Extending GCC with Modular GIMPLE Optimizations
Sean Callanan, Daniel J. Dean, and Erez Zadok
Stony Brook University

Appears in the proceedings of the 2007 GCC Developers Summit

Abstract

We present a system of plug-ins for GCC that allows
GCC to load GIMPLE transformations at run-time. This
system reduces the support effort required for GCC by
separating transformations from the core compiler. It
also makes it possible for developers not connected with
the GCC project to develop and distribute transforma-
tions independently. We demonstrate two plug-ins we
have developed with this system, one of which reduces
the effort required to develop transformations signifi-
cantly by allowing visualization of the GCC control-
flow graph and the GIMPLE tree structure. We enumer-
ate portions of the compiler that could be extracted into
plug-ins, and describe future applications of the plug-in
system.

1 Introduction

GCC is considered the reference compiler for real-world
C code. It is provided with all of the popular com-
mercial and free Unix systems, making its availability
nearly ubiquitous. Virtually all modern C code-bases
are compatible with GCC, making it general. Finally,
some code-bases, such as the Linux source code, explic-
itly rely upon features of GCC in order to work properly,
making GCC’s implementation of the C language some-
thing approaching a de facto standard.

This makes GCC an attractive platform for
production-grade code transformations. Code trans-
formations are compilation passes that modify source
code in some way that is nonessential to its translation
to machine code. They can be used for optimization,
for instrumentation, and to make cross-cutting modifi-
cations to aspects of the code being compiled, among
other applications. These transformations range from
frequently-used optimizations like function inlining
to special-purpose debugging transformations like
Mudflap [2].

GCC is even more attractive for transformation de-
velopment because of the GIMPLE intermediate repre-
sentation [6], which provides a stable, easy-to-use API
for inspection and manipulation of intermediate code.
The use of the GIMPLE intermediate representation al-
lows high-level optimizations to avoid having to use the
RTL (Register Transfer Language) layer, which previ-
ously made GCC transformation a more difficult task.

Before GIMPLE, research compilers or alternative ap-
proaches like CIL [4] were more attractive, but these
have their own problems, particularly the necessity to
maintain compatibility with GCC.

However, the GIMPLE intermediate representation
presents its own challenges during transformation devel-
opment and testing for several reasons. First, the matu-
rity of the GCC project and the fact that many system
distributions depend on GCC to compile their system
makes it difficult to get transformations integrated into
GCC until they are very mature. Second, it may not be
desirable to include and maintain transformations that
do not have broad appeal in the core GCC distribution.
Finally, it is an unattractive proposition to have to dis-
tribute experimental transformations as patches against
a particular version of GCC and recompile the compiler
when changes are made.

To solve these problems, we developed a plug-in sys-
tem similar to that used by Eclipse [5]. Our system al-
lows separate development and compilation of GIMPLE
transformations, solving the problems listed above and
offering new features like enhanced debuggability and
better argument passing. We have already developed
a variety of plug-ins using our system, and have real-
ized two main benefits. First, we were able to take ad-
vantage of graphical debugging tools that we describe
in Section 3.2 as well as significantly reduced develop-
ment time because we were developing outside the GCC
build system. Second, we were able to port our trans-
formations from one version of GCC to another without
changing a single line of code; once the plug-in support
was ported to the new GCC release, the plug-ins just
needed to be recompiled.

The plug-ins we have developed are under the GPL,
and we anticipate the possibility of enforcing the GPL on
all GCC plug-ins by requiring plug-ins to export a func-
tion is_GPL which returns 1, analogously to the Linux
kernel’s taint mechanism. Depending on GCC developer
policy, returning 1 could be made mandatory in order for
GCC to run the plug-in.

In this paper, we demonstrate the simplicity and
power of GCC transformation plug-ins. In Section 2,
we describe the modifications to GCC that make
plug-in—based development possible. In Section 3, we
describe some plug-ins that we have already built using
this infrastructure, highlighting plug-ins that are useful

to transformation developers. In Section 4, we discuss
two parts of GCC that could be made into plug-ins. In
Section 5, we describe plug-ins that could be created in
the future, and we conclude in Section 6.

