
Extending ACID Semantics to the File System

CHARLES P. WRIGHT, RICHARD SPILLANE, GOPALAN SIVATHANU, and

EREZ ZADOK

An organization’s data is often its most valuable asset, but today’s file systems provide few facilities
to ensure its safety. Databases, on the other hand, have long provided transactions. Transactions
are useful because they provide atomicity, consistency, isolation, and durability (ACID). Many
applications could make use of these semantics, but databases have a wide variety of non-standard
interfaces. For example, applications like mail servers currently perform elaborate error handling
to ensure atomicity and consistency, because it is easier than using a DBMS. A transaction-oriented
programming model eliminates complex error-handling code, because failed operations can simply
be aborted without side effects. We have designed a file system that exports ACID transactions
to user-level applications, while preserving the ubiquitous and convenient POSIX interface. In our
prototype ACID file system, called Amino, updated applications can protect arbitrary sequences
of system calls within a transaction. Unmodified applications operate without any changes, but
each system call is transaction protected. We also built a recoverable memory library with support
for nested transactions to allow applications to keep their in-memory data structures consistent
with the file system. Our performance evaluation shows that ACID semantics can be added to
applications with acceptable overheads. When Amino adds atomicity, consistency, and isolation
functionality to an application, it performs close to Ext3. Amino achieves durability up to 27%
faster than Ext3, thanks to improved locality.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery; D.2.5 [Software Engineering]: Testing and Debugging—Tracing;
D.4.3 [Operating Systems]: File Systems Management—Access methods, Directory structures,

File organization; D.4.5 [Operating Systems]: Reliability—Fault-tolerance; H.2 [Database

management]: Database Applications

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: File system transactions, Recoverable memory, Databases,
File systems, ptrace monitors

1. INTRODUCTION

File systems offer a convenient and standard interface for user applications to store
data, which is many organizations’ most valuable asset. Computer hardware and
software can be replaced, but lost or corrupted data can not. Providing reliable file
system access is therefore an important goal of any operating system.

Database systems provide strong guarantees for the safety and consistency of
data, but each database uses its own interface. Four key requirements define a
transaction: atomicity, consistency, isolation, and durability—collectively known
as the ACID properties. Despite their importance, most file systems have made no
provisions to ensure that operations meet all four of these stringent requirements.
Our goal is to combine the best part of databases, their reliability (embodied by the
ACID properties)—with the best part of file systems, their common and easy-to-use
POSIX API [16].

Next, we describe the ACID requirements, and how they relate to file systems.

Atomicity. Atomicity means that operations must complete or fail as a whole
unit. Traditionally, file systems provided only limited atomicity (e.g., renaming a

FSL Technical Report, No. FSL-06-01, January 2006.

2 · Wright et al.

file either fails or succeeds). Many applications undertake arduous procedures to
try to perform atomic operations. For example, if Sendmail fails when attempting
to append new mail messages to a mailbox, it then attempts to truncate the file to
erase a partially written message [40]. Yet if the truncation fails, then the mailbox
is left corrupted. To solve these problems, a file system should allow a sequence
of operations to be encapsulated in a single atomic transaction. This has two key
benefits: (1) error handling becomes easier, because transactions can simply be
aborted, and (2) data corruption cannot occur, because no corrupted data ever
reaches the file system. With this new functionality, Sendmail’s append operations
could be wrapped in a transaction. If they all succeeded, then Sendmail would
commit the transaction. Otherwise, Sendmail would abort the transaction and the
file-system state would not change.

Consistency. In the context of a database system, consistency means that the
database enforces pre-defined integrity constraints. Examples of integrity con-
straints in a database system are that social security numbers must be unique
or that a checking account must have a positive balance. File systems have sim-
ilar constraints (e.g., inode numbers are unique and no directory entry points to
a non-existent inode). By wrapping related operations in database transactions, a
file system can maintain a consistent on-disk state.

Applications also have consistency requirements. For example, when committing
files to CVS [2], lock files are created to protect against concurrent accesses. An
integrity constraint in this example is that lock files only exist while an instance
of CVS is updating the repository. In an unmodified CVS implementation, there
are circumstances in which lock files are not properly deleted (e.g., on unexpected
termination or occasionally when the user presses Control-C). Using transactions
greatly improves error handling—with only four lines of code we were able to pre-
vent CVS from leaving stale lock files. Additionally, we eliminated the possibility of
some files being committed, and others not (e.g., if the process is terminated half-
way through a commit). If CVS were to have used a transactional model from the
start, then hundreds of lines of code through several source files could have been
eliminated. Moreover, because the transactional interface does not commit data
until all operations succeed, error-handling is much more robust than the several
ad-hoc functions that are currently in use.

Isolation. Isolation (or serialization) means that one transaction will not affect
the execution of another concurrently running transaction. This is not available
in current file systems. For example, a set-UID program cannot use access to
check whether a user has permission to create a file, because another process could
create a symbolic link to a sensitive file between the access and the creation. This
is known as a time-of-check-time-of-use (TOCTOU) security vulnerability. With
a file system that maintains isolation, for example, access and file creation can
safely be performed in a single transaction so that no other operations could be
interleaved between the access and the creation; to improve performance, however,
other operations may be interleaved, but the database management system ensures
that the results are as if there was no interleaving.

Durability. Once a transaction is committed to disk, the data remains intact
even across a software or a hardware crash. This is a desirable property for every

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 3

Table I. File system support for ACID. Current file systems cannot provide all ACID properties
across multiple operations, but many do provide a subset of the ACID properties for a single
operation (i.e., a system call or VFS-level operation). Amino provides all of the ACID properties
for an arbitrary sequence of multiple operations.
∗ FFS-no-SU denotes FFS without SoftUpdates, and FFS+SU denotes FFS with SoftUpdates.

Ext2 and

FFS-no-SU∗

Ext3 FFS+SU∗ Amino

Atomicity No Single op No Multiple ops

Consistency No Multiple ops Multiple ops,
but resources
may leak

Multiple ops

Isolation Single op Single op Single op Multiple ops

Durability Only with Only with Only with Legacy: each op.
O SYNC O SYNC O SYNC Enhanced: on commit.

application, but often operating systems (OSes) choose to sacrifice durability for
better performance. OSs often make this choice because the synchronous I/O that
is often required for durability can result in poor performance. Databases employ
optimizations such as sequential logs, group commit, and ordered writes to provide
durability efficiently.

As seen in Table I, current file systems do not support full ACID properties. Tra-
ditional file systems do not provide atomicity. For example, during rename, Ext2
and FFS can both create the file’s new name, and then fail before the old name
is removed. Journaling file systems like Ext3 provide atomicity for a single opera-
tion, so a rename operation cannot fail half-way through, but they do not provide
atomicity for a sequence of multiple operations, which is vital for user applications.
Many file systems do not provide consistency, which has resulted in the need to
run a consistency checker before mounting them (fsck). Journaling file systems
and SoftUpdates ensure that each operation is consistent, so the composition of
many operations is also consistent [24]. Current file systems use VFS-level locking
to provide isolation for a single operation. For example, a directory is locked before
it is modified. However, there is no mechanism to isolate one sequence of opera-
tions from another operation (or sequence). To improve performance, current file
systems do not provide durable writes unless the O SYNC option is specified.

We believe that the ACID properties are desirable for many applications, espe-
cially applications like email that are expected to be highly reliable, or applications
that require atomicity and isolation for security (e.g., updating a user’s creden-
tials). Therefore, we have designed a file system called Amino that extends ACID
semantics to standard applications that use the POSIX interface. Legacy support
is essential: unmodified applications and file systems continue to work as they have
in the past. To exercise fine-grained control over transactions, existing applications
need only slight modifications, and benefit from improved reliability.

It can be argued that databases are already taking over for the file system when
reliable storage is required. For example, some commercial email systems store
messages in databases instead of the file system [41], and it is becoming more com-
mon for revision-control systems to store information in a database [5]. However,
we believe that writing applications that use the file system interface has inher-
ent advantages over writing applications that use the database interface. When

FSL Technical Report, No. FSL-06-01, January 2006.

4 · Wright et al.

an application is written to a database API, it severely limits its interoperability
and adds to the burden of programmers and administrators. For example, with a
mail server using a file system, an individual user’s mail file can simply be copied
to create a backup, or deleted to remove all of the user’s messages (from personal
experience working at an ISP, this is a not uncommon request). Moreover, any
standard text processing package can be used to edit the file. When data is only
accessible through a database interface, these types of convenient access are no
longer possible. Instead, special applications must be written for each of these
functionalities.

We have built Amino on top of the Berkeley Database (BDB) [38]. BDB is
an embedded database package that provides efficient transaction-protected access
to key-value pairs in hash tables or balanced trees. BDB provides the crucial
database infrastructure such as logging, locking, and caching. However, BDB, does
not provide or require the use of SQL, stored procedures, a specialized database
server, or other heavyweight components often associated with a DBMS. This makes
it ideal for use by other operating system components. Using BDB allows us to
leverage almost 200,000 lines of time-tested industrial-strength code.

If we were to implement Amino as a traditional file system that interfaces with
the VFS, we would be required to use the inode, dentry, and page caches. If a
transaction aborted, then these caches would become stale with respect to the
database. Therefore, we chose to implement Amino as a user-level monitor using
the process-tracing facility (ptrace) provided by Linux. This interface allows us
to intercept all system calls and use only the internal BDB caches. For internal
Amino data structures, we developed a recoverable virtual memory (RVM) system
on top of BDB. Our RVM system provides support for nested transactions and is
transparent to applications.

We evaluated our prototype, and show that it can add atomicity, consistency, and
isolation to existing applications with negligible performance overheads. To provide
durability, existing file systems require an application to issue explicit fsync calls.
Amino can implicitly provide durability, and is 20.2% faster than a traditional
file system with fsync calls. If a programmer informs Amino when transactions
begin and end, durable performance is 26.6% better than a traditional file system.
Given that Amino is an unoptimized user-level prototype, we find these results
encouraging and expect that performance can improve with more tuning.

The rest of this article is organized as follows. Section 2 provides an overview of
our design. Section 3 describes our current Amino prototype. Section 4 evaluates
Amino’s performance. Section 5 describes related work. We conclude and discuss
future work in Section 6.

2. DESIGN

The key decision to make when extending ACID semantics to a file system is
whether to graft additional code to provide transactions onto an existing file sys-
tem, or to build a file system on top of a system that already provides transactional
semantics. The advantages of adding code to the file system is that you may end
up with less overall code, which is more specialized to the task at hand. However,
adding even a subset of the required code to an existing file system can take years.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 5

For example, Ext3 shares most of its code with Ext2 and only adds atomicity to
single file system operations, but it took more than two years to develop. To get a
rough idea of how large a file system is versus a transactional processing system, we
can compare the number of lines of code in Ext3 to the number of lines in version 4.1
of the open-source MySQL server [29] and version 4.2.52 of the Berkeley Database
(BDB) [38; 42]. In Linux 2.6.11.12, Ext3 has 21,629 lines of code (including the
block journaling layer, jbd, which is used only for Ext3). BDB has over 16,870 lines
of code in just its transaction-related components, and BDB is a subset of MySQL’s
overall transaction code (MySQL uses BDB to provide transactional tables). Aside
from the transaction-related components, BDB provides efficient data access meth-
ods for key-value pairs (e.g., BDB’s balanced-tree implementation is 16,843 lines
of code). We therefore chose to build our file system on top of BDB, because we
can leverage the already existing transactions infrastructure and efficient access
methods.

Once we decided to build the file system on top of a transaction-processing sys-
tem, the next question was what transaction-processing system is an appropriate
host for the file system. One option would have been to use an SQL server such
as MySQL, PostgreSQL, or Oracle. We rejected using a full-fledged SQL server,
because they require significant runtime resources. Moreover, each database up-
date or query requires communication over a socket, adding extra context switches
and data copies. These context switches and especially data copies could hurt file
system performance. We therefore chose to use an embedded database, which runs
directly in the address space of the client—thereby eliminating context switches
and data copies. BDB fits our needs well. It is widely deployed, and has been
thoroughly tested. BDB also scales both up and down: it can have a small memory
footprint of less than 500KB, yet it also can be configured for databases as large as
256TB. BDB’s codebase is still tractable at about 200,000 lines of code. There are
two key reasons that BDB’s codebase is manageable. First, BDB does not require
or support SQL parsing, query planning, or other features often associated with
a DBMS. As these features are not needed for a file system, having less code is a
distinct advantage. Second, BDB has a highly modular design and the application
designer can choose which components are required (e.g., the transaction subsystem
can be used with normal files, or the access methods can be used without logging).
Even though BDB is a relatively small DBMS, it still provides the key infrastructure
for full ACID semantics: logging, locking, recovery, and a full-featured transactions
API. It also provides four data access methods: a sorted balanced search tree, ex-
tended linear hashing, a fixed-length record queue, and access by logical record
number.

