The Visual Development of GCC Plug-ins with GDE

A Thesis Presented
by

Daniel Joseph Dean
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Master of Science
in
Computer Science
Stony Brook University

May 2009

Technical Report FSL-09-04

Stony Brook University

The Graduate School

Daniel Joseph Dean
We, the thesis committee for the above candidate for the
Master of Science degree, hereby recommend

acceptance of this thesis.

Prof. Erez Zadok, Thesis Advisor
Associate Professor, Computer Science

Prof. Annie Liu, Thesis Committee Chair
Professor, Computer Science

Prof. Robert Kelly
Associate Chair, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Thesis

The Visual Development of GCC Plug-ins with GDE

by

Daniel Joseph Dean

Master of Science

Computer Science

Stony Brook University

2009

Being able to directly affect code compilation with codensformations allows the seamless
addition of custom optimizations and specialized fundliip to code at compile time. Tradi-
tionally, this has only been possible by directly modifyiogmpiler source code: a very difficult
task. Using GCC plug-ins, developers can directly affediecoompilation, without actually mod-
ifying the source code of GCC. Although this makes applyirgpapleted plug-in easy, plug-in
development is transformation development nonethelessrduous task. The plug-in developer
is required to have the same thorough understanding of demipiernals, complex compiler
internal representations, and non-trivial source to makrepresentation mappings as any other
transformation developer.

Recently, simplified representations, such as CIL, have liksweloped to help developers
overcome some transformation design challenges. Althausgtul in their own respect, repre-
sentations like CIL are often language-specific by desighis Tequires the developer to make
the unfortunate choice between the relative ease of devednpon a simplified representation or
language generality on a more complex representation.

We have developed a visual approach to transformation dewednt consisting of a two com-
ponents: a plug-in to extract GCC’s intermediate repregemt and a Java-based tool to visualize
it. This thesis will clearly demonstrate how our visual teicjue significantly reduces many of the
problems facing transformation development without $mong the inherent benefits of a more
generalized intermediate representation.

To Roxana.
You believe in me
and make me want to be a better person.

Contents

=

Introduction

Background

21 Front-End e
2.2 Middle-End
2.3 Back-End e

Development Methodology 10
3.1 GCCPIUg-ins e e

3.2 Verbose-DumpPlug-in e, 11

3.3 DB-DumpPlug-in. e 12

Design 14
4.1 OverviewWindow e e

411 CFG: . . . e e e

412 CallGraph e
42 GIMPLETree VIiew o i e e e e e e e
4.3 Source WIindow e
4.4 GDBConsole

45 Extensible e 20

Intermediate Dump Analysis 23

5.1 FilesExamined e 23

5.2 DUMPSIZES e e

5.3 Potential Uses 24

Use Cases 27
6.1 Dissecting GIMPLETrees i un 27

6.2 Dissecting Complex Expressions i o

6.3 APlIUsage e e
6.4 DebuggingBadCode 30
6.5 CFGlInspection e 31
6.6 GDBConsole

7 Related Work
7.1 Graphical Development e
7.2 Compiler Visualization
7.3 Clntermediate Language e

8 Conclusions

9 Future Work
9.1 ZoOMING o e e e e e
9.2 Online Functionality e

9.3 RTL

Vi

34
34
35
36

37

38

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4

C to intermediate representation i ... 2
The GCC compilationprocess 7
An example CFGrendered by GDE. 8
Anexample callgraph 9
A figure showing the plug-in loading process. 11
Sample out from the verbose-dump GCC plug-in. 12
The GDE userinterface 14
The CFGrenderedby GDE 16
The callgraphrenderedby GDE 17
Alarge basicblock 18
An example cyclic GIMPLE access i 19
GCCecalling process o v v i i e 20
The GDB Console of GDE. 21
GDEclassstructure e 22
Database size vs.number of statements 24
Database size vs.number of statements without te$éence 25
Using GDE to get information abouta CONEXPR. 29
Using GDE to see how a particular statement is gimplified.. 29
Using GDE to help determine which macrotouse. 30
Invalid and valid versions of a duplicated control-flomgh. 32

vii

List of Tables

5.1 Showing DB-dump key statistics

viii

Acknowledgments

Justin Seyster for his comments on an early draft of the sheSean Callanan designed and
implemented the GCC plug-in system.
This work was partially made possible thanks to a Computaite®ys Research NSF award

(CNS-0509230) and an NSF CAREER award in the Next Gener&aftware program (CNS-
0133589).

Chapter 1

Introduction

Developers have long wanted greater control over compitati order to automatically add fea-
tures like application-specific custom optimizationsegrated type checking, function call log-
ging, or parallism to code at compile time [2] [32] [26] [2&Jode transformations give developers
this ability by modifying the compiler’s internal represation of compiling code. The traditional
development of code transformations,however, requireslitect modification of compiler source
files, a difficult and error prone task. As Chapter 3 expla@BlU Compiler Collection (GCC)
plug-ins are code transformations which do not require theetbper modify the compiler source
itself [6]. Although this makes the application and depleyrmof completed transformations a
relatively simple process, plug-in development is an anduask.

The GCC developer community has a great deal of expertisevaldping code transforma-
tions due to their intimate knowledge of the compiler. No@&Gdevelopers, however, must first
learn the inner workings of GCC before developing a tramafdion. One of the most daunting
tasks in understanding the inner workings of GCC is undedsitey the various intermediate rep-
resentations that GCC creates. As shown in Figure 1.1, deslimg of C code produces many
GIMPLE trees, with each GIMPLE tree containing internabimfiation. Although each GIMPLE
tree node is used by the compiler in one way or another, adyp@nsformation is only interested
in a subset of nodes. Unfortunately, for the developer tfiendeads to hours of sorting through
low-level intermediate code to find a needle in the vast mestiate-representation haystack.

This thesis presents a visualization technique for theldpweent of GCC plug-ins. Our tech-
nique involves the design and implementation of a visuatinatool, theGIMPLE Development
Environmen{GDE), along with a GCC plug-in to extract and format GCC iin& informations.
GDE provides developers with four types of visualizatiofis: the control flow graph, (2) the call
graph, (3) the GIMPLE trees, and (4) the mapping from souocmternal representation. We
demonstrate with a series of use cases, how these visuakmyations significantly reduce the
difficulty of interpreting and understanding the internagdi representation that GCC generates
while compiling a program.

The remainder of this thesis is organized as follows. Chaptgives an overview of GCC
as a whole by presenting the fundamentals of GCC. It is herinineduce the various phases of
compilation, explain why each phase exists, and finally iiesdhe intermediate representation
at each phase. Although each phase is useful in its own tlghtthesis focuses primarily on the

#include <sys/types.h>
uinto4_t facts[21];
uinte4_t fact(unsigned char x)

if(Mfacts[x]) {
if(x == 0)
facts[x]
else
facts[x]

1

x * fact(x-1);

turn facts[x];

D.3155
D.3156
D.3157
D.3158
D.3159

(int) x;
(uinto4_t) x
X + 255;

(int) D.3157;
fact (D.3158);

GIUPLE MoOTFY_STHT 0,2

GeR_Tve 0,0
e NERT o
INTEGER_TYPE 12

—

MTEGER TYPE 0,0 BL0CK 5,0 TREE.INT. ST LO-
TYPE_MATILVARTANT BLOCK_JARSMULL TREE TREE_INT_CST HIGH-0
NTEGER_TYPE 0,0 BLOCK_CHATN-HULL_TREE ECLAGDE-13.
TYPENKE BLOCK ABSTRACT_ORIGIN-NULL_TREE DECU_INTTIAL-NILL_TREE
YPE_DECL 0, BLOCK ABSTRAC DECUZSOURCE. FILE-Fest..c
TYPE_CONTEXTILLTREE TREE_ASLWRITTEN-0 DECLZSOURCE_LTHE-1
TYPE_UNSIGHED- DECL ARGUMENTS DECLABSTRAC
TYPENIN_VALLE PARIDECL 11,0 TREE ADDRESSABLE-0 DECLABSTRACT
EGERCST 0,0 TREE T WLTEXPR 1,2 OECL ABSTRACT ORIGIN-MULL TREE
TYPEMAX VAL INTEGER_TYPE 0,0 TREE_TYPE.
EGER (ST 0,0 3 TNTEGER_TYPE 12,0 BECL
TYPEPRECISION64 TOENTIFLER NODE 0,0 size mmmsr 30
TREE_TYPE-NULL_TREE L CoTEXT: INTEGER_CST 0,0

Figure 1.1: An example showing the C to intermediate repriegi®n blow-up.

