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h i g h l i g h t s

• Data quality assessment is essential for realizing the promise of big data.
• Relevance can arouse the user’s interest in exploiting the data source.
• IDSTH algorithm can extract semantic features with generalization ability.
• SHR algorithm calculates the importance score (rank) for each node (image).
• SDQA architecture can help assess the value of image big data.
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a b s t r a c t

Data quality (DQ) assessment is essential for realizing the promise of big data by judging the value of
data in advance. Relevance, an indispensable dimension of DQ, focusing on ‘‘fitness for requirement’’,
can arouse the user’s interest in exploiting the data source. It has two-level evaluations: (1) the amount
of data that meets the user’s requirements; (2) the matching degree of these relevant data. However,
there lack works of DQ assessment at dimension of relevance, especially for unstructured image
data which focus on semantic similarity. When we try to evaluate semantic relevance between an
image data source and a query (requirement), there are three challenges: (1) how to extract semantic
information with generalization ability for all image data? (2) how to quantify relevance by fusing the
quantity of relevant data and the degree of similarity comprehensively? (3) how to improve assessing
efficiency of relevance in a big data scenario by design of an effective architecture?

To overcome these challenges, we propose a semantic-aware data quality assessment (SDQA)
architecture which includes off-line analysis and on-line assessment. In off-line analysis, for an image
data source, we first transform all images into hash codes using our improved Deep Self-taught Hashing
(IDSTH) algorithm which can extract semantic features with generalization ability, then construct
a graph using hash codes and restricted Hamming distance, next use our designed Semantic Hash
Ranking (SHR) algorithm to calculate the importance score (rank) for each node (image), which takes
both the quantity of relevant images and the degree of semantic similarity into consideration, and
finally rank all images in descending order of score. During on-line assessment, we first convert
the user’s query into hash codes using IDSTH model, then retrieve matched images to collate their
importance scores, and finally help the user determine whether the image data source is fit for his
requirement. The results on public dataset and real-world dataset show effectiveness, superiority and
on-line efficiency of our SDQA architecture.

© 2019 Published by Elsevier B.V.

1. Introduction

With social platforms rapidly developing, the amount of image
data has been growing exponentially. However, most of image
data stored in the device fail to play their value, because data
consumers who lack awareness of their contents, dare not auda-
ciously use them. The reason for ‘‘lack of awareness’’ is not only
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the lack of labels and associations in storage, but also the limita-
tions on the processing of unstructured data. Especially in a big
data scenario, the implementation of data cleaning approaches is
not feasible due to the size and the streaming nature of the data
source, making the use of image big data more difficult [1].

Data quality assessment is a key to realize the promise of big
data by judging the value of data in advance. Data Quality (DQ),
generally defined as ‘‘fitness for use’’, is evaluated by five di-
mensions that include availability, reliability, relevance, usability
and presentation quality [2]. Availability and reliability have been
well studied in big data integration and fusion [3], where avail-
ability is defined as the degree of convenience for data accessing
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Fig. 1. (a) Mining does not mean wealth, because the data source may not be relevant. However, what if the user can perceive the relevance in advance? (b) The
orange arrows represent the semantic-aware results, while the blue arrows represent the data-aware results. (c) The model is hard to classify ‘‘dog and cat’’ and
‘‘alpaca’’. (d) The orange nodes represent the data source. The blue nodes represent the user’s query. The distances between different nodes represent the degree of
similarity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(i.e. accessibility, timeliness and authorization), while reliabil-
ity refers to whether the user can trust the data (i.e. accuracy,
integrity, consistency, completeness and auditability). However,
neither of them can help the user determine whether the data
source meets his demands. Paying all attention to availability and
reliability is not enough to arouse the user’s interest in exploiting
the data source.

Relevance, as another indispensable dimension of DQ, is more
crucial to judge ‘‘fitness for requirements’’. It is defined as the
degree of correlation between the content of data and the user’s
expectations or demands. There are two-level evaluations for the
relevance: (1) the amount of data that meets the user’s require-
ments; (2) the matching degree of these relevant data. However,
it is tricky to achieve these evaluations, especially for unstruc-
tured image data which focus on semantic similarity. Previous
attempts at image data quality assessment pay attention to eval-
uate the quality of image presentation or retrieval results, which
is inconsistent with our topic. Besides, existing DQ assessment
jobs prefer to adopt data-aware methods to achieve evaluation
at other dimensions. As a result, there lacks jobs evaluating rele-
vance by semantic-aware methods, especially for image big data.
On the other hand, for similarity comparison, semantic-aware
feature extraction methods have been well studied in image
retrieval, but those techniques have not been integrated into DQ
assessment.

In this paper, we propose a semantic-aware data quality as-
sessment (SDQA) architecture for image big data, where we de-
sign our improved deep self-taught hashing (IDSTH) algorithm,
semantic hash ranking (SHR) algorithm and semantic-aware as-
sessment process. Compared with the traditional DQ assessment,
we focus on the relevance and bring three improvements: (1) we
extract semantic feature with generalization ability and complete
hash mapping for large-scale unlabeled image data; (2) we eval-
uate and quantify the relevance based on both the quantity of
relevant images and the degree of semantic similarity; (3) we
introduce deep learning and image retrieval technologies into the
architecture, and combine off-line analysis with on-line evalua-
tion to complete relevance assessment. Based on this, we ensure
the efficiency of assessment in large-scale scenarios. To evalu-
ate our work, we implement our SDQA on public datasets with
classification supervision information. Our results show SDQA is
sensitive to semantic content and gives higher scores to images
whose semantic contents account for higher proportion in the
whole dataset. At last, we show the relevance assessment result
on real-world datasets for given requirements.

2. Motivation

In practical applications, data mining is like a gamble. There
is a high chance that we have spent huge mining cost but fail

to get corresponding value. This is not because the data mining
algorithms are not good enough, but because the data cannot nec-
essarily bring value to the demands (applications). As shown in
Fig. 1(a), faced with the demand of ‘‘searching flowers’’, Oxford 17
Category Flower Dataset could provide enough value but Image
Big Data failed in this aspect. This inherent value relationship
between the data and demands can never be changed by data
mining algorithms, but the degree of this relationship can be
judged and measured in advance to avoid the gamble behavior
as much as possible.

