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Abstract

Modern storage devices, with their diverse underlying technologies, offer a wide range of performance
characteristics and tradeoffs. Such devices are often used to build multi-tier caching systems that are effective
at balancing performance vs. cost. The space of possible configurations—including the number of tiers, per-
tier capacities, and per-tier device properties—can be enormous. As a result, it may be infeasible to evaluate
all possible combinations using traditional simulation approaches.

We introduce several approximation techniques that make it possible to identify good configurations
quickly. Beyond leveraging sampling to reduce simulation costs, we dramatically reduce the number of
cache configurations that need to be considered. In particular, we focus on selecting a small number of
key points on miss ratio curves (MRCs) that represent the most useful cache sizes to simulate, such as
points immediately following sharp cliffs. Our novel Z-Method point-selection algorithm employs statistical
outlier detection to choose promising points robustly and efficiently, for both LRU and non-stack caching
algorithms such as ARC. Quantitative experiments demonstrate that, compared to naive approaches, our
technique significantly reduces (up to 84 x) the total number of simulations required to accurately identify
the best configurations in terms of performance vs. cost.
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Chapter 1

Introduction

The past decade has seen an explosion of new storage devices, which makes it difficult for system designers to
evaluate which combinations of devices offer the optimal configuration for a given workload. Many studies
have shown the benefits of combining several devices into a multi-tier or hybrid cache arrangement [9,24,26,
44,48,49]. Alas, with more options to explore (such as the cache size at each level), and the ever-diversifying
nature of workloads, the number of experimental choices quickly becomes intractable [17,18,36].

Since experimenting with physical devices is costly and time-consuming, simulation offers a more prac-
tical way to explore this large space and evaluate metrics such as throughput vs. cost. However, simulations
are still expensive enough that it is difficult to explore a large number of configurations or to optimize live
systems online. One first step is to sample a workload; approximation algorithms enable accurate simulation
of cache behavior using only a fraction of the original trace [29,56,57].

After that, a well-known technique for quickly evaluating cache performance is Miss Ratio Curve (MRC)
analysis [15,28, 30,39, 56]. For a given replacement algorithm, an MRC plots the cumulative miss ratio for
workload requests as a function of cache size, as illustrated by the example MRC in Figure 1.1. This approach
provides a simple analysis of hits and misses over a range of cache sizes for a single cache tier.

However, creating an MRC requires having a stream of cache references. In a multi-tier cache system,
the references to level n + 1 are created by misses in—and write evictions and flushes from—Ievel n; thus
the MRC for n + 1 directly depends on the cache size chosen for level n. A naive exploration of multi-tier
configurations would thus require a separate simulation for each point in level n’s MRC so as to identify the
misses that become references at level n + 1, and hence to compute the level n + 1 MRC.

Since an MRC may contain anywhere from hundreds to millions of points (one for each potential cache
size), this approach quickly becomes intractable. Instead, we must limit this exponential growth by keeping
the number of points to simulate at level n to an absolute minimum, so that we need only simulate and
generate a few MRCs at level n + 1. Thus, a crucial second step for evaluating multi-tier caches is to limit
the number of simulations by intelligently selecting the cache sizes that will be evaluated at each level.

MRC shapes vary greatly across different workloads; some contain few interesting features, while others
have many. However, it turns out to be challenging to identify points (cache sizes) at level n that are worth
simulating so that the accesses that they generate can be evaluated at the next level. A simple baseline—
which does not even require an MRC—is to select a fixed number & of points at each level, spacing them
evenly across the entire working-set size. However, an examination of Figure 1.1 reveals that such an ap-
proach risks missing options that a designer would consider useful to explore. For example, it would probably
be unwise to choose a cache size corresponding to point B in the figure when a small increase, leading to
point D, would dramatically reduce the miss rate. If we had chosen k£ = 20 evenly spaced points, one of B
and D would have been missed and we might conclude that a different cache size was the best we could do.
In addition, we would waste resources by simulating configurations that offer little improvement (e.g., even
spacing might choose both points A and B in Figure 1.1).
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Figure 1.1: MRC for trace w10, annotated to illustrate several key points: useful “knees” (points A, C, and
D), a useless “cliff” (B), and a large range of cache sizes with relatively gradual miss-ratio improvement.

Furthermore, the number of simulations grows exponentially with the number of tiers; a three-tier hierar-
chy would require evaluating 203 = 8,000 configurations. Since each simulation takes significant time, it is
critical to limit the total number of configurations investigated, which in turn suggests that it would be fruit-
ful to choose MRC points more intelligently than with simple even spacing. Intuitively, the most promising
candidates are points on an MRC where a small amount of added cache space produces a relatively large
drop in the miss ratio; such points are often visible as “knees” in MRCs, as shown in Figure 1.1 (points A,
C, and D).

In this paper we describe our development of a heuristic algorithm designed to pick a minimal number
of key points in MRCs. Our new Z-Method algorithm finds key points efficiently and effectively, including
knee points as well as other useful points to evaluate. It works for both stack (e.g., LRU) and non-stack (e.g.,
ARC) caching algorithms. To demonstrate Z-Method’s usefulness at picking a small number of key points,
we evaluated its efficacy on hundreds of MRCs, using it to drive a prototype multi-tier cache simulator we
developed, comparing the points selected by Z-Method against the approach of choosing a fixed number
of evenly-spaced points. We show that our approach can substantially reduce the number of simulated
configurations needed to evaluate multi-tier caches—sometimes by more than an order of magnitude, even
with only two tiers—without compromising the accurate identification of the best configurations.

This paper makes several contributions:

1. We investigated several heuristic algorithms for selecting multiple key points in MRCs;

2. We introduce Z-Method, an algorithm that robustly finds key points in MRCs of both stack and non-
stack caching algorithms;

3. We evaluate the efficacy of Z-Method qualitatively, using hundreds of experiments, all validated by
hand; and

4. We demonstrate a significant reduction in the number of multi-tier cache evaluations required to iden-
tify good configurations, when using Z-Method compared to naive approaches.

The next section provides some background on MRCs and point-selection techniques, and describes the
evolution of our heuristic algorithms, culminating with the design and evaluation of Z-Method. Section 3
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applies Z-Method’s point selection to accelerate the evaluation of multi-tier cache configurations, includ-
ing quantitative evaluations of its performance and the quality of its results. Related work is discussed in
Section 4. Finally, we summarize our conclusions and highlight opportunities for future work in Section 5.



