
A Practical Auto-Tuning Framework for Storage
Systems

A Dissertation Presented

by

Zhen Cao

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

Technical Report FSL-19-01

January 2019





Abstract

A Practical Auto-Tuning Framework for Storage Systems

by

Zhen Cao

Doctor of Philosophy
in

Computer Science

Stony Brook University
2019

Storage systems come with a large number of configurable parameters that control their behav-
ior. Tuning such parameters can provide significant gains in performance, but is challenging due to
huge spaces and complex, non-linear system behavior. Auto-tuning with black-box optimization
have shown promising results in recent years, thanks to its obliviousness to systems’ internals.

However, previous work all applied only one or few optimization methods, and did not system-
atically evaluate them. Therefore, in this thesis, we first apply and then perform comparative anal-
ysis of multiple black-box optimization techniques on storage systems from various aspects such
as their ability to find near-optimal configurations, convergence time, and instantaneous system
throughput during auto-tuning, etc. We also provide insights into the efficacy of these automated
black-box optimization methods from a system’s perspective.

During our auto-tuning experiments, we noticed that sometimes multiple runs of the same
workload—in a carefully controlled environment—produced widely different performance results.
So next, we undertook a study to characterize the amount of variability in modern storage systems.
We analyzed these variations and found that there was no single root cause: it often changed with
the workload, hardware, or software configuration in the storage system. In several of those cases
we were able to fix the cause of variation and reduce it to acceptable levels.

We believe several critical features are still missing from traditional black-box optimization
methods. In this thesis we designed a practical framework for auto-tuning storage systems. We
propose an efficient parameter-selection algorithm, Spectra, to eliminate unimportant parameters.
It successfully identified important parameters for all file systems and showed that importance
varies with different workloads. We demonstrated Spectra’s efficiency by testing it with a small
fraction of our dataset. We co-developed a suitable visual analytic tool, Interactive Configuration
Explorer (ICE), to help explore large parameter spaces, identify critical parameters, and quickly
zero in on optimal parameter settings. We added a workload modeler in the framework and showed
that the feasibility of workload characterization using hundreds of collected block traces. Our
framework categorizes storage parameters, to account for costly configuration changes. We also
compared different initialization and stopping methods for our auto-tuning framework.

It is our thesis that auto-tuning storage systems is important, promising, and feasible with a
carefully designed framework to include missing yet critical features. This can improve systems’
performance efficiency, and save energy and human resources in the long term.

ii



Contents

List of Figures vi

List of Tables viii

Acknowledgments x

1 Introduction 1

2 Background 4
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Black-box Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11
3.1 Auto-tuning in Computer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Hyper-parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Workload Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experimental Settings 13
4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Experiments and Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Towards Better Understanding of Black-box Auto-Tuning: A Comparative Analysis
for Storage Systems 18
5.1 Overview of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Impact of Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Peering into the Black Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 On the Performance Variation in Modern Storage Systems 29
6.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



6.2.1 Measures of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Experimental Setup and Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.6.1 Variation at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.6.2 Case Study: Ext4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.3 Temporal Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6.3.1 Throughput over Time . . . . . . . . . . . . . . . . . . . . . . . 43
6.6.3.2 Latency Variation . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Spectra: Finding Important Parameters in Storage Systems 49
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Spectra: Algorithmic Parameter Selection . . . . . . . . . . . . . . . . . . . . . . 52
7.3.1 Measuring Parameter Importance . . . . . . . . . . . . . . . . . . . . . . 53
7.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.3 Parameter-Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5.1 Parameter Importance: an Overview . . . . . . . . . . . . . . . . . . . . . 55
7.5.2 Parameter Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5.3 Spectra: Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Graphs are not Enough: Using Interactive Visual Analytics in System Research 64
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 ICE: Interactive Configuration Explorer . . . . . . . . . . . . . . . . . . . . . . . 65
8.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3.1 Performance Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3.2 Constrained Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 A Practical Auto-Tuning Framework for Storage 73
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Auto-Tuning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 Workload Modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.4 Parameter Categories and Cost Function . . . . . . . . . . . . . . . . . . . . . . . 76
9.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.6 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



10 Conclusions 84
10.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

v



List of Figures

2.1 Storage systems are non-linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Evaluation results depend on workloads . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Crossover and mutation in a Genetic Algorithm . . . . . . . . . . . . . . . . . . . 8

5.1 Throughput CDF with different hardware and workloads, with symbols marking
the default configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Highest throughput found over time, zooming in the Y ∈ [15 : 19] range. The blue
number (15.2) on the Y axis shows the default, and the red one (18.7) shows the
optimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Comparing optimization methods’ efficacy in finding near-optimal configurations.
The Y axis shows the percentage of total runs (1,000) that found near-optimal
configurations within certain time (X axis). . . . . . . . . . . . . . . . . . . . . . 22

5.4 Comparing optimization methods’ instantaneous performance (Y axis) over time
(X axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Impact of mutation rates on GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Number of alleles (parameter values) in the first 10 generations from one GA ex-

periment run, with more frequent ones colored with darker colors. . . . . . . . . . 25
5.7 Scatter plot for all Ext3-SSD configurations under fileserver-def workload, with

one dot corresponding to one configuration. . . . . . . . . . . . . . . . . . . . . . 26

6.1 Cumulative throughput over time for one Ext4 configuration under multiple work-
loads. Each workload ran for 7,200s; only the first 3,000s are plotted. . . . . . . . 36

6.2 Overview of performance and its variation with different storage configurations un-
der three workloads: (a) maileserver-heavy, (b) fileserver-heavy, and (c) webserver-
heavy. The X axis represents the mean of throughput over 10 runs; the Y axis
shows the relative range of cumulative throughput. Ext4 configurations are repre-
sented with squares, XFS with circles, and Btrfs with triangles. HDD configura-
tions are shown with filled symbols, and SSDs with hollow ones. . . . . . . . . . . 37

6.3 Storage system performance variation with 20 sampled Ext4-HDD configurations
under three workloads. The range is computed among 10 experiment runs, and is
represented as bars corresponding to the Y1 (left) axis. The mean of throughput
among the 10 runs is shown with symbols (squares, circles, and triangles), and
corresponds to the Y2 (right) axis. The X axis represents configurations formatted
by 〈block size - inode size - journal - atime - I/O scheduler - device〉. . . . . . . . . 38

vi



6.4 Performance variation for 2 Ext4-HDD configurations with several diagnoses. Each
experiment is shown as one box, representing a throughput distribution for 10 iden-
tical runs. The top border line of each box marks the 1st quartile; the bottom bor-
der marks the 3rd quartile; the line in the middle is the median throughput; and the
whiskers mark maximum and minimum values. The dots to the right of each box
show the exact throughputs of all 10 runs. The percentage numbers below each
box are the relative range values. The bottom label shows configuration details for
each figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Performance variation for Ext4-HDD configuration under the Fileserver workload
with different partition sizes from inner tracks of disks . . . . . . . . . . . . . . . 41

6.6 Physical blocks of allocated files in Ext4 under the Fileserver workload. The X
axis represents the physical block number of each file in the dataset. Since the File-
server workload consists of small files, and one extent per file, we use the starting
block number for each file here. The Y axis is the final cumulative throughput for
each experiment run. Note that the Y axis does not start from 0. Lines marked
with solid circles are experiment runs with the default setting; lines with triangles
represent experiment runs where we set the field s hash seed in Ext4s’s superblock
to null. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.7 Throughput-120 over time for Btrfs, XFS, and Ext4 HDD configurations under the
Fileserver workload. Each configuration was evaluated for 10 runs. Two lines were
plotted connecting maximum and minimum throughput values among 10 runs. We
fill in colors between two lines, green for Btrfs, red for Ext4, and blue for XFS. We
also plotted the average Throughput-120 among 10 runs as a line running through
the band. The maximum relative range values of Throughput-120 for Ext4, Btrfs,
and XFS are 43%, 23%, and 65%, while the minimum values are 14%, 2%, and
7%, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.8 CDFs for relative range of throughput under Fileserver workload with different
window sizes. For window size N, we calculated the relative range values of
throughput for all configurations within each file system type, and then plotted
the corresponding CDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.9 Normalized instantaneous throughput (Throughput-10) over time for experiments
with various workloads, file systems, and devices. The Y axis shows the normal-
ized values divided by the maximum instantaneous throughput through the exper-
iment. Only the first 500s are presented for brevity. . . . . . . . . . . . . . . . . . 46

6.10 Latency CDF of one Ext4-HDD configuration under Fileserver workload. . . . . . 47
6.11 Pearson Correlation Coefficient (PCC) between throughput range and operation

types, for three workloads and three file systems. The horizontal dashed red line at
Y=0.7 marks the point above which a strong correlation is often considered to exist. 48

7.1 Top 3 most important Ext4 parameters under S2, fileserver-def. The most impor-
tant parameter is measured by its PI; the second and third parameters are evaluated
by their CPI given higher-ranked parameters. The Y-axis scales in the three sub-
figures are different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



7.2 Impact of parameters on performance and stability (Ext4, S2, fileserver-def). Each
dot represents a set of configurations created by fixing N parameters, while differ-
ent dot sizes and colors are used for different values of N. Performance is measured
by the average throughput (X axis) of all possible configurations within each set;
stability is measured by relative standard deviation (Y axis, lower is better) of the
throughput within each set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 A zoom into the bottom-right part of Figure 7.2 (the “best quadrant”), with points
for N = 3, 4 added. Plotted points show either the highest average throughput or
the lowest relative standard deviation among all configurations gotten by fixing the
values of N parameters. The labels around the dots show the corresponding fixed
parameter values. The parameter values are ordered by (Journal Option, Device,
Block Group, and Inode Size). The triangle marks the point achieved by fixing the
values of parameters selected by Spectra. . . . . . . . . . . . . . . . . . . . . . . 60

7.4 Spectra’s ability to correctly find the top 3 important parameters within small por-
tions of the dataset. The X axis (log2 scale) shows the number of evaluations that
was used. We ran Spectra on X sampled configurations for 1,000 runs. We used
the PI calculated from the whole dataset as ground truth. The Y axis shows the
percentage of runs that were able to correctly find the important parameters. The
solid, dashed, and dotted lines show the results for finding the parameters ranked
1st, 2nd, and 3rd, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1 Screenshot of ICE. Block Group was cropped out, shown as “. . . ” in the figure, to
ensure the screen text is legible. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Partial screenshot of ICE after selecting the “fileserver” Workload. . . . . . . . . . 67
8.3 Using ICE to select parameter values for btrfs under the fileserver workload (partial

screenshots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4 Partial screenshot of ICE after selecting the “dbserver” Workload. . . . . . . . . . 68
8.5 Annotated bar plot explaining how to read it. . . . . . . . . . . . . . . . . . . . . 68
8.6 Using ICE to optimize a mail server (partial screenshots). We chose Workload =

“mailserver”; FileSystem = “ext4”; and BlockSize = “1024”. . . . . . . . . . . . . 70
8.7 Using ICE to optimize multiple constraints (partial screenshots). We chose Work-

load=“dbserver”; FileSystem = “ext4”; Device = “ssd”; InodeSize = “128”; Block-
Size = “2048”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.1 Auto-tuning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Workflow for an enhanced Optimizer (GA) . . . . . . . . . . . . . . . . . . . . . 75
9.3 GA results on Storage V3 under mailserver workload and un/restricted cost cate-

gories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 Comparison of LHS and random initialization on dbserver and webserver workloads. 80
9.5 Time window based stopping criteria. . . . . . . . . . . . . . . . . . . . . . . . . 81
9.6 Diversity based stopping criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



List of Tables

2.1 Comparison and summaries of optimization techniques . . . . . . . . . . . . . . . . . . 9

4.1 Details of experiment machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Filebench workload characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Details of Parameter Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Parameters and their values in Storage V3. . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Parameters and their values in Storage V4. . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Global optimal configurations with different settings and workloads. Workloads are abbre-
viated. Db: dbserver-def; File: fileserver-def; Mail: mailserver-def; Web: webserver-def. . 20

5.2 Importance of parameters (measured by R2) among SSD configurations, with the
most important one colored in yellow and second in green. . . . . . . . . . . . . . 27

6.1 Comparison for parameter spaces. Time is computed by assuming 15 minutes per
experimental run, 10 runs per configuration and 3 workloads in total. . . . . . . . . 33

6.2 List of parameters and value ranges. . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1 Details of parameter spaces. Each cell gives the number of settings we tested for
the given parameter and file system; empty cells represent parameters that are inap-
plicable to the given file system. We exhaustively evaluated 29,544 configurations
in total under four workloads, and each experiment was repeated 3+ times. . . . . 56

7.2 Top-ranked important parameters for various file systems. The column header #N
identifies the Nth most important parameter. . . . . . . . . . . . . . . . . . . . . . 58

9.1 Categories of Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



Acknowledgments
This thesis cannot be accomplished without the help of the following people. I thank my parents
and my fiancee Xin Li for supporting and accompanying me in these years. They’ve made the long
journey easier and meaningful for me.

I’d like to thank my advisor Prof. Erez Zadok for advising me on this thesis and gave me
invaluable advice throughout the last five years. He helped me in every aspect of my PhD study,
including research methodology, paper writing, technical presentation, etc. I also appreciate his
patience and kindness when I made mistakes.

I also thank the external collaborators, Vasily Tarasov from IBM Research and Dead Hilde-
brand from Google. They provided guidance and comments on many aspects of the projects, and
gave me memorable internship experience as well.

I’d like to thank FSL students who have contributed to this work. They are Umit Ibrahim
Akgun, Tyler Estro, Ankit Aggarwal, Saish Sali, Prateek Roy, Sachin Tiwari, Hari Prasath Raman,
Akhilesh Chaganti, Sonam Mandal, Aashray Arora, Arvind Chaudhary. They helped me a lot in
many aspects of these projects. I also specially appreciate the help from Cong Xie and Anjul Tyagi
of VAL lab. We coordinated a lot on the visualization of our datasets.

I’d like to thank Prof. Scott Stoller, Prof. Klaus Mueller, and Prof. Geoff Kuenning from Har-
vey Mudd College for serving on the committee of my dissertation. They are very knowledgeable
and helped this thesis significantly with insightful comments and valuable feedbacks.



Chapter 1

Introduction

Storage is a critical element of computer systems and key to data-intensive applications. Storage
systems come with a vast number of configurable parameters that control a system’s behavior. Ext4
alone has around 60 parameters with whopping 1037 unique combinations of values. Default pa-
rameter settings provided by vendors are often suboptimal for a specific user deployment; previous
research showed that tuning even a small subset of parameters can improve power and performance
efficiency of storage systems by as much as 9× [170].

Traditionally, system administrators pick parameter settings based on their expertise and ex-
perience. Due to the increased complexity of storage systems, however, manual tuning becomes
intractable, error-prone, and has a low chance of finding an optimal configuration. A myriad of file
systems with diverse goals and designs have been developed [59, 103, 110, 161, 185]. Newer types
of devices (SSDs [77, 138], SMR drives [2, 3], PCM [99, 208]) and more layers (LVM, RAID)
are added. Storage systems expand from one or few identical nodes to hundreds of highly het-
erogeneous environments [67, 167]. Tuning results from one workload are often inapplicable in
another [28, 198]. Furthermore, the composition of hardware and workload in a modern environ-
ment changes at a fast pace that prohibits timely manual tuning.

In recent years, several attempts were made to automate the tuning of computer systems in
general and storage systems in particular [181, 198]. Black-box auto-tuning is an especially popu-
lar approach thanks to its obliviousness to system’s internals [213]. The basic mechanism behind
black-box auto-tuning is to iteratively try different configurations, measure an objective function’s
value—and based on the previously learned information—select the next configurations to try.
For storage systems, objective functions can be throughput, I/O latency, energy consumption, pur-
chase cost, or even a formula combining multiple metrics [123,181]. Many black-box auto-tuning
algorithms exist and some were applied to systems. Genetic Algorithms (GA) were applied to
optimize the I/O performance of HDF5-based applications [12]. Bayesian Optimization (BO) was
used to find a near-optimal configuration for Cloud VMs [5]. Other methods include Evolution-
ary Strategies [163], Smart Hill-Climbing [209], and Simulated Annealing [53]. Although these
methods were originally proposed in different scientific disciplines, they all maintain a trade-off
among three behavioral dimensions: (1) Exploration: how much the technique searches the space
randomly. (2) Exploitation: how much the technique leverages the “neighborhood” of the current
candidate or previous search history to find even better configurations. (3) History: how much data
from previous evaluations is kept and utilized in the overall search process. For this dissertation,
we investigated and designed a general framework based on black-box optimization, which can

1



efficiently auto-tune storage systems.
To demonstrate black-box optimization’s ability to find optimal (or at least near-optimal) stor-

age configurations, we started by exhaustively evaluating several storage systems under four work-
loads on two servers with different hardware and storage devices; the largest system consisted of
6,222 unique configurations. Over a period of 3+ years, we executed 500,000+ experimental runs,
with 26 different combination of workload and hardware settings. We stored all data points in
a relational database for query convenience, including hardware and workload details, through-
put, energy consumption, running time, etc. In this thesis, we mainly focused on optimizing for
throughput, but our methodology and observations are applicable to other metrics as well. We re-
leased and will continue updating our dataset publicly to facilitate more research into auto-tuning
and better understanding of storage systems.

Despite some appealing results in auto-tuning, there is no deep understanding how exactly
these black-box optimization methods work, their efficacy and efficiency, and which methods are
more suitable for which problems. Previous works picked algorithms somewhat arbitrarily and
evaluated only one algorithm at a time. Therefore, in this thesis, for the first time and to the best
of our knowledge, we apply and analytically compare multiple black-box optimization techniques
on storage systems. We applied several popular techniques to the collected dataset to find op-
timal configurations under various hardware and workload settings: Simulated Annealing (SA),
Genetic Algorithms (GA), Bayesian Optimization (BO), and Deep Q-Networks (DQN). We also
tried Random Search (RS) in our experiments, which showed surprisingly good results in previous
research [15]. We compared these techniques from various aspects, such as their ability to find
near-optimal configurations, convergence time, and instantaneous system throughput during auto-
tuning. For example, we found that several techniques were able to converge to good configurations
given enough time, but their efficacy differed a lot. GA and BO outperformed SA and DQN on our
parameter spaces, both in terms of convergence time and instantaneous throughputs. Surprisingly,
RS was also able to identify good configurations, sometimes even more efficiently than sophisti-
cated optimization methods. We further compared the techniques across the aforementioned three
behavioral dimensions: exploration, exploitation, and history. Based on our experimental results
and domain expertise, we also provide explanations of efficacy of such black-box optimization
methods from a storage perspective. We observed that certain parameters would have a greater
effect on system performance than others, and the set of dominant parameters depends on file
systems and workloads.

During our auto-tuning experiments, we noticed that sometimes multiple runs of the same
workload—in a carefully controlled environment—produced widely different performance results.
In one experiment setting, over 18% of 6,222 different storage configurations that we tried exhib-
ited a standard deviation of performance larger than 5% of the mean, and a range value (maximum
minus minimum performance, divided by the average) that exceeding 9%. In a few extreme cases,
the standard deviation exceeded 40% even with numerous repeated experiments. This motivated us
to conduct a more detailed study of storage system performance variation and seek its root causes,
as performance stability is important for the success of auto-tuning and more broadly is critical in
modern storage systems. Therefore, in this thesis we conducted experiments on three local file sys-
tems (Ext4, XFS, and Btrfs) which are used in many modern local and distributed environments.
We benchmarked over 100 configurations using different workloads and repeated each experiment
10 times to balance the accuracy of variation measurement with the total time taken to complete
these experiments. We then characterized performance variation from several angles: throughput,

2



latency, temporally, spatially, and more. We found that performance variation depends heavily on
the specific configuration of the storage system. We then further dove into the details, analyzed
and explained certain performance variations. For example, we found that unpredictable layouts
in Ext4 could cause over 16–19% of performance variation in some cases. Finally, we analyzed
latency variations from various aspects, and proposed a novel approach for quantifying the impacts
of each operation type on overall performance variation.

The huge parameter space is one of the challenges in auto-tuning storage systems. In machine
learning and information theory, dimensionality reduction is often applied to explosively sized
datasets [17,146]. We believe it can also be applied to storage-parameter selection. By eliminating
the less important parameters, the parameter search space—and thus the number of configurations
that need to be considered by either humans or algorithms—can be massively reduced [84]. Given
these observations, we decided to investigate the practicality of parameter selection for storage sys-
tems and to design Spectra, a system that uses a variance-based metric to quantify the importance
of storage parameters, applying a greedy algorithm that can automatically and efficiently identify
important parameters while evaluating only a small number of configurations. We then combined
Spectra with Latin Hypercube Sampling (LHS) [109, 143], allowing Spectra to identify the set of
important parameters using only a small number of experimental runs that explored only a fraction
of all configurations. For instance, among all 1,000 repeated runs, Spectra was able to find the two
most important parameters for Ext4 using only 32 evaluations.

We believe traditional black-box optimization techniques still lack several critical features to
achieve practical, auto-tuning in storage systems. To address these limitations, we propose our
practical auto-tuning framework, based on all previous work, and adding several new features.
We prototyped a workload modeler, which can extract features from system-collected metrics and
characterize the running workload based on them. We categorize each parameter based on its
changing cost, and showed how our auto-tuning framework will optimize storage systems within
certain categories of parameters. We also compared the efficacy of multiple initialization methods
and stopping criteria with our framework. Our auto-tuning framework is also equipped with a
visual analytic tool, the Interactive Configuration Explorer (ICE), which is designed to help system
administrators understanding auto-tuning results and the complex behavior of storage systems.

The rest of this dissertation is organized as follows. Chapter 2 describes challenges of auto-
tuning storage systems and background knowledge on black-box optimization. Chapter 3 discusses
related work. We list our experimental settings in Chapter 4. In Chapter 5 we perform a compar-
ative analysis on multiple optimization methods. Chapter 6 provides our characterization work
on performance variation in modern storage stocks. Chapter 7 describes our parameter selection
algorithm Spectra and its evaluation results. Chapter 8 explains the design of ICE and several case
studies that we conducted with it. Chapter 9 discusses several missing yet important components
from traditional black-box optimization. Based on it, we added several features and summarized
our auto-tuning framework for storage systems. Chapter 10 concludes this thesis.

3



Chapter 2

Background

In this thesis we use “storage systems” to refer file systems, underlying storage hardware and any
layers between them. Storage systems have always been a critical component of most computer
systems, and are the foundation for many data-intensive applications. Usually they come with
a large number of configurable options that could affect or even determine the systems’ perfor-
mance [28,188], energy consumption [170], and other aspects [120,181]. Here we define a param-
eter as one configurable option, and a configuration as a certain combination of parameter values.
For example, the journal mode is one parameter for Ext4, with 3 possible values: data=writeback,
data=ordered, and data=journal. Two other common parameters are block size and inode size
with several possible numeric values (e.g., 4K, 8K). [journal mode=“data=writeback”, block size=4K,
inode size=4K] is one configuration with 3 specific parameters: journal mode, block size, and in-
ode size. All possible configurations form a parameter space.

When configuring storage systems, users often stick with the default configurations provided
by vendors because

• it is nearly impossible to know the impact of every parameter across multiple layers; and

• vendors’ default configurations are trusted to be safe and “good enough”.

However, previous studies [170] showed that tuning even a tiny subset of parameters could improve
the performance and energy efficiency for storage systems by as much as 9×. As Moore’s law
slows down, it becomes even more important to squeeze every bit of performance out of deployed
storage systems.

The rest of this chapter is organized as follows. We first discuss the challenges of storage
system tuning in Section 2.1. Then, Section 2.2 briefly introduces several black-box optimization
techniques that we explore in this thesis. Section 2.3 discusses how Machine Learning (ML)
techniques can help in auto-tuning storage systems. Section 2.4 provides a unified view of these
optimization methods.

2.1 Problem Statement
The tuning task for storage systems is difficult, due to the following four challenges.

4



(1) Large parameter space Modern storage systems are fairly complex and easily come with
hundreds or even thousands of tunable parameters. This makes it impossible to explore even a
small fraction of the parameter space exhaustively. Even human experts or file-system developers
cannot know the exact impact of every parameter and thus have little insight into how to optimize
them. For example, Ext4 + NFS alone would result in a parameter space consisting of more than
1022 unique configurations. IBM’s General Parallel File System (GPFS) [167] contains more than
100 tunable parameters, and hence 1040 configurations. From the hardware perspective, which also
constitutes part of parameter space, SSDs [77, 138, 148, 168], SMRs [2, 3, 81, 118], and PCM [99,
208] are gaining popularity and more layers (LVM, RAID) are added to storage systems.

(2) Discrete and non-numeric parameters Among storage system parameters, some can take
a continuous spectrum of values, while many others are discrete and take only a limited set of
values. Some parameters do not even have numeric values (e.g., I/O scheduler name or file system
type). These types of parameters make gradient-based information for objective functions (e.g.,
linear regression) unavailable.

(3) Non-linearity A system is non-linear when the output is not directly proportional to the in-
put. Many computer systems are non-linear [41], including storage systems [188]. For example,
Figure 2.1 shows the average operation latency of GPFS under a typical database server workload
while changing only the value of the parameter pagepool and setting all the others to their default.
We changed the pagepool size from 32MB to 128MB in steps of 8MB. Clearly the average latency
is not directly proportional to the pagepool size. In fact, through our experiments, we have seen
many more parameters with similar behavior. Worse, parameter spaces for storage systems are of-
ten sparse, irregular, and contains multiple peaks. This makes optimization even more challenging,
as it has to avoid getting stuck in a local optima [90].

 0

 10

 20

 30

 40

 0  30  60  90  120  150

A
v

g
. 

L
at

en
cy

 (
m

s)

pagepool Size (MB)

Figure 2.1: Storage systems are non-linear

(4) Non-reusable results Previous studies have shown that evaluation results of storage sys-
tems [28, 170] and databases [198] are dependent on the specific hardware and workloads. One
good configuration might perform poorly when the environment changes. Figure 2.2 shows the
I/O throughput under 4 different workloads with default configurations for Ext4, XFS, Btrfs, and
Reiserfs—all on the same hardware. Under the Mail Server workload, the default XFS configura-
tion performs best among these four configurations; but with the Database Server, Btrfs produces
the highest throughput. In addition, these four configurations show similar results under the Web
Server workload. We observed similar behavior when the hardware changed.

5



 0

 10

 20

 30

 40

Ext4 XFS Btrfs Reiserfs

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

Mail
File
Db

Web

Figure 2.2: Evaluation results depend on workloads

Given these challenges, manual tuning of storage systems becomes nearly impossible while ef-
ficient automatic tuning is challenging. In this thesis we propose to design a practical auto-tuning
framework for storage systems. We treat auto-tuning storage configurations as an optimization
problem, and use the terms “auto-tune” and “optimize” interchangeably. Our framework is gen-
eral enough to optimize for any user-specified objective, as long as possible outputs of the objec-
tive function form a totally ordered set. Examples of optimization objectives include maximizing
throughput, minimizing average latency, minimizing energy consumption, etc. It can even be a
complex formula combining several metrics together [123]. In this thesis we will mainly focus
on auto-tuning storage systems for maximizing throughput, but our methodology and observations
are applicable to other objectives as well.

Many previous efforts have been made and various techniques have been applied to parameter
tuning problems. Control Theory (CT) was historically used to manage linear system parame-
ters. CT builds a controller for a system, called the plant, so its output follows a desired control
signal, called the reference [82, 111]. CT has been applied to database systems [50] and storage
systems [93, 112] to provide QoS guarantees. However, CT has been shown to have the following
three problems: 1) CT tends to be unstable in controlling non-linear systems [121, 122]. Although
some variants were proposed for non-linear ones, they do not scale well. 2) CT cannot handle
non-numeric parameters; and 3) CT requires an expensive learning phase, called identification to
build a good controller, which requires having lots of data to learn from.

Supervised Machine Learning (ML) have been applied in black-box storage device modeling
and prediction [201]. However, a well-known problem for supervised ML techniques is that they
usually require a long training period and a large amount of data to build models; the models’
quality depends heavily on the quality and amount of training data [201]. This data is not available
or impossible to collect for large parameter spaces such as ours. Moreover, once the environment
changes, the training data collected before it becomes invalid.

Based on the above reasons, we feel that neither CT nor supervised ML can be directly and
efficiently applied for auto-tuning storage systems in its current state. Still, it was shown that
many optimization techniques share some similarities with supervised Machine Learning [213].
Moreover, sub-disciplines of ML, including Online Learning [7, 175] and Active Learning [172],
are evolving and gaining interests. They are practical and useful in solving certain problems where
data becomes available incrementally. We believe ML techniques can still play an important role
in our auto-tuning framework. Therefore, We provide a general introduction to ML in Section 2.3.

6



2.2 Black-box Optimization
Several classes of algorithms have been proposed for optimization tasks, including automated
tuning of hyper-parameters of machine learning systems [14, 15, 156] and optimization of physi-
cal systems [5, 198]. Examples include Genetic Algorithms (GA) [45, 84], Simulated Annealing
(SA) [32,101], Bayesian Optimization (BO) [22,174], etc. Although these methods were proposed
originally in different scholarly fields, they can all be characterized as black-box optimizations. In
this section we introduce several of these techniques that we successfully applied in auto-tuning
storage systems.