The rest of this section is organized as follows. Section 2.1 provides an overview
of BDB and its supported operations. Section 2.2 describes our database schema.
Section 2.3 describes our internal use of transactions. Section 2.4 describes our use
of transactional memory. Section 2.5 describes the transactions API that we expose
to applications.

2.1 BDB Overview

BDB provides a uniform API to access both hash tables and balanced search trees
in a transactional manner. To open and use BDB databases, a database environ-

FSL Technical Report, No. FSL-06-01, January 2006.

6 · Wright et al.

ment is opened first. The database environment provides caching, logging, and
locking functionality for one or more databases (or even simple files). Transactions
are associated with the environment, and they have three operations: begin, com-
mit, and abort. Other database operations are protected by the transaction. If a
transaction is committed, then all of the protected operations are applied to stable
storage as a whole. If the transaction is aborted, then it has no effects. A single
transaction can span multiple databases, but the databases must all belong to the
same environment. Before a database is opened, a database handle is created and
associated with an environment. Next, the handle’s parameters are set (e.g., the
page size, sorting or hashing function, etc.). Finally, the database is opened inside
of a transaction using the fully configured handle. After the database or databases
are opened, key-value pairs can be stored using a put operation and retrieved using
a get operation. These primitives take the database handle, a transaction, the key,
and the value (for put) as arguments. Also, BDB provides support for cursors,
which efficiently iterate through items in the database. The primary cursor opera-
tions we are concerned with are DB SET, DB SET RANGE, and DB NEXT, which find a
given key, the first key that is greater than a given key, and the next key, respec-
tively. There are many other BDB operations and parameters, which we omit here
for brevity [42].

2.2 File System Schema

The database schema defines the format of our file system. The schema dictates
the topology of the data, which in turn is directly related to what operations are
possible, and how efficient each operation is. Our primary goal in developing our
schema was to minimize the number of database accesses required for any given
operation, because I/O operations are many orders of magnitude slower than in-
memory operations. An organization that is appropriate for a normal disk-based
file system is not necessarily appropriate for a database. For example, most FFS-
like file systems use simple mappings of integers to disk blocks [25]. For example,
to read a block from a file, first the root inode number is mapped to a disk block.
After the root inode is read, the root directory’s data blocks are scanned to find
the inode number of the next pathname component. Reading each data block
essentially maps a logical block in the file to a physical disk block using the inode’s
direct and indirect pointers. This procedure must be repeated for each pathname
component, until the file is found.

BDB, on the other hand, provides more complex and efficient data structures.
In BDB, the schema is defined by the set of databases and their key-value pairs. A
file system can conceptually be divided into two halves: (1) a naming component
and (2) a data storage component. For example, FreeBSD has a separate UFS
component for naming and an FFS component for storage. Our schema, shown
in Table II, has a similar division. We use a Path database to map pathnames
to unique file identifiers, and a Data database to map unique file identifiers to file
data. The Orphan database contains a list of identifiers that are not accessible
through the name space, but is otherwise equivalent to the Path database.

In the rest of this section we describe the design considerations when developing
our schema. First we discuss each database in turn: the Path database, the Data
database, and then the Orphan database. We then describe path-local and data-

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 7

Table II. Our database schema. Directory-reading and lookup operations use the Path database,
which maps full path names to path-local meta-data. Read, write, truncate, and other data-
oriented operations use the Data database. The Data database has two types of keys: a file
identifier points to its meta-data, and a file identifier concatenated with a page index point to the
page’s data. Files without any names are stored in the Orphan database.

Database Key Value

Path Full Path ID||Path-local meta-data (e.g., stat information for a file
without hardlinks)

Data ID Reference Count || Data-local meta-data (e.g., stat informa-
tion for a hard linked file)

ID || Page index Page’s data

Orphan ID Path-local meta-data (e.g., stat information for a file with-
out hard links)

local meta-data.

The Path Database. The Path database is used for both lookup and directory-
reading operations. Each file has a unique identifier, which is analogous to an
inode number. In the Path database, the key is a full pathname and the value is a
unique identifier. We designed our schema such that a given file can be looked up
using a single database access. For any given path name we can quickly find the
path’s unique identifier, without the need to traverse each component’s directory
separately as is done in most Unix file systems. The Google file system uses a
similar scheme [10]. When using a hash function, this yields constant time lookups.
Using a balanced tree with a fan-out of 100 keys per page, four disk accesses are
always sufficient to find any of 108 files.

The Path database is also suitable for the directory-reading operation. As the
access method for the Path database, we selected a balanced tree structure using
a customized sort function. In our database, pathnames are first sorted by depth
(i.e., by an ascending number of pathname components) and then by standard lex-
icographic order. Using this sorting function means that for any given directory,
every name is contiguous within the database. To read a directory, we use BDB’s
DB SET RANGE operator to position a cursor at the first path name within the di-
rectory. To read each subsequent entry we use the cursor’s DB NEXT operator until
we encounter a path name in a different directory.

For the lookup operation, the sort function is not critical, as a name can be
located correctly with any total ordering. However, our sorting function proves
advantageous when reading a directory and performing stat operations on the
entries. Because each path in the directory is located close to one another, fewer
pages must be read in from disk. This type of operation is quite common (e.g, by
ls -l or recursive tree scans), which is why NFSv3 introduced a single protocol
primitive called readdirplus for it [3].

The Data Database. To store the data pages, we use a balanced tree. If a file’s
unique identifier is stored in the tree, then the given file exists. We assign the
identifier randomly, but as the tree is sorted, it is possible to influence data layout
policies by modifying the identifier assignment and sort function. For each identi-
fier, the database stores the file’s reference counts and meta-data. There are two
reference counts: one for the number of path names that reference it (a.k.a. a link
count), and another for the number of open instances of the file.

FSL Technical Report, No. FSL-06-01, January 2006.

8 · Wright et al.

The actual data associated with the file is also stored in the Data database. For
a given page of the file, the key is the file’s identifier concatenated with the page
index. We first sort the tree by the file’s identifier and then by the page index. This
means that all of a file’s data pages are allocated contiguously in the tree, thereby
improving locality and allowing the use of database cursors.

Selecting database parameters properly is of the utmost importance for the Data
database. In our experiments we found that there can be a factor of ten difference in
performance based on page size, cursor use, and other database-tuning parameters.
The page size is a particularly important parameter for data-intensive operations.
BDB uses a configurable database page size of powers-of-two between 512 bytes and
64KB. It is often useful to make this page size the native page size of the underlying
file system, so that BDB reads and writes pages that are compatible with the OS’s
native page size. The BDB page size also determines when and how overflow pages

are used. For the Data database, most records are rather large, so they are stored
in overflow pages, which means that they are not stored directly with the key.
We have found that BDB will store only a single record within an overflow page.
Therefore, if the database page size is larger than our file system’s transfer unit
(for the remainder of this paragraph we refer to our file systems page as a transfer
unit to avoid confusion with BDB pages), then the remainder of the database’s
overflow page is wasted, reducing available disk space and imposing unnecessary
I/O overheads. Similarly, if the overflow page size is less than or equal to the file
system transfer unit, then BDB stores a small amount of internal meta-data in
the beginning of the overflow page, and the first part of the actual data in the
remainder of the first overflow page. Another complete overflow page is used for
any remaining data, and the rest of it is wasted.

BDB’s overflow page allocation behavior means that the file system transfer unit
must be carefully selected to avoid performance conflicts with BDB. For example,
with a file system transfer unit of 4,096 bytes and the default BDB page size of
16,384 bytes, only 4,122 bytes on each overflow page are used (4,096 for the data,
and 26 bytes for BDB’s internal meta-data), wasting the remaining 3

4
of the page.

This not only wastes space, but hurts performance because useless data needs to
be sent to and from the disk. With a database page size of 4,096 and an equal
transfer size, 26 bytes of meta-data are stored on the first overflow page and only
4,070 bytes of actual file-system data can be stored. On the second overflow page
only the remaining 26 bytes of file-system data are stored—wasting nearly half of
the space. Because of these considerations, we have chosen to use a transfer unit
of 4,070 for our file system. Although this is a non-standard size, well-behaved
applications should execute the fstat system call to find the optimal transfer unit
stored in the st blksize field. Poorly behaved applications work as expected,
but with degraded performance. Our benchmarks show that when using a 4,096
block size, there is a 4% slow down for sequential reads, and an 18% slow down for
sequential writes. Random operations have a greater performance penalty, because
they do not benefit from locality as the sequential workloads do: reads are slowed
by 48.4% and writes by 57.1%.

We have also found that using database cursors is essential for good sequential
read performance. Simply iterating through the Data database using the get

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 9

primitive without cursors can be twice as slow as sequentially reading the file with
a cursor. Therefore, whenever possible we use cursor reads with the more efficient
DB NEXT flag instead of simple get operations. We do not use write cursors as
they are incompatible with transactions, and require locking an entire database
environment.

The Orphan Database. Files that have been unlinked, but are still open, are
stored in the Orphan database. The Orphan database is identical to the Path
database, except that instead of storing the name, only the file’s unique identifier
is stored. In case of a system crash, we can quickly locate and remove all such
orphaned files using a database cursor during the next mount.

Path-local and Data-local Meta-data. The stat system call returns vital informa-
tion about a file, such as its size, owner, and access permissions. The performance
of stat is quite important, as it constitutes a large portion of many workloads.
Ellard’s traces of NFS-mounted home directories show 24.6–72.4% of all calls were
getattr and access, which both require stat information [8]. Because each file
has a single set of attributes, the file’s unique identifier determines the stat infor-
mation even if the file has multiple pathnames. This means that the stat attributes
are a functional dependency of the unique identifier. To avoid logical redundancy,
or having the same data stored in two different places, and its associated pitfalls in
a traditional SQL database, the stat information should be stored in a database
with the unique identifier as the key [21]. In our schema, logical redundancy would
introduce update anomalies in which one copy of the data could be updated, but
the other might not. However, if stat information could be stored in the Path
database, then performance would be improved because stat would require only
one database access.

To solve this problem, we take advantage of the flexibility provided by BDB’s key-
value pair model to develop a more dynamic schema. Meta-data is divided into two
classes: (1) path-local meta-data and (2) data-local meta-data. Path-local meta-
data includes all meta-data that is specific to one path of a file. Data-local meta-
data includes all meta-data that may refer to more than one path. For example,
a newly created file’s stat information is stored as path-local meta-data, because
there is no other path name that references this stat information. However, if a
hard link to the file is created, then the path-local meta-data is promoted to data-
local meta-data, as both names could be used to reference the same underlying
file. If one of the links is removed, then the data-local stat information could be
demoted to path-local meta-data. Dividing meta-data into path-local and data-
local components allows our schema to avoid the pitfalls associated with logical
redundancy. Yet when the data has no logical redundancy, the stat information is
stored right with the pathname to improve performance.

2.3 Internal File System Transactions

It is essential that each operation in an ACID file system be protected by a transac-
tion. This is true even when the application that is executing that operation is not
concerned with ACID semantics, because other applications must access a single
consistent view of the database to ensure the isolation property. Also, to ensure
that the file system is consistent, certain integrity constraints must be maintained.

FSL Technical Report, No. FSL-06-01, January 2006.

10 · Wright et al.

We define our file system to be consistent, if and only if it meets the following seven
integrity constraints:

UniqId Each file identifier is unique.

RefCount Each file’s link reference count is equal to the number of path names
that reference it.

NoOrphanedFiles Each data-local meta-data block has a positive link count or
open instance reference count. If the link count is zero, then an entry for this
file must exist in the Orphan database.

