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Abstract. We introduce the concept &untime Verification with State Estima-
tion and show how this concept can be applied to estimate the lpititpahat a
temporal property is satisfied by a run of a program when rodnig overhead is
reduced by sampling. In such situations, there magdgsin the observed pro-
gram executions, thus making accurate estimation chatigngo deal with the
effects of sampling on runtime verification, we view evergigences as observa-
tion sequences of a Hidden Markov Model (HMM), use an HMM niaxfehe
monitored program to “fill in” sampling-induced gaps in ohsgion sequences,
and extend the classic forward algorithm for HMM state eation (which de-
termines the probability of a state sequence, given an wien sequence) to
compute the probability that the property is satisfied byatetion of the pro-
gram. To validate our approach, we present a case study loastte mission
software for a Mars rover. The results of our case study dstrate high predic-
tion accuracy for the probabilities computed by our aldomt They also show
that our technique is much more accurate than simply evatudhe temporal
property on the given observation sequences, ignoringapse.g

1 Introduction

Runtime verification (RV) is the problem of, given a progr&mexecution trace of
P, and temporal logic formula, decide whether satisfiesy. To perform RV, one
typically transformsp into amonitor (a possibly parametrized finite state machihg)
andinstrumentsP so that it emiteventsof interest toM,. This allows}/, to process
these events and determine whether the event sequendesdtis

RV does not come for free. Theverheadassociated with RV is a measure of how
much longer a program takes to execute due to runtime manmgtdf the original pro-
gram executes in tim&, and the instrumented program executes in tithe M with
monitoring, we say that the monitoring overhea(%s

Recently, a number of techniques have been developed tgatdtihe overhead
due to RV [13,9, 1, 14,5]. Common to these approaches is the@fsvent sampling
to reduce overhead. Sampling means that some events areogesped at all, or are
processed in a limited (and thus less expensive) manneratfen events. A natural



question isthow does sampling affect the results of RMits issue has been largely
ignored in prior work: the monitor simply reports the resflprocessing the observed
events, without indicating how sampling might have affddtees results.

For example, let be the formulad(a = <c¢) (invariably,a is eventually followed
by ¢) and letr be the tracetbcabcabe. Clearly r satisfiesp. Suppose now that
is anincompletetrace of an execution with implicit gaps due to sampling haligh
we cannot decisively say whether the execution satigfigsr example, there could be
an unobserved event after the last event), we would like to compute a confidence
measure that the execution satisfies

In this paper, we introduce the conceptraftime verification with state estima-
tion (RVSE), and show how this concept can be applied to estirhatprobability that
a temporal property is satisfied by a run of a program when taong overhead is
reduced by sampling. In such situations, there maygdgesin observed program exe-
cutions, making accurate estimation challenging.

The main idea behind our approach is to use a statistical hoddkee monitored
system to “fill in” sampling-induced gaps in event sequeneesl then calculate the
probability that the property is satisfied. In particulae appeal to the theory of Hidden
Markov Models [17]. An HMM is a Markov model in which the systédeing modeled
is assumed to be a Markov process with unobserved (hiddeepstn a regular Markov
model, states are directly visible to the observer, ancftbee state transition probabil-
ities are the only required parameters. In an HMM, statesa@be observed; rather,
each state has a probability distribution for the possilbieeovations (formally called
observation symbagjsThe classicstate estimatiomproblem for HMMs is to compute
the most likely sequence of states that generated a givema@i®n sequence.

The main contributions of this paper are:

— We use HMMs to formalize the RVSE problem as follows. GiverHitM system
modelH, temporal property, and observation sequenOgan execution trace that
may have gaps due to sampling), compbi¢s | O, H), i.e., the probability that
the system’s behavior satisfigsgivenO and H. Note that we useliddenMarkov
Models, meaning that the states of the system are hiddentfrerobserver. This
is because we intend to use machine learning to learn the H\M fraces that
contain only observable actions of the system, not detailtetnal states of the
system.