Simulated Annealing (SA) is inspired by the annealing process in metallurgy. Annealing
involves the heating and controlled cooling of a material to get to a state with minimum thermody-
namic free energy to enhance, e.g., metal conductivity. When applied to storage systems, a state
corresponds to one configuration. Neighbors of a state refer to new configurations achieved by al-
tering only one parameter value of the current state. The thermodynamic free energy is analogous
to user-defined optimization objectives. SA works by maintaining the temperature of the system,
which determines the probability of accepting a certain move. Instead of always moving towards
better states as hill-climbing methods do, SA defines an acceptance probability distribution, which
allows it to accept some bad moves in the short run, that can lead to even-better moves later on.
The system is initialized with a high temperature, and thus has high probability of accepting worse
states in the beginning. The temperature is gradually reduced based on a pre-defined cooling sched-
ule, thus reducing the probability of accepting bad states over time. SA has been applied in various
areas and proved efficient in solving different types of problems, including the Traveling Salesman
Problem (TSP) [1, 132, 199], Very Large Scale Integration (VLSI) design [169, 207], and network
design [63, 64, 89].

Genetic Algorithms (GA) were proposed in 1975 [84] and inspired by the process of nat-
ural selection. GA maintains a population of chromosomes (configurations) and applies several
genetic operators to them. Crossover takes two parent chromosomes and generates new ones.
As Figure 2.3(a) illustrates, two parent Nilfs2 configurations are cut at the same crossover point,
and then the subparts after the crossover point are exchanged between them to generate two new
child configurations. Better chromosomes will have a higher probability to “survive” in future
selection phases. Mutation randomly picks a chromosome and mutates one or more parameter
values, which produces a completely different chromosome. Figure 2.3(b) illustrates such mu-
tation, where the journal option is randomly mutated from writeback to journal. GA and its
variants have been widely applied to various areas including the Traveling Salesman Problem
(TSP) [71, 73, 108, 145, 159, 180], VLSI Design [16, 42, 126, 133], High-Performance Comput-
ing [11], and system design [36, 46, 128].

Bayesian Optimization (BO) [22,174] is a popular framework to solve optimization problems.
It models the objective function as a stochastic process, with the argument corresponding to one
storage configuration. In the beginning, a set of prior points (configurations) are given to the algo-
rithm to get a fair estimate of the entire parameter space. BO works by computing the confidence
interval of the objective function according to previous evaluation results. Here the confidence
interval is the range of values that the evaluation result is most likely to fall into (e.g., with 95%
probability). The next configuration is selected based on a pre-defined acquisition function. Both
confidence intervals and the acquisition function are updated with each new evaluation. BO has
been successfully applied in various areas, including hyper-parameter optimization [44] and sys-

7



Parent 1

Parent 2

Child 1

Child 2

Journal OptionBG FS

NilFS2

NilFS2

8

256

order=strict

order=relaxed

order=relaxed8NilFS2

order=strict256

NilFS2

(a) Crossover

FS Journal Option

data=journal4KExt4

Block Size

Ext4 4K data=writeback

(b) Mutation

Figure 2.3: Crossover and mutation in a Genetic Algorithm

tem configuration optimization [5]. BO and its variants differ mainly in their form of probabilistic
models and acquisition functions. In this thesis our evaluation results focus mainly on Gaussian
priors and an Expected Improvement acquisition function [174].

Other promising black-box optimization techniques include Tabu Search [68–70], Particle
Swarm Optimization [40,97,98], Ant Colony Optimization [51,52], and Memetic Algorithms [106,
137], etc. Most of them are nature-inspired as they have been developed based on the successful
evolutionary behavior of natural systems. In this thesis, we focused on several representative al-
gorithms, SA, GA, and BO. We plan to experiment with more techniques in the future (part of our
future work). In fact, as detailed in §2.4, most of these techniques actually share similar traits.

2.3 Machine Learning
As we enter the era of big data, Machine Learning (ML) has becoming more popular in the last few
decades. We can define ML as a set of methods that can automatically detect patterns in data, and
then use the discovered patterns to predict future behavior, or to perform other kinds of decision
making under uncertainty [146]. Generally, there are three types of ML techniques: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning Supervised Learning is sometimes also called predictive learning, and its
goal is to learn the mapping from the inputs

−→
~x to outputs y, based on a labeled set of input-output

pairs D = {(
−→
~xi , yi)}

N

i=1. D is often referred as a training set consisting of N training examples. In
the training set, each input

−→
~xi is usually a multi-dimensional vector, and the elements in the vector

are called features or attributes. Depending on whether the output y is categorical or real-valued,
supervised learning can be further classified into two categories, classification and regression.

Unsupervised Learning Unsupervised Learning (or descriptive learning) is another main type

of Machine Learning, where the dataset is unlabeled: D = {(
−→
~xi )}

N

i=1. The goal of Unsupervised
Learning is often to find certain patterns existing on the dataset; that is why it is also called knowl-
edge discovery. Unsupervised Learning is arguably more typical of human and animal learning
behaviors. It is also more widely applicable than supervised learning, since it does not require
a human expert to manually label the data [146]. Approaches of Unsupervised Learning include
clustering, Latent Variable Modeling, etc.

8



Reinforcement Learning Reinforcement Learning (RL) [184] is an area of machine learning in-
spired by behaviorist psychology. RL explores how software agents take actions in an environment
to maximize the defined cumulative rewards. Most RL algorithms can be formulated as a model
consisting of: (1) A set of environment states; (2) A set of agent actions; and (3) A set of scalar
rewards. In case of storage systems, states correspond to configurations, actions mean changing to
a different configuration, and rewards are differences in evaluation results. The agent records its
previous experience (history), and makes it available through a value function, which can be used
to predict the expected reward of state-action pairs. The policy determines how the agent takes
action. A simple example is ε-policy. For each action the agent may can take a random action with
probability ε; otherwise it will exploit the current value function and take the best action to max-
imize the rewards. The value function’s history can be stored in a tabular form, but this does not
scale well to many dimensions. Function approximation is one way for generalization when the
state and/or action spaces are large or continuous. However, most approximation methods are still
known to be unstable or even divergent. With recent advances in Deep Learning [72], deep con-
volutional neural networks, termed Deep Q-Networks (DQN), were proposed to parameterize the
value function, and have been successfully applied in solving various problems [141, 142]. Many
variants of DQN have been proposed [119]; in this thesis we applied its original version [142].
Another interesting fact here is that many RL algorithms, including DQN, also maintains a trade-
off between exploitation, exploration, and history. In the early stages of execution, when the agent
knows little about the environment, it will explore the space and try unknown actions. When it
interacts enough with the environment, it will tend to choose the actions that it knows will receive
the higher rewards.

2.4 Unified Framework

Algorithm Origin Exploration Exploitation History

Simulated
Annealing (SA)

Annealing
technology in

metallurgy

Allowing moving
to worse neighbor

states
Neighbor function N/A

Genetic
Algorithms (GA) Natural evolution Mutation

Crossover and
selection

Current
population

Deep
Q-Networks

(DQN)

Behaviorist
psychology and

neuroscience

Taking random
actions

Taking actions
based on

action-reward
function

Deep
convolutional

neural network

Bayesian
Optimization

(BO)

Statistics and
experimental

design

Selecting samples
with high
variances

Selecting samples
with high mean

values

Acquisition
function &

probabilistic
model

Table 2.1: Comparison and summaries of optimization techniques

Most optimization techniques are known to follow the exploration-exploitation dilemma [56,
119, 174, 200]. Here we summarize the aforementioned methods by extending the unified frame-

9



work with a third factor, the history. Our unified view thus defines three factors or dimensions:

• Exploration defines how the technique searches unvisited areas. This often includes a com-
bination of pure random and also guided search.

• Exploitation defines how the technique leverages current neighborhood or history to find
next sample.

• History defines how much data from previous evaluations is kept. History information can
be used to help guide both future exploration and exploitation (e.g., avoiding less promising
regions, or selecting regions that have never been explored before).

Table 2.1 summarizes how the aforementioned techniques work by maintaining the balance among
these three key factors. For example, GA keeps the evaluation results from the last generation,
which corresponds to the concept of history in our unified framework. GA then exploits the stored
information, applying selection and crossover to search nearby areas and pick the next generation.
Occasionally, it also randomly mutates some chosen parameters, which is the idea of exploration.
The trade-off among exploration, exploitation, and history largely determines the effectiveness and
efficiency of these optimization techniques.

10



Chapter 3

Related Work

This chapter describes related previous work and compare them with our project.

3.1 Auto-tuning in Computer Systems
In recent years, several attempts were made to automate the tuning of storage systems. Gaonkar et
al. [65] apply GAs to design dependable data storage systems for multi-application environments,
with the goal of minimizing the overall cost of the system while meeting business requirements.
Strunk et al. [181] proposed to use utility functions combining different system metrics and ap-
plied GA to automate storage system provisioning. Babak et al. [12] utilized GA to optimize I/O
performance of HDF5 applications. Kimberly et al. [96] formulate the data recovery scheduling
problem as an optimization problem. They aim at finding the schedule that minimizes the financial
penalties due to downtime, data loss, and vulnerability to subsequent failures. GAs are applied and
compared with several other heuristics. Xue et al. [211, 212] propose an autonomic technique that
learns the intensity patterns of user workload in tiered storage systems over long time-scales using
a probabilistic model. They use the model to predict the coming workload patterns and proactively
stop/start bulky internal system work. MINERVA [6], is a suite of tools for automating stor-
age system design, which uses declarative specifications of application requirements and device
capabilities; constraint-based formulations of the various sub-problems; and simple bin-packing
heuristics to explore the search space of possible solutions. More recently, Deep Q-Networks has
been successfully applied in optimizing performance for Lustre [117].

Auto-tuning is also a hot topic in other computer systems: Bayesian Optimization was applied
to find near-optimal configurations for databases [198] and Cloud VMs [5]. Other applied tech-
niques include Evolutionary Strategies [163], Simulated Annealing [63, 89], Tabu Search [165],
and more.

However, previous work all focused on a single algorithm or technique. One contribution of
our work is to provide the first comparative study of multiple, applicable optimization methods
and compare them for their efficacy in auto-tuning storage systems from various aspects. We also
provide some insights into the working mechanism of auto-tuning. More importantly, we propose
to design a more intelligent and practical framework for auto-tuning storage systems.

11



3.2 Hyper-parameter tuning
Esteban et al. [156] applied Evolutionary Algorithms to hyper-parameter optimization for neural
networks, and achieved state-of-art results on certain data-sets. Bergstra and Bengio [15] found
that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a
grid, and explained the cause as the objective function having a low effective dimensionality. In
addition, Reinforcement Learning [13] and Bayesian Optimization [55] were also applied to hyper-
parameter optimization. Another direction of research focuses on eliminating all hyper-parameters
and tries to propose non-parametric versions of optimization methods. Examples of this include
GA [79, 127] and BO [174]

In this work, we investigated the impacts of hyper-parameters on various optimization tech-
niques, when applied to auto-tune storage systems.

3.3 Workload Modeling
A few efforts have been made on modeling or characterizing storage workloads. Bumjoon et
al. [171] tried to model storage workloads on HDDs from a data-mining point of view. They use
a unique clustering method for feature selection that reduces computational time on a list of 20
features available through blktrace and use a hierarchy of clustering and classification to label a
workload based on access patterns. Busch et al. [26] proposed to design an automated approach for
extracting workload models in virtualized environments. Features used include average file size,
file set size, average request size, etc. Li et al. [114] attempted to better define sequential I/O. They
focused on LBA and I/O size, and concluded that “consecutive bytes accessed” should be taken into
consideration. Shen et al. [176] characterized workloads with the goal of improving performance
debugging by separating their model into OS caching, prefetching, OS I/O Scheduling, and storage
devices. Wang et al. [201] used CART models to predict per-request response time based on
workload characteristics, and provides detailed explanations about how CART models work and
why they are suitable for this problem. Riska et al. [160] tried to characterize workloads based on
their environment: enterprise, desktop, or consumer electronics.

We feel that most previous work were either vague on what features to pick for characterizing
workload, or they limited the model built to one or few use cases. In this work, we target at
finding the minimum set, or a small-enough set of features (out of many), which is general and can
characterize most storage workload. The feature engineering work will utilize cutting-edge ML
and data mining techniques, but we will explain out observations from storage perspective as well.

12



Chapter 4

Experimental Settings

In this chapter we detail the experimental environments, parameter spaces, and our implementa-
tions of several optimization algorithms.

4.1 Hardware
We performed experiments on two sets of machines with different hardware categorized as low-
end (S1) and mid-range (S2). We list the details of these two sets of machines in Table 4.1. We also
use Watts Up Pro ES power meters to measure the energy consumption. During our experiments
on characterizing storage performance variation (Chapter 6), to maintain realistically high ratio of
the dataset size to the RAM size and ensure that our experiments produce enough I/O, we limited
the RAM size on all machines to 4GB. We denote this hardware setting as S3. We have one type
of storage device on S1 and four others on S2 and S3, which will be denoted as HDD1, HDD2,
HDD3, HDD4, and SSD for short in this thesis.

4.2 Workload
We used Filebench [62,190] to generate various workloads in our experiments. In each experiment,
if not stated otherwise, we formatted and mounted the storage devices with a file system and then
ran Filebench. We mainly experimented with the four pre-configured Filebench macro-workloads
that exhibit the following significantly different I/O properties:

• Mailserver emulates the I/O workload of a multi-threaded email server. It generates se-
quences of I/O operations that mimic the behavior of reading emails (open, read the whole
file, and close), composing emails (open/create, append, close, and fsync) and deleting
emails. It uses a flat directory structure with all the files in a single directory, and thus
exercises the ability of file systems to support large directories and fast lookups.

• Fileserver emulates the I/O workload of a server that hosts users’ home directories. Here,
each thread represents a user, which performs create, delete, append, read, write, and stat
operations on a unique set of files. It exercises both the metadata and data paths of the
targeted file system.

13



Setting S1 S2 S3

Model Dell PowerEdge
SC1425

Dell PowerEdge R710 Dell PowerEdge R710

CPU Intel Xeon single-core
2.8GHz CPU × 2

Intel Xeon quad-core
2.4GHz CPU × 2

Intel Xeon quad-core
2.4GHz CPU × 2

Memory 2GB 24GB
4GB (set by mem= in

/etc/default/grub)

Storage
HDD1 (73GB Seagate
ST373207LW SCSI

drive) × 2

HDD2 (146GB Seagate
ST9146853SS SAS

HDD), HDD3 (500GB
Seagate ST9500430SS

SAS HDD), HDD4
(200GB Intel

SSDSC2BA200G3
SATA HDD), SSD

(250GB Fujitsu
MHZ2250BKG2 SATA

HDD)

HDD2 (146GB Seagate
ST9146853SS SAS

HDD), HDD3 (500GB
Seagate ST9500430SS

SAS HDD), HDD4
(200GB Intel

SSDSC2BA200G3
SATA HDD), SSD

(250GB Fujitsu
MHZ2250BKG2 SATA

HDD)
Partition 100GB 100GB Full size

OS Ubuntu 14.04 with
kernel 3.13

Ubuntu 14.04 with
kernel 3.13

Ubuntu 14.04 with
kernel 4.4

Table 4.1: Details of experiment machines.

• Webserver emulates the I/O workload of a typical static Web server with a high percentage
of reads. Files (Web pages) are read sequentially by multiple threads (users); each thread
appends to a common log file (Web log). This workload exercises fast lookups, sequential
reads of small files and concurrent data and metadata management.

• Dbserver mimics the behaviors of Online Transaction Processing (OLTP) databases. It
mainly consists of random asynchronous writes, random asynchronous reads and moderate
synchronous writes to the log file. It exercises the ability of large file management, extensive
concurrency, and random read/write operations.

Table 4.2 shows the detailed settings of our workloads. The first four workloads are the default
workload profiles provided by Filebench (named as *-def ), while the last four workloads are mod-
ified workloads with larger working dataset size (at least 2X RAM size). We explain our choices
below.

Default Workloads It is well known that the working set size has a significant impact on the
duration of an experiment [188]. In our auto-tuning experiments, the goal was to explore a large
set of parameters and values quickly (though it still took us over two years to search some spaces
exhaustively). We therefore decided to trade the working set size in favor of increasing the number
of configurations we could explore in a practical time period. We mainly experimented with the
default settings provided by Filebench. We did not perform a separate cache warm-up phase, since
performance usually become relatively stable within a short time given the default dataset size.

14



Workload Avg. Avg. Dir # Running Num. of R/W Filebench
File Size Width Files Time (s) Threads Ratio Version

fileserver-def 128KB 20 10,000 100 50 1:2 1.4.9
mailserver-def 16KB 1,000 1,000 100 16 1:1 1.4.9
webserver-def 16KB 20 1,000 100 100 10:1 1.4.9
dbserver-def 10MB 1,024 10 100 10 + 1 10:1 1.4.9

fileserver-heavy 128KB 20 80,000 800 50 1:2 1.5.0
mailserver-heavy 16KB 1,000,000 640,000 2,000 16 1:1 1.5.0
webserver-heavy 16KB 20 640,000 800 100 10:1 1.5.0
dbserver-heavy 1GB 1,024 10 100 10 + 1 10:1 1.5.0

Table 4.2: Filebench workload characteristics.

Intensive Workloads For studying performance variations, nearly all workload characteristics
were set to Filebench’s default values, except for the number of files and the running time. As
the average file size is an inherent property of a workload and should not be changed [190], the
dataset size is determined by the number of files. We increased the number of files such that the
dataset size is 10GB—or 2.5× the machine RAM size (S3 in Table 4.1). By fixing the dataset
size, we normalized the experiments’ set-size and run-time, and ensured that the experiments run
long enough to produce enough I/O. With these settings, our experiments exercise both in-memory
cache and persistent storage devices [189]. We did not perform a separate cache warm-up phase
in our experiments because in this study we were interested in performance variation that occurred
both with cold and warm caches [189]. The default running time for Filebench is too short to warm
the cache up. We therefore conducted a calibration phase to pick a running time that was long
enough for the cumulative throughput to stabilize. We ran each workload for up to two hours for
testing purposes, and finally picked the running time as shown in Table 4.2. We also let Filebench
output the throughput (and other performance metrics) every 10 seconds, to capture and analyze
performance variation at a finer time granularity. We also experimented these intensive workload
for auto-tuning experiments, for Storage V3 and Storage V4 (Section 4.3).

4.3 Parameter Space
To test the efficacy of auto-tuning algorithms, ideally we wanted our storage parameter spaces to
be large and complex enough. Alas, evaluations for storage systems take a long time. Considering
experimentation on multiple hardware settings and workloads, we decided to experiment with a
reasonable subset of the most relevant storage system parameters. We selected parameters in close
collaboration with several storage experts that have either contributed to storage system designs or
have spent years tuning storage systems in the field. We experimented with 7 Linux file systems
that span a wide range of designs and features: Ext2 [30], Ext3 [196], Ext4 [59], XFS [185],
Btrfs [161], Nilfs2 [103], and Reiserfs [158].

Our experiments were mainly conducted on two sets of parameters, termed as Storage V1
and Storage V2. We started with a relatively smaller set of 7 parameters, and refer it as Storage
V1. It contains the following common file system parameters: file system type, block size, inode
size, blocks per group, mount options, journal options, and special options. We tested Storage

15



Param. Abbr. Values
File System FS Ext2, Ext3, Ext4, XFS, Btrfs, Nilfs2, Reiserfs

Block Size, Leaf Size BS 1K, 2K, 4K
Inode Size, Sector Size IS n/a, 128, 256, 512, 1024, 2048, 4096, 8192

Block Group, Alloc. Group BG n/a, 2, 4, 8, 16, 32, 64, 128, 256

Journal Option JO
n/a, order=strict, order=relaxed, data=journal, data=ordered,

data=writeback
Atime Option AO relatime, noatime
Special Option SO n/a, compress, nodatacow, nodatasum, notail
I/O Scheduler I/O noop, cfq, deadline

Table 4.3: Details of Parameter Spaces

V1 with Setting S1. After some preliminary experiments, we extended our search space with one
more parameter, the I/O Scheduler, and refer it as Storage V2. Experiments with Storage V2 were
conducted with Setting S2. We list all the aforementioned parameters and their values in Table 4.3.
Note that certain combinations of parameter values could produce invalid configurations. For
example, for Ext2, the journaling options make no sense because Ext2 does not have a journal.
To handle this, we added a value n/a to the existing range of parameters. Any parameter with n/a
value is considered invalid. Invalid configurations will always come with evaluation results of zero
(i.e., no throughput); this ensures they are purged in an upcoming optimization process. There are
2,074 valid configurations in Storage V1 and 6,222 in Storage V2.

Parameters) Values
File System Ext4
Block Size 1024, 2048, 4096
Inode Size 128, 512, 2048

Flex Block Group 4, 16, 64
Journal Option journal, ordered, writeback

Inode Readahead 16, 32, 64
I/O Scheduler noop, cfq, deadline

Dirty Background Ratio 5, 10
Dirty Ratio 10, 20, 40

Table 4.4: Parameters and their values in Storage V3.

As we described in Chapter 9, parameters are not equal and changing values of certain param-
eters may associate with overhead. Therefore, we carefully designed Storage V3 (Table 4.4) and
Storage V4 (Table 4.5) to represent each category of parameters. They were mainly applied in
Chapter 7 and Chapter 9.

4.4 Experiments and Implementations
Our experiments and implementation consist of two parts. First, we exhaustively ran all configura-
tions for each workload on the S1 and S2 machines, and stored the results in a relational database.

16



Parameters) Values
File System XFS
Block Size 1024, 2048, 4096
Inode Size 512, 2048

Allocation Group Count 2, 32, 128, 512
Sector Size 512, 2048, 4096

Log Buffer Count 2, 8
Log Buffer Size 32k, 256k
Allocation Size 64k, 256k
I/O Scheduler noop, cfq, deadline

Dirty Background Ratio 5, 10
Dirty Ratio 10, 20, 40

Table 4.5: Parameters and their values in Storage V4.

We collected the throughput in terms of I/O operations per second, as reported by Filebench, the
running time (including setup time), as well as power and energy consumption. To acquire more
accurate and stable results, we evaluated each configuration under the same environment for at
least 3 runs, resulting in more than 500,000 total experimental runs. This data collection benefited
our evaluation on auto-tuning as we can simply simulate a variety of algorithms by just querying
the database for the evaluation results for different configurations, without having to rerun slow I/O
experiments. The exhaustive search also let us know exactly what the global optimal configurations
are, so that we can better understand how each optimization method performs.

Second, we simulated the process of auto-tuning storage systems by running the desired op-
timization method and querying the database for the evaluation results of the targeted storage
configurations. We focused on optimizing for throughput in this thesis. Our implementations
of optimization methods are mostly based on open-source publicly-available libraries. We use
Pyevolve [153] for Genetic Algorithms, Scikit-Optimize [178] for Bayesian Optimization, and
TensorFlow [191] for the DQN implementation. We implemented a simple version of Simulated
Annealing, with both linear and geometric cooling schedules. (We also fixed bugs in Pyevolve and
plan to release our patches.) Most of our implementation was done by applying storage-related
concepts into algorithm-specific ones. For example, for GA, we defined each storage parameter as
a gene, and each configuration as a chromosome. For DQN we provided storage-specific defini-
tions for states, actions, and rewards. The complete implementation uses around 10,000 lines of
code, consisting of Python and Shell scripts.

17



Chapter 5

Towards Better Understanding of Black-box
Auto-Tuning: A Comparative Analysis for
Storage Systems

In this chapter we apply several popular techniques to the collected dataset to find optimal config-
urations under various hardware and workload settings: Simulated Annealing (SA), Genetic Algo-
rithms (GA), Bayesian Optimization (BO), and Deep Q-Networks (DQN). We also tried Random
Search (RS) in our experiments, which showed surprisingly good results in previous research [15].
We compared these techniques from various aspects, such as the ability to find near-optimal con-
figurations, convergence time, and instantaneous system throughput during auto-tuning. We also
showed that hyper-parameter settings of these optimization algorithms, such as mutation rate in
GA, could affect the tuning results. We compared the techniques across three behavioral dimen-
sions: (1) Exploration: how much the technique searches the space randomly. (2) Exploitation:
how much the technique leverages the “neighborhood” of the current candidate or previous search
history to find even better configurations. (3) History: how much data from previous evaluations
is kept and utilized in the overall search process. Based on our evaluation results, we show that
all techniques employ these three key concepts to varying degrees and the trade-off among them
plays an important role in the effectiveness and efficiency of the algorithms.

Most black-box optimization methods lack solid theoretical understanding, partially due to
the large variety of problems that they were proposed to solve [213]. Based on our experimental
results and domain expertise, we provide explanations of efficacy of such black-box optimization
methods from a storage perspective. We observed that certain parameters would have a greater
effect on system performance than others, and the set of dominant parameters depends on file
systems and workloads. This allows us to provide more insights into the auto-tuning process.

Part of the results from this chapter was published in ATC 2018.
The chapter is organized as follows. Section 5.1 overviews the datasets that we collected for

over two years. Section 5.2 compares five popular optimization techniques from several aspects.
Section 5.3 uses GA as a case study to show that hyper-parameters of these methods could also
impact the auto-tuning results.

18



5.1 Overview of Datasets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0% 20% 40% 60% 80% 100%

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

Percentage of Configurations
S2, fileserver-def, HDD3

S2, mailserver-def, HDD3
S2, mailserver-def, SSD

S1, mailserver-def, HDD1
S2, dbserver-def, SSD

S2, webserver-def, SSD

Figure 5.1: Throughput CDF with different hardware and workloads, with symbols marking the
default configurations.

As per Chapter 4, our experimental methodology is to first exhaustively run all configurations
under different workloads and test machines. We stored the results in a database for future use.
This data collection benefits future experiments as we can simulate a variety of algorithms by
querying the database for the evaluation results of different configurations.

Figure 5.1 shows the throughput CDF among all configurations for each hardware setting and
workload. Due to space limits, we show only 6 representative datasets out of 18 here. The Y
axis is normalized by the maximum throughput under each experiment setting. The symbols on
each line mark the default configurations. As seen, for most settings, throughput values vary
across a wide range. The ratios of the worst throughput to the best one are mostly between 0.2–
0.4. In one extreme case, for fileserver-def on S1 machines and with HDD1 device, the worst
configuration only produces 1% I/O operations per unit time, compared with the global optimal
one. This underlines the importance of tuning storage systems: an improperly configured system
could be remarkably under-utilized, and thus wasting a lot of resources. However, S2, webserver-
def, SSD shows a much narrower range of throughput, with the worst-to-best ratio close to 0.9. This
is attributed mainly to the fact that webserver-def consists of mostly sequential read operations
that are processed similarly by different I/O stack configurations. Another useful observation from
Figure 5.1 is that default configurations are always sub-optimal and, under most settings, ranked
lower than the top 40% configurations. For S1, fileserver-def, HDD1, the default configuration
shows a normalized throughput of 0.39, which means that the optimal configuration performs 2.5
times better.

We list the optimal configurations for each hardware setting and workload from our datasets in
Table 5.1. As we can see, optimal configurations depend on the specific hardware as well as the
running workload. For mailserver-def with S1 machines and the HDD1, the global best is a Nilfs2
configuration. However, if we fix the workload and change the hardware to S2-HDD3, the optimum
becomes an Ext4 configuration. Similarly, fixing the hardware to S2-SSD and experimenting under

19



Hardware File Block Inode BG Journal Atime Special I/O Through-
Workload-Device System Size Size Count Options Options Options Scheduler put (IOPS)
S1-Mail-HDD1 Nilfs2 2K n/a 256 order=relaxed relatime n/a - 3,677
S2-Mail-HDD3 Ext2 4K 256 32 n/a relatime n/a noop 18,744
S2-Mail-SSD Ext2 4K 256 8 n/a relatime n/a noop 18,845
S2-File-SSD Btrfs 4K 4,096 n/a n/a relatime nodatacow deadline 16,587
S2-DB-SSD Ext4 1K 128 2 data=ordered noatime n/a noop 41,948

S2-Web-SSD Ext4 4K 128 4 data=ordered noatime n/a noop 16,185

Table 5.1: Global optimal configurations with different settings and workloads. Workloads are abbreviated.
Db: dbserver-def; File: fileserver-def; Mail: mailserver-def; Web: webserver-def.

different workloads leads to different optimal configurations. This proves our early claim that
performance (and other metrics) are sensitive to the environment (i.e., hardware, configuration,
and workloads); this actually complicates the problem as results from one environment cannot be
directly applied in another.

It is known that the working set size has a significant impact on the duration of an experi-
ment [188]. Our goal in this study was to explore a large set of parameters and values quickly
(though it still took us over two years). We therefore decided to trade the working set size in favor
of increasing the number of configurations we could explore in a practical time period. In our
experimental results, this trade-off sometimes manifests itself since SSD configurations produce
comparable throughputs as HDD ones (see Table 5.1). The experiments, however, do demonstrate
a wide range of performance numbers and, therefore, are valid for evaluating different optimiza-
tion methods. We plan to include the working set size in the set of optimization parameters in the
future.

5.2 Comparative Analysis
Many optimization techniques have been applied to various auto-tuning tasks [181, 198]. How-
ever, previous efforts picked algorithms somewhat arbitrarily and evaluated only one algorithm at
a time. Here we provide the first comparative study of multiple black-box optimization techniques
on auto-tuning storage systems. As discussed in §2.2, we focus our evaluations on a representative
set of optimization methods, and their common hyper-parameter settings, including 1) Simulated
Annealing (SA), with a linear cooling schedule; 2) Genetic Algorithms (GAs) with population size
of 8, mutation rate of 2%; 3) Deep Q-Networks (DQN) with experience replay [142] and ε = 0.2;
and 4) Bayesian Optimization (BO) with Expected Improvement (EI) and Gaussian prior. 5) Ran-
dom Search (RS), which merely performs random selection without replacement. We provide more
discussion on the impact of hyper-parameters in Section 5.3. Note that SA, DQN, and RS experi-
ments start with the default Ext4 configuration. GA and BO require several initial configurations
(prior points), which we set to default configurations of all seven file systems. This allows us to
simulate real-world use cases, where users often deploy their system with the default settings (and
may manually optimize starting from the defaults).