D.3156 * D.3159

) FUNCTIOUDECL 0,0 TYPE MODE-13
TYPEDECL 7,0 DECL_ABSTRACT_ORIGIN-MLL TREE TYPE POINTER
TREE_TvpE sec s POTNTER_TYPE 0.0
NTEGER_TYPE 0,0 sz TIPENERT AARTAT
DECL NAE: SiNtecin st 00 INTEGE
TOENTIFIER_MODE o, DECLMODE- Ve mmvmm
ofeL DT TR DECU ARG Tvoe DGR TOE 0,0
BECLARRTRACT ORTE wu Thee INTEGER TYPE 0,0
DU SoCE FitE-ut DECLSOURCE. FILE-test..c
DECLSOURCE LIN secsomee tve-s e (Muxr L iee
DECL ABSTRAC DECL N TYPEUNSIGH:
T COTOT UL TRce DECLES: TP M AL
T sTaeD RS nm 0,0 INTEGER (5T 8,0
TYPEMIN. VA prainentt;
TNEGERGT 5.0 "iEGEn e o, INTEGER
TREE 17 oeC L e TP PRECTSTON so
TNTEGER_TYPE 0,0 pECL TREE_TYPE-NILL
TREE_INT_CST_L0R e o VARDEEL 12,0
TREE_TNT_CST_HIGH-0 DECL mmu oRiduLLThEE
TYPE MR VALUE DECLA

IVTEGER CST 3,0 oy
TREE_TVPE
INTEGER. TYPE 0,0
TREE DT ok tzsaser205
£ T CST G
TP PREISTON-G8
TREE_TYPE-MULL TREE

DECL NAMENULL
DECL_CoNTEXT

WL TREE
TONCTIOLTE 0,0

TP CONTBTHATLL T)
TP INSTGND-0 DTEGER_TI7E 0,0

oect

ok 00 2.0 "TOEATTY TR oot 0.0
IDENTIFIER LENGTH-4 e oo fRee
OONTIHLR POINTER fect TYPE NS G

DECLCONTEXT-HULL_TR

e sesTracT RidhuLs Thee

TYPEMIN. VA
INTEGER Co1 0,0
TYPEMAK_VALUE
INTEGER CST 0,0
TYPE_PRECISION

TREE_TYPEMULL_TREE

INTEGER_TYPE 0,0
TREE_INT_CST L0-64
TREE_INT_CST_HIGH-0

DECL_JioDE=1

DECLINTTIAL L TREE

DECLABSTRAT
TREE ADIRESSABLE-0
VAR DECL 12,0

FUNCTION DECL 0,0
L AgSTRACT GRIGDIuLL_TREE
DECLALTON-64

TREE_ADORESSABLE=D

GIMPLE intermediate representation. Next, in order to ustdand the our visualization technique,
we must understand the GCC plug-in system, which we discu&hapter 3. We focus on two
GCC plug-ins in particular: DB-dump and Verbose-dump. Ghiag, explains the development
of GDE in detail along with an explanation of what featuresemehosen and why.

Once GDE and GCC plug-ins are understood as a whole, we axptay GDE allows for
the effective design and debugging of compiler transfoionat in Chapter 6. Here we show
how we have used GDE in the past to design and debug our owsfdrarations, describing
each case in detail along with the specific advantages GDigdito the development process.
We then examine, in Chapter 5, the DB-dump and Verbose-durtgubof several applications,
suggesting analysis that can be done on these dumps. Wauttieer fillustrate exactly why GDE
was developed by examining some related technologies ipt€h@. We conclude in Chapter 8
by summing up the key points of this thesis and finally, disdusther expansion possibilities for
GDE in Chapter 9.

Chapter 2

Background

The GNU Compiler Collection (GCC) [14] is an open source cibenpvhich was initially re-
leased in 1987 as a C compiler under the name GNU C Compilénoidh initially a compiler
only able to compile C code, GCC is now a massive compileesalile to compile many pro-
gramming languages, such as C++, FORTRAN, Pascal, OlgeCtidava, and Ada. GCC can
also support less used languages like Pascal, Mercury, @B0L, but a custom version of GCC
must be configured and installed. GCC conforms to all ANSYIS and C++ standards provid-
ing command-line options to select which standard it shaualdere to. Lastly, GCC is able to
compile code to a wide range of well known architectures sagx86-64, PowerPC, SPARC,
and MIPS. GCC also supports several lesser known archieectuch as MCORE [9], ARC [20],
and Xtensa [41] [15]. Due to the large number of distinct @edtures and languages supported,
GCC designers have separated the GCC compilation prodesthire distinct phases, as seen in
Figure 2.1: the front-end, the middle-end, and the backj&bll We discuss these phases next.

2.1 Front-End

GCC's front-end is the language-dependent portion of ctatiph which is responsible for con-
verting a preprocessed source file into a representatigatseifor further compilation. Specif-
ically, the front-end first parses the source code, constigidype and symbol information for
compilation. This phase is responsible for operations sscthe enforcement of language-level
standards compliance, resolution of type definitions, tyfference, and construction of scopes.
The front end then produces a tree-like intermediate remtasion, which differs from language
to language, while also populating some global variablddihg auxiliary information such as
the TREE_ADDRESSABLE flag, which indicates an item can be passed to the run-timis. tiigee-
like intermediate representation is callegparse treeand is what GCC uses, in various forms,
throughout the compilation process.

Parse Trees: The core of the front-end’s representation is the parse tre@arse tree is the
first intermediate representation generated by the comfrden the output of the preprocessor.
Although similar in form, parse trees are language depended retain much of the original
source code structure. Few optimizations are applied tanikial parse tree, which leads to the

explicit expression of hierarchical scoping and loop duites at this level. Parse trees follow
hierarchical structure where a node is created for evergtion. GCC then creates children for
each function node, representing the abstract syntaxdrdbdt function. Each tree node has a set
leaf nodes calleattributesas well as a set non-leaf nodes caltgzkrands Attribute nodes may
either contain data collected at compile time which alloe #xpression of specific node details
such as type information or may be other nodes created fragr@am semantics. Operands are
tree nodes created from program semantics, for exampldghehranch of a conditional. Once
parse tree creation is complete, we enter the middle-ensgepbifile compilation.

2.2 Middle-End

The middle-end in GCC was designed to perform virtually ethiecture-independent optimiza-
tions. Before 2004, GCC was separated into two parts: the-od and back-end. Whereas this
worked in the past and is still how many other compilers ofgetaday, GCC developers were
running into problems. Following this two-phase desigrtjrozations such as loop unrolling and
constant propagation were performed on a representatigncl@se to machine code. Although
not necessarily a problem for compilers supporting a smadkst of languages or architectures,
GCC developers found these optimizations were becomintg glifficult to maintain [27]. To
simplify things, GCC developers separated optimizatioosfthe rest of the code, giving them
a separate compilation phase along with its own representain 2006, the GCC developers
integrated support for inter-procedural optimizationoithe middle-end, further extending the
capabilities of middle-end optimizations.

GIMPLE: GCC’s middle-end optimizations begin witBimplification of the initial parse-
tree representation. Gimplification is the process of cdoimg language-dependent parse trees
into a simplified three address language-independent septation called GIMPLE. GIMPLE
was named after, and is heavily influenced by, the McGill CitenpArchitecture’s language-
independent abstract syntax tree representation, caleIE [17]. Immediately after Gimplifi-
cation, GCC constructs @ntrol-flow graph(CFG) for each function consisting of a single entry
and exit point, a set of nodes, and a set of edges connectisg tiodes. Each node in the CFG,
for a particular function, corresponds to a series of stat#mto be executed in order called a
basic block The edges connecting one basic block to another track thieotdlow from a func-
tion entry point to an exit point. Loops are implicitly repanted in the CFG through conditionals
which correspond to loop edges. Figure 2.2 shows an exantplei€ graphical form.

In addition, at this point GCC constructgall graphwhich shows the function call structure.
Each call graph node represents a function in the source dfatse currently compiling code
and has a list of callers and callees with a series of edgesecting the nodes. Together, these
nodes and edges form a graph representing program funcaibrsemantics. An example call
graph is shown in Figure 2.3. These higher-level structatiesv for rapid control-flow and data-
flow analyses. The simple nature of the individual instiuesi and the deterministic execution
order inside a basic block also serve to make program asa@asier. Once all architecture-
independent optimizations, such as loop unrolling, havenlygerformed, we enter the back-end
phase of compilation.

2.3 Back-End

The back-end is primarily responsible for generating thalfassembly code for the program.
In order to do this, GCC must allocate registers, performl fitack-frame layout, and schedule
instructions for the CPU’s pipeline. At this point, most iopizations have already been applied
to the code and as a result, the only optimizations the badkeempilation phase need apply
are architecture-specific optimizations, such as ingtracpipelining. The back-end phase of
compilation has been extensively developed over the y@ara.result, modifications to this layer
are now almost exclusively done for the purpose of portingpdmprove GCC'’s exploitation of
CPU resources.

RTL: GCC's back-end creates and manipulates an intermediateseagation calledRegister
Transfer Leve(RTL), which closely resembles Lisp expressiofist ri ct 1 ow.part (subreg: m
(reg:n r) 0)) is an example RTL expression taken from the GCC internalsimienta-
tion [15]. Although GDE does not currently support RTL vimation, we discuss it briefly

as future work may incorporate RTL visualization into GDH.LRencodes both the individual
instructions and also the storage classes (memory or eegfst the data the instructions operate
on. Once all low-level optimization passes on RTL are comeplis structure is isomorphic to that
of assembly, and generating assembly code from it is avelgtsimple process.

FRONT-END

C++ Java
Trees Trees Trees

C++to Java to Cto
GENERIC GENERIC GENERIC
GENERIC

A 4

Gimplifier

GIMPLE

MIDDLE-END
GIMPLE

A 4

IPA

ee
SA
Optlmlzer

0

s
L

BACK-END | gyt
A 4

RTL
Optimizer
A 4
Code
Generator
A

4

Object
Code

Figure 2.1: The GCC compilation process adapted from Redvéagiazine. [37]

Figure 2.2: An example CFG rendered by GDE.

Function: mai
agel

= Function: calld Function: calld
Funct;'.on: calll ID: 7
ID: — —

Function: ezit] . .
. Function: printf]
ID: 9
ID: 8

Figure 2.3: A subsection of a call graph rendered by GDE. Hamle represents a particular
function while edges represent function calls.

Chapter 3

Development Methodology

As mentioned in Chapter 1, code transformations allow agesks to optimize and add function-
ality to code at compile time. Traditional development ofledransformations, however, is a
difficult process with several development obstacles toarae.

The developer first needs to make sure the code transformatialifies the intermediate repre-
sentation in such a way that file compilation is still possibrhat is to say, the developer cannot
break the compiler. Second, modifying the compiler sourmuires a full compiler rebuild, a
process taking more than thirty minutes for GCC on an AMD6444R0 dual-core [38]. Third,
distribution of a completed transformation is very difficcequiring the user to manually modify
compiler source files to apply the transformation. When @ppgl more than one transformation,
this is difficult at best due to the complexity of GCC sourcedil Fourth, transformation devel-
opment requires the careful modification of a compilersintal representation. This is highly
non-trivial because that the internal representation lmesomore and more low-level through-
out compilation. Understanding the representation besdmaeder as we get closer to assembly.
Lastly, debugging a transformation is no easy task. Altfoaduggy high level application of-
ten has useful error messages, a buggy transformationlyi$ael cryptic or short error messages
which are of little help to an inexperienced transformatitaveloper. The remainder of this chap-
ter first describes GCC Plug-ins in Section 3.1, then dessritwo plug-ins we have developed,
DB-dump and Verbose-dump, in Sections 3.2 and Section 8&diagly.