— Theforward algorithm[17] is a classic recursive algorithm for computing the prob
ability that, given an observation sequerizean HMM ended in a particular state.
This problem is the so-callefiltering version of the state estimation problem for
HMMs. We present an extension of the forward algorithm far BVSE problem
that computes a similar probability, but in this case forpla@ed execution of an
HMM system model and a monitor automaton for the temporaperny ¢. We
first present a version of the algorithm that does not congides; in this case,
the states of the monitor are completely determinedbfpecause the monitor is
deterministic.

— We then present an algorithm that handles gaps. We use abkggtibol to mark
gaps, i.e., points in the observation sequence where unasevents might have
occurred. Gap symbols may be inserted in the trace by theimsntation when it



temporarily disables monitoring; or, if gaps may occur gwdrere, a gap symbol

can be inserted at every point in the trace. When the algoyifocesses a gap, ho
observation is available, so the state of the monitor automi updated proba-

bilistically based on the current state estimation for théNHand the observation

probability distribution for the HMM. Since the length of ag(i.e., the number of

consecutive unobserved events) might be unknown, we alievgéap length to be

characterized by a probability distribution.

— We evaluate our RVSE methodology using a case study basednoarhoperators
in a ground station issuing commands to a Mars rover [3]. Siagpf execu-
tion traces is simulated using SMCO-style overhead coift4j. Our evaluation
demonstrates high prediction accuracy for the probadsliiomputed by our algo-
rithm. It also shows that our technique is much more accuhate simply evaluat-
ing the temporal property on the given observation sequgigeoring the gaps.

2 Related Work

To the best of our knowledge, Runtime Verification with Stastimation has not been
studied before, and our HMM-based technique to supportadleitation of the condi-
tional probability that a system satisfies a temporal logiafula given a sampled event
trace (observation sequence) is new. In this section, veeisiisrelated work on runtime
verification of statistical properties and on probabitistiodel checking.

Sammapun et al. [18] consider runtime verification of proligtir properties of the
form: given a condition4, does the probability that an outconieoccurs fall within
a given range? Their technique determines statisticall¢f,vaith an adequate level of
confidence, whether a system satisfies a probabilistic piypp&ang et al. [19] apply
a similar statistical RV technique, in conjunction with MerCarlo simulation, to ana-
log and mixed signal designs. Recent work on the runtimdigation of probabilistic
properties [11,21] uses acceptance sampling and sequsyypiathesis testing to out-
perform these approaches. In contrast, we perform runtiendication of traditional
non-probabilisticproperties, but in the presence of sampling.

Finkbeiner et al. [10] extend LTL to perform statistical eximents over runtime
traces, but they do not consider sampling. For example, thethodology can be used
to determine the percentage of positions in a trace at whielrace satisfies a tempo-
ral property. This is a different statistic than the coruditil probabilities we compute.
LarvaStat [7] incrementally computes statistical infotimaabout runtime executions,
but it, too, does not consider sampling.

Probabilistic model checking [15, 2] can be used to compleprobability that
a Markov model, such as a Discrete-Time or Continuous-Tinzeklgh Chain, satis-
fies a probabilistic temporal logic formula. Zhang et al.][@&end probabilistic model
checking to HMMs, so that the probability that an HMM prodsieegiven sequence of
observations can be computed. In contrast, we use HMMs tmapilbistically fill in gaps
in sampled event traces, enabling us to estimate the piidhaiat a (non-probabilistic)
temporal property is satisfied by a trace that contains gapsalsampling. It is impor-
tant to note that for filling in the gaps, a considerably lessuaate HMM model is
acceptable.



3 Case Study: A Mars Rover Scenario

We illustrate and evaluate our approach on a software mddeptanetary rover mis-
sion. The model is written in thecLA programming languageallowing for fast
prototyping. Its architecture, depicted in Figure 1, isresgntative, in general terms,
of actual rover missions, such as the current Mars Scienberiatory (MSL) mission.
The scenario we consider consists of a rover operating csutti@ce of Mars, controlled
by commands from ground-based human operators. The ronsist® of a collection of
instruments (e.g., camera, drill, temperature sensofppeing specialized tasks. For
this case study, the rover hosts two generic instruméngs)d B. Furthermore, every
event of importance occurring on the rover is recorded irgawhich is maintained on
the ground. A ground-based logger module receives andsssoieh events.