Figure 5.2 presents one simulated run of each optimization method on S2, mailserver-def,
HDD3; the Y axis shows the throughput value of the best configuration found so far, and the

20



16

17

18

 

 0  1  2  3  4  5

B
es

t
T

h
ro

u
g

h
p

u
t 

(k
o

p
s/

s)

Time (hrs)

15.2

18.7

S2, mailserver-def, HDD3

GA
SA
BO

DQN
RS

Figure 5.2: Highest throughput found over time, zooming in the Y ∈ [15 : 19] range. The blue
number (15.2) on the Y axis shows the default, and the red one (18.7) shows the optimal.

X axis is the running time. All time-related metrics in this section are based on the actual run-
ning time of evaluating each storage configuration, which is stored in our database. This includes
both setup time and benchmarking time. We are not comparing the running costs (including any
necessary training phases) for optimization methods here, which is our future work. Figure 5.2 is
plotted by zooming in the range of Y ∈ [15 : 19], with the blue number (15.2) on Y axis repre-
sents the default, while the red one (18.7) shows the global optimal. It shows that all five methods
were able to gradually find better configurations, but their effectiveness and efficiency differed a
lot. SA performed the worst, and got stuck in a configuration with throughput value of less than
18K IOps. DQN was able to converge to a good configuration, but spent more time to achieve that
than RS. GA and BO performed best out of these five tested optimization methods. They both suc-
cessfully identified a near-optimal configuration within one hour. Interestingly, we observed that
pure Random Search (RS) produced better results than some other optimization methods. This is
because not all storage parameters have significant impact on system performance, resulting in an
effective search space that is much smaller than the original one. Similar results were observed in
hyper-parameter optimization for neural networks [14]. We discuss this further in §5.4.

Since exploration is one critical component of all optimization methods (see §2.4), their evalu-
ation results could also exhibit some degree of randomness. To compare them more thoroughly, we
ran each optimization technique on the same environment (S2, HDD3) for 1,000 runs. Figure 5.3
shows the results, which evaluate the techniques’ probability to find good and near-optimal config-
urations. Here we define a near-optimal configuration as one with throughput higher than 99% of
the global optimal value. The Y axis shows the percentage of total runs that found a near-optimal
configuration within a certain time (X axis). Under mailserver-def workload, seen in the upper
part of Figure 5.3, SA had the lowest probability among 5 algorithms.

Even after 5 hours, only around 80% of its runs found one near-optimal configuration, which
suggests that SA can sometimes get stuck in a local optima. For other optimization methods,
given enough time, over 90% of their runs converged to a near-optimal configuration, with BO
outperforming GA, and GA outperforming DQN. RS shows the highest probability of finding
near-optimal configurations when approaching 5 hours. This is reasonable because given enough
time, a random selection will eventually hit near-optimal points. However, when conducting the

21



20%

40%

60%

80%

100%

     

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s S2, mailserver-def, HDD3

RS
SA
GA

DQN
BO

20%

40%

60%

80%

100%

 0  1  2  3  4  5

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s

Time (hrs)

S2, fileserver-def, HDD3

Figure 5.3: Comparing optimization methods’ efficacy in finding near-optimal configurations. The
Y axis shows the percentage of total runs (1,000) that found near-optimal configurations within
certain time (X axis).

22



same experiments under the fileserver-def workload, it becomes more difficult to find near-optimal
configurations. GA and BO are still the best, though only 65% of their runs were able to find near-
optimal configurations within 5 hours. SA, RS, and DQN have a probability of lower than 40% to
do so, with DQN perform the worst. This is because the global optimum under fileserver-def is
a Btrfs configuration (see Table 5.1). It is more difficult for optimization algorithms to pick such
configurations for the following reasons: 1) Few Btrfs configurations reside in the neighborhood
of the default Ext4 configurations; 2) Fewer than 2 % of all valid configurations are Btrfs ones,
which make them less likely to be selected through mutation.

The above results all focused on finding near-optimal configurations. However, another impor-
tant aspect to compare is the system’s performance during the auto-tuning process. This is espe-
cially important if the targeted system is deployed and online. Some randomness (exploration) is
necessary when searching a complex parameter space, but ideally optimization algorithms should
spend less time on bad configurations. To compare this, in Figure 5.4 we plotted the instantaneous
throughput (Y axis) over time (X axis) for one run with each method under S2, mailserver-def,
HDD3.

BO and GA are still the best two methods in terms of instantaneous throughput.

5
10
15

 RS

S2, mailserver-def, HDD3

5
10
15

 SA

S2, mailserver-def, HDD3

5
10
15

T
h
ro

u
g
h
p
u
t 

(k
o
p
s/

s)

GA

S2, mailserver-def, HDD3

5
10
15

 DQN

S2, mailserver-def, HDD35
10
15

 0  1  2  3  4  5

 BO

Time (hrs)

S2, mailserver-def, HDD3

Figure 5.4: Comparing optimization methods’ instantaneous performance (Y axis) over time (X
axis).

During the tuning process, occasionally they will pick a worse configurations than the current
one. However, they both possess the ability to quickly discard these unpromising configurations.
GA achieves this by assigning the probability of surviving to next generation based on the fitness
values (i.e., throughput). Configurations with low throughput values have a lower chance to be
picked as parents, and thus their genes (parameter values) have a lower chance of appearing in
configurations of the next generation (i.e., “survival of the fittest”). The reason for stable instanta-
neous throughputs with BO is that it uses an intelligent acquisition function to guide the selection

23



of the next generation, with the goal of maximizing the potential gain; this makes BO less likely
to choose a bad configuration. In contrast, SA performs poorly possibly because it lacks a history
to guide the exploitation and exploration phases, and only uses its neighborhood information (and
current temperature) to pick the next configuration. DQN shows similar results with RS, which is
likely caused by the fact that DQN was originally designed as an agent interacting with an unknown
environment, and thus a lot of exploration (randomness) occurs in the training phase [117, 142].

In conclusion, BO and GA perform best among the 5 tested methods, on either the ability to
converge to near-optimal configurations or in maintaining stable instantaneous performance during
the tuning process. DQN and SA can find good configurations, although they were less efficient
and less stable. Surprisingly, Random Search sometimes can produce better results than some
traditional optimization methods, given enough time. We provide more explanations on these
methods in Section 5.4.

5.3 Impact of Hyper-Parameters
Many optimization methods’ efficacy depend on the specific hyper-parameter settings, and choos-
ing the right hyper-parameters has caused headache to researchers for a long time [14, 15]. In this
section we use GA as a case study, and show the impact of one hyper-parameter, the mutation rate,
on auto-tuning results.

 0%

20%

40%

60%

80%

100%

 0  2  4  6  8  10

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s

Time (hrs)

1%
2%
4%
8%

16%
32%
64%

Figure 5.5: Impact of mutation rates on GA.

The mutation rate controls the probability of randomly mutating one parameter to a different
value, and aligns with the idea of exploration, as per §2.4.

Figure 5.5 shows the results from 7 sets of GA experiments with different mutation rates (from
1% to 64%) under S2, mailserver-def, HDD3. Each experiment was repeated for 1,000 runs.

It is similar to Figure 5.3, but with the goal of finding near-optimal configurations whose
throughput values are higher than 99.5% of the global optimal. This makes the optimization more
challenging, as GA already performs quite well on easier tasks (Section 5.2). As shown in the
figure, when increasing the mutation rate, GA has a higher probability to converge to near-optimal
configurations within a shorter time period. This is because GA works by identifying promising
combination of alleles (parameter values) for the subset of effective genes (parameters). We define
effective parameters as those having a higher impact on performance than all others. A higher
mutation rate means a higher chances of exploration, and thus finding combinations of effective

24



alleles within a shorter time. We explain this effect more in Section 5.4. However, a mutation
rate of 64% actually performs worse than 32%. This is because in order to reach near-optimal
configurations, GA needs both exploration and exploitation. Exploration lets GA identify process-
ing subspaces (i.e., combinations of certain parameter values) while exploitation helps GA search
within promising subspaces. In this case, with a mutation rate of 64%, GA spends too much time
on exploration (too much randomness), resulting in fewer chances for exploitation.

Note that in this section we are only using GA mutation rates as an example showing the impact
of hyper-parameters on the efficacy of optimization methods. There are other hyper-parameters for
nearly all techniques, such as the cooling schedule and initial temperature in SA, the acquisition
function in BO, the population size and selection method in GA, etc. In the future, we plan to
conduct more experiments on all these hyper-parameters.

5.4 Peering into the Black Box
Despite some successful applications of black-box optimization on auto-tuning system parameters,
few have explained how and why some techniques work better than others for certain problems.
Here we take the first step towards unpacking the “black box” and provide some insights into their
internals based on our evaluation results and storage domain knowledge.

Our attempts for explanations stem from a somewhat unexpected but beneficial behavior of
GA in the experiments. We found that as GA runs, there is often a small set of alleles (parameter
values) that dominate the current population and are unlikely to change. We present and explain

G
e
n
e
ra

ti
o
n

BS IS BG JO IO

 0

 1

 2

 3

 4

 5

 6

 7

 8

   

 0

 1

 2

 3

 4

 5

 6

 7

 8

A
ll

e
le

 C
o
u
n
t

Figure 5.6: Number of alleles (parameter values) in the first 10 generations from one GA experi-
ment run, with more frequent ones colored with darker colors.

this observation in Figure 5.6. The experiment was conducted on a parameter space consisting of
2,208 Ext3 configurations under S2, fileserver-def, SSD. The X axis shows 5 genes (parameters)
separated by major ticks, while one cell represents one allele (parameter value). The parameters
are denoted with their abbreviations from Table 4.3. The Y axis shows the generation number,
and we only plotted the first 10 generations. Cells were colored based on the number of alleles
in each generation. More frequent alleles are colored with darker colors. In the first generation,
the gene’s alleles (parameter values) were quite diverse. For example, there were 3 alleles (1K,
2K, 4K) for the Block Size gene, and 3 alleles (journal, ordered, writeback) for the Journal Option
gene. However, the diversity of alleles decreased in later generations, and several genes began
to dominate and even converged to a single allele. For the Block Size gene, only the 4K allele

25



survived and other two became extinct. Since GA was proposed by simulating the process of
natural selection, where alleles with better fitness are more likely to survive, this suggests that GA
works by identifying the combination of good alleles (storage parameter values), and producing
offspring with these alleles. As shown in Figure 5.6, in the 10th generation, all configurations have
a Block Size of 4K and Journal Option of writeback.

To confirm the above observations, in Figure 5.7 we plotted all Ext3-SSD configurations under
fileserver-def workload, with one dot corresponding to one configuration. Configurations are sep-
arated based on the Journal Option, shown as the X axis, and colored based on their Block Size. To
clearly see all points within each X-axis section, we ordered configurations by their unique iden-
tification number in our database. The Y axis represents throughput values. This resulted in the
formation of nine “clusters” on the graph, each corresponding to a fixed 〈Journal Option, Block
Size〉 pair. We can see that configurations with data=ordered tend to produce higher throughput
than those with data=journal, and data=writeback produces the best throughput. This is somewhat
expected from a storage point of view, as Ext3’s more fault tolerant journal option (data=journal)
may hurt throughput by writing data as well as meta-data to the journal first.

 0

 5

 10

 15

data=journal data=ordered data=writeback

T
h

ro
u

g
h

p
u

t 
(k

o
p

s/
s)

bs=1K
bs=2K
bs=4K

Figure 5.7: Scatter plot for all Ext3-SSD configurations under fileserver-def workload, with one
dot corresponding to one configuration.

Moreover, among journal configurations with data=writeback, those with a 4K Block Size turn
out to produce the highest throughput. This aligns with our observation from Figure 5.6 that GA
works by identifying a subset of genes that have a greater impact on performance—Block Size and
Journal Option—and finding the best alleles for them ([4K, data=writeback]).

Based on these observations, one interesting question to ask is whether the conclusion that a
subset of parameter have greater impact on performance than other parameters, also holds for other
file systems and workloads. To answer this question, we quantified the correlation between param-
eter values and the throughput. As most of our parameters are categorical or discrete numeric,
whereas the throughput is continuous, we took a common approach to quantify the correlation
between categorical and continuous variables [31]. We illustrate with the Block Size parameter as
an example. Since it can take 3 values, we convert this parameter to three binary variables x1, x2,
and x3. If the Block Size is 1K, we assign x1 = 1 and x2 and x3 are set to 0. Let Y represent
the throughput values. We then do a linear regression with ordinary least squares (OLS) on Y and
x1, x2, x3. R2 is a common metric in statistics to measure how the data fits a regression line. In our
approach, R2 actually quantifies the correlation between the selected parameter and throughput.
We consider R2 > 0.6 as an indication that the parameter has significant impact on performance,
as is common in statistics [31]. The same calculation is applied to all parameters among SSD

26



configurations under the fileserver-def and dbserver-def. Parameters with the highest R2 values
are colored in yellow background in Table 5.2. If all R2 values are below 0.6, we simply leave the
entries blank, meaning no highly correlated parameters were found. To find the second important
parameter, the same process is applied to the remaining parameters, but with the value of the most
important one fixed (to isolate its effect on the remaining parameters’ importance). Taking Ext4 as
an example, we calculate R2 values for all other parameters among configurations with the same
Journal Option. For one parameter, 3 Journal Options lead to three R2 values; we then take the
maximum one as the R2 value for this parameter. We color the parameter with the highest R2 in
Table 5.2 with a green background.

Workload FS BS IS BG JO AO SO I/O

fileserver-def Ext2 - - - - - - 0.68
Ext3 0.84 - - 0.90 - - -
Ext4 0.92 - - 0.99 - - -
XFS 0.94 - 0.82 - - - -
Btrfs - - - - - - -
Nilfs2 0.99 - - - - - 0.94

Reiserfs - - - 0.74 - - 0.99

dbserver-def Ext2 - - - - - - -
Ext3 0.72 - - 0.96 - - -
Ext4 - - - 0.96 0.68 - -
XFS - - - - - - -
Btrfs - - - - - - -
Nilfs2 0.62 - - - - - 0.80

Reiserfs - - - 0.99 - - -

Table 5.2: Importance of parameters (measured by R2) among SSD configurations, with the most
important one colored in yellow and second in green.

We can see that the correlated parameters are quite varied, and depend a lot on file systems. For
example, under fileserver-def, the two most important parameters for Ext3 (in descending order)
are Journal Option and Block Size; this aligns with our observation in Figure 5.6 and 5.7. However,
for Reiserfs, the top 2 changes to I/O Scheduler and Journal Option. Interestingly, all parameters
for Btrfs come with low R2 values, which indicates that no parameter has significant impact on
system performance under fileserver-def with Btrfs. Correlation of parameters can also depend on
the workloads. For instance, the two dominant parameters for XFS under fileserver-def are Block
Size and Allocation Group. When the workload changes to mailserver-def, all parameters for XFS
seem to have minor impact on performance. Note that here we are isolating the impact of each
parameter, thus assuming that their effect on throughput is independent; in future work we plan to
investigate whether parameters have inter-dependencies.

The fact that parameters have varied impact on performance can also help explain the auto-
tuning results in Section 5.2. Although our parameter space comes with 8 parameters, only a
subset of them are correlated with performance. The number of dominant parameters is termed as
effective dimension, and has also been observed in hyper-parameter optimization problems [14].
In our experiments (Section 5.2), Random Search (RS) is actually searching in a smaller effec-
tive space than the original one, and thus can find good configurations within a short time. GA’s

27



efficacy comes from assigning a higher chance of survival to configurations with a certain com-
bination of values for the effective parameters. BO stores its previous search experience (history)
in a probabilistic surrogate model that it is building, which eventually encodes the combination of
dominant parameter values that can result in good throughput values. SA does not work as well
because it lacks history information to identify the dominant parameters: it wastes time on chang-
ing less useful parameters and converges slowly. Similarly, DQN also spends lots of its effort on
exploring unpromising spaces, which slows its ability to find near-optimal configurations.

5.5 Limitations
In this chapter we provided the first comparative analysis of applying multiple optimization meth-
ods on auto-tuning storage systems. However, auto-tuning is a complex topic and more effort
is required. We list some limitations of this comparative work below. � (1) We assume that
changing parameter values come at no cost. In reality, parameters like Block Size may need re-
formatting file systems. We addressed this in Chapter 9 by associate cost functions with each
parameter. � (2) Previous studies [15], as well as our results from Section 5.3, suggest that the
choice of hyper-parameter settings could have a significant impact on the efficacy of optimization
algorithms. We plan to further explore the impact of hyper-parameters on optimization algorithms.

28



Chapter 6

On the Performance Variation in Modern
Storage Systems

6.1 Motivations
Predictable performance is critical in many modern computer environments. For instance, to
achieve good user experience, which notably impacts the revenues, interactive Web services require
stable response time [47, 88, 115]. In cloud environments users pay for computational resources.
Therefore, achieving predictable system performance, or at least establishing the limits of perfor-
mance variation, is of utmost importance for the clients’ satisfaction [183,210]. In a broader sense,
humans generally expect repetitive actions to yield the same results and take the same amount of
time to complete; conversely, the lack of performance stability, is fairly unsatisfactory to humans.

Performance variation is a complex issue and can arise from nearly every layer in a computer
system. At the hardware level, CPU, main memory, buses, and secondary storage can all contribute
to overall performance variation [47, 115]. At the OS and middleware level, when background
daemons and maintenance activities are scheduled, they impact the performance of deployed ap-
plications. More performance disruptions come into play when considering distributed systems, as
applications on different machines have to compete for heavily shared resources, such as network
switches [47].

In this chapter we focus on characterizing and analyzing performance variations arising from
benchmarking a typical modern storage system that consists of a file system, a block layer, and
storage hardware. Storage have been proven to be a critical contributor to performance varia-
tion [80, 166, 188]. Furthermore, among all system components, the storage system is the corner-
stone of data-intensive applications, which become increasingly more important in the big data
era [34,91]. Although our main focus here is reporting and analyzing the variations in benchmark-
ing processes, we believe that our observations pave the way for understanding stability issues in
production systems.

Historically, many experienced researchers noticed how workloads, software, hardware, and
the environment—even if reportedly “identical”—exhibit different degrees of performance varia-
tions in repeated, controlled experiments [33,47,57,115,125]. We first encountered such variations
in exhaustive search experiments (see Chapter 4) with Ext4: multiple runs of the same workload in
a carefully controlled environment produced widely different performance results. Over a period

29



of two years of collecting performance data, we later found that such high performance varia-
tions were not confined to Ext4. Over 18% of 6,222 different storage configurations on 4 different
storage devices that we tried exhibited a standard deviation of performance larger than 5% of the
mean, and a range value (maximum minus minimum performance, divided by the average) exceed-
ing 9%. In a few extreme cases, standard deviation exceeded 40% even with numerous repeated
experiments. The observation that some configurations are more stable than others motivated us
to conduct a more detailed study of storage system performance variation and seek its root causes,
as performance stability is critical for storage systems and important in achieving the success of
auto-tuning.

To the best of our knowledge there are no systematic studies of performance variation in stor-
age systems. Thus, our first goal was to characterize performance variation in different storage
configurations. However, measuring this for even a single storage configuration is time consum-
ing; and measuring all possible configurations is time-prohibitive. Even with our Storage V2 (see
Section 4.3), it could take more than 2 years of evaluation time. Therefore, in this study we com-
bined two approaches to reduce the configuration space and therefore the amount of time to run
the experiments: (1) we used domain expertise to select the most relevant parameters, and (2) we
applied a Latin Hypercube Sampling (LHS) to the configuration space. Even for the reduced space,
it took us over 33 clock days to complete these experiments alone.

We focused on three local file systems (Ext4, XFS, and Btrfs) which are used in many modern
local and distributed environments. Using our expertise, we picked several widely used parameters
for these file systems (e.g., block size, inode size, journal options). We also varied the Linux I/O
scheduler and storage devices, as they can have significant impact on performance. We bench-
marked over 100 configurations using different workloads and repeated each experiment 10 times
to balance the accuracy of variation measurement with the total time taken to complete these ex-
periments. We then characterized performance variation from several angles: throughput, latency,
temporally, spatially, and more. We found that performance variation depends heavily on the spe-
cific configuration of the system. We then further dove into the details, analyzed and explained
certain performance variations. For example: we found that unpredictable layouts in Ext4 could
cause over 16–19% of performance variation in some cases. We discovered that the magnitude
of variation also depends on the observation window size: in one workload, 40% of XFS config-
urations exhibited higher than 20% variation with a window size of 60s, but almost all of them
stabilized when the window size grew to 400s. Finally, we analyzed latency variations from vari-
ous aspects, and proposed a novel approach for quantifying the impacts of each operation type on
overall performance variation.

We summarize key contributions of our performance variation study as follows: � (1) To the
best of our knowledge, we are the first to provide a detailed characterization of performance vari-
ation occurring in benchmarking a typical modern storage system. We believe our study paves
the way towards the better understanding of complex storage system performance variations, in
both experimental and production settings. � (2) We conducted a comprehensive study of stor-
age system performance variation. Our analysis includes throughput and latency, and both spatial
and temporal variations. � (3) We offer insights into the root causes of some performance varia-
tions, which could help anyone who seeks stable results from benchmarking storage systems, and
encourage more follow-up work in understanding variations in production systems.

This study has been published in FAST 2017 [28]. The rest of the chapter is organized as
follows. Section 6.2 explains background knowledge. Section 6.3 describes our experimental

30



methodology. Section 6.4 covers related work on storage performance variation. We list our
experimental settings in Section 6.5. Section 6.6 evaluates performance variations from multiple
dimensions. .

6.2 Background
The storage system is an essential part of modern computer systems, and critical to the performance
of data-intensive applications. Often, the storage system is the slowest component and thus is one
of the main contributors to the overall variability in a system’s performance. Characterizing this
variation in storage system performance is therefore essential for understanding overall system-
performance variation.

We first define common performance metrics and notations used in this chapter. Through-
put is defined as the average number of I/O operations completed per second. Here we use a
“Throughput-N” notation to represent the throughput within the last N seconds of an observation.
There are two types of throughput that are used most frequently in our analysis. One is cumu-
lative throughput, defined as the throughout from the beginning to the end of the experiment. In
this chapter, cumulative throughput is the same as Throughput-800 or Throughput-2000, because
the complete runtime of a single experiment was either 800 or 2,000 seconds, depending on the
workload. The other type is called instantaneous throughput, which we denote as Throughput-10.
Ten seconds is the smallest time unit we collected performance for, in order to avoid too much
overhead.

6.2.1 Measures of Variation
Since our goal is to characterize and analyze collected experimental data, we mainly use concepts
from descriptive statistics. Statistical variation is closely related to central tendency, which is an
estimate of the center of a set of values. Variation (also called dispersion or variability), refers
to the spread of the values around the central tendency. We considered the most commonly used
measure for central tendency—the mean.

x̄ =
N∑
i=1

xi. (6.1)

Here, xi is the value number i and we have N such values in total (e.g., collected from experi-
ments).

In descriptive statistics, a measure of variation is usually a non-negative real number that is
zero if all readings are the same and increases as the measurements become more dispersed. To
reasonably compare variations across datasets with different mean values, it is common to nor-
malize the variation by dividing any absolute metric of variation by the mean value. There are
several different metrics for variation. We initially considered two that are most commonly used
in descriptive statistical analysis:

• Relative Standard Deviation (RSD): the RSD, (or Coefficient of Variation (CV)) is

RSD =

√
1

N−1
∑N

i=1(xi − x̄)2

x̄
(6.2)

31



• Relative Range: this is defined as the difference between the smallest and largest values:

RelativeRange =
max(X)−min(X)

x̄
(6.3)

Because a range uses maximum and minimum values in its calculation, it is more sensitive to out-
liers. We did not want to exclude or otherwise diminish the significance of performance outliers.
We found that even a few long-running I/O operations can substantially worsen actual user expe-
rience due to outliers (which are re-producible). Such outliers have real-world impact, especially
as more services are offloaded to the cloud, and customers demand QoS guarantees through SLAs.
That is one reason why researchers recently have begun to focus on tail latencies [47, 78, 80]. In
considering the two metrics above, we felt that the RSD hides some of the magnitudes of these
variations—because using square root tends to “compress” the outliers’ values. We therefore de-
cided to use the Relative Range as our main metric of variation in the rest of this chapter.

6.3 Methodology
Although we encountered storage system performance variations in past projects, we were espe-
cially struck by this issue in our recent experiments on automated recognition of optimal storage
configurations. We found that multiple runs of the same workload in a carefully controlled en-
vironment could sometimes produce quite unstable results. We later observed that performance
variations and their magnitude depend heavily on the specific configuration of the storage system.
Over 18% of 24,888 different storage configurations that we evaluated (repeatedly over several
workloads) exhibited results with a relative range higher than 9% and relative standard deviation
higher than 5%.

Workloads also impact the degree of performance variation significantly. For the same con-
figuration, experiments with different workloads could produce different magnitudes of variation.
For example, we found one Btrfs configuration produces variation with over 40% relative range
value on one workload but only 6% for another. All these findings led us to study the character-
istics and analyze performance variations in benchmarking various storage configurations under
multiple workloads. Due to the high complexity of storage systems, we have to apply certain
methodologies in designing and conducting our experiments.

Reducing the parameter space In this chapter we focus on evaluating local storage systems
(e.g., Ext4, Linux block layer, SSD). This is a useful basis for studying more complex distributed
storage systems (e.g., Ceph [203], Lustre [139], GPFS [167], OpenStack Swift [151]). Even a
small variation in local storage system performance can result in significant performance fluctua-
tions in large-scale distributed system that builds on it [47, 131, 144].

Despite its simple architecture, a local storage system can still have a large number of param-
eters at every layer, resulting in a vast number of possible configurations. For instance, common
parameters for a typical local file system include block size, inode size, journal options, and many
more. It is prohibitively time consuming and impractical to evaluate every possible configuration
exhaustively. As shown in Table 6.1, Ext4 has 59 unique parameters that can have anywhere from
2 to numerous allowed values each. If one experiment runs for 15 minutes and we conduct 10 runs

32



Parameter Space # Unique Parameters # Unique Configurations Time (years)
Ext4 59 2.7× 1037 7.8× 1033

XFS 37 1.4× 1019 4.1× 1015

Btrfs 54 8.8× 1026 2.5× 1023

Expert Space 10 1,782 1.52
Sample Space 10 107 33.4 days

Table 6.1: Comparison for parameter spaces. Time is computed by assuming 15 minutes per
experimental run, 10 runs per configuration and 3 workloads in total.

for each configuration, it will take us 7.8 × 1033 years of clock time to finish evaluating all Ext4
configurations.

Therefore, our first task was to reduce the parameter space (as compared with Storage V2 in
Table 4.3) for our experiments by carefully selecting the most relevant storage system parameter..
This selection was done in close collaboration with several storage experts that have either con-
tributed to storage system designs or have spent years tuning storage systems in the field. We exper-
imented with three popular file systems that span a range of designs and features. � (1) Ext4 [59]
is a popular file system that inherits a lot of internal structures from Ext3 [27] and FFS [136]) but
enhances performance and scalability using extents and delayed allocation. � (2) XFS [173, 185]
was initially designed for SGI’s IRIX OS [185] and was later ported to Linux. It has attracted
users’ attention since the 90s thanks to its high performance on new storage devices and its high
scalability regarding large files, large numbers of files, and large directories. XFS uses B+ trees
for tracking free extents, indexing directory entries, and keeping track of dynamically allocated
inodes. � (3) Btrfs [25, 161] is a complex file system that has seen extensive development since
2007 [161]. It uses copy-on-write (CoW), allowing efficient snapshots and clones. It has its own
LVM and uses B-trees as its main on-disk data structure. These unique features are garnering
attention and we expect Btrfs to gain even greater popularity in the future.

