
Static Discovery and Remediation of

Code-Embedded Resource Dependencies

Nikolai Joukov∗, Vasily Tarasov†, Joel Ossher‡, Birgit Pfitzmann∗, Sergej Chicherin§,

Marco Pistoia∗ and Takaaki Tateishi¶

∗IBM T.J. Watson Research Center, Hawthorne, NY USA
†Computer Science Department, Stony Brook University, NY USA

‡Informatics Department, UC Irvine, Irvine, CA USA
§IBM Russian Systems and Technology Laboratory, Moscow, Russia

¶IBM Tokyo Research Laboratory, Tokyo, Japan

Abstract—Many enterprises perform data-center transforma-
tion, consolidation, and migration in order to improve the effi-
ciency of their IT infrastructures. These transformation projects
begin with the discovery of the existing infrastructure, in partic-
ular the dependencies between applications. These dependencies
are needed in planning, in order to determine how components
influence one another, and in relinking, so that the component
names and addresses can be updated. Typically, dependency
discovery is done by network monitoring and middleware con-
figuration analysis. These existing approaches will often fail to
detect dependencies expressed in the application code.

In this paper, we present the first method and tool for
automatically identifying code-embedded external dependencies
in Java Enterprise Edition applications. In addition, our tool
can automatically alter the application code to update the
dependencies, or externalize them to configuration files. We
analyzed over 1000 Java EE applications from three enterprise
environments. The results demonstrate the prevalence of code-
embedded dependencies that would otherwise have to be iden-
tified manually, often causing failures during user-acceptance
testing.

I. INTRODUCTION

Major enterprises are increasingly focused on improving

the efficiency of their IT infrastructures. Data center trans-

formation, IT optimization, consolidation, green projects, vir-

tualization, migration to cloud; these are just some of the

buzzwords associated with this trend. The recent economic

downturn has further accelerated investment in infrastructure

tranformation projects as a cost-cutting measure. In service

management terms, the ITIL “service transition” area repre-

sents such projects.

Large-scale IT transformation projects generally follow the

same sequence. They begin with a discovery phase, in which

the configuration of the originating system is explored and

documented. This is followed by a planning phase, where the

target configuration is specified, and a plan is developed for

performing the migration. Next is the actual migration, where

server images, applications, databases, etc. are moved. Finally,

the resulting system is tested.

Dependencies between applications are a major source

of complexity in the transformation process. They must be

discovered for planning, as one must know how components

influence one another and how they can be grouped together

for migration (which typically occurs over the course of

several months). Dependencies are again needed during the

migration itself, as the component names and addresses must

be updated, in a process we call relinking.

In some cases, address changes can be hidden from ap-

plications through network-level measures, in particular DNS

updates. This is not always effective. For example, IP ad-

dresses often change during a migration, yet many applications

use them directly instead of relatively constant DNS names.

DNS names can also change in mergers, acquisitions, and

major enterprise restructuring. In other cases, applications that

were co-located are split apart onto several virtual images,

thereby requiring different DNS names. In yet other cases,

applications, databases, or shared file systems are reorganized

and change their names. Typically, when names or addresses

change, enterprises prefer to update them directly (for the sake

of cleanliness and maintainability), even when it is possible

to handle both old and new DNS names, or put proxies in

place to translate IP addresses. This has been the case in all

of the large-scale migration projects that we have participated

in. Even in cases where address updates are not planned, one

still must discover all the dependencies during the planning

phase in order, among other things, to know what applications

will be down while certain components are being moved, and

whether there may be application performance problems if

some components are moved and others not.

Figure 1 shows a typical dependency structure for a candi-

date system for IT transformation. An arrow from Component

A to Component B means that A depends on B. One might

expect that dependencies as in Figure 1 would already be

known, especially for production servers running business-

critical applications. Yet in reality this is almost never the

case. There are numerous reason for this, ranging from the

inevitable accumulation of older-generation technologies to

the haphazard integration of infrastructures after a merger

or acquisition. Our team has been involved in many real-

life transformation projects, and in every instance dependency

discovery was required.

There are many commercial offerings for IT discovery. They

generally work by either monitoring the running system or

statically exploring configuration files. When used in conjunc-

tion, these tools give a good picture of a deployed system.

However, configuration-based approaches depend on the con-

figuration files accurately capturing the dependencies, while

monitoring-based approaches are ill-suited for discovering rare

behavior, and provide little information to aid with relinking,

i.e., little information about where an address that needs to be

changed can be found.