Dispatch(A, name, time)

instrument A Success(A, name, time)
or

Command(A, name, time) Fail(A, name, time)

Command(instrument, name, time)

[ where instrument = A or B Command(instrument, name, time)
ground rover logger
Command(B, name, time) Dispatch(B, name, time)
instrument B Success(B, name, time)

or
Fail(B, name, time)

Fig. 1. Mission architecture.

Command(nstrument, name, time
Dispatch( instrument, name, time
Success( instrument, name, time
Fail( instrument, name, time

commands submitted to rover

dispatch of command from rover to instrume|
success of command on instrument

failure of command on instrument

Fig. 2. Events observed.

nt

We consider four kinds of events, presented in Figure 2 agpliried by the sce-
nario explained by Barringer et al. [3]. Commands are is$ted ground to the rover
and are characterized by three parameters: instrumeAtadE), command name, and

4 http://www.scala-lang.org
5 http://mars.jpl.nasa.gov/msl



a time stamp indicating when the event occurred. The othreethvents have similar
parameters. Upon receipt of a command, the rover repogstiant to the logger (by
sending the command to the logger), and then sends the codnimahne relevant in-
strument. The instrument, upon receipt of the commandessaidispatch event to the
logger (recording that it was dispatched to the instrumértip instrument then exe-
cutes the command. If the execution is successful, a suecesported to the logger.
If execution fails, a fail status is reported. It is possithat neither a success nor a
fail occur, and that the command is simply lost for some reasm example log col-
lected during the execution of this system could®@emmand(A, START, 1008) ,
Command(B, RESET, 2303) , Success(A, START, 4300) , Success(B,
RESET, 5430) .

One aspect of the desired behavior of the rover system i®eged by the require-
ment: EveryCommand(, n, t1) eventshould eventually be followed byaccess( i,n,t2)
event, with ndFail( 4, n,t3) eventoccurring in between.

The above trace satisfies this property. The following tdus not satisfy the prop-
erty, because the first command fails explicitly, and thesdecommand fails implicitly
(neither success nor failure occur€pmmand(A, START, 1008) , Command(B,
RESET, 2303) , Fail(A, START, 4520)

This property can be expressed in LTL as follows, whereneans “always” i/
means “until”, underscore means “don’t care”, and the stijpistcs” is mnemonic for
“command success”.

¢es = (Vi : Instrument,n : Name. 1)
O(Command@,n, ) = —Fail( 4,n,.) U Success( i,n,.)))

The property was formulated and checked WitRACECONTRACT [4], a SCALA
API for trace analysis supporting parameterized state imastand temporal logic. In
TRACECONTRACT, the property is expressed as follows, whem6a keywords are
in bold, TRACECONTRACT features are underlined, and thet state waits for an event
that matches the pattern in one of ttesestatements and represents the requirement
that such an event eventually occurs:

class Contract  extends Monitor [Event] {
require  {
case Command(i,n, ) =>
hot {
case Fail(i', 'n°, ) => error
case Success(i, 'n, _) => ok

}

4 Background

Hidden Markov ModelsA Hidden Markov Model (HMM) [17]is atuplél = (S, A,V, B, «)
containing a sefS of states, a transition probability matriA, a setV of observa-



tion symbols, an observation probability matix (also called “emission probabil-
ity matrix” or “output probability matrix”), and an initiaktate distributionr. The
states and observations are indexed (i.e., numberedy, &od V' can be written as
S ={s1,82,...,sn,}andV = {v1,...,vn,}, whereNy is the number of states, and
N, is the number of observation symbols. [Raf{c; | c2) denote the probability thag
holds, given that, holds. The transition probability distributiof is an Ny x N; ma-
trix indexed by states in both dimensions, such that = Pr(state iss; at timet +1 |
state iss; at timet). The observation probability distributioB is an Ny x N, ma-
trix indexed by states and observations, such gt = Pr(v; is observed at time |
state iss; at timet). ; is the probability that the initial state is.