For the three file systems above we experimented with the following nine parameters. � (1) Block
size. This is a group of contiguous sectors and is the basic unit of space allocation in a file system.
Improper block size selection can reduce file system performance by orders of magnitude [80].
� (2) Inode size. This is one of the most basic on-disk structures of a file system [9]. It stores
the metadata of a given file, such as its size, permissions, and the location of its data blocks. The
inode is involved in nearly every I/O operation and thus plays a crucial role for performance, es-
pecially for metadata-intensive workloads. � (3) Journal mode. Journaling is the write-ahead
logging implemented by file systems for recovery purposes in case of power losses and crashes.
In Ext4, three types of journaling modes are supported: writeback, ordered, and journal [60]. The
writeback mode journals only metadata whereas the journal mode provides full data and metadata
journaling. In ordered mode, Ext4 journals metadata only, but all data is forced directly out to the
disk prior to its metadata being committed to the journal. There is a trade-off between file system
consistency and performance, as journaling generally adds I/O overhead. In comparison, XFS im-
plements metadata journaling, which is similar to Ext4’s writeback mode, and there is no need for
journaling in Btrfs because of its CoW nature. � (4) Allocation Group (AG) count. This param-
eter is specific to XFS which partitions its space into regions called Allocation Groups [185]. Each
AG has its own data structures for managing free space and inodes within its boundaries. � (5) No-
datacow is a Btrfs mount-time option that turns the CoW feature on or off for data blocks. When

33



File System Parameter Value Range

Ext4 Block Size 1024, 2048, 4096
Inode Size 128, 512, 2048, 8192

Journal Mode data=journal, ordered, writeback

XFS Block Size 1024, 2048, 4096
Inode Size 256, 512, 1024, 2048
AG Count 8, 32, 128, 512

Btrfs Node Size 4096, 16384, 65536
Special Options nodatacow, nodatasum, default

All atime Options relatime, noatime
I/O Scheduler noop, deadline, cfq

Storage Devices HDD (SAS, SATA), SSD (SATA)

Table 6.2: List of parameters and value ranges.

data CoW is enabled, Btrfs creates a new version of an extent or a page at a newly allocated
space [161]. This allows Btrfs to avoid any partial updates in case of a power failure. When data
CoW is disabled, partially written blocks are possible on system failures. In Btrfs, nodatacow
implies nodatasum and compression disabled. � (6) Nodatasum is a Btrfs mount-time option and
when specified, it disables checksums for newly created files. Checksums are the primary mecha-
nism used by modern storage systems to preserve data integrity [9], computed using hash functions
such as SHA-1 or MD5. � (7) atime Options. These refer to mount options that control the inode
access time. We experimented with noatime and relatime values. The noatime option tells the file
system not to update the inode access time when a file data read is made. When relatime is set,
atime will only be updated when the file’s modification time is newer than the access time or atime
is older than a defined interval (one day by default). � (8) I/O scheduler. The I/O Scheduler
manages the submission of block I/O operations to storage devices. The choice of I/O scheduler
can have a significant impact on storage system performance [18]. We used the noop, deadline,
and Completely Fair Queuing (CFQ) I/O schedulers. Briefly explained, the noop scheduler inserts
all incoming I/O requests into a simple FIFO queue in order of arrival; the deadline scheduler as-
sociates a deadline with all I/O operations to prevent starvation of requests; and the CFQ scheduler
try to provide a fair allocation of disk I/O bandwidth for all processes that requests I/O operations.
� (9) Storage device. The underlying storage device plays an important role in nearly every I/O
operation. We ran our experiments on three types of devices: two HDDs (SATA vs. SAS) and one
(SATA) SSD.

Table 6.2 summarizes all parameters and the values used in our experiments.

Latin Hypercube Sampling Reducing the parameter space to the most relevant parameters
based on expert knowledge resulted in 1,782 unique configurations (“Expert Space” in Table 6.1).
However, it would still take more than 1.5 years to complete the evaluation of every configura-
tion in that space. To reduce the space further, we intelligently sampled it using Latin Hypercube
Sampling (LHS), a method often used to construct computer experiments in multi-dimensional pa-
rameter spaces [86, 135]. LHS can help explore a search space and discover unexpected behavior
among combinations of parameter values; this suited our needs here. In statistics, a Latin Square
is defined as a two-dimensional square grid where each row and column have only one sample;

34



Latin Hypercube generalizes this to multiple dimensions and ensures that each sample is the only
one in the axis-aligned hyper-plane containing it [135]. Using LHS, we were able to sample 107
representative configurations from the Expert Space and complete the evaluation within 34 days of
clock time (excluding lengthy analysis time). We believe this approach is a good starting point for
a detailed characterization and understanding of performance variation in storage systems.

6.4 Related Work
To the best of our knowledge, there are no systematic studies of performance variation of storage
systems. Most previous work focuses on long-tail I/O latencies. Tarasov et al. [188] observed that
file system performance could be sensitive to even small changes in running workloads. Arpaci-
Dusseau [8] proposed an I/O programming environment to cope with performance variations in
clustered platforms. Worn-out SSDs exhibit high latency variations [49]. Hao et al. [77] studied
device-level performance stability, for HDDs and SSDs.

For long-tail latencies of file systems, He et al. [80] developed Chopper, a tool to explore a large
input space of file system parameters and find behaviors that lead to performance problems; they
analyzed long-tail latencies relating to block allocation in Ext4. In comparison, our goal is broader:
a detailed characterization and analysis of several aspects of storage system performance variation,
including devices, block layer, and the file systems. We studied the variation in terms of both
throughput and latency, and both spatially and temporally. Tail latencies are common in network or
cloud services [47,115]: several tried to characterize and mitigate their effects [78,88,183,210], as
well as exploit them to save data center energy [197]. Li et al. [115] characterized tail latencies for
networked services from the hardware, OS, and application-level sources. Dean and Barroso [47]
pointed out that small performance variations could affect a significant fraction of requests in large-
scale distributed systems, and can arise from various sources; they suggested that eliminating all
of them in large-scale systems is impractical. We believe there are possibly many sources of
performance variation in storage systems, and we hope this work paves the way for discovering
and addressing their impacts.

6.5 Experimental Setup and Workloads
All experiments from this chapter were conducted on S3 machines (see Table 4.1). We character-
ized variations on three storage devices, HDD2, HDD4, and SSD in Table 4.1. We use SAS-HDD
to refer HDD2, and SATA-HDD for HDD4. When discussing results on both HDD devices, we
just refer them together as HDD for short. Workload settings were described in Table 4.2, denoted
as “*-heavy”. As the average file size is an inherent property of a workload and should not be
changed [190], the dataset size is determined by the number of files. We increased the number
of files such that the dataset size is 10GB—2.5× the machine RAM size. By fixing the dataset
size, we normalized the experiments’ set-size and run-time, and ensured that the experiments run
long enough to produce enough I/O. With these settings, our experiments exercise both in-memory
cache and persistent storage devices [189].

We did not perform a separate cache warm-up phase in our experiments because in this study
we were interested in performance variation that occurred both with cold and warm caches [189].

35



 0

 100

 200

 300

 400

 500

 600

 0  500  1000  1500  2000  2500  3000

C
u
m

u
la

ti
v
e

T
h
ro

u
g
h
p
u
t 

(I
O

P
S

)

Time (s)

webserver-heavy
fileserver-heavy

mailserver-heavy

Figure 6.1: Cumulative throughput over time for one Ext4 configuration under multiple workloads.
Each workload ran for 7,200s; only the first 3,000s are plotted.

The default running time for Filebench is set to 60 seconds, which is too short to warm the cache
up. We therefore conducted a “calibration” phase to pick a running time that was long enough
for the cumulative throughput to stabilize. We ran each workload for up to 2 hours for testing
purposes. To find a suitable run time, we ran each workload for 7,200 seconds, and measured its
cumulative throughput. Figure 6.1 shows the first 3,000 seconds for Ext4 configurations. In this
chapter we define the cumulative throughput as the average number of I/O operations completed
per second since the start of the experiment. We can see that Fileserver and Webserver took around
600 seconds to achieve stable cumulative throughputs, and Mailserver took about 1,800 seconds.
We ran the same experiments multiple times, for all file systems (Ext4, XFS, and Btrfs), and we
found similar behavior. Therefore, if not stated otherwise, we set the default running time to 800
seconds for Fileserver and Webserver, and to 2,000 seconds for Mailserver. We have other choices
of running time in several supplement experiments as well. We also let Filebench output the
throughput (and other performance metrics) every 10 seconds, to capture and analyze performance
variation from a short-term view.

6.6 Evaluation
In this section we are characterizing and analyzing storage performance variation from a variety
of angles. These experiments represent a large amount of data, and therefore, we first present
the information with brief explanations, and in subsequent subsections we dive into detailed ex-
planations. Section 6.6.1 gives an overview of performance variations found in various storage
configurations and workloads. Section 6.6.2 describes a case study by using Ext4-HDD config-
urations with the Fileserver workload. Section 6.6.3 presents temporal variation results. Here,
temporal variations consist of two parts: changes of throughput over time and latency variation.

36



 0

10

20

30

40

 100  1000  10000

R
an

g
e/

A
v
g
. 
(%

)

Avg. Throughput (IOPS) (log-scale)

(a) mailserver-heavy

 100  1000  10000
Avg. Throughput (IOPS) (log-scale)

(b) fileserver-heavy

 100  1000  10000
Avg. Throughput (IOPS) (log-scale)

(c) webserver-heavy

Ext4-HDD
Ext4-SSD

XFS-HDD
XFS-SSD

Btrfs-HDD
Btrfs-SSD

Figure 6.2: Overview of performance and its variation with different storage configurations under
three workloads: (a) maileserver-heavy, (b) fileserver-heavy, and (c) webserver-heavy. The X axis
represents the mean of throughput over 10 runs; the Y axis shows the relative range of cumulative
throughput. Ext4 configurations are represented with squares, XFS with circles, and Btrfs with
triangles. HDD configurations are shown with filled symbols, and SSDs with hollow ones.

6.6.1 Variation at a Glance
We first overview storage system performance variation and how configurations and workloads
impact its magnitude. We designed our experiments by applying the methodology described in
Section 6.3. We benchmarked configurations from the Sample Space (see Table 6.1) under three
representative workloads from Filebench. The workload characteristics are shown in Table 4.2.
We repeated each experiment 10 times in a carefully-controlled environment in order to get unper-
turbed measurements.

Figure 6.2 shows the results as scatter plots broken into the three workloads: mailserver-heavy
(Figure 6.2(a)), fileserver-heavy (Figure 6.2(b)), and webserver-heavy (6.2(c)). Each symbol rep-
resents one storage configuration. We use squares for Ext4, circles for XFS, and triangles for Btrfs.
Hollow symbols are SSD configurations, while filled symbols are for HDD. We collected the cu-
mulative throughput for each run. As described in Section 6.2, we define the cumulative throughput
as the average number of I/O operations completed per second throughout each experiment run.
This can also be represented as Throughput-800 for fileserver-heavy and webserver-heavy, and
Throughput-2000 for mailserver-heavy, as per our notation. In each subfigure, the Y axis repre-
sents the relative range of cumulative throughputs across the 10 runs. As explained in Section 6.2,
here we use the relative range as the measure of variation. A higher relative range value indicates
higher degree of variation. The X axis shows the mean cumulative throughput across the runs;
higher values indicate better performance. Since performance for SSD configurations is usually
much better than HDD configurations, we present the X axis in log10 scale.

Figure 6.2 shows that HDD configurations are generally slower in terms of throughput but
show a higher variation, compared with SSDs. For HDDs, throughput varies from 200 to around
2,000 IOPS, and the relative range varies from less than 2% to as high as 42%. Conversely, SSD
configurations usually have much higher throughput than HDDs, ranging from 2,000 to 20,000
IOPS depending on the workload. However, most of them exhibit variation less than 5%. The
highest range for any SSD configurations we evaluated was 11%.

Ext4 generally exhibited the highest performance variation among the three evaluated file sys-
tems. For the mailserver-heavy workload, most Ext4-HDD configurations had a relative range
higher than 12%, with the highest one being 42%. The fileserver-heavy workload was slightly bet-
ter, with the highest relative range being 31%. Half of the Ext4-HDD configurations show variation

37



 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

2K
-128-journal-

rel-ddln-sata

2K
-128-ordered-

rel-cfq-sata

2K
-128-w

rback-

rel-ddln-sata

2K
-128-journal-

no-cfq-sas

2K
-128-journal-

no-cfq-sata

2K
-128-ordered-

no-cfq-sas

2K
-512-w

rback-

no-ddln-sata

2K
-2K

-w
rback-

rel-cfq-sas

2K
-2K

-ordered-

no-noop-sas

2K
-2K

-ordered-

no-cfq-sas

2K
-2K

-w
rback-

no-noop-sata

4K
-128-journal-

no-cfq-sata

4K
-128-w

rback-

no-cfq-sas

4K
-512-ordered-

rel-noop-sas

4K
-512-ordered-

rel-noop-sata

4K
-512-w

rback-

rel-noop-sata

4K
-512-journal-

no-cfq-sata

4K
-512-journal-

no-ddln-sata

4K
-2K

-w
rback-

rel-cfq-sas

4K
-2K

-w
rback-

no-noop-sas

 0

 500

 1000

 1500

 2000

 2500

Y
1
: 

R
an

g
e/

A
v

g
.

Y
2
: 

 A
v

g
. 

T
h

ro
u

g
h

p
u

t 
(I

O
P

S
)

Y1: mail-heavy file-heavy web-heavy Y2: mail-heavy file-heavy web-heavy

Figure 6.3: Storage system performance variation with 20 sampled Ext4-HDD configurations un-
der three workloads. The range is computed among 10 experiment runs, and is represented as bars
corresponding to the Y1 (left) axis. The mean of throughput among the 10 runs is shown with sym-
bols (squares, circles, and triangles), and corresponds to the Y2 (right) axis. The X axis represents
configurations formatted by 〈block size - inode size - journal - atime - I/O scheduler - device〉.

higher than 15% and the rest between 5–10%. For webserver-heavy, the Ext4-HDD configuration
varies between 6–34%. All Ext4-SSD configurations are quite stable in terms of performance
variation, with less than 5% relative range.

Btrfs configurations show a moderate level of variation in our evaluation results. For mailserver-
heavy, two Btrfs-HDD configurations exhibited 40% and 28% ranges of throughput, and all others
remained under 15%. Btrfs was quite stable under the fileserver-heavy workload, with the high-
est variation being 8%. The highest relative range value we found for Btrfs-HDD configurations
under webserver-heavy is 24%, but most of them were below 10%. Similar to Ext4, Btrfs-SSD
configurations were also quite stable, with a maximum variation of 7%.

XFS had the least amount of variation among the three file systems, and is fairly stable in most
cases, as others have reported before, albeit with respect to tail latencies [80]. For mailserver-
heavy, the highest variation we found for XFS-HDD configurations was 25%. In comparison, Ext4
was 42% and Btrfs was 40%. Most XFS-HDD configurations show variation smaller than 5% un-
der fileserver-heavy and webserver-heavy workloads, except for one with 11% for fileserver-heavy
and three between 12–23% for webserver-heavy. Interestingly, however, across all experiments for
all three workloads conducted on SSD configurations, the highest variation was observed on one
XFS configuration using the webserver-heavy workload, which had a relative range value of 11%.

Next, we decided to investigate the effect of workloads on performance variation in storage
systems. Figure 6.3 compares the results of the same storage configurations under three work-
loads. These results were extracted from the same experiments shown in Figure 6.2. Although
we show here only all Ext4-HDD configurations, we have similar conclusions for other file sys-
tems and for SSDs. The bars represent the relative range of 10 repeated runs, and correspond to
the left Y1 axis. The average throughput of 10 runs for each configuration is shown as symbols,
and corresponds to the right Y2 axis. The X axis consists of configuration details, and is format-
ted as the six-part tuple 〈block size - inode size - journal option - atime option - I/O scheduler
- device〉. We can see that some configurations remain unstable in all workloads. For example,
the configuration 2K-128-writeback-relatime-deadline-SATA exhibited high performance variation
(around 30%) under all three workloads. However, for some configurations, the actual work-

38



load played an important role in the magnitude of variation. For example, in the configuration
2K-2K-writeback-noatime-noop-SATA, the mailserver-heavy workload varies the most; but in the
configuration 4K-512-ordered-relatime-noop-SATA, the highest range of performance was seen on
fileserver-heavy. Finally, configurations with SAS HDD drives tended to have a much lower range
variation but higher average throughput than SATA drives.

6.6.2 Case Study: Ext4
Identifying root causes for performance variation in the storage system is a challenging task, even
in experimental settings. Many components in a modern computer system are not isolated, with
complex interactions among components. CPU, main memory, and secondary storage could all
contribute to storage variation. Our goal was not to solve the variation problem completely, but
to report and explain this problem as thoroughly as we could. We leave to future work to address
these root causes from the source code level [194]. At this stage, we concentrated our efforts solely
on benchmarking local storage systems, and tried to reduce the variation to an acceptable level. In
this section we describe a case study using four Ext4 configurations as examples. We focused on
Ext4-HDD (SATA) here, as this combination of file systems and device types produced the highest
variations in our experiments (see Figures 6.2 and 6.3).

 0

 200

 400

 600

baseline

+no_lazy

+um
ount

+alloc

baseline

+no_lazy

+um
ount

+alloc

2048-2048-writeback-
noatime-noop-SATA

4096-512-writeback-
relatime-noop-SATA

T
h

ro
u

g
h

p
u

t 
(I

O
P

S
)

47.0%

22.0% 19.2%

2.4%

23.7% 21.8%
16.0%

1.9%

Figure 6.4: Performance variation for 2 Ext4-HDD configurations with several diagnoses. Each
experiment is shown as one box, representing a throughput distribution for 10 identical runs. The
top border line of each box marks the 1st quartile; the bottom border marks the 3rd quartile; the line
in the middle is the median throughput; and the whiskers mark maximum and minimum values.
The dots to the right of each box show the exact throughputs of all 10 runs. The percentage numbers
below each box are the relative range values. The bottom label shows configuration details for each
figure.

Figure 6.4 shows results as two boxplots for the fileserver-heavy workload, where each box
plots the distribution of throughputs across the 10 runs, with the relative range shown below. The
top border represents the 1st quartile, the bottom border the 3rd quartile, and the line in the middle

39



is the median value. Whiskers show the maximum and minimum throughputs. We also plotted one
dot for the throughput of each run, overlapping with the boxes but shifted to the right for easier
viewing. The X axis represents the relative improvements that we applied based on our successive
investigations and uncovering of root causes of performance variation, while the Y axis shows the
cumulative throughput for each experiment run. Note that the improvement label is prefixed with a
“+” sign, meaning that an additional feature was added to the previous configuration, cumulatively.
For example, +umount actually indicates baseline + no lazy + umount. We also added labels on
the bottom of each subfigure showing the configuration details, formatted as 〈block size - inode
size - journal option - atime option - I/O scheduler - device〉.

After addressing all causes we found, we were able to reduce the relative range of throughput
in these configurations from as high as 47% to around 2%. In the rest of this section, we detail
each root cause and how we addressed it.

Baseline The first box for each subfigure in Figure 6.4 represents our original experiment setting,
labeled baseline. In this setting, before each experimental run, we format and mount the file
system with the targeted configuration. Filebench then creates the dataset on the mounted file
system. After the dataset is created, Filebench issues the sync command to flush all dirty data
and metadata to the underlying device (here, SATA HDD); Filebench then issues an echo 3 >
/proc/sys/vm/drop caches command, to evict non-dirty data and metadata from the page cache.
Then, Filebench runs the Fileserver workload for a pre-defined amount of time (see Table 4.2). For
this baseline setting, both Ext4-HDD configurations show high variation in terms of throughput,
with range values of 47% (left) and 24% (right).

Lazy initialization The first contributor to performance variation that we identified in Ext4-
HDD configurations is related to the lazy initialization mechanism in Ext4. By default, Ext4
does not immediately initialize the complete inode table. Instead, it gradually initializes it in the
background when the created file system is first mounted, using a kernel thread called ext4lazyinit.
After the initialization is done, the thread is destroyed. This feature speeds up the formatting
process significantly, but also causes interference with the running workload. By disabling it during
format time, we reduced the range of throughput from 47% to 22% for Configuration 2048-2048-
writeback-noatime-noop-SATA. This improvement is labelled +no lazy in Figure 6.4.

Sync then umount In Linux, when sync is called, it only guarantees to schedule the dirty blocks
for writing: there is often a delay until all blocks are actually written to stable media [149, 186].
Therefore, instead of calling sync, we umount the file system each time after finishing creating the
dataset and then mount it back, which is labelled as +umount in Figure 6.4. After applying this,
both Ext4-HDD configurations exhibited even lower variation than the previous setting (disabling
lazy initialization only).

Block allocation and layout After applying the above improvements, both configurations still
exhibited higher than 16% variations, which could be unacceptable in settings that require more
predictable performance. This inspired us to try an even more strictly-controlled set of exper-
iments. In the baseline experiments, by default we re-created the file system before each run
and then Filebench created the dataset. We assumed that this approach would result in identical

40



datasets among different experiment runs. However, block allocation is not a deterministic proce-
dure in Ext4 [80]. Even given the same distribution of file sizes and directory width, and also the
same number of files as defined by Filebench, multiple trials of dataset creation on a freshly for-
matted, clean file system did not guarantee to allocate blocks from the same or even near physical
locations on the hard disk. To verify this, instead of re-creating the file system before each run, we
first created the file system and the desired dataset on it. We then dumped out the entire partition
image using dd. Then, before each run of Filebench, we used dd to restore the partition using
the image, and mounted the file system back. This approach guaranteed an identical block layout
for each run. Figure 6.4 shows these results using +alloc. We can see that for both Ext4-HDD
configurations, we were able to achieve around 2% of variation, which verified our hypothesis
that block allocation and layout play an important role in the performance variation for Ext4-HDD
configurations.

 0

 100

 200

 300

 400

 500

 600

20G 40G 80G 160G FULL

T
h

ro
u

g
h

p
u

t 
(I

O
P

S
)

1.93% 6.69% 11.75% 17.43% 16.57%

Figure 6.5: Performance variation for Ext4-HDD configuration under the Fileserver workload with
different partition sizes from inner tracks of disks

After further investigation, we found this nondeterminism for Ext4 block allocation was caused
by the fact that Ext4 always tries to spread first-level directories [61]. In the meanwhile, Filebench
puts its dataset in one directory (with pre-defined directory width and depth distribution), directly
under the mount point of the targeted file system. To prove this, we conducted a set of experiments
by varying the partition size of the underlying hard disk. As shown in Figure 6.5, we experi-
mented with 20G, 40G, 80G, 160G and Full-disk partitions. All partitions start from inner tracks
of disks. We repeated each experiment for 10 runs. The meanings of boxes, whiskers, and dots
are the same with those of Figure 6.4. Remember the dataset size in our experiments is 10G (see
Section 6.5). When the partition size is 20G, the difference in physical positions of allocated files
among 10 experiment runs could be quite small, which results in a relative range of 1.9% in final
throughput values. They all clustered in inner tracks of disks. As we increase the partition size, the
relative range of throughput also increases. This is because with larger partition sizes, in different
experiment runs Ext4 could allocate all blocks in physically different “clusters” across the disks.
Datasets allocated in the outer tracks will result in higher final throughputs, while inner tracks pro-
duce lower results. This also explains the increasing trend of the average throughput among these
experiments.

Storing the images of file systems using the dd command, however, could be too costly in prac-

41



 480

 500

 520

 540

 560

 0  2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

T
h

ro
u

g
h

p
u

t 
(I

O
P

S
)

Block Number

default
s_hash_seed=null

Figure 6.6: Physical blocks of allocated files in Ext4 under the Fileserver workload. The X axis
represents the physical block number of each file in the dataset. Since the Fileserver workload
consists of small files, and one extent per file, we use the starting block number for each file here.
The Y axis is the final cumulative throughput for each experiment run. Note that the Y axis does
not start from 0. Lines marked with solid circles are experiment runs with the default setting; lines
with triangles represent experiment runs where we set the field s hash seed in Ext4s’s superblock
to null.

tice, taking hours of clock time. We found a faster method to generate reproducible Ext4 layouts
by setting the s hash seed field in Ext4’s superblock to null before mounting. Figure 6.6 shows
the distribution of physical blocks for allocated files in two sets of fileserver-heavy experiments
on Ext4. This workload consists of only small files, resulting in exactly one extent for each file in
Ext4, so we used the starting block number (X axis) to represent the corresponding file. The Y axis
shows the final cumulative throughput for each experiment run. Here the lines starting and ending
with solid circles are 10 runs from the experiment with the full-disk partition. The lines with tri-
angles represent the same experiments, but here we set the s hash seed field in Ext4’s superblock
to null. We can see that files in each experiment run are allocated into one cluster within a small
range of physical block numbers. In most cases, experimental runs with their dataset allocated
near the outer tracks of disks, which correspond to smaller block numbers, tend to produce higher
throughput. As shown in Figure 6.6, with the default setting, datasets of 10 runs clustered in 10
different regions of the disk, causing high throughput variation across the runs. By setting the Ext4
superblock parameter s hash seed to null, we can eliminate the non-determinism in block alloca-
tion. This parameter determines the group number of top-level directories. By default, s hash seed
is randomly generated during format time, resulting in distributing top-level directories all across
the LBA space. Setting it to null forces Ext4 to use the hard-coded default values, and thus the top-
level directory in our dataset is allocated on the same position among different experiment runs.
As we can see from Figure 6.6, for the second set of experiments, the ranges of allocated block
numbers in all 10 experiment runs were exactly the same. When we set the s hash seed parameter
to null, the relative range of throughput dropped from and 16.6% to 1.1%. Therefore, setting this
parameter could be useful when users want stable benchmarking results from Ext4. In addition
to the case study we conducted on Ext4-HDD configurations, we also observed similar results for
Ext4 on other workloads, as well as for Btrfs. For two of the Btrfs-HDD configurations, we were
able to reduce the variation to around 1.2%, by using dd to store the partition image. We did not
try to apply any improvements on XFS, since most of its configurations were already quite stable

42



(in terms of cumulative throughput) even with the baseline setting, as shown in Figure 6.2.

6.6.3 Temporal Variation
In Section 6.6.1 and 6.6.2, we mainly presented and analyzed performance variation among re-
peated runs of the same experiment, and only in terms of throughput. Variation can actually man-
ifest itself in many other ways. We now focus our attention on temporal variations in storage
system performance—the variation related to time. Section 6.6.3.1 discusses temporal throughput
variations and Section 6.6.3.2 focuses on latency variations.

6.6.3.1 Throughput over Time

After finding variations in cumulative throughputs, we set out to investigate whether the perfor-
mance variation changes over time within single experiment run.

To characterize this, we calculated the throughput within a small time window. As defined in
Section 6.2, we denote throughput with window size of N seconds as Throughput-N. Figure 6.7
shows the Throughput-120 value (Y axis) over time (X axis) for Btrfs-HDD, XFS-HDD, and Ext4-
HDD configurations using the Fileserver workload.

 0

 300

 600

 0  0.5  1  1.5  2

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (Hour)

Ext4 Btrfs XFS

Figure 6.7: Throughput-120 over time for Btrfs, XFS, and Ext4 HDD configurations under the File-
server workload. Each configuration was evaluated for 10 runs. Two lines were plotted connecting
maximum and minimum throughput values among 10 runs. We fill in colors between two lines,
green for Btrfs, red for Ext4, and blue for XFS. We also plotted the average Throughput-120 among
10 runs as a line running through the band. The maximum relative range values of Throughput-120
for Ext4, Btrfs, and XFS are 43%, 23%, and 65%, while the minimum values are 14%, 2%, and
7%, respectively.

Here we use a window size of 120 seconds, meaning that each throughput value is defined
as the average number of I/O operations completed per second with the latest 120 seconds. We
also investigated other window sizes, which we discuss later. The three configurations shown here
exhibited high variations in the experiments discussed in Section 6.6.1. Also, to show the temporal
aspect of throughput better, we extended the running time of this experiment set to 2 hours, and we
repeated each experiment 10 times. Two lines are plotted connecting the maximum and minimum

43



throughput values among 10 runs. We fill in colors between two lines, this producing a color band:
green for Btrfs, red for Ext4, and blue for XFS. The line in the middle of each band is plotted by
connecting the average Throughput-120 value among 10 runs. We observed in Figure 6.2(b) that
for the fileserver-heavy workload, Ext4-HDD configurations generally exhibited higher variations
than XFS-HDD or Btrfs-HDD configurations in terms of final cumulative throughput. However,
when it comes to Throughput-120 values, Figure 6.7 leads to some different conclusions. The
Ext4-HDD configuration still exhibited high variation in terms of short-term throughout across the
2 hours of experiment time, while the Btrfs-HDD configuration is much more stable. Surprisingly,
the XFS-HDD configuration has higher than 30% relative range of Throughput-120 values for most
of the experiment time, while its range for cumulative throughput is around 2%. This suggests that
XFS-HDD configurations might exhibit high variations with shorter time windows, but produces
more stable results in longer windows. It also indicates that the choice of window sizes matters
when discussing performance variations.

We can see from the three average lines in Figure 6.7 that performance variation exists even
within one single run—the short-term throughput varies as the experiment proceeds. For most
experiments, no matter what the file system type is, performance starts slow and climbs up quickly
in the beginning phase of experiments. This is because initially the application is reading cold data
and metadata from physical devices into the caches; once cached, performance improves. Also, for
some period of time, dirty data is kept in the cache and not yet flushed to stable media, delaying
any impending slow writes. After an initial peak, performance begins to drop rapidly and then
declines steadily. This is because the read performance already reached its peak and cached dirty
data begins to be flushed out to slower media. Around several minutes in, performance begins to
stabilize, as we see the throughput lines flatten.

The unexpected difference in variations for short-term and cumulative throughput of XFS-HDD
configurations lead us to investigate the effects of the time window size on performance variations.
We calculated the relative range of throughput with different window sizes for all configurations
within each file system type. We present the CDFs of these range values in Figure 6.8. For
example, we conducted experiments on 39 Btrfs configurations. With a window size of 60 seconds
and total running time of 800 seconds, the corresponding CDF for Btrfs is based on 39× 800

60
= 507

relative range values. We can see that Ext4’s unstable configurations are largely unaffected by the
window size. Even with Throughput-400, around 20% of Ext4 configurations produce higher
than 20% variation in terms of throughput. Conversely, the range values for Btrfs and XFS are
more sensitive to the choice of window size. For XFS, around 40% of the relative range values
for Throughput-60 are higher than 20%, whereas for Throughput-400, nearly all XFS values fall
below 20%. This aligns with our early conclusions in Section 6.6.1 that XFS configurations are
relatively stable in terms of cumulative throughput, which is indeed calculated based on a window
size of 800 seconds; whereas XFS showed the worst relative range for Throughput-60, it stabilized
quickly with widening window sizes, eventually beating Ext4 and Btrfs.

