The Visual Development of GCC Plug-ins with GDE

Daniel J. Dean
Stony Brook University

kesmier84@gmail.com

Sean Callanah
Stony Brook University

spyfeel@gmail.com

Erez Zadok Stony Brook University

ezk@cs.sunysb.edu

Appears in the Proceedings of the 2009 GCC Developers’ Summit

Abstract

Being able to directly affect code compilation with code
transformations allows the seamless addition of custom
optimizations and specialized functionality to code at
compile time. Traditionally, this has only been possi-
ble by directly modifying compiler source code: a very
difficult task. Using GCC plug-ins, developers can di-
rectly affect code compilation, without actually modi-
fying the source code of GCC. While this makes ap-
plying a completed plug-in easy, plug-in development
is transformation development nonetheless: an arduous
task. The plug-in developer is required to have the same
thorough understanding of compiler internals, complex
compiler internal representations, and non-trivial source
to internal representation mappings as any other trans-
formation developer.

Recently, simplified representations, such as CIL, have
been developed to help developers overcome some
transformation design challenges. Although useful in
their own respect, representations like CIL are often lan-
guage specific by design. This requires the developer
to make the unfortunate choice between relative ease of
development on a simplified representation or language
generality on a more complex representation.

We have developed a visual approach to transformation
development consisting of a two components: a plug-
in to extract GCC’s intermediate representation and a
Java-based tool to visualize it. This thesis demonstrates
how our visual technique significantly reduces many of
the problems facing transformation development with-
out sacrificing the inherent benefits of a more general-
ized intermediate representation.

1 Introduction

Developers have long wanted greater control over com-
pilation in order to automatically add features like

application-specific custom optimizations, integrated
type checking, function call logging, or parallism to
code at compile time [2] [30] [24] [21]. Code trans-
formations give developers this ability by modify-
ing the compiler’s internal representation of compiling
code. The traditional development of code transforma-
tions,however, requires the direct modification of com-
piler source files, a difficult and error prone task. As
Section 3 explains, GNU Compiler Collection (GCC)
plug-ins are code transformations which do not require
the developer modify the compiler source itself [6]. Al-
though this makes the application and deployment of
completed transformations a relatively simple process,
plug-in development is an arduous task.

The GCC developer community has a great deal of ex-
pertise in developing code transformations due to their
intimate knowledge of the compiler. Non-GCC devel-
opers, however, must first learn the inner workings of
GCC before developing a transformation. One of the
most daunting tasks in understanding the inner work-
ings of GCC is understanding the various intermediate
representations that GCC creates. As shown in Figure 1,
a single line of C code produces many GIMPLE trees,
with each GIMPLE tree containing internal information.
Although each GIMPLE tree node is used by the com-
piler in one way or another, a typical transformation is
only interested in a subset of nodes. Unfortunately, for
the developer this often leads to hours of sorting through
low-level intermediate code to find a needle in the vast
intermediate-representation haystack.

This paper presents a visualization technique for the de-
velopment of GCC plug-ins. Our technique involves the
design and implementation of a visualization tool, the
GIMPLE Development Environment (GDE), along with
a GCC plug-in to extract and format GCC internal in-
formations. GDE provides developers with four types
of visualizations: (1) the control flow graph, (2) the call
graph, (3) the GIMPLE trees, and (4) the mapping from

source to internal representation. We demonstrate with a
series of use cases, how these visual representations sig-
nificantly reduce the difficulty of interpreting and under-
standing the intermediate representation that GCC gen-
erates while compiling a program.

The remainder of this paper is organized as follows.
Section 2 gives an overview of GCC as a whole by
presenting the fundamentals of GCC. It is here we in-
troduce the various phases of compilation, explain why

#include <sys/types.h>
uinte4_t facts[21];
uint64_t fact(unsigned char x)

if(Mfacts[x]) {

if(x == 0)
facts[x] = 1;
else
) facts[x] = x * fact(x-1);

turn facts[x];
}
D.3155 = (int) x;
D.3156 = (uint64_t) x;
D.3157 = x + 255;
D.3158 = (int) D.3157;
D.3159 = fact (D.3158);
D.3160 = D.315

* D.3159;

Figure 1: An example showing the C to intermediate
representation blow-up.

each phase exists, and finally describe the intermediate
representation at each phase. Although each phase is
useful in its own right, this paper focuses primarily on
the GIMPLE intermediate representation. Next, in order
to understand the our visualization technique, we must
understand the GCC plug-in system, which we discuss
in Section 3. We then briefly explain the development
and features of GDE in Section 4.

Once GDE and GCC plug-ins are understood as a
whole, we explain how GDE allows for the effective de-
sign and debugging of compiler transformations in Sec-
tion 6. Here we show how we have used GDE in the past
to design and debug our own transformations, describ-
ing each case in detail along with the specific advantages
GDE brings to the development process. We then exam-
ine, in Section 5, the DB-dump output of several appli-
cations, suggesting analysis that can be done on these
dumps. We then further illustrate exactly why GDE was
developed by examining some related technologies in
Section 7. We conclude in Section 8 by summing up
the key points of this paper and finally, discuss further
expansion possibilities for GDE in Section 9.

2 Background

The GNU Compiler Collection (GCC) [13] is an open
source compiler which was initially released in 1987 as
a C compiler under the name GNU C Compiler. Al-
though initially a compiler only able to compile C code,
GCC is now a massive compiler suite able to com-
pile many programming languages, such as C++, FOR-
TRAN, Pascal, Objective-C, Java, and Ada to a vari-
ety of architectures. Due to the large number of distinct
architectures and languages supported, GCC designers
have separated the GCC compilation process into three
distinct phases, as seen in Figure 2: the front-end, the
middle-end, and the back-end [14]. We discuss these
phases next.

2.1 Front-End

GCC'’s front-end is the language-dependent portion of
compilation which is responsible for converting a pre-
processed source file into a representation suitable for
further compilation. Specifically, the front-end first
parses the source code, constructing type and symbol
information for compilation. This phase is responsible
for operations such as the enforcement of language-level

standards compliance, resolution of type definitions,
type inference, and construction of scopes. The front
end then produces a tree-like intermediate representa-
tion, which differs from language to language, while
also populating some global variables holding auxil-
iary information such as the TREE_ADDRESSABLE

FRONT-END

CH++ Java C
Trees Trees Trees

C++to Java to Cto
GENERIC GENERIC GENERIC

GENERIC

A 4

Gimplifier

GIMPLE

MIDDLE-END

GIMPLE

Tree

SSA
Optimizer

RTL

BACK-END | gy

Code
Generator

A 4

Object
Code

Figure 2: The GCC compilation process adapted from
Red Hat Magazine. [35]

flag, which indicates an item can be passed to the run-
time. This tree-like intermediate representation is called
a parse tree and is what GCC uses, in various forms,
throughout the compilation process.

2.2 Middle-End

The middle-end in GCC was designed to perform vir-
tually all architecture-independent optimizations. Be-
fore 2004, GCC was separated into two parts: the front-
end and back-end. Whereas this worked in the past
and is still how many other compilers operate today,
GCC developers were running into problems. Follow-
ing this two-phase design, optimizations such as loop
unrolling and constant propagation were performed on
a representation very close to machine code. Although
not necessarily a problem for compilers supporting a
small subset of languages or architectures, GCC devel-
opers found these optimizations were becoming quite
difficult to maintain [25]. To simplify things, GCC de-
velopers separated optimizations from the rest of the
code, giving them a separate compilation phase along
with its own representation. In 2006, the GCC develop-
ers integrated support for inter-procedural optimization
into the middle-end, further extending the capabilities of
middle-end optimizations.