An example of an HMM is depicted in the left part of Figure 3ckatate is labeled
with observation probabilities in that state; for exam@éSucc)=.97 in statesg
meansB3 s.... = 0.97, i.e., an observation made in statehas probability).97 of ob-
serving aSuccess event. Edges are labeled with transition probabilitiesef@ample,
.93 on the edge froms; to s3 means thatl; 3 = 0.93, i.e., in states,, the probability
that the next transition leads to statgis 0.93.

An HMM generates observation sequences according to theeviol five-step pro-
cedure [17]. (1) Choose the initial state according to the initial state distribution
(2) Sett = 1. (3) Choose the'" observatiorO; according to the observation proba-
bility distribution in stateg;. (4) Choose the next stagg,; according to the transition
probability distribution in state,. (5) Increment and return to step (3), or stop.

HMM . DFSM Cmd
p

S3
P(Cmd) =0
P(Disp) =0
P(Succ) =.97
P(Fail) = .03

Succ

P(Fail) =0

Fig. 3. Left: an example of an HMM. The initial state distributionis = 1, 72 = 0, w3 = 0.
Right: M.s, an example of a DFSM. States with a double border are acceptates. In both
machinesCmdabbreviateCommand (i, n, ), Disp abbreviateDispatch(i,n,-), Succ ab-
breviatesSuccess(i,n,.), andFail abbreviateFail(i,n, ).

Theforward algorithm[17] is a classic algorithm for computing the probabilitgth
an HMM ended in a particular state, given an observationaecgD = (O1, O3, ..., Or).
Let@ = {(q1,¢2, ..., qr) denote the (unknown) state sequence that the system passed
through, i.e.,q; denotes the state of the system when observatipims made. Let
(i) = Pr(01,04,...,0+,q. = s; | H), i.e., the probability that the firgtobserva-



tions yieldOq, Os, . .., O; and thaly, is s;, given the model{ . To hide the notational
clutter from indexing oft’, we access th& matrix using the traditional notation [17]:

bi(vk) = Bik (2)

The forward algorithm for computing is:

Oél(j):ﬂ'JbJ(Ol) fOflS]SNS (3)

arr1(5) = (Cicy n, () Aij) bj(Op1) (4)
fori<t<T—-1andl <j <N,

In the base casey; (j) is the joint probability of starting in state; and emittingO; .
Similarly, the recursive case calculates the joint proligihof reaching states; and
emitting Or. The probability of reaching; is calculated by summing over the imme-
diate predecessoss of s;; the summandy, () A; ; is the joint probability of reaching
s; while observingD; throughOr_; and then transitioning frors; to s;. The cost of
computinga using these equationsi¥(N2T).

Learning an HMM. One can obtain an HMM for a system automatically, by leariiting
from complete traces using standard HMM learning algorglitr7]. These algorithms
require the user to specify the desired number of statesifritiM. These algorithms
allow (but do not require) the user to provide informatioroabthe structure of the
HMM, specifically, that certain entries in the transitioropability matrix and the ob-
servation probability matrix are zero. This informatiomdeelp the learning algorithm
converge more quickly and find globally (instead of localhytimal solutions. If the
temporal property or properties to be monitored are knoviorkehe HMM is learned,
then the set of observation symbols can be limited to comtaiyp events mentioned in
those properties, and the number of states can be chosdarggesenough to be able to
model the relevant aspects of the system’s behavior. Natenth useHiddenMarkov
Models, meaning that the states of the system are hiddentfrewbserver, because we
intend to learnH from traces that contain only observable actions of theesyshot
detailed internal states of the system.

Deterministic Finite State Machineur algorithm assumes that the temporal prop-
erty ¢ to be monitored is expressed as a parametrized deternoifiigte state machine
(DFSM). The DFSM could be written directly or obtained bynskation from a lan-
guage such as LTL. ADFSM is a tupMd = (Syr, minit, V, 0, F'), whereS), is the set
of statesyn;,;; in Sy is the initial state)/ is the alphabet (also called the set of input
symbols),d : Syy x V' — Sy is the transition function, andl' is the set of accepting
states (also called “final states”). Note tlaas a total function. A trac® satisfies the
property iff it leavesM in an accepting state.