All the above observations are based on the throughput within a certain window size. Another
approach is to characterize the instant throughput within an even shorter period of time. Figure 6.9
shows the instantaneous throughput over time for various configurations under the fileserver-heavy
workload. We collected and calculated the throughput every 10 seconds. Therefore we define in-
stantaneous throughput as the average number of I/O operations completed in the past 10 seconds.
This is actually Throughput-10 in our notation. We normalize this by dividing each value by the
maximum instantaneous throughput value for each run, to compare the variation across multiple

44



 0

20

40

60

80

100

 0 50 100 150 200

C
u
m

u
la

ti
v
e 

P
ct

. 
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(a) Ext4

 0

20

40

60

80

100

 0 50 100 150 200

C
u
m

u
la

ti
v
e 

P
ct

. 
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(b) Btrfs

 0

20

40

60

80

100

 0 50 100 150 200

C
u
m

u
la

ti
v

e 
P

ct
. 
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(c) XFS

Figure 6.8: CDFs for relative range of throughput under Fileserver workload with different window
sizes. For window size N, we calculated the relative range values of throughput for all configura-
tions within each file system type, and then plotted the corresponding CDF.

45



experimental runs. The X axis still shows the running time.

 0

20

40

60

80

100

 0  100  200  300  400  500

N
o

rm
al

iz
ed

T
h

ro
u

g
h

p
u

t 
(%

)

Time (s)

Ext4-HDD XFS-HDD Btrfs-HDD Ext4-SSD

Figure 6.9: Normalized instantaneous throughput (Throughput-10) over time for experiments with
various workloads, file systems, and devices. The Y axis shows the normalized values divided by
the maximum instantaneous throughput through the experiment. Only the first 500s are presented
for brevity.

We picked one illustrative experiment run for each configuration (Ext4-HDD, XFS-HDD,
Btrfs-HDD, and Ext4-SSD). We can see from Figure 6.9 that for all configurations, instantaneous
performance fluctuated a lot throughout the experiment. For all three HDD configurations, the
variation is even higher than 80% in the first 100 seconds. The magnitude for variation reduces
later in the experiments, but stays around 50%.

The throughput spikes occur nearly every 30 seconds, which could be an indicator that the
performance variation in storage systems is affected by some cyclic activity (e.g., kernel flusher
thread frequency). For SSD configurations, the same up-and-down pattern exists, although its
magnitude is much smaller than for HDD configurations, at only around 10%. This also confirms
our findings from Section 6.6.1 that SSDs generally exhibit more stable behavior than HDDs.

6.6.3.2 Latency Variation

Another aspect of performance variation is latency, defined as the time taken for each I/O request
to complete. Much work has been done in analyzing and taming long-tail latency in networked
systems [88, 115] (where 99.9th percentile latency is orders of magnitude worse than the median),
and also in local storage systems [80]. Throughout our experiments, we found out that long-tail
latency is not the only form of latency variation; there are other factors that can impact the latency
distribution for I/O operations.

A Cumulative Distribution Function (CDF) is a common approach to present latency distribu-
tion. Figure 6.10(a) shows the latency CDFs for 6 I/O operations of one Ext4-HDD configuration
under the fileserver-heavy workload. The X axis represents the latency in log10 scale, while the
Y axis is the cumulative percentage. We can see that for any one experimental run, operations
can have quite different latency distribution. The latencies for read, write, and create form two
clusters. For example, about 20% of the read operation has less than 0.1ms latency while the other

46



 0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
u

m
. 

P
ct

. 
(%

)

Latency (ms)

 create
 delete
 open  
 read  
 stat  
 write 

(a) CDFs of operations within one single experiment run

 0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
u

m
. 

P
ct

. 
(%

)

Latency (ms)

(b) CDFs of create operation among repeated experiment runs

Figure 6.10: Latency CDF of one Ext4-HDD configuration under Fileserver workload.

80% falls between 100ms and 4s. Conversely, the majority of stat, open, and delete operations
have latencies less than 0.1ms. The I/O operation type is not the only factor that impacts the la-
tency distribution. Figure 6.10(b) presents 10 CDFs for create from 10 repeated runs of the same
experiment. We can see for the 60th percentile, the latency can vary from less than 0.1ms to over
100ms.

Different I/O operations and their latencies impact the overall workload throughput to a dif-
ferent extent. With the empirical data that we collected—per-operation latency distributions and
throughput—we were able to discover correlations between the speed of individual operations and
the throughput. We first defined a metric to quantify the difference between two latency distri-
butions. We chose to use the Kolmogorov-Smirnov test (K-S test), which is commonly used in
statistics to determine if two datasets differ significantly [192]. For two distributions (or discrete
dataset), the K-S test uses the maximum vertical deviation between them as the distance. We fur-
ther define the range for a set of latency distributions as the maximum distance between any two
latency CDFs. This approach allows us to use only one number to represent the latency variation,
as with throughput. For each operation type, we calculated its range of latency variation for each
configuration under all three workloads. We then computed the Pearson Correlation Coefficient
(PCC) between the relative range of throughput and the range of latency variation.

Figure 6.11 shows our correlation results. The PCC value for any two datasets is always be-
tween [-1,+1], where +1 means total positive correlation, 0 indicates no correlation, and –1 means
total negative correlation. Generally, any two datasets with PCC values higher than 0.7 are consid-
ered to have a strong positive correlation [162], which we show in Figure 6.11 with a horizontal
dashed red line. The Y axis represents the PCC value while the X axis is the label for each opera-

47



 0

 0.2

 0.4

 0.6

 0.8

 1

create delete fsync open read write create
 

delete
 

open
 

read
 

stat
 

write
 

open
  

read
  

write
  

P
ea

rs
o

n
 C

o
rr

el
at

io
n

C
o

ef
fi

ci
en

t 
(P

C
C

) mail-heavy file-heavy web-heavy

Ext4 XFS Btrfs

Figure 6.11: Pearson Correlation Coefficient (PCC) between throughput range and operation types,
for three workloads and three file systems. The horizontal dashed red line at Y=0.7 marks the point
above which a strong correlation is often considered to exist.

tion. We separate workloads with vertical solid lines. As most SSD configurations are quite stable
in terms of performance, we only considered HDD configurations here. For Ext4 configurations,
open and read have the highest PCC values on both mailserver-heavy and webserver-heavy work-
loads; however, on fileserver-heavy, open and stat have the strongest correlation. These operations
could possibly be the main contributors to performance variation on Ext4-HDD configurations un-
der each workload; such operations would represent the first ones one might tackle in the future to
help stabilize Ext4’s performance on HDD. In comparison, write has a PCC value of only around
0.2, which indicates that it may not contribute much to the performance variation. Most operations
show PCC values larger than 0.4, which suggest weak correlation. This is possibly because I/O
operations are not completely independent with each other in storage systems.

For the same workload, different file systems exhibit different correlations. For example, un-
der the webserver-heavy workload, Ext4 show strong correlation on both read and open; but for
XFS, read shows a stronger correlation than open and write. For Btrfs, no operation had a strong
correlation with the range of throughput, with only read showing a moderate level of correlation.

Although such correlations do not always imply direct causality, we still feel that this correla-
tion analysis sheds light on how each operation type might contribute to the overall performance
variation in storage systems.

48



Chapter 7

Spectra: Finding Important Parameters in
Storage Systems

7.1 Introduction
Storage systems are critical components of modern computer systems and have significant impact
on application performance and efficiency. Most storage systems have many configurable param-
eters that control and affect their overall behavior. For example, Linux’s Ext4 [60] offers about
60 parameters, representing over 1037 potential configuration states. The default settings are of-
ten sub-optimal; previous research has shown that tuning storage parameters can improve system
performance by a factor of as much as 9× [170].

To cope with the vast number of possible configurations, system administrators usually focus
on using their domain expertise to tune a few frequently used and well-studied parameters that
are believed to significantly impact system performance. However, this manual-tuning approach
does not scale well in the face of increasing complexity. Modern storage systems sport different file
system types [59,110,161,185], new hardware (SSDs [77,138], SMR [2,3], NVM [99,208]), multi-
tier and hybrid storage, and more virtualization layers (e.g., LVM, RAID). Storage systems range
from one or a few identical nodes to hundreds of highly heterogeneous environments [67, 167].
Worse, tuning results depend heavily on hardware and the running workloads [28, 29, 198].

Recently, several black-box optimization methods have been used to auto-tune storage sys-
tems, achieving good performance improvements within reasonable time frames [29, 117]. These
auto-tuning techniques model the storage system as a black box, iteratively trying different configu-
rations, measuring an objective function’s value, and—based on previously learned information—
selecting new configurations to try. However, all previous auto-tuning efforts have focused on
only a limited set of parameters, often pre-selected by storage experts. Wang et al. have shown
that many black-box techniques have difficulty scaling to high dimensions [174]. Therefore, the
problem of dealing with the vast number of storage-parameter configurations remains unsolved.

In machine learning and information theory, dimensionality reduction is often applied to ex-
plosively sized datasets [17,146]. We believe it can also be applied to storage-parameter selection.
Cao et al. have demonstrated that certain storage parameters have greater performance impact than
others [29]. By eliminating the less important parameters, the parameter search space—and thus
the number of configurations that need to be considered by either humans or algorithms—can be

49



massively reduced [84]. Given these observations, we decided to investigate the practicality of
parameter selection for storage systems and to design Spectra, a system that uses a variance-based
metric to quantify the importance of storage parameters, applying a greedy algorithm that can au-
tomatically and efficiently identify important parameters while evaluating only a small number of
configurations.

To evaluate Spectra, we first provide a thorough study of storage parameters’ importance. We
conducted the study on experimental data collected from 7 file systems under 4 workloads over
the past three years. For each file system, we picked 8–10 frequently tuned parameters and their
values, and exhaustively evaluated all possible storage configurations resulting from combinations
of these values. The exhaustive dataset simplified our study because we can accurately calculate
and compare parameter importance, which serves as a “ground truth” when evaluating Spectra’s
efficacy on a small proportion of the dataset. Our data set consists of more than 500,000 ex-
perimental runs (data points) in total. In this paper storage parameter importance was primarily
evaluated in terms of I/O throughput, and we ignore other aspects such as reliability. Our approach
applies equally well to other quantifiable objectives such as latency, energy consumption, and even
composite cost functions [123]. We quantified parameter importance using variance-based metrics
inspired by regression trees [20]. We show that in all our datasets there is always a small set of
parameters that have significantly more impact on throughput than all the others. For example, un-
der a Fileserver workload, the two most important parameters for Ext4 are Journal Option and I/O
Scheduler. However, we found that the set of important parameters varies with different workloads.
In the above example, the two important Ext4 parameters become Block Size and Inode Size when
the workload changes to Dbserver. We also observed interactions between storage parameters and
that choosing good values for all interacting parameters can significantly improve performance.

Based on these observations, Spectra uses a greedy algorithm to select storage-system param-
eters, which we evaluate using our collected datasets. We then combined the algorithm with Latin
Hypercube Sampling (LHS) [109,143], allowing Spectra to identify the set of important parameters
using only a small number of experimental runs that explored only a fraction of all configurations.
For instance, among all 1,000 repeated runs, Spectra was able to find the two most important
parameters for Ext4 using only 32 evaluations. The algorithm’s efficiency in finding the most im-
portant parameters quickly and accurately is critical and promising, since (1) the technique can be
applied to new storage systems or environments, and (2) such parameter findings can then be used
by storage experts or auto-tuning algorithms to further optimize the system.

The key contributions of this chapter are:

1. We provide a thorough quantitative analysis of the effects of storage parameters on system
performance, for 7 different file systems across 4 representative workloads.

2. We designed Spectra, which uses a variance-based metric of storage-parameter importance
to drive an intelligent and efficient algorithm that can select the most important parameters
using only a small number of experimental runs.

3. We observed that many storage parameters interact with each other. Spectra can identify and
take advantage of these interactions.

50



7.2 Background
Tuning storage configurations can be modeled as an optimization problem:

~x∗ = argmax f(~x), ~x = (x1, · · · , xn)

Here x1, · · · , xn denote various parameters and f(x) is the optimization objective. For storage sys-
tems, common objectives include maximizing I/O throughput or minimizing latency. If desired,
the objective can be defined as a complex function of several metrics [123, 181]. Other disciplines
use somewhat different terminology (e.g., parameters are analogous to features in machine learn-
ing, independent variables in regression analysis, and dimensions in mathematics); optimization
objectives can be called dependent variables or target variables. When discussing prior techniques
(§), we use the field-appropriate terms.

7.2.1 Motivation and Challenges
Given the challenges discussed in Section 2.1, manually tuning storage systems has become nearly
impossible, and automatic tuning can be computationally infeasible. Recent efforts, including
our work in Chapter 5, have used black-box optimization techniques to auto-tune storage config-
urations [29, 117], addressing several of the above challenges and achieving useful performance
improvements. However, we believe that the challenge of tuning storage systems is far from being
solved. All previous work has tuned only a small set of parameters, often pre-selected by experts.
Several of these black-box optimization techniques have scalability problems in high-dimensional
spaces [174]. Therefore, directly applying them to tuning systems with hundreds or thousands of
parameters would be ineffective or impractical.

In machine learning and information theory, dimensionality reduction is a common technique
for coping with explosively sized datasets [17, 146]. We propose that it can also be effective in
storage systems. Previous work has demonstrated that not all storage parameters have equally
important performance impact: a few have much greater effect than others [29]. Eliminating less-
important parameters can massively reduce the search space [84], making it much easier for hu-
mans or algorithms to tune storage systems. Therefore, in this paper we propose Spectra, which
uses a variance-based metric for storage-parameter importance and an efficient algorithm that can
automatically select a subset of parameters that have a significant impact on performance.

7.2.2 Dimensionality Reduction
One critical issue when dealing with high-dimensional data is the curse of dimensionality, which
refers to the fact that data become sparse in high-dimensional spaces and thus make algorithms
designed for low-dimensional spaces less effective. Dimensionality reduction is a powerful way to
address this issue; it can be categorized into two main components: feature extraction and feature
selection [76, 116].

Feature extraction refers to projecting high-dimensional data into low-dimensional spaces; the
newly constructed features are usually linear or nonlinear combinations of the originals. Com-
mon feature-extraction methods include Principal Component Analysis (PCA) [177], Indepen-
dent Component Analysis [85], and Linear Discriminant Analysis [140]. One major drawback of

51



feature extraction is that the physical meaning of each feature is lost by the projection and the
nonlinear combination of many dimensions into fewer ones [116]. Common feature-extraction
techniques thus conflict with our goal in this paper, which is to select a few features that can be
understood and interpreted.

Conversely, feature selection directly selects a subset of features from the original ones, with
the intention of finding only those that are important. Feature-selection methods can be classified
as supervised or unsupervised [116]. Unsupervised feature selection, such as PCA [129], chooses
a subset that contains most of the essential information based on relationships among features. It
does not consider the impact of features on optimization objectives during the selection phase. In
contrast, supervised feature selection chooses a subset that can discriminate between or approxi-
mate the target variables. Examples include Lasso [193] and decision-tree based algorithms [94].
Since we are interested in finding parameters that have significant impact on our optimization
objectives, such as I/O throughput, supervised feature selection best fits our needs.

Several intrinsic properties of our project also limit our choice of feature-selection methods.
Many storage parameters are discrete or categorical (see §§ 7.2.1 and. The performance of stor-
age systems is usually presented as I/O throughput or latency, which are continuous. Therefore,
an ideal feature-selection method should work with categorical features and continuous targets.
Although there are discretization techniques that can break continuous target variables into dis-
crete sections, feature-selection results depend heavily on the quality of discretization [116]. One
common approach for dealing with categorical features is to transform each of them into dummy
binary parameters that take values of 0 or 1. For instance, io scheduler with three possible values
(noop, deadline, and cfq) can be converted into three binary features: “io scheduler = noop” is
0/1, “io scheduler = deadline” is 0/1, and “io scheduler = cfq” is 0/1. This approach is un-
satisfactory because it selects the individual binary features instead of the original categorical
ones. Moreover, converting each categorical parameter with N values into N separate binary
parameters would expand the parameter space by 2N . For this reason, we feel that Lasso [193]
is not suitable for our problem, even though it has been successfully applied to selecting impor-
tant knobs for databases [198]. Although Group Lasso has been proposed to partially address this
deficiency [38, 100, 214], the computational cost of the Lasso-based methods is still high [116].

Another popular category of feature-selection methods has been built upon information the-
ory [23, 58, 94, 116]. These approaches usually define a metric for the homogeneity of the target
variable within certain subsets. Commonly used metrics include Gini impurity [116] and En-
tropy [17] for discrete target variables, and Variance [20] for continuous variables. Spectra applies
a variance-based metric for parameter importance, as detailed in §.

7.3 Spectra: Algorithmic Parameter Selection
Spectra uses a variance-based metric (Section 7.3.1) and Latin Hypercube Sampling (Section 7.3.2)
to construct an efficient algorithm for finding important parameters (Section 7.3.3).

52



7.3.1 Measuring Parameter Importance
Spectra proposes a variance-based metric for storage-parameter importance. The variance of a set
S of storage configurations is defined as usual:

Var(S) =
1

|S|

|S|∑
i=1

(yi − µ)2, (7.1)

where yi is the throughput of the i-th configuration; |S| is number of configurations in S; and µ
is the average throughput within S. Inspired by CART (Classification and Regression Tree) [20],
we use the reduction in variance to measure parameter importance. We extend CART’s original
definition to support categorical parameters taking an arbitrary but finite number of values, as
compared with only two in CART.

We define the parameter importance PI of a parameter P that can take a finite number of
categorical values, {p1, ..., pn}, n > 1, as:

PI (P ) = Var(S)−
n∑

i=1

|SP=pi |
|S|

Var(SP=pi) (7.2)

Here S is the original set of configurations, and SP=pi is the subset of configurations with the
parameter P taking the value pi. Intuitively, an important parameter P divides a set S of config-
urations into multiple subsets, and the weighted sum of variances within each subset should be
much smaller than the variance of S. Thus, a high PI indicates a parameter that has a significant
effect on performance. As discussed in Section 7.1, we repeatedly choose the parameter with the
highest PI until a given stopping criterion is met.

As described in Section, storage parameters sometimes interact with each other. Therefore, we
define the conditional parameter importance for a parameter Q, given P = p as:

CPI (Q|P = p) = Var(SP=p)−
m∑
j=1

|SQ=qj ,P=p|
|SP=p|

Var(SQ=qj |P=p) (7.3)

where SQ=qj ,P=p denotes the set of configurations with parameters P andQ taking values p and qj ,
respectively. Similar to Equation 7.2, given P = p, the next most important parameter Q divides
SP=p into multiple subsets, and if Q is important then the weighted sum of variance within each
subset will be much smaller than variance of SP=p. To remove the restriction to a given value p, we
define CPI (Q|P ) as the maximum of CPI (Q|P = pi) over all possible values pi ∈ {p1, ..., pn}
that parameter P can take:

CPI (Q|P ) =
n

max
i=1

CPI (Q|p = pi) (7.4)

Note that in this paper we use only variance-based metrics to measure parameter importance
and select the most critical subset. We leave storage-performance prediction, which requires a
large amount of training data [201], for future work.

53



7.3.2 Sampling
Given the large parameter space and the time needed to evaluate a single storage configuration, we
must limit the number of experimental runs required to select important parameters. Therefore,
Spectra needs an exploratory method that can cover the space uniformly and comprehensively, yet
sparsely. In this work, we chose Latin Hypercube Sampling (LHS) [135].

LHS is a stratified sampling method [31]. In two dimensions, a square grid containing samples
is a Latin Square iff there is only one sample in each row and each column. A Latin Hypercube
is the generalization of a Latin Square to higher dimensions, where each sample is the only one
in each axis-aligned hyperplane containing it [109]. LHS has been shown to be more effective in
exploring parameter spaces than random sampling [135] and Monte Carlo sampling [39]. It has
been successfully applied in sampling configurations of storage [80] and cloud systems [124].

Previous work has also applied Plackett-Burman (P&B) Design [155] to evaluate the impact of
parameters in storage benchmarks [152] and databases [48]. However, P&B design requires each
parameter to have only two possible values, and the target variable must be a monotonic function
of the input parameters. Neither requirement holds in our problem.

7.3.3 Parameter-Selection Algorithm
Based on the proposed measurements of parameter importance and Latin Hypercube Sampling
(LHS), the pseudo-code for Spectra’s parameter selection algorithm is as follows:

Algorithm 1 Parameter-Selection Algorithm
Require: P : set of parameters, S: initial set of configurations; stop(S, selected): user-defined

stopping function.
selected ← {}
S∗ ← LHS(S)
repeat
p∗ ← argmaxCPI (p|selected), p ∈ P
selected .insert(p∗)
P.remove(p∗)

until stop(S, selected) is true
Ensure: selected

Our algorithm takes a set of initial parameters P and configurations S. It greedily selects the
current most important parameter, based on its conditional parameter importance given the set of
previously selected parameters, and continues to select parameters until the stop function succeeds.
A naı̈ve stop function could be sizeof(selected) ≥ N , which would select the N most important
parameters. An alternative variance-based stopping function might stop when the variances of
subsets of configurations (given the current selected parameters) are below a certain threshold ϑ.
This stopping condition indicates that by setting the values of the selected parameters, the system
throughput already falls into a small enough range that there is little potential gain from additional
tuning. In our experiments, we apply this idea and use Relative Standard Deviation (RSD) [31], or
Coefficient of Variation, to define our stopping condition. The RSD of a set S of configurations is

54



defined as:

RSD(S) =
1

µ

√
Var(S)

N − 1
(7.5)

where N is the number of configurations and µ is the mean throughput of configurations within S.
We chose RSD because it is normalized by the mean throughput and is represented as a percentage;
that way the same threshold can be used across different datasets. We used a threshold of 2% in
our experiments; as seen in §, parameters selected by this criterion give us near-optimal and stable
throughput.

7.4 Experiment Settings
Table 7.1 lists all our file systems, their parameters, and the number of possible values that each
parameter can take. Note that under S2 we conducted default Filebench workloads (*-def ) on four
storage devices, and we treat the device as one of the parameters. Under S3 we focused on Ext4
and XFS experiments with an SSD, but evaluated a wider variety of parameters. Experiments were
run with modified Filebench workloads of 10GB working dataset size (*-heavy). Machine and
workload details are described in Table 4.1 and Table 4.2 in Chapter 4. Cells with “–” mean the
parameters are invalid for certain file systems. Cells with “def” mean we used the default value for
that parameter, and they were not considered during the parameter-selection phase.

7.5 Evaluation
We evaluated Spectra experimentally by benchmarking real hardware in a realistic parameter space
(§ 7.4).

7.5.1 Parameter Importance: an Overview
We exhaustively collected experimental data from 9 different parameter spaces (Table 7.1) under
4 representative workload types. Having the exhaustive datasets allowed us to accurately calculate
and evaluate the importance of different storage parameters. This can serve as the ground truth
when evaluating our Spectra, whose goal is to explore only a small fraction of the parameter space
yet find the same subset of important parameters as if we had explored it all. In this section, we
first provide an overview of the importance of storage parameters.

Figure 7.1 shows the top 3 most important parameters for Ext4 under S2, fileserver-def. A
parameter with highest importance was evaluated and selected by its Parameter Importance (PI),
as defined in § 7.3.1. The second most important parameter was measured by its Conditional Pa-
rameter Importance (CPI) given the most important one, in this case CPI (X|journal). Similarly,
the 3rd most important parameter was evaluated by comparing its CPI (X|journal , device). Note
that the Y axis scales in the three sub-figures are different (but higher is always better). The X axis
shows the Ext4 parameters that we experimented with. As shown in the top subfigure in Figure 7.1
Journal Option turns out to be the most important parameter for Ext4 under S2, fileserver-def. It
has the highest variance reduction, 2.7×107. In comparison, the PI of Device is around 106, while

55



Setting - File
System

S2 -
Ext2

S2 -
Ext3

S2 -
Ext4

S2 -
XFS

S2 -
Btrfs

S2 -
Nilfs2

S2 -
Reiserfs

S3 -
Ext4

S3 -
XFS

Workloads *-def *-def *-def *-def *-def *-def *-def *-heavy *-heavy
Block Size 3 3 3 3 - 3 def 3 3
Inode Size 7 7 7 5 5 - - 3 2

Block Group 6 6 6 - - 9 - def -
Journal Option - 3 3 - - 2 3 3 -

Flex Group - - def - - - - 3 -
Inode Readahead - - def - - - - 3 -

Sector Size - - - def - - - - 3
Allocation Count - - - 9 - - - - 4
Log Buffer Count - - - def - - - - 2
Log Buffer Size - - - def - - - - 2
Allocation Size - - - def - - - - 2

Node Size - - - - 3 - - - -
Special Option - - - - 4 - - - -
Atime TOption 2 2 2 2 2 2 2 def def
I/O Scheduler 3 3 3 3 3 3 3 3 3
Dirty Bg Ratio def def def def def def def 2 2

Dirty Ratio def def def def def def def 3 3
Device 4 4 4 4 4 4 4 SSD SSD

Total Config. 2,208 6,624 6,624 2,592 288 1,944 192 3,888 5,184

Table 7.1: Details of parameter spaces. Each cell gives the number of settings we tested for the
given parameter and file system; empty cells represent parameters that are inapplicable to the given
file system. We exhaustively evaluated 29,544 configurations in total under four workloads, and
each experiment was repeated 3+ times.

all other parameters are under 5× 104. Similarly, the second and third importance parameters are
Device and Block Size, respectively, both with a much higher CPI value than other parameters.

We discovered that parameter importance depends heavily on file system types and on the
running workload. Table 7.2 lists the top 4 important parameters for Ext4, XFS, and Btrfs under
various workload types; the column header #N identifies the Nth most important parameter. We
also applied the stopping criterion described in § 7.3.3. Cells marked as “–” here indicate that no
parameter gave a large reduction in variance; and thus no parameter was considered important.
Due to space limits, we only list 3 file systems under 4 workloads here, and we show only the top
4 ranked parameters under each case.

As we can see in Table 7.2, the important parameters are quite diverse and depend significantly
on the file system types and workloads. For Ext4 under S3 and dbserver-heavy, the top 4 ranked
parameters are Block Size, Inode Size, I/O Scheduler, and Journal Option. When the workload
changes to webserver-heavy, the top 4 parameters become Inode Size, Flex BG, Block Size, and
Journal Option. For fileserver-heavy under Ext4, we only found three important important pa-
rameters. This indicates that fixing the values of these three parameters already resulted in quite
stable throughputs. We explain this observation in more detail in § 7.5.2. We found similar results
on XFS: the values and number of importance parameters depend heavily on workloads. Interest-

56



0

3*10
7

P
I

PI

0

4*10
6

C
P

I

PI

CPI (X | journal)

0

5*10
5

Block
Size

Inode
Size

Block
Group

Atime
Option

Journal
Option

Special
Option

I/O
Schd.

Dev.

C
P

I

PI

CPI (X | journal)

CPI (X | journal, device)

Figure 7.1: Top 3 most important Ext4 parameters under S2, fileserver-def. The most important
parameter is measured by its PI; the second and third parameters are evaluated by their CPI given
higher-ranked parameters. The Y-axis scales in the three subfigures are different.

ingly, for Btrfs under S2, webserver-def, we did not find any important parameters. This is because
webserver-def is a workload consisting of mostly read operations, and the default working-set size
used by Filebench is small. All Btrfs configurations actually produce quite similar throughput val-
ues under webserver-def. For this reason, we also collected datasets from workloads with a much
larger working-set size (10GB), as mentioned in § 7.4.

7.5.2 Parameter Interactions
In our experiments we observed that the importance of some storage parameters can interact with
the particular values of other parameters. For example, in Figure 7.1, the variance reduction of the
parameter Device is 1.2 × 106, while the variance reduction of Device with Journal Option fixed
is 3.6× 106. We observed similar behavior in nearly all of our datasets: the importance of certain
parameters might only appear or be amplified when one or more other parameters have certain
values.

We further demonstrate this observation in Figure 7.2. Each point in the figure represents
the set of Ext4 configurations under S2, fileserver-def by fixing the values of N parameters. For
N = 1, we have 28 points, which equals the sum of possible value counts for each parameter, as
shown in Table 4.3. There are 374 points for N = 2. We use different point colors and sizes for
different number of parameters. We only plot up to N = 2 here; we extend to N = 4 in Figure 7.3.
Larger points are used for smaller N values, since fixing fewer parameter values would result in
a larger number of configurations. For example, fixing journal option = ordered in our datasets
leads to a set of 2,208 configurations; fixing journal option = ordered, device=ssd reduces that
number to 552.