NoOrphanedBlocks Each data page in the Data database has an associated
data-local meta-data block.

HardLinkUsesDlMd If and only if a file has a link reference count greater than
one, then it uses data-local meta-data.

PagesMatchSize A file has no data pages with an index greater than or equal to
d FileSize

TransferUnit
e.

LastPageMatchesSize If there is page at index b FileSize
TransferUnit

c, then it is no
larger than FileSize mod TransferUnit bytes.

Each of these integrity constraints is equivalent to a similar invariant in a stan-
dard file system and is also equivalent to common integrity constraints enforced
by a database system. For example, RefCount is equivalent to a foreign key
constraint, and standard file systems verify the same when performing a fsck. In
traditional file systems, constraints similar to PagesMatchSize and LastPage-

MatchesSize are checked by fsck to ensure that no orphaned blocks exist, and
that stale data does not reappear, respectively.

Our file system does not require a fsck, nor does it explicitly enforce the integrity
constraints. Instead, each file system operation is designed to transition from one
consistent file system state to another consistent file system state. Because each
file system operation is surrounded by a transaction, it is atomically applied or
it has no effect. Therefore, our file system is always consistent (because it meets
the required integrity constraints). This strategy is different from enforcement,
in that enforcement would require validating the constraints before committing
every transaction. To recover the file system after a crash, it is enough to open
the database with BDB’s DB RECOVERY flag, which replays the database log, and
to remove any orphaned files (we efficiently locate these files using the Orphan
database). BDB’s internal support for recovery obviates the need for us to take
complicated recovery steps in our file system code.

2.4 Transactional Memory

One major difficulty with any system that supports transactional semantics is how
to deal with an abort operation. Transactional systems should be able to rewind to
the state they were at just before the transaction began. This is part of supporting
atomic behavior: the effects of a sequence of operations are realized if and only if
the transaction containing that sequence is committed. If a transaction is aborted,
the operations that were already performed must be reversed so that the state
returns to how it was just before the transaction had begun. Of course, this is not
restricted to the file system data: caches and other book-keeping memory regions

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 11

that describe the state of the file system also need to be reversible in this manner
(e.g., the process’s open file table).

Through the use of BDB’s support for application-specific recovery, we built
a recoverable virtual memory (RVM) library. Our library supports rolling back
allocation, deallocation, and writes to a recoverable region. Because one of our
requirements was to allow applications to use nested transactions, our RVM library
supports nested transactions. By allocating memory regions related to the file
system state with our recoverable memory routines, we can easily rewind our state
to the proper one upon abort. Our library internally uses mmap, mprotect, and
signal handlers to protect memory regions transparently.

After catching the page faults, we log the memory’s content. This allows us
to access recoverable memory transparently using traditional memory references,
without the need for error-prone explicit logging functions. This is especially im-
portant if the library is to be used to retrofit transactional semantics onto existing
applications or infrastructure. It is relatively easy to locate all of the points where
data structures are allocated and deallocated, whereas locating each access to a
data structure can be very difficult.

2.5 Transactions API for Applications

Legacy applications need no changes to enjoy the benefits of a consistent file system,
which uses transactions for each individual operation (as applications do today with
a journaling file system). However, some applications require more stringent atom-
icity, consistency, isolation, and durability properties. For example, a mail server
must append large messages to the end of a mailbox, and a password update system
must consistently update /etc/passwd and /etc/shadow together. Importantly,
both legacy and enhanced applications can coexist and use the same data—without
the need to access a data store using a specialized interface.

For these types of applications, our file system exports a transactions API to
user applications. Our primary design goal for the API was to avoid any changes
to existing system calls, which means that we could not add a transaction argument
to each call. To begin a transaction, an application issues a new system call that
associates a current transaction with the process (or thread in multi-threaded ap-
plications). Each file system operation after that point is protected by the current
transaction. The application can then commit or abort the transaction, with the
expected semantics: an aborted transaction has no effect on the file system, and a
committed transaction is safely written to stable storage. Aborting a transaction
can greatly simplify error handling code, but developers still must take care not to
persistently change state during an aborted transaction (e.g., internal application
data structures). One simple way to ensure this property is to exit after an abort
(many programs already exit on unexpected failures). A better option is to use our
RVM facilities to rewind data structures transparently. We believe that one reason
many applications are structured such that error handling consists of shutting down
the current process or thread is that ad-hoc error recovery is so difficult, hard to
debug, and error-prone that fault-tolerant applications, despite their benefits, are
often impractical to develop on current systems. We believe that if transactional
semantics for the file system and data structures were provided, then programmers
may structure their programs to be more robust in the face of failures rather than

FSL Technical Report, No. FSL-06-01, January 2006.

12 · Wright et al.

coding their programs to exit upon failure.
Using BDB’s support for nested transactions, each of the file system’s internal

transactions is started as a child of the current transaction. This simplifies error
handling in the file system, because a transaction for a failed system call can just be
aborted. If the child transaction is committed, then it is committed to stable storage
only if the parent transaction is committed as well. If a child transaction is aborted,
then its effects are undone, but the parent transaction can continue. Our design
makes use of this, by wrapping each individual system call in a transaction. In this
way, our file system can abort transactions, even if the application is wrapping a
set of system calls into a transaction. This functionality is also exposed to user
applications. If a process already has a current transaction, and a new transaction
is created, then a new current transaction is created as a child of the existing current
transaction. This creates a stack of nested current transactions associated with the
process.

We employ a simple shared-memory like API to allow processes to share trans-
actions, and we support multiple concurrent transactions without changing the
existing system call API. When a transaction begins, it is assigned a unique iden-
tifier that the process can then use to manipulate the transaction. A process with
sufficient permissions can set its current transaction by attaching to the unique
identifier. In this way, two processes can share the same transaction. Similarly,
a process can detach from its current transaction, so that future operations are
not transaction protected. If all processes have detached from a transaction, then
it is automatically aborted (this policy ensures that no transaction-protected data
reaches the file system if it was not explicitly committed). If a process temporarily
wants to stop using a transaction, but not abort it, then it may suspend the trans-
action (e.g., to temporarily switch between transactions). The suspend and detach
primitives allow processes to switch between transactions without adding system
call arguments. For example, a network server may concurrently service many sep-
arate clients. Each client’s data should be protected by separate transactions. On
exit, all uncommitted transactions are automatically detached.

Transactions can be automatically inserted into an existing application’s system
call stream using pre-defined profiles. For example, a profile can protect an entire
application by inserting a begin-transaction call on exec, and a commit-transaction
call on exit. Another profile could use file sessions to insert transactions [34]: on
the first open system call, a transaction is begun; on each subsequent successful
open, a counter is incremented; and decremented on close. When the counter
reaches zero, then the transaction is committed. Other transaction profiles can be
designed and developed, either for a general class of applications or even for the
behavior of a specific application.

3. IMPLEMENTATION

We developed a prototype ACID file system on Linux, called Amino. The key
implementation question for our file system is how to intercept calls and direct
them to the database transparently. We evaluated six techniques with respect to
the following two criteria:

—Legacy applications should not be modified. In the best case, unmodified binaries

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 13

can run without recompiling or relinking. We also considered techniques in which
the application must be recompiled or relinked, but its source code is unmodified.

—The interception technique should not insert caches between the application’s
system calls and the database. This is because any caches that are not managed
by the database suffer from two problems. First, if a transaction that spans
multiple operations is aborted, then the cache becomes stale. Second, if the
caches are accessed without consulting the database, then the isolation property
is violated.

Finally, we considered the implementation effort and attempted to minimize
changes to existing infrastructure. We considered six choices.

In-kernel file system. The most direct approach would be to write a standard
in-kernel file system. In-kernel file systems do not require relinking of binaries,
and such file systems fit into the existing kernel architecture. They also have the
advantage of running in kernel mode, so they can minimize data copies and context
switches.

In-kernel file systems, however, have two key disadvantages. The first is that
standard in-kernel file systems are intimately tied together with caches. This means
that substantial code changes would be required to ensure coherency between the
internal database caches and the external VFS caches. The second disadvantage
is that all of the database code would need to be ported to the kernel, and then
execute within the kernel address space. Although this is not an insurmountable
problem, it would introduce a code base into the kernel that is ten times larger
than most existing file systems.

FUSE. FUSE or Filesystem in Userspace is a hybrid user-kernel approach [43].
Like a standard kernel-level file system, no application modifications are required.
A standard kernel file system is used to interface with the VFS, but VFS calls
are sent to a user-space demon via a device. The user-space demon executes the
call and returns the data and status codes to the kernel-level file system, which
in turn passes them on to the user. This means that the database code need not
run within the kernel, eliminating one concern about developing an in-kernel file
system. Unfortunately, this approach still suffers from the same caching problems,
as a standard kernel level file system, in that cached accesses do not consult the
DBMS. As FUSE file systems run outside of the kernel, and have less control over
the VFS than a standard file system, these problems would be more difficult to
solve than with a standard kernel-level file system.

User-level NFS server toolkits. A user-level NFS server toolkit, like the SFS-
toolkit [23], has many of the same advantages and disadvantages as FUSE: appli-
cations need not be modified and the database can run in user level, but the kernel
caches information inside of the NFS client, thereby violating the isolation property
and creating coherence problems with the database caches. Additionally, user-level
NFS servers require additional data copies through the network stack, as well as
context switches.

LD PRELOAD library. Another option is to run our file system directly in the
address space of user processes and intercept system-call wrappers using the

FSL Technical Report, No. FSL-06-01, January 2006.

14 · Wright et al.

LD PRELOAD runtime-linker mechanism. This approach has three main advantages.
First, as file-system calls are intercepted at the highest possible level, there are no
cache coherency or isolation issues to contend with. Second, the database does not
need to run in the kernel. Third, data copies between the process and the kernel
are not required. There are, however, three disadvantages. First, statically linked
binaries cannot use the file system, so they must be recompiled. Second, the C
library itself continues to use the existing calls, so every call of interest must be
intercepted (e.g., fprintf must be intercepted because applications use it to write
to the file system). Third, system calls that do not use the library wrappers are
not intercepted, so not all code would work with this approach.

Modified C library. Directly modifying the C library is another option to extend
new file-system functionality to applications [20]. The advantages and disadvan-
tages are similar to the LD PRELOAD mechanism, but high-level calls like fprintf

do not need to be modified if the corresponding low-level library calls like write

are handled correctly. Three additional disadvantages of using a modified C library
instead of an LD PRELOAD are that all applications must be relinked with the new C
library, modifying the C library requires significant implementation effort, and that
circular dependencies would exist between the BDB library and the C library. For
example, BDB needs the fwrite library call, but that call in turn would depend
on BDB.

ptrace. The final option we considered was using the process-tracing facility,
ptrace [14]. The process-tracing facility allows a monitor to intercept system calls
and modify the calls and their arguments. From the perspective of the application,
the monitor is equivalent to the OS, so no application modifications are required.
As shown in Figure 1, the monitor runs in user-level, so BDB does not need to
execute within the kernel. Unlike the library approach, a single instance of the
monitor can handle multiple processes, so it is simpler to share data, caches, and
other resources.

int 0x80
iret

int 0x80
iret

int 0x80
iret

KE
RN

EL ...

BDB

Amino Monitorwait

ptrace

Process 1

Process 2

Process N

Fig. 1. The Amino monitor can trace an arbitrary number of processes. At system call entry, the
kernel signals the monitor via the wait system call. Amino manipulates the monitored processes’
state with ptrace primitives. BDB executes within the monitor’s address space, and uses standard
system calls.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 15

The major disadvantage of the ptrace approach is that performance may suffer
for system-call-intensive programs, as more context switches are required for each
system call. However, we felt that ease of development and cache consistency
outweighed performance concerns.

In Section 3.1 we describe the process tracing primitives. In Section 3.2 we
describe the structure of the Amino monitor. In Section 3.3 we describe Amino’s
process control blocks, and in Section 3.4 we describe Amino’s path resolution and
mount framework. In Section 3.5 we discuss address space issues.