Chapter 2

MRC Point Selection

2.1 Overview and Motivation

Many techniques have been developed to efficiently construct accurate miss ratio curves (MRCs) [25, 28,
30, 52,53,56,57,60,65] However, more realistic simulations or physical experimentation with a specified
set of cache sizes is far more complex and can be significantly more time-consuming. This complexity is
compounded in multi-tier systems, where the number of possible cache size configurations grows exponen-
tially with every added tier. In this work we sought to find the smallest number of key points to pick from an
MRC, such that the points selected are intuitively the most useful ones to evaluate—whether via simulations
or physical experiments. By doing so, we can significantly decrease the time required to adequately explore
a cache configuration space.

Figure 1.1 illustrates an actual MRC for a production workload trace, annotated to highlight principles
for selecting key points. For example, choosing the cache size at point C yields a miss ratio of roughly 0.4.
But with just a small amount of additional cache space, one could reach point D with a 0.2 miss ratio, gaining
a significant 2 x reduction. Such knees that follow a steep cliff (the “L’-shaped pattern between points C and
D) represent attractive key points on the MRC where a relatively small amount of additional expenditure (to
buy more cache) yields large improvements in miss ratios. Similarly, point A is another key, useful point in
that space. But any cache amount larger than point A and up to point B would rnot be a good point in the
space: the MRC between points A and B is nearly flat—meaning that additional cache space (roughly an
extra 50GB) would yield a negligible drop in miss ratio.

Knees and cliffs, however, are not the only patterns we have seen in MRCs. Figure 1.1 also shows a
large region of cache space (more than two-thirds) where the miss ratio is not entirely flat but rather declines
gradually but steadily by about 20% — a significant drop overall. There are no obvious knees for us to
select. And yet, to a user configuring a cache system, who may have a limited budget or modest performance
requirements, this is too large a region to ignore. An algorithm that picks useful points in the cache space
should also pick some points along such gradually descending regions because for some workloads, even a
small drop in the miss ratio can be highly desired [10,20,21]. The algorithm should be distribution-aware
and not focus solely on knee points.

We investigated hundreds of MRCs for this work. Some exhibit simple patterns, while others are more
complex. Intuitively, we want to select key points by optimizing five criteria: (1) Pick as few points as
possible so as to reduce multi-tier simulation overheads; (2) First pick the knee points with the biggest
“bang for the buck”—the largest reduction in miss ratio for the smallest additional investment in cache size;
(3) Avoid any points where the MRC is essentially flat; (4) Identify large regions in the MRC space where
there is a gradual drop in miss ratio, and ensure that some points are picked in that region; and (5) Minimize
the overhead of the point-selection process.



To meet these five criteria, we developed several heuristic algorithms. We describe lessons learned from
initial attempts that did not work well enough, and explain why they were inadequate (see Section 2.2). We
continued to evolve our algorithms until we settled on one that yields near-optimal results. We call our final
algorithm Z-Method (see Section 2.3).

Z-Method first computes the second derivative of an MRC at each discrete cache size using a finite-
difference approximation. Relatively high, positive second-derivative values indicate a rapid change in slope,
visually corresponding to a sharply decreasing line (i.e., a cliff) in a curve. The subsequent second-derivative
values will then decrease as the curve flattens. These properties can be used to identify knees in a curve. We
then normalize the second-derivative values to generate z-scores (see Section 2.3.1), and focus on outliers.
Z-Method also avoids selecting too many points that are close to each other (in both the miss-ratio and
cache-size dimensions); this prevents simulating or giving users a large number of nearly identical choices.
Z-Method works for stack-based algorithms (e.g., LRU) as well as non-stack ones that may exhibit non-
monotonicity (e.g., ARC). Our algorithm also identifies knee-free regions of the MRC space where there is
a near-constant slope spanning a large range of cache values, and selects a few points there. Our algorithm’s
computational complexity is O(N M), where N is the number of points in the MRC and M is the number
of selected points, which is often trivially small.

We evaluated several variants of our algorithm using 106 highly diverse block traces obtained from
CloudPhysics [56]. We used both the LRU and ARC algorithms and varied our methods’ hyper-parameters
to demonstrate their impact on the number and quality of points selected. To the best of our knowledge, there
is no known algorithm for selecting an optimal number of key points in MRCs; therefore, three members of
our team manually and independently inspected each of hundreds of graphs produced by our techniques, to
characterize the efficacy of the techniques qualitatively.

Finally, we compared the number and quality of multi-tier simulations using the points selected by our
Z-Method to the method of using evenly-spaced points [62,63]. We demonstrate this through quantitative
comparisons of several latency vs. dollar-cost figures for multi-tier cache evaluations. We show that our
method can explore complex multi-tier cache configuration spaces adequately using far fewer simulations
than naive approaches, reducing the amount of time required to find relevant configurations.

This work can enhance systems that analyze the performance of live installations and dynamically adjust
cache properties as workload conditions change [12,24, 32, 57]. Furthermore, Z-Method can be applied
to any curve, and likely has many applications outside the domain of MRCs. Ultimately, this paper is a
critical step towards answering an important storage-configuration question: “how much can performance
be improved by spending X more dollars on cache?”

2.2 Early Attempts and Lessons Learned

Knee-detection methods Our initial goal was to find the most prominent knees in any given MRC. We first
tried applying existing knee-detection algorithms, such as Kneedle [47], Dynamic First Derivative Thresh-
olding (DFDT) [7], Dynamic Second Derivative Thresholding (DSDT) [8], and L-method [46]. To our
surprise, none of the available implementations were able to find a good knee in any of our large MRCs.
Upon investigation, we found that these implementations were designed for much smaller data sets, such as
finding the optimal %k value for k-means clustering. A typical k-means clustering analysis involves fewer
than 30 points [7, 8,37], while some of our MRCs contain several million. We confirmed with the authors
of DFDT and DSDT that their implementations would require additional development to function on larger
data [5].

Next, and more importantly, we learned that all of these algorithms except Kneedle were designed to
find only a single knee [5], and could not be easily extended to find several. This was not suitable for our
application, as our MRCs frequently contain multiple knees.