2 Modifications to GCC

Plug-ins are built based on an Autoconf-based tem-
plate [1]. The template’s configure script currently
requires the headers from a built version of the GCC
source code; when the plug-in is built, the Makefiles
produce a shared object file suitable for loading using
the host operating system’s dynamic loader interface.

Only minor changes need to be made to GCC to sup-
port plug-in loading. These changes revolve around
three tasks; we will discuss them below in turn. The first
change is an addition to the GCC build sequence, com-
piling the Libtool 1td1 library [3] into GCC and link-
ing GCC with —export-dynamic. This allows GCC to
load plug-ins, and allows plug-ins to access GCC inter-
faces. The second change is the addition of an optimiza-
tion pass before all other GIMPLE transformations, and
at the start and end of translation for each file. This al-
lows plug-ins to maintain per-file state and perform code
optimizations while referring to this state. The third
change is the addition of a compiler flag that allows the
user to specify plug-ins to load and provide arguments
to those plug-ins either on the command line or through
files.

To add the 1td1l library to GCC, we modified the
top-level top-level Makefile to add build rules for the
1td1l library. Additionally, we modified the build rules
for the ccl binary to make it compile with Libtool,
export its symbols like a shared library (using the
—export-dynamic option to Libtool), and use the
1td1 library to load plug-ins. The ability to export sym-
bols from an executable to plug-ins does not exist on
every platform: Linux, Solaris, and Mac OS X sup-
port this functionality, for instance, but Cygwin does
not. A build process in which the GCC backend code
is linked as a shared library, and cc1 and all plug-ins
are linked against it, would have eliminated this require-
ment. However, large amounts of state that is currently
maintained as globals by the backend would have to be
converted to on-stack state because otherwise ccl and
the plug-in would have differing copies of the backend’s
global state.

To allow instrumentation plug-ins to run at the proper
times, we added a GIMPLE transformation pass that oc-
curs before pass_all_optimizations in passes.c.
This allows plug-ins to act on unoptimized code, before
inlining has occurred. We did this here because many
plug-ins we have developed are for debugging purposes,
and require as pristine a view of the original code as
possible. Additionally, we provided hooks at the begin-

ning and end of translation to allow plug-ins to initialize
and clean up internal state. We anticipate that, in the
future, GCC developers will add hooks for other GCC
optimization passes, such as the C GENERIC transfor-
mation phase and the RTL optimization phase, and other
points in the GIMPLE compilation phase.

Finally, to allow the end user to specify which plug-
ins should be loaded with which arguments, we provided
anew argument, -ftree-plugin, which has the syntax
shown in Figure 1.

—-ftree-plugin=plug-in-name
:key=value

Figure 1: Syntax for specifying a plug-in.

The first argument, plug-in-name, is a
shared object file that contains the func-
tions run, pre_translation_unit, and

post_translation_unit. The run function is
called for each function in the translation unit; the
other functions are called before and after the entire
translation unit is processed, respectively. The list of
key-value pairs specifies arguments to the plug-in; these
can be fetched using a function. In addition, the special
key _cONF specifies a file to be loaded and parsed for
additional arguments; in this case, each line in the file is
a key-value pair separated by an = sign.

3 Existing plug-ins

In this section we enumerate some plug-ins that we have
already developed. In Section 3.1 we discuss a verbose
dump plug-in for GIMPLE meant for use by program-
mers in developing transformations, and in Section 3.3
we describe a call-trace plug-in for use by end users
in tracing their code. We have also developed malloc
checking and bounds-checking plug-ins; however, these
will be superseded by a plug-in implementation of Mud-
flap (see Section 5).

3.1 Verbose Dump Plug-in

Transformation developers frequently require a view of
the GIMPLE code that is as verbose as possible. They
use this view for several purposes: to identify patterns
that need to be transformed, to determine the proper
form of GIMPLE structures that transformations should
generate, and to verify that transformations are working
correctly. We designed a verbose dump plug-in to facil-
itate this. We designed the verbose dump plug-in with
extensibility in mind: as GIMPLE evolves and grows,
the verbose dump plug-in will handle new GIMPLE ob-
jects, such as new tree codes or parameters, with little
or no changes needing to be made. We achieved this

by creating a new file, parameter.def, that resembles
tree.def but formally specifies all the accessor macros
that exist for tree attributes. The file contains lines of the
form shown in Figure 2.

