
Algorithms for Mining Meaningful Roles∗

Zhongyuan Xu
Department of Computer Science

Stony Brook University, USA
zhoxu@cs.stonybrook.edu

Scott D. Stoller
Department of Computer Science

Stony Brook University, USA
stoller@cs.stonybrook.edu

ABSTRACT
Role-based access control (RBAC) offers significant advan-
tages over lower-level access control policy representations,
such as access control lists (ACLs). However, the effort re-
quired for a large organization to migrate from ACLs to
RBAC can be a significant obstacle to adoption of RBAC.
Role mining algorithms partially automate the construction
of an RBAC policy from an ACL policy and possibly other
information, such as user attributes. These algorithms can
significantly reduce the cost of migration to RBAC.

This paper proposes new algorithms for role mining. The
algorithms can easily be used to optimize a variety of pol-
icy quality metrics, including metrics based on policy size,
metrics based on interpretability of the roles with respect
to user attribute data, and compound metrics that consider
size and interpretability. The algorithms all begin with a
phase that constructs a set of candidate roles. We consider
two strategies for the second phase: start with an empty
policy and repeatedly add candidate roles, or start with the
entire set of candidate roles and repeatedly remove roles.
In experiments with publicly available access control poli-
cies, we find that the elimination approach produces better
results, and that, for a policy quality metric that reflects
size and interpretability, our elimination algorithm achieves
significantly better results than previous work.

Categories and Subject Descriptors: D.4.6 [Operat-
ing Systems]: Security and Protection—Access Controls;
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords: role mining, role-based access control

1. INTRODUCTION
Role-based access control (RBAC) offers significant ad-

vantages over lower-level access control policy representa-

∗This work was supported in part by ONR under Grant
N00014-07-1-0928, NSF under Grant CNS-0831298, and
AFOSR under Grant FA0550-09-1-0481.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

tions, such as access control lists (ACLs). However, the ef-
fort required for a large organization to migrate from ACLs
to RBAC can be a significant obstacle to adoption of RBAC.
Role mining algorithms partially automate the construction
of an RBAC policy from an ACL policy and possibly other
information, such as user attributes. These algorithms can
significantly reduce the cost of migration to RBAC.

Several versions of the role mining problem have been pro-
posed. The most widely studied versions involve finding a
minimum-size RBAC policy consistent with (i.e., equivalent
to) given ACLs. However, interpretability of roles is also
crucial, because typically, a role produced by a role mining
algorithm will be adopted by security administrators only
if they can identify a reasonable interpretation of the role,
in which case the role is said to be “meaningful”. Indeed,
researchers at HP Labs wrote that “the biggest barrier we
have encountered to getting the results of role mining to
be used in practice” is that “customers are unwilling to de-
ploy roles that they can’t understand.” [3]. When data
about attributes of users is available, it can be used to help
identify meaningful roles. The general idea is that a role
is meaningful if its set of members can be characterized by
an expression involving user attributes. There are numerous
reasonable variants of the definitions of policy size and in-
terpretability, and different definitions may be appropriate
in different contexts.

The main contribution of this paper is a role mining algo-
rithm that can easily be used to optimize a variety of pol-
icy quality metrics—including metrics based on policy size,
metrics based on interpretability of the roles with respect
to user attribute data, and compound metrics that consider
size and interpretability—and that achieves good results.

All of our algorithms begin with a phase that constructs a
set of candidate roles. We consider two strategies for the sec-
ond phase: start with an empty policy and repeatedly add
candidate roles, or start with the entire set of candidate roles
and repeatedly remove roles. In experiments with publicly
available access control policies, we find that the elimination
approach produces better results, and that, for a previously
proposed policy quality metric that reflects size and inter-
pretability, our elimination algorithm achieves significantly
better results than previous work that aims to optimize that
metric, even though our algorithm is not specifically tuned
for that metric.

Other contributions of this paper include:

• an investigation of the effect of varying the order in
which roles are considered for removal in the elimina-
tion algorithm;

• an algorithm for synthesizing user attribute data. The
use of synthetic user attribute data in experiments is
regrettable but currently unavoidable, due to the lack
of publicly available real user attribute data.

2. PROBLEM DEFINITION
This section defines the role mining problems that we con-

sider. Our definitions are similar to those in [9].

Policies and Policy Quality.
An ACL policy is a tuple 〈U,P,UP〉, where U is a set of

users, P is a set of permissions, and UP ⊆ U × P is the
user-permission assignment.

An RBAC policy is a tuple 〈U,P,R,UA,PA,RH 〉, where
R is a set of roles, UA ⊆ U ×R is the user-role assignment,
PA ⊆ R × P is the permission-role assignment, and RH ⊆
R × R is the role inheritance relation. Specifically, 〈r, r′〉 ∈
RH means that r is senior to r′, hence all permissions of
r′ are also permissions of r, and all members of r are also
members of r′.

An RBAC policy with direct assignment is a tuple 〈U,P,R,
UA,PA,RH ,DA〉, which is an RBAC policy extended with
a direct user-permission assignment DA ⊆ U × P . Allow-
ing direct assignment of permissions to users provides more
flexibility to handle anomalous permissions.

An RBAC policy is consistent with an ACL policy if UA◦
PA = UP , where ◦ is composition of relations. An RBAC
policy with direct assignment is consistent with an ACL pol-
icy if UA ◦ PA ∪DA = UP .

User-attribute data is a tuple 〈A, f〉, where A is a set of
attributes, and f is a function such that f(u, a) is the value
of attribute a for user u. For simplicity, we assume that all
attribute values are natural numbers.

A policy quality metric is a function from RBAC poli-
cies (or RBAC policies with direct assignment) to a totally-
ordered set, such as the natural numbers. The ordering is
chosen so that small values indicate high quality; this might
seem counter-intuitive at first glance, but it is natural for
metrics such as policy size. We define two basic policy qual-
ity metrics and then consider combinations of them.

Weighted Structural Complexity (WSC) is a generalization
of policy size [9]. For an RBAC policy π of the above form,
we define weighted structural complexity by WSC(π) =
w1|R| + w2|UA| + w3|PA| + w4|RH |, where |s| is the size
(cardinality) of set s, and the wi are user-specified weights.
For an RBAC policy with direct assignment, the definition
is the same except with an additional summand w5|DA|.