Finally, while Kneedle is capable of finding multiple knees in larger datasets, we contacted its authors
and were unable to obtain a working implementation [3]. After careful examination of the algorithm, we
decided it was also not appropriate for our application for several reasons: (1) Kneedle is sensitive to long
tails, which are common in MRCs and present in many of our workloads; (2) the Kneedle algorithm applies
rescaling and smoothing, which changes the shape of the curve and introduces error; (3) Kneedle has a time
complexity of O(N?), which is not ideal for our goal of efficiently exploring many cache configurations;
and (4) Kneedle’s sensitivity parameter, .S, would require significant per-curve tuning.

Thus, unable to find an appropriate technique for identifying multiple knees in a curve, we decided to
develop our own.

Convex-hull techniques One of our early attempts was to construct the lower convex hull for an MRC,
picking any points that intersected it. Points along the hull represent cache allocations that are inherently
efficient, a property that is exploited by optimization techniques such as Talus [11] and SLIDE [57]. While
this approach is guaranteed to find the most pronounced knee, it missed many of the still-valuable medium-
size and smaller ones. Variant techniques that also considered points with low distances to the convex hull
were similarly inadequate, selecting many useless points.

First and second derivatives Inspired by the DFDT and DSDT knee-detection algorithms, which use first
and second derivatives, we then tried selecting points using derivatives. We found that picking the point
in the curve with the lowest (most negative) first derivative would typically return a point that was in the
middle of the cliff, before a knee. Conversely, taking the point with the highest second derivative was nearly
always closer to the knee’s bottom. We attributed this difference to the fact that the first derivative represents
the instantaneous slope of the tangent line at any given point. This slope will always be the lowest at the
steepest section of the cliff, rather than at its bottom. Conversely, the second derivative provides us with a
measurement of concavity. As we descend along a cliff, we are in a convex region of the curve. The point
where the curve flattens afterwards creates a knee, and is increasingly concave (positive second derivative)—
depending on the magnitude of the cliff and the length and degree of the flat area that follows it.

Grouping Using the second derivative worked well for finding knees and quantifying their magnitude
relative to others in the curve. However, this approach often produced too many points close to each knee,
because, as we found, big and small knees often tend to cluster together. Therefore, we began to enforce
minimum x and y distances between points as a way to select the single best point among several in a cluster
of knees. This improvement picked fewer, more pronounced knees, but finding the correct « and y distance
parameters for each MRC was challenging. We tried finding the ideal parameters dynamically via auto-
tuning based on a desired number of points, but this resulted in an overly complex algorithm with too many
hyper-parameters. We therefore continued looking for simpler solutions.

Gradually-sloped regions Another important discovery was that focusing on the knees alone sometimes
resulted in no points being selected along fairly large regions of the MRC. As seen in Figure 1.1, MRCs
can contain large, relatively linear areas that we still consider relevant since they cover a significant range of
miss ratios. Here, the miss ratio declines gradually over a large range of cache sizes. We ultimately added
an extra phase to our algorithm that scans all selected knee points, detecting regions that cover some = and y
distance but contain no knees, and then selects a number of evenly-spaced points within these regions. Our
technique was now even more complex, yet still sometimes missed important points.

Taking a step back, we re-focused our efforts on finding the best point associated with a knee using
high positive second derivative values. We realized that once we isolated the point with the highest second
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Figure 2.1: The points selected using G-Method on workload w105.

derivative, we needed to create a window around it and find the best point within this window. We also
needed to ensure that we selected useful points in the gradually sloped sections of curves.

Grid-based G-method Our earlier experiences led us to develop a new grid-based algorithm that we call
G-Method. G-Method finds the point with the highest second derivative, creates an x X y window surrounding
it, and then picks the enclosed point with the lowest miss ratio. Any other points in the curve that have an
or y distance within the selected point’s window are eliminated from future consideration. We then pick the
next point in the same fashion, creating windows until the entire curve has been covered. This ensures that
we will always pick the most important knees first, but that we will also eventually pick all other significant
points. One can think of G-Method as progressively graying-out bands of the 2D plot in both the x and
y dimensions: as each next point is selected, all other points in the gray zone are discarded. This splits a
two-dimensional graph into grids until no more unselected points remain.

The main issue with G-Method is that it usually picks the point with the largest cache size in a given
window, since that is typically the point with the lowest miss ratio in monotonically-decreasing curves.
Figure 2.1 shows this: the xMin and yMin parameters were defined as percentages of their respective axes
ranges (e.g., an zMin of 5% is approximately 0.75GB since the maximum cache size is 15GB). We can
see that the point with the highest second derivative is near 13GB. The first window was created around
13GB, and point B was selected since it had the lowest miss ratio in the window. The next iteration created
a window around 12GB, and similarly selected point A, which had the lowest miss ratio in the surrounding
window. In both cases the points are suboptimal, since miss ratios that are nearly the same can be achieved
by choosing points just to their left, at the bottom of each cliff.

The iterative grouping design of G-Method was simple and efficient, and did a good job at covering the
entire curve, but the grouping method felt too cumbersome and ad-hoc to us. After evaluating G-Method on
many different MRCs, we observed that the second derivative was usually fairly high (relative to the average)
throughout an entire cliff, until it finally settled into a flat region (creating a knee).

This phenomenon can also be seen in Figure 2.1 at the two knees near 12GB and 13GB. The average
second derivative in this MRC was approximately 0.00023, and there are points all throughout the width of
these two cliffs with second derivatives that are two orders of magnitude greater than the average, reaching
maximum values around 0.09. These findings became the foundation of our final algorithm. For G-Method,



the size of our window was determined arbitrarily, based on the xMin and yMin parameters. By using our
observation that the second derivative remains relatively high throughout the cliff, we can size these windows
dynamically to avoid selecting points far away from the actual knee.

2.3 Z-Method

This section presents the design of Z-Method, our key point-selection algorithm for MRCs. This technique
takes an MRC as input and selects the most useful cache sizes in the curve efficiently and robustly. It also
ensures sufficient exploration of large regions in the MRC that do not contain sharp knees, but still cover a
relatively significant range of cache sizes.