3.1 GCC Plug-ins

GCC plug-ins, which are scheduled to be included in maink@C version 4.5, give developers
the ability to develop code transformations with modifioati to the source base of GCC itself.
Currently, developers need only to recompile GOeto support the plug-in system and once
plug-ins have been incorporated into mainstream GCC, nceauodification will be necessary.
GCC plug-ins are developed as separate files and then campite shared libraries which are
loaded into GCC at run-time. This is done by the addition eiction calls, which load arbitrary
lists of plug-ins, at locations corresponding to indivilphases of compilation. Figure 3.1 shows
this process in more detalil.

10

Plug-ins to load

Source y Binary
e GCC —

Figure 3.1: A figure showing the plug-in loading process.

A user simply includes the fladtree-plugin={Path to compiled plug-in.so fijgor each plug-
in to be applied. The GCC plug-in system not only solves tiodlem of rebuilding GCC multiple
times, but it also solves the transformation deploymenblem; if a plug-in causes compilation
to fail, simple remove it from the list.

While the plug-in system solves some of the problems astsatigith transformation develop-
ment, GCC plug-ins do not make it any easier to understandh@lex intermediate representation
or to debug a broken transformation. As we will show, viszation of the intermediate represen-
tation ameliorates these problems. A compiler's interratedirepresentation is internal to the
compiler, however, and in order to visualize the intermedr@presentation, we first must extract
it.

3.2 Verbose-Dump Plug-in

Verbose-dump was the first GCC plug-in developed to extradtfarmat GCC’s intermediate rep-
resentation. Initially, verbose-dump was able to extrady the GIMPLE intermediate represen-
tation in a raw output form to stdout, which then needed todolirected to a file for later analysis.
Verbose-dump now formats and extracts GIMPLE, front-emd@#ees, call-graphs, control-flow
graphs either to stdout or to a file specified as an argumerta@lug-in. The verbose-dump
plug-in works by parsing a GCC definition file callége.def which contains a description of
each element of GCC’s GIMPLE intermediate representatidsing tree.def along with a cus-
tom definition file, we have designeparameter.def verbose-dump is able to recursively iterate
through each element of the GIMPLE tree, formatting andtiprgnnode information at each step
along the way. Figure 3.2 shows a small sample of the outfuduymed by verbose-dump.

Verbose-dump was initially used as a stand-alone tool, eloogput was simply viewed in a
text editor. It soon became apparent, however, that the ah@fuGIMPLE output was becoming
too large to be looked at in its raw form, and a visualizatigatem was needed. Verbose-dump
was then looked at as part of a visualization system instéadstand-alone tool and the output
was formatted in order to be easily parsed by a visualizéhalgh this is useful for simple source
files, over time it became apparent that this method was maate for larger and more complex
source files, as we show in Chapter 5.

11

[stmt] File test.c, line 426
final elapsed 30 = D.4597 29 / 1.0e+6;
GIMPLE_MODIFY_ STMT 0,2,0x2aeB8ale00030
SSA_NAME 8,0,0x2ae8alf23420
TREE_ASM_WRITTEN=0
SSA_NAME_VAR:
VAR_DECL 14,0,0x2ae8aldfa840
TREE_ASM WRITTEN=0
TREE_TYPE:

REAL_TYPE 10,0,0x2ae8al7cb600
TYPE_SIZE=(capped)
TYPE_MODE=DFmode
TYPE_POINTER TO=(capped)
TYPE_NEXT_VARIANT=(capped)
TYPE_MAIN_VARIANT=(capped)
TYPE_NAME:

TYPE_DECL 7,0,0x2ae8al7c95b0
TREE TYPE:

(loop) 0,0
DECL_NAME:

IDENTIFIER NODE 2,0,0x2aeBal7b9ccO
IDENTIFIER LENGTH=6
IDENTIFIER_POINTER=double

DECL_CONTEXT=(capped) &
1658066, 1 75%

Figure 3.2: Sample out from the verbose-dump GCC plug-in.

tree.def and parameter.def: Tree.defis a GCC source file which contains the definitioralof
tree codes used by GCC along with an explanation of whatrimdtion each tree code contains.
This file is used extensively by GCC throughout the compifatind is also useful for transfor-
mation developers as a reference when accessing tree HOHETREECODE (ERROR.MARK,
"error_mark", tcc_exceptional, 0) isanexample tree.def line definining a tree code.
Parameter.def is a custom definition file which we createtldaais to determine which attributes
are associated with each tree code defined in tree.def, kmgéhat is unclear from simply look-
ing at tree.defDEFTREEPARAVETER(t ype_nane, TREE, TYPE.NAME, ALL TYPES) is

an example taken from parameter.def.

3.3 DB-Dump Plug-in

DB-dump was the second GCC plug-in developed to capture &@CfErmediate representa-
tion. Its design and operation are similar to verbose-dumiflhy one major difference: we used a
database to store the output as opposed to a file. We chogrdR3tL as the database system in
order to keep with the open-source nature of GCC. We desitiredchema to allow the efficient
storage of GCC’s complex intermediate representationgaiith useful source file information.
We create tables for GCC internal items such as basic blde&sall-graph, and the control-flow
graph as well as for source file information such as functitmsactual source code of the file, and
source-code statements. We also create tables for eacbft@®PLE tree node found in tree.def
in order to keep table sizes manageable in size. Insertiontlie database is similar to verbose-
dump: we visit each tree node in a recursive manner whiletingethe node information into the
appropriate tables. A second major difference of db-duntp vaspect to verbose-dump is data
replication. GIMPLE trees contain a lot of redundant typimation. Whereas verbose-dump
simply outputs all information it comes across, db-dumpyankerts new information into the
database. When db-dump comes across data it has alreadyitseeates pointer to the existing

12

entry instead of creating a new entry.

All pointers db-dump inserts into the database are hashesatweated through a two stage
process. First we create 40-byte hash using a SHA-1 [10]ilmg$tanction with combination the
file name, current function name, and the address of the mun@de being processed as input.
Then, we attach a four-byte numeric description of the taideare going to insert into to the
end of the hash and insert the 44-byte value into the datab&sefour-byte numeric description
allows developers to quickly determine which table to Se@igen a specific node while the hash
value allows for quick lookups within that table. As Chafieshows, our database system is able
to handle complex source files efficiently.

13

Chapter 4

Design

BBOBGIOGED

GIMPLE Tree View
Window

Figure 4.1: The GDE user interface

We have developed the Gimple Development Environment (Gidi)g Java to visualize
GCC'’s GIMPLE intermediate representation. We also haveigeal a graphical interface to the
Gnu Debugger (GDB) which simplifies run-time plug-in debimgg GDE uses the Swing [12]
library to render components, the AWT [29] library to drawcdeations (e.g., lines connecting the
elements of the CFG), the PostgreSQL JDBC driver [35] foaldase queries, and GDB for de-

14

bugging. We chose Java as the development language foogs-ptatform compatibility, which
allows GDE to be used on most of GCC'’s host platforms. Thiswalus to concentrate on the
development of the tool itself as opposed to platform suipguad library dependencies. As shown
in Figure 4.1, GDE has three main areas: the overview windosvGIMPLE tree view window,
and the source window, which we discuss in the following éhsections. We then discuss the
graphical interface to GDB we have created in Section 4.falli, we discuss how GDE was
designed to be further extended as needed in Section 4.5.

4.1 Overview Window

The overview window displays one of two main elements: aalisepresentation of the CFG of
each function in the source file, or a visual representatiotihe call graph of the file. The call
graph and each individual function are accessible via naaiesl

41.1 CFG:

As shown in Figure 4.2, the CFG is rendered as colored relgamgnnected by arrows with flags
associated with each edge. All elements of the CFG are mewata able to be minimized while

the lines connecting each element of the CFG can be hiddes allbws the user to rearrange the
graph at will to get a better view of a particular basic blo€knterest or to rearrange a loop into a
form that corresponds better to high-level semantics. @lsis allow the user to hide uninteresting
graph elements in order to better view an area of interesth Ealored rectangle corresponds to
a specific basic block with a series of GIMPLE expressionset@xecuted in sequential order.
Mousing over one of the flags associated with each edge cthesélag to expand, displaying the

GCC edge flags associated with that particular edge.

Edges and edge flags: As discussed in Chapter 2, basic blocks in the CFG are cosahdut
directed edges which specify the data flow through the grafibst edges, with the exception of
the edge from the last basic block to the exit block, have afsste or more flags associated with
it. These flags specify when a particular node is taken. Famgie, theEDGE_FALL THROUGH
flag specifies that this edge is taken at all times, whereaEEBE_TRUE_VALUE flag specifies
the edge is only taken when the conditional in the previowschalock evaluates to true.

Clicking a CFG node here has several effects. First, GDErsdloe selected block green,
while coloring its predecessors yellow, and its succesgmyg. GDE also highlights the paths to
each successor in red. This allows the user to quickly déternvhich blocks could follow the
execution of this block and also which blocks could have gded it's execution, which allows for
easy flow analysis. Second, GDE displays a visual tree reptatson of the selected basic block’s
GIMPLE nodes in the GIMPLE tree view area. Finally, GDE hights the lines of source code
corresponding to the selected basic block, its successodsits predecessors in the source area.