In theory, configuration files should accurately represent

the system configuration; in some cases they should even

capture it completely. For example, according to the Java

Enterprise Edition (Java EE) specification, all references to

other components, servers, and network or storage resources

should be placed in standardized configuration files. As Java

EE progams are important to our migration scenarios, we

decided to verify that the applications follow the specification.

Initially, we semi-manually analyzed a number of deployed

systems. Unfortunately, we discovered many instances where

dependencies were either specified in non-standard resource

files or wholly or partially specified in the code itself.

These dependencies pose a major problem to existing dis-

covery systems. They cannot be captured by configuration-

based approaches, and monitoring-based approaches face the

issues described above. This can cause issues to turn up during

the end-user acceptance test or even after cut-over, where they

lead to time-consuming root-cause analysis and possible de-

lays in the project schedule. Testing and remediation currently

account for about 1/3 of typical transformation costs, and

Fig. 1. Dependencies between software components. Grey boxes represent
servers.

a lot of that is spent on identifying dependencies that have

not been fixed. Thus, any method to identify and relink these

dependencies in the earlier transformation phases offers huge

potential cost savings.

In this paper, we present the first tool for automatically

detecting and relinking dependencies in standard Java and

Java EE applications. Our tool detects dependencies that

are entirely or partially specified in the code itself; we call

this code-embedded. Hence it looks for instances where the

actual code accesses the file system or network resources.

For each access, our tool attempts to determine the target,

which is specified directly through expressions based on string

constants, indirectly through external resource files, or through

a combination of both.

Our tool works on Java bytecode or source code, and

understands standard packaging formats, such as jar, web

archive (WAR) and enterprise archive (EAR). Given an ap-

plication, it first identifies library calls that reference external

resources. This includes accessing the file system, creating

network connections, and invoking remote procedure calls.

The parameters to these calls are then traced back to determine

(a) what resources are being accessed and (b) where the

references to the resources are stored. If a reference is stored

in an external resource file, its location and the property

accessed are reported. Our tool can also modify the code-

embedded references to new addresses of the resources, and/or

externalize them to a resource file. Our analysis is static, and

is built by extending the open source T.J. Watson Libraries

for Analysis (WALA) [22] and WALA-SA, a research system

for string analysis [11]. We also enhanced Galapagos [18], a

discovery tool we developed, to fetch application code and

related configuration files and program environment data.

Our tool aids the discovery phase of transformation projects,

augmenting static configuration discovery with information

previously unavailable. It also simplifies the migration phase,

as the information it provides allows migration engineers to

more easily locate and change the non-standard configuration

information. Finally, it shortens the testing phase because

fewer errors will be left after the prior phases.

The remainder of this paper is organized as follows: We

introduce the problem setting and provide a motivating ex-

ample in Section II, followed by a review of the related

work in Section III. In Section IV we present the details of

our algorithms, and in Section V we discuss the capabilities

and limitations of our approach. Section VI contains statistics

about the occurance of different types of dependencies in over

1000 applications from real enterprise environments and the

performance of our tool. We conclude in Section VII.

II. MOTIVATING EXAMPLES

In this section, we show how our tool can be used, present

details of the enterprise production code setting, and give ex-

amples of increasingly complex code dependencies on external

resources.

A. Migration Scenario

Imagine you are a migration engineer in an IT services

company. You are asked to migrate a retailers’s HR software

from their old data center to a new virtualized environment.

You already use discovery tools including network observation

and configuration analysis to discover significant information

about the existing systems. Additionally, you now start our

tool on the Java applications you discovered, to find code-

embedded dependencies. Tyipcally, some of these you had not

found at all so far. Others you may have known from network

observation without knowing where they were defined. Using

the overall information, you make a plan what needs to move

where.

Now it is time to move ahead with the migration. Your

other tools have already identified various configuration files

you need to update, so you make those changes. You then

load our tool’s discovery results and switch it to migration

mode. From the migration plan, you input a mapping of old

to new addresses. Our tool makes the updates that it can

do unambigously, and shows you any accesses where it was

unable to determine exactly what to do. You try to solve those

manually, possibly by discussions with application owners or

interactive debugging. You are glad that at least you have far

less of such work than without such a tool, and a lot less failed

dependencies later.

B. Enterprise Production Environment

Figure 2 shows a program in a standard enterprise produc-

tion environment. Solid arrows show environment elements

that are always present, dashed arrows show elements that

are typically but not always present. Some relevant external

resources are shown in bold on the right. From the point of

view of our analysis, external means everything outside of the

runtime instance of the program.