DEFTREEPARAMETER (
name,
type,
macro,
code, ...

Figure 2: Syntax of parameter.def

The name field specifies the name of the macro; the
type field specifies what type of data it returns (e.g.,
SIZE.T or TREE); the macro field specifies the macro
used to extract the field; and the code fields constitute
a list of TREE_CODES for trees that have this parameter.
For example, the parameter named type_precision
has type SIZE.T, macro TYPE_PRECISION, and codes
INTEGER_TYPE, REAL_TYPE, and VECTOR_TYPE.

3.2 Graphical Inspection of GIMPLE
Code

As shown in Figure 3, the output from the verbose-dump
plug-in is so verbose as to be overwhelming in large
quantities. Rather than adopt a simplified representation,
we instead developed a Java-based tool called Gimple
Viz to represent the output graphically. We chose Java as
the development language due to its cross-platform com-
patibility, which allowed us to concentrate on the devel-
opment of the actual tool itself as opposed to platform
support and library dependencies. Figure 4 is a screen-
shot of Gimple Viz displaying a file. The visualizer has
three main areas: the Control Flow Graph area, the GIM-
PLE Tree View area, and the Source/Search area, which
we describe below.

Control Flow Graph: . The control flow graph for
each function is rendered as rectangles connected by ar-
rows. Each colored rectangle represents a basic block.
When the user clicks on a block, Gimple Viz highlights
the selected block along with its predecessors and suc-
cessors. The successor edges are highlighted as well.
Additionally, it displays a tree representation of the cor-
responding GIMPLE nodes in the GIMPLE tree view
area, and highlights corresponding code or dump lines
in the Source/Search area.

GIMPLE Tree View: . The GIMPLE tree view area
is a visual representation of the GIMPLE code for a par-
ticular basic block. The root node of each tree is a state-
ment from the currently selected basic block, labeled
with the result of applying print_generic_stmt. The

MODIFY_EXPR 1,2
TREE_TYPE:
INTEGER-TYPE 2,0
TYPE_PRECISION=32
TYPE_UNSIGNED=true
VAR_DECL 2,0
TREE_TYPE:
INTEGER_TYPE 2,0
TYPE_PRECISION=32
TYPE_UNSIGNED=true
DECL_ARTIFICIAL=true
MULT_EXPR 1,2
TREE_TYPE:
INTEGER_TYPE 2,0
TYPE_PRECISION=32
TYPE_UNSIGNED=true

Figure 3: A portion verbose dump output for one statement,
leaving many node attributes out.

£ GINPLEViz v1.0 BEC]

File Fdit SearchOptions Functions Help

[GmMPLE vizv1.0

Enter Saar

1 info

ddress 067490640 ~ = Basic Biock: ow7090070 -
fEnty Blosk | I+ 202371 = rox
I MODIFY_EXPR
¢ CITREE_TYPE
¢ CJINTEGER_TYPE
[Tvpe_PRECISION =32
[TYPE_UNSIGNED = false

o] VAR_DECL

Search
“main” |

Function fact™ | Function "

Figure 4: Gimple Viz displaying a file. 1 marks the CFG area,
2 marks the tree view, and 3 marks the source/search area.

other nodes are operands or parameters of their parents.
The user interacts with the tree view in two ways: click-
ing and searching. Manually clicking a node will expand
that node showing its children. This process can be re-
peated until the desired node is reached. Searching for a
particular TREE_CODE will expand the tree to reveal the
desired node, allowing the user to quickly locate specific
nodes.

Source/Search: . The Source/Search area can show
search results, source code, and verbose-dump output.
The results of searches—function searches, basic-block
searches, and type searches—are interactive: clicking
on a function search result shows the control-flow graph
for that function; clicking on a basic-block search result
shows the containing function’s CFG and highlights the
block; and clicking on a TREE_CODE search highlights

*++ CALL TO main [0]

Struct :xxtest** found in function
main

test->value = (int32_t)5
test->name = (char=*)"contents"
*x CALL TO foo [1]

* [1] testPtr = 0x0x7fffcef31770
x CALL TO foo2 [2]

* [2] value = 0x0x7fffcef31748
Conditional found value = FALSE,
right branch taken...