For judging and measuring this kind of relationship, it requires
a unified parsing mechanism to extract both the semantic infor-
mation of data and demands. However, semantic extraction for
unstructured image data is restricted by the generalization ability
and thus researchers doubt about the practicality of this conduct
in a big data scenario. As a result, existing DQ assessment lacks
exploration in the relevance of data. When we try to evaluate
semantic relevance between an image data source and a query
(requirement), there are three challenges: (1) how to extract
semantic information with generalization ability for all image
data? (2) how to quantify relevance by fusing the quantity of
relevant data and the degree of similarity comprehensively? (3)
how to improve assessing efficiency of relevance in a big data
scenario by design of an effective architecture? We now discuss
these issues in further detail.
(1) Semantic feature with generalization ability: semantic fea-
tures are data representations that express human cognition.
Different from data-aware feature extraction (commonly used
in conventional DQ assessment) which entirely relies on the
data distribution itself, semantic-aware methods rely more on
hand-crafted labels and their results are suppose to be more
meaningful. As shown in Fig. 1(b), according to what the blue
arrows connect, dogs and cats have the same pixel distribution,
so data-aware methods consider them to be the same cate-
gory. However, dogs and cats have completely different semantic
contents, as connected by the orange arrows. This is because data-
aware methods care about what the data (pixel) looks like, while
semantic-aware ones focus on what the data itself is.

Semantic-aware feature extraction has been well studied in
image classification, which can ensure the distance between same
categories data is getting smaller and smaller while the one be-
tween different categories is getting bigger and bigger. However,
this way loses the generalization ability to cognize objects, which
leads to serious out-of-sample problems. As shown in Fig. 1(c),
the model that has learned single dog, cat and plane can classify
images of single cat, dog and plane well, but it fails to classify
‘‘dog and cat’’ and recognize ‘‘alpaca’’. It is impossible that a
model can learn all entities in real world, so semantic feature
extraction methods without generalization ability cannot apply
to big data scenarios.
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We believe what causes this defect is that classification meth-
ods ignore the meaning of the differences (distances) between
different categories. For example, cats as animals are more similar
to dogs (which also belong to animals) than airplanes (which
belong to machines). This apparent difference is reflected by
the data itself, which is the principle followed by data-aware
feature extraction methods. Therefore, we are supposed to com-
bine both semantic-aware and data-aware advantages to learn
the classification according to ‘‘what it is’’ and the distance be-
tween categories according to ‘‘what it looks like’’. Based on this,
semantic-aware methods will be improved to own generalization
ability and practicality.
(2) Relevance evaluation method: there lacks assessment work
about relevance (i.e. the quantity of relevant image and degree
of semantic similarity). In practice, we find it difficult to measure
these two evaluations. First, it is impossible to get them in isola-
tion, because a convincing threshold for quantity or degree is hard
to define. Second, even if respectively getting them, it is tricky
to judge which is more representative of relevance. As shown in
Fig. 1(d), ‘‘A’’ has more relevant data while ‘‘B’’ is closer (shorter
distances). However, which one is more relevant to the image big
data? Therefore, it is necessary to evaluate the relevance fusing
the two evaluations.

Taking both evaluations into consideration comprehensively,
clustering may be a good method to evaluate each data. However,
whether the method is based on the number of hypothetical
centers [4] or density [5], it needs many iterations and will take
a long time to stabilize. This overhead is unacceptable for big
data, albeit in the off-line manner. Also, quantization learning
method [6] uses the concept of codebook to specify the evaluation
standard in clustering, but codebook is only suitable for encod-
ing data and thus fails to give the overall metric. Beyond that,
graph-based computing [7], especially PageRank algorithm [8], is
a wonderful choice to achieve global evaluation, whereas more
factors need to be taken into account. If we can use random
walk on undirected graph whose edges’ weights denote semantic
distances between nodes, the evaluation will be completed con-
sidering both the quantity of relevant images and the degree of
semantic similarity.
(3) Architecture with efficiency: as a rule of thumb, an assess-
ment framework at least includes the user’s query as input, data
source analysis and conclusion as output. Because of acquirement
for semantic information and comparison for query, deep learn-
ing and retrieval mechanism are integrated into our assessment
framework including data source training, semantic extraction
and vector matching computing. Therefore, it is an exacting task
to design a reasonable architecture that meets the efficiency of
large-scale scenarios.

In terms of deep learning, because the scope of search is the
data source, it means that semantic extraction model must be
trained on the data source for perceiving its semantic distribution.
Moreover, the content of data source is relatively fixed. There-
fore, the model training and feature extraction can be off-line
completed. Note that semantic features of the query must be
extracted by above model. As for matching of retrieval, to avoid
comparison of millions of high-dimensional floating-point vectors
which brings long time latency, we are supposed to build more
efficient measurement, e.g., hashing techniques.

In addition, for requirements that retrieve images, the way
that users directly input images may be simpler and more intu-
itive. Similarly, the output is supposed to be digital values that
intuitively express the semantic relevance.

3. SDQA design

We now present our SDQA design that overcomes the chal-
lenges above.

Fig. 2. Semantic-aware DQ assessment architecture. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

3.1. Problem formulation

Given an image data source and a query image (or a query
with multiple images), we hope to (1) learn a model for semantic
extraction with generalization ability; (2) find the matched im-
ages corresponding to the query; and (3) return a score reflecting
the relevance of the query to the image data source.

For case (1), assuming that the extracted semantic features
sets of cat, dog and airplane are respectively denoted as C , D and
P , Xi and Yj represent different features that respectively belong
to X and Y , where X, Y ∈ {C,D, P}. FD(Xi, Yj) represents the dis-
tance between Xi and Yj. First, we require FD(Xi, Xj) < FD(Xi, Yj),
where X ̸= Y . Beyond that, we require FD(Ci,Dj) < FD(Ci, Pj)
and FD(Ci,Dj) < FD(Dj, Pi) to ensure the similarity (‘‘what it
looks like’’) between closer categories under the condition of
accurate classification (‘‘what it is’’).

For case (2), we need to define whether two images are
matched. To this end, we compute the hash code for each image,
and two images are matched (or similar) if their Hamming dis-
tance is not larger than a given threshold. Formally, assuming that
hi and hj respectively represent the hash codes of two images, we
useHD(hi, hj) to denote the Hamming distance between hi and hj,
and hd to denote a given matching threshold. If HD(hi, hj) ≤ hd,
the two images are matched.

For case (3), we evaluate the relevance to the query. To this
end, we rank all the N images (contained in the data source)
based on their semantics, and denote the ranked scores as {S1, S2,
. . . , SN}(∀k, Sk−1 ≥ Sk). Then given a query image, we find all
the matched images and calculate the average weighted score
of all these matched images, and denote this score as S(q). If
Sk−1 > S(q) ≥ Sk, we then return the ratio T (q) = 1 −

k
N as

the query score, which shows how much this query is related to
the data source. Obviously, the larger T (q), the higher relevance
of the query to the data source.

3.2. Architecture overview

SDQA is an architecture that works to assess data quality of
the image data source by semantic relevance. As shown in Fig. 2,
the architecture contains an off-line (light blue background) part
and an on-line (light orange background) part. The purpose of this
design is to reduce the on-line workload and ensure the real-time
efficiency.