Executable

program

Based on

Command-line

input
Configuration

repository

Source code

Database

used

Library

code Program

statement

Variable

Database

File

Basic

runtime

environment

Queue

Running

program

or application

Environment

Users

Current paths

Fig. 2. An application with its environment

The program runs in a basic runtime environment, such as

a Java VM or in enterprises typically a Java EE application

server. It may depend on other external libraries. A configura-

tion repository means any configuration files or configuration

databases that the program may have. While command-line

inputs and configurations can be changed, for typical long-

running enterprise applications they are effectively static and

thus we can use them in our analysis. Even if an enterprise

program does not run continuously, it is typically restarted

every time by a fixed script with the same configuration.

C. Examples of Code-Embedded Dependencies

External dependencies can be embedded in code as con-

stants or loaded from external resource files. Figure 3 shows

two examples of the first case. In both examples, the program

attempts to access a file by opening a FileInputStream

with a path that is directly specified in the code. For f0, the

path to the file is given as a single constant string. This type

of code-embedded dependency is easy to detect and fix, but,

as we will see in Section VI, it is not very common. More

commonly the path is constructed by multiple statements.

For f1, the path is obtained by concatenating a constant

string and the value of variable name. This value depends

on another variable, version. Without string analysis, we

would overapproximate the path as /data/*. With string

analysis, we can properly compute the two possible paths as

/data/matrix.old and /data/matrix.

FileInputStream f0, f1;

f0 = new FileInputStream("/data/matrix");

if (version == "old")

name = "matrix.old";

else

name = "matrix";

f1 = new FileInputStream("/data/" + name);

Fig. 3. Two examples of code-embedded file dependencies

Properties props = new Properties();

props.load(getClass().getResourceAsStream(

"settings.properties"));

String db = props.getProperty("db.dbname");

Connection cn = DriverManager.getConnection(

"jdbc:db2://" + db, "admin", "pwd");

Fig. 4. Dependency on a database via properties

Figure 4 shows an example of an indirectly specified

dependency, where the resource path is itself stored in an

external properties file. In a real application, all four state-

ments would not necessarily be contiguous. In this example,

DriverManager.getConnection attempts to open a

database connection. Its first parameter is the database URL,

which is the concatenation of two strings. As the value of

db is not specified in the code, existing string analysis would

overapproximate the URL as jdbc:db2://*, which is not

very helpful.

Our extension of the string analysis goes further.

It detects that the variable db is assigned a value

from a properties file, because of the expression

props.getProperty("db.dbname"). Now our

analysis performs two additional steps. First, it determines the

property name, here "db.dbname", using string analysis on

the parameter to getProperty. Second, it resolves from

which file props was loaded. We then load the properties

file ourselves, e.g., the example file in Figure 5, and determine

that the value of db is sales.

In this example, the properties file is loaded using

getResourceAsStream("settings.properties")

rather than from a specific path. This uses Java’s class loader

to locate the file. Similar approaches are common in portable

programs. In order to locate "settings.properties",

our algorithm mimics Java’s class loader behavior based on

the run-time environment for the application.

DATABASE configuration

db.dbname=sales

db.maxcon=5

db.mincon=2

Fig. 5. Java property file settings.properties

III. RELATED WORK

Our work is related to two main areas: IT asset and

dependency discovery and string analysis.

Today IT asset and dependency discovery tools are avail-

able from many vendors. They probe network nodes with

requests [2, 9], monitor network traffic [4, 10, 15, 16, 23], or

analyze software configurations [1, 3, 12, 13, 18, 21]. The con-

figuration analysis is done for packaged middleware and

applications such as databases, Java EE servers, and ERM

systems. For Java EE servers, only the objects and relations

explicitly configured at the server level are analyzed, such as

which EJBs are deployed and what resources are declared. We

are not aware of any tools like ours that perform discovery in

actual code.

Automated modification of dependency configurations has

been considered in SOA redeployment [17, 20]. Yet these

approaches focus on configuration files, ignoring the code.

For example, Sethi et al. [20] explicitly state that for Java

EE applications, data source descriptions are changed. These

are the Java EE-compliant configuration files that should be

used, but that we have found often are not.

An early introduction to relinking can be found in [8].

However, their discovery is limited to activity time series

inference, which does not enable automated relinking. In [7],

again only externalized configurations are changed, and the

changes are based on models from product designers rather

than discovered source systems. In our use cases, no such

models are available.