Interpretability is a policy quality metric measures how
well the roles in the policy can be characterized (interpreted)
in terms of user attributes. Specifically, we quantify policy
interpretability as attribute mismatch, which measures how
well the sets of members of the roles can be characterized
using expressions over user attributes. An attribute expres-
sion e is a function from the set A of attributes to sets
of values. A user u satisfies an attribute expression e iff
(∀a ∈ A. f(u, a) ∈ e(a)). For example, if A = {dept , level},
the function e with e(dept) = {CS} and e(level) = {2, 3}
is an attribute expression, which can be written with syn-
tactic sugar as dept ∈ {CS} ∧ level ∈ {2, 3}. We refer to
the set e(a) as the conjunct for attribute a. Let [[e]] denote
the set of users that satisfy e. For an attribute expression
e and a set U ′ of users, the mismatch of e and U ′, denoted
mismatch(e, U ′), is the size of the symmetric difference of [[e]]

and U ′, where the symmetric difference of sets s1 and s2 is
s1	s2 = (s1\s2)∪(s2\s1). The attribute mismatch of a role
r, denoted AM(r), is mine∈E mismatch(e, assignedU(r)), where
E is the set of all attribute expressions, and assignedU(r) =
{u | 〈u, r〉 ∈ UA}. The attribute mismatch of an RBAC
policy π (with or without direct assignment) is AM(π) =∑

r∈R AM(r). We define policy interpretability INT as at-
tribute mismatch, i.e., INT(π) = AM(π).

Compound policy quality metrics take multiple aspects of
policy quality into account. One approach is to combine
multiple policy quality metrics using a weighted sum; how-
ever, the choice of weights may be difficult or arbitrary. We
combine metrics by Cartesian product, with lexicographic
ordering on the tuples. Let INT-WSC(π) = 〈INT(π),WSC(π)〉
and WSC-INT(π) = 〈WSC(π), INT(π)〉.

Role Mining from ACLs.
The problem of role mining from ACLs is: given an ACL

policy πa and a policy quality metric Q, find an RBAC pol-
icy πr that is consistent with πa and has the best quality,
according to Q, among policies consistent with πa. The
problem of role mining with direct assignment from ACLs
is the same except that πr is an RBAC policy with direct
assignment.

Role Mining from ACLs and User Attributes.
The problem of role mining from ACLs and user attributes

(with or without direct assignment) is the same as for role
mining from ACLs, except that the input also includes user-
attribute data, which may be used in the policy quality met-
ric.

Our algorithms produce RBAC policies in which role mem-
bership is always defined by explicit user-role assignment,
even when the current membership of a role can be char-
acterized exactly by an attribute expression. In practice,
assigning users to roles fully automatically based on user
attributes might be risky; requiring explicit user-role as-
signments by an administrator is safer. The administrator’s
effort can be reduced by an algorithm that suggests appro-
priate roles for new users, based on their attributes. For
example, we can compute and store a best-fit attribute ex-
pression er for each role r, i.e., an attribute expression that
minimizes the attribute mismatch for r. When a new user
u is added to the access control system, the system suggests
that u be made a member of the roles for which u satisfies the
best-fit attribute expression, and it presents these suggested
roles for u in descending order of the attribute mismatch.
This allows good suggestions even in the presence of noise.

3. ALGORITHMS
This section presents our role mining algorithms. In gen-

eral, they compute only approximate solutions to the role-
mining problem: the generated RBAC policy is always con-
sistent with the given ACL policy, but it does not always
have the best possible quality. This is a common limitation
of role mining algorithms, because computing an optimal
solution is NP-hard for policy quality metrics of interest [9].

3.1 Elimination Algorithm
Our elimination algorithm has three phases. Phase 1, role

generation, generates a candidate role hierarchy that con-
tains all “interesting” candidate roles. Phase 2, role elim-

// Create initial roles.
1: InitRole ← ∅
2: permSets ←

⋃
u∈U{p ∈ P | 〈u, p〉 ∈ UP}

3: for ps in permSets \ {∅}
4: r = new Role()
5: InitRole ← InitRole ∪ {r}
6: PA← PA ∪ ({r} × ps)
7: end for

// Compute all intersections of initial roles.
8: R← ∅
9: for r in InitRole
10: InitRole← InitRole \ {r}
11: for r′ in InitRole
12: P ← assignedP(r) ∩ assignedP(r′)
13: if ¬empty(P)∧ 6 ∃r′′ ∈ R. assignedP(r′′) = P
14: r′′ = new Role()
15: PA← PA ∪ ({r′′} × P)
16: R← R ∪ {r′′}
17: end if
18: end for
19: for r′ in R
20: P ← assignedP(r) ∩ assignedP(r′)
21: if ¬empty(P)∧ 6 ∃r′′ ∈ R. assignedP(r′′) = P
22: r′′ = new Role()
23: PA← PA ∪ ({r′′} × P)
24: R← R ∪ {r′′}
25: end if
26: end for
27:end for
28:R← R ∪ InitRole

Figure 1: Role generation, step 1: compute candi-
date roles.

ination, removes roles from the candidate role hierarchy if
the removal preserves consistency with the given ACL pol-
icy and improves policy quality. Phase 3, role restoration,
adds some removed roles back to the policy, if this improves
policy quality.

Phase 1: Role Generation.
Our algorithm for role generation is based closely on Com-

pleteMiner [14], although for increased scalability, we could
easily substitute FastMiner [14] or the FP-Tree approach [5,
10]. Roles are characterized primarily by the set of per-
missions assigned to the role. An initial role has a set of
permissions that contains all permissions assigned to some
user. A candidate role has a set of permissions obtained by
intersecting the permission sets of an arbitrary number of
initial roles. As argued in [14], in the absence of other in-
formation on which to base the construction of candidate
roles, this method generates all interesting candidate roles.
Pseudo-code for this construction appears in Figure 1. It is
essentially the same as the pseudo-code for CompleteMiner
in [14]. It uses the functions assignedP(r) = {p ∈ P | 〈r, p〉 ∈
PA} and assignedU(r) = {u ∈ U | 〈u, r〉 ∈ UA}.

CompleteMiner does not produce a role hierarchy. Our al-
gorithm computes a role inheritance relation with the max-
imum amount of inheritance: a candidate role rp inherits
from another role rc whenever the permissions of rp are a
superset of the permissions of rc. Furthermore, when that

// Initialize variables. Assign users to roles.
1: UA← ∅; RH ← ∅
2: for u in U
3: P ← {p ∈ P | 〈u, p〉 ∈ UP}
4: for r in R
5: if authP(r) ⊆ P
6: UA← UA ∪ {〈u, r〉}
7: end if
8: end for
9: end for

// Add inheritance edges, and eliminate inherited
// permissions and members from UA and PA.