Off-line part: off-line part includes modules of semantic train-
ing, hashing model, graphing, scoring and ranking list. The purpose
of this part is to get the semantic hashing model and the data
ranking list according to the semantic distribution of image data
source, which provides the resource for the on-line part. Note that
semantic training and hashing model together constitute the IDSTH
model, which overcomes the challenge (1) in Section 2. Module
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Fig. 3. (a) Results of feature extraction with generalization ability. (b) The framework of improved DSTH. (c) The processing of retrieval and collation on ranking list.

of scoring is completed by SHR algorithm, which overcomes the
challenge (2) in Section 2.

It is worth noting that DSTH [9,10] is a published work, which
introduces Laplacian matrix into the deep model to re-divide the
distance between data from a global perspective, so that the deep
model can learn the inherent mechanism of this global division.
With the development of graph embedding technique, Laplacian
matrix decomposition has been proved to only reflect the first-
order proximity between data, while the second-order proximity
with stronger relationship expression ability needs to be realized
by learning the adjacency matrix. Therefore, in our deep model,
we adopt adjacency matrix instead of Laplacian matrix to improve
both the way of generating hash label and the mechanism of di-
viding distance, in order to obtain stronger generalization ability
of IDSTH.

On-line part: on-line part includes modules of retrieval and
collation. The purpose of this part is to quickly retrieves one or
more matched images from data source according to the user’s
query images, and calculates the ranking (ration) to provide users
with relevance judgment. Note that retrieval imposes comparison
of Hamming distances to ensure the efficiency and collation re-
turns the ranking (ratio) to express relevance, which overcome
the challenge (3) in Section 2.

In addition, the image interface is designed to access images
and convert them into 256 × 256 RGB format. We now introduce
above modules respectively.

3.3. Semantic training

The purpose of this module is to perceive the semantic dis-
tribution of the data source and generate hash labels. Fusing the
characteristics of ‘‘what it is’’ and ‘‘what it looks like’’, semantic
training learns the semantic distance and maps all data to hash
codes. As shown in the blue frame (generating hash label) of
Fig. 3(b), we use both semantic training data and image data
sampled from image data source as the input, and achieve the
feature extraction on trained GoogLeNet. Then we construct a
graph using the Euclidean distance of those features to obtain
the adjacency matrix. Finally, we input each row of the matrix
to the AutoEncoder model. With the minimum reconstruction
error, we use the intermediate encoding results (dark blue layer)
for binarization to acquire hash labels. The detailed processing is
introduced in Section 4.

There are two points that we must explain. First, semantic
training data refer to those data that have achieved good classi-
fication results on the standard GoogLeNet model. We use them
together with sampled image data as input, aiming at in the error
reconstruction stage, restricting the semantic bias of extracted
features caused by the standard model which has not perceived
the semantic distribution of the data source, so as to ensure the
quality of ‘‘what it is’’. Second, transforming a graph into hash
labels is actually a deep graph embedding process, which can
express and learn the distance for all data in the data distribution
itself, so that ‘‘what it looks like’’ can be well reflected. As shown

in Fig. 3(a), dog and cat looks similar, so they have closest se-
mantic distance. Besides, although alpaca looks unlike cat or dog,
it also belongs to animals, and thus has closer semantic distance
to dog and cat. However, plane which belongs to machines, has
completely different semantic content from animals, so it has the
longest semantic distance from dog. In addition, compared with
DSTH which empirically sets the number of neighbors, our im-
proved method can automatically and objectively determine the
neighbors. At the same time, IDSTH does not have to rely on the
whole large adjacency matrix, but can independently complete
fitting for each row, which provides a more flexible choice for
time-memory trade-off.

3.4. Hashing model

The purpose of this module is to learn a hash model for quickly
semantic extraction and mapping. Acquirement of hash codes
in semantic training module has to wait for the calculation of
distances among all images, which is unpractical for big data
real-time scenes. Therefore, we learn a hash function by fitting
above hash codes as labels using convolution neural network, as
shown in the orange frame (training hash function) in Fig. 3(b).
We introduce the detailed training process in Section 4. Note that
in the hash function training stage, we only need to train the
sampled image data. The semantic expression of both the data
source and query is accomplished by this module.

3.5. Graphing

The purpose of graphing is to associate all image data using
semantic distance. We model all images as a graph G where each
node is an image and edges are relationships between images.
In order to speed up the graph construction, we cut off those
edges on which the weight exceeds half of the length of hash
code, according to the conclusion of Long [11]. Let N∗ denote
the ∗-th node of G, H(N∗) denote hash code of N∗ and l denote
length of hash codes. We define XOR operation as ⊕. Therefore,
the Hamming distance weight on the undirected link between Ni
and Nj can be defined as

dij =

{
H(Ni) ⊕ H(Nj) i ̸= j,H(Ni) ⊕ H(Nj) ≤ Ω,

NULL otherwise.
(1)

where Ω = ⌈l/s⌉ and s ∈ [1, l]. In practice, the determination of
Ω is based on efficiency of building a graph with tolerable loss.
Formally, we define the precision of ith node as Ci/Li, where Li
represents the number of all nodes connected to ith node and
there exist Ci nodes of the Li nodes that have the same label as
the ith node. Therefore, the precision of graph P(G|Ω) is defined
as

P(G|Ω) =
1
N

N∑
i=1

Ci

Li
(2)
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3.6. Scoring

After building the graph with restricted Hamming distance, we
calculate the importance score for each node by random walk. We
extend the PageRank algorithm and propose the SHR algorithm
which takes both the number of connected links and the weight
on edges into consideration. Note that we specially design how
to reasonably calculate the extent of relevance between nodes,
aiming at making full use of the Hamming distance of similarity
hash with generalization ability. As shown in Fig. 3(a), the red
dot contained in the dog category is the query data, and the
shaded part centered with this dot represents those data directly
connected with it. Because the data that looks similar is closer
to each other, images whose partial content contains dog will be
connected to this shaded part. Besides, the high-level semantic
information of dog, i.e. animal, has been better reflected.

On the graph, we use SHR to calculate the importance score
for each node. Specifically, according to the physical meaning of
Hamming distance, we redesign the iteration matrix elements for
obtaining reasonable importance scores. SHR makes the domi-
nant semantics more prominent, thus reinforcing the user’s cog-
nition of the date source. We introduce the detailed calculation
process in Section 5.

3.7. Ranking list

The purpose of ranking list is to provide look-up table for on-
line assessment. We rank all the images in a descending order of
their importance scores. As shown in Fig. 3(c), each unit in rank-
ing list contains four elements: H denotes hash code, R denotes
rank, S denotes score, and I denotes the images presented by
H. We set that H is the key, because multiple images may share
a same hash code and SHR gives the same hash code the same
score.