GIMPLE: GCC’s middle-end optimizations begin
with Gimplification of the initial parse-tree represen-
tation. Gimplification is the process of convert-
ing language-dependent parse trees into a simpli-
fied three address language-independent representation
called GIMPLE. GIMPLE was named after, and is heav-
ily influenced by, the McGill Compiler Architecture’s
language-independent abstract syntax tree representa-
tion, called SIMPLE [16]. Immediately after Gimplifi-
cation, GCC constructs a control-flow graph (CFG) for
each function consisting of a single entry and exit point,
a set of nodes, and a set of edges connecting these nodes.

In addition, at this point GCC constructs a call graph
which shows the function call structure. Each call graph
node represents a function in the source base of the cur-
rently compiling code and has a list of callers and callees
with a series of edges connecting the nodes. Together,
these nodes and edges form a graph representing pro-
gram function call semantics. An example call graph is
shown in Figure 3. These higher-level structures allow

for rapid control-flow and data-flow analyses. The sim-
ple nature of the individual instructions and the deter-
ministic execution order inside a basic block also serve
to make program analysis easier. Once all architecture-
independent optimizations, such as loop unrolling, have
been performed, we enter the back-end phase of compi-
lation.

T T [Function: eall3 [Function: calld]
Eg:‘:t;un: calll? F;g::t;cn- callZ— Mol 6 R::lum: 7
= — o

Figure 3: A subsection of a call graph rendered by GDE.
Each node represents a particular function while edges
represent function calls.

2.3 Back-End

The back-end is primarily responsible for generating the
final assembly code for the program. In order to do
this, GCC must allocate registers, perform final stack-
frame layout, and schedule instructions for the CPU’s
pipeline. At this point, most optimizations have already
been applied to the code and as a result, the only op-
timizations the back-end compilation phase need apply
are architecture-specific optimizations, such as instruc-
tion pipelining. The back-end phase of compilation has
been extensively developed over the years. As a result,
modifications to this layer are now almost exclusively
done for the purpose of porting or to improve GCC’s
exploitation of CPU resources.

3 Development Methodology

As mentioned in Section 1, code transformations allow
developers to optimize and add functionality to code at
compile time. Traditional development of code trans-
formations, however, is a difficult process with several
development obstacles to overcome.

The developer first needs to make sure the code trans-
formation modifies the intermediate representation in
such a way that file compilation is still possible. That
is to say, the developer cannot break the compiler. Sec-
ond, modifying the compiler source requires a full com-
piler rebuild, a process taking more than thirty minutes
for GCC on an AMD64 X2 4400 dual-core [36]. Third,
distribution of a completed transformation is very dif-
ficult requiring the user to manually modify compiler
source files to apply the transformation. When applying
more than one transformation, this is difficult at best due
to the complexity of GCC source files. Fourth, transfor-
mation development requires the careful modification of
a compiler’s internal representation. This is highly non-
trivial because that the internal representation becomes
more and more low-level throughout compilation. Un-
derstanding the representation becomes harder as we get
closer to assembly. Lastly, debugging a transformation
is no easy task. Although a buggy high level application
often has useful error messages, a buggy transformation
usually has cryptic or short error messages which are
of little help to an inexperienced transformation devel-
oper. The remainder of this section first describes GCC
Plug-ins in Section 3.1, then describes a plug-in we have
developed, DB-dump.

3.1 GCC Plug-ins

GCC plug-ins, which are scheduled to be included in
mainline GCC version 4.5, give developers the ability
to develop code transformations with modifications to
the source base of GCC itself. Currently, developers
need only to recompile GCC once to support the plug-in
system and once plug-ins have been incorporated into
mainstream GCC, no source modification will be nec-
essary. GCC plug-ins are developed as separate files
and then compiled into shared libraries which are loaded
into GCC at run-time. This is done by the addition of
function calls, which load arbitrary lists of plug-ins, at
locations corresponding to individual phases of compi-
lation. Figure 4 shows this process in more detail.

A user simply includes the flag -ftree-plugin={Path to
compiled plug-in.so file} for each plug-in to be applied.
The GCC plug-in system not only solves the problem
of rebuilding GCC multiple times, but it also solves the
transformation deployment problem; if a plug-in causes
compilation to fail, simple remove it from the list.

Plug-ins to load

Source
—_—>

Binary

GCC —

Figure 4: A figure showing the plug-in loading process.

While the plug-in system solves some of the prob-
lems associated with transformation development, GCC
plug-ins do not make it any easier to understand a com-
plex intermediate representation or to debug a broken
transformation. As we will show, visualization of the
intermediate representation ameliorates these problems.
A compiler’s intermediate representation is internal to
the compiler, however, and in order to visualize the in-
termediate representation, we first must extract it.

3.2 DB-Dump Plug-in

DB-dump was a GCC plug-in developed to capture
GCC'’s intermediate representation. The db-dump plug-
in works by parsing a GCC definition file called tree.def,
which contains a description of each element of GCC’s
GIMPLE intermediate representation. Using tree.def
along with a custom definition file, we have designed,
parameter.def; db-dump is able to recursively iterate
through each element of the GIMPLE tree, storing node
information at each step along the way. We chose Post-
greSQL as the database system in order to keep with the
open-source nature of GCC. We designed the schema to
allow the efficient storage of GCC’s complex interme-
diate representation along with useful source file infor-
mation. We create tables for GCC internal items such as
basic blocks, the call-graph, and the control-flow graph
as well as for source file information such as functions,
the actual source code of the file, and source-code state-
ments. We also create tables for each type of GIMPLE
tree node found in tree.def in order to keep table sizes
manageable. Data replication was a major concern when
we were designing db-dump as GIMPLE trees contain a
lot of redundant type information. DB-dump handles
data replication by only inserting new information into
the database. When db-dump comes across data it has
already seen, it creates pointer to the existing entry in-
stead of creating a new entry.

3.2.1 Pointers

All pointers db-dump inserts into the database are hash
values created through a two stage process. First we
create 40-byte hash using a SHA-1 [9] hashing function
with combination the file name, current function name,
and the address of the current node being processed as
input. Then, we attach a four-byte numeric description
of the table we are going to insert into to the end of
the hash and insert the 44-byte value into the database.
The four-byte numeric description allows developers to
quickly determine which table to search given a spe-
cific node while the hash value allows for quick lookups
within that table. As Section 5 shows, our database sys-
tem is able to handle complex source files efficiently.

4 Design

Overview Window
GIMPLE Tree View
N — Window

Figure 5: The GDE user interface

We have developed the Gimple Development Environ-
ment (GDE) using Java to visualize GCC’s GIMPLE
intermediate representation. We also have provided a
graphical interface to the Gnu Debugger (GDB) which
simplifies run-time plug-in debugging. GDE uses the
Swing [11] library to render components, the AWT [27]
library to draw decorations (e.g., lines connecting the el-
ements of the CFG), the PostgreSQL JDBC driver [33]
for database queries, and GDB for debugging. We chose
Java as the development language for its cross-platform
compatibility, which allows GDE to be used on most
of GCC’s host platforms. This allows us to concentrate
on the development of the tool itself as opposed to plat-
form support and library dependencies. As shown in
Figure 5, GDE has three main areas: the overview win-
dow, the GIMPLE tree view window, and the source

window, which we discuss in the following three sec-
tions. Finally, we discuss the graphical interface to GDB
we have created in Section 4.4.

4.1 Overview Window

The overview window displays one of two main ele-
ments: a visual representation of the CFG of each func-
tion in the source file, or a visual representation of the
call graph of the file. The call graph and each individual
function are accessible via named tabs.