2.3.1 Design

Design concepts Based on our observations in Section 2.2, we found that the second derivative of an
MRC is useful for dynamically identifying knees in the curve, regardless of the steepness or width of their
preceding cliffs. In particular, we look for areas that have one or more points with positive second derivatives,
because points that deviate greatly from the mean contain the most prominent knees.

In statistics, a z-score (also known as a standard score) is a transformation that normalizes a data value by
quantifying how many standard deviations away it is from the mean [2]. Typically, a point with an absolute
z-score value greater than three is considered an outlier. For the purpose of detecting knees in a miss ratio
curve, such outliers indicate a significant change in miss ratio. The foundation of our Z-Method technique is
detecting such outliers and intelligently selecting the best points among them.

We also want to minimize the number of points selected in each MRC to reduce simulation costs, by
limiting the number of different cache configurations that must be simulated. To this end, we introduced
two parameters to the algorithm: zMin and yMin, which specify the minimum x and y distance between all
selected points, expressed as percentages of the maximum cache size and range of miss ratios for the input
MRC, respectively.

We group the points found using their second-derivative z-scores based on these parameters; doing so
limits the total number of points selected, and influences the size of the selected knees. We believe it is
important for a user configuring a cache to have some control over these aspects of the algorithm. For
example, if they are interested only in very large knees and want to minimize the number of points, they can
specify relatively high values for zMin and yMin.

Algorithm description As seen in Algorithm 1, Z-Method takes an MRC M as input, along with pa-
rameters zMin and yMin. M is a discrete MRC, consisting of a list of cache size and miss ratio points.
M.missRatio refers to all miss ratio values in M. We first convert the xMin and yMin parameters, speci-
fied as percentages, into absolute values Az and Ay for the specified MRC (lines 1-2). This normalization
ensures that these parameters function similarly for different MRCs.

We then approximate the second derivative of the MRC using the discrete central-difference formula [40],
which is accomplished in linear time, producing a list of second derivatives D, and then discard all negative
values so we do not waste time on points in the middle of cliffs (line 3). We initialize a list P that will contain
all selected points, and set our starting value of zLimit to 3, since a z-score > 3 is a widely-accepted value
for outliers (lines 4-5) [2].

We then enter a loop (lines 6-16) that selects points and progressively decrements the zLimit value.
First, we create a new list Z that contains candidate points: those that have a z-score greater than the current
zLimit, and are at least a minimum Az and Ay distance from all other already-selected points (line 7). We
then group the candidate points such that each adjacent group is at least a minimum Ax distance apart from



Algorithm 1: Z-Method miss ratio curve point selection.
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Input: Miss ratio curve M (cacheSize;) — missRatio;, xMin, yMin

Output: List of cache sizes

// convert distance percentages into absolute values for M
Az + length(M) x(zMin/100)

Ay « (max(M.missRatio) — min(M.missRatio)) x (yMin / 100)

// compute central differences for M

D <« points in M" with a positive second derivative
Initialize empty list P
zLimat < 3
while TRUE do
7 <+ points in D with a z-score > zLimit and are at least Az and Ay apart from all points in P
// terminating condition
if zLimit < 0 and length(Z) == 0 then
// eliminate bad points in non-monotonic curves
Remove points from P to ensure that missRatio always decreases as cacheSize increases
return P
end
// group points by cacheSize then select the point with the lowest
missRatio from each group
G + points in Z such that all adjacent cacheSize < Az
foreach group in G do
p < point in group with the lowest missRatio
// enforce Ay for new points
if p is at least Ay from all points in P then
‘ P.append(p)
end
end
zLimat < zLimat — 0.5
end




other groups, enforcing the xMin parameter (line 11). From each group, we select the point with the lowest
miss ratio (line 13), then check that it is not within a minimum Ay distance from other points that have
already been selected, enforcing the yMin parameter (line 14). A point is added to the list of points P if
it satisfies this constraint (line 15). We then decrement the zLimit by 0.5 and continue with the next loop
iteration (line 16).

This loop terminates only after we have reached a zLimit less than O and there are no remaining points
that can be selected given the zMin and yMin parameters (line 8). Finally, we eliminate any points that may
have been poorly selected due to non-monotonicity in the MRC, which is possible with non-stack caching
algorithms such as ARC [57]. We do so in a final sweep that removes points where increasing the cache
size makes the miss ratio worse (line 9); clearly these points are undesirable. This simple pass requires time
linear in the size of P.

2.3.2 Evaluation

We evaluated Z-Method on 106 real-world block traces collected by CloudPhysics [56], each representing
week-long virtual disk activity from production VMware environments. We sampled these workloads using
hash-based spatial sampling [56,57] with a sampling rate of R=0.001 to reduce the required running time
while maintaining an accurate representation of the original traces.

We present qualitative evaluations of the algorithm’s parameters xMin and yMin, as well as its overall
success at finding key points. Furthermore, we demonstrate that Z-Method is effective for both stack and
non-stack algorithms, by evaluating with LRU and ARC cache replacement policies.

Parameter: xMin The zMin parameter has several functions within Z-Method. It is provided as a percent-
age of the maximum cache size in the given MRC. The most transparent effect of zMin is that it constrains
the minimum « distance, or cache size, between selected points. Since no two points can have an = distance
less than xMin between them, this provides an upper bound on the total number of selected points, and also
influences the number of points that are actually selected. Because it affects the “grouping” stage of the
algorithm, xMin also effectively defines the width of the knees.

Figure 2.2 shows the effects of zMin on workload w09 with LRU cache replacement, by fixing yMin
and setting zMin to 1%, 5%, and 10%. The black line in each plot represents the MRC for LRU cache
replacement. The green dots are the points selected by Z-Method, using the zMin and yMin parameters
indicated in the legend. The vertical orange lines show the second derivative z-score of the MRC at each
cache size. Because the z-score values have a large, workload-dependent dynamic range, we truncate them
at 10 in this plot and for the remainder of the paper. A z-score range up to 10 is sufficient to identify all
points considered as outliers (e.g., z-score > 3).

In Figure 2.2°s MRC curve, we will focus on the knee(s) in the region of cache sizes between approx-
imately 425GB and 475GB. In the top plot, which has zMin = 1%, Z-Method considers this region to
contain four separate knees, since they are at least 1% of the maximum cache size apart from each other.
When we move from 1% to 5% in the middle plot, we can see that points A and B from the top plot have been
removed. Those points are no longer within zMin distance from each other, so they are grouped together;
we are now left with two points at wider, and more prominent knees.