3.1 Process Tracing Primitives

The ptrace framework provides three primitives to establish tracing: the monitor
can issue PTRACE ATTACH to begin tracing a currently running process, the monitor
can issue PTRACE DETACH to stop tracing, and one of the monitor’s children can
issue PTRACE TRACEME to be traced by the monitor. Our monitor begins by forking a
new child, issuing PTRACE TRACEME, and then executing the to-be-traced executable.
From this point onward, the monitor is notified via the wait system call whenever
the child needs attention.

The monitor uses three primitives to control the execution of the child process.
(1) PTRACE SYSCALL continues execution until the next entry or exit from a system
call. If the child is in user-mode, then the child process is stopped before the kernel
enters the system call handler, so that the monitor can change the arguments,
or even the system call to be executed. If the child process is in the midst of
executing a system call, then the kernel completes the routine and the monitor can
examine and change any return values. (2) PTRACE CONT continues execution until
the child receives a signal. (3) PTRACE SINGLESTEP continues execution until the
next instruction.

When the child is in the stopped state, the monitor uses four primitives to
observe and manipulate the child process: PTRACE GETREGS, PTRACE SETREGS,
PTRACE PEEKDATA, and PTRACE POKEDATA.
PTRACE GETREGS retrieves the values of the registers saved during a context switch

from the kernel’s process control block. On the Intel 80x86 architecture, the eip

register contains the program counter, the eax register indicates what system call
the process wants to execute, and the remaining general purpose registers contain
the system call’s arguments. Our current implementation is tied to the 80x86
architecture, because it references these registers, but it would not be difficult to
add support for other architectures as the ABI is similar on all Linux platforms. In
our prototype, only 353 out of 12,187 lines of code reference 80x86 specific registers.

The monitor can also manipulate the registers with the PTRACE SETREGS primi-
tive. Before a system call, the call to execute can be changed by setting eax, and
the arguments can be changed by updating the corresponding registers. After a
system call is executed, the return value can be set by updating the value of eax.
At any point in time, the execution flow of the program can be changed by modify-
ing eip. This is required when a single system call must be implemented in terms
of several other system calls.

Finally, there are two primitives to examine and update a word in the child
process’s memory: PTRACE PEEKDATA and PTRACE POKEDATA. These primitives are
used when the system call takes pointer arguments (e.g., file names are passed as

FSL Technical Report, No. FSL-06-01, January 2006.

16 · Wright et al.

strings, and stat fills in a user-supplied buffer).

(10) iret (9) syscall

(8) setregs

(4) setregs

(3) getregs

(2) wait(1) int 0x80

Am
in

o
M

on
ito

r

Ke
rn

el

Us
er

 P
ro

ce
ss

(5) poke

(7) wait

(6) syscall

Fig. 2. ptrace primitives used to handle a read system call. Arrows indicate control transfer.
Double arrows indicate that the function was called and returned immediately.

Figure 2 shows an example of how the Amino monitor handles a read system
call destined for the database file system on behalf of a user process. There are ten
steps involved in this call:

(1) The user process issues a system call using int 0x80. The system call to
execute is stored in eax.

(2) The wait system call in the monitor returns the process ID of the user process.

(3) The monitor issues a PTRACE GETREGS call to retrieve the value of eax. Based
on eax and the call’s arguments, Amino determines whether this call is destined
for the database. If the call is not destined for the database, then Amino allows
the process to continue with no further intervention.

(4) If this call is destined for the database, then Amino changes the registers to
prevent the kernel from handling the call. In the case of read, Amino sets
eax to –1, thus the kernel essentially ignores the call because no handler is
associated with –1.

(5) Amino performs the database read operation, and uses the PTRACE POKEDATA

primitive to write the returned data into the user process’s address space (we
also have an optimized mechanism described in Section 3.5).

(6) Amino instructs the kernel to continue execution until the end of the call and
calls wait (in this case the call returns immediately without performing any
service, because eax was set to –1 in step 5).

(7) The kernel executes the system call, and returns from wait.

(8) Amino uses the PTRACE SETREGS primitive to store the return value of the
previously executed read in eax.

(9) Amino uses the PTRACE SYSCALL primitive to allow the user process to continue
executing.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 17

(10) The kernel issues an iret instruction to return control to the user process.
The user process reads the return value from eax, and it is as if the system call
were serviced by the kernel.

3.2 Amino Structure

The Amino monitor begins by forking a child process to trace. After the fork, the
child executes the program to be monitored. All of the process’s descendants are
also monitored, and each monitored process is assigned a state. The two most com-
mon states are InUser and InCall, which indicate that the process is executing
user-level code or it is executing a system call, respectively. To service requests,
Amino calls the wait system call. When a process requires attention, usually be-
cause it is entering or exiting a system call, the kernel returns its process ID as the
result of the wait system call (wait also returns when a signal is delivered or a
process exits).

After returning from wait, Amino retrieves the current process’s state and per-
forms an appropriate action. There are currently 19 states (including InUser and
InCall). Most of the states indicate that the user process is in the midst of a
specific call, for example clone, exec, chdir, or dup. One of the most important
states is InForceRet, which indicates that the return value of the presently exe-
cuting system call should be overridden by a given value. This state is used by most
database calls to pass back status information. In the example in Section 3.1, the
return value of the read is determined in step 5, but is not yet returned. When the
return value is determined in step 5, the monitor sets the state to InForceRet.
After step 7, Amino looks up the state and because it is InForceRet, Amino
sets the value of eax to the proper return value. Two other states of note are
RedoCall which indicates that the current system call should be repeated, and
RestoreRegs which indicates that the process’s registers should be set to their
original values. RedoCall allows us to insert a new system call into the stream
(e.g., to create shared memory regions), and RestoreRegs is used when we need
to change system call arguments (e.g., when rewriting file names).

3.3 Process Control Blocks

The monitor maintains each process’s state in a private process control block (PCB).
The monitor’s PCB is independent of the OS PCB, and contains the process ID to
use as a search key, a copy of the process’s registers, the current state of the process
(e.g, InForceRet), and all state-specific information (e.g., the return value to be
passed back to the application). Encapsulating all of this information in a single
structure allows the monitor to handle concurrent processes.

Like an OS PCB, the monitor’s PCB contains an open-file table and present
working directory (PWD). The open-file table is a simple array with a slot for each
possible file descriptor. If a given file descriptor is connected to an Amino file, then
its slot contains a pointer to a structure describing the file; otherwise it is empty
(NULL). If a system call uses a file descriptor as an argument, it is looked up in the
open-file table. If the file descriptor’s slot is empty, then the system call proceeds
with no further intervention. Otherwise, Amino extracts the schema data (i.e., the
database and environment handles) and the unique file identifier from the open-file
table and directs the call to BDB.

FSL Technical Report, No. FSL-06-01, January 2006.

18 · Wright et al.

Amino cannot arbitrarily assign file descriptors to the user-level process, because
the kernel would not know that a given file descriptor is in use. To handle this
situation, Amino uses shadow descriptors. When opening a file in the database,
Amino changes the path name to “/” before letting the system call proceed. The
resulting file descriptor (in the child process) is used as a place holder, and no
system calls are issued against it. The kernel does not assign the descriptor to any
other file, so Amino can correctly identify the calls that it handles; in case of a
software error, most calls on this file descriptor fail with EISDIR (because “/” is a
directory). For efficiency, Amino reuses this file descriptor with dup on subsequent
open calls.

3.4 Mount Subsystem

The Amino monitor must maintain a mount table to associate pathnames with
database schemas. On startup, an Amino configuration file provides a list of paths
to manage, and for each path, the mount type and data (the configuration file is
essentially equivalent to /etc/fstab). Currently, Amino supports BDB mounts
that take the database pathname as an argument. When Amino encounters a
system call that references one of these paths, Amino passes it to the appropriate
routine.

Pathnames passed to system calls can be rather complex. If they are relative
path names, then they depend on the process’s context. Any path can use the “..”
operator to move one level up the directory tree. We store paths as stacks, with
the root path represented as an empty stack, and a path such as /usr/local/bin
is represented by a stack containing usr, local, and bin. If a path is managed
by Amino, then it is a child of one of the mount-table entries described in the
configuration file. To rapidly determine if one path is a child of another, the path
structure also contains a depth, and a length for each path component.

Each PCB contains a path stack for the PWD. When a chdir or fchdir system
call is issued, the new PWD is stored as a candidate. If the system call is successful,
then the candidate becomes the PWD. The mount table also uses a path stack to
identify the path for each mount.

To resolve a path that is passed to a system call, first the process’s PWD is
copied to a new stack. If the path begins with a “/,” then the stack is emptied.
Each subsequent component is pushed onto the stack, unless it is “..” in which
case an element is popped off (unless of course the stack is already empty). After
converting the string pathname into a path stack, the monitor searches the mount
table for any mount that contains this path. The path structure is optimized for
this purpose: if the path has a lower depth than the mount, then it cannot be
a child; and the length is stored with each component so the component names
only need to be compared if they have equal length. If one is found, then the
path components after the root of the mount are extracted (e.g., if the path is
/usr/local/src/amino and the mount is rooted at /usr/local, then src/amino

is extracted). The mount private data containing the database handles and the
extracted path are then passed to the BDB call. If the path name is not contained
in a mount, then Amino allows the system call to go through without any changes.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 19

3.5 Address Spaces

There are two distinct address spaces involved in executing the Amino monitor: (1)
the address space of the monitor and (2) the address space of the user process. The
ptrace primitives to access the user process’s address space are rather limited—
they can only examine or change one word at a time. Thankfully, Linux provides a
more powerful interface to it through the /proc file system. A process with permis-
sion to ptrace another process may read from the traced process’s memory using
the /proc/pid/mem file, where pid is the PID of the traced process. This allows the
transfer of up to a page (1,024 words on the 80x86) in a single system call. Linux
also has support to write to /proc/pid/mem, but it is disabled by default. For our
prototype, we have enabled a writable /proc/pid/mem to allow bi-directional bulk
transfers. If the /proc/pid/mem interface is not available for reading or writing,
then Amino falls back to PTRACE PEEKDATA and PTRACE POKEDATA. An improved in-
terface would be to allow regions of the child’s address space to be memory-mapped
into the monitor. This would provide a zero-copy transfer method.

All system call arguments must be in the user processes’ address space. For
example, the first argument to open is a pointer to a string. If Amino needs to
update these values, then it must manipulate the child’s address space. It is not
always possible to manipulate the file name in place, because the new file name may
be longer than the existing file name, and the memory segment may be read only.
To address this issue, previous ptrace monitors have modified either the stack,
or the first writable segment. In Amino, we establish a System-V shared-memory
region between each user process and the monitor. When the first system call is
issued with an argument that needs to be updated, the monitor creates a shared
memory region. Next, the monitor inserts a shared-memory attach operation in
to the child’s system call stream. At this point, Amino writes the new file name
into its own address space, and updates the child’s registers to point to the shared
memory in the child’s address space. After the call, the child’s original registers
are restored. Subsequent arguments can be rewritten by simply updating the local
region, and the child’s registers. This approach has the advantage of requiring no
data copies, and the child’s existing memory is not modified, therefore the child’s
memory does not need to be restored after the call.

3.6 ptrace Enhancements

The standard ptrace interface requires at least six context switches for each system
call: (1) the traced process traps into the kernel; (2) the kernel transfers control
to the monitor; (3) the monitor transfers control to the kernel; (4) after executing
the system call the kernel transfers control back to the monitor so that the return
value can be manipulated; (5) the monitor transfers control back to the kernel; and
finally, (6) the kernel transfers control back to the traced process. In reality, more
context switches are required as the monitor must retrieve the values of traced
process’s registers, issue system calls to provide OS-like services, etc.

Clearly, reducing the number of times that the monitor is called improves per-
formance. For most calls the monitor only needs to be notified on entry. If the call
is not destined for an Amino file system, the monitor does not need to examine the
return value so the call could execute without further intervention by the monitor.

FSL Technical Report, No. FSL-06-01, January 2006.

20 · Wright et al.

If the call will be handled by the Amino file system, the return value could be set
and the monitor need not be notified. Unfortunately, these two modes of operations
are not possible under the current ptrace interface.