41.1 CFG:

As shown in Figure 6, the CFG is rendered as colored
rectangles connected by arrows with flags associated
with each edge. All elements of the CFG are mov-
able and able to be minimized while the lines connecting
each element of the CFG can be hidden. This allows the
user to rearrange the graph at will to get a better view of
a particular basic block of interest or to rearrange a loop
into a form that corresponds better to high-level seman-
tics. This also allow the user to hide uninteresting graph
elements in order to better view an area of interest. Each
colored rectangle corresponds to a specific basic block
with a series of GIMPLE expressions to be executed in
sequential order. Mousing over one of the flags associ-
ated with each edge causes the flag to expand, display-
ing the GCC edge flags associated with that particular
edge.

Edges and edge flags: As discussed in Section 2,
basic blocks in the CFG are connected by directed edges
which specify the control flow through the graph. Most
edges, with the exception of the edge from the last basic
block to the exit block, have a set of one or more flags
associated with it. These flags specify when a particular
node is taken. For example, the EDGE_FALLTHROUGH
flag specifies that this edge is taken at all times, whereas
the EDGE_TRUE_VALUE flag specifies the edge is only
taken when the conditional in the previous basic block
evaluates to true.

Clicking a CFG node here has several effects. First,
GDE colors the selected block green, while coloring its
predecessors yellow, and its successors gray. GDE also

Figure 6: The CFG rendered by GDE

highlights the paths to each successor in red. This allows
the user to quickly determine which blocks could follow
the execution of this block and also which blocks could
have preceded it’s execution, which allows for easy flow
analysis. Second, GDE displays a visual tree representa-
tion of the selected basic block’s GIMPLE nodes in the
GIMPLE tree view area. Finally, GDE highlights the
lines of source code corresponding to the selected basic
block, its successors, and its predecessors in the source
area.

4.1.2 Call Graph

As shown in Figure 7, the call graph is comprised of col-
ored rectangles connected by arrows. Each colored rect-
angle here represents a node in the call graph for a par-
ticular file and each edge represents a function call from
one node to another. Nodes in the call graph simply con-
tain a unique identifier assigned to that node along with
the name of the function that the node represents. All
call graph elements are moveable, able to be minimized,
and the edges connecting each node can be hidden. We
have implemented this functionality for the same rea-
sons discussed in the CFG segment above. Clicking a
node of the call graph causes that node to be highlighted
in green, any node called by that node to be highlighted
in gray, and any nodes calling the selected node to be
highlighted in yellow. Paths to each node called by the

selected node are also highlighted in red by GDE, sim-
ilar to the highlighting scheme of the CFG described
above.

Figure 7: The call graph rendered by GDE

4.2 GIMPLE Tree View

When a control-flow graph is being displayed in the
overview window, clicking a basic block displays its
corresponding GIMPLE representation in the GIMPLE
tree view. The root node of each tree is a statement from
the corresponding basic block rendered in a C-like syn-
tax. The tree generated is a visual representation of the
attributes and operands for the selected GIMPLE node,
as previously discussed in Section 2. Non-leaf nodes are
GIMPLE attributes or operands that have at least one
pointer to another node, whereas leaf nodes represent
nodes that have no pointers to other nodes. The tree
view is useful as it visualizes the ordering of operands
in each node and also lets the developer know what at-
tributes apply to a particular node. This is invaluable
when using macros such as TREE_OPERAND, which
programmatically dissect tree nodes, inside GCC trans-
formations.

Clicking a node in the GIMPLE tree view expands
that node, showing its children. Each non-leaf child
node can then be expanded, in the same manner, un-
til the desired information is found. Initially, clicking
a basic block caused the GIMPLE trees to be created
for all statements in the basic block. This meant recur-
sively visiting each node in each tree in the selected ba-
sic block, creating the visual objects at each step along
the way. Although this worked for most basic blocks,
as Figure 8 shows, larger basic blocks were simply too
large to be rendered in their entirety.

[GIMPLE Tree View :::

I Basic Block: 400

_stack.37 = __builtin_stack_save 0;
in_puts (&\nkemary Leak Detection'[0]);
o= [duration. 12 = cluration;
= [printf (8°Test will be run for %d seconds.\n*(0], duration. 12);
o [Jaccess_info = optarg;
o [offset = 0;
o [Jint_offsets = 0;
& [CID.3824 = strlen (access_info);
o [loopValue = (inD D.3824;
& T loopValue. 13 = loopValue;
o [Z1D.3826 = (long int) loopValue.13;
& [£]D.3827 = D.3826 + - 1;
& [D.3828 = (long unsigned i) D.3827;
o [3D.3829 = (long unsianed int) loopValue. 13;
& [CID.3830 = (bit_size_type) D.3828;
31 =D.3830+32;
(Iong unsigned inm) laopValue. 13;

D.3835 * 32;
7 = (long unsignad int) loopValue. 12;

& [C]D.3838 = D.3837 * 4;

& [£1D.3840 - __buillin_alioca (D.3838);

o I number_buffers. 14 = (float[0:D.3828]) D.3840;

Value. 15 = loopValug;

(long int) loy

& [ID.23843 = D.3842 + -1,

o [£]D.3844 = (ong unsigned int) D.2843;

& [£1D.3845 = (long unsigned int) loopValue. 15;

o [C1D.3846 = (bit_size_type) D.3845;

o [(1D.3847 - D.3846 * 32;

& [9D.3848 = (long unsigned int) loopValue. 15;

~[1D.3849 = D.3848 " 4

& [Z1D.3850 = (long unsigned int) loopValue. 15;

& [CID.3851 = (bit_siz D.3850;

o (1D.3852 - D.3851 " 32;
& 4N 2853 = flonn unsinnad int) lonnValie 15

Figure 8: An example basic block with more statements
than usual shown in the GIMPLE Tree view of GDE.

Furthermore, due to the size of the GIMPLE, medium to
large sized basic blocks were taking a noticeable amount
of time to render.

¢ Eltree tyme
% [Z FUNCTION_TYPE
& 3 Hash
[type_unsigned = False
D type_next_wariant = hULL
®- [type_main_variant
D Loop to Node: FUNCTION_TYPE Hash: 23b2bl&3ceataz48c5fe00Llc57ecsddlb0o9:f220013
D type_context = NULL
[tyme_name = nuLL
& 3 tyoe_pointer_to
D type_align_ok = False
o[type_size
[tvpe_mode = Qlmade
o= [J dacl_name

Example Cycle

Figure 9: An example cyclic GIMPLE access, the cycle
is detected and reported by GDE.

To address this, we implemented dynamic GIMPLE tree
construction. Now, clicking a basic block causes only
the queries necessary to create the top level nodes to be
executed. We then used the results of those queries to
create visual representations of each top-level node. We
create visual representations of child node in the same
way as the user expands each parent node. This allowed
us to remove the tree depth limit but forced us to deal
with another problem that had previously been handled
by the depth limit. Although GIMPLE is best visually
represented as a tree structure, GIMPLE nodes can oc-
casionally form cycles when a child node points back to

I«

a parent node, as shown in Figure 9.

Although these cycles do not occur often in each par-
ticular GIMPLE tree, they exist in every GIMPLE tree.
Without the depth limit, a user could potentially enter
one of these loops and expand the tree until GDE runs
out of memory. We have addressed this issue by adding
loop detection as we create the GIMPLE tree; instead of
blindly displaying tree nodes, we instead display nodes
only if they have not previously been rendered. When
a node is previously displayed, we inform the user that
the node is a back reference using a placeholder node
which contains the hash of the back reference.

4.3 Source Window

The original source file, corresponding to the interme-
diate representation currently being examined, is dis-
played in the source window with line numbers for
quick reference. Although the user cannot explicitly in-
teract with this area, clicking a basic block in the CFG of
a function highlights the line(s) of code corresponding
to that basic block in green, the line(s) corresponding to
its successors in gray, and the line(s) corresponding to
its predecessors in yellow. This allows the user to easily
identify which lines of code in the source were compiled
to produce a particular basic block, explicitly displaying
the source-to-intermediate representation mapping.