In Figure 7.2, performance is measured by the average throughput of a configuration within
each set of configurations, as presented in the X axis. The Y axis shows the stability, measured by

57



Setting WL F/S #1 #2 #3 #4

S2
File

-10GB
Ext4

Journal
Option

I/O
Scheduler

Inode
Size

–

S2
Db

-10GB
Ext4

Block
Size

Inode
Size

I/O
Scheduler

Journal
Option

S2
Mail

-10GB
Ext4

I/O
Scheduler

Inode
Size

Journal
Option

Block
Size

S2
Web

-10GB
Ext4

Inode
Size

Flex
BG

Block
Size

Journal
Option

S2
File

-10GB
XFS

I/O
Scheduler

Inode
Size

Alloc
Grp Cnt

–

S2
Db

-10GB
XFS

Block
Size

Log
Buf Size

Dirty
Ratio

Alloc
Grp Cnt

S2
Mail

-10GB
XFS

Inode
Size

I/O
Scheduler

Log
Buf Size

Alloc
Size

S1
File
-def

Btrfs
Special
Option

Inode
Size

Device –

S1
Mail
-def

Btrfs
Inode
Size

Device – –

S1
Web
-def

Btrfs – – – –

Table 7.2: Top-ranked important parameters for various file systems. The column header #N
identifies the Nth most important parameter.

the Relative Standard Deviation (RSD) of throughput within each set. We chose to use the RSD
rather than variance because the figure shows sets of varying numbers of configurations; RSD is
normalized by the configuration count as well as the average throughput, and thus is easier to
compare. Our goal is to maximize throughput while minimizing RSD; therefore the best points
should cluster in the bottom-right quadrant of Figure 7.2, and the addition of parameters should
move us from the upper-left to the bottom-right quadrants (diagonally).

As we can see from the figure, fixing just one parameter value (purple dots) causes the mean
throughput to range from 2.5K to around 15K, and the RSD ranges from around 7% to 76%.
The upper-left purple point (2,500, 76%) represents the configurations gotten by setting Journal
Option to journal. The other two points representing a Journal Option of ordered or writeback
turn out to be the best among all purple points. They are both seen near the bottom right with mean
throughput of around 15K and an RSD value of 7%. Clearly, the Journal Option parameter has
the highest impact on performance; setting it to an improper value could lead to low throughput
and high RSD, while setting it correctly provides significant benefits. The points with N = 2 form
several clusters. All points with mean throughput less than 9K result from setting Journal Option
to journal (and with another parameter set to various valid values). Conversely, all points with
mean throughput larger than 14K result from a Journal Option of ordered or writeback. Journal
Option is also the most important parameter selected by our definition of Parameter Importance,
PI , supporting the validity of that definition. Another interesting observation from Figure 7.2 is
that the best point, either the highest mean throughput or the lowest RSD that we can get by fixing
N parameter values, tends to improve with the increase in N . This phenomenon arises because

58



0%

20%

40%

60%

80%

100%

 0  5  10  15  20

R
el

at
iv

e 
S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Average Throughput (kop/s)

N = 2

N = 1

Figure 7.2: Impact of parameters on performance and stability (Ext4, S2, fileserver-def). Each
dot represents a set of configurations created by fixing N parameters, while different dot sizes
and colors are used for different values of N. Performance is measured by the average throughput
(X axis) of all possible configurations within each set; stability is measured by relative standard
deviation (Y axis, lower is better) of the throughput within each set.

reducing the configuration space reduces variance, which in turn reduces the RSD and thus allows
the mean throughput to rise.

To probe this further, we zoomed into the bottom-right part of Figure 7.2 and added points
for N = 3, 4, as shown in Figure 7.3. The X and Y axes are similar but with narrower ranges
(and the X axis starts at 14K). The label “Max” on the X axis, with a small tick mark, shows the
global maximum throughput of all Ext4 configurations within the parameter space. For eachN , we
only plot the point(s) with the highest average throughput or lowest RSD. The labels around each
point show the associated parameter values, ordered by (Journal Option, Device, Block Group,
and Inode Size). The black triangle marks the point with highest mean throughput, gotten by
fixing the values of the three most important parameters selected by Spectra. For N = 1, the best
two points resulted from setting Journal Option to either ordered or writeback. These two points
overlap with each other in this figure, as they share nearly identical mean throughput and RSD
values. Only one point is plotted for N = 2, since the point (journal option=ordered, device=ssd)
shows both the highest throughput and the lowest RSD among all N = 2 points; the same is
true for N = 3. For N = 4, the left red point shows the lowest RSD value while the right
red point shows the highest average throughput. We can see from Figure 7.3 that the impact of
parameters on performance depends on the parameters selected and their order. For example, with
two parameters, the best average throughput is 15.7K, which results from journal option=ordered,
device = ssd. The average throughput achieved by setting only journal option is 14.7K, as shown
in the figure. The throughput value for device=ssd is even worse. We have similar conclusions for
N = 3 and N = 4. As explained above, the best average throughput increases when we select
more parameters.

Note that using our definition of parameter importance, the top three selected parameters are
Journal Option, Device, and Block Size. By setting the values of these three parameters, the best
average throughput (triangle in Figure 7.3) only slightly lower than the global best average through-
put achieved by fixing 3 parameter values (blue point). This is because our definition of parameter
importance focuses on measuring the “impact” of parameter on performance, which can be either

59



0%

2%

4%

6%

8%

10%

14 15 16 Max

R
el

at
iv

e 
S

ta
n
d
ar

d
 D

ev
ia

ti
o

n

Average Throughput (kop/s)

N = 1

(ordered)

(writeback)

N = 2

(ordered, ssd)

N = 3

(ordered, ssd, 32)

N = 4

(ordered, ssd,
32, 512)

(ordered, sas,
32, 512)

Spectra

Figure 7.3: A zoom into the bottom-right part of Figure 7.2 (the “best quadrant”), with points for
N = 3, 4 added. Plotted points show either the highest average throughput or the lowest relative
standard deviation among all configurations gotten by fixing the values of N parameters. The labels
around the dots show the corresponding fixed parameter values. The parameter values are ordered
by (Journal Option, Device, Block Group, and Inode Size). The triangle marks the point achieved
by fixing the values of parameters selected by Spectra.

positive or negative. Still, the selected parameters come very close the global best. Moreover, our
algorithm stops after selecting 3 parameters, as the RSD already drops below our 2% threshold at
that point.

7.5.3 Spectra: Evaluation
All evaluations and analysis in § 7.5.1 and 7.5.2 were conducted on the complete dataset of all
possible parameter configurations. However, collecting exhaustive datasets for storage parameters
is usually impractical, given the challenges discussed in § 7.2.1. One design goal of Spectra is to
select important parameters while evaluating only a small fraction of configurations. Spectra does
so by utilizing Latin Hypercube Sampling (LHS), which has been effective in exploring system
parameter spaces [80, 124].

Figure 7.4 presents the results of running Spectra on two different datasets, Ext4, fileserver-def
and Btrfs, fileserver-def. The X axis shows the number of configurations that were evaluated and
used by Spectra, and is in log2 scale. For each X, we repeated the same experiment for 1,000 runs,
to measure Spectra’s ability to select parameters. We used the important parameters selected using
the whole dataset as the “ground truth.” For Ext4, fileserver-def, the top 3 important parameters
are Journal Option, Device, and Block Size. For Btrfs, File-def, they are Special Option, Node
Size, and Device. The Y axis shows the fraction of runs that successfully found the same important
parameters as the ground truth. The solid, dashed, and dotted lines show the results of finding the
1st, 2nd, and 3rd most important parameters, respectively.

Figure 7.4(a) shows that even with only 8 configurations evaluated (0.1% of dataset), Spec-
tra has a 60% probability of correctly identifying the most important parameter. When using 32
(0.4%), Spectra was able to find the 1st and 2nd ranked parameter in 100% and 99.8% of the 1,000

60



 0%

20%

40%

60%

80%

100%

 4  8  16  32  64  128  256  512

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s

Percentage of Dataset

#1
#2
#3

(a) Ext4, fileserver-def

 0%

20%

40%

60%

80%

100%

 8  16  32  64  128

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s

# Evaluations

#1
#2
#3

(b) Btrfs, fileserver-def

Figure 7.4: Spectra’s ability to correctly find the top 3 important parameters within small portions
of the dataset. The X axis (log2 scale) shows the number of evaluations that was used. We ran
Spectra on X sampled configurations for 1,000 runs. We used the PI calculated from the whole
dataset as ground truth. The Y axis shows the percentage of runs that were able to correctly find
the important parameters. The solid, dashed, and dotted lines show the results for finding the
parameters ranked 1st, 2nd, and 3rd, respectively.

61



runs, respectively. Setting the values of the most important two parameters would already produce
high average throughput (97% of the global optimum) with high stability (2% of RSD), as shown
in Figure 7.3. The chance of correctly selecting the third important parameter increases with the
percentage of the dataset used by Spectra. With 64 configurations (1% of the dataset), the prob-
ability of correctly finding the 3rd parameter is around 40%, while sampling 256 configurations
(2.9%) successfully identifies the 3rd parameter with higher than 90% probability.

For Btrfs, shown in Figure 7.4(b), Spectra needed a larger fraction of the dataset to make correct
selections. This is because Btrfs has only 288 configurations, compared with 8,832 for Ext4. Yet
by evaluating only 45 of all configurations, Spectra found the 1st and 2nd parameters with greater
than 70% and 80% probability respectively. Spectra identified the 3rd parameter in more than 80%
of runs with 64 configurations sampled.

In sum, Spectra is effective in selecting parameters using only a few evaluations. In our ex-
periments, Spectra found the top 2 important parameters with higher than 80% probability by
evaluating fewer than 50 configurations. Fixing the values of the most important two parameters
can already result in high and stable system throughput, as shown in § 7.5.2. Spectra can find the
3rd parameter with about 40% probability using only about 64 evaluations. Moreover, auto-tuning
a storage system with an optimization algorithms often requires an initialization phase to explore
the whole space [29, 124]. Spectra can utilize the data collected during the initialization phase to
select parameters; in this case, no extra evaluation needs to be conducted. Integrating Spectra with
auto-tuning algorithms is part of our future work.

7.6 Related Work
Parameter selection for computer systems There have been several attempts to select impor-
tant parameters for various types of software systems. Aken et al. [198] applied Lasso to choose
important knobs for databases. They converted categorical parameters into binary dummy features
and included polynomial features to deal with parameter interactions. As discussed in § 7.2.2,
Lasso does not scale well when the system has many categorical parameters. Plackett-Burman
(P&B) design of experiments [155] has been applied to evaluate the impact of parameters in stor-
age benchmarks [152] and databases [48]. However, P&B assumes that each parameter has only
two possible values and the target variable is a monotonic function of the input parameters; neither
holds for storage parameter spaces. Adaptive Sampling [54] and Probabilistic Reasoning [182]
have been applied to evaluating the impact of database knobs. They either only work for contin-
uous parameters, or have scalability issues in high-dimensional spaces. In comparison, Spectra
applies variance-based metrics for storage parameter importance. To the best of our knowledge,
we have conducted the first thorough quantitative study of storage-parameter importance by evalu-
ating Spectra on datasets collected from various file systems and workloads. Spectra also provides
insights into interaction between parameters.

Auto-tuning storage systems Several researchers have build systems made to automate storage-
system tuning. Strunk et al. [181] applied Genetic Algorithms (GA) to automate storage system
provisioning. Babak et al. [12] used GA to optimize the I/O performance of HDF5 applications.
GA have also been applied for storage-recovery problems [96]. Deep Q-Networks have been
successfully applied in optimizing performance for Lustre [117]. More recently, Cao et al. [29]

62



provided a comparative study of applying multiple optimization algorithms to auto-tune stor-
age systems. However, many auto-tuning algorithms have scalability issues in high-dimensional
spaces [174], which is one of our motivations. Selecting the subset of important parameters could
reduce the space dramatically, which would then benefit either auto-tuning algorithms or manual
tuning by experts.

Feature selection in general Many feature-selection techniques have been proposed in various
disciplines. Li et al. [116] provide a thorough summary and comparison for most state-of-the-art
feature-selection algorithms. Based on our arguments in § 7.2.2, we chose to use variance-based
metrics for storage-parameter selection.

7.7 Conclusions
Modern storage systems come with many parameters that affect their behavior. Tuning parameter
settings can bring significant performance gains, but both manual tuning by experts and automated
tuning have difficulty dealing with the large number of parameters and configurations. In this
paper, we propose Spectra, which addresses this problem with the following four contributions:
(1) Spectra includes a variance-based metric for quantifying storage parameter importance, and a
greedy yet efficient parameter-selection algorithm. (2) To the best of our knowledge, we provide
the first thorough study of storage-parameter importance. We evaluated Spectra across multiple
datasets (collected from more than 300,000 experimental runs) and showed that there is always a
small subset of parameters that have the most impact on performance—but that the set of important
parameters changes with different workloads, and that there are interactions between parameters.
(3) We demonstrated Spectra’s efficiency by testing it on small fractions of the configuration space.
This efficiency gives Spectra the potential to be easily applied to new systems and environments
and to identify important parameters with a small number of configuration evaluations.

In the future, we plan to extend Spectra to support other parameter-selection techniques, such
as Group Lasso [38,100,214] and ANOVA [24,31,113,204]. We will evaluate and improve Spectra
with more optimization objectives (e.g., reliability), and larger storage-parameter spaces. We also
plan to integrate Spectra with auto-tuning algorithms.

63



Chapter 8

Graphs are not Enough: Using Interactive
Visual Analytics in System Research

8.1 Introduction
Analyzing and understanding the behavior of computer systems has always been of interest to
researchers and system administrators. Previous work has presented analysis of various aspects:
performance [28,47,77], reliability [95], energy consumption [170], etc. In recent years, computer
systems have grown more complex with the addition of new hardware, varied workloads, and
increasing scale. This makes system analysis more important but also more challenging.

Existing analytic approaches used in system research can be broadly classified into two cat-
egories: non-visual and visual techniques. Non-visual methods include statistical measurements
such as mean, standard deviation, and percentile(s) [47], plus machine-learning techniques includ-
ing classification, clustering analysis, etc. [10,202] Visual approaches have included 2D techniques
such as histograms [90], box plots [28], etc., and 3D versions such as surface plots [35, 188].

However, existing techniques are not enough for thorough understanding of system behavior,
for three reasons. First, computer systems are often impacted by many factors. Modern computer
systems can easily have hundreds of tunable parameters [29]. However, most commonly applied
visualization techniques (e.g., line, histogram, scatter plots) can focus on one or few factors within
one plot. To analyze the impact of all parameters, multiple graphs are needed. For example, dur-
ing our previous study of just nine parameters in a typical storage system [29], we produced over
2,000 plots in an attempt to fully analyze the parameters’ impact and dependencies. The prob-
lem is exacerbated because the running workload and underlying hardware can also affect system
behavior [28, 29, 170]. Moreover, some system parameters have categorical values, while many
plotting approaches (line, scatter, etc.) assume numerical axes. The standard regression technique
of splitting categorical parameters into dummy binary values does not scale well, because it makes
the configuration space grow exponentially [198]; thereafter, attempting linear regression between
Boolean 0s and 1s—treating them as floating-point numbers—is often meaningless for categorical
parameters.

Second, some traditional approaches lack interpretability. Systems researchers often want not
only to explain the numbers, but also to understand the underlying implications at the system level.
Many existing approaches project high-dimensional data into low-dimensional spaces; the newly

64



constructed dimensions are usually linear or nonlinear combinations of the originals. Examples
include Principal Component Analysis (PCA) [177], Independent Component Analysis [85], and
visual techniques such as Multi-Dimensional Scaling (MDS) [107]. One major drawback of this
kind of projection is that the physical meaning of each dimension is lost by the projection and by
the nonlinear combination of many dimensions into fewer [116].

Third, it is difficult to infuse domain knowledge. It is important and beneficial to combine
expert knowledge into system analysis procedures. For example, in our previous study we used our
storage expertise to pick nine representative storage parameters and four common workloads [29].
Similarly, Basak et al. [10] pre-selected features manually when doing workload characterization.
Due to the complexity of computer systems, there is no single master solution that can satisfy
all requirements; often a combination of statistics, visualization, and human reasoning must be
applied. However, current systems papers mostly use static, non-interactive 2D (occasionally 3D)
plots, which make it inconvenient to exploit domain knowledge while analyzing.

To address the aforementioned limitations, we propose to apply another type of analytic tech-
nique in systems research: interactive visual analytics, which have been successfully applied
to many real-world data sets [37, 87, 104]. Interactive visual analytics can often present high-
dimensional spaces in a single 2D space, allowing researchers to explore interactions among mul-
tiple factors of the targeted system. They let users exploit their domain knowledge and intuition
via visual interaction; this empowers users to take an active role in the analysis process, better
understand the target system, and make sound decisions with high confidence.

To demonstrate the benefits of applying interactive visual analytics, we took storage-system
performance analysis as an example. We conducted studies on our three-year dataset collected on
a typical storage system; the dataset has 9 dimensions and 100k configurations (about 500k data
points in total); many large installations often collect numerous similar telemetrics [138,148,168].
We prototyped a new tool, the Interactive Configuration Explorer (ICE), which uses an enhanced
box plot whose form is well understood by systems researchers, with an embedded density plot for
throughput distribution, to present the data to the user in a compact, easily interpretable form. We
have found that ICE can help researchers explore the interaction among multiple system parame-
ters (numeric, discrete, and categorical), and understand system performance, efficiency, stability,
reliability, etc. We hope our study will lead to more use of interactive visual analytic approaches
in systems research.

8.2 ICE: Interactive Configuration Explorer
A motivating example Maria is an analyst responsible for a large storage system. She has been
working on a performance problem for weeks, without success. Fortunately she has collected
metrics on her production systems, and also has a testbed that she can use for benchmarks, so she
has lots of data about different configurations and workloads. But she needs to make sense of all
those numbers, which is what our interactive visual analytic tool, the Interactive Configuration
Explorer (ICE), is designed to do. Launching it, Maria first sees Figure 8.1. The performance
that matters to her is throughput (Y axis—higher is better). Her system is currently used as a file
server, so she decides to focus on that workload. When she clicks on it, the screen reconfigures to
show just the file-server data (Figure 8.2, zoomed to show only the first two sections). The mean
performance of each filesystem is shown by the black dots, and the range by the length of the bar.

65



…

Figure 8.1: Screenshot of ICE. Block Group was cropped out, shown as “. . . ” in the figure, to
ensure the screen text is legible.

Maria sees that both btrfs and xfs have high throughput, but xfs has less variance. Nevertheless,
she decides to look further into btrfs because of its snapshoting capabilities. Choosing that option
produces Figure 8.3, where she chooses an 8KB inode size for its low variance, and sees that
selecting compress for the “SpecialOp” will reduce variance further.

Maria knows that the system might later be used as an OLTP database server. Will btrfs still
behave well? She backs out, selects dbserver, and sees Figure 8.4. It turns out that Btrfs is
terrible for database workloads. But Ext4 seem to contain some promising configurations with
high throughput (indicated by the peaks in the magenta regions inside the bar). She can then use
ICE to select ext4 and again explore different parameter selections for the new workload, just like
she did for fileserver.

Both researchers and administrators commonly encounter this scenario: analyzing systems
that are impacted by tunable parameters and other factors including workload, hardware, software,
etc. As in the example, interactive visual analytics allow quick exploration of many configuration
options. We now describe the design of ICE, and in Section 8.3 we will show examples of how we
used it to understand system behavior.

Design of ICE ICE was designed to help users visualize, understand, and explore the impact of
system parameters and workloads on system behavior. We tested it on experimental data collected
on 7 different file system types and 4 representative workloads using Filebench [62, 190]. We also
experimented with the parameters block size, inode size, blocks per group, mount option, journal
option, special option, I/O scheduler, and 4 different storage devices. The total number of unique
storage configurations is 24,888, and we collected more than 500,000 data points. (Real-world
users are unlikely to run so many tests; ICE is designed to help analyze collected experimental data,
which does not have to be exhaustive or enormous. The large dataset here made it possible for us to
explore a design that could handle extreme situations.) ICE shows various configurations as bars,
each of which is carefully designed to present rich information about the throughput distribution
resulting from selected parameter values. Bars in ICE are a combination of stacked bar plots and
violin plots [83], which are box plots superimposed with rotated kernel density plots. Figure 8.5

66



Figure 8.2: Partial screenshot of ICE after selecting the “fileserver” Workload.

Figure 8.3: Using ICE to select parameter values for btrfs under the fileserver workload (partial
screenshots).

67



Figure 8.4: Partial screenshot of ICE after selecting the “dbserver” Workload.

90th percentile - 75th percentile

75th percentile - Median
Median - 25th percentile

25th percentile - 10th percentile

10th percentile - Min

Max - 90th percentile
Max throughput

90th percentile

75th percentile
Median

25th percentile

10th percentile
Min Throughput

Mean Throughput

Throughput 
distribution

(Magenta region)

Figure 8.5: Annotated bar plot explaining how to read it.

68



shows an annotated example of one such bar. The shading distinguishes different percentiles of the
throughput: the darker shades on the top and bottom represent the range from the maximum to the
90th percentile and from the minimum to the 10th percentile. Medium shades mark the ranges for
the 90th to 75th and the 10th to 25th percentiles; the lightest shades in the middle mark the 75th to 25th

percentiles. The black horizontal lines in each bar mark major percentile boundaries (90th, 75th,
50th (median), 25th, and 10th). The mean of the data is indicated by a solid black dot. In addition to
the percentile shades, the distribution of the data is shown by the magenta-colored area(s) on each
bar, giving more detail about exactly how the configurations represented by that bar are distributed
in the throughput space. We chose all colors and shades carefully by using ColorBrewer [21, 43],
ensuring that they are visible on a variety of displays and to users who suffer from color-blindness.

Returning to Figure 8.1, ICE is designed based on scented widgets [206], which were originally
proposed as graphical user interface controls enhanced with embedded visualizations that facilitate
navigation in information spaces. We see that ICE displays multiple bars, each representing the
throughput distribution of a subset of configurations in which one parameter is fixed to a given
value. Since ICE is interactive, all of these bars change as the user explores the data. The parame-
ters are grouped according to type (note that some parameter types have been omitted for space rea-
sons; a full version of the display can be seen at http://www.fsl.cs.stonybrook.edu/
%7Ezhccao/ice). A cumulative bar at the right-hand side of the figure, which also changes
during exploration, shows the throughput distribution of the union of the chosen configurations.
In this example, the initial display shows the distribution of all configurations for 7 file systems
across 4 workloads.

Given an initial setting, the user can select any combination of workload, file system, and
storage parameters, and the bars will be updated to show throughput distribution, as we saw in
the example above. With this design, users can easily select parameters with different objectives.
For example, Maria maximized throughput by selecting the bar with the highest solid black dot,
but she could also reduce performance variance by focusing on shorter bars. Our case studies in
Section 8.3 show how ICE can help users make such configuration decisions.

We designed ICE generically, so that it is easy to analyze new datasets collected on differ-
ent systems. We plan to make ICE open-source to facilitate research on understanding system
parameter spaces and optimizing large systems.

8.3 Case Studies
In Section 8.2 we showed one example of how ICE can be used to analyze system throughput and
tune parameters to achieve high performance. In this section, we describe two more case studies to
show how ICE can also help analyze performance stability and reliability. These studies are based
on our real experience in analyzing and tuning storage systems [29, 216].

8.3.1 Performance Stability
Now suppose that Maria wants to configure a system as an email server, for which she cares about
performance stability. The range (difference between maximum and minimum) and Inter-Quartile
Range (IQR) (difference between 75th quartile and 25th quartile) are often used to quantify stability
in system performance [28]. ICE visually presents the range as the length of each bar, and IQR

69



Figure 8.6: Using ICE to optimize a mail server (partial screenshots). We chose Workload =
“mailserver”; FileSystem = “ext4”; and BlockSize = “1024”.

as the length of the lightest shade in the middle of each bar (see Figure 8.5). Maria starts her
analysis with ICE and selects the mailserver Workload. The left part of Figure 8.6 shows a partial
ICE screenshot after doing so. The bars for each parameter value present the updated throughput
distribution if that value is chosen. For example, the bar above “btrfs” shows the throughput
distribution of all Btrfs configurations under the mailserver workload. The updated bars guide
Maria to select a value for another parameter, based on her objectives. Clearly, under mailserver
xfs has by far the smallest throughput range, even though its highest throughput value is slightly
lower than those of nilfs and ext2. Since stability is the primary concern, Maria thus decides to
configure her server using XFS.

Unfortunately, Maria’s boss informs her that upper management has established a policy that
all corporate computers have to use the Ext4 file system, regardless of application. She returns to
ICE, selecting ext4. Now she continues configuring parameters for Ext4, because that file system
shows a wide range of throughput, indicating unstable performance. As shown in the middle part
of Figure 8.6, a value of 1024 for BlockSize gives the most stable result; Maria thus chooses this
value.

The right part of Figure 8.6 shows the final step. Maria has three types of HDDs available:
“sas” (a 146GB SAS HDD), “500sas” (a 500GB SAS HDD), and “sata” (a 250GB SATA HDD).
She estimates that her email system will only need 100GB, so she can ignore the HDD capacity and
focus solely on performance. The bar associated with sas appears the the shortest, which means
the 146GB SAS HDD has the most stable performance. Therefore, Maria selects that HDD.

70



Figure 8.7: Using ICE to optimize multiple constraints (partial screenshots). We chose Work-
load=“dbserver”; FileSystem = “ext4”; Device = “ssd”; InodeSize = “128”; BlockSize = “2048”.

8.3.2 Constrained Tuning
When conducting system analysis, multiple objectives sometimes need to be considered at the
same time. For example, system administrators may want to configure a stable system (i.e., low
variability) and still achieve high performance. In this case certain constraints may be added to
the analysis process. Here we show a case study of how ICE can be easily applied to reflect such
multiple constraints and help the analysis.

This time Maria wants to configure her system as an OLTP database server that uses Ext4.
However, she wants to ensure reliability for the file system; therefore, she sets the Ext4 journaling
mode to data=journal. She then uses ICE to analyze the system and help her find the configuration
that leads to the highest throughput under the current constraints, as shown in Figure 8.7. She has
already tested four device types, 3 HDDs and 1 SSD. Unsurprisingly, the SSD shows the highest
maximum throughput (top of bar) so she chooses that. ICE then updates the rest of the display
to reflect that choice, and Maria then focuses on the Inode Size. A 128-byte inode is clearly
preferable in this situation, so she selects that and moves to the Block Size where 2KB has better
stability. Finally, she chooses deadline for the I/O Scheduler, as it improves stability more without
hurting performance, as shown in the rightmost part of Figure 8.7.

It is important to note that Maria is not restricted to following the particular path given in this
example. She could have chosen an I/O scheduler first, followed by selecting the best block and
inode sizes, and waited to the end to chose a disk type. She also could have selected an inode size,
observed how it interacted with the other parameters, and backed out so that should could pick a
value later based on her choices for something else. One of the benefits of ICE is that the user can
easily and quickly try different options to see how it affects the results, exploring the parameter
space along the path that best suits her needs and research style.

71



8.4 Future Work
This position paper advocates the use of interactive visual analytics for computer systems analysis
and research. We plan to continue this work. In particular, the following three enhancements to ICE
are promising: (1) During interactive analysis, it is useful to track the progression of the analysis
and how the current state compares to previous ones. We plan add a provenance scheme [134,179]
that would show previous results along a timeline, enabling us to see the “path” by which a partic-
ular analysis was reached. (2) ICE is already scalable in the number of presented configurations
since it displays distributions, and is general because new datasets can be dynamically imported.
We plan to further improve ICE to support even larger spaces, consisting of hundreds or thousands
of parameters. Previous work has demonstrated that some parameters have greater impact than
others [29,198]. We plan to expand ICE to visualize and help analyze parameter importance based
on measures of redundancy, uniqueness, coverage, or on metrics from information theory such as
mutual information [29]. (3) When tuning system parameters, not all changes are equal in terms
of the overhead. Some parameters can be dynamically changed without any additional cost, such
as selecting the Linux I/O scheduler. However, some changes, such as installing hardware or re-
formatting a file system, would consume significant amounts of time or money. We are working to
enhance ICE by assigning each parameter a “cost” category (e.g., reformatting is more costly than
a reboot), allowing users to assign weights to each cost category, and then allowing ICE to explore
the space under cost constraints. For example, users could opt to avoid any cost category above a
certain threshold, or only avoid it unless the performance benefits exceed a certain desired metric.

We designed ICE to analyze computer system parameter spaces, where some previous tech-
niques have not proven as useful as one might wish. Nevertheless, we are investigating ways to
incorporate approaches such as Parallel Coordinates [87], Parallel Sets [104], and Data Context
Maps [37] into ICE. We also would like to integrate machine-learning techniques [105, 187, 198]
to help guide the analyst in exploring large parameter spaces.

8.5 Conclusions
The Interactive Configuration Explorer (ICE) is an interactive visual analytics tool that helps an-
alyze and understand computer systems. It addresses the limitations of existing techniques, such
as dealing with high-dimensional spaces and infusing domain knowledge, by making it easy for
humans to understand and explore large parameter spaces. We described ICE and presented sev-
eral exemplary case studies on a storage system to demonstrate how it can help analyze a system’s
performance, stability, etc. We believe that interactive visual analytics such as ICE, possibly in
conjunction with other techniques (e.g., Parallel Coordinates [87] or Data Context Maps [37]), can
greatly improve our ability to manage complex computer systems. ICE has the potential to pave
the way for more applications of interactive visual analytics to systems research, leading to better
understanding and more robust design of computer systems.