10:for r in R
11: parents ← {r′ ∈ R | 〈r, r′〉 ∈ RH } // parents of r
12: for r′ in R \ {r}
13: if authP(r′) ⊆ authP(r)
14: ∧ ∀r′′ ∈ parents. authP(r′) 6⊆ authP(r′′)
15: RH ← RH ∪ {〈r, r′〉}
16: for 〈r, p〉 in PA
17: if p ∈ authP(r′)
18: PA← PA \ {〈r, p〉}
19: end if
20: end for
21: for 〈u, r′〉 in UA
22: if u ∈ assignedU(r)
23: UA← UA \ {〈u, r′〉}
24: end if
25: end for
26: for r′′ in parents
27: if authP(r′′) 6⊆ authP(r′)
28: RH ← RH \ {〈r, r′′〉}
29: end if
30: end for
31: end if
32: end for
33:end for

Figure 2: Role generation, step 2: construct role
hierarchy, based on R and PA from step 1.

inheritance relation is introduced, the permissions inherited
by rp from rc are removed from the permissions explicitly
assigned to rp by PA, and the members inherited by rc from
rp are removed from the members explicitly assigned to rc
by UA. Pseudo-code appears in Figure 2. It uses functions
authP(r) = {p ∈ P | ∃r′ ∈ R. 〈r, r′〉 ∈ RH ∗ ∧ 〈r′, p〉 ∈ PA}
and authU(r) = {u ∈ U | ∃r′ ∈ R. 〈r′, r〉 ∈ RH ∗ ∧ 〈u, r′〉 ∈
UA}, where RH ∗ is the reflective transitive closure of RH .

A role hierarchy has full inheritance if every two roles
that can be related by the inheritance relation are related
by it, i.e., ∀r, r′ ∈ R. authP(r) ⊇ authP(r′) ∧ authU(r) ⊆
authU(r′) =⇒ 〈r, r′〉 ∈ RH ∗. Guo et al. call this property
completeness [4].

All of our algorithms generate RBAC policies with full
inheritance. Although relaxing this requirement would al-
low our algorithms to achieve better policy quality in some
cases, we impose this requirement, because in the absence of
other information, all of these possible inheritance relation-
ships are equally plausible, so removing any of them risks
removing some that are semantically meaningful and desir-
able.

Phase 2: Role Elimination.
Roughly, the role elimination phase removes roles from

the candidate role hierarchy if the removal preserves consis-
tency with the given ACL policy and improves policy quality.
When a role r is removed, the role hierarchy is adjusted to
preserve inheritance relations between parents and children
of r, and the user assignment and permission assignment are
adjusted to explicitly assign to other roles the members and
permissions that they previously inherited from r.

The order in which roles are considered for removal is im-
portant, because it may lead to different RBAC policies in
the end. We control this ordering with a role quality metric
Qrole , which maps roles to an ordered set, with the inter-
pretation that large values denote high quality (note: this
is opposite to the interpretation of the ordering for policy
quality metrics). Low-quality roles are considered for re-
moval first. The algorithm is parameterized by the choice
of role quality metric. We consider three basic role quality
metrics and then consider combinations of them.

Clustered size measures how well user permissions are clus-
tered in the role. A first attempt at formulating such a
metric might simply be the total number of UP pairs (i.e.,
elements of the UP relation) that are covered by the role,
or, equivalently but with the metric normalized to be in the
range [0, 1], the fraction of all UP pairs covered by the role.
However, such a metric would give the same rating to a role
r1 that covers one permission for each of 10 users and a
role r2 that covers 5 permissions for each of 2 users, even
though r2 is preferable; for example, if all of the users have
exactly 5 permissions, then the two users in r2 would not
need to belong to any other roles, while all of the users in
r1 would need to belong to other roles as well. To take this
into account, we define the clustered size metric to equal
the fraction of the permissions of the role’s members that
are covered by this role; formally,

assignedUP(r) = {〈u, p〉 ∈ UP | u ∈ assignedU(r)
∧ p ∈ assignedP(r)}

clsSz(r) = |assignedUP(r)| ÷ |{〈u, p〉 ∈ UP | u ∈ assignedU(r)}|

The numerator considers assigned users and permissions, in-
stead of authorized users and permissions, so that a role gets
credit only for the UP pairs that it covers by itself, not for
UP pairs covered by its ancestors or descendants.

Attribute fitness measures how well the set of members
of a role can be characterized (interpreted) in terms of user
attributes. It is based on attribute mismatch, defined in
Section 2, normalized to be in the range [0, 1] and subtracted
from 1 so that higher values of the metric indicate higher

quality; formally, attrFit(r) = 1− AM(r)
|assignedU(r)| .

Redundancy measures how many other roles also cover the
UP pairs covered by a role. Removing a role with higher
redundancy is less likely to prevent subsequent removal of
other roles, so we eliminate roles with higher redundancy
first. Values of the redundancy metric are pairs, with lex-
icographic order. The redundancy of role r is the negative
of the minimum, over UP pairs 〈u, p〉 covered by r, of the
number of other removable roles that cover 〈u, p〉 (we take
the negative so that roles with more redundancy have lower
quality and hence get considered for removed first).

authUP(r) = {〈u, p〉 ∈ UP | u ∈ authU(r) ∧ p ∈ authP(r)}
redun(〈u, p〉) = |{r ∈ R | 〈u, p〉 ∈ authUP(r) ∧ removable(r)}|
redun(r) = −min〈u,p〉∈authUP(r)(redun(〈u, p〉)

1: π ← policy produced by role generation
2: q ← Qpol(π)
3: workList ← list containing removable roles in π
4: changed ← true
5: while ¬empty(workList) ∧ changed
6: sort workList in ascending order by Qrole

7: changed ← false
8: for r in workList
9: if ¬removable(r)
10: remove r from workList
11: else
12: π′ ← removeRole(π, r)
13: q′ ← Qpol(π

′)
14: if q′ < δq
15: π ← π′

16: q ← q′

17: changed ← true
18: remove r from workList
19: end if
20: end if
21: end for
22: end while

function removeRole(π, r)
23: 〈U,P,R,UA,PA,RH 〉 ← π
24:R← R \ {r}
25: for 〈r1, r〉 in RH
26: RH ← RH \ {〈r1, r〉}
27: for 〈r, r2〉 in RH
28: if 〈r1, r2〉 6∈ RH ∗

29: RH ← RH ∪ {〈r1, r2〉}
30: end if
31: end for
32: for 〈r, p〉 in PA
33: if p 6∈ authP(r1)
34: PA← PA ∪ {〈r1, p〉}
35: end if
36: end for
37: end for
38: for 〈r, r2〉 in RH
39: RH ← RH \ {〈r, r2〉}
40: for 〈r, u〉 in UA
41: if u 6∈ authU(r2)
42: UA← UA ∪ {〈r2, u〉}
43: end if
44: end for
45: end for
46: return 〈U,P,R,UA,PA,RH 〉

Figure 3: Role elimination.

Compound role quality metrics can be formed in the same
ways as compound policy quality metrics, e.g., max(clsSz,
attrFit).