*%% [2] RETURNED null

Figure 5: Call trace output

the containing basic block and expands the containing
tree in the GIMPLE tree view to make the tree with that
code visible.

Gimple Viz can also display the original source file
that was compiled by GCC in the source/search win-
dow. For quick reference, line numbers are displayed for
the user. Although the user cannot directly interact with
this area, clicking a basic block or a search result will
highlight the lines corresponding to that block, its pre-
decessors and its successors. Finally, the source/search
window can also display the raw verbose dump output.

3.3 Call Trace Plug-in

We have developed a plug-in called call-trace to allow
full verbose tracing statements to be added to a program
at compile time without requiring the programmer to add
any code. This feature significantly reduces debugging
time for many code problems by eliminating the need
to add printf statements and other debugging state-
ments to code, and by providing verbose tracing infor-
mation in cases where the programmer would normally
have needed to single-step the program in gdb.

This plug-in identifies control points in the GIMPLE
code corresponding to conditional statements and func-
tion calls, as well as accesses to variables. Arguments
control exactly which statements are logged, and which
portions of the source code are to have logging added.
The way events are reported is also configurable: log-
ging statements can be printed using fprintf or sent
to a custom logging function. Figure 5 shows sample
output from the call tracer.

We are currently developing an extension to Gimple
Viz to display the output from the call-trace plug-in in a
visual manner, giving the developer the ability to watch
the internal execution of a program at run-time. We
are also expanding the call-trace plug-in to detect not
only conditionals but loops as well by tying into the
GENERIC intermediate representation.

4 Making Plug-ins from Existing Func-
tionality

In this section, we describe portions of GCC’s function-
ality that could be extracted into separate modules for
use only when needed. This would have three bene-
fits: first, it would enforce modularity for these com-
ponents, ensuring that they can be maintained separately
from the main code base and contributing to their stabil-
ity as GCC internals change. Second, it would reduce
the turnaround time for fixes to mudflap because they
would not need to be subject to the scrutiny that core
GCC patches are subjected to. Third, it would reduce
the size of the core GCC code base, resulting in less code
for GCC'’s core developers to maintain and support, and
less download and compilation time for end-users.

Mudflap: This utility provides pointer-debugging
functionality including buffer overflow detection,
matching-based leak detection, and reads to unini-
tialized objects. It is implemented as two GIMPLE
optimization passes: one that executes before the
lowering to SSA (Static Single Assignment) so that all
scopes are intact, and one that executes after lowering
and optimization to get an accurate view of just those
memory accesses that have actually been performed.
Mudflap can be converted to a plug-in provided that
plug-in hooks are provided at multiple stages in the op-
timization process. Our plug-in infrastructure supports
transformation hooks at all locations where built-in
GIMPLE transformations can take place, making this
process straightforward.

gecov and gprof: . These utilities consume call-graph
information that is generated by GCC and by the run-
ning program, creating runtime profiles of the execution
patterns for code that has been compiled with the -p or
—fprofile-arcs flags. When profiling, GCC modi-
fies the program to include coverage counters embed-
ded in the program that provide runtime coverage infor-
mation. It also generates a call-graph for the program.
The transformation that performs these tasks runs as a
transformation in a way analogous to Mudflap, but labels
basic block edges with additional information that uses
the aux field in the basic block structure. This does not
present a problem for these transformations, since they
take place in one pass and do not need persistent aux
storage. However, other plug-ins that may need to do
analyses at multiple times in compilation it may become
desirable to expand aux to support addition of custom
fields, perhaps keyed on a string, at runtime.

5 Future Work

Once the groundwork is in place that allows GCC trans-
formations to be developed as plug-ins, we anticipate
that many new transformations will be developed. In

this section, we outline future applications of plug-ins,
some of which we are currently developing for our own
research.