72



Chapter 9

A Practical Auto-Tuning Framework for
Storage

9.1 Motivation
Despite some promising results in applying black-box optimization techniques for auto-tuning
storage systems, we believe these techniques still lack several critical features to achieve practical
auto-tuning. For example, as seen in Figure 5.2, after around 3.5 hours, GA already found a
near-optimal configuration, but it spent a lot of additional rounds and resources, yet not improving
overall performance much. Moreover, Figure 2.2 and Table 5.1 showed that storage evaluation
results depend heavily on the hardware and running workloads. Our previous work reported similar
observations [28, 170]. Therefore, our auto-tuning framework also needs to react to environment
changes (e.g., hardware, workload). In Figure 5.2, SA got stuck in a configuration with throughput
value of less than 18K IOps. Additional experiments we conducted suggest that the quality of
initialization has a significant effect on the convergence time and final optimization results. Lastly,
our preliminary experiments assume that all configurations have identical cost: that moving from
one configuration to another has the same (fixed and low) cost. For many storage systems, however,
it is not true: for example, changing the block size of a file system may require a costly and time-
consuming reformat and data migration.

In this chapter we discuss our design for a more intelligent and practical auto-tuning frame-
work, building on previous chapters and addressing the aforementioned limitations. We are ex-
ploring techniques that add vital missing features from existing optimization methods:

• A workload modeler, which can extract features from system-collected metrics and charac-
terize the running workload based on them. This is useful in determining when to restart the
auto-tuning process and how to “transfer” evaluation results from one workload to another.

• The key component of our auto-tuning framework will be the optimizer. In addition to
the optimization algorithms evaluated in Chapter 5 and Spectra, and the parameter selection
algorithm (Chapter 7), we further added several features.

1. A criteria when the optimization algorithm should stop searching, having reached a
“good enough” system configuration;

73



Monitor

Modeler

Workload Optimizer

Visualizer

UserSystem

P
a
ra

m
e
te

rs

M
e
tric

s

History

Controller

Database

Persistent

Figure 9.1: Auto-tuning Framework

2. A mechanism to pick an initial set of search space locations;

3. A mechanism to categorize each parameter based on its changing cost (e.g., a simple
run-time changeable parameter vs. one that requires a system reboot and some down-
time).

• The visual analytic tool discussed in Chapter 8, ICE, actually serves as an example of a
visualizer in our framework. A visualizer help storage administrators understand storage
parameter spaces and make design-tradeoff decisions.

The rest of this chapter is organized as follows. We describe the design of the auto-tuning
framework and its components in Section 9.2. Section 9.3 describes how we apply distance metrics
and classification techniques to quantify the similarity among workloads. We describe how to
categorize parameters and deal with configuration change cost in Section 9.4. We compare various
initialization and stopping methods in Section 9.5 and Section 9.6.

9.2 Auto-Tuning Framework
To address the limitations discussed in Section 9.1, we propose our enhanced auto-tuning frame-
work, as shown in Figure 9.1. It consists of 6 components.

• Monitor, which collects and processes system metrics for other components’ use.

• Workload Modeler, which utilizes metrics collected by the Monitor, to characterize the
running workload.

• Optimizer, which includes the core auto-tuning algorithm with newly added features. It
calculates the optimization objective for the current system configuration, based on metrics
collected by the Monitor. Our framework is general enough to optimize for any objective
that can be quantitatively measured. Examples are I/O throughput or latency, energy con-
sumption, or even an economic cost function comprising multiple metrics [123, 181].

74



Yes

Start

Evaluate
Fitness

New

Population

Yes

No

No Elitism

Mutation CrossoverStop?

Spectra Cost

(ML)

Initialize
Population

Restart?

Selection

Cost

Figure 9.2: Workflow for an enhanced Optimizer (GA)

• Controller, which is responsible for changing the system settings based on the configuration
picked by the Optimizer.

• Persistent History Database, which stores previous evaluation results persistently. The
auto-tuning algorithm can use part (or all) of this history to direct the search or build pre-
dictive ML models. A practical implementation may also periodically purge older or less
valuable database entries to reduce storage costs.

• Visualizer, which provides the user with interactive visualization and insights into complex
n-D spaces. More details on Visualizer were discussed in Chapter 8.

Our Optimizer is designed to address the issues observed in our preliminary experiments. Here
we use GA as a case study explaining how it works, but all the new components are applicable
to other black-box optimization algorithms as well. As shown in Figure 9.2, white boxes repre-
sent GA’s original optimization loop components and blue ones relate to GA’s selection process;
pink ones are new components in our hybrid optimization algorithm; and the green box represent
Spectra, our parameter selection algorithm as detailed in Chapter 7.

9.3 Workload Modeler
In this section we use parameters to refer to system factors whose values can be manually set,
and features or metrics for values that can only be measured. The workload modeler’s role is to
find a set of features that is sufficient to differentiate workloads and quantify their changes. It
is useful when the Optimizer wants to re-utilize past evaluation results for a new workload—by

75



finding the closest known workload for which we have a high-performing system configuration
(see Section 9.5).

How to characterize a system workload remains an open problem. A few efforts were made in
modeling database query workload [130, 198] and storage workloads [10, 26]. To model a storage
workload, we investigated previous work on storage workloads [10,26,75,150,154,160,171], and
came up with a list of 18 features that have been commonly applied in storage workload study. The
complete list of features is as follows: read&write LBA range, read&write LBA standard devia-
tion, read&write LBA delta offset standard deviation, read inter-arrival average, read LBA range,
read LBA standard deviation, read LBA delta offset standard deviation, read size average, write
inter-arrival average, write LBA range, write LBA standard deviation, write LBA delta offset stan-
dard deviation, write size average, read/write ratio, read inter-arrival relative standard deviation,
read size relative standard deviation, write inter-arrival relative standard deviation, and write size
relative standard deviation.

Designing a complete workload modeler goes beyond the scope of this thesis, due to the com-
plexity of modern workloads, as well as the time-consuming process of collecting data. Neverthe-
less, as we already started working on this, we describe our preliminary results here. We collected
block traces from multiple sources. We ran four macro workloads using Filebench (see Section 4)
and their variants (e.g., different number of threads, different number of files, etc.). To collect block
access information, we started blktrace as a background job at the same time with Filebench. We
executed Filebench for 3 minutes. After each experiment, we parsed the block-access informa-
tion using blktrace. Once we finished these processes, we transferred all these data to a separate
server for offline post-processing. Our post-processing program reads in the output of blktrace and
captures data into N-second vectors, and calculated the 18 aforementioned features and finally nor-
malize every feature using z-score [215]. We trained a random forest (with 10 decision trees) with
20% of the Filebench traces, and tested it on the other 80% dataset. The predication accuracy is
94%. Our preliminary results demonstrate the feasibility of workload prediction and modeling by
utilizing the repeated workload patterns and carefully-designed features. We also collected traces
from other sources. We ran MySQL and PostgreSQL using TPC-DS benchmark [195]. The FIU
IODedup traces [102] and MSR Cambridge Traces [147] are also good sources of traces.

In the future, we plan to perform feature selection or clustering analysis on all extracted features
and remove redundant ones. For the selected list of metrics, we will consider a distance function to
quantify the similarities between workloads. Example distance functions include the earth-mover-
distance (EMD) function [90, 194].

9.4 Parameter Categories and Cost Function
Many traditional optimization problems assume that moving from one configuration to another
has the same constant cost. In practice, however, this is not always true. Imagine our optimizer
finds a configuration with 10% better performance than the current one, but needs to change the
format of the underlying file system—requiring a lengthy downtime to backup the data, reformat,
then restore the data. Some users may not accept such a cost to gain 10% better performance—
but other users might. Therefore, we propose to include the concept of cost functions into our
auto-tuning framework. The cost of one parameter roughly correlates to how much downtime the
system has to endure while changing the value of it.

76



We carefully studied common storage parameters, including mkfs and mount options for Ext4,
XFS, Btrfs, and I/O related Linux kernel parameters, etc. We broadly categorize parameters into
four categories based on their impact on downtime. Each category can be further subdivided into
sub-categories, as shown in Table 9.1. We also label and categorize all parameters that we have
experimented in Storage V1 & V2 (Table 4.3), Storage V3 (Table 4.4), and Storage V4 (Table 4.5),
in column “Example Parameters”.

Category
(Cost)

Named
Category

Description Example Parameters
(Table 4.3, 4.4 & 4.5)

Category 0 dyn-kernel Dynamically
changeable os

parameters, most of
which can be tuned by

sysctl.

I/O scheduler, dirty background ratio,
dirty ratio

dyn-app Change app parameter
without restarting the

app.

(n/a)

Category 1
app-restart Restart app. (n/a)
remount remount file system. atime option, inode readahead blocks

(Ext4), log buffer count (XFS), log
buffer size (XFS), allocation size
(XFS), notail option (Reiserfs)

umount-
mount

umount file system and
then mount it back.

journal option (Ext3, Ext4), compress
(Btrfs), nodatacow (Btrfs), nodatasum
(Btrfs), journal option (Nilfs2), journal

option (Nilfs2)

Category 2 reboot A system reboot is
required.

(n/a)

bios BIOS change. (n/a)

Category 3 reformat-
restore

File system re-creation
is required, implying a
backup restore cycle.

block size (Ext2, Ext3, Ext4), inode
size (Ext2, Ext3, Ext4), block group
(Ext2, Ext3, Ext4), flex block group
(Ext4), sector size (XFS), allocation

group (XFS), node size (Btrfs), block
size (Nilfs2), blocks per segment

(Nilfs2), block size (Reiserfs)
hardware-

change
Hardware change. storage devices

Table 9.1: Categories of Parameters.

Category 0 parameters are dynamically tunable, and thus come with very little to no cost. It
mainly includes kernel parameters that can be dynamically changed or some application parame-
ters that can be changed without restarting. Category 1 parameters come with minor cost of just a
few seconds of downtime, including application parameters that requires restarting the application,

77



file system parameters that can be tuned through remount, or umount and mount the file system
back. Parameters of Category 2 are usually associated with a medium level of cost, which might
require system downtime of several minutes. Parameters that require rebooting the system or some
BIOS changes belong to this category. Category 3 parameters come with much more cost than the
other categories; these often require file system reformatting or some hardware changes. Changing
Category 3 parameters can bring downtime from hours to even several days, depending on the
amount of data that needs to be migrated.

To identify the penalties associated with each system parameter, administrators have to cate-
gorize them. This needs to be done only once for each system parameter, and can then be dis-
seminated publicly. We conducted a user study by categorizing all the parameters that we have
experimented with. It took two graduate students with some familiarity of storage systems around
two hours to categorize and test around 30 parameters. Users, however, may need to assign weights
to the various cost categories in each environment (e.g., more conservative in production, more ag-
gressive in experimental systems). The default and most simple cost function is to assign infinitely
large weights to certain categories, which means never changing the values of these categories. For
example, if the user does not want to reformat the system, our auto-tuning algorithm will just use
tunable parameters in Categories 0 & 1 & 2. Our conversion with multiple storage experts, either
from academia or industry, actually suggest that this could be the most common and acceptable
cost functions.

Figure 9.3(a) shows experiments we conducted on GA using Storage V3 under mailserver
workload. Unlike previous experiments, here we do not change values of Category 3 parameters,
assuming that users cannot afford the higher cost of reformatting file system and data migration.
As shown in the figure, GA can still gradually find better configurations and improve the system
throughput, by only tuning Category 0 & 1 & 2 parameters. The best throughput found is around
14.6k IOps, compared with 18k IOps if tuned all categories, as shown in Figure 9.3(b).

The other approach for dealing with parameter-change costs is to include the cost into the
optimization objective function, and thus the objective becomes a complex cost formula (similar to
our economics-based cost functions [123]), rather than a single system metric like I/O throughput.

9.5 Initialization
As discussed in Section 9.1, the quality of initialization has a large impact on the convergence time
and final results of optimization. Much work has been done on proposing and analyzing different
initialization methods for various optimization algorithms [66, 74, 174]. We are investigating the
following initialization methods to design the best one for our needs:

1. Simple Random Sampling, where each configuration is chosen entirely by chance and has
an equal chance of being included in the sample [31]. It is the default for many optimization
techniques [66]. Although we expect it sometimes to be inefficient, it serves as a useful
baseline for more intelligent methods.

2. Stratified Random Sampling, which divides the whole space into sub-spaces, and takes
samples from each sub-space. It is quite useful when we expect the measurement of interest
to vary among the different sub-spaces [31]. In case of optimizing for storage configurations,
since parameters directly impact performance, an ideal initialization method should cover

78



 0

 5

 10

 15

 20

 0  1  2  3  4  5

B
es

t
T

h
ro

u
g

h
p

u
t 

(k
o

p
s/

s)

Time (hrs)

Run 1
Run 2
Run 3
Run 4

(a) Optimize Category 0 & 1 & 2

 0

 5

 10

 15

 20

 0  1  2  3  4  5

B
es

t
T

h
ro

u
g

h
p

u
t 

(k
o

p
s/

s)

Time (hrs)

Run 1
Run 2
Run 3
Run 4

(b) Optimize All Categories

Figure 9.3: GA results on Storage V3 under mailserver workload and un/restricted cost categories.

79



 0%

20%

40%

60%

80%

100%

 0  2  4  6  8  10

P
er

ce
n

ta
g

e
o

f 
R

u
n

s

Time (hrs)

dbserver,LHS

dbserver,random

webserver,LHS

webserver,random

Figure 9.4: Comparison of LHS and random initialization on dbserver and webserver workloads.

each parameter value more uniformly. In fact, Latin Hypercube Sampling (LHS) [109,135],
which belongs to this type of sampling, are proved to be effective in black-box optimiza-
tion [66, 157].

3. Including domain knowledge. Domain experts may already know some good configu-
rations for certain workloads. Including them has been shown to increase the search effi-
cacy [4, 19, 92, 205]. Another good example here is if experts know the impact of several
common parameters on overall system performance, the initialization method could try to
sample the preferred parameter values more frequently. Interestingly, our automated tech-
niques can also be used to evaluate the accuracy of domain experts’ actual recommendations.

In Figure 9.4 we compare the efficacy of two initialization methods: Simple Random Sampling
and LHS. The experiments were run with GA and on Storage V3. Since exploration is one critical
component of all optimization methods (see Section 2.4), We repeated the experiments on each
initialization method 1,000 times. We compare different initialization methods for their probability
of finding near-optimal configurations. Here we define a near-optimal configuration as one with
throughput higher than 99% of the global optimal value. The Y axis shows the percentage of
total runs that found a near-optimal configuration within a certain time (X axis). Clearly LHS
outperforms simple random sampling, with a higher chance to find near-optimal configurations
and more quickly, for both dbserver and webserver workloads. We believe this is because different
parameters have a different level of impact on performance (see Chapter 7), and GA’s efficacy
comes from assigning higher chances of survival to configurations with a combination of more
effective parameter values. Initialization through stratified random sampling, such as LHS can
also let GA find these effective parameter values earlier. Another interesting observation is that
even though LHS outperforms random initialization in both workloads, the difference is much
larger in webserver than dbserver. This is because the Ext4 inode size has to be smaller than its
block size, which indicates that there could be more configurations with larger block size (4K, 2K)
than a smaller block size (1K). In fact, Storage V3 has 972 configurations with 1K block size, 1,458
with 2K block size, and 1,458 for 4K block size. With random initialization, the configurations
within the first generation come with a higher chance of having block size values of 2K and 4K
than 1K. For webserver workload, the near-optimal configurations all come with 1K block size,
which explains why LHS outperforms random initialization a lot. Random initialization have a

80



higher probability of spending more time exploring configurations with 2K and 4K block sizes.
Although eventually GA can still find the near-optimal areas via mutation, it does take longer time.
For dbserver, the difference between LHS and random initialization is not as significant as that of
webserver, since the block size values of near-optimal configurations are mostly 2K.

When the Workload Modeler detects that the running workload has changed, the Optimizer
needs to restart and thus re-initialize. Based on the similarity of the new workload with the pre-
vious one given by Workload Modeler, our re-initialization process can include some of the top
configurations found with an old workload. This actually belongs to the third category of initial-
ization method, of exploiting domain knowledge. The details of this technique are beyond the
scope of this thesis and are left as future work.

9.6 Stopping Criteria
As shown in Section 9.1, some stopping criteria should be included in an auto-tuning algorithm,
otherwise it can spend a lot of additional rounds and resources without improving overall perfor-
mance much if at all. Commonly applied stopping criteria in black-box optimization algorithms
include:

• Time-based stopping criteria, which let the optimization algorithm stop after a certain time
or number of evaluations.

• Sliding-window (weighted) average, which stop the optimization algorithm if it fails to find
a better configuration within a certain time window.

• Algorithm-specific stopping criteria, which use the history information stored by the opti-
mization algorithm. For example, the diversity of genes within each generation can be used
to determine when to stop [164].

• User-specified stopping criteria. Users may want to specify that they want to achieve X
IOPS in terms of throughput. After finding a configuration that meets such requirements, the
optimization algorithm can safely stop running.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  8  16  24  32  40  48  56  64  72

S
u

c
c
e
ss

 R
a
te

Time Window (# Evaluations)

5%

2%

1%

Figure 9.5: Time window based stopping criteria.

81



Figure 9.5 shows results using sliding-window based stopping criteria. We define a successful
stop as one that stopped early and the best configuration found at that point has throughput that
is at most K% lower than the best possible one. We again repeated the experiment for 1,000
runs, and the Y axis shows the percentage of runs with success stops. The X axis represents the
sliding window size, which means that if the algorithm fails to find a better configuration within
X consecutive evaluations, we just stop. We conducted three sets of experiments, with K percent
values of 1%, 2%, and 5%. For example, K = 1 indicates that even if we stopped early, the
best throughput found is higher than 99% of the best if terminated normally, (in our case, 120
generations). ForK = 1 and window size of 8, around 40% of runs stopped early and successfully.
Larger window sizes generally result in better success rates, with a window size of 72 evaluations
reaching nearly 70% for K = 1 and 96% for K = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

S
u

cc
es

s 
R

at
e

# Mutation after Convergence

5%

2%

1%

Figure 9.6: Diversity based stopping criteria.

History (see Section 2.4) can also be used to determine when to stop the algorithm. Here
we use GA as an example. As discussed in Section 5.4, GA works by assigning a higher chance
of survival to well-performing gene alleles; and thus after a certain number of generations, the
diversity of alleles will decrease and eventually converge to a single allele. We say one parameter
(gene) has converged if M% of the configuration within the current population share the same value
for it. And we define the convergence of GA as N% of the parameters (genes) have converged.
Figure 9.6 shows the results of this diversity-based stopping criteria, with M = 80 and N = 80.
Similar to Figure 9.5, we repeated each experiment for 1,000 runs, and we used the same definition
for a successful stop. The Y axis shows the percentage of runs with success stops. The X axis
represents the number of mutations that occurred after convergence. We allow some mutations
after convergence to avoid getting stuck in local optima. As we can see from Figure 9.6, diversity-
based stopping criteria show better success rate than window-based ones. For K = 5, stopping
right after convergence can give a success rate of 94%, while allowing 9 mutations can increase the
rate to 98%. For K = 1, diversity-based stopping with 9 mutations allowed after convergence can
still give 80% of success rate, compared with 73% given with window-based stopping (window
size = 72). Another observation from Figure 9.6 is that allowing a number of mutations after
convergence can slightly increase the success rate of any defined stopping criteria. We also tried
other definitions of convergence, with different values of M and N. They produce similar results:
increasing values of M and N will slightly increase the success rate, but of course it will take longer
time to converge, and thus longer to stop the algorithm.

82



Despite some promising results, we believe more sophisticated criteria are needed to stop the
algorithm more accurately and quickly. The key challenge would be to determine how close the
current solution is to the global best, and whether the algorithm just got stuck in a local optima and
simply needs more time for (random) exploration. For example, in our diversity-based stopping
criteria, we allow a certain number of mutations after diversity converge to avoid getting stuck in
local optima. However, the mutation here is purely random, not taking into account any previous
evaluated alleles. A potential improvement is to design a more intelligent mutation, trying to assign
higher probability to “unvisited areas” in the search space.

In addition to a stopping criteria for the whole optimization process, another type of early
stopping criteria could also be defined within each evaluation of a configuration. Evaluating a
single configuration for storage systems may take several minutes or even hours. If our optimizer
can recognize early that the configuration under evaluation is operating worse compared to known
ones, then the optimizer can stop evaluating the current run early. Moreover, when the Workload
Modeler detects that the running workload has changed sufficiently, the algorithm might need to be
restarted and re-optimize the system. Therefore, we also need to define certain restarting criteria
for our auto-tuning framework. We leave the (early) stopping criteria for single evaluation and
restarting criteria as our future work beyond this thesis.

83



Chapter 10

Conclusions

Optimizing storage systems can provide significant benefits especially in improving I/O perfor-
mance. Alas, storage systems are getting more complex, contain many parameters and an im-
mense number of possible configurations; manual tuning is therefore impractical. Worse, many of
those parameters are non-linear or non-numeric; traditional linear-regression-based optimization
techniques do not work well for such problems. Therefore, in this work, we propose to auto-tune
storage system configurations.

We first performed a comparative study on various black-box optimization algorithms. (1) We
evaluated five popular but different auto-tuning techniques, varied some of their hyper-parameters,
and applied them to storage and file systems. (2) We show that the speed at which the techniques
can find optimal or near-optimal configurations (in terms of throughput) depends on the hardware,
software, and workload; this means that no single technique can “rule them all.” (3) We explain
why some techniques appear to work better than others.

In our auto-tuning experiments, we observed that repeated experiments in well-controlled,
identical environments could produce results with high variations. Therefore, we then provided
the first systematic study on performance variation in benchmarking a modern storage system. We
showed that variation is common in storage systems, although its magnitude depends heavily on
specific configurations and workloads. Our analysis revealed that block allocation is a major cause
of performance variation in Ext4-HDD configurations. From a temporal perspective, the magni-
tude of throughput variation also depends on the window size and changes over time. The latency
distribution for the same operation type could also vary even over repeated runs of the same ex-
periment. We quantified the correlation between performance and latency variations using a novel
approach.

Modern storage systems come with many parameters that affect their behavior. Tuning pa-
rameter settings can bring significant performance gains, but both manual tuning by experts and
automated tuning have difficulty dealing with the large number of parameters and configurations.
We propose Spectra, which includes a variance-based metric for quantifying storage parameter
importance, and a greedy yet efficient parameter-selection algorithm. We evaluated Spectra across
multiple datasets and showed that there is always a small subset of parameters that have the most
impact on performance—but that the set of important parameters changes with different work-
loads, and that there are interactions between parameters. We demonstrated Spectra’s efficiency
by testing it on small fractions of the configuration space.

To help understand auto-tuning results and analyzing system behavior, we co-designed Interac-

84



tive Configuration Explorer (ICE). ICE is an interactive visual analytics tool that helps analyze and
understand computer systems. It addresses the limitations of existing techniques, such as dealing
with high-dimensional spaces and infusing domain knowledge, by making it easy for humans to
understand and explore large parameter spaces. We described ICE and presented several exemplary
case studies on a storage system to demonstrate how it can help analyze a system’s performance,
stability, etc.

We believe traditional black-box optimization techniques still lack several critical features to
achieve practical auto-tuning. We prototyped a workload modeler, which can extract features from
system-collected metrics and characterize the running workload based on them. We categorize
each parameter based on its changing cost, and showed how our auto-tuning framework will op-
timize storage systems within certain categories of parameters. We also compared the efficacy of
multiple initialization methods and stopping criteria with our framework.

Another contribution of our project is that we are collecting a lot of data on evaluating different
storage configurations on various workloads. For more than three years, we have collected a large
data-set of over 500,000 data points. All our results were stored in a carefully designed database.
We already released our current datasets and we will continue releasing as we collect more datasets,
to facilitate research on understanding and optimizing storage performance.

Finally, it is our thesis that auto-tuning storage systems is important, promising, and feasi-
ble with a carefully designed framework to include missing yet critical features. We hope our
auto-tuning framework can improve systems’ performance efficiency, and save energy and human
resources in the long term.

10.0.1 Future Work
Our auto-tuning framework can be extended further beyond the scope of this thesis. We see at least
the following interesting and promising directions.

• Experiment with larger and more complex parameter spaces. Our current experiments were
conducted on spaces consisting of 8 to 10 parameters. We are collecting data from a search
space consisting of 12 parameters (expected to conclude around March 2019). We plan to
extend our work with an even larger parameter space, where exhaustive search is impossible.
We will test and improve the efficacy of our auto-tuning framework in real-time.

• We plan to extend Spectra to support other parameter-selection techniques, such as Group
Lasso [38, 100, 214] and ANOVA [24, 31, 113, 204]. We will evaluate and improve Spectra
with more optimization objectives (e.g., reliability), and larger storage-parameter spaces. We
also plan to integrate Spectra with auto-tuning algorithms.

• We plan to investigate the possibility of applying more Machine Learning in our auto-tuning
framework, including design hybrid algorithms that combine traditional optimization algo-
rithms and ML.

• We plan to extend our work on workload characterization, collecting more traces from varied
sources and test with more workload features.

• Details of future work for ICE were discussed in Section 8.4.

85



Bibliography

[1] Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines. New York, NY;
John Wiley and Sons Inc., 1988.

[2] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. Skylight—a window on shingled
disk operation. Trans. Storage, 11(4):16:1–16:28, October 2015.

[3] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and Peter Desnoyers. Evolving ext4 for
shingled disks. In Proceedings of the 15th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 105–120, Santa Clara, CA, February-March 2017. USENIX Asso-
ciation.

[4] Ravindra K Ahuja and James B Orlin. Developing fitter genetic algorithms. INFORMS
Journal on Computing, 9(3):251–253, 1997.

[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan
Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud configurations
for big data analytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 469–482. USENIX Association, 2017.

[6] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer, Ralph Becker-
Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Alistair Veitch, and John
Wilkes. Minerva: An automated resource provisioning tool for large-scale storage systems.
ACM Trans. Comput. Syst., 19(4):483–518, November 2001.

[7] Terry Anderson. The theory and practice of online learning. Athabasca University Press,
2008.

[8] R. H. Arpaci-Dusseau, E. Anderson, N. T., D. E. Culler, J. M. Hellerstein, D. Patterson,
and K. Yelick. Cluster I/O with river: making the fast case common. In Workshop on
Input/Output in Parallel and Distributed Systems, pages 10–22, Atlanta, GA, May 1999.

[9] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. Arpaci-Dusseau Books, 0.91 edition, May 2015.

[10] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. Storage workload identification.
Trans. Storage, 12(3):14:1–14:30, May 2016.

86



[11] Babak Behzad, Joey Huchette, Huong Luu, Ruth Aydt, Quincey Koziol, Mr Prabhat, Suren
Byna, Mohamad Chaarawi, and Yushu Yao. Auto-tuning of parallel io parameters for hdf5
applications. In Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, pages 1430–, Washington, DC, USA, 2012.
IEEE Computer Society.

[12] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna, Prabhat, Ruth Aydt,
Quincey Koziol, and Marc Snir. Taming parallel i/o complexity with auto-tuning. In Pro-
ceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, pages 68:1–68:12, New York, NY, USA, 2013. ACM.

[13] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940,
2016.

[14] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-
nal of Machine Learning Research, 13(Feb):281–305, 2012.

[15] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems 24, pages
2546–2554, 2011.

[16] MC Bhuvaneswari. Application of Evolutionary Algorithms for Multi-objective Optimiza-
tion in VLSI and Embedded Systems. Springer, 2015.

[17] Christopher M Bishop. Pattern Recognition and Machine Learning, volume 1. Springer
New York, 2006.

[18] D. Boutcher and A. Chandra. Does virtualization make disk scheduling passé? In Proceed-
ings of the 1st USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
’09), October 2009.

[19] Mark F Bramlette. Initialization, mutation and selection methods in genetic algorithms for
function optimization. In ICGA, pages 100–107, 1991.

[20] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984.

[21] Cynthia A Brewer, Geoffrey W Hatchard, and Mark A Harrower. Colorbrewer in print:
a catalog of color schemes for maps. Cartography and geographic information science,
30(1):5–32, 2003.

[22] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical rein-
forcement learning. arXiv preprint arXiv:1012.2599, 2010.

[23] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional likelihood
maximisation: a unifying framework for information theoretic feature selection. Journal of
machine learning research, 13(Jan):27–66, 2012.

87



[24] Morton B Brown and Alan B Forsythe. Robust tests for the equality of variances. Journal
of the American Statistical Association, 69(346):364–367, 1974.

[25] BTRFS. http://btrfs.wiki.kernel.org/.

[26] Axel Busch, Qais Noorshams, Samuel Kounev, Anne Koziolek, Ralf Reussner, and Erich
Amrehn. Automated workload characterization for i/o performance analysis in virtualized
environments. In Proceedings of the 6th ACM/SPEC International Conference on Perfor-
mance Engineering, pages 265–276. ACM, 2015.

[27] M. Cao, T. Y. Ts’o, B. Pulavarty, S. Bhattacharya, A. Dilger, and A. Tomas. State of the art:
Where we are with the Ext3 filesystem. In Proceedings of the Linux Symposium, Ottawa,
ON, Canada, July 2005.

[28] Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok. On the perfor-
mance variation in modern storage stacks. In Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST), pages 329–343, Santa Clara, CA, February-March
2017. USENIX Association.

[29] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards better understand-
ing of black-box auto-tuning: A comparative analysis for storage systems. In Proceed-
ings of the Annual USENIX Technical Conference, Boston, MA, July 2018. USENIX
Association. Data set at http://download.filesystems.org/auto-tune/
ATC-2018-auto-tune-data.sql.gz.

[30] R. Card, T. Ts’o, and S. Tweedie. Design and implementation of the second extended
filesystem. In Proceedings to the First Dutch International Symposium on Linux, Amster-
dam, Netherlands, December 1994.

[31] George Casella and Roger L Berger. Statistical Inference, volume 2. Duxbury Pacific Grove,
CA, 2002.