3.8. Retrieval and collation

According to the Hamming distance, hash codes of the user’s
query (images) retrieve suitable images contained in the data
source. We collect their scores and collate them with different
weights. As shown in Fig. 3(c), for the ranking list consisting of N
images, the query is mapped to hash codes by the hashing model
and retrieves images. The matching range is defined as hd and
we set hd = 1. Mathematically, we let q denote a query with n
images, imgi denote the ith image where i ∈ [1, n], mi denote
the number of matched images for the ith image of the query
q. Meanwhile, we let Sj(imgi) denote the score of the jth image
where j ∈ [1,mi]. Therefore, the score of q is defined as follows:

S(q) =

n∑
i=1

1
mi

mi∑
j=1

βiSj(imgi)

s.t.
n∑

i=1

βi = 1

(3)

where βi ∈ [0, 1] represents the importance weight of the ith
image.

Compared with the scores denoted as {S1, S2, . . . , SN} of image
data source, we can acquire the rank of S(q) denoted as k, where
Sk−1 > S(q) ≥ Sk. Further, T (q) = 1 −

k
N represents relevance of

image data source to the query.

3.9. Example

As shown in Fig. 2, the assessment process includes off-line
analysis (blue dotted line) and on-line assessment (orange solid
line). In practice, we first carry out off-line analysis once and
then repeatedly implement on-line assessment. We respectively
denote an image data source and a query as IDS and q.

Off-line analysis consists of five steps. (1) In the semantic train-
ing module, the administrator prepares semantic training data
(e.g. ImageNet data), feature extraction network (e.g. GoogLeNet
inception V4), feature extraction location (e.g. the last pooling
layer), AutoEncoder network and its output dimension (e.g. 48-
bits). A certain proportion of data (e.g. 60%) are sampled from
IDS. After formatted by image interface, those sampled image
data (3 × 255 × 255 dimension) together with the semantic
training data are input to the feature extraction network. Then,
we obtain the feature vectors (e.g. 4096-dimension) to complete
the training of graph embedding and acquire the hash codes
of sampled image data. (2) In the hashing model module, we
train the sampled image data using their corresponding hash
codes as labels via convolutional neural network(CNN). Then, we
translate all IDS into hash codes by trained hashing model. (3) In
graphing module, we construct a graph according to the restricted
Hamming distances between images, and compute its adjacent
matrix. (4) In score module, according to above matrix, we use
SHR algorithm to iteratively calculate the importance score for
each node. (5) In ranking list module, hash codes are used as the
key to construct hash table. According to the importance scores,
we record and arrange each hash code including its ranking, score
and corresponding images.

During on-line assessment, users input query images which
express their requirements. For example, if one desires the re-
source related to Formula 1, he is supposed to input images
including car, racetrack and racing drivers, etc. After format-
ted by image interface, these query images are translated into
hash codes using trained hashing model. According to those hash
codes, we collect matched images (hash codes and scores) within
given Hamming distance range (hd ≤ 1) from the ranking list,
and then use collation module to calculate the average weighted
scores of these matched images to get the semantic score of query
images. At last, we resort the ranking list again to determine the
importance ranking of the semantic score in IDS, and return T (q)
to users as relevance judgment.

4. Improved Deep Self-taught Hashing (IDSTH)

In this section, we detailedly describe the design of IDSTH
algorithm including stage of hash label generating (how to learn
semantic features extraction for data source without labels, how
to fuse the semantic information with categories distances into
deep learning framework and how to generate hash labels) and
stage of hash function training (how to conduct the training of
hashing model).

4.1. Hash label generating

The prime task of this stage is to perceive data distribution
of the data source and map the semantic information into hash
codes as labels for the next stage. The labels determine which
semantic informations should be extracted from data in the sub-
sequent function learning. Therefore, the hash codes are supposed
to own generalization ability mentioned in Section 2. Super-
vised deep learning algorithm is able to better extract semantic
information owing to the accurate hand-crafted labels, while
structural deep network embedding algorithm can express the
relationships between data, and map them to the compact space.
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We combine these two methods, which can not only acquire
semantic information without labels, but also reach the balance
between human semantic cognition and data distribution itself,
so as to acquire our expected semantic hash codes (labels). The
whole processing is shown in the blue frame of Fig. 3(b).

Given this, in the absence of labels, we use the standard deep
model to get features for both image data sampled from the data
source and semantic training data which have been trained by
the standard deep model. Note that there will inevitably produce
semantic bias if using the standard deep model to extract sampled
image data, because this model is not trained on the data source
and thus loses cognition about its semantic distribution. (In prac-
tice, it is impossible to use the standard model to fine-tune
the data source which have no labels.) Therefore, we utilize the
semantic features extracted from the training data on standard
model, constrain those features with semantic bias via associated
relationships, and correct this bias by the experience (capturing
the topological structure of a graph) of fitting accurate data
during the mapping process. In the implementation, we choose
structural deep network embedding algorithm to complete this
process.

Mathematically, according to feature extraction for sampled
image data and semantic training data, we acquire m z-
dimensional feature vectors FV = {v1, v2, . . . , vm} where ∀v ∈

Rz . Meanwhile, we construct a graph G = (FV, SE), where FV
represents m vertexes and SE = {ei,j}mi,j=1 represents the edges,
where i, j ∈ Z+. Each edge ei,j is associated with a weight ui,j
defined as

ui,j =

⎧⎨⎩
v⃗i · v⃗j

∥vi∥ · ∥vj∥
i ̸= j,

0 i = j.
(4)

We obtain G’s adjacency matrix U which consists of m elements
u1, u2, . . . , um. Each element ui = {ui,j}

m
j=1 provides the semantic

distances distribution of each image. Leaning the latent presenta-
tion of all data from the adjacency matrix can accurately reflect
the differences between different categories data, so that the
distances between categories can be all reflected. With U , we
use AutoEncoder model to map this structure and preserve the
structural proximity.

AutoEncoder is a kind of unsupervised learning method, which
includes the encoder and the decoder. The encoder maps the
input data to the compact space through multiple layers con-
taining non-linear functions, while the decoder maps the result
of compact space to reconstruction space by the same way. Then
given the input ui, the output for each layer are shown as follows:

f (k)i =

{
ϕ(W (k)ui + b(k)) k = 1,
ϕ(W (k)f (k−1)

i + b(k)) k = 2, . . . , K .
(5)

where f (k)i ,W (k) and b(k) denote output, weight and bias of kth
layer respectively. ϕ(x) =

1
1+exp(−x) (sigmoid function) is the

activation function. When k = K , we can acquire g-dimensional ũi
as the result of encoder. Then we can acquire the output ûi as the
result of reconstruction space by reversing the above processing.
The loss function for minimum of reconstruction error is shown
as follows:

Le =

m∑
i=1

∥ui − ûi∥
2
2 (6)

The reconstruction criterion can smoothly capture the data mani-
folds and preserve the similarity between data. In addition, using
the adjacency matrix to learn the second-order (global) proximity
to obtain the distance between different categories data, we
also hope to learn the first-order (local) proximity of connected

nodes (that DSTH achieved by Laplacian Eigenmaps) to ensure
the classification accuracy of the same categories data. The loss
function for this goal is defined as follows:

Ld =

m∑
i,j=1

ui,j∥ũi − ũj∥
2
2 (7)

Compared with the Laplacian Eigenmaps method, Ld can control
the mapping result more intuitively by the distance. Finally, in
order to prevent over-fitting, we design the regularizer term as
follows:

Lr =
1
2

K∑
k=1

∥W (k)
∥
2
F + ∥Ŵ (k)∥2

F (8)

Based on above design, the terminal loss function L is:

L = Le + αLd + βLr (9)

where α and β are hyper-parameters.
When L reaches convergence, we convert the g-dimensional

real-valued vector ũ1, ũ2, . . . , ũm into binary codes according to
the threshold. We set ϱp and ũp

i to denote threshold and element
of pth bit of ũi. The hash label as final result value of ¯up

i is:

¯up
i =

{
1 ũp

i ⩾ ϱp,

0 otherwise.
(10)

where 1 ≤ p ≤ g and

ϱp
=

1
m

m∑
i=1

ũp
i (11)

4.2. Hash function training

The primary work of this stage is to learn and get the hash
function model based on the hash labels obtained from the first
step. The reason why we need to re-learn these hash codes is
that the graphing process in the first step severely affects the
efficiency of generating hash codes, and we hope the hash model
applied to on-line process is end-to-end.

We employ convolutional neural network (CNN) to receive
fine-grained features. After that, we adopt encoding module
which is Divide and Encode Module [12] associated with acti-
vation function of BatchNorm [13] to approximate hash labels
generated in previous stage. The learning framework is the ar-
tificial neural network on the multi-output condition. The whole
processing is shown in the orange frame of Fig. 3(b). Formally,
we set a function f : RI

→ RO, where I is the input set, O is the
output set and x is the input vector (image).

f (1)(x) = σ (W (1)x + b(1))

f (k)(x) = σ (W (k)f (k−1)(x) + b(k))
(12)

where k = 2, 3, . . . ,Q , Q is number of layers and σ (·) is ReLU
and BatchNorm function. When the core of σ (x) is BatchNorm,
the function is calculated as follows:

x̃(k)
=

x(k) − E
(
x(k)

)√
Var

(
x(k)

) (13)

where

E (x) =
1
m

m∑
i=1

xi (14)

Var (x) =
1
m

m∑
i=1

(xi − E (x))2 (15)
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In the last layer of CNN, we split a 1024-dimensional vector
into 8 groups, and each group is mapped to g/8 elements to fit
the g-dimensional label. We use x̄i to denote the output vector.
The loss function Lh is:

Lh =

m∑
i=1

∥x̄i − ūi∥
2
2 (16)

At last, we apply the threshold values of each bit calculated in the
hash label generating stage.

5. Semantic hash ranking (SHR)

In this section, we introduce SHR algorithm in detail. SHR
considers both the number of connected links and the weight
on edges into consideration, reasonably designs impact factor
between different nodes according to similarity hash code, and
calculate the importance score for each node by random walk.
We also give a concise description of its convergence.

Let L∗ denote number of links to N∗. Draw rank factor R(N∗)
for N∗ and impact factor I(Nij) for Nj to Ni, where I(Nij) is defined
as

I(Nij) =

⎧⎨⎩
l − dij∑
t∈Tj

l − dtj
R(Nj) ∃dij,

0 otherwise.
(17)

where Tj is the set including orders of all nodes associated with Nj.
Specially, we design the formulation according to two principals.
Firstly, the less dij is, the greater influence Nj contributes to Ni
is. Meanwhile, the longer hash code is, the more compact the
similarity presented by dij is. Secondly, PageRank considers the
weights on each edge as the same, but we extend it to be applied
to different weights on edges. As a result, when weights on
different edges are the same, Eq. (17) should be the same as
the impact factor formulation of PageRank. Consequently, R(Ni)
should be equal to the sum of the impact factors of all nodes
linked to Ni

R(Ni) =

n∑
j=1,j̸=i

I(Nij) (18)

Let fij represent the coefficient of R(Nj) in I(Nij). We draw
iteration formula as⎡⎢⎢⎣

Rc+1(N1)
Rc+1(N2)

· · ·

Rc+1(Nn)

⎤⎥⎥⎦ =

⎡⎢⎣ 0 f12 · · · f1n
f21 0 · · · f2n
· · · · · · · · · · · ·

fn1 fn2 · · · 0

⎤⎥⎦
⎡⎢⎣Rc(N1)
Rc(N2)

· · ·

Rc(Nn)

⎤⎥⎦ (19)

where c is the number of iteration rounds. We define the termi-
nation condition as

Rc+1(Nm) − Rc(Nm) ≤ ε (20)

where m ∈ [1, n] and ∀Nm should satisfy Eq. (20). Meanwhile, ε is
constant. Let SHR(N∗) denote semantic rank of N∗. The last results
are

SHR(Nm) = Rη(Nm) (21)

where η is the round on termination.

5.1. Convergence

In order to ensure our algorithm can converge to a stable
result, we prove the convergence of Eq. (19), let An represent
iteration coefficient matrix. The An is

An =

⎡⎢⎣ 0 f12 · · · f1n
f21 0 · · · f2n
· · · · · · · · · · · ·

fn1 fn2 · · · 0

⎤⎥⎦ (22)

Computing the sum of each column of An according to Eq. (17) ,
we take the jth column as

f1j + f2j + · · · + fnj

=
l − d1j∑
t∈Tj

l − dtj
+

l − d2j∑
t∈Tj

l − dtj
+ · · · +

l − dnj∑
t∈Tj

l − dtj

=

∑
t∈Tj

l − dtj∑
t∈Tj

l − dtj

=1

(23)

Therefore, Eq. (19) is convergent and satisfies
n∑

m=1

SHR(Nm) =

n∑
m=1

Rα(Nm) (24)

where α ∈ [0, η].

6. Evaluation

In this section, we evaluate our architecture and conduct ex-
tensive experiments as follows:
(1) Using the feature extraction method with generalization abil-
ity, IDSTH can solve the out-of-sample problem (see Section 6.1).
(2) The efficiency of graph building using hash codes generated
by IDSTH can be greatly improved with allowed accuracy loss (see
Section 6.2).
(3) SHR can calculate the importance score for each node effec-
tively and efficiently on large-scale datasets (see Section 6.3).
(4) SHR can help highlight and prepose those data whose seman-
tic information account for higher proportion in original dataset
(see Section 6.4).
(5) Our framework can deal with large-scale datasets and return
a concise score (assessment result) based on the user’s query,
which assists the user to make a correct decision on subsequent
operations with this dataset (see Section 6.5).