Our algorithm may remove a role even if the removal wors-
ens policy quality slightly. Specifically, we introduce a qual-
ity change tolerance δ, with δ ≥ 1, and we remove a role
if the quality Q′ of the RBAC policy resulting from the re-
moval is related to the quality Q of the current RBAC policy
by Q′ < δQ (recall that, for policy quality metrics, smaller
values are better). Choosing δ > 1 partially compensates
for the fact that a purely greedy approach to policy quality
improvement is not an optimal strategy.

Pseudo-code for role elimination appears in Figure 3. It is
parameterized by a policy quality metric Qpol , a role quality
metric Qrole , and a quality change tolerance δ. A role is
removable if every UP-pair covered by r is covered by at
least one other role currently in the policy; formally,

removable(r) = ∀〈u, p〉 ∈ authUP(r). ∃r′ ∈ R.
r′ 6= r ∧ 〈u, p〉 ∈ authUP(r′)

A removable role can be removed while preserving consis-
tency with the given ACL policy. The removeRole function
removes a role r, adjusts the role hierarchy to preserve in-
heritance relations between parents and children of r, and
adjusts the user assignment and permission assignment to
explicitly assign to other roles the members and permissions
that they previously inherited from r. The removability test
in line 9 is necessary because a role that is initially remov-
able might become unremovable, due to other removals. The
quality of each role is computed only in line 6, immediately
before sorting the worklist. Role quality metrics may change
as roles are removed and hence are re-computed each time
line 6 is executed.

Phase 3: Role Restoration.
Phase 3 restores removed roles when this improves policy

quality. Specifically, it considers each removed role r, in the
same order that the roles were removed, and restores r if
this improves the policy quality. Pseudo-code to restore a
role appears in Figure 4. It uses the relation ≺ defined by
r ≺ r′ = authP(r) ⊂ authP(r′). It makes r a child of roles r′

such that r ≺ r′∧¬∃r′′ ∈ R. r ≺ r′′ ≺ r′, makes r a parent of
roles r′ such that r′ ≺ r∧¬∃r′′ ∈ R. r′ ≺ r′′ ≺ r, and adjusts
the permission assignment, user assignment, and inheritance
relations of roles related to r to eliminate redundancy.

Direct User-Permission Assignment.
If direct user-permission assignment is allowed, we add a

final phase that replaces roles with direct assignment if that
improves policy quality. Pseudo-code appears in Figure 5;
variable π initially contains the policy produced by phase 3,
which contains no direct assignments, i.e., DA = ∅.

Determining Algorithm Parameters.
Different choices of role quality metric Qrole and qual-

ity change tolerance δ may give the best results for differ-
ent datasets, so we enclose the algorithm in a loop that
tries all combinations of the following values for those pa-
rameters and returns the result from the best combination:
Qrole in {〈redun, clsSz〉, 〈max(attrFit, clsSz), redun〉}, and δ
in {1, 1.001, 1.002}. We also experimented with sum(clsSz,
attrFit) for Qrole , and with larger values for δ, but that did
not improve the results.

3.2 Selection Algorithm
Our selection algorithm works in the opposite way as the

elimination based algorithm. Specifically, it starts with an
empty policy and repeatedly adds candidate roles to the
policy. The selection algorithm is parameterized by a role
quality metric. In phase 1, candidate roles are generated
as in the elimination algorithm (see Figure 1). In phase 2,
candidate roles are added to the RBAC policy in order of
descending role quality, until the RBAC policy is consistent
with the given ACL policy. Phase 3 performs pruning: for
each role r in the policy in the reverse order that the roles

function restoreRole(π, r)
1: 〈U,P,R,UA,PA,RH 〉 ← π
2: for r′ in R
3: if r ≺ r′ ∧ ¬∃r′′ ∈ R. r ≺ r′′ ≺ r′

// make r a child of r′

4: assignedP(r′)← assignedP(r′) \ authP(r)
5: assignedU(r)← assignedU(r) \ authU(r′)
6: RH ← RH ∪ {〈r′, r〉}
7: for r′′ in R such that 〈r′, r′′〉 ∈ RH // children of r′

8: if r′′ ≺ r
// remove r′′ as a child of r′. r′′ will be
// a child of r and a grandchild of r′

9: RH ← RH \ {〈r′, r′′〉}
10: end if
11: end for
12: end if
13: if r′ ≺ r ∧ ¬∃r′′ ∈ R. r′ ≺ r′′ ≺ r

// make r a parent of r′

14: assignedP(r)← assignedP(r) \ authP(r′)
15: assignedU(r′)← assignedU(r′) \ authU(r)
16: RH ← RH ∪ {〈r, r′〉}
17: for r′′ in R such that 〈r′′, r′〉 ∈ RH // parents of r′

18: if r ≺ r′′
// remove r′′ as a parent of r′. r′′ will be
// a parent of r and a grandparent of r′

19: RH ← RH \ {〈r′′, r′〉}
20: end if
21: end for
22: end if
23: end for
24:R← R ∪ {r}
25: return 〈U,P,R,UA,PA,RH 〉

Figure 4: Restore role r to policy π.

1: for r in R
2: π1 ← removeRole(r)
3: π2 ← π1 with all UP pairs in the given ACL policy

that are not covered in π1 added to DA
4: if Qpol(π2) < δQpol(π)
5: π ← π2

6: end if
7: end for

Figure 5: Create direct user-permission assignment.

were added, checks whether the role is removable, and if
so, whether removing it improves policy quality, and if so,
removes it.

3.3 Complete Algorithm
Our complete algorithm has two phases. Phase 1 generates

a hierarchical RBAC policy in exactly the same way as the
elimination algorithm. Phase 2 is role removal. While the
elimination algorithm heuristically takes a greedy approach
to removals, the complete algorithm considers all subsets of
the set of removable roles, to find the set of removals that
produces the policy with the highest quality.

To avoid explicitly storing the set of sets of removable roles
that have been explored so far, our role removal algorithm
is expressed as a recursive search. Removal of one role may
prevent subsequent removal of another role, but removals
commute in the sense that, if it is possible to remove r1 and
then remove r2, then it is also possible to remove r2 and

high-fit low-fit
Dataset |U | |P | |UP | Na AF Na AF
healthcare 46 46 1486 20 1 5 0.79
domino 79 231 730 20 1 12 0.48
emea 35 3046 7220 20 1 6 0.56
apj 2044 1146 6841 40 0.94 10 0.57
firewall-1 365 709 31951 40 0.997 15 0.58
firewall-2 325 590 36428 40 1 10 0.50
americas-small 3477 1587 105205 50 0.95 9 0.36

Figure 6: Information about datasets. Na is the
number of attributes. AF is the attribute fit.

then remove r1, and these two sequences of removals lead
to the same policy. To ensure that the algorithm does not
unnecessarily explore the same removals in multiple orders,
we impose an arbitrary ordering on the removable roles, by
storing them in a list Rrmv , and the algorithm considers
only sequences of removals consistent with that ordering; in
other words, it considers sequences of removals that corre-
spond to subsequences (not necessarily contiguous) of Rrmv .
The algorithm is parameterized by a policy quality metric
Qpol . The algorithm is complete in the following sense: if
Qpol is WSC, then the complete algorithm computes a pol-
icy that minimizes WSC among policies consistent with the
given ACL policy; for other policy quality metrics Qpol , the
complete algorithm computes a policy that minimizes Qpol

among policies that are consistent with the given ACL policy
and have full inheritance.