String analysis is a form of static program analysis used

for inferring the string values that can arise at runtime, and is

an instantiation of abstract interpretation [6]. Java-based string

analysis was introduced by Christensen et al. [5, 14] in their

Java String Analyzer (JSA). JSA approximates the value of

a string expression with a regular language. Minamide [19]

increased the precision of the analysis by using context-free

languages. Geay et al. developed a string analysis for Java and

Common Language Runtime (CLR) applications with a novel

labeling feature for tracking the origin of each component in

the resulting string [11]. Their prototype implementation was

built on IBM’s Watson Libraries for Analysis (WALA) [22].

It is this implementation that we extended for our work.

We are not aware of prior work that uses information about

the runtime environment when performing static code analysis,

nor of prior work on altering or externalizing existing code-

embedded constants, as our relinking does.

IV. STATIC DEPENDENCY DISCOVERY AND RELINKING

In this section, we describe our method for discovering and

relinking code-embedded dependencies. It generalizes from

the examples in Section II-C. Our tool proceeds in seven steps,

which we describe in the following subsections.

A. Gather Code and Configuration Information

We mainly consider running production environments where

little is known in advance. Hence, before analyzing an applica-

tion, we must detect it and fetch its code and related state and

configuration information. Techniques to detect applications

include examining the currently running processes, registered

packages, and standard installation paths. Disk scanning is an

option if audit and performance constraints permit it. One can

also look for processes that start others, e.g., inetd can start

a program upon receiving a network request. None of these

techniques alone is perfect, hence a combined approach is

warrented. We have augmented Galapagos with several such

features since our earlier publications.

Java EE applications usually store configuration files inside

their Enterprise Archive (EAR) files, or somewhere on the

classpath. By fetching the EAR files and files from the

classpath, our Galapagos extensions obtain most of the

related configuration files. In addition to code and configu-

ration files, we also record some system parameters defining

the application’s environment: its root directory, environment

variables, and command-line arguments. We also fetch the

configuration of the underlying application servers where our

Java code runs.

B. Construct Call Graph

Next we start static analysis by pointing our tool, i.e.,

extended WALA, to the gathered application archive files. One

of these extensions was made to support the multi-level nested

archive files common in Java EE applications.

We then generate call graphs for each module using WALA’s

standard propagation call graph builder. These call graphs are

rooted at specific entrypoints. Proper entrypoint determination

is important, as missed entrypoints result in sections of the

program being considered dead and being ignored for the

remainder of the analysis. For standard Java applications we

include all main methods and static initializers. For Java

EE, we also include Java Servlet methods entrypoints and

entrypoints derived from the deployment descriptor.

C. Identify Stop Methods

We define a stop method as any method that provides access

to an external resource. We distinguish direct stop methods,

which do this directly through native code, e.g., many methods

in FileInputStream, from indirect stop methods, which

do this through other Java methods, e.g., FileReader. We

do not want to identify all indirect stop methods, as there

are simply too many such methods. One approach would be

to limit the identification to direct stop methods. This would

be effective, as in theory every indirect stop method must

somewhere invoke a direct stop method. However, this is rather

confusing for users, as people are not generally familiar with

the private native methods that actually implement the access

functionality.

We therefore decided to identify any direct or indirect stop

method in the public API for accessing external resources. As

a direct native method can only be invoked via the public API,

every access is captured. For example, FileInputStream’s

private native method open is only invoked in the construc-

tors of the class. So by identifying the constructors as stop

methods, we catch every access to open.

An additional constraint is that we only consider methods

that name the resource being accessed. For example, the

constructors of FileInputStream take the path to the file

as input, and so are useful stop methods, while the read

method is not useful, as it does not provide any information

about the resource. If the resource is not named in any method,

then its location is likely specified in the configuration files

that are analyzed by other approaches.

We annotate each stop method with the parameters that

describe the location of the resource it accesses. In most cases,

this location is expressed as a primitive type or a String.

When this is not the case, such as the FileInputStream

constructor that has a File as the input parameter, we do

not include that method as a stop method. Instead, we use

the method that creates the parameter type (in this case, the

constructors to File).

So far, we identified stop methods in the Java Standard

Library and some Java EE APIs. Our list of stop methods

was compiled by hand by someone familiar with these li-

braries. The list includes many methods in the java.io

and java.net packages, as well as methods relating to

loading resources and creating database connections. Our tool

can easily be adapted to treat any method as a stop method,

and so can be extended to cover custom libraries or other

frameworks.

Actually identifying the invocations of stop methods is

a straightforward search through the call graph. As with

most static analysis approaches, we cannot identify non-trivial

invocations that use reflection. However, we can detect uses of

reflection and alert the migration engineer of their locations.

