GreenDM: A Versatile Hybrid Drive for Energy and Performance
Zhichao Li, Ming Chen, and Erez Zadok
Stony Brook University

Motivation
• What opportunities can SSDs bring?
 ✔ Performance boost
 ✔ Energy saving
 ✔ Reliability concern

Data Management
VLBA 0 1 2 3 n
<table>
<thead>
<tr>
<th>VLBA</th>
<th>PE Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>map_bio</td>
<td>VE</td>
</tr>
</tbody>
</table>

Power Management
• Disk spin-down when idle for long
• Shift workloads to the fast and low-power SSD

Reducer writes to the SSD
• Conditional migration drops
 ✔ The SSD is full
 ✔ Concurrent accesses on the same extent
 ✔ The meta-data is being flushed
 ✔ The MCPL is reached

Implementation Details
• Concurrency control
 ✔ Atomic counter
• Meta-data management
 ✔ Periodic flush
 ✔ Statistics export
 ✔ Debugfs
• Development cost
 ✔ Kernel V.S.User

High SSD Hit-ratio
• Mapping effect (WL shift)
• Stable results (11%, 440%)
• ES = I/O size
 ✔ no big migration penalty
 ✔ No split overhead

Aged SSDs unpredictable
• Run in-order without TRIM
• New SSDs stable results
• Aged SSDs unstable results
• GCs result in variations

GreenDM wins in Video-server WL
GreenDM wins in Web-search WL

Future Work
• To build cost model
 ✔ Performance, Energy, Reliability, Security
• To scale
 ✔ More drives and across the Network

© Copyright 2013 Stony Brook University