A similar effect is seen when we increase xMin from 5% to 10% in the bottom plot. The two knees at
points C and E are grouped together and C is removed. Point D is also removed, since its cache size is less
than 10% away from point E. Significantly, the knee point E was favored rather than the less interesting point
D.

Parameter: yMin The yMin parameter is also specified as a relative percentage, which is then converted
into an absolute value for the given MRC. It functions similarly to zMin, except that it constrains the y
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distance, or delta miss ratio, between any two selected points. This effectively influences the height of knees
and how many points are selected, while providing an upper bound on the total number of points that can be
selected.

Figure 2.3 shows the effects of yMin using workload w62 with LRU cache replacement by fixing zMin
and varying yMin between 1%, 5%, and 10%. The format is otherwise the same as in Figure 2.2. In the
top and the middle plots, the most interesting change occurs at point C. With yMin =1% in the top plot,
this very small knee is considered significant and is selected. However, when we increase yMin from 1% to
5% in the middle plot, points A, B, and C are removed, as the y distance between these points and adjacent
points is no longer less than yMin. Similarly, point E is removed when we move from 5% to 10% in the
bottom plot, while the taller knee point F is retained. We can also see that point D is removed as well, as
increasing yMin reduces the number of selected points.

It is also important to note that for both of these parameters, we are not guaranteed to a/ways have a point
that is zMin or yMin apart from every other point. Enforcing this rule would add a great deal of complexity,
and would provide little benefit, since we already select points by their order of importance.

Finding key points In Figure 2.4, we show the points selected by Z-Method with x Min and yMin of
5% for multiple workloads using both LRU and ARC cache replacement policies. We evaluate these plots
based on whether or not they selected all of the points that we consider key points. To reiterate, Z-Method
should first select the largest knee points and then eventually select points within any regions that cover at
least 5% of the x and y axes. The first row of plots (LRU1-3) show examples where Z-Method performs well
for LRU. All prominent knees are selected and large ranges of cache space with gradual decreases in miss
ratio also contain an adequate number of points. The second row of plots (LRU4-6) show examples where
Z-Method misses key points. For example, in plot LRU4, points A and B miss the knee points directly to
their left. There are similar issues in LRUS and LRU6.

The third row of plots (ARC1-3) show where Z-Method performs well for ARC. In addition to always
selecting prominent knees and points in gradually sloped regions, we also see that points are never selected
in concave regions where the miss ratio increases due to the non-monotonicity of ARC. The fourth row of
plots (ARC4-6) depict where Z-Method misses key points. For example, in plot ARC4, Z-Method picks
point C that is at the top of the cliff rather than the very bottom. A key feature of Z-Method is that it will
never select points with a higher miss ratio that any other previously selected points with a lower cache size.
This is what enables it to avoid the concave regions.

In all cases where Z-Method misses key points, the M in and/or y M in parameters can be adjusted such
that they would be selected. We fixed these parameters at 5% for this evaluation since we do not yet have a
way of automatically selecting the ideal values. Even so, the overwhelming majority of MRCs we looked at
still found all key points with these values.
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Figure 2.2: Effects of xMin of 1% (top panel), 5%, and 10% on trace w09. Red arrows denote points in a
panel that were not selected when the xMin value increased (next panel down).
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Figure 2.4: Analysis of Z-Method on LRU and ARC miss ratio curves. From the top: the first row are LRU
plots where Z-Method picked fairly good points; the second row are LRU plots where Z-method missed a
few, better points. The third and fourth are the same but for ARC (third row good points selected; row missed
some points).
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Chapter 3

Case Study: Multi-Tier Caching

The design and evaluation of multi-tier caching systems has become an incredibly complex problem. A par-
ticular system might be configured with any number and type of storage and caching devices. Interactions
between tiers are governed by numerous policies that can heavily impact performance, such as write, admis-
sion, and cache replacement policies. With all these configurable parameters, efficiently finding an optimal
cache configuration is a challenging task. Exploring the space through physical experimentation is costly and
time-consuming; simulation allows us to evaluate configurations more quickly without having to purchase
hardware. However, given such a large space, it is inefficient even to simulate every possible configuration.
In this case study, we show how Z-Method can be applied to dramatically speed up the process of finding
optimal cache configurations in multi-tier systems.

3.1 Design

To evaluate multi-tier systems, we extended PyMimircache [62], a storage cache simulator with an easily
modifiable Python front-end and an efficient C back-end.

Our simulator has the following characteristics relevant to this work: (1) We implemented a global
write-back policy that has two flushing mechanisms: The first is a threshold-based flush, which is designed
to function similar to Linux’s vm.dirty_ratio kernel parameter; when the fraction of dirty blocks in the cache
exceeds a high threshold, we synchronously flush dirty blocks to the next tier until we reach a low threshold.
We set these thresholds to 20% and 10%, respectively, similar to Linux’s default values. The second mech-
anism is an age-based flush, based on Linux’s vm.dirty_expire_centisecs kernel parameter. Once a block has
been dirtied, it can only remain in the cache for a certain amount of time and then it is flushed. Likewise,
we set this value to 30 seconds, as is the default in Linux. A limitation of our write-back policy is that we
do not support asynchronous flushes. (2) Evicted dirty blocks are written to the next tier, and discarded if
they are clean. (3) Tiers of DRAM are included in our simulations even though we are using block traces,
which capture requests for data that was not found in DRAM. This is a limitation of the traces we are us-
ing. (4) In each tier, we use only the fraction of the device that matches the cache size being tested; we
adjust the cost proportionately. This approach is unrealistic for real-world systems, where devices cannot
be purchased in fractional increments, but is appropriate in cloud, virtual, and containerized environments
that allow more fine-grained allocations and pricing. We plan to investigate such environments further in our
future work. (5) As a means of accommodating PyMimircache, which has no concept of request size, we
break all requests in our traces into 512B individual requests and process them sequentially.