For example, a DFSM/_; that expresses the property; in Equation 1 is depicted
in the right part of Figure 3. ThBispatch eventis not in the alphabet of the&®ACE-
CONTRACT property¢ and hence normally would be omitted from the alphabet of the
DFSM; we include it in this DFSM for illustrative purposes,that the alphabets of the
HMM and DFSM are the same.



5 Algorithm for RVSE

The first subsection defines the problem more formally andgmts our algorithm for
RVSE. Our algorithm is based on the forward algorithm in Be&ct and hence can
be used for on-line or post-mortem analysis. The secondestiba describes how we
handle parameterized properties.

5.1 Problem Statement and Algorithm

A problem instance is defined by an observation sequéh@ HMM H, and a tem-
poral property) over sequences of actions of the monitored system.

The observation sequenc¢g contains events that are occurrences of actions per-
formed by the monitored system. In additidhmay contain the symbalp (L) denot-
ing a possible gap with an unknown length. The length digtidim L is a probability
distribution on the natural numberts(?) is the probability that the gap has length

If no information about the location of gaps is availabled&ence ngjap events
appear in the trace obtained from the runtime monitor), veerinagap event at the
beginning of the trace and after every event in the traceydicate that gaps may occur
everywhere.

TheHMM H = (S, A, V, B, 7) models the monitored system, whefe= {s1,...,sn.}
andV = {vy,...,vn,}. Observation symbols df are observable actions of the mon-
itored systemH need not be an exact model of the system.

The property is represented by a DFSM = (Sys, minat, V, 9, F'). For simplic-
ity, we take the alphabet dff to be the same as the set of observation symbolg.of
It is easy to allow the alphabet @ff to be a subset of the observation symboldfof
by modifying the algorithm so that observations of symbaitsile the alphabet af/
leaveM in the same state.

The goal is to computBr(¢ | O, H), i.e., the probability that the system’s behavior
satisfiesp, given observation sequen€eand modelH .

First, we extend the forward algorithm in Section 4 to keagkrof the state of/.
Letm, denote the state dff immediately after observatiab, is made. Lety; (i, m) =
Pr(01,04,...,0,q: = s;;miy = m | H), i.e., the joint probability that the firgt
observations yield,, O-, ..., O; and thatg, is s; and thatm, is m, given the model
H. Let pred(n,v) be the set of predecessorssofwith respect tov, i.e., the set of
statesm such thatM transitions fromm to n on inputv. A conditional expression
c?ey:ep equalse; if ¢ is true, and it equals; if ¢ is false. The extended forward
algorithm appears below. The main changes are introduefiaiconditional expression
in equation (6), reflecting that the initial stateff is m,;;, and introduction of a sum
over predecessors of n with respect ta);; in equation (7), analogous to the existing
sum over predecessar®f j, so that the sum takes into account all ways of reaching
the configuration in whicl is in states; and M is in statem.

pred(n,v) = {m € Sy | 6(m,v) = n} (5)
ai(j,n) = (n = 6(Minit, 01)) 7 mjb;(01) : 0 (6)
forl1 <j < N;andn € Sy,
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ay1(j,n) = > ar(i,m)Asj | b;(Ot1) (7)
i€[1..Ng)
mepred(n,O¢q1)
fori<t<T—-1andl <j < Ng;andn € Sy

Now we extend the algorithm to handle gaps. The result aggedfigure 4. An
auxiliary functionp; is used to calculate the probability of transitions df during
gaps. Wherd is in states; and M is in statem, p;(m,n) is the probability that the
next observation (i.e., the observation in stg)ecausesV/ to transition to state. Since
we do not know which event occurred, we sum over the posiisiliweighting each
one with the appropriate observation probability fréin

Another auxiliary functiony,, called the gap transition relation, is used to compute
the overall effect of a gap of length Specifically,g¢(i, m, j, n) is the probability that,
if H is in states; and M is in statem and a gap of lengtli occurs, then the{ is
in states; and M is in staten after the gap. The definition af,, uses a recursive
call to g, to determine the probabilities of states reached after sofdgngth{ (these
intermediate states are represented’landm’), and then calculates the effect of the
(¢ + 1)*" unobserved event as follows;, ; is the probability that? transitions from
states;s to states;, andp;(m/, n) is the probability thafl/ transitions to state.