D. Trace back invocation parameters

In this step, we analyze each stop method invocation to

determine the provenance of the location-describing parame-

ters. A parameter value can be derived from code-embedded

constants (as in Figure 3), external resources (as in Figure 4),

or a combination of both. We extended a WALA-based string

analysis package [11] to perform this analysis.

Given a WALA call graph and a single parameter, the

string analysis computes a context-free grammar (CFG) that

overapproximates the parameter’s value; it is a superset of all

values that the parameter might take during execution. The

CFG is annotated with labels describing the origin of each

terminal. In many cases, the resulting CFG resolves to a single

string or a set of strings, e.g., as we computed the two possible

paths for f1 from Figure 3.

As described earlier, in many situations the location of the

resource is specified in an external configuration file. In the

standard string analysis, such cases result in a wildcard, as the

analysis does not know how to handle the methods accessing

these configuration files. We extended the string analysis by

adding transducers for those methods.

Transducers are used when the string analysis attempts to

solve the grammar (initially derived from the single static

assignment form of the bytecode) for a certain parameter. If

the parameter value depends on a method invocation, the string

analysis looks for a transducer for that method. The transducer

rewrites the CFG to remove the method invocation while

mimicking its behavior. For example, the append method

for StringBuffer has a transducer that adds a production

rule to the grammar concatenating the current value with the

parameter’s CFG value. If no transducer is found, a default

transducer replaces the invocation with a wildcard.

We added transducers for methods like getProperty in

java.util.Properties. These transducers record that

an access has occured, and replace each invocation with a

unique key string. In the example from Figure 4, the original

string analysis would result in jdbc:db2://*. With the cus-

tom transducer added, the result is instead jdbc:db2://$1,

where $1 is the unique key string inserted by the transducer.

It will be resolved in the next step.

E. Resolve configuration access

The final step in the discovery phase is to resolve the param-

eters whose values depend on external configuration files, such

as props.getProperty("db.dbname") from Figure 4.

For each access, we attempt to determine the location of

the configuration file ("settings.properties") and the

part of it that was accessed ("db.dbname").

A variant of the string analysis is used to accomplish this. To

determine the portion of the configuration file being accessed,

we trace back the parameter value just as in the previous

section. For the example, this means identifying the code-

embedded string "db.dbname". To determine the location

of the configuration file, we apply the analysis to the access’

receiver object, here props. For example, if the access was

an invocation of getProperty on a Properties object,

we trace back the value of the Properties object. In this

case, it means determining that props was loaded from

"settings.properties". While the object is not itself

a string, we consider it to have the string value of the location

it was loaded from.

Once the configuration file location and property name are

known, we load the file to extract the possible values for the

property. In situations where the file location is fully specified,

this step is straightforward. If only a relative path is given, we

must use the information collected by Galapagos about the

system’s runtime configuration to reconstruct the full path. For

cases where Java’s Class Loader is used to load the resource,

we mimic its behavior to find the resource on the classpath.

We built transducers for the methods of Properties

and ResourceBundles, as those are the two main ways

the Java Standard Library provides for handling configuration

files. If a program uses another approach, our identification

of stop methods in Step IV-C will still detect the loading of

the configuration file, but we cannot automatically extract the

correct parameter value from it yet.

F. Explore results

Typically at this point, the user will want to see the

results, even if automatic relinking is also planned. The user

can browse through the stop method invocations, sorted by

invocation location or target. For each invocation, the user

can see the possible values of its parameters, and where those

values come from. If some or all of a value is externalized,

the relevant configuration file and location is reported.

G. Correct code-embedded dependencies

Given the analysis results, the user may choose to

automatically modify code-embedded dependencies. This

may mean altering the addresses, externalizing the constants

directly specified in the code, or both. The user chooses the

type of change to be made, and provides a mapping from old

to new addresses for resources that are being migrated. The

tool compares this mapping with the discovered resources

to generate an automated relinking plan. For the example in

Figure 3, if the user wanted to map "/data/matrix.old"

to "/share/data/matrix.jan2010" then our

tool generates a suggested plan to change the constant

"/data/" to "/share/data/" and "matrix.old"

to "matrix.jan2010". It also warns the user that this

change results in "/data/matrix" now mapping to

"/share/data/matrix".