Transformations in Python: . Some developers only
want to perform straightforward analyses or transforma-
tions that use the GIMPLE API. To reduce development
time for these developers, we are developing a plug-in
that will expose the GIMPLE API to Python scripts.
This plug-in links against the Python library and exe-
cutes a user-specified Python script for each function be-
ing translated. It currently allows read-only access to ba-
sic blocks and trees; we are adding support for viewing
and editing the control-flow graph, adding and removing
statements, and modifying trees. In addition to reduc-
ing development time, this plug-in will allow developers
to use Python data structures, reducing implementation
time for optimizations that use sophisticated algorithms
to perform static analyses on GIMPLE.

Library call error detection: When developing
systems software, programmers frequently add large
amounts of error checking for library function calls to
detect problems that are ironed out in the early stages
of development. This error-checking adds to code size,
reduces code readability, and takes time. In addition,
retroactively adding error-checking onto existing code if
it fails can be a significant time investment. . A GIM-
PLE transformation plug-in could be used to add error-
checking to code at compile time, optionally warning
when the code is not written to check the result of calls
that commonly fail.

Interface profiling: . Threaded applications typically
have points at which threads wait for responses from
other threads. These can take several forms: functions
that are called to perform synchronous requests, or locks
that the programs block on until data is ready. Addi-
tionally, even single-process applications can spend time
waiting for library functions or system calls to complete.
A GIMPLE transformation plug-in could accept a list of
locks and interface functions to profile, and add entry-
exit profiling to these locks and functions. This would be
coupled to a runtime library that determines the amount
of time spent waiting for these interfaces, credited to the
functions that waited for them.

6 Conclusion

We have described a framework that allows GCC to
load and execute plug-ins that implement custom GIM-
PLE transformations. This framework offers three com-
pelling benefits:

e it reduces development time for new GCC transfor-
mations;

e it allows transformations to be developed and dis-
tributed that would otherwise be difficult to use or

not available at all; and

e it reduces the workload for the GCC core develop-
ers by reducing GCC code size and allowing many
transformations to be maintained separately.

We have shown a verbose-dump plug-in and a com-
patible Java-based visualizer that help GCC develop-
ers develop and debug their transformations. We have
also shown a call-trace plug-in that tracks function calls,
variable accesses, and conditionals, providing a detailed
view of the execution of a program. In addition to these
existing plug-ins, we have shown examples of existing
functionality in GCC that could be converted to plug-ins,
and examples of new functionality that do not exist yet
but would be well-suited to implementation as plug-ins.

We believe that GPLed GCC plug-ins will be a major
democratizing force, bringing new developers to GCC
and extending the benefits of compiler integration to a
wide range of new applications. We are currently devel-
oping a set of patches to integrate our plug-in support
into the next release of GCC.

7 Acknowledgments

This work was partially made possible thanks to a Com-
puter Systems Research NSF award (CNS-0509230) and
an NSF CAREER award in the Next Generation Soft-
ware program (CNS-0133589). We also thank Michael
Gorbovitski, Radu Grosu, Annie Liu, Justin Seyster,
Scott Smolka, Scott Stoller, and Paul Talamo from Stony
Brook University for their advice and feedback devel-
oping this system, and Eric Christopher from the GCC
project for assistance porting it to mainline GCC.

References

[1] David MacKenzie and Ben Elliston and Akim De-
maille. Autoconf: Creating automatic configuration
scripts. http://www.gnu.org/software/autoconf/
manual/autoconf.pdf, 2006.

[2] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++.
In Proceedings of the First Annual GCC Developers’
Summit, pages 57-70, Ottawa, Canada, May 2003.

[3] Free Software Foundation. Shared library support
for gnu. http://www.gnu.org/software/libtool/
manual.html, 2005.

[4] G. C. Necula and S. McPeak and S. P. Rahul and W.
Weimer. CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs. In Proceedings of
the 11th International Conference on Compiler Construc-
tion, pages 213-228, London, England, 2002. Springer-
Verlag.

[5] M. Boshernitsan and S. L. Graham. Interactive transfor-
mation of Java programs in Eclipse. In Proceedings of
the 28th Internation Conference on Software Engineering,
pages 791-794, New York, NY, 2006. ACM Press.

[6] J. Merrill. GENERIC and GIMPLE: A New Tree Repre-
sentation for Entire Functions. In GCC Developers Sum-
mit, 2003.