Figure 3.1 depicts an overview of our PyMimircache extension. The following is a high-level outline
of the simulation process: (1) We feed an original block I/O trace to an instance of PyMimircache; this
is the top tier (“L1”) of our cache hierarchy. (2) This instance generates two output files: (i) A log file,
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Figure 3.1: Multi-tier PyMimircache extension.
Device Type Price | Capacity | Avg. Read & Write Latency
Crucial DDR4 SDRAM ECC 3200 | DRAM | $105.00 16 GB 0.0138 us, 0.0138 us
Intel Optane SSD 905P SSD |$2174.00| 1500 GB 10 ps, 10 ps
Seagate Enterprise Performance HDD | $120.17| 600 GB 4,650 us, 29,110 us

Table 3.1: Device specifications and parameters. Prices were obtained from Amazon and Newegg in Septem-
ber 2020. Benchmarked specifications were correlated from device vendors, as well as independent evalua-
tors AnandTech [4], and StorageReview [51].

“L1-log”, containing counters for the following items: read hits, write hits, read misses, write misses, data
read, data written, dirty evictions, clean evictions, age flushes, and threshold flushes. (ii) A new trace file,
“L1-trace”, which contains the read requests that missed in L1 and references to any blocks that were evicted
or flushed. (3) After the L1 instance of PyMimircache completes, we feed the generated “L1-trace” from
step 2 into another, separate instance of PyMimircache, emulating our L2 tier. (4) When all cache sizes
have been processed, we aggregate all the log data into a single log for that experiment, then insert it into
a MySQL database [41]. (5) We then run an analysis script with parameters that describe each tier’s device
purchase cost and average read and write latencies. The script calculates and records the total purchase cost
and average latency for each of the experiment’s cache configurations. (6) Finally, the metrics are inserted
into an ElasticSearch database, which facilitates efficient, scalable searches and analysis [23].

3.2 Evaluation

In this section, we evaluate Z-Method’s ability to speed up the process of finding optimal multi-tier cache
configurations through simulations using our PyMimircache extension. We ran thousands of simulations
using 106 block traces obtained from CloudPhysics [56]. Each simulation modeled an L1 cache in DRAM,
an L2 cache in SSD, and a backend HDD storage device. We used the devices from Table 3.1 for all con-
figurations, but varied their simulated sizes. We selected the cache sizes to simulate using three techniques:
(1) Z-Method; (2) choosing 10 evenly-spaced cache sizes between 1 and the size of the working set (Even10);
and (3) choosing 20 evenly-spaced cache sizes (Even20). We ran each configuration using a write-back pol-
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Figure 3.2: An average latency vs. total purchase cost analysis of many two-tier cache size configurations
selected using 3 different point selection techniques for workload w03 using LRU policy.

icy, and used ARC or LRU cache replacement algorithms in both the L1 and L2 caches (i.e., we did not
evaluate configurations with a mix of LRU and ARC). The goal of these experiments was to use Z-Method
to minimize the total number of cache configurations to simulate while still adequately sampling the config-
uration space. Thus, we compared Z-Method with Even10 and Even20 by evaluating the number of points it
selects and the quality of the selected configurations.

For each simulation, we selected a combination of L1 and L2 cache sizes; the backend storage is always
fixed at the size required to store all data in the workload. The combination of cache sizes and configuration
parameters constituted a single multi-tier simulation that yielded a total purchase cost based on the cache
and storage-device sizes, and an average latency calculated from the number of total requests served by each
device.

Figure 3.2 shows the performance vs. purchase cost (lower is better) of numerous two-tier cache con-
figurations using LRU replacement policy for workload w03. This data is critical for a user designing or
reconfiguring a caching system. We selected the cache sizes using Even10, Even20, and Z-Method. Each
point in the figure represents one combination of L1 and L2 cache sizes; the X axis gives the total purchase
cost in dollars of the two caches plus the backend storage, while the Y axis shows the average latency (in mil-
liseconds) of the multi-tier configuration with those cache sizes. For example, the green point A represents
a simulation using approximately 178MB of DRAM as an L1 cache, 560GB of SSD as an L2 cache, and
895GB of HDD as backend storage, for a total cost of $991. The cache sizes of the simulation represented
by this point were selected using Z-Method. To avoid cluttering the figure significantly, we we do not show
the sizes of the individual tiers for each point.

3.2.1 Point Reduction

We now evaluate how well Z-Method can accelerate the process of finding optimal multi-tier cache con-
figurations by minimizing the number of simulations needed to adequately explore the configuration space.
Z-Method selects key points from MRCs to be simulated, as described in Section 2.3. We compare this to
the naive approach of selecting 10 or 20 evenly spaced points (Even10 or Even20) to simulate at every tier.
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Figure 3.3: Point reduction with Z-Method. The number of two-tier cache configurations selected for simu-
lation by Z-Method, Even10, and Even20 for each of our 106 workloads, using either LRU or ARC policies.
The left panel compares Z-Method with zMin and yMin parameters of 5% to Even20, which always selects
420 configurations, indicated by the horizontal blue dashed line. The right panel compares Z-Method with
xMin and yMin of 10% to Even10, which always selects 110 configurations, indicated by the horizontal red
dashed line.

The goal of Z-Method is to decrease the amount of time required to adequately explore a cache configu-
ration space. However, it is important to note that Z-Method’s real-world improvements in computation time
depend on several factors: the workload size, simulation software, hardware, etc. Therefore, our evaluation
focuses on the more agnostic measure of the number of points selected for simulation, rather than timing.

The number of selected points varies based on the workload and on Z-Method’s xMin and yMin pa-
rameters, which is an upper-bound for the total number of points that can be selected. For example, if we
choose xMin and yMin of 5%, meaning that all selected points need to be at least 5% of the = and y axes
ranges’ apart from each other, then we are limited to at most 20 total points. Similarly, if we change both
parameters to 10%, then we can select at most 10 points. For a fair evaluation, we use an xMin and yMin
of 5% for comparing with Even20, and 10% values when comparing with Even10.

Figure 3.3 shows the total number of points selected for simulation by Z-Method for all 106 CloudPhysics
workload traces, using both LRU and ARC cache replacement policies. Note that the figure uses a log;g scale
on the Y axis. The plot on the left compares Z-Method with xMin and yMin of 5% against Even20 (the
blue line), which always selects 420 points for a 2-tier configuration. Z-Method significantly reduces the
number of multi-tier cache configurations that need to be simulated, achieving median reductions of 7.8 x
for LRU and 10.5x for ARC, compared to Even20. The right-hand plot compares Z-Method with x Min and
yMin of 10% against Evenl10 (the red line), which always selects 110 points. Again, we see that Z-Method
substantially reduces the number of simulated configurations, achieving median reductions of 5.5 x for LRU
and 7.9x for ARC.