We created two new ptrace operations: PTRACE CHECKEMU and PTRACE SYSSKIP.
The PTRACE CHECKEMU operation is similar to the PTRACE SYSEMU operation that
was recently introduced to improve the performance of User Mode Linux [6]. The
primitive PTRACE SYSEMU allows all of a process’s system calls to be emulated, but it
is not suitable for the Amino monitor, because we only emulate a subset of the sys-
tem calls. Our PTRACE CHECKEMU interface allows the monitor to determine whether
emulation is required after examining the registers. The UML developers agree that
our more general PTRACE CHECKEMU interface is an improvement over the existing
PTRACE SYSEMU [12]. The corollary to PTRACE CHECKEMU is PTRACE SYSSKIP. When
the Amino monitor does not implement a call, then it issues PTRACE SYSSKIP in-
stead of PTRACE SYSCALL to bypass notification of this system calls return value and
go directly to the start of the next system call. Together these primitives reduced
traps into the monitor by 30.8% during an OpenSSH compile.

Finally, there are also many non-file-system system calls that the monitor need
not intercept at all (e.g., time or getpid). To reduce the number of extraneous
calls into the monitor, we added an optional bitmap of system calls to the task
structure. By using a new ptrace primitive, PTRACE SELECT, the monitor selects
precisely the set of calls that need to be traced. This method reduced the number
of traps to the monitor by an additional 12.8% during an OpenSSH compilation.
Overall, these techniques reduced the number of traps to the monitor by 43.7%.

These three improvements can benefit a wide variety of ptrace monitors. For
example, the PTRACE CHECKEMU grew out of work for User Mode Linux, but provides
a more flexible interface that can be used by a monitor that emulates a subset of
system calls. Many security-oriented monitors only need to examine which system
calls are being executed and their arguments, but not their return value. For these
types of monitors, PTRACE SYSSKIP would greatly improve their performance. The
strace program provides support for filtering the set of system calls to display (e.g.,
file system, process, or IPC related calls), but this filtering is done in user-space.
By using PTRACE SELECT, strace could have the kernel perform this filtering.

4. EVALUATION

We evaluated the performance of our system by running several general-purpose
workloads and micro-benchmarks. We chose three general-purpose benchmarks to
evaluate our system. In Section 4.1, we present results for the Postmark bench-
mark [18]. In Section 4.2 we present results for an OpenSSH compile, and we
present results for a Sendmail benchmark in Section 4.3. We also ran two sets
of micro-benchmarks. In Section 4.4 we present results for meta-data–intensive
micro-benchmarks, and in Section 4.5 we present results for data-intensive micro-
benchmarks. The testbed ran Fedora Core 4 with all updates as of July 19, 2005.
All experiments were located on a dedicated 40GB Maxtor IDE disk. We compared
Ext3 to Amino using BDB databases stored on Ext2. We used Ext2 as the under-
lying file system for Amino, because BDB provides ACID semantics even without
a journaling file system. We chose to use Ext3 as a basis for comparison, because

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 21

it provides a limited subset of the ACID properties, whereas Ext2 does not. To
ensure a cold cache, we remounted the file systems between each iteration of a
benchmark. For all tests, we computed the 95% confidence intervals for the mean
elapsed, system, and user time using the Student-t distribution. In each case, the
half-widths of the intervals for the elapsed and system times were less than 5% of
the mean.

We used the following seven configurations for our tests:

vanilla The benchmark is run on Ext3.

vansync The benchmark is run on Ext3, but the file system is mounted with the
sync mount option to provide durability.

strace The benchmark is run on Ext3, but is monitored by strace -cf. This
configuration shows the overhead of the ptrace facilities, but does not modify
any system calls or produce any output during execution.

aminonull The benchmark is run on Ext3, but is monitored by the Amino mon-
itor. This configuration shows the overhead of ptrace and our path-name
resolution infrastructure.

aminoaci The benchmark is run through the Amino monitor with a BDB database
stored on an Ext2 file system. BDB is configured to provide atomicity, consis-
tency, and isolation, but not durability.

aminoacid This configuration is the same as aminoaci, but durability is also
provided because BDB flushes the log to disk on each commit.

aminotxn This configuration is the same as aminoacid, but the benchmark is
modified to insert calls to begin and commit Amino transactions. This improves
performance, because data needs to be flushed to disk only after the transaction
is committed, rather than after every system call.

4.1 Postmark

Postmark 1.5 is an I/O-intensive benchmark that stresses the file system by per-
forming a series of file system operations such as directory look ups, creations, and
deletions on small files [18]. The first Postmark configuration we chose is to create
5,000 files ranging from 512 bytes to 10KB, and perform 20,000 transactions (this
is Postmark’s term for an operation, and is distinct from Amino transactions). We
used the read and write system calls (as opposed to Unix buffered I/O), and a
transfer size of 4,096 bytes for Ext3 and 4,070 bytes for Amino as these are the
optimal transfer sizes reported by fstat. Because Amino has a smaller block size,
it never requires fewer system calls than Ext3, but occasionally requires more.

The Postmark results are shown in Figure 3. The vanilla configuration took
30.6 seconds to execute. The vansync configuration synchronously writes data and
meta-data to disk to provide durability. The vansync configuration was slower
than vanilla by a factor of 10.6, due to additional synchronous disk writes. The
strace and aminonull have overheads of 62.3% and 68.9% over vanilla, respec-
tively. This shows the overhead of the process-tracing facilities. Amino uses sightly
less system time (2.6%), because it accesses all process registers using a single sys-
tem call instead of one system call for each register. However, Amino uses more
user time (0.51 seconds or 40.93%) because it resolves each path name. aminoaci

FSL Technical Report, No. FSL-06-01, January 2006.

22 · Wright et al.

 0

 50

 100

 150

 200

 250

 300

 350

AMINOTXN
AMINOACID

AMINOACI
AMINONULL

STRACE
VANSYNC

VANILLA

El
ap

se
d

tim
e

(s
ec

)

30.6

325.3

49.7 51.7 35.3

319.2

234.2

Wait
User

System

Fig. 3. Postmark: 5,000 files and 20,000 transactions.

provides atomicity, consistency, and isolation using BDB. It is 15.4% slower than
vanilla, and 31.7% faster than aminonull. This shows that a file system built
on a database can provide atomicity, consistency and isolation with good perfor-
mance, even for I/O-intensive applications, because we can quickly access files and
directories with our schema and BDB efficiently writes data to the log.

aminoacid provides all four ACID properties: atomicity, consistency, isolation,
and durability. To provide durability, the database log must be synchronously
written to disk after each transaction. This leads to an expected overhead of a
factor of 10.4 over vanilla, but aminoacid provides semantics closer to vansync.
When compared to vansync, aminoacid improves performance by a slight 1.9%,
but aminoacid also provides stronger guarantees—the contents of the file system
are always defined. In vansync, the contents of the file system are undefined
because there are no explicit commits.

In aminoacid, each individual system call flushes the log to disk. In aminotxn,
we modified Postmark to begin and end Amino transactions before each high-level
operation (i.e., create, remove, read, or write a file) that Postmark refers to as a
transaction. This required 33 lines of code: one to include a header file, four to
begin transactions, four to commit transactions, and the remaining 24 were simple
checks of the begin and commit return values. In this configuration, Amino requires
fewer synchronous writes because individual system calls are grouped into a larger
transaction, and hence performance improved by 26.6% over aminoacid. In sum,
we show that Amino provides performance comparable to Ext3. Moreover, with
only small modifications, applications can improve durable performance and benefit
from full ACID semantics.

Alternate Configurations. We also ran two alternate Postmark configurations
that are slight modifications of the first configuration. The first alternative con-
figuration has ten times larger files: from 5,120–102,400 bytes. The second con-
figuration has more files: we increased the number of initial files to 25,000 and

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 23

the number of transactions to 100,000 (a factor of five for each). For this config-
uration we introduced 100 subdirectories, so that Ext3 would not be required to
perform linear scans over 25,000 files for some operations. For each of these two
configurations we ran vanilla, vansync, aminoaci, aminoacid, and aminotxn.

For the first alternative configuration (large files), the vanilla and aminocaci

results were quite similar to the original configuration. The vanilla configuration
took 113.7 seconds and aminoaci took 130.6 seconds, for an overhead of 14.9%. The
vansync configuration only had an overhead of 3.7 times over vanilla, because
more I/O operations were done by vanilla during this longer running configura-
tion. The aminoacid configuration had a 93.2% overhead over vansync. The
reason that aminoacid performed poorer with large files is that it had to write 2.8
times more sectors to disk than vansync did (as reported by /proc/diskstats).
We plan to investigate alternative database layouts to reduce the number of sec-
tors written. The aminotxn configuration’s elapsed time was indistinguishable
from that of vansync. However, aminotxn provides stronger guarantees than
vansync does.

For the second alternative configuration (more files), vanilla took 600.8 seconds.
For this configuration, aminoaci outperformed vanilla by 70.3%. The reason
is that vanilla spreads the files through many cylinder groups, but aminoaci

stores them together in a balanced tree, improving locality thereby reducing wait
time. However, aminoaci did use 6.1 times more CPU time. As expected, the
synchronous configurations were slower. vansync had a 5.7 times slow down, and
aminoacid had a 3.0 times slowdown. Again, aminotxn was the most efficient
with only a 2.5 times slowdown compared to vanilla.

4.2 OpenSSH Compile

To simulate a more CPU-intensive typical user workload, we adapted the SSH build
workload [39], but used OpenSSH 4.2p1 as it builds cleanly on our systems whereas
SSH 1.2.26 does not. This workload stresses the Amino monitor, as it requires
significant amounts of additional CPU time in order to intercept system calls. The
compile benchmark is divided into three phases: (1) unpack, (2) configuration, and
(3) build. We measured each of the phases separately to isolate their different
characteristics. In the unpack phase, the package is uncompressed and new files
are created by tar. In the system-call-intensive configuration phase, the configure
shell script preforms many small configuration tests, which involve a fair mix of file-
system operations. The build phase is more CPU-intensive and builds 157 object
files, two libraries, eleven executables, and sixteen man pages.

Figure 4 shows the results of each phase of the OpenSSH compile benchmark. The
unpack phase (shown in Figure 4(a)) took 0.20 seconds on vanilla. The strace

configuration added an overhead of 53.9%, and aminonull had a similar overhead
of 48.0%. For all three of these Ext3 configurations, the benchmark completed
quickly, because no disk writes were performed during program execution due to
the buffer cache. The aminoaci configuration took 0.86 seconds to complete, which
is a factor of 4.1 slower than Ext3. The reason that aminoaci is slower than Ext3 is
that the CPU time used increased by 0.48 seconds from 0.17 seconds to 0.65 seconds.
Of this 0.48 second increase, one quarter of it (0.12 seconds) can be attributed to
the monitoring infrastructure. The remaining increase of 0.36 seconds is due to

FSL Technical Report, No. FSL-06-01, January 2006.

24 · Wright et al.

 0

 2

 4

 6

 8

 10

AMINOACID
AMINOACI

AMINONULL
STRACE

VANSYNC
VANILLA

El
ap

se
d

tim
e

(s
ec

)

0.2

8.2

0.3 0.3 0.9

3.4

Wait
User

System

(a) Unpack

 0

 20

 40

 60

 80

 100

 120

 140

 160

AMINOACID
AMINOACI

AMINONULL
STRACE

VANSYNC
VANILLA

El
ap

se
d

tim
e

(s
ec

)

51.2

157.5

81.0
76.5 80.6

110.6

Wait
User

System

(b) Configure

 0

 20

 40

 60

 80

 100

 120

AMINOACID
AMINOACI

AMINONULL
STRACE

VANSYNC
VANILLA

El
ap

se
d

tim
e

(s
ec

)

64.7

108.2

77.5 77.3

92.7

116.9Wait
User

System

(c) Build

Fig. 4. OpenSSH Compile Results.

performing BDB operations and data copying between the monitor and tar process.
The last two configurations we tested were vansync and aminoacid. The vansync

configuration is 39.2 times slower than the vanilla configuration, because changes
are written to the disk synchronously. The aminoacid configuration provides the
same functionality, it is only 16.5 times slower than vanilla, because BDB is
optimized for durable performance.