We implement the experiments (1) to (4) on the public
datasets which include CIFAR-10 and STL-10. We summarize
these datasets and corresponding preprocessing as follows:

• CIFAR-10: CIFAR-10 are labeled subsets of the 80 million
tiny images dataset, which consists of 60,000 32 × 32 color
images in 10 classes, with 6000 images per class. There are
5000 training images and 1000 test images in each class.

• STL-10: STL-10 is a subset of ImageNet dataset for image
recognition, which consists of 10 classes, 5000 training im-
ages (500 images per class), 8000 test images (800 images
per class) and 1,000,000 unlabeled images, each of size
96 × 96 pixels. We select 5000 training images and 8000
test images to complete our experiments.

Then we adopt large-scale real-world Tencent datasets to conduct
the last experiments. Our evaluation is executed using Python
tools including TensorFlow and Scikit-Learn library. Our experi-
ments are run on two 10-core Intel Xeon E5-2640 machines with
128 GB of DDR4 memory. At last, we conduct the experiment on
real-world dataset using 12 machines.

6.1. Generalization ability

In this section, we verify the generalization ability of ID-
STH mapping hash by executing code length analysis (CLA) and
precision–recall (PR) on CIFAR-10 and STL-10. We compare the
state-of-the-art and the most classical semantic similarity hash-
ing algorithms: DCH (the best supervised method), DeepBit (the
best unsupervised method) and LSH (the classical data-aware
method). In addition, we also compare DSTH algorithm.
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Fig. 4. Code Length Analysis (CLA) and Precision–Recall (PR) curve on CIFAR-10.

Fig. 5. Code Length Analysis (CLA) and Precision–Recall (PR) curve on STL-10.

To verify the generalization ability, we remove all cats and
automobiles from the training dataset (On the testing dataset, if
the algorithm can classify a cat as a dog and an automobile as
a truck, these classification results are considered to be correct.)
Fig. 4 shows the experimental results on CIFAR-10, where (a) de-
notes the average precision of the retrieval results of all categories
when the hd ≤ 1 with different hash code length, (b) denotes the
same code length analysis (CLA) without training cats, (c) denotes
the precision–recall (PR) curve when (b) choosing 48-bits hash
code, (d) denotes the CLA without training cats and automobiles,
and (e) denotes the PR curve when (d) choosing 48-bits hash
code. Fig. 5 shows the experimental results on STL-10, where
(a)–(e) are similar to (a)–(e) of Fig. 4.

As shown in Fig. 4(a), in most cases, IDSTH is only inferior to
DCH because supervised methods have advantage on classifica-
tion. However, when the testing dataset contains one category
data that has never been trained (shown in Fig. 4(b)), IDSTH
shows superiority in most of the cases. Besides, as shown in
Fig. 4(d), when the testing dataset contains two unacquainted
categories data, IDSTH shows the overwhelming advantage com-
pared with other methods. What is more, this phenomenon is
more obviously reflected on STL-10 (because STL-10 owns a
smaller training dataset, which weakens the advantage of su-
pervised training). Therefore, IDSTH has an advantage in dealing
with out-of-sample problems. In addition, we find IDSTH per-
forms best at 48-bits hash code under various conditions, and
Fig. 4(c)(e) also show the superiority on the PR curve at 48-bits
hash codes. Therefore, we use 48-bits hash code in the follow-up
experiments.

6.2. Graph building efficiency

In this section, for verifying that building a graph by Hamming
distance is more efficient than Cosine and Euclidean distance, we
exhibit the time of graph building using three metrics with 48-bit
vectors (48-bit hash codes and 48 float numbers). We randomly
sample data from the overall data to form different data scales.
Under each scale, we construct the graph for 20 times, and count
the construction time cost of and precision of the graph. In order
to ensure the fairness, we set Ω = 48, making all nodes fully con-
nected. As shown in Fig. 6(a), the horizontal coordinate represents
the number of nodes while the ordinate represents the graph

Fig. 6. Graph building time with different scale of nodes and precision of graph
with 100,000 nodes using Hamming, Cosine and Euclidean distance.

building time. With the same scale of nodes, the graph building
time of Hamming distance is nearly 100 times less than that of
Cosine and Euclidean, which shows that Hamming distance has
overwhelming predominance over other two metrics in building
a graph.

In order to compare precision of graph in three metrics, we
choose more accurate links from top 1% to top 50% according to
the weight of edges with 100,000 nodes. For example, we choose
those edges on which the Hamming distance is smaller, while
selecting the edges whose Cosine and Euclidean distance is larger.
As shown in Fig. 6(b), Hamming distance is 0.070 lower than
Euclidean at top 1% links in the worst case and 0.010 lower than
Cosine at top 30% links in the best case in term of precision of
graph. Averagely, Hamming distance is 0.038 lower than other
two metrics in seven cases.

On the whole, there is not a marked difference of preci-
sion between three metrics, although hashing will bring certain
loss to precision. However, Hamming distance has overwhelming
predominance in building a graph in term of time cost. We
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Fig. 7. Example graphs.

use hashing and Hamming distance in the follow-up work with
comprehensive consideration of trade-off between efficiency and
precision, since an acceptable margin of error is allowed.

6.3. SHR calculation

In this section, we verify that SHR can obtain reasonable
importance score for each node on single and double connected
domains respectively. Besides, we present the acceptable actual
calculation cost of SHR under different number of nodes and
iterations, indicating that SHR is able to adapt to large-scale
scenes. In practice, we conduct experiments with 48-bit hash
codes.

We prove feasibility using graph G1 shown in Fig. 7(a). The
results calculated by SHR are shown in Table 1 with η = 65,
when we set ε = 1.0E−10 and R0(Nm) = 1 where m ∈ [1, 10]. As
shown in Fig. 7(a), N1 has the most connections, while N7 owns
more edges where the Hamming distance is smaller relatively.
Therefore, the results are deemed reasonable.

We prove reliability using graph G2 shown in Fig. 7(b). Dif-
ferent from G1, G2 consists of 2 connected domains. The results
calculated by SHR are shown in Table 2 with η = 141. Similarly,
we set ε = 1.0E−10 and R0(Nm) = 1 where m ∈ [1, 6]. Obviously,
N3 and N6 get the same rank and play the most important role
in their own connected domain. Furthermore, when we add N7
which has the same hash code as N5, the results will change
shown in Table 2. It is easy to find that the ranks in the left
domain do not change but the sum of ranks in the right domain
has added one unit. Consequently, SHR is able to calculate the
rank of each node in its own connected domain, without being
influenced by other connected domains. Also, N5 and N7 own the
same score, illustrating that those nodes which own the same
hash code will get the same score.

For illustrating the performance of SHR, the number of nodes,
the number of links, the time cost including calculating A in Eq.
(22) and iterating, and the number of iterations are displayed
with ε = 1.0E−15, 1.0E−11, 1.0E−7 and Ω = 24 after graph
building. As shown in Table 3, as the number of nodes increases,
the number of iterations is relatively stable, since it is not de-
termined by the scale of nodes and the main factor that causes
the time cost of computing is the acquisition of A. In addition,
the growth of time cost and number of links are acceptable
with scale of nodes increasing. Even though the number of links
exceeds 100 million, the number of iterations is very close to
that of PageRank [8] proposed by Google, which shows that SHR
algorithm is sufficient to deal with large-scale computing.