4. DATASETS
We know of no publicly available real ACL policies with

user attribute data, so we use publicly available real ACL
policies, described next, together with synthetic user at-
tribute data, generated as described below.

The ACL policies are listed in Figure 6. They origi-
nate from Hewlett-Packard (HP) Labs [3]. The healthcare
dataset was obtained by HP Labs from the U.S. Veteran’s
Administration, which has developed a comprehensive list of
the healthcare permissions that may be assigned to licensed
or certified providers. The domino data is from a set of user
and access profiles for a Lotus Domino server. americas-
small is a network access control policy from Cisco firewalls
used to manage external business partner’s access to HP’s
network. apj and emea are similar but smaller datasets. HP
Labs produced the firewall-1 and firewall-2 datasets based
on analysis of network connectivity permitted by Checkpoint
firewall rules.

Generation of User Attribute Data.
Molloy et al. provide summary information about non-

public user attribute data and ACL policies from three cus-
tomers [11]; we exploit this to make our synthetic attribute
data have some approximately realistic characteristics. Based
on the information in the paper, we construct the following
distributions: (a) for each customer i, we fit an exponen-
tial distribution card i to the distribution of cardinalities of
user attributes for that customer. (b) for each attribute of
each customer, we fit a Zipf distribution to the distribu-
tion of values of that attribute (based on the information
in [11, Figures 3-5]), to obtain a Zipf-distribution exponent
for each attribute, and then we fit a Weibull distribution

zipfExp to the resulting distribution of Zipf-distribution ex-
ponents. The individual Zipf-exponents obtained from our
measurements of the charts in [11, Figures 3-5] have consid-
erable uncertainty, due to the limited information in those
charts, but these uncertainties might average out to some
extent, making the parameters of the Weibull distribution
zipfExp somewhat more robust.

Our algorithm for generating user attribute data is pa-
rameterized by an ACL policy and the desired number Na

of attributes. The algorithm has two phases. Phase 1 gen-
erates user attribute data for each attribute separately, in-
dependent of the ACLs. Phase 2 modifies the user attribute
data to improve its fit with the ACLs. In more detail, phase
1 starts by identifying the customer i in [11] for which the
number of users is closest to the number |U | of users in
the given ACL policy, and then, for each of the desired
attributes, select a cardinality ca from card i and a Zipf-
exponent sa from zipfExp. Next, the value of attribute a
for each user is selected from a Zipf distribution with ca el-
ements and exponent sa. We take all attribute values to be
natural numbers interpreted as ranks in the Zipf distribution
(0 is the most common value, 1 is the second most common
value, etc.).

Phase 2 tries to reduce the attribute mismatch for each
permission. Let Up denote the set of users with permission
p, i.e., Up = {u ∈ U | 〈u, p〉 ∈ UP}. For each permission p,
we first compute an attribute expression ep representing the
least superset of Up expressible as an attribute expression;
ep is given by ep(a) = {f(u, a) | u ∈ Up}. ep may be a very
loose upper bound on Up, so we convert it to a lower bound
on Up by repeatedly removing an attribute value from a
conjunct of ep until [[ep]] ⊆ Up; in each iteration, we remove
the attribute value with the largest value of the metric m,
where, for a value v in the conjunct for attribute a

m(v, a) = |{u ∈ U | f(u, a) = v ∧ u 6∈ Up}|
− |{u ∈ U | f(u, a) = v ∧ u ∈ U(p)}|

Finally, we try to make the lower bound tighter as follows:
for each user u in Up \ [[ep]], for each attribute a such that
f(u, a) 6∈ ep(a), if adding f(u, a) to ep(a) preserves the fact
that [[ep]] ⊆ Up, then add f(u, a) to ep(a), otherwise try to
modify f so that f(u, a) ∈ ep(a), by swapping the values
of f(u, a) and f(u′, a) for some other user u′, provided the
swap does not affect whether u′ satisfies the attribute ex-
pressions already constructed for other permissions. Note
that swapping values of attributes between users preserves
the distribution of values of each attribute.

The attribute fit of the resulting attribute assignment is
defined as 1− 1

|UP|
∑

p∈P mismatch([[ep]], Up). For each dataset,

we start with Na = 10, generate user attribute data, and
compute the attribute fit. If it is above 0.9, we stop, other-
wise we increment the number of attributes by 10 and try
again, until the attribute fit is above 0.9. We call the result-
ing user attribute data the high-fit user attribute data.

In practice, the available user attribute data will often
have a lower attribute fit than 0.6, e.g., because some rel-
evant user attributes are unavailable. Therefore, we also
produce a version of the user attribute data with fewer at-
tributes; specifically, we discard attributes one at a time, un-
til the attribute fit drops below 0.6 (except we use a higher
threshold of 0.8 for healthcare, otherwise Na is very low).
We call this the low-fit user attribute data.

Figure 6 contains information about the generated user

attribute data. Generation of user attribute data takes only
a few minutes for small datasets, and it takes less than an
hour for the largest dataset.

5. EXPERIMENTAL RESULTS
This section compares our algorithms with each other,

compares the elimination algorithm (which is best among
our algorithms) with prior work, and explores the effects of
different policy quality metrics and role quality metrics.

Comparison of Elimination Algorithm with Hierarchi-
cal Miner and Graph Optimisation.

Figure 7 shows the WSC and interpretability (using the
high-fit attribute data) of policies produced by the elimina-
tion algorithm and Hierarchical Miner (HM) [9] with policy
quality metric WSC-INT and the WSC of policies produced
Graph Optimisation (GO) [15] (modified slightly by Mol-
loy et al. to use WSC as the policy quality metric). The
weight vector for WSC contains all ones except that the
weight for direct assignment is infinity (in other words, di-
rect assignment is prohibited). In the comparison of eight
role mining algorithms in [10] and the comparison of four
role mining algorithms in [9], for this weight vector, the
best WSC for every dataset is achieved by either HM or
GO. Figure 7 shows that the elimination algorithm achieves
smaller or equal WSC than HM and GO on every dataset,
while simultaneously achieving good policy interpretability
(Figure 11 shows that the elimination algorithm simultane-
ously achieves good results for both components of the policy
quality metric). The WSC from HM and GO are 2.7% worse
and 14.0% worse, respectively, averaged over the datasets,
compared to the WSC from the elimination algorithm. The
INT from HM is 46.3% worse, averaged over the datasets,
compared to the INT from the elimination algorithm; this is
not surprising, because HM does not consider user attributes
or policy interpretability. The results for HM are computed
from policies produced by HM that Molloy sent to us. The
results for GO are from [9, Table VI] for all datasets except
americas-small, which is not used in [9]; the results for GO
for americas-small are from [10, Table 4].

