPHY

[38]

[39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation of CloudLab. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC), pages 1-14,
July 2019.

Facebook. RocksDB. https://rocksdb.org/, September 2019.

Proceedings of the 15th USENIX Conference on File and Storage Technolo-
gies (FAST ’17), Santa Clara, CA, February-March 2017. USENIX Asso-
ciation.

fio—flexible I/O tester. http://freshmeat.net/projects/fio/.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to
lambda: Outsourcing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 475488, Renton, WA, July 2019. USENIX Association.

The Linux Foundation. State of the edge 2021, 2019. https://www.Ifedge.
org/ wp-content/uploads/2021/08/ StateoftheEdgeReport_2021_r3.11.pdf.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al.
An Open-source Benchmark Suite for Microservices and their Hardware-
software Implications for Cloud & Edge Systems. In Proceedings of the
24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

The edge will eat the cloud. https://blogs.gartner.com/thomas_bittman/2017/
03/06/the-edge-will-eat-the-cloud/ .

Predicts 2022: The distributed enterprise drives computing to the edge.
https:// www.gartner.com/document/4007176.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29-43, oct 2003.

78

BIBLIOGRAPHY

[48] Google Cloud. https://cloud.google.com/.
[49] Google cloud functions. https://cloud.google.com/functions.

[50] Introducing general parallel file system, March 2021. https://www.ibm.com/
docs/en/ gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system.

[51] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to meaningless:
MTTDL, Markov models, and storage system reliability. In HotStorage
"10: Proceedings of the 2nd USENIX Workshop on Hot Topics in Storage,
2010.

[52] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote,
Andrew A. Chien, and Haryadi S. Gunawi. The tail at store: A revela-
tion from millions of hours of disk and SSD deployments. In /4th USENIX
Conference on File and Storage Technologies (FAST 16), pages 263-276,
Santa Clara, CA, February 2016. USENIX Association.

[53] Red Hat. A hybrid and multicloud strategy for system administrator. Tech-
nical Report #F21608_0220, Red Hat, 2020.

[54] IBM Cloud. https://www.ibm.com/cloud.
[55] Ibm cloud functions. https://cloud.ibm.com/functions.
[56] Containerization. https://www.ibm.com/cloud/learn/containerization.

[57] What is faas (function-as-a-service, July 2019. https://www.ibm.com/cloud/
learn/faas.

[58] Object vs. file vs. block storage: What’s the difference?, October 2021.
https://www.ibm.com/ cloud/blog/ object-vs-file- vs-block-storage.

[59] Designing azure functions for identical input, June 2022. https:/learn.
microsoft.com/en-us/azure/ azure-functions/functions-idempotent.

[60] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. Occupy the cloud: Distributed computing for the 99%. In Pro-
ceedings of the 2017 Symposium on Cloud Computing, SoCC *17, pages
445—A451. Association for Computing Machinery, 2017.

79

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]
[71]
[72]

Nikolai Joukov, Ashivay Traeger, Rakesh Iyer, Charles P. Wright, and Erez
Zadok. Operating system profiling via latency analysis. In OSDI 2006
[106], pages 89—-102.

Drivers - kubernetes csi developer documentation, March 2022. https:/
kubernetes-csi.github.io/docs/drivers.html.

Harshad Kasture and Daniel Sanchez. TailBench: A Benchmark Suite and
Evaluation Methodology for Latency-critical Applications. In Proceedings

of the 2016 IEEE International Symposium on Workload Characterization
(IISWC), 2016.

Sachin Katti, John Ousterhout, Guru Parulkar, Marcos Aguilera, and Curt
Kolovson. Scalable control plane substrate.

Kibana. https://www.elastic.co/kibana.

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pf-
efferle, and Animesh Trivedi. Understanding ephemeral storage for server-
less analytics. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 789794, Boston, MA, July 2018. USENIX Association.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for server-
less analytics. In /3th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427-444, Carlsbad, CA, October
2018. USENIX Association.

Knative is an open-source enterprise-level solution to build serverless and
event driven applications. https://knative.dev/docs/.

Stefan Kolb. On the Portability of Applications in Platform as a Service,
volume 34. University of Bamberg Press, 2019.

Kubeflow, 2023. https://www.kubeflow.org/.
Kubernetes. https://kubernetes.io/.

Dynamic Provisioning and Storage Classes in Kubernetes. https://bit.ly/
2Uh3Qbw.

80

BIBLIOGRAPHY

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

Ephemeral volumes. https://kubernetes.io/ docs/ concepts/ storage/
ephemeral-volumes/.

Improve kubectl cp, so it doesn’t require the tar binary in the container
#58512. https://github.com/kubernetes/kubernetes/issues/58512.

kubectl cp to work on stopped/completed pods #454. https://github.com/
kubernetes/kubectl/issues/454.

Labels and selectors, August 2022. https://kubernetes.io/docs/concepts/
overview/working-with-objects/labels/.

Kubernetes Object Management. https://kubernetes.io/ docs/concepts/
overview/working-with-objects/object-management/.