One limitation of Z-Method is that it requires an MRC before it can select points, while picking evenly
spaced points does not require a full MRC. For stack algorithms such as LRU, the MRC can be quickly
calculated in one pass [39], but non-stack algorithms like ARC require much more computation. In our ex-
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Figure 3.4: The Pareto fronts of all two-tier cache size configurations shown in Figure 3.2. The X-axis is
cut off around $1500 and the figure is zoomed in around all of the Pareto optimal points, to better show the
effects.

periments, we observed that Z-Method spent 30-40% of the total simulation time constructing MRCs when
using the LRU policy, and between 60-70% for ARC. Even so, we still saw significant improvements in
running time for most cases due to dramatic decreases in the required number of simulations. For example,
Z-Method selected 66 points for w20 with LRU and took approximately 600 seconds to complete all simu-
lations. Even20 selected 420 points and took around 2,800 seconds to finish, even though Even20 does not
require an MRC. We also note that our experiments used only two cache tiers; the relative speedups will
increase almost exponentially as we add more tiers. To illustrate this effect, we simulated w20 with 3 tiers of
LRU cache. Z-Method selected only 382 points, whereas Even20 would have selected 8,420 points. Based
on the 2-tier running times, we estimate that Z-Method would take around 3,400 seconds (57 minutes) to
complete while Even20 would take over 56,000 seconds (15.5 hours).

3.2.2 Pareto-Optimal Configurations

Pareto optimality is a concept used to evaluate two or more solutions to a multi-objective optimization
problem. In the context of multi-objective optimization, a solution is said to be Pareto-optimal if a given
objective cannot be improved without making one or more of the other objectives worse. All the objectives
are at their best possible values in a Pareto-optimal solution.

Consider the example in Figure 3.2. Here, the two objectives are average latency and total purchase
cost. With an unlimited budget, one could obviously purchase enough DRAM cache to hold the entire
data set, but it is rarely practical to do so. Instead, most system administrators will want to trade off cost
against performance in the best possible manner, meaning that they will be interested only in Pareto-optimal
solutions.

Only a small subset of all possible cache configurations are Pareto-optimal. When a set contains every
Pareto-optimal configuration for a given workload and no others, it is called the true Pareto-optimal front.
Any point in this front minimizes both the average latency and the total purchase cost; the front as a whole
can be considered the “best” points.
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Figure 3.5: A comparison of multi-tier cache configuration Pareto fronts using cache size simulations se-
lected by Z-Method and Even20. Each panel is classified based on how well Z-Method performs compared
to Even20. The left panel depicts workload w31 and is classified as “better”. The middle panel depicts
workload w20 and is classified as “comparable”. The right panel depicts workload w10 and is classified as
“worse”.

In many cases finding the true front is prohibitively expensive; a Pareto approximation attempts to find
a set of points that are contained in or close to the true Pareto-optimal front. Since cache designers are
interested only in the Pareto-optimal configurations, the task of evaluating a point-selection technique for
multi-tier caching can be modeled as the evaluation of Pareto approximations.

We can more easily view the configurations that we consider interesting by taking the data from Fig-
ure 3.2 and plotting the Pareto-optimal fronts generated by each point-selection technique, as shown in
Figure 3.4. We connect points using their Manhattan distance [33] to show the ranges that are dominated by
both points. We also use a small threshold € of the average latency range, as is commonly done in Pareto-
optimal calculations, to reduce the number of selected points [34]. In our case, a point must have at least
€ better average latency than any preceding point in the Pareto front before we select that point, because
changes in average latency less than e are not sufficiently interesting. The value of € is subjective, but we
found that 1% works well. A similar e could also be applied on the X axis if desired.

Unfortunately, quantitative evaluation of Pareto approximations is a difficult and yet-unsolved problem.
Many proposed techniques attempt to capture some sense of the quality of an approximation, but they are
all flawed in some way, generally providing inconsistent or imprecise results. We tried several of these
techniques, including the hypervolume [16], epsilon [67], and error ratio indicators [55], but the results were
conflicting and uninformative.

Because of this difficulty, it is common for Pareto approximations to be evaluated using visualization [14,
54]. For example, in Figure 3.4 we can see that the green point B yields approximately 8ms average latency
for around $200. Directly above point B are two (overlapping) points A that are selected by Evenl0 and
Even20: they produce roughly 10ms average latency for the same cost of $200. Clearly, the point selected
by Z-Method is superior in this case. We can also see another green point C that yields nearly the same
average latency as the red circle directly to its right, but at a lower total purchase cost. All other points in this
figure are very close, so we consider them equal in those ranges. From this visual inspection, we can say that
in this case Z-Method yields an overall higher-quality Pareto approximation than the other two techniques.

In the absence of a robust quantitative metric, we visually inspected the Pareto fronts of all our experi-
ments and qualified the results. In Figure 3.5, we show the Pareto fronts of Z-Method vs. Even20 and classify
the quality of Z-Method into one of three classes: (1) The plot on the left is classified as “better”—Z-Method
performs better overall than Even20; (2) The plot in the middle is classified as “comparable”—Z-Method per-
forms about the same as Even20; and (3) the plot on the right is classified as “worse”—Z-Method performs
worse overall than Even20. Our experiments yielded 424 of these plots: 106 workloads with either ARC
or LRU cache replacement, and comparing Z-Method vs. Even10 or Z-Method vs. Even20. Three members
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of our team each independently inspected these plots and classified them into the above three classes. On
average, 16% were classified as “better”, 68% were classified as “comparable”, and 16% were classified as
“worse”. These results tell us that Z-Method can sometimes provide a better or worse Pareto approximation
than Even10 or Even20, but is usually about as good, but with a much lower computation cost.
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Chapter 4

Related Work

Simulation Modern processors are designed with multiple cores, each containing multiple tiers of cache,
as well as a shared cache. Several architecture simulators have been developed and are widely used by
industry and academia to facilitate engineering, research, and education [22,31,38,43,58]. One example of
this is gem5, a popular architecture simulator that has been actively developed for nearly two decades [13].
It supports multiple ISAs and can accurately model complex multi-level non-uniform cache hierarchies with
heterogeneous memories. Architecture simulators such as gem5 have great value, but are fundamentally
different than storage simulators. Complex cache replacement algorithms that are designed specifically for
storage devices (e.g., SAC [19] and GCaR [61]) could not be reasonably implemented in an architecture
simulator. Architecture simulators are typically driven by binaries or instruction-level traces, and could not
operate on traces captured at the block, network, or system call layers.