The second phase of benchmark, configuration, is shown in Figure 4(b). On
vanilla, this phase took 51.2 seconds. This phase of the benchmark is CPU and
system call intensive, so the strace and aminonull configurations had overheads
over vanilla of 58.2% and 49.4%, respectively. The aminoaci configuration has an
overhead over vanilla of 57.5%. When compared with aminonull, the overhead
of aminoaci is only 13%. This demonstrates that our file system is relatively
efficient, though the CPU intensive nature of this workload causes the context
switches and data-copying induced by the monitoring infrastructure to degrade
performance. When durability is added, vansync is 3.0 times slower than vanilla,
and aminoacid is 2.1 times slower than vanilla. Again, this demonstrates that
Amino efficiently provides durable performance.

The build phase (shown in Figure 4(c)) took 64.7 seconds on vanilla. Even
though this phase is the most CPU intensive phase of all, this is the least system call
intensive. Therefore, the monitoring infrastructure has a lower overhead than in the
configuration phase: 19.7% for strace and 19.5% for aminonull. The aminoaci

configuration had an overhead of 43.3%. Most of this was due to a 42.8% increase in

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 25

CPU time from 64.3 seconds to 91.8 seconds, caused by BDB operations, additional
data copying, and context switches. The vansync configuration was 67.2% slower
than vanilla, and aminoacid was 80.7% slower than vanilla. The reason that
aminoacid was slower than vansync is that the build phase is remained more
CPU intensive than the other phases when durability was added. For vansync,
CPU utilization was 59% and for aminoacid it was 82%. As CPU was a bottleneck
in this configuration, the extra context switches and data-copying hurt aminoacid

more than the improved durable performance helped it.

4.3 Sendmail

Using an identically configured machine as a client, we ran a Sendmail 8.13.4 server
and varied the backing store for the /var/mail directory, where user mailboxes
are stored. We did not run Sendmail through the Amino monitor, because it does
not access the mail files. Instead, it delegates that task to the local mailer. We
used the default local mailer for the vanilla configuration. To provide isolation
and an approximation of atomicity, the local mailer performs locking and complex
checks (e.g., repeatedly calling stat to ensure that the file does not change). To
ensure that mail is not lost (i.e., provide durability), the local mailer calls fsync

after writing the message. These checks are unnecessary under Amino, as our file
system transparently provides isolation to applications, without the need for explicit
locking calls or repeated checks. Instead of using the default local mailer, we wrote
a simple replacement that uses an Amino transaction to provide ACID properties
for the aminotxn configuration. The Amino mailer is only 78 lines long, which
is less than one fifth of the local mailer’s 450 line delivery function, because the
transaction abort primitive removes the need for specialized error handling code.

For our benchmark, we developed a Perl script that stress tests the mail server by
continuously sending mail. We created a pool of 100 users to receive the mail, and
each message had a randomly selected recipient. The messages sizes were normally
distributed with a mean of 5,993 bytes and a standard deviation of 4,166. We
chose the size parameters based a 2.5%-trimmed mean of our non-spam email for
the past year. The test begins with a 60 second warmup period, in which the test
runs without measurement to avoid startup effects. After the warmup, messages
are sent for five minutes, and we record the mean achieved rate.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Ac
hi

ev
ed

 ra
te

 (m
sg

/s
ec

)

Requested rate (msg/sec)

VANILLA
AMINONULL
AMINOACID

IDEAL

Fig. 5. Local mailer: requested vs. achieved load.

FSL Technical Report, No. FSL-06-01, January 2006.

26 · Wright et al.

We ran the test for requested rates of 5–30 messages per second (MPS), and
plotted the requested rate against the achieved rate in Figure 5. The vanilla

configuration handled 5 and 10 MPS well, but achieved only 14.6 MPS when 15
MPS were requested. For requested loads of 20 MPS, vanilla only achieved 14.7–
14.5 MPS. aminonull had significantly degraded performance. For a request rate
of 10 MPS, only 9.4 MPS was achieved, and for request rates of 15–30 MPS, the
achieved rate declined from 9.7 MPS to 7.9 MPS. aminotxn fared better than
aminonull, and was able to handle 5 and 10 MPS, but for 15–30 requested MPS,
it only achieved 13.6–13.8 MPS. This is 6.5% below vanilla, but is 42.0% better
than aminonull. This shows that our file system code is quite competitive with
vanilla, even though it its performance is reduced by ptrace operations. The
performance of Amino decreases compared to the Postmark results, because this
benchmark is more data intensive than Postmark. Additionally, as Sendmail uses
multiple processes to deliver mail, there is increased lock contention to provide
the isolation. We plan to investigate alternative schema designs that may yield a
higher degree of concurrency. Even though aminotxn is 6.5% slower, the code is
significantly smaller and simpler, which means that fewer bugs and security flaws
are possible, and the system is more reliable.

4.4 Meta-data Micro-benchmarks

We ran several micro-benchmarks on Amino to evaluate the overheads of certain
primitive file system functions like file creation and deletion as well as reading and
writing data. We broadly classify our micro-benchmarks into metadata and data
benchmarks. We describe the meta-data micro-benchmarks in this section, and the
data benchmarks in Section 4.5. The meta-data operations we evaluated are create
(and mkdir), unlink (and rmdir), stat, and readdir. We chose these meta-data
operations because they are a broad cross-section of file system operations, and
together with data operations account for the vast majority of operations [8].

To generate metadata operations, we developed a C program that operates on
several directories each containing a fixed number of files. We used this method
rather than a generic data set (e.g., the source of a package), because when eval-
uating one specific method we did not want to use directory reading operations
or lookups to determine which files must be operated upon. For all the metadata
workloads, we disabled atime updates on both in Ext3 and in Amino so to isolate
the overheads of the metadata operation to be tested.

Create. To evaluate the overhead of the create and mkdir operations, we used
our C program to create 500 directories with 1,000 files each. As seen in Figure
6(a), the aminonull configuration had an elapsed time overhead of 61% compared
to vanilla. This is primarily because of the context switches caused by the ptrace
monitor, as evidenced by the system time overhead of 54%.

The aminoaci configuration ran 3.2 times slower than vanilla in terms of
elapsed time. There was significant increase in the user time (0.7 seconds vs. 159
seconds) and system time (59 seconds vs. 108 seconds), caused mainly due to data
copies, comparisons traversing B-trees, and locking overheads. The aminoacid

configuration ran 20% faster than the synchronous mode of Ext3. This is because
of a 42% decrease in wait time of aminoacid. Synchronous mode Ext3 incurs more

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 27

 0

 500

 1000

 1500

 2000

AMINOACID
AMINOACI

AMINONULL
VANSYNC

VANILLA

El
ap

se
d

tim
e

(s
ec

)

64.6

2017.9

104.2

272.0

1605.1

Wait
User

System

(a) Create

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

AMINOACID
AMINOACI

AMINONULL
VANSYNC

VANILLA

El
ap

se
d

tim
e

(s
ec

)

35.4

4113.5

65.2
197.3

1670.7

Wait
User

System

(b) Unlink

Fig. 6. Creation and deletion micro-benchmark results.

seeks as it has to synchronously commit several structures (directory files, inodes,
and inode bitmaps), whereas aminoacid often just needs to update two leaf nodes
of the tree.

Unlink. To evaluate the performance of unlink and rmdir, we removed the files
and directories created by the create workload described above. We unmounted
and remounted the file system to ensure cold cache between the create and unlink
workloads. Figure 6(b) shows that the aminonull configuration had an overhead
of 84% compared to vanilla, mostly because of the context switches of ptrace.
aminoaci ran 4.5 times slower than vanilla. The break up of the overhead is
similar to that of the create workload. The aminoacid configuration ran 59%
faster than Ext3 in its synchronous mode. This is because of a 64% decrease in the
wait time, caused by the fewer number and smaller seeks in aminoacid.

Stat. Directory lookups are one of the most common operations, because they
are a precursor for almost every meta-data operation (e.g., opening a file, creating
an entry, deleting an entry, etc.). To evaluate the lookup operation, we ran stat

on 5,000 directories with 100 files each. After unmounting and remounting the file
system, we performed a stat system call on each of the files. Figure 7(a) shows
the results for this workload. The aminonull configuration had an elapsed time
overhead of 75% compared to vanilla Ext3. This is because of two reasons: first the
monitor context switches contribute to the increased system time (17 seconds vs. 45
seconds). This is because of the overheads of context switches from user to kernel
caused by the ptrace monitor. Second, the increase in user time (0.5 seconds vs.
7.9 seconds) is caused by resolving each path to determine if it is destined for a
BDB mount in the monitor.

The aminoaci configuration ran 2.9 times slower than vanilla Ext3 in terms
of elapsed time. This is because of a 43% increase in system time, a 51.5 second
increase in user time, and 2.3 times increase in the wait time. The increase in system
time is caused by the additional context switches and data copies due to ptrace.
The increase in user time is because of locking overhead, path resolution, and B-tree
comparison overheads. These operations are counted against user time, because our
monitor executes in user-space, whereas a kernel file system would perform many of
the same operations and charge them to the process’s system time. The aminoacid

FSL Technical Report, No. FSL-06-01, January 2006.

28 · Wright et al.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

AMINOACID
AMINOACI

AMINONULL
VANSYNC

VANILLA

El
ap

se
d

tim
e

(s
ec

)

Configuration

53.0 53.0

93.0

157.8 166.6Wait
User

System

(a) Lookup

 0

 10

 20

 30

 40

 50

AMINOACID
AMINOACI

AMINONULL
VANSYNC

VANILLA

El
ap

se
d

tim
e

(s
ec

)

Configuration

34.0 34.0

50.9

11.6 11.5

Wait
User

System

(b) Readdir

Fig. 7. Directory operation micro-benchmark results.

configuration also had an overhead of 2.9 times compared to vansync, for much
the same reasons that aminoaci is slower than vanilla. Because there were no
writes in this workload, the durable performance improvements usually realized by
the more efficient database log are not seen. aminoacid has an overhead of 5.5%
as enabling durable transactions executes additional database code.

Readdir. We used the same working set as in the stat micro-benchmark to eval-
uate the performance of the readdir operation. We performed a readdir on
each of the 5,000 directories in sequence. The results are shown in Figure 7(b).
The aminonull configuration had an elapsed time overhead of 34% compared to
vanilla. The overheads associated with the aminonull configuration are due to
the same factors described in the lookup micro-benchmark. However, as the to-
tal number of operations performed in the readdir workload is smaller than the
lookup workload, aminonull incurs fewer context switches.

The aminoaci configuration ran 65% faster than vanilla Ext3 for this workload.
The improvement is mainly due to an 86% decrease in wait time. Wait time is
reduced because Ext3 requires seeks to read each directory, as it does not place
directories close to each other on the disk. aminoaci stores the path names in
a B-tree and hence has better spatial locality. Therefore it requires fewer and
shorter seeks to read directories. The use of B-trees to store metadata and data
makes Amino suitable for metadata-intensive workloads which benefit from this
locality. The difference in overheads between vansync and aminoacid is similar
to aminoaci as this is a read-only workloads, so we omit further discussion for
brevity.

4.5 Data Micro-benchmarks

To evaluate the performance of data operations we ran a random read, random
write, sequential read, and sequential write micro-benchmark. For each benchmark
we performed 20,000 operations on a single 1GB file. For sequential operations, we
operated (read or write) on consecutive pages of the file in sequence. For random
operations, we generated a pre-populated pattern by randomly shuffling a sequential
list of page numbers, and operated on the file using the shuffled list. This method
ensures that there are no repeated pages so that caching does not affect the results.
We used each file system’s native page size: 4,096-byte pages for Ext3 and 4,070-
byte pages for Amino.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 29

Random Read. The results of the random read benchmark are shown in Fig-
ure 8(a). The aminonull configuration had a marginal 0.7% elapsed time over-
head compared to vanilla Ext3, mostly due to the context switches for ptrace. The
aminoaci ran 10% slower than vanilla in terms of elapsed time. This slow down
is due to a 6.9% increase in wait time and several times increase in the user time
(0.06 for vanilla vs. 3.2 seconds for aminoaci) and system time (0.8 vs. 3.0 sec-
onds). The increase in wait time is because of the additional read I/O required for
traversal of the B-tree while reading nodes in random order. The increases in user
and system time are caused by context switches, locking overhead, and additional
data copies. The overheads of aminoacid compared to vansync are similar, as
this is a read-only workload.