4.4 GDB Console

GDE has the ability to debug a plug-in as it runs using
our GDB console. As a running plug-in is loaded into
GCC, debugging a plug-in requires the user to debug
GCC itself. Although most binaries can be debugged by
attaching a debugger to the running binary, debugging
GCC is not as straightforward. The command gcc is
not the actual GCC compiler, but instead the compiler
driver which determines the type of file being compiled,
sets several arguments normally transparent to the user,
and finally calls the appropriate compiler to compile the
source file. We show this process in Figure 10. To debug
GCC, the user must attach the debugger to the correct
binary while also setting the same arguments that the
GCC script would set. We have automated this process
by simply opening the GDB console from within GDE.

CC1

C Source Object File
C++ Source CClplus |Object File Performs Linking Binery
i
o

Source File

Figure 10: The GCC calling process. Actual file com-
pilation and linking are done by files called by the gcc
compiler driver.

As Figure 11 shows, the GDB console has five areas
of interest: (1) the CFG area, (2) the GIMPLE tree win-
dow, (3) the backtrace window, (4) the GDB output area,
and (5) the Input area. The GDB output area displays
all output from GDB as received along with occasional
GDE output used mainly for GDE debugging purposes.
The input area is where the user interacts with the un-
derlying GDB debugger. Users are given a dropdown
box with GDE commands, a text input area, and several
buttons corresponding to common commands.

CFG Area

GIMPLE Tree Window

- Input Area o[nerrupt) Cominue

Figure 11: The GDB Console of GDE.

When a user selects the dump function option while
GDB has stopped inside a function, GDE creates a vi-
sual representation of that function’s CFG in the CFG
view. Clicking CFG nodes in the CFG view has the
same result as clicking a CFG node in the overview win-
dow of GDE as described above: the GIMPLE tree is
displayed in the GIMPLE tree window of the GDB con-
sole. The generated GIMPLE tree, however, is a snap-
shot of the current state of the intermediate represen-
tation. This allows developers to see any changes that
happen to the GIMPLE tree as they happen, giving in-
sight into where a plug-in may be operating incorrectly.
Lastly, selecting the backtrace option displays the re-

sults of running backtrace command in the backtrace
window in a more readable form.

S Intermediate Dump Analysis

This Section discusses the results of several interme-
diate dumps using the db-dump GCC plug-in we de-
scribed in Section 3. As we show, being able to dump
the intermediate representation of compiling source
code using our db-dump plug-in allows for static analy-
sis to be performed on that data at a later time. To begin,
we discuss the files examined, including a brief expla-
nation of each file. We then discuss our dump statistics
and conclude with a discussion of some types of analy-
sis possible on our db-dump output.

5.1 Files Examined

The first file we dumped was a test file created
mainly for the development and debugging of plug-ins,
test.c.reference. This file is a simple file, writ-
ten in C, which simply computes the factorial of a num-
ber in a tabular manner. Next, we dumped a second
internal file named test.c.benchmark, which is
based off a file used to test for bounds violations. It
does this by accessing in bounds and out of bounds ar-
eas in the stack, heap, and global areas at a user speci-
fied rate. This file has been modified slightly to increase
the overall size of the file by the addition of function
copies, which was done to test the visualization capabil-
ities of GDE with respect to a larger single input file. We
then dumped two real world projects: Lighthttpd [19]
and the Linux kernal [39]. Lighthttpd is a light weight
web server written in C. The first Linux kernel config-
uration we have dumped was created using the make
allnoconfig option, which turns off as many fea-
tures as possible. We then turned on only the Ext2
filesystem and lock debugging utilities for our next con-
figuration.

5.2 Dump Sizes

Table 5.1 shows our dump sizes. We give numbers for:
(1) the overall size of the database, (2) the number of
functions compiled and dumped, (3) the number of three
address statements compiled and dumped, (4) the num-
ber of basic blocks dumped, and (5) the total number

Number S

Name Size(kB) Number Functions
kernel-ext3-lock 817000 15826
kernel-allnoconfig 678000 13435
lighttpd 87000 2310
test.c.benchmark 2688 46
test.c.reference 5 43

Table 1: Showing DB-dump key statistics

of source lines (including non compiled items such as
comments).

Figure 12 shows the relation of size vs. number of state-
ments dumped for all files. This is a good metric of
how our database system scales with project size. As
the lines of C code in a project increases, the number of
statements corresponding to those lines of C code gen-
erally increases as well. As each statement is the start-
ing point of a GIMPLE tree, the more statements you
have, the more GIMPLE there will be corresponding to
those statements. The large ratio of size vs.statements
for test.c.reference shown in Figure 12 is due to
the small size of test.c.reference itself. When
looking at small files, the database declarations alone
cause the size vs.statements ratio to be very large. How-
ever, it should be noted that in this case, even though
the ratio itself is large, the actual size of the database is
only 664kB. Figure 13 is a better metric of the scalabil-
ity of our system. As this figure shows our database size
scales linearly with the number of statements.

M Size / Statements

test.c.reference test.c.benchmark lighttpd Kernel-allnoconfig

Figure 12: Database size vs.number of statements. Al-
though the ratio is high for test.c.reference, the
overall size is 664kB.

5.3 Potential Uses

In this section we give potential analysis that can be
done on the intermediate dump of a program. We start
with a discussion of complex networks, what they are,
and why complex network analysis is useful. We then
discuss how analysis can be done on a software system
to determine if usage conventions are being followed
properly. Finally, we discuss model checking and how
tools could be used with db-dump to verify system prop-
erties.

Complex networks: Complex networks are defined
as network exhibiting non-trivial topological properties.
The process of determining if a network is a complex
network involves examining the structure of the network
to determine if the network has these properties. Many
real-world systems have been shown to exhibit com-
plex network properties such as predator-prey interac-
tions between species in a freshwater lake, neural net-
works, and networks of citations between papers [29].
Developers can perform complex network analysis on
the control flow graphs and call graphs extracted by db-
dump. Once a network can be shown to be a complex
network, certain assumptions can be made which may
have a large impact on both system security and recov-
erability [22]. Developers can do this analysis off-line
with the results then used to target specific areas of a
large software system for improvement.

900 . . ; ; .
800 - O
700 @/’/ -
& | _
2 00
& 500 | g
wn
3
9 400 | g
Q
S
8 300 | g
200 P i
100 () .
0(}/// 1 1 1 1 1
0 50 100 150 200 250 300

Number of Statements (Thousands)

Figure 13: Database size vs.number of statements for
each test file.

10

Code Convention: In large software systems, item
usage is often done through convention and is not
strictly enforced. For example, when accessing certain
structs within the Linux kernel, certain locks should be
taken. This locking policy is not strictly enforced in all
areas and as a result, some structs are accessed without
the appropriate lock being taken first. While this usu-
ally has no affect on the overall operation of the system,
occasionally it can lead to race conditions. Our schema
was designed in such a way that it is possible to write
relatively simple queries to target specific node types.
This allows developers to perform off-line analysis of a
system to look for things like the usage patterns speci-
fied above to determine if access conventions are being
followed correctly.

Model Checking: Symbolic model checking allows
the verification of many non-trivial properties of large
software systems. Tools exist, such as NuSMV 2 [8], to
allow developers to verify questions about system se-
curity without having to learn or implement complex
model checking methods. The information stored in our
database represents the internals of an entire code base.
Developers can format this data appropriately and pass
it to model checking tools to verify the correctness of
portions of the system.