As Figure 4.2 shows, the CFG is rendered in a tiered sequientianer. First, GDE renders
the entry block in its own row followed by its successors o $kecond row. Next, GDE renders

15

Figure 4.2: The CFG rendered by GDE

successors of the basic blocks in each row in the following provided that they have not already
been rendered. If rendering would take place off screengtia say a row is too wide, we render
any elements unable to fit on screen in the next row to be reddey GDE, creating a new row

below the current row if necessary. This method allows ttex ts easily follow the basic block

execution order from function beginning to end, while alsquiring minimal scroll bar use.

4.1.2 Call Graph

As shown in Figure 4.3, the call graph is comprised of colattangles connected by arrows.
Each colored rectangle here represents a node in the cg@hdoa a particular file and each
edge represents a function call from one node to anothere®imothe call graph simply contain a
unique identifier assigned to that node along with the nantieecfunction that the node represents.
All call graph elements are moveable, able to be minimized,the edges connecting each node
can be hidden. We have implemented this functionality ferdhme reasons discussed in the CFG
segment above. Clicking a node of the call graph causes titiat to be highlighted in green, any
node called by that node to be highlighted in gray, and angsadlling the selected node to be
highlighted in yellow. Paths to each node called by the setbnode are also highlighted in red
by GDE, similar to the highlighting scheme of the CFG deslibbove.

The layout of the call graph had two generations. Initialhe we laid the call graph out in a
circular manner around the node with the most function caereas this was useful for small

16

GDE 2,0

Figure 4.3: The call graph rendered by GDE

call graphs, it became apparent that this layout schemeneaeguate for larger, more complex
graphs. Currently, the call graph is laid out in a tiered nean®DE draws function entry points,
functions with no predecessors, first. Next, GDE draws theeessors of each function entry
point, followed by the successors of those successorswatitave drawn all nodes. In the case
that we have no function entry points, we select the funciwiich has the most outgoing edges
as our initial node, and proceed as usual. This layout, akitignode and node-path highlighting,
allows users to quickly determine program flow.

4.2 GIMPLE Tree View

When a control-flow graph is being displayed in the overvieimdew, clicking a basic block
displays its corresponding GIMPLE representation in th#1BILE tree view. The root node of
each tree is a statement from the corresponding basic béoadered in a C-like syntax. The tree
generated is a visual representation of the attributes padchads for the selected GIMPLE node,
as previously discussed in Chapter 2. Non-leaf nodes aredRGHB/Attributes or operands that have
at least one pointer to another node, whereas leaf nodessegrnodes that have no pointers to
other nodes. The tree view is useful as it visualizes theromgef operands in each node and
also lets the developer know what attributes apply to aq@aer node. This is invaluable when
using macros such asREE_OPERAND, which programmatically dissect tree nodes, inside GCC
transformations.

Clicking a node in the GIMPLE tree view expands that nhodewsh its children. Each non-
leaf child node can then be expanded, in the same mannédrthentlesired information is found.
Initially, clicking a basic block caused the GIMPLE treesb created for all statements in the
basic block. This meant recursively visiting each node icheiaee in the selected basic block,
creating the visual objects at each step along the way. Adthahis worked for most basic blocks,

17

as Figure 4.4 shows, larger basic blocks were simply toceléogbe rendered in their entirety.
Furthermore, due to the size of the GIMPLE, medium to largedibasic blocks were taking a
noticeable amount of time to render.

Our first attempt to deal with this issue, was to limit the ¢hepiddes could be expanded to. This
worked well as an initial solution, as most nodes of inteegstnear the top of the GIMPLE tree,
but prevented the rendering of nodes deep within the treetwiniay be of interest to a particular

[] GIMPLE Tree View

[Basic Block: 400
o [<L135;
o= [saved_stack.37 = __builtin_stack_save (;

o 3 __builtin_puts (&"\nMemory Leak Detection"[0]);

o [duration. 12 = duration;

o [printf (&' Test will be run for %d seconds.\n"[0], duration. 12;
o 5 access_info = optara;

o [offset = O

o= [int_offsets = 0;

o= 9 D.3824 = strlen (access_info);

o [loopValue = (int) D.2824;

o [loopValue. 13 = loopValug;

o [D.3826 = {long int) loopValue, 13;

o= D.3827 = D.3826 + -1;

o= [[.3828 = (long unsigned int) D.3827;

o= 9 D.2829 = (long unsigned int) loopValue. 13;

o 5 D.3830 = (hit_size_type) D.3829;

¢] D.3831 = D.3830" 32;

o= 9 D.3832 = (long unsigned int) loopValue. 13;
%[D.3833 = D.3832 " 4;

o [D.3834 = {long unsigned int) loopValue, 13;

o [D.3835 = (bit_size_type) 0.3834;

o [D.3836 = D.3835 * 32;

o= [D.3837 = flong unsigned int) loopValue, 13;
o3 D.3838'= D.3837* 4;

o] D.2840 = __builtin_alloca (D.3838);

o=] number_buffers. 14 = (float[0:D.2828] %) D.2840;
o [loopValue 15 = loopValue;

o [D.3842 = {long int) loopValue. 15;

- []D.3843 = D.3842 + -1;

o= [D.3844 = (long unsigned int) D.3843;

o] D.3845 = (long unsigned int) lnopValue. 15;

o [D.3846 = (bit_size_type) D.3845;

o [D.3847 = D.3846 " 32;

o] D.3848 = (long unsigned int) loopValue. 15;
-] D.3849 = D.3848 " 4;

o= [D.3850 = (long unsigned int) loopValue. 15;

o [D.2851 = (bit_size_type) D.2850;

o= D.3852 = D.3851 " 32;

o= AN 2853 = flonn unsinned inth Innnvalue 15

[€]

Figure 4.4: An example basic block with more statements tisaal shown in the GIMPLE Tree
view of GDE.

18

& Ctree_type
¢ [FUNCTION_TYFPE

o= 3 Hash
[y type_unsigned = False
[y type_next_variant = MULL

7 1 type_main_variant

D Loop ta Made: FUNCTIOMN_TYPE Hash; 23b2bl63ceata348c5fo001cs7ecsdd1lb0996f320013

[y type_context = MULL
D type_name = MULL

o [type_pointer_to
D type_align_ol = False

o=] type_size
[y type_mode = Qimode

o= [decl_name
m . it i =

Figure 4.5: An example cyclic GIMPLE access, the cycle iedketd and reported by GDE.

user. To address this, we implemented dynamic GIMPLE trestoaction. Now, clicking a basic
block causes only the queries necessary to create the telnledes to be executed. We then used
the results of those queries to create visual represensatibeach top-level node. We create visual
representations of child node in the same way as the usendgmeach parent node. This allowed
us to remove the tree depth limit but forced us to deal withttaeroproblem that had previously
been handled by the depth limit. Although GIMPLE is best alurepresented as a tree structure,
GIMPLE nodes can occasionally form cycles when a child naaletp back to a parent node, as
shown in Figure 4.5.

Although these cycles do not occur often in each particulMMLE tree, they exist in every
GIMPLE tree. Without the depth limit, a user could potejignter one of these loops and expand
the tree until GDE runs out of memory. We have addressed s$bigei by adding loop detection
as we create the GIMPLE tree; instead of blindly displayireg inodes, we instead display nodes
only if they have not previously been rendered. When a nogeetgiously displayed, we inform
the user that the node is a back reference using a placehmderwhich contains the hash of the

back reference.

4.3 Source Window

The original source file, corresponding to the intermedraf@esentation currently being exam-
ined, is displayed in the source window with line numbersgoick reference. Although the user
cannot explicitly interact with this area, clicking a bablock in the CFG of a function highlights

the line(s) of code corresponding to that basic block in igréee line(s) corresponding to its suc-
cessors in gray, and the line(s) corresponding to its pessars in yellow. This allows the user
to easily identify which lines of code in the source were cdetpto produce a particular basic
block, explicitly displaying the source-to-intermediatpresentation mapping.

19

4.4 GDB Console

GDE has the ability to debug a plug-in as it runs using our GBBsole. As a running plug-in
is loaded into GCC, debugging a plug-in requires the useetmg GCC itself. Although most
binaries can be debugged by attaching a debugger to thengubmary, debugging GCC is not as
straightforward. The commargtcis not the actual GCC compiler, but instead the compileradriv
which determines the type of file being compiled, sets sé@gaments normally transparent to
the user, and finally calls the appropriate compiler to cdepie source file. We show this process
in Figure 4.6. To debug GCC, the user must attach the debugdbke correct binary while also
setting the same arguments that the GCC script would set. ale automated this process by
simply opening the GDB console from within GDE.

cc1

C Source Object File

Source File
—_—> GCC

C++ Source Performs Linking

Binary

Java, etc

Collect2

JCl.etc

Figure 4.6: The GCC calling process. Actual file compilataom linking are done by files called
by thegcccompiler driver.

As Figure 4.7 shows, the GDB console has five areas of inteféytthe CFG area, (2) the
GIMPLE tree window, (3) the backtrace window, (4) the GDBpuitarea, and (5) the Input
area. The GDB output area displays all output from GDB asivedealong with occasional GDE
output used mainly for GDE debugging purposes. The inpu#t rgvhere the user interacts with
the underlying GDB debugger. Users are given a dropdown httk@DE commands, a text input
area, and several buttons corresponding to common commands

When a user selects the dump function option while GDB haspsih inside a function, GDE
creates a visual representation of that function’s CFG @G view. Clicking CFG nodes in
the CFG view has the same result as clicking a CFG node in theview window of GDE as
described above: the GIMPLE tree is displayed in the GIMPREE window of the GDB console.
The generated GIMPLE tree, however, is a snapshot of themustate of the intermediate rep-
resentation. This allows developers to see any changes$dpgien to the GIMPLE tree as they
happen, giving insight into where a plug-in may be operatimaprrectly. Lastly, selecting the
backtrace option displays the results of running backtcaremand in the backtrace window in a
more readable form.