In the definition ofay, for the case); = gap(L), there is a probability’ (0) that
no gap occurred, in which cagd remains in its initial staten,,;; and the probability
distribution for states off remains asr;; furthermore, for eacld > 0, there is a
probability L (¢) of a gap of lengtH, whose effect is computed by a callg¢g andx; is
the probability thatf is in states; at the beginning of the gap.

In the definition ofa;1, for the case); 1 = gap(L), there is a probability.(0)
that no gap occurred, in which case the state of the HMM and#®M remain un-
changed, sov1(j,n) = a:(4,n); furthermore, for eacd > 0, there is a probability
L(¢) of a gap of lengtl, whose effect is computed by a callgg anda; (i, m) is the
probability thatH is in states; andM is in statem at the beginning of the gap.

Although the algorithm involves a potentially infinite sunaen ¢, typically L(¢)

is non-zero for only a finite number of values @fin which case the sum contains
only a finite number of non-zero terms. For example, if thaesysuses lightweight
instrumentation to count events during gaps, then theiposind length of all gaps are
known. In this case, for each gap(¢) is non-zero only for the value dfthat equals the
number of unobserved events (i.e., the gap length). If @ohtinobserved events are
unavailable (because monitoring is completely disabledhdugaps), it is sometimes
possible to determine (based on characteristics of thersyahd how long monitoring
was disabled) a threshold such tlig¥) is non-zero only below that threshold. Even if
no such threshold existg,(¢) typically approaches 0 ashecomes large, so the sum
can be approximated by truncating it after an appropriateber of terms.



pimn) = Y bi(v) (®)

veV S.t.é(m,’u):n
go(i,m,j,n) =(i=jAm=mn)71:0 9)
ges1(i,m,5,mn) = Z ge(i,m,q’, m')Ai/,jpj(m', n) (10)

i/ €[1..Ng],m’€Sps

a1 (J7 TL) = (11)
(n:5(m¢mt,01))?7rjbj(01):0 If 01 75 gap(L)
L(O) (’IL = Minit 7 Uy O) —+ Zl>0,ie[l..Ns] L(Z)ﬂ'lg[(l, mmt,j, TL) If 01 = gap(L)

for1 < j < Ngandn € Sy

S aulim)Aig | bi(Orsa) if Ors1 # gap(L)

24167 = | peacnonen 2
LO)a:(Gin) + > L) > auli,m)ge(i,m, j,n) if Ors1 = gap(L)

£>0 i€[1..N]

meSyr
fori<t<T-1landl <j< N;andn € Sy

Fig. 4. Forward algorithm modified to handle gaps.

5.2 Handling Parameterized Temporal Properties

Our approach supports parameterized temporal propebpesified events trigger cre-

ation of a new instance of the parameterized property, ananpeters of the trigger

event are used as parameters of the property. For examglerdpertyy s in equation

(1), and the corresponding DFSM_; in Figure 3, are parameterized by the instrument

i and the nama. The parameters of the DFSM may be used in the definition of the
alphabet of the DFSM; in other words, the alphabet is alsamaterized. For example,

the alphabet oM. is {Command(, n, _) , Dispatch( 4, n,_) ,Success( i, n,.),Fail( i,n,)}.

For a parameterized property, we decompose (or “demuttipkegiven trace into
a set of subtraces by projecting it onto the alphabet of eastamce of the property.
The HMM is learned from these subtraces; thus, the HMM regissthe slice of the
system’s overall behavior relevant to a single instancéefaroperty. When learning
the HMM, we abstract from the specific values of the parameterach subtrace,
because the values are, of course, different in each sebttad we do not aim to learn
the distribution of parameter values.