6 Use Cases

In this section we give example uses for GDE using the
db-dump plug-in to extract GCC’s intermediate repre-
sentation. We discuss several plug-ins that we have de-
veloped in order to illustrate the benefits GDE brings
to plug-in development. The three plug-ins we use
as examples in this section are a call-tracing plug-in,
the verbose-dump plug-in previously discussed in Sec-
tion 3, and a bounds-checking plug-in. Our first two
use cases discuss issues faced while developing a call-
tracing plug-in. We then discuss an issue faced while
expanding the predecessor to db-dump, a plug-in named
verbose-dump. Verbose-dump is very similar to db-
dump with the differences being verbose-dump outputs
GIMPLE to stdout and does not handle redundant data
well. Next, we discuss issues faced while developing
a bounds-checking plug-in and we finally conclude by
discussing a potential use case for our GDB console.

6.1 Dissecting GIMPLE Trees

Our call-trace plug-in is written in C and adds tracing to
a program without modifying the program source code.
It does this by finding specific GIMPLE nodes we are
interested in logging, then extracting the information we
want to log from those nodes. As we show, GDE helped
the development of this plug-in.

When writing the call-trace plug-in, to target spe-
cific GIMPLE nodes it was necessary to find and repli-
cate intermediate representation patterns corresponding
to those nodes. For example, we wanted to add func-
tionality to the call-trace plug-in to detect and log con-
ditional statements. We were interested in reporting that
executing code had reached a conditional and what the
conditional evaluated to: true or false. To do this, we
needed to figure out how conditionals are expressed in
GIMPLE in order to target conditional nodes with our
plug-in. Checking tree.def gave us some information
about conditionals, but the information contained was
vague, stating operand one was the then-value while
operand two was the else-value. However it did not tell
us what those operands were. They could have been
one of many nodes, each requiring a different approach
for field access. Using the steps we describe below, we
show how the GIMPLE tree view of GDE made the task
of finding what the operands were easier than the tradi-
tional approach.

1. We began by writing a simple test case, using C,
containing several conditional statements. We then
compiled the test case using GCC along with the
db-dump plug-in to dump the GIMPLE intermedi-
ate representation to our database. Once the dump
was complete, we looked at the intermediate repre-
sentation stored in the database using GDE.

When inspecting the GIMPLE representation of
the code, our first task was to locate a condi-
tional statement in the CFG in the overview win-
dow. Once we found a block with a conditional
statement, we clicked it to display the GIMPLE
tree in the GIMPLE tree view window. As Fig-
ure 14 shows, we were quickly able to see that
the type of node corresponding to a conditional
expression was a COND_EXPR node. Further,
we were able to see that the first operand of a

11

COND_EXPR (or conditional expression) node was
the actual conditional test itself (in this case, an
EQ_EXPR or equality test), followed by the left
and right branches of the conditional. It was here
that we were able to see that the operands were
GOTO_EXPRs. Using this information, we were
able to design our call-trace plug-in to add logging
statements in the correct basic blocks to indicate if
the left or right branch was taken.

As this example demonstrates, finding and reproducing
simple GIMPLE code patterns is non-trivial. In this case
we were looking for all conditionals. It is clear that if we
were interested in a subset of conditionals, containing
a specific variable for example, then our code pattern
would become more complex and harder to find without
the aid of a visualization tool such as GDE. We show a
more complex example in Section 6.2.

6.2 Dissecting Complex Expressions

Generating complex GIMPLE expressions programmat-
ically can be difficult for even experienced programmers
due to GIMPLE'’s low-level nature. It can be unclear ex-
actly how certain items are represented in GIMPLE. For
example, while adding function call logging to the plug-
in, we were interested in printing the fields in pointers
to structs being used as function parameters. To do this,
we first needed to reliably identify function calls with
at least one pointer to a struct as a parameter. We used
GDE to accomplish this in the following way.

@-[Jif (x == 0} goto <L1>; else goto <L23;
¢ O COMD_EXPR
o [TREE_TYPE

o [EQ_EXPR P,

+ [GOTO_ExFR Conditional
-3 TREE_TYPE\
¢ 3 LABEL_DECL

[DECL_ABSTRACT = 0
[y LABEL DECLUD = 1
D DECL_SOURCE_LIME = 28
o 3 DECL_CAMTEXT
[DECL_INITIAL = NULL_TREE
[DECL_ABSTRACT _ORIGIN = MULL_TREE
[DECL_SOURCE_FILE = test.c
D DECL_MAME = MULL_TREE

¢] GOTO_EXPR. —_—
o [TREE.TYPE
& [LABEL_DECL

[DECL_ABSTRACT = 0
[y LABEL_DECL_LID = 2
[DECL_SOURCE_LIME = %8

Then Clause

Else Clause

Figure 14: Using GDE to get information about a
COND_EXPR.

1. As before, we wrote a small test case in C contain-
ing the fragment of code we wanted to generate:
in this case a function call with the address of a
struct as a parameter. We then compiled our
new test case with the db-dump plug-in enabled,
and inspected the output in GDE.

As shown in Figure 15, we were able to see ex-
actly how this particular statement was represented
in GIMPLE by GCC. In this case, the function call
was a CALL_EXPR node with several subtrees, the
last of which was an ADDR_EXPR. This indicated
that the node is a reference to the address of an ob-
ject, which is what we were looking for.

As we dug deeper, we discovered the ADDR_EXPR
node pointed to a VAR_DECL node, which in-
dicates a variable. Finally, examining the
TREE_TYPE attribute of the variable told us that
the variable is of type RECORD_TYPE, showing
that GCC represents a struct as a RECORD_TYPE
node. This information about how GCC represents
these kinds of function calls allowed us to write
code that reliably identified them.

Generating complex expressions can also be done by
hand after sifting through GCC source files. This would
be a long and tedious task, due to the different types of
attributes and operands that each node contains. Any
mistakes made during translation would likely be dif-
ficult to track down later due to the cryptic nature of
compiler errors.

o oo (&test);
[CALL_EXFPR
o= 3 TREE_TYPE
o= [INTEGER_CST
o [ADDR_EXPR

3 tnup

/ Pointer Parameter
¢ CJ ADDR_BXPR

& [TREE.TYFE
5 CIWAR_DECL
[DECL_#8STRACT = 0
o] DECL_SIZE
D DECL_SOURCE_LINE = 11
[TREE ADDRESSABLE = 1 e
[DECL_MODE = 1
o] DECL_CONTEXT
[DECLUIMITIAL = MULL_TREE
) DECL_ALIGH = B4
[DECL_ARSTRACT _ORICIN = MULL_TREE
¢ I TREE_TYPE
[} RECORD_TYPE
[DECL_SOURCE_FILE = test.c

Function Call

Pointer Target

Addressable

Target Type

Figure 15: Using GDE to see how a particular statement
is gimplified.

12

6.3 API Usage

The GCC API relies on specific macros, functions, and
objects to access nodes and node data. Whereas some
items like TREE_TYPE can be used very generally, oth-
ers like TREE_CHAIN are specific to a particular kind
of node, causing an error otherwise. GCC is complex
and the GCC internals documentation is incomplete and
frequently out of date with respect to the most recent re-
lease. As a result, a person unfamiliar with GIMPLE
can spend hours trying to figure out how to access a
particular field or child-node. GDE speeds up this pro-
cess significantly by providing insight into what might
be needed for a particular node access.

When we were expanding the verbose-dump plug-in to
print the C parse trees for functions we were unsure
how to iterate through the list of statements in a nested
block. When we inspected the node corresponding to
the nested block in the GIMPLE tree view, we found
that it had a STATEMENT_LIST operand, as shown in
Figure 16. Before we did this, it was not clear to us
exactly how this list was stored; it could have been a
TREE__CHAIN, which requires the use of a macro to ac-
cess each element. As it wasa STATEMENT_LIST, we
knew that we had to use the tree_stmt_iterator object to
access each element of the list. Using GDE in this sit-
uation helped us to figure out exactly how to access the
information contained within that node.