45 Extensible

We designed GDE was to be extended as new components needdit adich is done with
two interfaces. First, we designed the GUI interface tovallbe easy addition of new rendering

20

GDB Console

=
b 3 return;
¢ [RETURN_EXPR:
o [Hash
[argo = NULL
¢ tree_type
¢] VOID_TYPE
& [[J Hash
[type_unsigned = False
o [type_next_variant
o= [type_main_variant
[type_context = NULL
o [type_name
= [type_pointer_to
[type_align_ok = False
Dty—pe_s\ze = MNULL
D type_made = VOIDmod

Address ¢ 41
Entry Block

Rddress : 417
Exit Block

A
@ [Function Call ¢ transform_gimple
¢ [Arguments %
[arge- 1Backtrace Area
D argv=0xad33270
D Local Variables
&~ [Function Call 1 : plugins_transform_git
o~ [Function Call 2 : execute_one_pass
o= [Function Call 3 : execute_pass_list
o= [Function Call 4 : tree_rest_of_compilar
¢ [Function Call 5 c_expand_body
¢ [Arguments
D fndecl=0x1
D Local Variables
D Return Address : 0x0000000000
o~ [Function Call 6 : caraph_expand_func:
o= [Function Call 7 : cgraph_optimize

o~ [Funhction Call 8 c_write_global_daclar
o= [Function Call @ : toplev_main
o= [Function Call 10 __libc_start_main

GIMPLE Tree Window

=] m T

b}
"print get_fun_name(cfun->decli\n"
"$1 = Oxad900b3 \'test_printy"

i GDB Output Area

o m I v

H Next H Step H Continue

[+]]

Run Command Input Area | ‘ Go | ‘ Interrupt

Figure 4.7: The GDB Console of GDE.

areas. It accomplishes this by returning Java objects, aaclPanels, which are then drawn by
GDE. Secondly, we designed the GUIElement interface tavallee easy rendering of graphical
components by GDE through the use preRender, Render, atidgraier methods. The methods
in these interfaces give developers a way to specify exactlyand where a graphical component
should be drawn by GDE. Using these interfaces, GDE can userigdunctions to perform its
visualization. Adding new components to GDE still requisesirce code modification however,
these interfaces minimize the amount of modificaions needed

Class Interaction: GDE separates rendering data and rendering methods thibeghse of
abstract classes in order to allow the easy addition of nea staurces or rendering techniques
as needed. When extending GDE, the developer first must &teces abstract superclass of a
rendering element. This class contains the methods neededder the element. The developer
then must create a subclass of that class responsible fanirdgfinethods to populate the data
structures needed by the rendering methods. Figure 4.8sshow this class structure uses a
series oDB classes to render from a PostgreSQL database.

21

GDE

S

Parser GDEGui
Function Call Graph GDBConsole
BasicBlock DBFunction DBCallGraph GDBThread
DBBasicBlock

Figure 4.8: The main classes of GDE with several classesué&d! for readability. Abstract
classes for rendering are represented with dotted lines.

22

Chapter 5

Intermediate Dump Analysis

This Chapter discusses the results of several intermediatgs using the db-dump GCC plug-in
we described in Chapter 3. As we show, being able to dump teeniediate representation of
compiling source code using our db-dump plug-in allows tatis analysis to be performed on
that data at a later time. To begin, we discuss the files exadnincluding a brief explanation of
each file. We then discuss our dump statistics and conclutteandiscussion of some types of
analysis possible on our db-dump output.

5.1 Files Examined

The first file we dumped was a test file created mainly for theeldgpment and debugging of
plug-ins,t est . c. r ef er ence. This file is a simple file, written in C, which simply computes
the factorial of a number in a tabular manner. Next, we dumgpescond internal file named
t est. c. benchmar k, which is based off a file used to test for bounds violatiohdogs this by
accessing in bounds and out of bounds areas in the stack,drehplobal areas at a user specified
rate. This file has been modified slightly to increase the all/size of the file by the addition
of function copies, which was done to test the visualizattapabilities of GDE with respect to
a larger single input file. We then dumped two real world prtge the Lighthttpd [21] and the
linux kernal [42]. Lighthttpd is a light weight web server itten in C. The first linux kernel
configuration we have dumped was created using the rmbk&noconf i g option, which turns
off as many features as possible. We then turned on only tk&filxsystem and lock debugging
utilities for our next configuration.

5.2 Dump Sizes

Table 5.1 shows our dump sizes. We give numbers for: (1) teeathsize of the database, (2) the
number of functions compiled and dumped, (3) the numberrektiaddress statements compiled
and dumped, (4) the number of basic blocks dumped, and (SptheEnumber of source lines
(including non compiled items such as comments).

Figure 5.1 shows the relation of size vs. number of statesnéuinped for all files. This is
a good metric of how our database system scales with proet $\s the lines of C code in

23

Name Size(kB) Number Functions Number Statements BasickBlo Source Lines

kernel-ext3-lock 817000 15826 286512 75660 271120
kernel-allnoconfig 678000 13435 241778 65860 241014
lighttpd 87000 2310 45516 11037 36321
test.c.benchmark 2688 46 2097 414 1139
test.c.reference 5 43 16 39

Table 5.1: Showing DB-dump key statistics

a project increases, the number of statements corresmpndithose lines of C code generally
increases as well. As each statement is the starting pomiGIMPLE tree, the more statements
you have, the more GIMPLE there will be corresponding to ¢hsttements. The large ratio
of size vs.statements forest . c. r ef er ence shown in Figure 5.1 is due to the small size of
t est. c. ref er enceitself. When looking at small files, the database declanati@mone cause
the size vs.statements ratio to be very large. Howeveratilshbe noted that in this case, even
though the ratio itself is large, the actual size of the dasalis only 664kB. Figure 5.2 is a better
metric of the scalability of our system. As this figure shows database size scales linearly with
the number of statements.

5.3 Potential Uses

In this section we give potential analysis that can be dont@mtermediate dump of a program.
We start with a discussion of complex networks, what theyamd why complex network analysis

18
16
14
12

10

W Size / Statements

2 [] -
0 .

test.c.reference test.c.benchmark lighttpd Kernel-allnoconfig

Figure 5.1 Database size vs.number of statements for emtioydar file. Although the ratio is
high fort est . c. r ef er ence, the overall size is 664kB.

24

is useful. We then discuss how analysis can be done on a sefsyatem to determine if usage
conventions are being followed properly. Finally, we dssumodel checking and how tools could
be used with db-dump to verify system properties.

Complex networks: Complex networks are defined as network exhibiting nonatritopolog-
ical properties. The process of determining if a networkeemplex network involves examining
the structure of the network to determine if the network Heesé properties. Many real-world
systems have been shown to exhibit complex network pregsesiich as predator-prey interac-
tions between species in a freshwater lake, neural netwarks networks of citations between
papers [31]. Developers can perform complex network amakys the control flow graphs and
call graphs extracted by db-dump. Once a network can be stmb@aa complex network, certain
assumptions can be made which may have a large impact onystémssecurity and recoverabil-
ity [24]. Developers can do this analysis off-line with tlesults then used to target specific areas
of a large software system for improvement.

Code Convention: In large software systems, item usage is often done throagbenition and

is not strictly enforced. For example, when accessing restaucts within the linux kernel, certain
locksshouldbe taken. This locking policy is not strictly enforced inatbas and as a result, some
structs are accessed without the appropriate lock beirnthist. While this usually has no affect

900 T T T T T

800 |- (SN
700 — @/” _

600 e .

500]

400 |- 4

Database Size (MB)

300 i

200 e =

100 //O -
0@/// | | | | |
0

50 100 150 200 250 300
Number of Statements (Thousands)

Figure 5.2: Database size vs.number of statements for eadht file excluding
test. c.ref erence. The line present is a linear regression line.

25

on the overall operation of the system, occasionally it @adlto deadlocks. Our schema was
designed in such a way that it is possible to write relatistgple queries to target specific node
types. This allows developers to perform off-line analydis system to look for things like the
usage patterns specified above to determine if access damn&are being followed correctly.

Model Checking: Symbolic model checking allows the verification of many nowial prop-
erties of large software systems. Tools exist, such as Nu2NBJ, to allow developers to verify
guestions about system security without having to learmmiément complex model checking
methods. The information stored in our database represeatmiternals of an entire code base.
Developers can format this data appropriately and passntddel checking tools to verify the
correctness of a system.

26

Chapter 6

Use Cases

In this chapter we give example uses for GDE using the db-dplong-in to extract GCC's inter-
mediate representation. We discuss several plug-ins thdtave developed in order to illustrate
the benefits GDE brings to plug-in development. The threg-pis we use as examples in this
chapter are a call-tracing plug-in, the verbose-dump [rugreviously discussed in Chapter 3,
and a bounds-checking plug-in. Our first two use cases disesses faced while developing a
call-tracing plug-in. We then discuss an issue faced whifgaading the verbose-dump plug-in
discussed in Chapter 3. Next, we discuss issues faced vevildaping a bounds-checking plug-in
and we finally conclude by discussing a potential use caseulioGDB console.

6.1 Dissecting GIMPLE Trees

Our call-trace plug-in is written in C and adds tracing to aggam without modifying the pro-

gram source code. It does this by finding specific GIMPLE nadesare interested in logging,
then extracting the information we want to log from those exdAs we show, GDE helped the
development of this plug-in.

When writing the call-trace plug-in, to target specific GIMPnodes it was necessary to find
and replicate intermediate representation patterns sjporaling to those nodes. For example, we
wanted to add functionality to the call-trace plug-in toatgtand log conditional statements. We
were interested in reporting that executing code had rehalwenditional and what the conditional
evaluated to: true or false. To do this, we needed to figurdnowt conditionals are expressed in
GIMPLE in order to target conditional nodes with our plug-i@heckingtree.defgave us some
information about conditionals, but the information conéal was vague, stating operand one
was the then-value while operand two was the else-value. edemit didnot tell us what those
operands were. They could have been one of many nodes, epchng a different approach for
field access. Using the steps we describe below, we show @ iiMPLE tree view of GDE
made the task of finding what the operands were easier tharetffigonal approach.