To generate these plans, we first identify the addresses com-

puted by our analysis that have to change. For each of these,

we compare the target address with the original address using

a variant of the standard dynamic programming technique

for computing edit distance. We break the original address

into substrings based on how the address was constructed. In

our example, the address gets broken into "/data/" and

"matrix.old". We then iterate through the substrings in

reverse order, and use the edit distance table to pick the

closest match for each substring. This results in the suggested

mapping described above.

If the user chose to only update the addresses, we modify

the class files and properties files to replace one constant

value with another. Otherwise, we automatically externalize

the constants to a resource file for easier future changes. We

synthesize a class containing a static final field for each con-

stant to be externalized. We then create a static initializer for

this class that loads a properties file and initializes each field

to the value specified in the properties file. This properties file

contains the constant values either from the original program

or the mapping plan. In the initial class files, we replace every

relevant constant load instruction with a field load instruction,

pointed at the corresponding field. This modification imposes a

slight performance penalty on each access, and a large penalty

when the constants are first loaded. In our testing, we have

found that even for string-intensive long-running applications

this impact is negligible.

In cases where the source code is available, we can auto-

matically generate patches for the source code that implement

the same behavior as our bytecode modifications.

V. COMPLETENESS AND CORRECTNESS

Discovering precisely which resources a program accesses

is undecidable. As a result, our tool is not complete; it is

unable to discover every dependency. Fortunately, this does not

negatively impact its usefulness. Our tool’s main objective is

to aid the discovery and relinking process in server migrations.

No current tool in this domain is complete (whether they use

static code analysis or not), and each contributes something

unique. Every dependency we can automatically handle is one

less that has to be found manually or that will turn up as a

hard-to-trace fault during user-acceptance testing.

One reason for the lack of completeness is the use of

reflection and native methods, which cause problems for static

analysis techniques. Our tool flags all instances of reflection

and native method invocation, so the user is aware of possible

missed accesses.

Another issue related to completeness, as mentioned in Sec-

tion IV-B, is that improper entrypoint determination will result

in portions of the code being ignored. While in standard Java

only main methods are entrypoints, Java EE is significantly

more complicated. To partially mitigate the effect of missing

entrypoints, our tool reports all stop method invocations that

occur in dead code. To eliminate this issue entirely, we are

exploring a form of entrypoint-less call graph construction

using the type hierarchy. However, this will also lead to a

loss in precision because all parameters of entrypoint methods

must be assumed to have arbitrary values.

Another potential source of error is the classification of stop

methods. We assume that the human classifying the APIs did

it correctly. However, we do not claim that we classified all

APIs a program might use. Our tool has the option to output all

unknown external method calls, giving the user the opportunity

to identify important methods that had been missed.

Our tool will correctly identify any possible resource paths

for stop methods that it detects. For example, if it discovers

an instantiation of FileInputStream, the list of potential

paths will be complete, albeit sometimes an overapproximation

using wildcards. This property is guaranteed by the underly-

ing string analysis and by our new transducers, which also

overapproximate.

When automatically remediating code-embedded depen-

dencies, our tool would ideally do this without otherwise

impacting the semantics of the program. This is not possible

in general, as one could always come up with a pathological

case where the behavior of the program depended on the value

of a string constant in bizzare ways. However, the effect of

our approach is identical to someone changing those string

constants manually. Additionally, our tool detects the effect of

any changes on other external resource accesses, something a

user would not be able to do manually.

We cannot automatically generate a relinking plan in every

circumstance, but our tool fails gracefully and will detect any

conflicts. It does guarantee the proper implementation of any

specified plan.

VI. EVALUATION

We examined three real-world enterprise environments,

which we call A, B, and C. Environment A is the oldest;

discovery was performed as part of its sunsetting. Discovery in

Environments B and C was performed as part of optimization

projects. Servers in environments A and C mostly run AIX,

servers in B mostly Solaris OS, and a significant number of

servers in all environments run Linux. During the discovery,

we fetched all applications deployed on WebSphere applica-

tion servers (WAS) and related system configuration informa-

tion. Table I shows the statistics of the WAS installations we

found in these environments, the application instances in them,

and how many of these applications were unique. We ran our

tool on each unique application.

A B C Total

WAS installations 45 17 204 266
Application instances 111 104 5040 5255
Unique applications 56 49 1034 1097

TABLE I
STATISTICS OF THE ANALYZED APPLICATIONS

A. Prevalence of Code-embedded Dependencies

Our first goal was to determine the prevalence of code-

embedded dependencies in the three environments. Table II

shows the percentage of applications in each environment that

connect to messaging queues and databases using addresses

not specified in standard configuration files. We were con-

servative in our detection, and ignored all dependencies not

related to messaging queues or databases. In particular, we

excluded dependencies on files inside the application archives,

as addresses to such files do not need to be updated during

migration. If we were to include additional dependency types,

these percentages would only increase. Even using this con-

servative approach, we found code-embedded dependencies

in between 30% and 90% of the applications we analyzed,

depending on environment. This indicates that static discovery

with prior tools would miss many dependencies.