=3 main C-Tree
o [memset ((woid *) &facts, 0, 168);
o 3 imt done = o,
& =1 goto <D31685;
= =1 <D3167 53
ik
¢ CJBIND_EXPR
o 3 TREE_TYPE
o 3 WAR_DECL
D STATEMENT _LIST

Nested Block
o 3 BLOCK

o= [int num;

o= |j printf ((const char ™ restrict) (char *) "Enter a number (negative or over 20 to end). "),
- scanf ({const char * restrict) (char =) " %d", &numy);
o[if num < 0 || num > 20;

o9 <D3168>:;

o[if done == O;

[<D3169>:;

Figure 16: Using GDE to help determine which macro
to use.

6.4 Debugging Bad Code

Our bounds-checking plug-in adds run-time bounds-
checking to a source file by looking at pointer deref-
erences and checking if those references point to a valid
memory area. While developing this plug-in, we ran
into several issues that GDE was able to help with.

Even when the programmer understands what needs
to be done, GIMPLE programming is error-prone. The
difficulty is compounded by the fact that errors are
typically caught much later in the compilation process
and generate cryptic error messages. For example, we
have found that most malformed GIMPLE code sim-
ply causes a segmentation fault in GCC which gives
the error message internal compiler error. Debugging
is made easier when the GIMPLE information is visual-
ized with GDE.

For example, our bounds-checking plug-in declares an
array variable containing all of the addresses of stack
areas declared by each function for use by the bounds-
checking runtime. Although everything seemed to be
written correctly, using the plug-in was causing an error
to be generated rather late during compilation. Looking
at the code in GDE, we found through trial and error
that if we attempted to record the address of variables
that did not have the TREE_ADDRESSABLE flag set,
the compiler would crash. We found out that the flag
indicates that an item has a valid address. It was only
through the use of GDE that we were able to determine
that the flag was the problem. To fix things, we sim-
ply did not record the address of variables with the flag
unset.

6.5 CFG Inspection

In this section, we discuss two use cases concerning
the CFG, basic block inspection and edge inspection.
Both use cases involve the bounds-checking plug-in de-
scribed earlier.

Basic Block Inspection: Our bounds-checking plug-
in can dynamically switch bounds-checking on and off.
To do this, the plug-in replicates the entire CFG for each
function while also inserting an additional basic block
to each CFG that chooses to execute either our instru-
mented code path or the original uninstrumented path.

13

While developing this bounds-checking plug-in, how-
ever, we found the transformed code was not executing

properly.

Figure 17 we shows both the CFG generated by the
buggy version of the CFG duplicator as well as the cor-
rect version produced after the bug was fixed. We have
minimized all the CFG nodes to show only the structure
of the CFG.

We were trying to generate a duplicate CFG with identi-
cal left-hand and right-hand sides except for two shared
initial and ending nodes (the top and bottom nodes) as
well as a node to decide which path to take. As Fig-
ure 17 shows, all basic blocks were being replicated
correctly. As this use case demonstrates, GDE can be
useful in not only figuring out what is the problem, but
also what isn’t the problem.

Edge Inspection: As we have shown above, using
GDE we found that although the nodes of the graph
were being replicated properly, the problem was that
the edges connecting the nodes were not. All outgoing
edges were incorrectly connected to nodes in the left-
hand copy. The alternative to using GDE would have
been a very difficult task requiring parsing of the inter-
mediate representation to create the CFG by hand or de-
signing elaborate test cases to see in which cases code
executed properly. However, the overview provided by
GDE immediately illustrated the problem, and we were
able to correct the graph which fixed the problem.

6.6 Run-time GIMPLE Inspection

This section presents a hypothetical use case for our
GDB Console. While developing plug-ins, it is often
necessary to debug GCC itself. As we have stated in
Section 4, that process requires more effort than debug-
ging a typical program, and even once that is done, ex-
tracting run-time GIMPLE information is a non-trivial
task. Through the use of the GDB console, develop-
ers have the ability to look at GIMPLE with the click
of a mouse. For example, if a developer wanted to cre-
ate and insert a new COND_EXPR node into a particular
basic block, the developer would have to construct the
COND_EXPR node first, along with the operands. If the
developer performed this construction incorrectly, per-
haps by specifying the condition node incorrectly, the
result would most likely be an internal compiler error

Addrs)

g3 ¢ Oxdaacablsbadl

(b) With properly connected edges

Figure 17: Invalid and valid versions of a duplicated control-flow graph.

when the developer attempted to compile the program.
If this was occurring in only one location, it might be
possible to track the problem down quickly. However,
most transformations work by modifying or adding sev-
eral nodes, not just one. If nodes are being correctly
being created in most places, but incorrectly in others,
perhaps due to a cascading problem, then tracking down
the problem becomes much more difficult. Using the
GDB console, it would be possible to look at the GIM-
PLE at each step of the transformation. The developer
would be able to see a snapshot of each GIMPLE tree as
it currently exists during compilation, which may pro-
vide insight into the problem.

7 Related Work

Graphical development tools and debuggers simplify
many elements of application development by allowing
the developer to debug or develop an application visu-
ally. In this section we discuss tools in three categories.
In Section 7.1 we discuss graphical tools for program
development. In Section 7.2 we describe compiler visu-
alization tools. Lastly in Section 7.3 we briefly discuss
the C intermediate language (CIL), a C-like language

14

that allows developers to develop source to source trans-
formations, and its uses compared to traditional trans-
formation development.

7.1 Graphical Development

Graphical Debuggers: Stand-alone graphical debug-
gers, such as GNU DDD [15] or GDBX [4], are de-
signed to cut development time by allowing the devel-
oper to view source code along with some visual repre-
sentation of the run-time data of that code. Often, these
tools are designed to provide visual information to the
user by visualizing the output of a command-line debug-
ger such as GDB [12] or dbx [38]. This use is common
enough that some debuggers have output modes used
when the debugger is part of a larger system. GDB,
for example, supports a special mode called machine
interface mode, which automatically formats GDB out-
put to be easily parsed by a front-end. However, not
all tools operate in the manner and instead choose to
directly modify an executing binary. Development en-
vironments, such as Eclipse [40], provide debugging in-
formation to the developer along with a set of other de-
velopment tools, such as a source-code editor. Whereas

it may be simpler to parse GDB output, binary modifica-
tion allows the developer to do things like hot swapping
executing code; modifying executing code without a full
rebuild of the binary. Over the years, other debuggers
have also implemented visualizations and are similar to
the systems described above. The SoftBench [17] and
CodeCenter [7] debuggers, for example, support sim-
ple data structure visualizations in the form of box-and-
arrow diagrams. Integrated and stand-alone graphical
debuggers such as these are useful as their visualizations
make it easier to pass input to and to view output from
the debugger. These tools do this by providing an in-
teractive debugging interface to the user, allowing the
user to set breakpoints, set watches, and view run-time
data visualizations through mouse clicks. Although ease
of input through mouse use may not be all that useful
to a highly experienced command-line debugger user, it
may be highly beneficial to a less experienced debugger
user. The run-time data visualizations these tools pro-
vide may give insight into problematic areas of code;
useful to both experienced and inexperienced users. Al-
though plug-ins could be debugged or visualized with
these tools, they are very general purpose, designed to
work on a variety of programs. GDE, on the other hand,
has been designed specifically for use with plug-ins.

UML Tools: UML tools, like Rational Rose [34] and
Visio [26], allow developers to specify items such as
class relations, local variables, or function prototypes
for a particular application in a visual manner. This al-
lows the developer to see a high-level representation of
the application which often gives insight into any short-
comings in its design. When the developer is satisfied
with the application layout, a simple button click cre-
ates a skeleton of the program.