 0

 50

 100

 150

 200

 250

AMINOACIDAMINOACIAMINONULLVANSYNCVANILLA

El
ap

se
d

tim
e

(s
ec

) 167.7 167.7 168.9

184.7 184.8

Wait
User

System

(a) Random read

 0

 50

 100

 150

 200

 250

 300

 350

AMINOACIDAMINOACIAMINONULLVANSYNCVANILLA

El
ap

se
d

tim
e

(s
ec

)

76.9

128.7

78.1

259.6

342.8
Wait
User

System

(b) Random write

 0

 2

 4

 6

 8

 10

AMINOACIDAMINOACIAMINONULLVANSYNCVANILLA

El
ap

se
d

tim
e

(s
ec

)

1.5 1.4 1.6

6.1 6.2

Wait
User

System

(c) Sequential read

 0

 10

 20

 30

 40

 50

 60

 70

 80

AMINOACIDAMINOACIAMINONULLVANSYNCVANILLA

El
ap

se
d

tim
e

(s
ec

)

1.9

81.1

2.7

9.3

56.2

Wait
User

System

(d) Sequential write

Fig. 8. Data micro-benchmark results: 20,000 operations.

Random Write. Figure 8(b) shows the overheads associated with Amino for the
random write workload. The aminonull configuration had a small overhead of
1.5% elapsed time compared to vanilla Ext3. This is caused by the context switches
done by ptrace. Under the aminoaci configuration, Amino ran 2.3 times slower
than vanilla Ext3 in terms of elapsed time. This is mainly because of the 2.2 times
increase in the wait time caused by the additional reads performed by aminoaci

while traversing B-trees. The disk statistics revealed that the number of sectors
read by aminoaci for this benchmark was 177,650 whereas Ext3 performed just
2,064 sector reads. The aminoacid configuration ran 1.6 times slower (elapsed

FSL Technical Report, No. FSL-06-01, January 2006.

30 · Wright et al.

time) than Ext3 in its synchronous write mode. The largest component of the
overhead was a 1.5 times increase in wait time. This is again due to the larger
number of sectors read for traversing B-trees. Even though these results show that
Amino has significant overheads for a data-intensive random write workload, as this
pattern is rather rare [7].

Sequential Read. The overheads of Amino under the sequential read workload are
shown in Figure 8(c). aminonull had a marginal overhead of 8.3% over vanilla,
mostly because of the context switches caused by ptrace. The aminoaci configu-
ration ran 3.2 times slower than vanilla. The increase in user and system time is
because of data copies and B-tree comparison overheads. The increase in wait time
is because sequential reads require more seeks in Amino than in Ext3 as the data
layout in Amino is a B-tree. As part of our future research, we plan to investigate
more efficient data layouts, possibly including a hybrid model that combines a flat
file and a database structure. The overheads of aminoacid compared to vansync

are similar, as this is a read-only workload.

Sequential Write. Figure 8(d) shows the time taken for Amino for the sequen-
tial write workload. The aminonull configuration had an overhead of 40% over
vanilla due to ptrace. This is a similar absolute magnitude as read, but since
writes can be asynchronous and thus take more CPU time, the increase in user time
is more pronounced as a percentage. For aminoaci the overhead was 4.7 times,
primarily due to increased system and user CPU time. Amino in its aminoacid

configuration ran 30% faster than Ext3 in its synchronous mode of operation. The
difference is primarily due to the 45% decrease in wait time because Ext3 requires
more seeks to commit inodes and inode bitmaps synchronously, whereas Amino just
needs to commit changes to a sequential log.

5. RELATED WORK

In this section we discuss four classes of related work. In Section 5.1 we describe
systems that integrate databases with the file system. In Section 5.2, we discuss log-
structured and journaling file systems. We discuss transactional memory systems in
Section 5.3, and in Section 5.4 we describe various system-call interception methods.

5.1 Databases and File Systems

Previous simulations of transactions embedded in the file system showed that
file system transactions can perform as well as a DBMS in disk-bound configu-
rations [37]. The same simulations showed that for CPU-bound configurations, file
system transactions usually have an overhead caused by system call costs of less
than 20%.

The Inversion File System [30] is a user-level wrapper library with file-system–like
functions that stores files in a POSTGRES database. Inversion uses POSTGRES
to support transactions and fast crash recovery. Unfortunately, Inversion operates
in its own namespace, separate from that of other file systems, and uses different
functions from the traditional Unix API, making it unsuitable for integrating legacy
and transactional applications.

OdeFS [9], Oracle’s iFS [31], and DBFS [28] are user-level NFS servers that use
databases as a backing store. This approach allows unmodified applications to

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 31

use the file system, but ACID properties cannot be extended to the application
because the NFS client cache can serve requests without consulting the database
system. Also performance suffers due to data copies and context switches related
to the network stack. OdeFS is a file-system interface to objects already in the
Ode object-oriented database. For each type of Ode object, new methods must be
defined for read, write, and other file-system operations. iFS supports many access
methods: NFS, FTP, WebDAV, Samba, SMTP, IMAP4, and POP3; it offers several
useful features such as versioning, change notification, and indexing; iFS provides
convenient access to files using a variety of network protocols, but most of these
protocols are not compatible with many applications; and the clients may cache
data. DBFS is a block-structured file system developed using BDB [28]. DBFS
exceeds FFS’s performance for meta-data operations. However, for data operations
it is 50–80% slower. In our evaluation, we have observed a similar pattern: meta-
data operations are often faster using the database, but raw I/O throughput is
reduced.

WinFS is part of an upcoming version of Microsoft Windows [26] (originally
WinFS was slated for Longhorn, but has been delayed to “some future date”).
WinFS will integrate a full-fledged SQL DBMS into the OS. Using a heavyweight
DBMS with SQL enables powerful queries, but could add significant code complex-
ity. Additionally, overheads may be significant depending on schema design and
query processing. WinFS uses the database as well as an NTFS file system as a
backing store for all files. WinFS changes the basic unit of data storage from a file
to an item (an object with attributes). The WinFS API supports explicit transac-
tions for items, but since the API is so radically different, applications must change
to take advantage of its new features.

QuickSilver is a distributed operating system developed by IBM research that
makes use of transactional IPC [36]. QuickSilver was designed from the ground
up using a microkernel architecture and IPC. Every IPC request has a transac-
tion ID, and servers must be able to rollback requests on abort and write them to
non-volatile storage on commit (assuming the server has non-volatile state). All re-
source management and notification in QuickSilver is handled by transactions. For
example, on process termination (commit or abort) the window manager destroys
all windows; the virtual terminal server closes the standard input and output file
descriptors; and the task manager kills all of its children. The use of transactions
removes the need to handle local vs. remote processes differently. Amino integrates
transactions into the file system using simpler and more widely-used OS primitives
than QuickSilver. Unlike Quicksilver, in which each OS component must provide
specific transaction support for rollback and commit, Amino leverages BDB so that
each OS component or application can use simple begin, commit, and abort calls,
without managing its own rollback or commit.

5.2 Log-structured and Journaling File Systems

Log-structured and journaling file systems borrowed the technique of write-ahead
logging from databases [33; 15; 19]. The key difference between a log-structured
file system and a journaling file system is that in a log-structured file system the
log is the permanent home of the data, whereas in a journaling file system the
log is a temporary location until the data is checkpointed to a permanent location

FSL Technical Report, No. FSL-06-01, January 2006.

32 · Wright et al.

on disk. In this respect, BDB, and hence Amino, is more similar to a journaling
file system than a log-structured file system. When updates are made, they are
first written to the database log file and then written to their permanent locations
within the database file. In log-structured file systems, journaling file systems, and
Amino, synchronous writes have improved performance because they are written
sequentially to the log, obviating the need to seek to many locations of the disk for
a single update.

Log-structured and journaling file systems write “transactions” to their log, but
these transactions are completely controlled by the file system software—user ap-
plications cannot surround multiple file system operations in a single atomic trans-
action. Additionally, the transactions in a log-structured or journaling file system
do not provide all of the elements of ACID. Instead, they provide atomicity and
consistency for well-defined operations within the file system, and durability can be
provided by flushing the log to disk. Notably, log-structured and journaling file sys-
tems do not include provisions for isolation apart from other facilities provided by
the OS (e.g., directory-level semaphores). Amino provides atomicity, consistency,
isolation, and durability for arbitrary sequences of file system operations.

5.3 Memory Transactions

Lightweight Recoverable Virtual Memory (LRVM) was developed to simplify
Coda servers [35]. LRVM is designed to handle transactionally protected memory-
mapping of a file into a process’s address space. To simplify LRVM’s design,
the file should be a small portion of the total storage: the undo log was stored
in memory. Durability was provided by writing a redo log to disk. This type
of functionality is closer to Amino’s support for memory-mapped files than our
in-memory transactions, as our memory-mapping essentially provides recoverable
virtual memory. Our in-memory transactions, however, are designed to provide
more efficient volatile transactions (i.e., without the need for any redo logging).
LRVM was developed as a user-library and requires explicit calls to indicate that
a given region of memory will be written to. We believe that our page fault
handling mechanism for identifying writes is more convenient and robust. Indeed,
the LRVM authors point out that the most common types of bugs were missing
calls before manipulating a region, and suggest that language support for LRVM
calls would be a good solution to these missing calls.

The Rio, or RAM I/O, project sought to bring persistence to standard mem-
ory [4]. If memory is persistent, then file systems can avoid writing data indefinitely,
thereby improving performance by an order of magnitude. The key observation is
that most data in memory is lost because of either power failures or software errors.
Power failures can be solved through the use of UPSs. To cope with software errors,
two approaches are taken. First, Rio memory uses page protection and checksums
to prevent an errant instruction from writing to it. To update a page, it must be
made writable, then the update is performed, and finally the page is made read-only
again. Along with the update, checksums are stored along with the data so that
errors can be detected. These two mechanisms raise the bar for updating memory,
so that an errant instruction is unlikely to corrupt Rio memory, and even if Rio
memory is corrupted, the change can be detected with a checksum. The second
approach that Rio uses is saving memory across warm reboots. After a system

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 33

crash, the machine is rebooted, but the memory contents are preserved. Before the
OS is fully booted, the memory is written to a swap partition. After the OS is
booted, the contents of Rio memory are restored from the swap partition.

The authors implemented a file cache with Rio, and showed that it can be as
reliable as a traditional disk-based file system under a variety of software faults.
However, the two major problems with the Rio architecture are that not all archi-
tectures support warm reboot (e.g., an x86 cannot be rebooted without destroying
RAM contents), and Rio also assumes that hardware and power failures are so rare
as to be ignored. Unfortunately, hardware is becoming an increasingly large source
of faults, as hardware components increase in number and complexity, and cost
pressures force the use of less reliable components [27; 10].

Vista is a transactional RVM built on top of Rio [22]. Vista greatly improves the
performance of an RVM system, because memory is assumed to survive a system
crash—avoiding synchronous writes. Because Vista is built on top of Rio, it does
not require a redo log, and the code complexity is much simpler than that of
previous RVM systems, at around 700 lines. In our system, we provide a more rich
transactional interface that includes nested transactions. Rather than implementing
redo logging and its associated complexities, we leverage existing BDB code. Our
completed transactional memory library is only 625 lines of code.

5.4 System Call Interception

The Ufo Global File system uses a similar interposition technique as our monitor [1].
Ufo provides transparent access to remote files via FTP or HTTP. Ufo’s monitor
uses the Solaris /proc file system. The monitor operates on system calls such as
open, close, and stat. When an access to a remote file is detected, the file is
transparently fetched, and the system call is changed to open the local copy. Ufo
does not implement other calls such as read, write, getdents, or stat internally,
because the file’s local copy can be used without modifying the application. To
implement getdents and stat properly, however, sparse files are used to create
stubs for files that are not yet locally cached. Creating this hierarchy of stub
files hurts performance. The ptrace interface was used by the Janus framework
to sandbox untrusted applications [13]. Janus monitors file-system and network-
related system call invocations, and applies configurable policies to allow or deny
system call execution.

Several other interposition techniques operate at the same logical system-call
level as Amino, but use a customized interface. SLIC [11] is an OS extensibil-
ity system that allows kernel-level extensions or user-level servers to register han-
dlers for system calls, signals, and other OS entry points. SLIC has been used
to patch security holes, encrypt files, and provide a restricted execution environ-
ment. SLIC extensions that run as user-level servers are quite similar to the ptrace
interface. Interposition agents provide higher-level abstractions for system call in-
terception [17]. The key insight for interposition agents is that system calls can be
divided into classes that operate on independent sets of objects (e.g., path names
or file descriptors).