6.4. Predominant semantics

In this section, we verify SHR can highlight and prepose those
data whose semantic information account for higher proportion
in this section, which shows our algorithm has practical signifi-
cance for assessment tasks. In the next experiment, if the ranked
results are correct, those images whose semantic distribution
account for higher proportion in original dataset will obtain larger

Table 1
Score and rank in graph G1 .
Node Hash code Score Rank

N1 FFFFFFFFFFFF 1.269 1
N2 FFFFFF800000 1.078 3
N3 FFFFFFFE0000 0.978 8
N4 0000000000000 0.993 6
N5 C000007FFFFF 0.555 10
N6 0000001FFFFF 1.048 4
N7 FBFF7F8000E0 1.100 2
N8 FFFFFF7E0080 0.960 9
N9 C0003079FFFF 0.988 7
N10 0300001FFE7F 1.026 5

Table 2
Score and rank in graph G2 .
Node Hash code N1 ∼ N6 N1 ∼ N7

Score Rank Score Rank

N1 1FFFFFFFFFFF 0.717 5 0.717 6
N2 FFFFFF800000 0.822 4 0.822 5
N3 FFFFFFFE0000 1.459 1 1.459 1
N4 000000000001 0.711 6 0.506 7
N5 C000007FFFFF 0.829 3 1.028 3
N6 0000001FFFFF 1.459 1 1.436 2
N7 C000007FFFFF – – 1.028 3

Table 3
Statistic of the number of nodes, the number of links, the time cost and the
number of iterations with different ε when SHR is running.
Node Link Time cost Number of iterations (ε =)

Ω = 24 Unit:s 1.0E−15 1.0E−11 1.0E−7

1k 305k 4 ± 0.08991 59 41 24
5k 7.5M 88 ± 0.2307 57 40 24
10k 29M 381 ± 0.8522 57 40 23
15k 66M 792 ± 1.333 57 40 24
20k 111M 1430 ± 2.028 58 40 24
50k 737M 8189 ± 5.465 55 38 22
100k 2.87G 29,484 ± 8.168 52 36 21

Table 4
Statistical results of classification by deep learning model on 1,000,000 images
of Tencent dataset.
Class Statistic Proportion

People 661,254 66.13%
Animal 119,772 11.98%
Plant 24,330 2.433%
Building 100,012 10.00%
Automobile 19,673 1.967%
Pool 36,444 3.644%
Mountain 38,515 3.851%

scores and higher ranks. Thus, based on CIFAR-10 test set, under
the premise that the amount of images of other classes remains
unchanged, we choose one class as a study object to be added to
the sample, making the amount of this class reach 20%, 30%, 40%,
50%, 60% and 70% respectively on the whole dataset. We collect
proportion of this class in the top 5% and top 20% of ranked results
in six cases mentioned above. We set ε = 1.0E−7 and choose
Ω = 24, 16 and 12 to conduct the experiments.

Fig. 8(a)(b) show the percentage with different Ω in the top 5%
and top 20% of ranked results respectively when choosing cat as
the study object. As shown in Fig. 8(a)(b), in all cases, SHR magni-
fies original proportion of cat (the part that goes beyond the blue
column), indicating the efficiency of this algorithm. Detailedly,
compared with Ω = 16 or 24, setting Ω = 12 yields better
performance on the magnification of the cat percentage in the top
5% of ranked results, where the cat percentage is averagely 27.7%
higher than original proportion in six cases. Among them, the
best result exceeds the original proportion by 33.3% in the case
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Table 5
Effect comparison between our framework and deep model.

Task hd DeepModel

4 8 12 16 24

Recommendation
A 1522 6952 29368 41996 16668 661254
B 4167 10731 46731 74618 391742 724099
C 2150 6761 10982 21555 99745 19673

SSD adoption
A 1391 5332 17747 28139 90121 21116
B 2710 5418 22168 31612 86746 16123
C 61 102 187 248 495 188

Ratio
A 0.914 0.767 0.604 0.67 0.541 0.032
B 0.65 0.505 0.474 0.424 0.221 0.02
C 0.028 0.015 0.017 0.012 0.005 0.01

Subsequent mining time (s)
A 297.13 1458.021 6090.028 8784.37 34781.16 13711.032
B 1205.021 3106.50 13617.44 21782.42 104201.010 200052.20
C 368.52 1138.011 1801.47 3548.0051 16634.33 3289.61

Fig. 8. Trend for percentage of cat and automobile in ranked result using different Ω with 48-bit codes. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of 50%. In the top 20% of ranked results, choosing Ω = 12 yields
better performance in most of the cases, where the cat percentage
is averagely 21.2% higher than original proportion in six cases.
Among them, the best result exceeds the original proportion by
26.3% in the case of 50%.

Similarly, Fig. 8(c)(d) show the results choosing automobile as
the study object. As is shown in Fig. 8(c)(d), SHR achieves the
same effect. Detailedly, in the top 5% of ranked results, compared
with other setting of Ω , the percentage of automobile shows the
superiority in most of the cases while choosing Ω = 12, which
is averagely 31.7% higher than original proportion in six cases.
Among them, the best result exceeds the original proportion by
40% in the case of 50%. Besides, in the top 20% of ranked results,
the percentage of automobile also shows great superiority with
Ω = 12, which is averagely 31.0% higher than original proportion
in six cases. Among them, the best result exceeds the original
proportion by 34.7% in the case of 50%.

It should be explained that better precision and shorter time
cost can be captured theoretically when Ω <12. However, the
reduction of links causes too many isolated nodes all of whom
get the same score, which may bring certain loss to the ranked
results. Usually, with a larger scale of nodes, hash codes are more
widely distributed, thus setting a smaller Ω will not result in
too many isolated nodes. In our follow-up research, we intend
to study this issue in depth.

As above experimental results show, both in the top 5% and
20% of ranked results, SHR effectively highlights and preposes the
data whose semantic information account for higher proportion
in original dataset after ranking. Thus, our SHR is correct and
effective in practical applications.

6.5. Assessment of query

In this section, we verify that our framework can efficiently
complete on-line assessment work according to the user’s query
on large-scale real image dataset. We apply our framework to
real-world Tencent data source of a famous social platform. This

data is a subset of QQ album data from 2017 to 2018 of Tencent.
The size of data is around 5TB consisting of 1,000,000 images.
Specially, according to the results shown in Section 6.4 that a
smaller Ω is proved to be feasible at a million scale, we select
Ω = 2 to conduct this experiment.