1. We began by writing a simple test case, using C, contais@gvgral conditional statements.
We then compiled the test case using GCC along with the dipdoiog-in to dump the

27

GIMPLE intermediate representation to our database. Ome@&ump was complete, we
looked at the intermediate representation stored in thebdae using GDE.

2. When inspecting the GIMPLE representation of the code,fiost task was to locate a
conditional statement in the CFG in the overview window. ©mee found a block with
a conditional statement, we clicked it to display the GIMPit&e in the GIMPLE tree
view window. As Figure 6.1 shows, we were quickly able to dest the type of node
corresponding to a conditional expression wa3CGhD_EXPR node. Further, we were able
to see that the first operand o€&ND_EXPR (or conditional expression) node was the actual
conditional test itself (in this case, &) EXPR or equality test), followed by the left and
right branches of the conditional. It was here that we wele &b see that the operands
wereGOTO.EXPRs. Using this information, we were able to design our caltér plug-in to
add logging statements in the correct basic blocks to ineli¢ahe left or right branch was
taken.

As this example demonstrates, finding and reproducing si@pMPLE code patterns is non-
trivial. In this case we were looking for all conditionald. i$ clear that if we were interested in
a subset of conditionals, containing a specific variablesf@mple, then our code pattern would
become more complex and harder to find without the aid of aaliation tool such as GDE. We
show a more complex example in Section 6.2.

6.2 Dissecting Complex Expressions

Generating complex GIMPLE expressions programmatically lwe difficult for even experienced
programmers due to GIMPLE’s low-level nature. It can be eaclkexactly how certain items are
represented in GIMPLE. For example, while adding functiath logging to the plug-in, we were
interested in printing the fields in pointers to structs paised as function parameters. To do this,
we first needed to reliably identify function calls with aa# one pointer to a struct as a parameter.
We used GDE to accomplish this in the following way.

1. As before, we wrote a small test case in C containing thgmient of code we wanted to
generate: in this case a function call with the addresssifrauct as a parameter. We then
compiled our new test case with the db-dump plug-in enalaead,inspected the output in
GDE.

2. As shown in Figure 6.2, we were able to see exactly how tartiqular statement was
represented in GIMPLE by GCC. In this case, the function walt aCALL_EXPR node
with several subtrees, the last of which wasADR EXPR. This indicated that the node is
a reference to the address of an object, which is what we weferig for.

3. As we dug deeper, we discovered #hBDR_EXPR node pointed to &/AR_DECL node,
which indicates a variable. Finally, examining fRREE_TYPE attribute of the variable told
us that the variable is of typRECORD_TYPE, showing that GCC represents a struct as a
RECORD_TYPE node. This information about how GCC represents these kihfisction
calls allowed us to write code that reliably identified them.

28

o [Jifix == () goto <L1>; else gota <123
¢ [COoMD_EXPR
o~ TREE_TYFE

o CIEQ_EXFR L.
+ [COTO_E4FR Conditional

P TREE_TYPE\
¢ [LaBEL_DECL

[DECL_ABSTRACT = 0

[LABEL DECL UID = 1

[DECL_SOURCE_LINE = 28

o [DECL_COMTEXT

D DECL_IMITIAL = NULL_TREE

[} DECL_ABSTRACT _ORIGIN = MULL_TREE

[DECL_SOURCE_FILE = tesl.c

[DECL_MAME = MULL_TREE

7 CIGOTO_EXPR e

o= TREE_TVPE —— Else Clause
9 [CJ LABEL DECL

[} DECL_ABSTRACT = 0

[LAREL_DECL_UID = 2

[DECL_SOURCE_LIME = 38

Then Clause

Figure 6.1: Using GDE to get information about a COMIXPR.

Generating complex expressions can also be done by handséfitey through GCC source
files. This would be a long and tedious task, due to the diftetgoes of attributes and operands
that each node contains. Any mistakes made during traoslatould likely be difficult to track
down later due to the cryptic nature of compiler errors.

o [foo (&test);

[CALL_EXPR)
o [TREE.TYPE Function Call

o [INTEGER_CST
o~ 9 ADDR_EXFR

Y tnum ‘________.—-—""' Pointer Parameter
% [J ADDR_EXFR

e 3 TREE_TYPE
§ CIWAR_DECL ==
[DECL_ABSTRACT = 0 — Pointer Target
o=] DECL_SIZE
[y DECL_SOURCE_LINE = 11
[TREE_ADDRESSAELE = 1
[pEcL_MODE = 1
o~] DECL_CONTEXT
[y DECL_IMITIAL = MULL_TREE
[DECL_ALICH = B4
[Ty DECL_ARSTRACT _ORICIN = MULL_TREE Target Type
- I TREE_TYPE
[} RECORD_TYPE
[DECL_SOURCE_FILE = test .«

e Addressable

Figure 6.2: Using GDE to see how a particular statement iplifiied.

29

6.3 APl Usage

The GCC API relies on specific macros, functions, and objec&ccess nodes and node data.
Whereas some items liIKEREE_TYPE can be used very generally, others lIKBEE_CHAI N are
specific to a particular kind of node, causing an error otleewGCC is complex and the GCC
internals documentation is incomplete and frequently dutade with respect to the most recent
release. As a result, a person unfamiliar with GIMPLE camdp®ours trying to figure out how
to access a particular field or child-node. GDE speeds upptiisess significantly by providing
insight into what might be needed for a particular node atces

When we were expanding the verbose-dump plug-in to printCthmarse trees for functions
we were unsure how to iterate through the list of statemengsnested block. When we inspected
the node corresponding to the nested block in the GIMPLE vre®, we found that it had a
STATEMENT_LI ST operand, as shown in Figure 6.3. Before we did this, it wasctear to us
exactly how this list was stored; it could have beehREE_CHAI N, which requires the use of a
macro to access each element. As it WSTATEMENT_LI ST, we knew that we had to use the
tree_stmtiterator object to access each element of the list. Using GDE in thisison helped us
to figure out exactly how to access the information containéhin that node.

=3 main C-Tree
o= [memset ((woid) &acts, 0, L68);
o= [im done = 0;
o] goto <D3168%;
o[<D3167>3;

e ——— Nested Block

o (=] TREE_TYPE
o =3 VAR_DECL /
[y STATEMENT UsT

o [ELOCK
o 3 int num;
= 3 printf ((const char * restrict) (char *) "Enter a number (negative or over 20 to end): "),
o= [scanf ((const char * restrict) (char *) " %d', &num);
o= [if num < 0] num > 20;
o9 <D32168>:;
o[if done == 0;
-] <D3169>:;

Figure 6.3: Using GDE to help determine which macro to use.

6.4 Debugging Bad Code

Our bounds-checking plug-in adds run-time bounds-chectara source file by looking at pointer
dereferences and checking if those references point tacamamory area. While developing this
plug-in, we ran into several issues that GDE was able to hdip w

30

Even when the programmer understands what needs to be doM¥LE programming is
error-prone. The difficulty is compounded by the fact thabes are typically caught much later
in the compilation process and generate cryptic error ngessa-or example, we have found that
most malformed GIMPLE code simply causes a segmentatidhifie@CC which gives the error
messagéenternal compiler error Debugging is made easier when the GIMPLE information is
visualized with GDE.

For example, our bounds-checking plug-in declares an amigble containing all of the ad-
dresses of stack areas declared by each function for use lnptinds-checking runtime. Although
everything seemed to be written correctly, using the plugsas causing an error to be generated
rather late during compilation. Looking at the code in GDE,fwund through trial and error that
if we attempted to record the address of variables that dithae theTREE_ADDRESSABL E flag
set, the compiler would crash. We found out that the flag etgis that an item has a valid address.
It was only through the use of GDE that we were able to detegrtiiat the flag was the problem.
To fix things, we simply did not record the address of variabiéth the flag unset.

6.5 CFG Inspection

In this section, we discuss two use cases concerning the B&%E&; block inspection and edge
inspection. Both use cases involve the bounds-checkingtipldescribed earlier.

Basic Block Inspection: Our bounds-checking plug-in can dynamically switch boudldscking
on and off. To do this, the plug-in replicates the entire CBGelach function while also inserting
an additional basic block to each CFG that chooses to exeditner our instrumented code path
or the original uninstrumented path. While developing tesinds-checking plug-in, however, we
found the transformed code was not executing properly.

Figure 6.4 we shows both the CFG generated by the buggy weosithe CFG duplicator as
well as the correct version produced after the bug was fixeé. e minimized all the CFG
nodes to show only the structure of the CFG.

We were trying to generate a duplicate CFG with identical-theind and right-hand sides
except for two shared initial and ending nodes (the top aritbitonodes) as well as a node to
decide which path to take. As Figure 6.4 shows, all basickslazere being replicated correctly.
As this use case demonstrates, GDE can be useful in not onigriggout what is the problem,
but also what isn’t the problem.

Edge Inspection: As we have shown above, using GDE we found that although tHesof
the graph were being replicated properly, the problem wastie edges connecting the nodes
were not. All outgoing edges were incorrectly connected ddes in the left-hand copy. The
alternative to using GDE would have been a very difficult te&sjuiring parsing of the intermediate
representation to create the CFG by hand or designing eltbtest cases to see in which cases
code executed properly. However, the overview provided EGmmediately illustrated the
problem, and we were able to correct the graph which fixed tbblem.