There are interesting differences between the three environ-

ments. In environments A and C, most databases are referenced

according to the Java EE specification, while most messaging

queues are not. In environment B, it was evenly distributed.

A B C

Messaging queues (%) 94 31 92
Databases (%) 7 25 5

TABLE II
NON-STANDARD EXTERNAL DEPENDENCIES IN OUR ENVIRONMENTS

B. String Analysis

Our second goal was to determine the necessity of the string

analysis. In particular, if stop method parameters were mostly

simple string constants, as in File("/data/data.xml"),

then the string analysis would not be needed. Table III

shows the percentages of stop methods called using directly

loaded string constants. The low percentages indicate that the

string analysis is indeed needed to reconstruct the majority of

parameter values.

A B C

Directly loaded string constants (%) 8 10 7

TABLE III
CALLS TO STOP FUNCTIONS WITH CONSTANT PARAMETERS

C. External Configuration Files

In order to determine the importance of analyzing config-

uration file accesses, we computed the number of external

configuration files present in each environment. Table IV

shows these results. While these numbers do not directly prove

that addresses are being loaded from these configuration files,

the sheer number of such files suggests that ignoring them

would be a problem.

A B C

Properties 439 99 26,732
XML 0 13 29

TABLE IV
NUMBERS OF PROPERTY AND XML FILES USED BY THE APPLICATIONS

D. Relinking

When testing the relinking aspect of our tool, we did

not use applications from the three environments described

above. As we cannot personally run the applications from

those three environments, we instead focused our relinking

evaluation on a collection of test programs, such as a running

web server. Through our testing, we were able to successfully

relink addresses and did not discover any situations where our

bytecode modifications unexpectedly altered the semantics of

the program.

E. Performance

Table V shows the performance of our tool on several

applications of different sizes. We ran our tool on a single

stop method invoked only once in the code, using a 2GHz

Linux machine with 4GB of memory. For each application, we

list the number of classes, the number of callgraph nodes, the

number of production rules instantiated by the string analysis,

and the time required to perform the analysis. About two

thirds of the execution time is spent on building the callgraph

and doing other once-per-application operations. Automated

relinking adds a negligable amount of time to the overall total.

In cases of a large enterprise applications, the string analysis

becomes more complex, which leads to relatively long execu-

tion times (typically the total per-application processing takes

10–100 times longer than the one stop method times listed in

Table V). Fortunately, we perform this analysis off-line after

we have fetched the application code and related configuration

files. Therefore, the time required to perform the analysis is

tolerable. In addition, the off-line analysis allows us to use

powerful servers. For our large-scale experiments with all the

applications, we used a set of IBM System p5 575 16-core

systems that are a lot more powerful than the machine used

for Table V.

Application Classes Nodes Rules Time (sec)

App1 71 822 11130 33
App2 835 7828 545792 150
App3 1585 11648 406645 173
App4 3141 20510 674450 319

TABLE V
PERFORMANCE ON APPLICATIONS OF VARIOUS SIZES

VII. CONCLUSIONS

In this paper, we have presented the first method and tool for

statically discovering and remediating code-embedded depen-

dencies. Our tool identifies references to external resources

such as databases, messaging queues, and files. It can also

alter or externalize the detected addresses in order to enable

migration.

We implemented our tool for Java and Java EE applications

and analyzed three enterprise environments comprising 1097

unique applications. The resulting statistics show that our

analysis is indeed needed to capture all the dependencies,

despite Java EE standards that state dependencies should be

defined in special resource files and not in the code. The

percentage of applications with code-embedded dependencies,

even if one only counts databases and messaging queues,

ranges from 31 to 94% depending on the environment. This

indicates that for a large percentage of applications, existing

static discovery tools, including our own Galapagos tool, will

miss dependencies. We also discovered that less than 10%

of the dependencies are specified as simple string constants,

making string analysis aspect of our tool necessary. Further-

more, we saw that components of these strings often come

from other resources in the environment of the program.

Acknowledgments: We would like to thank Norbert G.

Vogl, Daniel A. Prener, Murthy V. Devarakonda, HariGovind

V. Ramasamy, Igor Peshansky, and Julian Dolby for their

invaluable contributions to this paper.