Operator pattern. https://kubernetes.io/docs/concepts/extend-kubernetes/
operator/.

Kubernetes scheduler, December 2022. https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

Volume Snapshot & Restore - Kubernetes CSI Developer Documentation.
https: //kubernetes-csi.github.io/docs/ snapshot-restore-feature. html .

Kubernetes Storage. https://kubernetes.io/docs/concepts/storage/.

Tools for monitoring resources. https://kubernetes.io/docs/tasks/
debug-application-cluster/resource-usage-monitoring/ .

Error handling and automatic retries in aws lambda. https://docs.aws.
amazon.com/lambda/latest/dg/invocation-retries.html .

Building large clusters. https://kubernetes.io/ docs/ setup/ best-practices/
cluster-large/.

Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah
Lam. MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. In Bioinformatics,
2015.

Johanan Liebermann. Golang, June 2017. https://codeburst.io/
why-golang-is-great-for-portable-apps-94cf1236f481 .

81

BIBLIOGRAPHY

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

Gilad David Maayan. Storage options for serverless on aws, June 2020.
https://hackernoon.com/ storage-options-for-serverless-on-aws-fo3x3wsv.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. SONIC: Application-aware data passing
for chained serverless applications. In 2027 USENIX Annual Technical
Conference (USENIX ATC 21), pages 285-301. USENIX Association, July
2021.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety,
Somali Chaterji, and Saurabh Bagchi. ORION and the three rights: Sizing,
bundling, and prewarming for serverless DAGs. In /6th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 22), pages
303-320, Carlsbad, CA, July 2022. USENIX Association.

Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil
Figiela. Serverless execution of scientific workflows: Experiments with

hyperflow, aws lambda and google cloud functions. Future Generation
Computer Systems, 110:502-514, 2020.

Marcel Martin. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal, 17(1):10-12, May 2011.

Jack McElwee and Allan Krans. Public cloud benchmark: First calendar
quarter 2020. Technical report, Technology Business Research, July 2020.

Memcached, 2018. https://memcached.org/.

Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali Bhagwat, Julie
Lee, Lukas Rupprecht, Dimitris Skourtis, Yang Yang, and Erez Zadok.
CNSBench: A cloud native storage benchmark native storage. In Pro-
ceedings of the 19th USENIX Conference on File and Storage Technologies
(FAST °21), Virtual, February 2021. USENIX Association.

Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali Bhagwat, Lukas
Rupprecht, Dimitris Skourtis, and Erez Zadok. The case for benchmarking
control operations in cloud native storage. In 12th {USENIX} Workshop on
Hot Topics in Storage and File Systems (HotStorage 20), 2020.

Microsoft Azure. https://azure.microsoft.com/.

82

BIBLIOGRAPHY

[97]
[98]

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

Minio. https://min.io/.

Pulkit A. Misra, Maria F. Borge, fﬁigo Goiri, Alvin R. Lebeck, Willy
Zwaenepoel, and Ricardo Bianchini. Managing tail latency in datacenter-
scale file systems under production constraints. In Proceedings of the Four-
teenth EuroSys Conference 2019, EuroSys *19, New York, NY, USA, 2019.
Association for Computing Machinery.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for emerg-
ing Al applications. In I3th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 561-577, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

Ebs pricing and performance: A comparison with ama-
zon efs and amazon @ s3. https://cloud.netapp.com/blog/
ebs-efs-amazons3-best-cloud-storage-system.

Xingzhi Niu, Dimitar Kumanov, Ling-Hong Hung, Wes Lloyd, and Ka Yee
Yeung. Leveraging serverless computing to improve performance for se-
quence comparison. In /0th ACM International Conference on Bioinfor-
matics, Computational Biology and Health Informatics, 2019.

OpenEBS. https://openebs.io/.

OpenEBS cStor CSI driver. https://github.com/openebs/cstor-csi/blob/master/
pkg/driver/controller_utils.go#L243.

OpenEBS replication.c. https://github.com/openebs/istgt/blob/replication/src/
replication.c\#L 1958.

Open source serverless cloud platform. https://openwhisk.apache.org/.

Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2006), Seattle, WA, November 2006. ACM
SIGOPS.

Filebench pre-defined personalities, 2016. http://filebench.sourceforge.net/
wiki/index.php/Pre-defined_personalities.

83

BIBLIOGRAPHY

[108] pgbench. https://www.postgresql.org/docs/ 10/pgbench.html.

[109] Portworx Kubernetes Snapshots and Backups. https://docs.portworx.com/
portworx-install-with-kubernetes/ storage-operations/kubernetes-storage- 101/
snapshots/.

[110] PostgreSQL Global Development Team. PostgreSQL. www.postgresql.org,

2011.
[111] Evan Powell. Container Attached Storage is Cloud Na-
tive Storage (CAS). https://www.cnct.io/blog/2020/09/22/

container-attached-storage-is-cloud-native-storage-cas/.

[112] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages 193—
206, Boston, MA, February 2019. USENIX Association.

[113] Object vs file storage: When and why to use them,
May 2022. https://blog.purestorage.com/purely-informational/
object-vs-file-storage-when-and- why-to-use-them/ .