31

iddreza : Oxdasesblabiil)
[Entry Block

Bddress ¢ 0xd B226000 |

Address : Oxdeaasb0sbigl addrass : (xJaaashlsbddl

diresa : OxJasssbOsball ddreen : (wdagaeblebfgl

diress ; (xdsaseb0sBRED | Rddreze : Oxdagashlsbell |

diresa : Oxdasesh0abill

Nadaeasblabafl

diress s

Bddrass : Oxdeseablabb0l

|pddresa : Oxdaaseblsbafll

Addresa : (kdaasahlshO00|
Exit Black

(a) With incorrectly connected edges

Aéframs ¢ Ux2anaablaaBil)
Entry Block

¥

Bddrees ¢ (xleasahlb000
hddreas : (kdaseablealftl pddress : (xlaaaablsadil
Cdi : Oxd

Adcrass : Uxlaaeableaall [ifrazs : Milasachlashil Hraes : (xiasaarlsasdl

",

N,
[8¢rasa : Ux’aaeabls=sil +—Rdiresa : Owlaceablecbll] J Bdfrsaa : Uxlaaaablsactl

\
AN

N

™,

[bddresz : Uxlasasbl=adl]
[Exit Block

[edT=eaa : Owceasablaaill b

(b) With properly connected edges

Figure 6.4: Invalid and valid versions of a duplicated cohffow graph.

6.6 GDBConsole

This section presents a hypothetical use case for our GDB@enWhile developing plug-ins, it
is often necessary to debug GCC itself. As we have statedapi€h4, that process requires more
effort than debugging a typical program, and even once shdbie, extracting run-time GIMPLE
information is a non-trivial task. Through the use of the G&misole, developers have the ability
to look at GIMPLE with the click of a mouse. For example, if aveleper wanted to create and
insert a newCOND_EXPRnode into a particular basic block, the developer would hawnstruct
the COND_EXPR node first, along with the operands. If the developer peréatithis construction
incorrectly, perhaps by specifying the condition node mectly, the result would most likely

32

be an internal compiler error when the developer attempiezbtnpile the program. If this was
occurring in only one location, it might be possible to trdlok problem down quickly. However,
most transformations work by modifying or adding severafieg)y not just one. If nodes are
being correctly being created in most places, but incdgréctothers, perhaps due to a cascading
problem, then tracking down the problem becomes much mdfiewdi. Using the GDB console,

it would be possible to look at the GIMPLE at each step of thedformation. The developer
would be able to see a snapshot of each GIMPLE tree as it t¢lyrexists during compilation,
which may provide insight into the problem.

33

Chapter 7

Related Work

Graphical development tools and debuggers simplify maegnehts of application development
by allowing the developer to debug or develop an applicatisnally. In this chapter we discuss
tools in three categories. In Section 7.1 we discuss grapltools for program development. In
Section 7.2 we describe compiler visualization tools. lydstSection 7.3 we briefly discuss the C
intermediate language (CIL), a C-like language that alldeselopers to develop source to source
transformations, and its uses compared to traditionakfoamation development.

7.1 Graphical Development

Graphical Debuggers: Stand-alone graphical debuggers, such as GNU DDD [16] or %5[3B
are designed to cut development time by allowing the deeglop view source code along with
some visual representation of the run-time data of that .c@iéen, these tools are designed to
provide visual information to the user by visualizing theput of a command-line debugger such
as GDB [13] or dbx [40]. This use is common enough that somegigrs have output modes
used when the debugger is part of a larger system. GDB, fanpl&a supports a special mode
calledmachine interfacenode, which automatically formats GDB output to be easilssed by

a front-end. However, not all tools operate in the mannerinsttad choose to directly modify
an executing binary. Development environments, such apdec|43], provide debugging infor-
mation to the developer along with a set of other developrtais, such as a source-code editor.
Whereas it may be simpler to parse GDB output, binary modifinaallows the developer to do
things like hot swappingexecuting code; modifying executing code without a fulluid of the
binary. Over the years, other debuggers have also implexdensualizations and are similar to
the systems described above. The SoftBench [18] and Cotld&hdebuggers, for example,
support simple data structure visualizations in the fornbak-and-arrow diagrams. Integrated
and stand-alone graphical debuggers such as these ar¢ aséfieir visualizations make it eas-
ier to pass input to and to view output from the debugger. &hesls do this by providing an
interactive debugging interface to the user, allowing teeruo set breakpoints, set watches, and
view run-time data visualizations through mouse clicksthéligh ease of input through mouse
use may not be all that useful to a highly experienced comriiaeddebugger user, it may be
highly beneficial to a less experienced debugger user. Tindime data visualizations these tools

34

provide may give insight into problematic areas of codefulge both experienced and inexpe-
rienced users. Although plug-ins could be debugged or limdhwith these tools, they are very
general purpose, designed to work on a variety of prograni3g,®n the other hand, has been
designed specifically for use with plug-ins.

UML Tools: UML tools, like Rational Rose [36] and Visio [28], allow ddgpers to specify
items such as class relations, local variables, or fungirototypes for a particular application in
a visual manner. This allows the developer to see a higHh-lepeesentation of the application
which often gives insight into any shortcomings in its dasig/hen the developer is satisfied with
the application layout, a simple button click creates aetkel of the program.

Graphing Tool-kits: Graphing tool-kits allow the visualization of data. Tooikel aiSee [1]
work by reading input specified in a custom graph descriptimguage, then creating and visual-
izing a graph based on the input specified. Some tools candukhysother programs to perform
visualization. Doxygen [11], for example, creates docutagon for a source package by scan-
ning source code and parsing directives found in the souwde of a package, similar to using
javadoc [39] on a Java file. When configuring Doxygen, useeggaren the option to create a vi-
sual representation of the scanned sources if they haveh@iaf8] installed. Other tools, such as
Program Explorer [25] and Module Views [45] also exist anoMile data visualizations for object
oriented programs. These visualizations include callaligations, object creation visualizations,
execution visualizations. Lastly, projects such asdimsight project are interested in examining
the dynamic behavior of Java programs [19]. Thsight project have developed Java specific
visualizations, such as object visualizations to find wagtemory [34] and a method call visual-
ization tool [33], to examine this behavior. These vistalian tools like these are useful because
they give the developer a high level, concrete view of therattions of an application. This in
turn may give the developer insight into problematic arefathe application’s design or may be
able to give insight into debugging an application. Althbubese tools are useful, they are gen-
eral purpose and require either the learning of a graphinguage to describe their graph or the
insertion of directives throughout program code for datualization. The run-time information
these tools provide is not suited to plug-in developmenttduts high-level nature.

7.2 Compiler Visualization

Whereas graphical development tools have been shown g irmgtrove application development
by displaying complex information in an easy to understadf little has been done to visualize
complex compile-time data.

The Interactive Compiler: The Interactive Compiler [44] was one of the first attemptsiat
sualizing compiler information. It is a custom compiler tieh in Smalltalk-80 which compiles
a simple language consisting of assignments and condgiordter the initial compilation, the
interactive compiler generates an intermediate reprasent(IR) which is then displayed to the
user, in text-based form, and can then be edited as need#éthugh the interactive compiler laid
the groundwork for much of what we have done, there are twaessvhich make it unsuitable

35

for use as a transformation-development tool. First, dute¢tbnology limitations at the time,
the IR information generated by the Interactive Compiledigplayed in a textual form. As we
have shown in Figure 1.1, this is problematic when dealirt) wiodern programs, as each line of
source code produces many lines of IR output. Second, theitnmiself is only able to compile
a simple language on a limited number of architectures, @dwetransformation developers want
to target compilers that can compile several complex laggs@n many different architectures.

xvpodb and VISTA: xvpodbis a visualization tool developed to visualize the optirtiaas per-
formed by the Very Portable Optimizevdo [5]. Vpois an optimizer designed to perform many
low-level RTL optimizations [46]. These types of optimimais are things such as instruction se-
lection, instruction scheduling, and dead variable elation. When a file is compiled wittpo
enabled, variougpomessages are intercepted by ¥wpodbtool and saved in a file for later view-
ing. The user can then step forward and backward througtgbeptimization process, choosing
to examine various pieces of information at will. This alkbthe user to see things like which
transformations affect a specific instruction.

VISTAIs a tool based off basegoo and designed to allow performance tuning of applica-
tions [22]. VISTAallows the user to step through transformatiorxgsodbwhile also providing
useful features such as source correlation via line higtihg. Lastly,VISTAIs able to rate the
effectiveness of optimizations and select the set of ogttions providing the best performance
gain.

Although xvpodband VISTAare useful in their own right, especially as teaching aitigyt
have one major drawback: they can only visualize the tramsftions performed by thepo opti-
mizer. This means the user is only able to look at RTL-levat$formations, not transformations
performed on high-level IRs. Whereas RTL-level transfdiores are very powerful, certain trans-
formations, like function call logging, are better suitedhigh-level IRs. These tools, by design,
are unable to visualize or modify non-RTL-level transfotimas.

7.3 C Intermediate Language

The C intermediate language (CIL) is a source-to-sourgesteemation of C programs [30]. CIL
users first write a transformation using CIL which is thenlaabto a user-specified source file.
This combination creates a new C source file which is thengolss GCC to compile as usual.
The main advantage of using CIL is that it allows developerspecify transformations using a
simplified version of C; this means that developers needaarhla complex IR to add new func-
tionality to existing code. Although CIL is a useful and pafué language, it has an inherent
problem which limits its usefulness. CIL transformatiorysdesign only support source-to-source
transformations of C programs whereas other transformstisuch as GIMPLE transformations,
are language independent. Using languages like CIL to parfransformations can quickly be-
come cumbersome, requiring developers to learn a new lgegioa each language they want their
transformation to support.

36

Chapter 8

Conclusions

Code transformations have traditionally been difficult ewelop, requiring developers to directly
modify the source files of a compiler, a highly non-triviatka Deployment of a completed trans-
formation is hard, necessitating a line-by-line additidrihe transformation code to the existing
source to ensure compatibility with other transformatieristing on that particular system. GCC
plug-ins have solved the problem of transformation depleytnbut have not addressed the issue
of transformation development.