REFERENCES

[1] HP discovery and dependency mapping (DDM) inventory
software. www.hp.com/hpinfo/newsroom/press kits/2007/
softwareuniversebarcelona/ds inventory.pdf.

[2] ISI-snapshot... agent-less accurate and rapid IT infrastructure inventory,
configuration and utilization collection using a single tool. www.isiisi.
com.

[3] M. Bowker, B. Garrett, and B. Laliberte. EMC smarts application
discovery manager. Technical report, ESG Lab Validation Report, July
2007.

[4] A. Caracas, D. Dechouniotis, S. Fussenegger, D. Gantenbein, and
A. Kind. Mining semantic relations using NetFlow. In 3rd IEEE/IFIP

Int. Workshop on Business-Driven IT Management (BDIM), pages 110–
111, 2008.

[5] A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise analysis
of string expressions. In Proceedings of 10th International Symposium

on Static Analysis (SAS), 2003.
[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation
of fixpoints. In Proc. 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL ’77), pages 238–252,
1977.

[7] T. Eilam, M. H. Kalantar, A. V. Konstantinou, G. Pacifici, J. Pershing,
and A. Agrawal. Managing the configuration complexity of distributed
applications in internet data centers. IEEE Communications Magazine,
44(3):166–177, 2006.

[8] C. Ensel. New Approach for Automated Generation of Service De-
pendency Models. In 2nd Latin American Network Operation and

Management Symposium (LANOMS’01), 2001.
[9] Fyodor. NMAP(1), 2003. www.insecure.org/nmap/data/nmap manpage.

html.
[10] D. Gantenbein and L. Deri. Categorizing computing assets according to

communication patterns. In Tutorial on Asset Inventory and Monitoring

in a Networked World, Conf. on Networking, pages 83–100, 2002.
[11] E. Geay, M. Pistoia, T. Tateishi, B. G. Ryder, and J. Dolby. Modular

string-sensitive permission analysis with demand-driven precision. In
Proceeeding of 31st International Conference on Software Engineering

(ICSE), 2009.
[12] HP discovery and dependency mapping software. https://h10078.www1.

hp.com/cda/hpdc/navigation.do?action=downloadPDF&caid=9607&cp=
54 4000 100&zn=bto&filename=4AA1-4991ENW.pdf.

[13] N. Joukov, B. Pfitzmann, H. V. Ramasamy, and M. V. Devarakonda.
Application-storage discovery. In 3rd Annual Haifa Experimental

Systems Conference (SYSTOR’10), Haifa, Israel, May 2010. ACM.
[14] Java string analyzer (JSA). www.brics.dk/JSA.
[15] A. Kind, D. Gantenbein, and H. Etoh. Relationship discovery with

NetFlow to enable business-driven IT management. In 1st IEEE/IFIP

Int. Workshop on Business-Driven IT Management (BDIM), pages 63–
70, 2006.

[16] A. Kind, P. Hurley, and J. Massar. A light-weight and scalable network
profiling system. ERCIM News, January 2005.

[17] Q. Ma, Y. Li, K. Sun, and L. Liu. Model-based dependency management
for migrating service hosting environment. In Proc. IEEE Intern. Conf.

on Services Computing (SCC 2007), pages 356–363, 2007.
[18] K. Magoutis, M. Devarakonda, N. Joukov, and N. Vogl. Galapagos:

Model-driven Discovery of End-to-End Application-Storage Relation-
ships in Distributed Systems. IBM J. Research and Development,
52:367–378, 2008.

[19] Y. Minamide. Static approximation of dynamically generated web
pages. In Proceedings of 14th International World Wide Web Conference

(WWW), 2005.
[20] M. Sethi, K. Kannan, N. Sachindran, and M. Gupta. Rapid deployment

of SOA solutions via automated image replication and reconfiguration.
In Proc. IEEE Intern. Conf. on Services Computing (SCC 2008),
volume 1, pages 155–162, 2008.

[21] Tivoli Application Dependency Discovery Manager. www.ibm.com/
software/tivoli/products/taddm.

[22] Watson libraries for analysis (WALA). wala.sourceforge.net.
[23] X. Zheng, M. Zhan, Z. M. Mao, and P. Bahl. Automating network

application dependency discovery: Experiences, limitations, and new
solutions. In Proc. 8th Symp. on Operating Systems Design and Im-

plementation (OSDI 2008), pages 117–130, San Diego, CA, December
2008.