FSL Technical Report, No. FSL-06-01, January 2006.

34 · Wright et al.

6. CONCLUSIONS

Applications use an easy-to-use and standard POSIX API to access file systems,
but file systems do not provide transactional semantics. Databases provide trans-
actions, yet have differing and difficult-to-use APIs. Many applications can benefit
from transactions, which can greatly improve error handling and provide atomic
operations. For example, atomicity obviates the need for complex error handling,
because a transaction can simply be aborted without any ill-effects. Atomicity can
be used as a tool to ensure consistency, so that specialized and complex recovery
code is not required. Isolation allows applications to provide race-free updates.
Finally, durability ensures that data that was written actually reaches the persis-
tent storage. Because transactions are so useful and the file system interface is
convenient and ubiquitous, we therefore believe that file systems should provide
transactional semantics to applications. Furthermore, we contend that the combi-
nation of file system transactions and recoverable memory will enable developers to
use more robust and elegant error recovery methods than simply “giving up” and
terminating an application upon a failure.

We have designed and developed Amino, a prototype file system with ACID se-
mantics. Amino uses the Berkeley Database (BDB) as a backing store, with an
efficient file system schema. Using BDB’s flexible key-value pair access model,
meta-data properly migrates between the Path and Data databases—improving
performance for common operations while avoiding the pitfalls of logical redun-
dancy. Amino exports an easy-to-use, yet powerful, nested-transactions API to
user space. Applications can begin, commit, and abort transactions. We designed
a simple API to enable cooperating processes to share transactions. Using the same
API, a single application can support multiple concurrent transactions. To provide
powerful transactions to application data structures, we developed an RVM library
with support for nested transactions and transparent logging.

We have evaluated our prototype, and have shown that it has acceptable per-
formance. Amino configured for atomicity, consistency, and isolation is only 15.4%
slower than Ext3 even though it runs in user space and has additional overheads
due to ptrace. When durability is required, performance inevitably suffers because
of synchronous disk writes. Whereas providing durability for unmodified applica-
tions on Ext3 degrades performance by a factor of 10, Amino provides modified
applications durable performance with a slowdown of only 7.6 times. Moreover,
Amino provides applications with the additional benefits of atomicity, consistency,
and isolation. This validates our decision to build Amino on top of a database
rather than an existing file system.

6.1 Future work

Applications are currently responsible for handling their own data structures during
a transaction. If the application has internal state, and a transaction is aborted,
then its state and the file system state are not coherent. We plan to create an API
that will let applications use file system transactions to protect in-memory updates.
This way, applications can safely update their in-memory structures together with
an associated file. If the transaction aborts, then both the application’s memory
and the file are restored.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 35

We also plan to further improve the performance of Amino. There are two
performance aspects we plan to focus on: (1) our data schema and (2) our ptrace
monitoring interface. Currently our Data database uses a balanced tree. We plan
to use a custom access method that will write pages to a file (or possibly raw disk)
directly. This will give us more control over data placement, and allow us to align
data properly with the native OS page size. BDB’s modular design means that we
can use the existing locking, logging, transaction, and caching components. This
should help improve performance for data operations, which suffer compared to a
standard disk based file system. We also plan to investigate changes to the Path
database that would improve concurrent access. Because the database schema is
so flexible compared to a file system layout, we also plan to explore application
specific schemas (e.g., changing B-trees to hash tables, adding fields, or introducing
indices).

To further improve the ptrace interface, we believe that we should reduce both
the number of context switches and data copies between the kernel and the monitor.
We believe that three key ways to do this are: (1) the kernel should use a shared-
memory segment to manipulate the user process’s registers so that data copies and
context switches are reduced; (2) the monitor should be able to map regions from
the user process’s address space into its own; and (3) several ptrace operations
could be bundled into a single system call (e.g., waiting for notification could be
combined with retrieving registers) to reduce context switches [32]. Finally, we
are also considering porting performance-sensitive subsets of the database and the
monitor into the kernel (e.g., path name resolution and file-table lookups).

To obtain copies of the micro-benchmark programs used in this article go to
www.fsl.cs.sunysb.edu/~cwright/benchmarks/.

REFERENCES

A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending the Operat-
ing System at the User Level: the Ufo Global File System. In Proceedings of the Annual
USENIX Technical Conference, pages 77–90, Anaheim, CA, January 1997. USENIX
Association.
B. Berliner and J. Polk. Concurrent Versions System (CVS). www.cvshome.org, 2001.
B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Specification.
Technical Report RFC 1813, Network Working Group, June 1995.
P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajmani, and D. Lowell. The Rio
File Cache: Surviving Operating System Crashes. In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for Programming Langauges and Operating
Systems (ASPLOS-VII), pages 74–83, Cambridge, MA, October 1996. ACM.
CollabNet, Inc. Subversion. http://subversion.tigris.org, 2004.
J. Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 63–72, Atlanta, GA, October 2000. USENIX
Association.
D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Everything You Always Wanted to
Know about NFS Trace Analysis, but Were Afraid to Ask. Technical Report TR-06-02,
Harvard University, Cambridge, MA, June 2002.
D. Ellard and M. Seltzer. New NFS Tracing Tools and Techniques for System Anal-
ysis. In Proceedings of the Annual USENIX Conference on Large Installation Systems
Administration, San Diego, CA, October 2003. USENIX Association.

FSL Technical Report, No. FSL-06-01, January 2006.

36 · Wright et al.

N. H. Gehani, H. V. Jagadish, and W. D. Roome. OdeFS: A File System Interface to an
Object-Oriented Database. In Proceedings of the Twentieth International Conference on
Very Large Databases, pages 249–260, Santiago, Chile, September 1994. Springer-Verlag
Heidelberg.
S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages 29–43,
Bolton Landing, NY, October 2003. ACM SIGOPS.
D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson. SLIC: An Extensibility
System for Commodity Operating Systems. In Proceedings of the Annual USENIX
Technical Conference, pages 39–52, Berkeley, CA, June 1998. ACM.
P. Giarrusso. Fwd: Re: [patch 1/4] UML Support - Ptrace: adds the host SYSEMU
support, for UML and general usage, July 2005. www.uwsg.iu.edu/hypermail/linux/

kernel/0507.3/1992.html.
I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Secure Environment for Un-
trusted Helper Applications (Confining the Wily Hacker). In Proceedings of the Sixth
USENIX UNIX Security Symposium, pages 1–13, San Jose, CA, July 1996. USENIX
Association.
M. Haardt and M. Coleman. ptrace(2). Linux Programmer’s Manual, Section 2, Novem-
ber 1999.
R. Hagmann. Reimplementing the Cedar file system using logging and group commit.
In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP
’87), pages 155–162, Austin, TX, October 1987. ACM Press.
IEEE/ANSI. Information Technology–Portable Operating System Interface (POSIX)–
Part 1: System Application: Program Interface (API) [C Language]. Technical Report
STD-1003.1, ISO/IEC, 1996.
M. B. Jones. Interposition Agents: Transparently Interposing User Code at the System
Interface. In Proceedings of the 14th Symposium on Operating Systems Principles (SOSP
’93), pages 80–93, Asheville, NC, December 1993. ACM.
J. Katcher. PostMark: A New Filesystem Benchmark. Technical Report TR3022,
Network Appliance, 1997. www.netapp.com/tech_library/3022.html.
M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides, B. A. Bottos, S. Chutani,
C. F. Everhart, W. A. Mason, S. Tu, and E. R. Zayas. DEcorum File System Architec-
tural Overview. In Proceedings of the Summer USENIX Technical Conference, pages
151–164, Anaheim, OH, June 1990. USENIX Association.
D. G. Korn and E. Krell. A New Dimension for the Unix File System. Software-Practice
and Experience, 20(S1):19–34, June 1990.
P. Lewis, A. Bernstein, and M. Kifer. Databases and Transaction Processing: An
Application-Oriented Approach, chapter 8: Database Design II: Relational Normaliza-
tion Theory, pages 211–260. Addison Wesley, Boston, MA, 2002.
D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In Proceedings of
the 16th Symposium on Operating Systems Principles (SOSP ’97), pages 92–101, Saint
Malo, France, October 1997. ACM.
D. Maziéres. A Toolkit for User-Level File Systems. In Proceedings of the Annual
USENIX Technical Conference, pages 261–274, Boston, MA, June 2001. USENIX As-
sociation.
M. K. McKusick and G. R. Ganger. Soft Updates: A Technique for Eliminating Most
Synchronous Writes in the Fast Filesystem. In Proceedings of the Annual USENIX Tech-
nical Conference, FREENIX Track, pages 1–18, Monterey, CA, JUNE 1999. USENIX
Association.
M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

FSL Technical Report, No. FSL-06-01, January 2006.

Extending ACID Semantics to the File System · 37

Microsoft Corporation. Microsoft MSDN WinFS Documentation. http://msdn.

microsoft.com/data/winfs/, October 2004.
Dejan Milojicic, Alan Messer, James Shau, Guangrui Fu, and Alberto Munoz. Increas-
ing relevance of memory hardware errors: a case for recoverable programming models.
In Proceedings of the 9th ACM SIGOPS European workshop, pages 97–102, Kolding,
Denmark, 2000. ACM Press.
N. Murphy, M. Tonkelowitz, and M. Vernal. The Design and Implementation of the
Database File System. www.eecs.harvard.edu/~vernal/learn/cs261r/index.shtml,
January 2002.
MySQL AB. MySQL: The World’s Most Popular Open Source Database. www.mysql.

org, July 2005.
M. A. Olson. The Design and Implementation of the Inversion File System. In Pro-
ceedings of the Winter 1993 USENIX Technical Conference, pages 205–217, San Diego,
CA, January 1993. USENIX.
Oracle Corporation. Oracle Internet File System Archive Documentation. http://otn.
oracle.com/documentation/ifs_arch.html, October 2000.
A. Purohit, C. Wright, J. Spadavecchia, and E. Zadok. Develop in User-Land, Run in
Kernel Mode. In Proceedings of the 2003 ACM Workshop on Hot Topics in Operating
Systems (HotOS IX), pages 109–114, Lihue, Hawaii, May 2003. USENIX Association.
M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. In Proceedings of 13th ACM Symposium on Operating Systems Principles,
pages 1–15, Asilomar Conference Center, Pacific Grove, CA, October 1991. Association
for Computing Machinery SIGOPS.
D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir.
Deciding When to Forget in the Elephant File System. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles, pages 110–123, Charleston, SC, December
1999. ACM.
M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J. Kistler.
Lightweight recoverable virtual memory. ACM Transactions on Computer Systems,
12(1):33–57, 1994.
F. Schmuck and J. Wylie. Experience with transactions in QuickSilver. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles (SOSP ’91), pages 239–253,
Pacific Grove, CA, October 1991. ACM Press.
M. Seltzer and M. Stonebraker. Transaction Support in Read Optimized and Write Op-
timized File Systems. In Proceedings of the Sixteenth International Conference on Very
Large Databases, pages 174–185, Brisbane, Australia, August 1990. Morgan Kaufmann.
M. Seltzer and O. Yigit. A new hashing package for UNIX. In Proceedings of the Winter
USENIX Technical Conference, pages 173–184, Dallas, TX, January 1991. USENIX
Association.
M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N. Soules, and
C. A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data Protection in
File Systems. In Proc. of the Annual USENIX Technical Conference, pages 71–84, San
Diego, CA, June 2000. USENIX Association.
Sendmail Consortium. Sendmail home page. www.sendmail.org, August 2004.
Sendmail, Inc. Sendmail Advanced Message Server. www.sendmail.com/products/

mailcenter/sams/, 2004.
Sleepycat Software, Inc. Berkeley DB Reference Guide, 4.3.27 edition, December 2004.
www.sleepycat.com.
M. Szeredi. Filesystem in Userspace. http://fuse.sourceforge.net, February 2005.

Received December 2005; revised Month Year; accepted Month Year

FSL Technical Report, No. FSL-06-01, January 2006.