When applying our modified forward algorithm for a paramiee property, we
run the algorithm separately for each instance of the ptggerd use the corresponding
subtrace (i.e., the projection of the trace onto the alphatihat property instance) as
the observation sequenc€e
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When projecting a trace containing gaps onto the alphabepobperty instance, it
is typically unknown whether the unobserved event or eviwatisoccurred during a gap
are in that alphabet. This can be reflected by modifying thgtledistribution parameter
of the gap symbol appropriately before inserting the gapésubtrace for that property
instance. Developing a method to modify the length distriluappropriately, based on
the nearby events in the trace and the HMM, is future work. étes.’s work on trace
slicing [16] might provide a basis for this.

The above approach does not assume any relationship bettvesgoperty parametriza-
tion and the sampling strategy. An alternative approach a&dibpt a sampling strategy
in which, for each property instance, either all relevargrds are observed, or none
of them are. For example, when QVM [1] checks properties vh &bjects, it selects
some objects for checking, monitors all events on thosectdhjand monitors no events
on other objects. With this approach, the property is cheekth 100% confidence for
the selected objects, but it is not checked at all for oth@aib. This trade-off might be
preferable in some applications but not in others. Alsa phioperty-directed sampling
may incur more overhead than property-independent sag)fdecause it must ensure
that all events relevant to the selected property instaaesbserved.

6 Evaluation

6.1 Evaluation Methodology

We used the following methodology to evaluate the accurdayuo approach for a
given system.

1. Produce a séfy, of traces by monitoring the system without sampling, andnea
an HMM H from them.

2. Produce another s&} of traces by monitoring the system without sampling, and
use them for evaluation as follows.

3. Produce a sampled versionof each trace in Tx. If the system is deterministic,
O can be produced by re-running the system on the same inpait@sshile using
sampling. An alternative approach, applicable regardbésshether the system
is deterministic, is to write a program that reads a tracapkites the effect of
sampling, and outputs a sampled version of the trace.

4. Foreachtrac® in Tx, apply our algorithm to compute the probabily(¢|O, H).

5. Compare the probabilities from the previous step to tedby partitioning the
traces inTg into “bins” (i.e., sets) based oRr(¢|O, H), and checking whether
the expected fraction of the traces in each set actuallgfgati Specifically, using
B + 1 bins, forb € [0..B], the set of traces placed in binis Tg(b) = {O €
Tg | b/B < Pr(¢|O, H) < (b+1)/B}. Letsat .., (b) denote the fraction of traces
in bin b that actually satisfy. Based on the results from our algorithim¢ ... (b) is
expected to be approximatedyt ..; (b) = average({Pr(¢|O, H) | O € Tr(b)}).
The subscript “est” is mnemonic for “estimation”, i.e., fected based on state
estimation”.

6. Quantify the overall inaccuracy as a single numbéretween 0 and 1, where 0
means perfect accuracy (i.e., no inaccuracy), by summiaglifferences between
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the actual and expected fractions from the previous stepdarempty bins and
normalizing appropriately (“ne” is mnemonic for “non-emft

Bue = {b€ [0..B] | Tp(b) # 0} (13)
I= S [satac(b) — saten (b)) (14)
| Bue| bE Bre

7. Putthisinaccuracy into perspective by comparing it Withinaccuracy of the naive
approach that ignores the effect of sampling and simplyuatat the property on
sampled traces, ignoring gaps. Specificalby,,... (b) is the fraction of traces in
Tg(b) such that the sampled trace satisfigs.e., satnqive (b) = |[{O € Tg(b) |

O E ¢}|/|Te(b)|, and
1
Inaive - B—ne Z |5atact(b) - Satnaive(b)|- (15)
bEBhe

If the sampling strategy has a parameter that controls hawymeents are observed,
then the inaccuracy can be graphed as a function of that sampling parameter. For
example, SMCO has a parametgr the target overhead. We expect the inaccuracy
to approach 0 as the fraction of events that are observedagpes 1. Similarly, for a
particular trac&, Pr(¢|O, H) can be graphed as a function of that sampling parameter;
if the traceO satisfiesy, this curve should monotonically increase towards 1 as the
fraction of events that are observed approaches 1.