Graphing Tool-kits: Graphing tool-kits allow the vi-
sualization of data. Tools like aiSee [1] work by read-
ing input specified in a custom graph description lan-
guage, then creating and visualizing a graph based on
the input specified. Some tools can be used by other
programs to perform visualization. Doxygen [10], for
example, creates documentation for a source package by
scanning source code and parsing directives found in the
source code of a package, similar to using javadoc [37]
on a Java file. When configuring Doxygen, users are
given the option to create a visual representation of the
scanned sources if they have GraphViz [3] installed.

15

Other tools, such as Program Explorer [23] and Module
Views [42] also exist and provide data visualizations for
object oriented programs. These visualizations include
call visualizations, object creation visualizations, exe-
cution visualizations. Lastly, projects such as the Jin-
sight project are interested in examining the dynamic
behavior of Java programs [18]. The Jinsight project
have developed Java specific visualizations, such as ob-
ject visualizations to find wasted memory [32] and a
method call visualization tool [31], to examine this be-
havior. These visualization tools like these are useful
because they give the developer a high level, concrete
view of the interactions of an application. This in turn
may give the developer insight into problematic areas of
the application’s design or may be able to give insight
into debugging an application. Although these tools are
useful, they are general purpose and require either the
learning of a graphing language to describe their graph
or the insertion of directives throughout program code
for data visualization. The run-time information these
tools provide is not suited to plug-in development due
to its high-level nature.

7.2 Compiler Visualization

Whereas graphical development tools have been shown
to vastly improve application development by display-
ing complex information in an easy to understand form,
little has been done to visualize complex compile-time
data.

The Interactive Compiler: The Interactive Com-
piler [41] was one of the first attempts at visualizing
compiler information. It is a custom compiler writ-
ten in Smalltalk-80 which compiles a simple language
consisting of assignments and conditionals. After the
initial compilation, the interactive compiler generates
an intermediate representation (IR) which is then dis-
played to the user, in text-based form, and can then be
edited as needed. Although the interactive compiler laid
the groundwork for much of what we have done, there
are two issues which make it unsuitable for use as a
transformation-development tool. First, due to technol-
ogy limitations at the time, the IR information gener-
ated by the Interactive Compiler is displayed in a textual
form. As we have shown in Figure 1, this is problem-
atic when dealing with modern programs, as each line
of source code produces many lines of IR output. Sec-
ond, the compiler itself is only able to compile a simple

language on a limited number of architectures, whereas
transformation developers want to target compilers that
can compile several complex languages on many differ-
ent architectures.

xvpodb and VISTA: xvpodb is a visualization tool de-
veloped to visualize the optimizations performed by the
Very Portable Optimizer (vpo) [S]. Vpo is an opti-
mizer designed to perform many low-level RTL opti-
mizations [43]. These types of optimizations are things
such as instruction selection, instruction scheduling, and
dead variable elimination. When a file is compiled with
vpo enabled, various vpo messages are intercepted by
the xvpodb tool and saved in a file for later viewing.
The user can then step forward and backward through
the vpo optimization process, choosing to examine var-
ious pieces of information at will. This allows the user
to see things like which transformations affect a specific
instruction.

VISTA is a tool based off based vpo and designed to
allow performance tuning of applications [20]. VISTA
allows the user to step through transformation as xvpodb
while also providing useful features such as source cor-
relation via line highlighting. Lastly, VISTA is able to
rate the effectiveness of optimizations and select the set
of optimizations providing the best performance gain.

Although xvpodb and VISTA are useful in their own
right, especially as teaching aids, they have one major
drawback: they can only visualize the transformations
performed by the vpo optimizer. This means the user
is only able to look at RTL-level transformations, not
transformations performed on high-level IRs. Whereas
RTL-level transformations are very powerful, certain
transformations, like function call logging, are better
suited to high-level IRs. These tools, by design, are un-
able to visualize or modify non-RTL-level transforma-
tions.

7.3 C Intermediate Language

The C intermediate language (CIL) is a source-to-source
transformation of C programs [28]. CIL users first write
a transformation using CIL which is then applied to
a user-specified source file. This combination creates
a new C source file which is then passed to GCC to

16

compile as usual. The main advantage of using CIL is
that it allows developers to specify transformations us-
ing a simplified version of C; this means that developers
need not learn a complex IR to add new functionality
to existing code. Although CIL is a useful and pow-
erful language, it has an inherent problem which lim-
its its usefulness. CIL transformations by design only
support source-to-source transformations of C programs
whereas other transformations, such as GIMPLE trans-
formations, are language independent. Using languages
like CIL to perform transformations can quickly become
cumbersome, requiring developers to learn a new lan-
guage for each language they want their transformation
to support.

8 Conclusions

Code transformations have traditionally been difficult
to develop, requiring developers to directly modify the
source files of a compiler, a highly non-trivial task. De-
ployment of a completed transformation is hard, ne-
cessitating a line-by-line addition of the transformation
code to the existing source to ensure compatibility with
other transformations existing on that particular system.
GCC plug-ins have solved the problem of transforma-
tion deployment, but have not addressed the issue of
transformation development.

Visual development is the solution to this problem.
It has had great success in the past with debuggers, de-
velopment environments, and modeling tools. We have
presented the GIMPLE Development Environment, a
useful tool to reduce the time taken to design, develop-
ment, and debug GCC plug-ins and optimizations. We
have also presented a GCC plug-in which stores the in-
ternal representation of a program in a database; a useful
tool in its own right as we have shown in Section 5. The
graphical control flow graph GDE creates for each func-
tion allows the developer to track the flow of informa-
tion through a particular program from beginning to end
much more effectively than the traditional method, look-
ing at a text-based control flow graph information. Sec-
tion 6 shows how this visual representation of the CFG
aids in the debugging of plug-ins modifying the struc-
ture of all or part of an existing control flow graph. The
call graph visualization capabilities of GDE allow devel-
opers to quickly determine predecessors and successors

to a given function, and help with program data flow un-
derstanding. GDE’s GIMPLE tree view allows develop-
ers to visualize the various GIMPLE trees for each state-
ment in each basic block. This not only gives insight
into which macros to call on a given node, but also al-
lows for quick inspection of a transformation, allowing
the developer to quickly determine if GIMPLE nodes
are being modified properly. Lastly, our GDB console
allows developers to examine the GIMPLE and control
flow graph of a function as it is compiling, providing
more useful information to developers as opposed to
cryptic errors as discussed in Section 6.

We have found that although transformation develop-
ment is inherently difficult, the use of these visual aids
alleviates many of the difficulties associated with using
the GCC Internals API and greatly lessens development
time.

9 Future Work

In this Section we will discuss future research areas for
GDE.

9.1 Zooming

Although having each component of GDE rendered in
its own view is useful and functional, the call graph,
control flow graph, basic blocks, and GIMPLE are all
inherently related. We plan to modify GDE to use a
zooming-based view. Initially, the user would be pre-
sented with the call graph, which the user could use to
identify functions of interest. Zooming in on these func-
tions would then give the user the control flow graph for
that particular function, showing all basic blocks. If a
basic block were particularly interesting, the user could
then zoom in to view the statements and the GIMPLE
for that block. This would expand and improve GDE
usefulness with larger files.

9.2 Libraries

While GDE currently does not have the ability to exam-
ine pre-compiled libraries, it would be possible to ex-
tend GDE to handle them. This task would require ei-
ther storing the compile-time information of all shared
libraries in a database when each library is compiled,
or dynamically re-compiling a library to obtain the
compile-time information for that library. Dynamically
re-compiling libraries would be a difficult task as the
source might not be available for a given library.