On a PC with an Intel Core 2 Quad 2.66 GHz CPU (the
processor has 4 cores, but our code is purely sequential), the
elimination algorithm terminates in 30 seconds or less for all
datasets except americas-small, which takes about 3.5 min-
utes. Running times for HM and GO are not reported in [15,
10, 9], and the implementations of HM and GO described
in those papers are not publicly available. We fit curves to
a graph of running time vs. |UP | for the datasets in Figure
6 and found that a quadratic function fits well.

Figure 8 shows the result of our elimination algorithm
when allowing direct assignments, with a WSC weight vec-
tor containing all ones. The results for HM are computed
from policies producd by HM that Molloy sent us. The
results for GO are from [9, Table VII] for all datasets ex-
cept americas-small, which is not used in [9]; the results for
GO for americas-small are from [10, Table 4]. The original
GO does not consider direct assignment, but Molloy et al.
extended GO to support it. Figure 8 shows that the elim-
ination algorithm achieves smaller WSC than HM and GO
on every dataset, while simultaneously achieving good policy
interpretability. The WSC from HM and GO are 1.5% worse
and 18.8% worse, respectively, averaged over the datasets,
compared to the WSC from the elimination algorithm. The

Elimination HM GO
Dataset INT WSC INT WSC WSC
healthcare 14 144 16 149 168
domino 21 404 30 418 413
emea 32 3709 92 3795 3888
apj 392 4248 411 4282 4600
firewall-1 48 1385 59 1426 1543
firewall-2 7 945 7 945 960
americas-small 214 6330 324 6710 9721

Figure 7: Comparison of elimination algorithm
with policy quality metric WSC-INT, Hierarchical
Miner, and Graph Optimisation, when direct user-
permission assignment is prohibited.

Elimination HM GO
Dataset INT WSC INT WSC WSC
healthcare 9 140 10 142 168
domino 7 371 9 379 413
emea 36 3644 39 3693 3888
apj 130 3827 164 3862 4600
firewall-1 17 1340 21 1349 1543
firewall-2 4 944 4 944 960
americas-small 182 6214 198 6468 9721

Figure 8: Comparison of elimination algorithm
with policy quality metric WSC-INT, Hierarchical
Miner, and Graph Optimisation, when direct user-
permission assignment is permitted.

INT from HM is 15.2% worse, averaged over the datasets,
compared to the INT from the elimination algorithm.

Comparison of Elimination Algorithm with Attribute
Miner.

Among prior work on role mining that takes policy in-
terpretability into account, the most closely related is Mol-
loy et al.’s work on Attribute Miner [9]. Figure 9 compares
the elimination algorithm (using the redundancy role quality
metric and δ = 1.001) with Attribute Miner [9]. Molloy et
al.’s implementation of Attribute Miner is not publicly avail-
able, so the results for Attribute Miner are from our own im-
plementation of it. Attribute Miner is designed to optimize
the policy quality metric Weighted Structural Complexity
with Attributes (WSCA) [9]. WSCA differs from WSC in
how the size of the user-role assignment is measured. In
WSC, it is simply |UA| or equivalently

∑
r∈R |U(r)|, where

U(r) is the membership (assigned users) of role r. In WSCA,
if U(r) can be characterized exactly by an attribute expres-
sion D(r), the size of D(r) (i.e., the number of conjuncts)
is used instead of |U(r)|; otherwise, the geometric mean of
|U(r)| and |[[B(r)]]| is used instead of |U(r)|, where B(r) is
the attribute expression that is the least upper bound for
U(r). We have some reservations about WSCA: (1) use
of the geometric mean of |U(r)| and |[[B(r)]]| seems unin-
tuitive, since it does not directly measure either the size or
the interpretability of the role; (2) WSCA is very sensitive to
whether a role can be characterized exactly by an attribute
expression—a small change to the input data can signifi-
cantly change the WSCA associated with a role, because
|D(r)| is often much smaller than |U(r)|; (3) as discussed
at the end of Section 2, it might be safer to use attribute
expressions to suggest role membership than to define role

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

healthdomemeafw1 fw2 apjamer-s

W
S
C

A

Elimination Alg.
Attribute Miner

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

healthdomemeafw1 fw2 apjamer-s

W
S
C

A

Elimination Alg.
Attribute Miner

Figure 9: Comparison of elimination algorithm and
Attribute Miner (AM). Names of datasets are ab-
breviated, e.g., fw1 abbreviates “firewall-1”. The
upper and lower graphs use the high-fit and low-fit
user attribute data, respectively.

membership. Nevertheless, we use WSCA for this compari-
son, because Attribute Miner is designed to optimize WSCA
and would probably fare poorly in a comparison based on
INT-WSC.

Attribute Miner, as described in [9] uses attribute expres-
sions that are conjunctions of positive literals over Boolean
attributes. We implemented a generalized version of At-
tribute Miner that uses attribute expressions of the form de-
scribed in Section 2. This involves straightforward changes
to the code that computes least upper bounds and to the
definition of the size of an attribute expression, which is
used in the definition of WSCA [9, Definition 13] and in the
definition of the cost of an attribute role [9, Table III]. We
define the size of an attribute expression e to be

∑
a∈A |e(a)|.

Attribute Miner takes user attribute data and a set of can-
didate roles as input; we generate the set of candidate roles
using Phase 1 of the elimination algorithm.

Figure 9 shows that the elimination algorithm achieves
better WSCA than Attribute Miner on every dataset. With
the high-fit attribute data, Attribute Miner is 78% worse, av-
eraged over the datasets, i.e., the average of the ratios of the
WSCA values obtained using the two algorithms is 1.78; the
median of the ratios is 1.38. With the low-fit attribute data
Attribute Miner is 57% worse, averaged over the datasets,
i.e., the average of the ratios of the WSCA values obtained
using the two algorithms is 1.57; the median of the ratios is
1.36.

 100

 1000

 10000

 100000

 1 10 100 1000

W
S
C

INT

Elimination
Selection

Figure 10: Results for elimination algorithm and
selection algorithm, with policy quality metric
INT-WSC. The clusters of points correspond, from
left to right in the order they are connected, to the
datasets in the following order: firewall-2 health-
care, domino, firewall-1, emea, americas-small, apj.