[114] File storage vs. object storage: What’s the difference and why it matters.
https://www.quobyte.com/storage-explained/file- vs-object-storage.

[115] Redis Labs. Redis. https://redis.io/, September 2019.

[116] H. Reiser. Mongo - the main benchmark script we use for comparing Reis-

erFS variations. www.namesys.com/benchmarks/mongo_readme.html, De-
cember 2002.

[117] What is faas?, January 2020. https://www.redhat.com/en/topics/
cloud-native-apps/what-is-faas.

[118] How to choose your red hat enterprise linux file system, September 2020.
https://access.redhat.com/articles/3129891 .

[119] Rook. https://rook.io/.

[120] Frank Della Rosa. Implementation of microservices architecture hastens
across industries. Technical Report #US46108319, IDC, 2020.

84

BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

[130]

[131]

[132]

s3fs-fuse: Fuse-based file system backed by amazon s3. https://github.com/
s3fs-fuse/s3fs-fuse.

Jorge Salamero Sanz. A ceph guide for kubernetes and openshift users.
https://sysdig.com/blog/ a-ceph- guide-for-kubernetes-and-openshift-users/.

Johann Schleier-Smith, Leonhard Holz, Nathan Pemberton, and Joseph M.
Hellerstein. A faas file system for serverless computing, 2020.

S. Shepler, M. Eisler, and D. Noveck. NFS version 4 minor version 1
protocol. RFC 5661, Network Working Group, January 2010.

SPEC SFES 2014.
https://www.spec.org/sts2014/.

SPEC SFS®2014. https://www.spec.org/sfs2014/.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.
Cloudburst: stateful functions-as-a-service. In Proceedings of the VLDB
Endowment, Volume 13, Issue 12, pages 2438-2452, 2020.

Golang. https://stackshare.io/golang.

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian
Schuepbach, and Bernard Metzler. Unification of temporary storage in the
NodeKernel architecture. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 767-782, Renton, WA, July 2019. USENIX As-
sociation.

Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo Seltzer. Bench-
marking File System Benchmarking: It *IS* Rocket Science. In Proceed-
ings of the 13th USENIX Conference on Hot Topics in Operating Systems
(HotOS), 2011.

Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A Flexible
Framework for File System Benchmarking. USENIX ;login:, 41(1), 2016.

AIM Technology. AIM multiuser benchmark - suite VII version 1.1. http:
//sourceforge.net/projects/aimbench, 2001.

85

BIBLIOGRAPHY

[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Global edge computing market to reach $156 billion by 2030. https://www.
techrepublic.com/article/ global-edge-computing-market/.

Johannes Thones. Microservices. IEEE Software, 32(1), 2015.

Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P Wright. A
Nine Year Study of File System and Storage Benchmarking. ACM Trans-
actions on Storage (TOS), 4(2), 2008.

Bharath Kumar Reddy Vangoor, Prafful Agarwal, Manu Mathew, Arun Ra-
machandran, Swaminathan Sivaraman, Vasily Tarasov, and Erez Zadok.

Performance and resource utilization of FUSE user-space file systems.
ACM Transactions on Storage (TOS), 15(2), May 2019.

Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To FUSE
or not to FUSE: Performance of user-space file systems. In fast2017 [40],
pages 59-72.

Marc-André Vef, Nafiseh Moti, Tim Siif}, Tommaso Tocci, Ramon Nou, Al-
berto Miranda, Toni Cortes, and André Brinkmann. Gekkofs - a temporary
distributed file system for hpc applications. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pages 319-324, 2018.

Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu.
An ephemeral burst-buffer file system for scientific applications. In Pro-

ceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC *16. IEEE Press, 2016.

Michal Wawrzoniak, Ingo Miiller, Gustavo Alonso, and Rodrigo Bruno.
Boxer: Data analytics on network-enabled serverless platforms. In Confer-
ence on Innovative Data Systems Research, 2021.

Going Cloud Native: 6 essential things you need
to know. https://www.weave.works/technologies/
going-cloud-native-6-essential-things- you-need-to-know/ .

S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. In OSDI 2006 [106], pages 307—
320.

86

BIBLIOGRAPHY

[143]

[144]

[145]

[146]

[147]

Sage Weil, Andrew Leung, Scott Brandt, and Carlos Maltzahn. RADOS: A
Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters. In

Proceedings of the 2nd International Workshop on Petascale Data Storage
(PDSW), 2007.

Joe Wigglesworth. Inside the storage/compute servers of ibm spec-
trum fusion hci, August 2022. https://hardware-fusion.blogspot.com/2022/
08/inside- storagecompute-servers-of-ibm.html .

Filebench workload model language (WML), 2016. https://github.com/
filebench/filebench/ wiki/ Workload-Model-Language.

Jie Yu, Saad Ali, and James DeFelice. Container Storage Interface (CSI)
Specification.
https:// github.com/ container-storage-interface/ spec/blob/master/spec.md.

Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jiangang
Duan. COSBench: Cloud Object Storage Benchmark. In Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering
(ICPE), 2013.

87