Conversely, storage cache simulators are scarce and lacking in features. Accusim was developed to eval-
uate the performance impact of kernel prefetching [1]. It was designed specifically for file system caching
and can not model n tiers. Simldeal is a multi-tier simulator that implements several cache replacement and
write policies [27]. It hard-codes the number of tiers to four and forces evictions to the immediate lower
layer, and thus cannot support inclusive caching. There are also a handful of outdated simulators such as
Pantheon [59]. Unfortunately, there are few storage cache simulators available, and caching research is
commonly done using proprietary simulators that are not available publicly.

Knee & point selection The problem of finding knees in curves is important in many fields and has been
widely studied. Angle-based method [66] uses successive differences and angles between points find knees.
However, it only picks one knee point and has at least O(N?? log N) overall time complexity.

L-Method [46] fits two lines to the curve; the knee point then is their intersection. However, it again
finds only one knee, and works only for curves to which lines can be fitted. Our complex MRCs make it
difficult to find such lines; in addition, the computational cost of the L-Method is high. AL-Method and
S-Method [6] are refinements to L-Method. AL-Method takes line angles into consideration; S-Method fits
three lines to produce two knee points, so as to deal with curves that have long heads or tails. However, they
share L-Method’s high computational cost and cannot handle the complexity of MRCs.

The Kneedle algorithm [47] proposes a generic solution to find knees, although the authors state that a
tailored solution might perform better for a specific problem. Kneedle performs several transformations on
the data (notably fitting a spline to discrete points); it then looks for a place where the distance from the
curve to the line y = x changes in a knee-like manner. A sensitivity parameter .S adjusts the behavior of
the algorithm. However, Kneedle exhibits several properties that are not suitable for our needs: (1) Kneedle
is sensitive to long tails, which are common in MRCs; (2) The transformations to the curve introduce error;
(3) Its time complexity is O(N?), making it less efficient than Z-Method; and (4) Its S parameter would
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require significant per-curve tuning.

Dynamic first-derivative thresholding (DFDT) [7] finds the first-derivative values for all the points and
keeps them in an array. It then calculates some threshold value using the Isodata algorithm [45]. This algo-
rithm divides the values into high and low categories by taking an initial threshold (usually the mean). The
averages of the values at or below the threshold and above are then computed. A composite average is com-
puted using those two averages, the threshold is incremented, and the process is repeated until the threshold
is larger than the composite average. A minimum distance is calculated by subtracting this threshold value
from the first element in the first derivative array. Thereafter, the threshold value is subtracted from each
element of the array and if the result is smaller than the minimum distance, then the value of the minimum
distance is updated. The final knee point is the index of the element which gives the minimum distance
of the threshold value. This algorithm has a limitation that it returns only one knee point and O(N?) time
complexity.

Dynamic second derivative thresholding (DSDT) [8] is similar to DFDT except that it uses second deriva-
tives. The remaining steps are the same: calculate the threshold value using the Isodata algorithm, take the
difference of this threshold with each element in the second derivative array, then return the index that gives
the lowest difference with the threshold value. Since the algorithm is similar to DFDT, its limitations are
also the same.

Multi-tier caching Multi-tier caching is an active research topic in many areas, including VM manage-
ment [44], heterogeneous networks [35], cloud storage [49], hardware designs [42,50], and data-centers [36,
64]. Our work is applicable in all of these areas, but they each focus on problems that are somewhat different
than ours.

MultiCache [44] is a multi-layer cache-management system that dynamically partitions the cache device
based on the locality and priority of workloads. To maximize overall performance, a greedy heuristic adjusts
the sizes of each cache layer iteratively, which reduces latency and increases the hit ratio for VM workloads.
However, MultiCache considers only the size of cache partitions, ignoring their monetary cost.

eMRC [36] is a new technique that efficiently approximates the convex hull of the multi-dimensional
miss-rate surface for a multi-tier cache. This approximation is valuable in conjunction with cliff-removal
techniques based on Talus [11], which eMRC generalizes to multiple tiers. However, eMRC cannot be used
to model multi-tier cache systems that do not employ cliff removal. In contrast, our Z-Method approach
does not require convexity to accelerate multi-tier evaluations, making it broadly applicable to production
deployments of existing multi-tier caches.

GTSSL [49] uses a multi-tier compaction algorithm and advanced data structures (e.g., Bloom filters)
to improve performance compared to Cassandra and HBase. Our method of multi-tier cache evaluation can
help systems such as GTSSL improve their hit ratios and cost-effectiveness.
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Chapter 5

Conclusion

Multi-tier caching systems have a large number of possible configurations that produce a wide range of
performance and costs. As the configuration space continues to grow due to advancements in caching and
storage technology, exploring the entire the space through traditional simulation becomes infeasible.

In this work, we investigated several heuristic algorithms for selecting key points in MRCs to simu-
late, drastically reducing the cost of exploration. We introduced Z-Method, an algorithm that robustly and
efficiently identifies multiple key points in MRCs with minimal overhead. We evaluated Z-Method’s effi-
cacy through hundreds of experiments using our extended version of PyMimircache [62]. We demonstrated
that Z-Method can be applied to dramatically reduce the number of simulations required to identify good
multi-tier cache configurations, by up to a factor of 84 x when compared to naive point-selection techniques.

Future work Z-Method has a few tunable hyper-parameters and built-in variables whose ideal values vary
among workloads. We are currently investigating ways to intelligently guide their selection based on the
characteristics of a workload’s MRC (e.g., the amount of entropy). We are also exploring whether we can
improve on existing knee-detection techniques, or incorporate them into Z-Method to further enhance point
selection and decrease overheads (especially for generating intermediate MRCs). Finally, since Z-Method
can be used on any curve, we are investigating additional applications outside the realm of cache design.
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