Comparison of Our Algorithms.
Figure 10 contains results for the elimination algorithm

with the redundancy role quality metric and the selection al-
gorithm with role quality metric max(attrFit, clsSz). We use
INT-WSC as the policy quality metric for both algorithms.
The weight vector for WSC contains all ones except that the
weight for direct assignment is infinity (in other words, direct
assignment is prohibited). Figure 10 shows that the elim-
ination algorithm achieves the same or better results than
the selection algorithm on both components of the policy
quality metric for every dataset. We ran the complete algo-
rithm on the smallest dataset, healthcare, with Qpol=WSC.
The result has WSC = 141, which is better than elimina-
tion algorithm (WSC = 144) and HM (WSC = 149). We
started to run the complete algorithm on the second smallest
dataset, domino, but we aborted it after 30 hours.

Effect of Policy Quality Metric in Elimination Algo-
rithm.

Figure 11 compares the quality of policies produced by the
elimination algorithm with policy quality metrics WSC-INT
and INT-WSC, using the high-fit user attribute data. Re-
call that the elimination algorithm tries multiple role quality
metrics Qrole and quality change tolerances δ; the tables also
show the best combination of those parameters for each pol-
icy quality metric and each dataset. Surprisingly, for all
of these datasets, it makes little or no difference whether
priority is given to WSC or interpretability.

Effect of Role Quality Metric and Quality Change Tol-
erance in Elimination Algorithm.

We compared the results of the elimination algorithm with
policy quality metric INT-WSC and four role quality met-
rics: redundancy, max(attrFit, clsSz), and the “reverse” of
each of these, obtained by taking the negative of the value.
The reverse orders exemplify a bad choice of role quality
metric. We used δ = 1.0 and policy quality metric WSC-INT
with all four role quality metrics. Averaged over the datasets,
using reverse-max(attrFit, clsSz) instead of max(attrFit, clsSz)
worsens policy interpretability by 5.0% and WSC by 0.9%,
and using reverse-redundancy instead of redundancy wors-

WSC-INT INT-WSC
Dataset INT WSC Qrole δ INT WSC Qrole δ
healthcare 14 144 rdn 1.001 14 144 rdn 1.001
domino 21 404 max 1.001 21 404 max 1.001
emea 32 3709 max 1.000 32 3709 max 1.000
apj 392 4248 rdn 1.000 384 4331 rdn 1.002
firewall-1 48 1385 max 1.000 44 1419 max 1.003
firewall-2 7 945 max 1.000 7 945 max 1.000
amer-small 214 6330 max 1.000 180 6912 red 1.003

Figure 11: Comparison of two different pol-
icy quality metrics in elimination algorithm.
“rdn” and “max” denote 〈redun, clsSz〉 and
〈max(attrFit, clsSz), redun〉, respectively.

ens policy interpretability by 3.9% and WSC by 1.0%. This
shows that the order in which roles are considered for re-
moval has a small but non-negligible effect.

We also compared the results of the elimination algorithm
using all six combinations of the two role quality metrics and
three quality change tolerances specified in Section 3. We
found that the combination Qrole = redun and δ = 1.001
gives the best result or close to it—within 2% for WSC and
interpretability—for every dataset in our experiments.

6. RELATED WORK
The literature on role mining is sizable, so we discuss only

the most closely related work.
Vaidya et al.’s RoleMiner algorithm has two phases [14].

Phase 1 produces a set of candidate roles, each represented
by a set of permissions. They give two algorithms for this:
CompleteMiner, which we adopt as the first step in Phase 1
of our elimination algorithm, and FastMiner, which is sim-
ilar to CompleteMiner but more scalable, because it con-
siders only pairwise intersections of initial roles. Phase 2
prioritizes the candidate roles produced by Phase 1. The
prioritized list of roles is the final result of the algorithm.
The algorithm does not attempt to determine which candi-
date roles to include in such an RBAC policy, to produce
a role inheritance relation, or to assign users to roles. In
contrast, our algorithm addresses these issues in order to
produce an RBAC policy. Vaidya et al. also developed al-
gorithms for computing an RBAC policy with minimal |R|
that is consistent with a given ACL policy [13]. Lu et al.
[7] present role mining algorithms that minimize either |R|
or |UA| + |PA|. None of these papers considers more gen-
eral policy size metrics (such as WSC), role hierarchy, or
interpretability of roles with respect to user attribute data.

Zhang et al.’s Graph Optimisation (GO) algorithm starts
with each user’s permission set as a candidate role, and
repeatedly splits or merges roles when the transformation
improves policy quality [15]. They do not consider inter-
pretability of roles with respect to user attribute data. The
data in Figures 7 and 8 show that the elimination algorithm
achieves better WSC than GO does. The main reasons are:
(1) GO performs role generation and role selection in a sin-
gle phase, considering new candidate roles lazily according
to a greedy heuristic, instead of eagerly generating all candi-
date roles in an initial phase; as a result, GO is faster, but it
might fail to consider some useful roles; (2) it appears from
the paper that GO does not explicitly control the order in

which roles are considered for splitting and merging; and (3)
GO never tries to eliminate roles.

Ene et al.’s role mining algorithms aim to minimize either
|R| or |UA| + |PA| [3]. They do not consider policy inter-
pretability with respect to user attribute data. Molloy et al.
generalized the algorithm that aims to minimize |UA|+ |PA|
so that it aims to minimize WSC instead, and they found
that the modified algorithm performs well when the weight
vector corresponds to the algorithm’s original metric (i.e.,
when WSC equals |UA| + |PA|) but performs worse than
GO and HM with other weight vectors [9], including the
weight vectors used in our experiments.

Li et al.’s Dynamic Miner [6, 10] has three phases. Phase
1 generates a set of candidate roles. Phase 2 selects candi-
date roles to include in the RBAC policy, adding them to
the policy in descending order of the estimated decrease in
WSC achieved by adding the role (it is an estimate because
the user-role assignment and role hierarchy are not known
yet). Phase 3 constructs the user-role assignment and role
hierarchy. Our selection algorithm is similar to Dynamic
Miner, but more general, because it is parameterized by the
role quality metric that controls the order in which roles are
considered for selection, and, more importantly, it allows the
role quality metric to take the role hierarchy and user-role
assignment into account, because they are computed during
the role selection phase. Molloy et al. found that Dynamic
Miner generally produces worse WSC than HM and GO [10].
This is consistent with our finding that the selection algo-
rithm generally produces worse results than the elimination
algorithm.