[32] Vladimı́r Černỳ. Thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm. Journal of optimization theory and applications, 45(1):41–51,
1985.

[33] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh, Donghyuk
Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. Understanding la-
tency variation in modern DRAM chips: Experimental characterization, analysis, and op-
timization. In Proceedings of the 2016 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science, SIGMETRICS’16, pages 323–336, New
York, NY, USA, 2016. ACM.

[34] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks and
Applications, 19(2):171–209, 2014.

88



[35] Ming Chen, Dean Hildebrand, Henry Nelson, Jasmit Saluja, Ashok Subramony, and Erez
Zadok. vNFS: Maximizing NFS performance with compounds and vectorized I/O. In Pro-
ceedings of the 15th USENIX Conference on File and Storage Technologies (FAST), pages
301–314, Santa Clara, CA, February-March 2017. USENIX Association.

[36] Y. Chen, M. Winslett, Y. Cho, and S. Kuo. Automatic parallel i/o performance optimization
using genetic algorithms. In Proceedings of the 7th IEEE International Symposium on High
Performance Distributed Computing, HPDC ’98, pages 155–, Washington, DC, USA, 1998.
IEEE Computer Society.

[37] Shenghui Cheng and Klaus Mueller. The data context map: Fusing data and attributes into a
unified display. IEEE transactions on visualization and computer graphics, 22(1):121–130,
2016.

[38] Ch Chesneau and Mohamed Hebiri. Some theoretical results on the grouped variables lasso.
Mathematical Methods of Statistics, 17(4):317–326, 2008.

[39] Liu Chu, Eduardo Souza De Cursi, Abdelkhalak El Hami, and Mohamed Eid. Reliabil-
ity based optimization with metaheuristic algorithms and Latin hypercube sampling based
surrogate models. Applied and Computational Mathematics, 4(6):462–468, 2015.

[40] Maurice Clerc. Particle swarm optimization, volume 93. John Wiley & Sons, 2010.

[41] Yvonne Coady, Russ Cox, John DeTreville, Peter Druschel, Joseph Hellerstein, Andrew
Hume, Kimberly Keeton, Thu Nguyen, Christopher Small, Lex Stein, and Andrew Warfield.
Falling off the cliff: When systems go nonlinear. In Proceedings of the 10th Conference on
Hot Topics in Operating Systems (HOTOS ’05), 2005.

[42] James Cohoon, John Kairo, and Jens Lienig. Evolutionary algorithms for the physical design
of vlsi circuits. In Advances in evolutionary computing, pages 683–711. Springer, 2003.

[43] Color Brewer 2.0. http://colorbrewer2.org/.

[44] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. BOAT: Building auto-tuners
with structured Bayesian optimization. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 479–488. International World Wide Web Confer-
ences Steering Committee, 2017.

[45] Kenneth Alan De Jong. Analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, Ann Arbor, MI, USA, 1975.

[46] Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov, and William
Jalby. Fine-grained benchmark subsetting for system selection. In Proceedings of An-
nual IEEE/ACM International Symposium on Code Generation and Optimization, page 132.
ACM, 2014.

[47] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM, 56(2):74–80,
February 2013.

89



[48] Biplob K Debnath, David J Lilja, and Mohamed F Mokbel. SARD: A statistical approach
for ranking database tuning parameters. In Data Engineering Workshop, 2008. ICDEW
2008. IEEE 24th International Conference on, pages 11–18, 2008.

[49] Peter Desnoyers. Empirical evaluation of nand flash memory performance. In HotStorage
’09: Proceedings of the 1st Workshop on Hot Topics in Storage. ACM, 2009.

[50] Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone, S. Parekh, and C. Garcia-
Arellano. Using MIMO linear control for load balancing in computing systems. In 2004
American Control Conferences, 2004.

[51] Marco Dorigo and Mauro Birattari. Ant colony optimization. In Encyclopedia of machine
learning, pages 36–39. Springer, 2010.

[52] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant colony optimization. Computa-
tional Intelligence Magazine, IEEE, 1(4):28–39, 2006.

[53] Fred Douglis, Deepti Bhardwaj, Hangwei Qian, and Philip Shilane. Content-aware load
balancing for distributed backup. In Large Installation System Administration Conference
(LISA), 2011.

[54] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database configuration
parameters with ituned. Proc. VLDB Endow., 2(1):1246–1257, August 2009.

[55] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek,
Holger Hoos, and Kevin Leyton-Brown. Towards an empirical foundation for assessing
Bayesian optimization of hyperparameters. In NIPS workshop on Bayesian Optimization in
Theory and Practice, volume 10, 2013.

[56] A.E. Eiben and C.A. Schippers. On evolutionary exploration and exploitation. Fundam.
Inf., 35(1-4):35–50, January 1998.

[57] Nosayba El-Sayed, Ioan A. Stefanovici, George Amvrosiadis, Andy A. Hwang, and Bianca
Schroeder. Temperature management in data centers: Why some (might) like it hot. In Pro-
ceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS’12, pages 163–174,
New York, NY, USA, 2012. ACM.

[58] Pablo A. Estévez, Michel Tesmer, Claudio A. Perez, and Jacek M. Zurada. Normalized
mutual information feature selection. IEEE Transactions on Neural Networks, 20(2):189–
201, 2009.

[59] Ext4. http://ext4.wiki.kernel.org/.

[60] Ext4 documentation. https://www.kernel.org/doc/Documentation/
filesystems/ext4.txt.

[61] Linux/fs/ext4/ialloc.c. http://lxr.free-electrons.com/source/fs/ext4/
ialloc.c.

90



[62] Filebench, 2016. https://github.com/filebench/filebench/wiki.

[63] Terry L Friesz, Hsun-Jung Cho, Nihal J Mehta, Roger L Tobin, and G Anandalingam. A
simulated annealing approach to the network design problem with variational inequality
constraints. Transportation Science, 26(1):18–26, 1992.

[64] RA Gallego, AB Alves, A Monticelli, and R Romero. Parallel simulated annealing applied
to long term transmission network expansion planning. Power Systems, IEEE Transactions
on, 12(1):181–188, 1997.

[65] Shravan Gaonkar, Kimberly Keeton, Arif Merchant, and William H. Sanders. Designing
dependable storage solutions for shared application environments. IEEE Trans. Dependable
Secur. Comput., 7(4):366–380, October 2010.

[66] Michel Gendreau and Jean-Yves Potvin. Handbook of metaheuristics, volume 2. Springer,
2010.

[67] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages 29–43, Bolton
Landing, NY, October 2003. ACM SIGOPS.

[68] F. Glover. Tabu Search – Part II. ORSA Journal on Computing, 2:4–32, 1990.

[69] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[70] Fred Glover and Manuel Laguna. Tabu Search. Springer, 2013.

[71] David E Goldberg and Robert Lingle. Alleles, loci, and the traveling salesman problem. In
Proceedings of the first international conference on genetic algorithms and their applica-
tions, pages 154–159. Lawrence Erlbaum Associates, Publishers, 1985.

[72] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[73] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. Genetic algorithms
for the traveling salesman problem. In Proceedings of the first International Conference on
Genetic Algorithms and their Applications, pages 160–168. Lawrence Erlbaum, New Jersey
(160-168), 1985.

[74] Lov K Grover. A new simulated annealing algorithm for standard cell placement. In Pro-
ceedings of the International Conference on Computer-Aided Design, pages 378–380, 1986.

[75] Ajay Gulati, Chethan Kumar, and Irfan Ahmad. Storage workload characterization and
consolidation in virtualized environments. In Workshop on Virtualization Performance:
Analysis, Characterization, and Tools (VPACT), page 4, 2009.

[76] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Jour-
nal of machine learning research, 3(Mar):1157–1182, 2003.

91



[77] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A Chien,
and Haryadi S Gunawi. The tail at store: a revelation from millions of hours of disk and
ssd deployments. In 14th USENIX Conference on File and Storage Technologies (FAST 16),
pages 263–276, 2016.

[78] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, and
Kathryn S. McKinley. Few-to-many: Incremental parallelism for reducing tail latency in
interactive services. In Proceedings of the Twentieth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS’15, pages
161–175, New York, NY, USA, 2015. ACM.

[79] Georges R Harik and Fernando G Lobo. A parameter-less genetic algorithm. In GECCO,
volume 99, pages 258–267, 1999.

[80] Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Reducing
file system tail latencies with Chopper. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies, FAST’15, pages 119–133, Berkeley, CA, USA, 2015.
USENIX Association.

[81] Weiping He and David H.C. Du. Smart: An approach to shingled magnetic recording trans-
lation. In Proceedings of the 15th USENIX Conference on File and Storage Technologies
(FAST), pages 121–134, Santa Clara, CA, February-March 2017. USENIX Association.

[82] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tibury. Feedback Control of Computing
Systems. Wiley-IEEE Press, 2004.

[83] Jerry L Hintze and Ray D Nelson. Violin plots: a box plot-density trace synergism. The
American Statistician, 52(2):181–184, 1998.

[84] J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. U. Michigan Press, 1975.

[85] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applica-
tions. Neural networks, 13(4-5):411–430, 2000.

[86] Ronald L Iman, Jon C Helton, James E Campbell, et al. An approach to sensitivity analysis
of computer models, part 1. introduction, input variable selection and preliminary variable
assessment. Journal of quality technology, 13(3):174–183, 1981.

[87] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates. In Human-Machine Interac-
tive Systems, pages 199–233. Springer, 1991.

[88] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh Elnikety, Alan L.
Cox, and Scott Rixner. Predictive parallelization: Taming tail latencies in web search. In
Proceedings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR’14, pages 253–262, New York, NY, USA, 2014. ACM.

92



[89] Young-Jae Jeon, Jae-Chul Kim, Jin-O Kim, Joong-Rin Shin, and Kwang Y Lee. An effi-
cient simulated annealing algorithm for network reconfiguration in large-scale distribution
systems. Power Delivery, IEEE Transactions on, 17(4):1070–1078, 2002.

[90] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Operating system profiling via
latency analysis. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 89–102, Seattle, WA, November 2006. ACM SIGOPS.

[91] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, and Ananth Grama. Trends in big data
analytics. Journal of Parallel and Distributed Computing, 74(7):2561–2573, 2014. Special
Issue on Perspectives on Parallel and Distributed Processing.

[92] A Kapsalis, Vic J Rayward-Smith, and George D Smith. Solving the graphical steiner tree
problem using genetic algorithms. Journal of the Operational Research Society, pages 397–
406, 1993.

[93] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance differentiation for storage
systems using adaptive control. ACM Trans. Storage, 1(4), 2005.

[94] Jalil Kazemitabar, Arash Amini, Adam Bloniarz, and Ameet S Talwalkar. Variable impor-
tance using decision trees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 30, pages 426–435. Curran Associates, Inc., 2017.

[95] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for disasters. In Pro-
ceedings of the Third USENIX Conference on File and Storage Technologies (FAST 2004),
pages 59–72, San Francisco, CA, March/April 2004.

[96] Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Merchant, Cipriano Santos, and Alex
Zhang. On the road to recovery: Restoring data after disasters. In Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys’06,
pages 235–248, New York, NY, USA, 2006. ACM.

[97] James Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learning, pages
760–766. Springer, 2010.

[98] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks, pages 1942–1948, 1995.

[99] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evaluating phase change memory for
enterprise storage systems: A study of caching and tiering approaches. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies, pages 33–45, Berkeley,
CA, 2014. USENIX.

[100] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-task regression with
structured sparsity. In ICML, pages 543–550, 2010.

[101] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983.

93



[102] Ricardo Koller and Raju Rangaswami. I/O deduplication: Utilizing content similarity to
improve I/O performance. Trans. Storage, 6(3):13:1–13:26, September 2010.

[103] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and Satoshi
Moriai. The Linux implementation of a log-structured file system. ACM SIGOPS Operating
Systems Review, 40(3):102–107, 2006.

[104] Robert Kosara, Fabian Bendix, and Helwig Hauser. Parallel sets: Interactive exploration
and visual analysis of categorical data. IEEE Transactions on Visualization & Computer
Graphics, 12(4):558–568, 2006.

[105] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD ’18, pages 489–504, 2018.

[106] Natalio Krasnogor and Jim Smith. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. Evolutionary Computation, IEEE Transactions on, 9(5):474–
488, 2005.

[107] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hy-
pothesis. Psychometrika, 29(1):1–27, 1964.

[108] Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Sejla Dizdare-
vic. Genetic algorithms for the travelling salesman problem: A review of representations
and operators. Artificial Intelligence Review, 13(2):129–170, 1999.

[109] Latin hypercube sampling. https://en.wikipedia.org/wiki/Latin_
hypercube_sampling.

[110] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2FS: A new file sys-
tem for flash storage. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), pages 273–286, Santa Clara, CA, February 2015. USENIX Associa-
tion.

[111] Ernest Bruce Lee and Lawrence Markus. Foundations of optimal control theory. Technical
report, DTIC Document, 1967.

[112] H. D. Lee, Y. J. Nam, K. J. Jung, S. G. Jung, and C. Park. Regulating I/O performance
of shared storage with a control theoretical approach. In NASA/IEEE Conference on Mass
Storage Systems and Technologies (MSST). IEEE Society Press, 2004.

[113] Howard Levene. Robust tests for equality of variances. Contributions to probability and
statistics. Essays in honor of Harold Hotelling, pages 279–292, 1961.

[114] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong Shim. As-
sert(!defined(sequential i/o)). In 6th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 14), Philadelphia, PA, 2014. USENIX Association.

94



[115] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the tail:
Hardware, os, and application-level sources of tail latency. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC’14, pages 9:1–9:14, New York, NY, USA, 2014.
ACM.

[116] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang,
and Huan Liu. Feature selection: A data perspective. ACM Computing Surveys (CSUR),
50(6):94, 2017.

[117] Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long. Capes:
Unsupervised system performance tuning using neural network-based deep reinforcement
learning. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, 2017.

[118] Yin Li, Hao Wang, Xuebin Zhang, Ning Zheng, Shafa Dahandeh, and Tong Zhang. Fa-
cilitating magnetic recording technology scaling for data center hard disk drives through
filesystem-level transparent local erasure coding. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST), pages 135–148, Santa Clara, CA,
February-March 2017. USENIX Association.

[119] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,
2017.

[120] Z. Li, M. Chen, A. Mukker, and E. Zadok. On the trade-offs among performance, energy,
and endurance in a versatile hybrid drive. ACM Transactions on Storage (TOS), 11(3), July
2015.

[121] Z. Li, K. M. Greenan, A. W. Leung, and E. Zadok. Power consumption in enterprise-
scale backup storage systems. In Proceedings of the Tenth USENIX Conference on File and
Storage Technologies (FAST ’12), San Jose, CA, February 2012. USENIX Association.

[122] Z. Li, R. Grosu, K. Muppalla, S. A. Smolka, S. D. Stoller, and E. Zadok. Model discovery
for energy-aware computing systems: An experimental evaluation. In Proceedings of the 1st
Workshop on Energy Consumption and Reliability of Storage Systems (ERSS’11), Orlando,
FL, July 2011.

[123] Z. Li, A. Mukker, and E. Zadok. On the importance of evaluating storage systems’ $costs.
In Proceedings of the 6th USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’14, 2014.

[124] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin Jiang, and
Guangzhong Sun. Metis: robustly optimizing tail latencies of cloud systems. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference, pages 981–992.
USENIX Association, 2018.

[125] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis, and Feng Zhao. RACNet:
A high-fidelity data center sensing network. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys’09, pages 15–28, New York, NY, USA,
2009. ACM.

95



[126] Jens Lienig and James P Cohoon. Genetic algorithms applied to the physical design of vlsi
circuits: A survey. In Parallel Problem Solving from Nature—PPSN IV, pages 839–848.
Springer, 1996.

[127] Fernando G Lobo and David E Goldberg. The parameter-less genetic algorithm in practice.
Information Sciences, 167(1):217–232, 2004.

[128] Christoffer Loffler, Christopher Mutschler, and Michael Philippsen. Evolutionary algo-
rithms that use runtime migration of detector processes to reduce latency in event-based
systems. In Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference on, pages
31–38. IEEE, 2013.

[129] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using principal
feature analysis. In Proceedings of the 15th ACM international conference on Multimedia,
pages 301–304. ACM, 2007.

[130] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geof-
frey J. Gordon. Query-based workload forecasting for self-driving database management
systems. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 631–645, New York, NY, USA, 2018. ACM.

[131] Pradipta De Vijay Mann and Umang Mittaly. Handling OS jitter on multicore multithreaded
systems. In Parallel & Distributed Processing Symposium (IPDPS), 2009 IEEE Interna-
tional, IPDPS’09, pages 1–12. IEEE, 2009.

[132] Olivier Martin, Steve W Otto, and Edward W Felten. Large-step markov chains for the tsp
incorporating local search heuristics. Operations Research Letters, 11(4):219–224, 1992.

[133] Pinaki Mazumder and Elizabeth M. Rudnick, editors. Genetic Algorithms for VLSI Design,
Layout &Amp; Test Automation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[134] P. McDaniel, K. Butler, S. Mclaughlin, R. Sion, E. Zadok, and M. Winslett. Towards a secure
and efficient system for end-to-end provenance. In Proceedings of the second USENIX
workshop on the Theory and Practice of Provenance (TAPP ’10), San Jose, CA, February
2010. USENIX Association.

[135] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[136] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[137] Peter Merz. Memetic algorithms for combinatorial optimization problems: Fitness land-
scapes and effective search strategies, 2001.

[138] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A large-scale study of flash mem-
ory failures in the field. In Proceedings of the 2015 ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS 2015), pages 177–190,
Portland, OR, June 2015. ACM.

96



[139] Sun Microsystems. Lustre file system: High-performance storage architec-
ture and scalable cluster file system white paper. www.sun.com/servers/
hpc/docs/lustrefilesystem_wp.pdun.com/servers/hpc/docs/
lustrefilesystem_wp.pdf, December 2007.

[140] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and Klaus-Robert
Mullers. Fisher discriminant analysis with kernels. In Neural networks for signal pro-
cessing IX, 1999. Proceedings of the 1999 IEEE signal processing society workshop., pages
41–48. IEEE, 1999.

[141] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[142] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[143] Douglas C Montgomery. Design and analysis of experiments. John Wiley & Sons, 2017.

[144] Alessandro Morari, Roberto Gioiosa, Robert W Wisniewski, Francisco J Cazorla, and Ma-
teo Valero. A quantitative analysis of OS noise. In Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International, IPDPS’11, pages 852–863. IEEE, 2011.

[145] Heinz Muhlenbein. Evolution in time and space-the parallel genetic algorithm. In Founda-
tions of genetic algorithms. Citeseer, 1991.

[146] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[147] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowstron. Everest: Scaling
down peak loads through i/o off-loading. In OSDI, 2008.

[148] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand
Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. SSD fail-
ures in datacenters: What? when? and why? In Proceedings of the Second ACM Israeli
Experimental Systems Conference (SYSTOR ’16), pages 7:1–7:11, Haifa, Israel, May 2016.
ACM.

[149] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn. Rethink the sync. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI
2006), pages 1–14, Seattle, WA, November 2006. ACM SIGOPS.

[150] Qais Noorshams, Samuel Kounev, and Ralf Reussner. Experimental evaluation of the
performance-influencing factors of virtualized storage systems. In European Workshop on
Performance Engineering, pages 63–79. Springer, 2012.

[151] OpenStack Swift. http://docs.openstack.org/developer/swift/.

97



[152] Nohhyun Park, Weijun Xiao, Kyubaik Choi, and David J Lilja. A statistical evaluation of
the impact of parameter selection on storage system benchmarks. In Proceedings of the 7th
IEEE International Workshop on Storage Network Architecture and Parallel I/Os (SNAPI),
volume 6, 2011.

[153] Christian S. Perone. Pyevolve: A python open-source framework for genetic algorithms.
SIGEVOlution, 4(1):12–20, November 2009.

[154] Pankaj Pipada, Achintya Kundu, K. Gopinath, Chiranjib Bhattacharyya, Sai Susarla, and
P.C. Nagesh. Loadiq: Learning to identify workload phases from a live storage trace. In
Proceedings of the 4th USENIX Workshop on Hot Topics in Storage and File Systems, Hot-
Storage’12, Berkeley, CA, USA, 2012. USENIX Association.

[155] Robin L Plackett and J Peter Burman. The design of optimum multifactorial experiments.
Biometrika, pages 305–325, 1946.

[156] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017.

[157] Jackie Rees and Gary J Koehler. An investigation of ga performance results for different
cardinality alphabets. In Evolutionary Algorithms, pages 191–206. Springer, 1999.

[158] H. Reiser. ReiserFS v.3 whitepaper. http://web.archive.org/web/
20031015041320/http://namesys.com/.

[159] Bernd Reisleben and Peter Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Evolutionary Computation, 1996., Pro-
ceedings of IEEE International Conference on, pages 616–621. IEEE, 1996.

[160] Alma Riska and Erik Riedel. Disk drive level workload characterization. In USENIX Annual
Technical Conference, volume 2006, pages 97–102, 2006.

[161] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem. Trans.
Storage, 9(3):9:1–9:32, August 2013.

[162] Richard P Runyon, Kay A Coleman, and David J Pittenger. Fundamentals of behavioral
statistics . McGraw-Hill, 2000.

[163] Anooshiravan Saboori, Guofei Jiang, and Haifeng Chen. Autotuning configurations in dis-
tributed systems for performance improvements using evolutionary strategies. In Proceed-
ings of the 2008 The 28th International Conference on Distributed Computing Systems,
ICDCS ’08, pages 769–776, Washington, DC, USA, 2008. IEEE Computer Society.

[164] Martı́n Safe, Jessica Carballido, Ignacio Ponzoni, and Nélida Brignole. On stopping criteria
for genetic algorithms. In Advances in Artificial Intelligence–SBIA 2004, pages 405–413.
Springer, 2004.

98



[165] Sadiq M Sait, Mahmood R Minhas, Junhaid Khan, et al. Performance and low power
driven vlsi standard cell placement using tabu search. In Evolutionary Computation, 2002.
CEC’02. Proceedings of the 2002 Congress on, volume 1, pages 372–377. IEEE, 2002.

[166] Ricardo Santana, Raju Rangaswami, Vasily Tarasov, and Dean Hildebrand. A fast and
slippery slope for file systems. In Proceedings of the 3rd Workshop on Interactions of
NVM/FLASH with Operating Systems and Workloads, INFLOW ’15, pages 5:1–5:8, New
York, NY, USA, 2015. ACM.

[167] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the First USENIX Conference on File and Storage Technologies (FAST
’02), pages 231–244, Monterey, CA, January 2002. USENIX Association.

[168] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash reliability in production:
The expected and the unexpected. In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), pages 67–80, Santa Clara, CA, February 2016. USENIX
Association.

[169] Carl Sechen. VLSI placement and global routing using simulated annealing, volume 54.
Springer Science & Business Media, 2012.

[170] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating performance and energy in file system server
workloads. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pages 253–266, San Jose, CA, February 2010. USENIX Association.

[171] Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jaehyuk Cha, Youjip Won, and Sungroh
Yoon. Io workload characterization revisited: A data-mining approach. IEEE Transactions
on Computers, 63(12):3026–3038, 2014.

[172] Burr Settles. Active Learning. Morgan & Claypool Publishers, 2012.

[173] SGI. XFS filesystem structure. http://oss.sgi.com/projects/xfs/papers/
xfs_filesystem_structure.pdf.

[174] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

[175] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 4(2):107–194, 2011.

[176] Kai Shen, Ming Zhong, and Chuanpeng Li. I/o system performance debugging using model-
driven anomaly characterization. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), San Francisco, CA, December 2005. USENIX Association.

[177] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

[178] Scikit-Optimize. https://scikit-optimize.github.io/.

99



[179] R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and E. Zadok. Story Book:
An efficient extensible provenance framework. In Proceedings of the first USENIX workshop
on the Theory and Practice of Provenance (TAPP ’09), San Francisco, CA, February 2009.
USENIX Association.

[180] T Starkweather, S Mcdaniel, D Whitley, K Mathias, D Whitley, et al. A comparison of
genetic sequencing operators. In Proceedings of the fourth International Conference on
Genetic Algorithms, 1991.

[181] John D. Strunk, Eno Thereska, Christos Faloutsos, and Gregory R. Ganger. Using util-
ity to provision storage systems. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, pages 313–328, Berkeley, CA, USA, 2008. USENIX
Association.

[182] David G Sullivan, Margo I Seltzer, and Avi Pfeffer. Using probabilistic reasoning to auto-
mate software tuning, volume 32. ACM, 2004.

[183] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting tail latency
in cloud data stores via adaptive replica selection. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI’15, pages 513–527,
Berkeley, CA, USA, 2015. USENIX Association.

[184] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[185] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in
the XFS file system. In Proceedings of the Annual USENIX Technical Conference, pages
1–14, San Diego, CA, January 1996.

[186] sync(8) - Linux manual page. https://linux.die.net/man/8/sync.

[187] Gary KL Tam, Vivek Kothari, and Min Chen. An analysis of machine-and human-analytics
in classification. IEEE Transactions on Visualization and Computer Graphics, 2017.

[188] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking file system benchmarking:
It *is* rocket science. In Proceedings of HotOS XIII:The 13th USENIX Workshop on Hot
Topics in Operating Systems, Napa, CA, May 2011.

[189] Vasily Tarasov, Zhen Cao, Ming Chen, and Erez Zadok. The dos and don’ts of file system
benchmarking. FreeBSD Journal, January/February, 2016.

[190] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible framework for file
system benchmarking. ;login: The USENIX Magazine, 41(1):6–12, March 2016.

[191] TensorFlow. https://www.tensorflow.org/.

[192] Olivier Thas. Comparing distributions. Springer, 2010.

[193] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

100



[194] A. Traeger, I. Deras, and E. Zadok. DARC: Dynamic analysis of root causes of latency
distributions. In Proceedings of the 2008 International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2008), pages 277–288, Annapolis, MD, June
2008. ACM.

[195] Transaction Processing Performance Council. TPC benchmark DS (decision support).
http://www.tpc.org/tpcds/, 2006.

[196] Stephen Tweedie. Ext3, journaling filesystem. In Ottawa Linux Symposium,
July 2000. http://olstrans.sourceforge.net/release/OLS2000-ext3/
OLS2000-ext3.html.

[197] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vijaykumar. TimeTrader:
Exploiting latency tail to save datacenter energy for online search. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO’48, pages 585–597, New York,
NY, USA, 2015. ACM.

[198] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic database
management system tuning through large-scale machine learning. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD ’17, pages 1009–
1024, 2017.

[199] Peter J Van Laarhoven and Emile H Aarts. Simulated annealing: theory and applications,
volume 37. Springer Science & Business Media, 1987.

[200] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in evolu-
tionary algorithms: A survey. ACM Comput. Surv., 45(3):35:1–35:33, July 2013.

[201] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos,
and Gregory R. Ganger. Storage device performance prediction with cart models. In The
IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems. (MASCOTS), pages 588–595,
2004.

[202] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos,
and Gregory R. Ganger. Storage device performance prediction with cart models. In Pro-
ceedings of the Joint International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’04/Performance ’04, pages 412–413, New York, NY, USA, 2004.
ACM.

[203] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages 307–320, Seattle, WA, November
2006. ACM SIGOPS.

[204] Bernard Lewis Welch. On the comparison of several mean values: an alternative approach.
Biometrika, 38(3/4):330–336, 1951.

101



[205] Darrell Whitley, Keith Mathias, and Patrick Fitzhorn. Delta coding: An iterative search
strategy for genetic algorithms. In ICGA, volume 91, pages 77–84. Citeseer, 1991.

[206] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Scented widgets: Improving naviga-
tion cues with embedded visualizations. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1129–1136, 2007.

[207] DF Wong, Hon Wai Leong, and HW Liu. Simulated annealing for VLSI design, volume 42.
Springer Science & Business Media, 2012.

[208] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg, Bipin
Rajendran, Mehdi Asheghi, and Kenneth E Goodson. Phase change memory. Proceedings
of the IEEE, 98(12):2201–2227, Dec 2010.

[209] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. A smart hill-
climbing algorithm for application server configuration. In Proceedings of the 13th Interna-
tional Conference on World Wide Web, WWW ’04, pages 287–296, New York, NY, USA,
2004. ACM.

[210] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding long
tails in the cloud. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI’13, pages 329–342, Berkeley, CA, USA, 2013. USENIX
Association.

[211] Ji Xue, Feng Yan, A. Riska, and E. Smirni. Proactive management of systems via hybrid
analytic techniques. In Cloud and Autonomic Computing (ICCAC), 2015 International Con-
ference on, pages 137–148, Sept 2015.

[212] Ji Xue, Feng Yan, Alma Riska, and Evgenia Smirni. Storage workload isolation via tier
warming: How models can help. In 11th International Conference on Autonomic Computing
(ICAC 14), pages 1–11, Philadelphia, PA, June 2014. USENIX Association.

[213] Yang Yu, Hong Qian, and Yi-Qi Hu. Derivative-free optimization via classification. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages
2286–2292. AAAI Press, 2016.

[214] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

[215] Standard Score. https://en.wikipedia.org/wiki/Standard_score.

[216] Erez Zadok, Aashray Arora, Zhen Cao, Akhilesh Chaganti, Arvind Chaudhary, and Sonam
Mandal. Parametric optimization of storage systems. In HotStorage ’15: Proceedings of
the 7th USENIX Workshop on Hot Topics in Storage, Santa Clara, CA, July 2015. USENIX,
USENIX.

102