17

9.3 Ixr++

The Linux Cross Reference(LXR) allows developers the
ability to quickly index and browse source repositories,
with Linux kernal source browsing being one of the
more useful features of the system. While this tool is
very useful, it only gives developers a top level view of
their code. As db-dump stores the GIMPLE informa-
tion of a source base, extending LXR to also provide
compile-time information for each statement would be
useful to developers and straight forward to implement.

9.4 Online Functionality

Making GDE a web application is a practical and attain-
able goal. Although GDE is written in Java and requires
little work to port from system to system, db-dump is a
C++ GCC plug-in, requiring a specific configuration for
each system it is to run on. Furthermore, the user needs
to have Postgresql running on the system db-dump is
running on. By putting GDE online, developers would
only need to connect to a server, upload their code, and
view it with GDE. This goal is particularly interesting
as GDE is written in Java, converting GDE to an applet
will not require a rewrite of the entire system.

9.5 RTL

We plan to further expand the amount of compile-time
information displayed to the developer by visualizing
the RTL of each function. RTL is used extensively by
developers porting GCC between architectures and for
developers working on improvements to GCC’s code
generator. Visualizing this level may greatly reduce the
complexity of writing RTL code.

References

[1] AbsInt.
com.

aisee, 2008. http://www.aisee.

[2] R. Agrawal, L. G. Demichiel, and B. G. Lindsay.
Static type checking of multi-methods. In ACM
SIGPLAN Notices, 1991.

[3] AT&T Research Labs. Graphviz, 2009. http:
//www.graphviz.org.

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

D. B. Baskerville. Graphic presentation of data
structures in the DBX debugger. Technical re-
port, University of California at Berkeley, Berke-
ley, CA, USA, 1985.

M. Boyd and D. Whalley. Graphical Visualization
of Compiler Optimizations. Journal of Program-
ming Languages, 3(2):69-94, 1995.

S. Callanan, D. J. Dean, and E. Zadok. Extend-
ing GCC with modular GIMPLE optimizations. In
Proceedings of the 2007 GCC Developers’ Sum-
mit, Ottawa, Canada, July 2007.

CenterLine Software, Inc. CodeCenter Tuto-
rial, 1995. http://products.ics.com/
products/codecenter/codecenter—4.
l.1-tutorial.pdf.

A. Cimatti, E. Clarke, E. Giunchiglia,
F. Guinchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An
opensource tool for symbolic model checking.
Computer Aided Verification, pages 241-268,
2002.

P. A. DesAutels. SHAI: Secure Hash Algo-
rithm. www.w3.o0rg/PICS/DSig/SHALl_1_
0.html, 1997.

Dimitri van Heesch. Doxygen, 2008.

WWW .
doxygen.org/.

A. Fowler. A Swing Architecture Overview.
Technical report, Sun Microsystems, 2007.
http://java.sun.com/products/jfc/
tsc/articles/architecture/.

T. Free Software Foundation, Inc. GDB: The GNU
Project Debugger. www.gnu.org/software/
gdb/gdb.html, January 2006.

T. GCC Team. The gnu compiler collection.
http://gcc.gnu.org.

T. GCC team. GCC online documentation,
December 2005. http://gcc.gnu.org/
onlinedocs/.

GNU Project. The Data Display Debugger.

http://www.gnu.org/software/ddd.

18

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

L. Hendren, C. Donawa, M. Emami, G. R. Gao,
Justiani, and B. Sridharan. Designing the Mc-
CAT Compiler Based on a Family of Structured
Intermediate Representations. In Lecture Notes
In Computer Science; Vol.757, pages 406-420.
Springer-Verlag, 1992.

Hewlett-Packard Company. C and C++ Soft-
Bench User’s Guide, June 2000. http:
//docs.hp.com/en/B6454-97413/
B6454-97413.pdf.

IBM Research. Jinsight. http://www.
research.ibm.com/jinsight.

Jan Kneschke. Lighttpd, 2009. http://www.
lighttpd.net/.

P. Kulkarni, W. Zhao, S. Hines, D. Whalley,
X. Yuan, R. van Engelen, K. Gallivan, J. Hiser,
J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho,
and Y. Paek. VISTA:VPO Interactive System for
Tuning Applications. In ACM Transactions on
Embedded Computing Systems (TECS), New York,
New York, November 2006.

N. Kumar, J. Misurda, B. R. Childers, and M. L.
Soffa. Instrumentation in software dynamic trans-
lators for self managed systems. In Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed
systems, 2004.

Y.-C. Lai, A. Motter, T. Nishilawa, K. Park, and
L. Zhao. Cascade-based attacks on complex net-
works. Pramana, pages 483-502, 2007.

D. B. Lange and Y. Nakamura. Program Explorer:
a program visualizer for C++. In COOTS’95: Pro-
ceedings of the USENIX Conference on Object-
Oriented Technologies on USENIX Conference on
Object-Oriented Technologies (COOTS), pages 4—
4, Berkeley, CA, USA, 1995. USENIX Associa-
tion.

J. R. Larus and T. Ball. Rewriting executable
files to measure program behavior. In Software—
Practice & Experience, 1994.

J. Merrill. GENERIC and GIMPLE: A New Tree
Representation for Entire Functions. In GCC De-
velopers Summit, 2003.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Microsoft ~ Corporation. Visio 2007.
http://office.microsoft.com/

en-us/visio/default.aspx.

S. Microsystems. The Awt in 1.0 and 1,1. Techni-
cal report, Sun Microsystems, April 1999. http:
//java.sun.com/products/jdk/awt.

G. Necula. Cil - infrastructure for ¢ program anal-
ysis and transformation, 2007. http://manju.
cs.berkeley.edu/cil.

M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45:167, 2003.
http://www.citebase.org/abstract?

id=ocai:arXiv.org:cond-mat/0303516.

V. S. Pai and S. Adve. Code transformations to im-
prove memory parallelism. In Proceedings of the
32nd annual ACM/IEEE international symposium
on Microarchitecture, pages 147-155, 1999.

W. D. Pauw, D. Lorenz, J. Vlissides, and M. Weg-
man. Execution patterns in object-oriented visu-
alization. In Proceedings Conference on Object-
Oriented Technologies and Systems (COOTS ’98),
pages 219-234. USENIX, 1998.

W. D. Pauw and G. Sevitsky. Visualizing ref-
erence patterns for solving memory leaks in
Java. In ECOOP ’99: Proceedings of the 13th
European Conference on Object-Oriented Pro-
gramming, pages 116-134, London, UK, 1999.
Springer-Verlag.

PostgreSQL Global Development Team. Post-

greSQL. http://www.postgresqgl.org,
2003.
Rational Software. Rational Rose. http://

www—01.ibm.com/software/rational.

Red Hat. Red hat magazine, 2009. http://
magazine.redhat.comn.

B. Starynkevitch. Compared gcc compilation time
on two linux desktops. www.starynkevitch.
net/Basile/compare_time_gcc.html.

Sun Microsystems. Javadoc tool, 2004. http:
//java.sun.com/j2se/javadoc.

Sun Microsystems, Inc. dbx man page. Sun Studio
11 Man Pages, Section 1.

19

[39]

[40]

[41]

[42]

[43]

The CentOS Development team. Centos, 2009.
http://www.centos.org/.

The Eclipse Foundation. Eclipse. http://www.
eclipse.oraq.

S. R. Vegdahl. The Design of an Interactive Com-
piler for Optimizing Microprograms. In Proceed-
ings of the 18th annual workshop on Micropro-
gramming, December 1985.

R. J. Walker, G. C. Murphy, B. Freeman-Benson,
D. Wright, D. Swanson, and J. Isaak. Visualiz-
ing dynamic software system information through
high-level models. In OOPSLA ’98: Proceedings
of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, pages 271-283, New York, NY,
USA, 1998. ACM.

Zephyr. Very portable optimizer, 1998. http:
//www.cs.virginia.edu/zephyr/vpo.