Visual development is the solution to this problem. It had beeat success in the past with
debuggers, development environments, and modeling tédddshave presented the GIMPLE De-
velopment Environment, a useful tool to reduce the timenakelesign, development, and debug
GCC plug-ins and optimizations. We have also presented a @@gzin which stores the inter-
nal representation of a program in a database; a usefulridtd own right as we have shown in
Chapter 5. The graphical control flow graph GDE creates fohdanction allows the developer
to track the flow of information through a particular progréiem beginning to end much more
effectively than the traditional method, looking at a tbased control flow graph information.
Chapter 6 shows how this visual representation of the CF&inithe debugging of plug-ins mod-
ifying the structure of all or part of an existing control flagvaph. The call graph visualization
capabilities of GDE allow developers to quickly determimedecessors and successors to a given
function, and help with program data flow understanding. GEMPLE tree view allows devel-
opers to visualize the various GIMPLE trees for each statémesach basic block. This not only
gives insight into which macros to call on a given node, bsb @llows for quick inspection of a
transformation, allowing the developer to quickly detemmif GIMPLE nodes are being maodified
properly. Lastly, our GDB console allows developers to exanthe GIMPLE and control flow
graph of a function as it is compiling, providing more usefifbrmation to developers as opposed
to cryptic errors as discussed in Chapter 6.

We have found that although transformation developmenthgrently difficult, the use of
these visual aids alleviates many of the difficulties asgedi with using the GCC Internals API
and greatly lessens development time.

37

Chapter 9

Future Work

In this Chapter we will discuss future research areas for GDE

9.1 Zooming

Although having each component of GDE rendered in its owwgeuseful and functional, the
call graph, control flow graph, basic blocks, and GIMPLE dfénherently related. We plan to
modify GDE to use a zooming-based view. Initially, the useuld be presented with the call
graph, which the user could use to identify functions ofrie¢¢. Zooming in on these functions
would then give the user the control flow graph for that pattic function, showing all basic
blocks. If a basic block were particularly interesting, theer could then zoom in to view the
statements and the GIMPLE for that block. This would expardlimprove GDE usefulness with
larger files.

9.2 Online Functionality

Making GDE a web application is a practical and attainabld.galthough GDE is written in Java
and requires little work to port from system to system, dibagus a C++ GCC plug-in, requiring
a specific configuration for each system it is to run on. Furtioee, the user needs to have
Postgresgl running on the system db-dump is running on. BinguGDE online, developers
would only need to connect to a server, upload their code,véawl it with GDE. This goal is
particularly interesting as GDE is written in Java, conwgytGDE to an applet will not require a
rewrite of the entire system.

9.3 RTL

We plan to further expand the amount of compile-time infaioradisplayed to the developer by
visualizing the RTL of each function. RTL is used extengi®g} developers porting GCC between
architectures and for developers working on improvememtS€C’s code generator. Visualizing
this level may greatly reduce the complexity of writing RTade.

38

Bibliography

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

Absint. aisee, 2008ht t p: / / www. ai see. com

R. Agrawal, L. G. Demichiel, and B. G. Lindsay. Static ¢/phecking of multi-methods. In
ACM SIGPLAN Noticesl991.

AT&T Research Labs. Graphviz, 2008t t p: / / www. gr aphvi z. or g.

D. B. Baskerville. Graphic presentation of data struetuin the DBX debugger. Technical
report, University of California at Berkeley, Berkeley, CASA, 1985.

M. Boyd and D. Whalley. Graphical Visualization of Cortesi Optimizations. Journal of
Programming Language$(2):69-94, 1995.

S. Callanan, D. J. Dean, and E. Zadok. Extending GCC witidutar GIMPLE optimiza-
tions. InProceedings of the 2007 GCC Developers’ Sum@iitawa, Canada, July 2007.

CenterLine Software, IncCodeCenter Tutorial1995.htt p: // products. i cs. coni
product s/ codecent er/ codecenter-4.1.1-tutori al . pdf.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Guinchiglia, MPistore, M. Roveri, R. Sebastiani,
and A. Tacchella. Nusmv 2: An opensource tool for symbolidei@hecking. Computer
Aided Verificationpages 241-268, 2002.

Computergram. Motorola enters new markets with m-corécromisc. htt p:
[I www. cbronline.com news/ notorola _enters_new nmarkets with_
m core_m crori sc.

P. A. DesAutels. SHA1: Secure Hash Algorithmmv. w3. or g/ PI CS/ DSi g/ SHA1_1_
0. htm , 1997.

Dimitri van Heesch. Doxygen, 2008xw. doxygen. or g/ .

Amy Fowler. A Swing Architecture Overview. Technicaport, Sun Microsystems, 2007.
http://java. sun.conf products/jfc/tsc/articles/architecture/.

The Free Software Foundation, Inc. GDB: The GNU Prof@ebugger.www. gnu. or g/
sof t war e/ gdb/ gdb. ht m , January 2006.

The GCC Team. The gnu compiler collectidmt. t p: // gcc. gnu. org.

39

[15] The GCC teamGCC online documentatioibecember 2005ht t p: / / gcc. gnu. or g/
onl i nedocs/ .

[16] GNU Project. The Data Display Debuggért t p: / / www. gnu. or g/ sof t war e/ ddd.

[17] L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, Bn&ridharan. Designing the
McCAT Compiler Based on a Family of Structured IntermedRé&presentations. lbecture
Notes In Computer Science; Vol.7ages 406—-420. Springer-Verlag, 1992.

[18] Hewlett-Packard CompanyC and C++ SoftBench User’s Guigdune 2000.ht t p: //
docs. hp. com en/ B6454- 97413/ B6454- 97413. pdf .

[19] IBM Research. Jinsightat t p: / / www. r esear ch. i bm coni j i nsi ght .

[20] ARC International. Arc configurable cpu/dsp cores.http://ww. arc. com
confi gur abl ecores.

[21] Jan Kneschke. Lighttpd, 2008t t p: / / www. | i ghtt pd. net /.

[22] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, Rnangelen, K. Gallivan, J. Hiser,
J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho, and Y. Paek.SVA:VPO Interactive
System for Tuning Applications. IACM Transactions on Embedded Computing Systems
(TECS) New York, New York, November 2006.

[23] N. Kumar, J. Misurda, B. R. Childers, and M. L. Soffa. thusnentation in software dynamic
translators for self managed systemsPhceedings of the 1st ACM SIGSOFT workshop on
Self-managed systen#)04.

[24] Ying-Cheng Lai, A. Motter, T. Nishilawa, K. Park, and Zhao. Cascade-based attacks on
complex networksPramana pages 483-502, 2007.

[25] D. B. Lange and Y. Nakamura. Program Explorer. a progmdsualizer for C++. In
COOTS'95: Proceedings of the USENIX Conference on Objéeta@d Technologies on
USENIX Conference on Object-Oriented Technologies (CQ(MEg§es 4-4, Berkeley, CA,
USA, 1995. USENIX Association.

[26] James R. Larus and Thomas Ball. Rewriting executal#s fd measure program behavior.
In Software—Practice & Experienc&994.

[27] J. Merrill. GENERIC and GIMPLE: A New Tree Representatifor Entire Functions. In
GCC Developers SummR003.

[28] Microsoft Corporation. Visio 2007. http://office. m crosoft. com en-us/
vi si o/ def aul t. aspx.

[29] Sun Microsystems. The Awtin 1.0 and 1,1. Technical refgun Microsystems, April 1999.
http://java. sun. com product s/j dk/ awm .

[30] George Necula. Cil - infrastructure for ¢ program arsédyand transformation, 200fit t p:
/I manj u. cs. berkel ey. edu/ci | .

40

[31] M. E. J. Newman. The structure and function of complexwoeks. SIAM Review
45:167, 2003. http://ww. ci t ebase. or g/ abstract ?i d=oai : ar Xi v. or g:
cond- mat / 0303516.

[32] Vijay S. Pai and Sarita Adve. Code transformations t@rove memory parallelism. In
Proceedings of the 32nd annual ACM/IEEE international sysiym on Microarchitecture
pages 147-155, 1999.

[33] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Ekeapatterns in object-oriented
visualization. InProceedings Conference on Object-Oriented Technologies Systems
(COOTS '98) pages 219-234. USENIX, 1998.

[34] W. De Pauw and G. Sevitsky. Visualizing reference patidor solving memory leaks in
Java. InECOOP '99: Proceedings of the 13th European Conference geddriented
Programming pages 116-134, London, UK, 1999. Springer-Verlag.

[35] PostgreSQL Global Development Team. PostgreSQit.t p: // www. post gresql .
or g, 2003.

[36] Rational Software. Rational Rose. http://ww+ 01. i bm cont sof t war e/
rational .

[37] Red Hat. Red hat magazine, 2008.t p: / / magazi ne. r edhat . com

[38] Basile Starynkevitch. Compared gcc compilation tinte tavo linux desktops. www.
starynkevitch. net/Basil e/ conpare_tine_gcc. htmi .

[39] Sun Microsystems. Javadoc tool, 200v.t p: / / j ava. sun. conl j 2se/ j avadoc.
[40] Sun Microsystems, Inadbx man pageSun Studio 11 Man Pages, Section 1.

[41] Tensilica. Tensilica’s processor overview. http://ww. tensilica.com
product s/ xt ensa/ i ndex. ht m

[42] The CentOS Development team. Centos, 20G% p: / / ww. cent 0s. or g/ .
[43] The Eclipse Foundation. Eclipskt t p: / / www. ecl i pse. org.

[44] Steven R. Vegdahl. The Design of an Interactive Connde Optimizing Microprograms.
In Proceedings of the 18th annual workshop on Microprogranggridecember 1985.

[45] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wrjght Swanson, and J. Isaak.
Visualizing dynamic software system information througbhhlevel models. IMODOPSLA
'98: Proceedings of the 13th ACM SIGPLAN conference on Qgjgented programming,
systems, languages, and applicatiopages 271-283, New York, NY, USA, 1998. ACM.

[46] Zephyr. Very portable optimizer, 199&it t p: / / www. ¢s. vi r gi ni a. edu/ zephyr/
Vpo.

41