Molloy et al.’s Hierarchical Miner (HM) has two phases.
Phase 1 uses formal concept analysis to create a candidate
role hierarchy consistent with a given ACL policy; phase 1
of the elimination algorithm is equivalent to phase 1 of HM.
Phase 2 eliminates roles, removes their inheritance edges, or
replaces them with direct user-permission assignment when
this preserves consistency with the given ACL policy and
lowers the WSC. The elimination algorithm achieves slightly
better results than HM in our experiments. We believe this
is mainly because the elimination algorithm uses a role qual-
ity metric to control the order in which roles are considered;
the order in which roles are considered in HM is not explic-
itly controlled and depends on implementation details of a
hashset library [8]. The use of a quality change tolerance and
a role restoration phase also help the elimination algorithm
achieve better results. Although phase 1 of HM produces
a candidate role hierarchy with full inheritance, phase 2 of
HM does not preserve this property; we plan to experiment
with allowing similar deviations from full inheritance in the
elimination algorithm, which should allow better results for
policy quality. HM does not consider policy interpretability
with respect to user attribute data.

Molloy et al.’s Attribute Miner (AM) has two phases.
Phase 1 produces a set of candidate normal roles and a set
of candidate attribute roles (i.e., roles whose membership is
defined by an attribute expression). Phase 2 greedily selects
normal roles and attribute roles for inclusion in the policy
in descending order of the role’s benefit-to-cost ratio, which
is an estimate of the role’s effect on the policy’s WSCA.
The elimination algorithm is more flexible than AM, since
it can easily be used with any policy quality metric, and it
achieves significantly better results than AM even for AM’s
target policy quality metric, namely, WSCA. We believe the

main reason for this is that the elimination approach (i.e.,
repeatedly remove roles) generally yields better results than
the selection approach (i.e., repeatedly add roles), as we saw
in the comparison of the elimination algorithm with our se-
lection algorithm in Section 5, and as noted above in the
discussion of Dynamic Miner.

Colantonio et al. propose two metrics to measure the in-
terpretability of roles [1]. Their approach relies on an ac-
tivity tree, describing the hierarchical structure of business
activities (business processes), and an organization unit tree,
describing the hierarchical structure of the organization. It
also assumes knowledge of which permissions are required
for each activity and of the assignment of users to organi-
zational units. The activity-spread of a role measures the
dispersion within the activity tree of the activities enabled
by the role’s permissions. The organization-unit-spread of a
role measures the “dispersion” within the organization unit
tree of the role’s members. Roles with low activity-spread
and low organization-unit-spread are considered to be more
meaningful. These metrics are intuitively appealing and
could be combined with metrics based on user attributes in
our algorithms when the required information is available.

Colantonio et al. propose an approach to taking user at-
tributes into account during role mining [2]. They first par-
tition the set of users based on the values of selected at-
tributes, and then perform role mining separately for each
set of users in the partition (using the corresponding slice
of the UP relation). Note that the role mining in the sec-
ond step does not explicitly consider user attributes. They
propose metrics that are used to select a set of attributes
that provides the most meaningful partition of the users.
Their paper does not consider metrics to directly evaluate
the interpretability of the resulting roles or RBAC policies.

7. CONCLUSIONS AND FUTURE WORK
We presented a role mining algorithm, the elimination al-

gorithm, that can easily be used to optimize a variety of
policy quality metrics. In our experimental evaluation, us-
ing realistic datasets, it achieves equal or better results than
previously proposed algorithms.

One direction for future work is to consider other metrics
for policy interpretability, e.g., metrics that consider het-
erogeneity of users in different roles as well homogeneity of
users in the same role [12]. Another direction is to improve
scalability. We are exploring use of a scalable clustering al-
gorithm or graph partitioning algorithm to decompose an
ACL policy into subpolicies that can be role-mined sepa-
rately; the metric that guides clustering or partitioning is
designed to minimize policy quality loss due to the decom-
position.

Acknowledgment.
We thank Ian Molloy for helpful comments and for sending

us policies produced by Hierarchical Miner.

8. REFERENCES
[1] A. Colantonio, R. Di Pietro, A. Ocello, and N. V.

Verde. A formal framework to elicit roles with
business meaning in rbac systems. In SACMAT ’09:
Proc. 14th ACM symposium on Access control models
and technologies, pages 85–94. ACM, 2009.

[2] A. Colantonio, R. Di Pietro, and N. V. Verde. A
business-driven decomposition methodology for role
mining. Computers & Security, 2012.

[3] A. Ene, W. G. Horne, N. Milosavljevic, P. Rao,
R. Schreiber, and R. E. Tarjan. Fast exact and
heuristic methods for role minimization problems. In
Proc. 13th ACM Symposium on Access Control Models
and Technologies (SACMAT 2008), pages 1–10, 2008.

[4] Q. Guo, J. Vaidya, and V. Atluri. The role hierarchy
mining problem: Discovery of optimal role hierarchies.
In Proc. 2008 Annual Computer Security Applications
Conference (ACSAC ’08), pages 237–246, 2008.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. 2000 ACM
SIGMOD International Conference on Management of
Data (SIGMOD 2000), pages 1–12. ACM, 2000.

[6] N. Li, T. Li, I. Mollog, Q. Wang, E. Bertino, S. Calo,
and J. Lobo. Role mining for engineering and
optimizing role based access control systems.
Technical Report 2007-60, CERIAS, Purdue
University, November 2007.

[7] H. Lu, J. Vaidya, and V. Atluri. Optimal boolean
matrix decomposition: Application to role
engineering. In Proc. 24th International Conference on
Data Engineering (ICDE), pages 297–306, 2008.

[8] I. Molloy. Private communication, Dec. 2011.

[9] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,
S. B. Calo, and J. Lobo. Mining roles with multiple
objectives. ACM Trans. Inf. Syst. Secur., 13(4):36,
2010.

[10] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo.
Evaluating role mining algorithms. In Proc. 14th ACM
Symposium on Access Control Models and
Technologies (SACMAT 2009), pages 95–104, 2009.

[11] I. Molloy, J. Lobo, and S. Chari. Adversaries’ holy
grail: Access control analytics. In Proc. First
Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security
(BADGERS 2011), pages 52–59, 2011.

[12] G. J. Szekely and M. L. Rizzo. Hierarchical clustering
via joint between-within distances: Extending ward’s
minimum variance method. J. Classification,
22(2):151–183, 2005.

[13] J. Vaidya, V. Atluri, and Q. Guo. The role mining
problem: Finding a minimal descriptive set of roles. In
Proc. 12th ACM Symposium on Access Control Models
and Technologies (SACMAT 2007), pages 175–184,
2007.

[14] J. Vaidya, V. Atluri, and J. Warner. RoleMiner:
Mining roles using subset enumeration. In Proc. 13th
ACM Conference on Computer and Communications
Security (CCS 2006), pages 144–153, 2006.

[15] D. Zhang, K. Ramamohanarao, and T. Ebringer. Role
engineering using graph optimisation. In Proc. 12th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2007), pages 139–144, 2007.