We assess relevance of the dataset for three queries which in-
clude human intimacy as task-A, lovers traveling in the outskirts
as task-B, and driving on road as task-C respectively. The query
images are collected from Google search and their respective
weights are given below. Fig. 9 displays the assessing process
and results for above tasks. As shown in Fig. 9, the intimacy
image representing the first task (query) matches three images
whose ranks are high, so it is worth carrying out data mining on
this dataset for the task-A. For task-B which matches two images
contained in the dataset, the images of lovers have high scores
and images about landscape own medium ranks. However, the
weighted score of this task is relatively high, which shows this
dataset can help analyze images about lovers traveling in the
outskirts. Although there are three images that match the task-
C , neither automobiles nor highways obtain high scores, so this
dataset are not suitable for the task-C .

For exposing semantic information of the data source, we
display the statistical results by previous classification model in
Table 4. According to the classification results, except that the
amount of images including people is obviously dominant, no
more information can be captured for more specific assessment.
Because of the limited expressive ability, classification cannot
provide value judgment for diverse queries.

To further verify the correctness of our assessment, we show
the efficiency of the mining algorithm according to our frame-
work. Two sets of results returned by our framework with diverse
hd and the deep model for above tasks are shown in Table 5. The
statistical results include the number of recommended images
that above two methods return, the number of suitable images
that SSD [14] algorithm picks out from the recommended images,
the proportion of suitable images in recommended images, and
the time cost that SSD spends on the recommended images.
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Fig. 9. The process of assessment on real-world dataset for three different queries.

Table 6
Time cost (unit:s) for assessment on Tencent dataset.

Number of query images in a group (number of groups)

1 (1000) 2 (500) 4 (250) 5 (200) 8 (125)

hd ≤ 1 1.21 ± 0.081 1.68 ± 0.17 3.75 ± 0.23 4.23 ± 0.26 7.37 ± 0.35
hd ≤ 2 1.62 ± 0.047 2.72 ± 0.091 5.77 ± 0.16 6.62 ± 0.22 8.22 ± 0.35
hd ≤ 4 2.33 ± 0.062 3.09 ± 0.12 6.18 ± 0.19 6.94 ± 0.24 9.38 ± 0.37

It is easy to find that, as hd becomes larger, the number of
recommend images increases while the number of considered
valid images is decreasing, because a larger hd will lead to a
greatly ascending number of those weakly correlated images.
Even so, our framework has an overwhelming predominance over
deep model in terms of precision of the recommendation (ratio).
This is because the semantic information which contains the
features with generalization ability extracted by DSTH and the
association analysis produced by SHR cannot directly captured by
deep model.

Furthermore, we also find that although task-B has a relatively
similar ranking query score with task-A, the number of its rec-
ommendation is greatly larger, because it is associated with two
different semantics. At the same time, task-C does not get a large
number of recommendation though also associated with two
semantics, because the associated semantics account for a low
proportion. Even so, for dominant data, our algorithm does not
give more recommendation data than deep model, which reduces
the analysis time cost for subsequent data mining. Our result
benefits from the combined effects of features with generalization
ability extracted by DSTH and association analysis produced by
SHR, which reduces the number of rough recommended images
about single object that deep model tends to return.

According to the ratio, even though setting hd = 24, the
valid recommendation of task-A, task-B and task-C account for
more than 50%, 22% and 0.5% respectively. This is completely
corresponding to our importance rank and suggestion, indicating
that our framework can truly and effectively expose the amount
and entity of relevant data in the dataset.

Besides, we select 1000 different images from the Tencent data
as query images to manifest the efficiency of assessment with
different hd. In addition to counting the assessment efficiency by
querying a single image, we also respectively randomly combine
2, 4, 5, 8 images together to collect the evaluation time cost. The
results are shown in Table 6.

We find that evaluating single image is the most efficient,
and the error is relatively smaller. As the number of images in
each group increases, both the time cost and error are becoming
larger. In addition, errors are relatively large when hd ≤1, which
is caused by the fact that some query images return none. It
should be noted that we did not show the time cost according to

different image sizes. In practice, we used cubic interpolation to
resize all images into 256*256 to adapt to the input specification
of ResNet. The time cost of resizing is negligible compared with
that of evaluation.

7. Related works

Data quality assessment. Research on data quality (DQ) started
in the 1990s and the initial research comes from group of MIT
University led by Professor Richard Y. Wang. They defined DQ
as ‘‘fitness for use’’ and used a two-stage survey to identify four
categories containing fifteen DQ dimensions [15]. [16] summa-
rized the most common dimensions and presented the approach
to managing the implementation of quality related algorithms of
a crawling search engine. [2] analyzed the challenges and impor-
tance of assuring the quality of big data. [1] as the latest research
provided a DQ service for applications aiming at analyzing Big
Data sources. They focused on the DQ Adaptor module and the
reliability of DQ based on context-aware methodology.
Graph-based ranking. Calculating the importance score of each
node is a special quantization method without clustering. It is
more effective to get evaluation standards by ranking for each
node globally. PageRank [8] considers out-degree of related nodes
as impact factor for data ranking. [17] applies random walking
to ranking community images for searching, which has achieved
good results. [18] introduced the concept of probability to im-
prove the RegEx in PageRank. However, above graph-based rank-
ing algorithms focus on in-degree and out-degree, neglecting
the weight on edges, resulting that they are not competent for
quantization with Hamming distance. TextRank [19] and Sen-
tenceRank [7] take the weights on edges into consideration, both
of which mentioned applying PageRank to improve their algo-
rithms, but none of them give solution to image data analyzing
and proof of convergence.
Graph embedding. Most graph embedding methods aim to
learn representations for graphs. Some earlier works like LLE [20]
and IsoMAP [21] utilized the eigenvectors as the network rep-
resentation based on extracted feature vectors. More recent re-
searches [22] designed two loss functions to capture the local
and global network structure respectively. Furthermore, [23] ex-
tended this work to learn high-order information. Others such
as DeepWalk [24], node2vec [25] used random walk and ex-
isting skip-gram to learn representations. However, all of them
adopted shallow learning and failed to effectively capture the
highly non-linear structure of networks. SDNE [26] designed a
clear objective function to learn nodes embedding by preserv-
ing both the first-order and second-order proximity using deep
neural network.
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8. Conclusions

In this paper, we present a semantic-aware data quality as-
sessment architecture, which can help the user perceive the
semantic relevance between the requirements and image big data
source in advance. Our IDSTH can effectively solve the out-of-
sample problem to ensure the correctness of semantic extraction.
Our designed SHR considers both the quantity of relevant data
and the degree of semantic similarity comprehensively, which
can give the assessment scores from a global perspective. Besides,
combining deep learning and retrieval technologies, our devel-
oped architecture consists of off-line data analysis and on-line
assessment, which ensures the real-time efficiency of assessment.
Extensive experiments verify the accuracy and efficiency of our
algorithm.
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