6.2 Experiments

We applied the above methodology to the rover case studyideddn Section 3. The
ScALA model was executed to generate 200 traces, each contaibihgsued com-
mands. The average length of the traces is 587 events. Tidecevaluation of our
approach, the model was modified to pseudo-randomly int@dhiplations of the re-
quirementp s in Equation 1. Approximately half of the traces satisfy thquirement.
In the other half of the traces, the requirement is violatedfproximately 30% of the
commands; among those commands, approximately half hagegicit Fail event,
and the other half do not haveSaiccess or Fail event. We wrote a program that
reads a trace, simulates the sampling performed by SMCCQangtbbal controller [14],
and then outputs the trace with some events replacegibl,), whereLy(0) = 0,
Lo(1) = 1,andLo(¢) = 0 for ¢ > 1. Note thatgap(Lo) represents a definite gap of
length 1. The use of a definite gap reflects that the SMCO clterttkamows when it dis-
ables and enables monitoring, and that (in an actual impigattien) lightweight instru-
mentation would be used to count the number of unobservatewhen monitoring
is (mostly) disabled. With the target overhead that we djgetithe SMCO simulator
replaced 47% of the events with gaps.

Based on the parameters of the property, each sampled trace was decomposed
into a separate subtrace for each instrument and commaralyiftg the approach in
Section 5.2. When decomposing the trace, we assigned eactoghe appropriate
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subtrace by referring to the original (pre-sampling) trafdéhough it is generally unre-
alistic to assume that the monitor can assign gaps to s@strgith 100% accuracy, this
assumption allows us to isolate this source of inaccuradydsfer consideration of it
to future work, in which we plan to introduce uncertain gays subtraces correspond-
ing to nearby events in the full trace, using the HMM to conepgoitobabilities for the
uncertain gaps.

To obtain the HMMH, we manually specified the number of states (six) and the
structure of the HMM, and then learned the transition prdtgimatrix and observa-
tion probability matrix from half of the generated traces Wed the other half of the
generated traces for evaluation.

We measured the inaccuracy of our approach ugng- 10, and obtained =
0.0205. This level of inaccuracy is quite low, considering the sigyef the sampling:
recall that sampling replaced 47% of the events with gapsomparison, the inac-
curacy of the naive approach Is,;,. = 0.3135; this is approximately a 16 worse
1.

7 Conclusions and Future Work

This paper introduces the new conceptafntime Verification with State Estimation
(RVSE) and shows how this concept can be applied to estirhaterobability that a
temporal property is satisfied by a run of a system given a kahgxecution trace. An
initial experimental evaluation of this approach showsoemaging results.

One direction for future work, mentioned in Section 5.2 agletermine the prob-
ability that a gap belongs to each subtrace of a parametktiaee, in order to more
accurately determine the length distribution parametegép events inserted in sub-
traces. Because the parameters of events in gaps are unkhigwmpossible to directly
determine the subtrace to which a gap belongs.

Although our Mars rover case study is based on actual ro¥ewace, due to ITAR
restrictions, our evaluation used parametrized evenésragnthetically produced by a
simulator. We plan to conduct additional case studies inuglactual traces obtained
from publicly available real-world software. Likely tanggoftware systems include the
GCC compiler suite and the Linux kernel.

Another direction for further study is RVSE of quantitatpme@perties. For example,
the goal of integer range analysis [9, 14] is to compute tigea(upper and lower
bounds) of each integer variable in the program. Perforrthiggkind of analysis on
traces with gaps can lead to inaccuracies in the ranges demhpdue to unobserved
updates to integer variables. In this case, we would likextered our RVSE algorithm
to adjust (improve) the results of the analysis as well asideoa confidence level in
the adjusted results. Similar comments apply to other dtadime properties, such as
runtime analysis of NAPs (non-access periods) for heaygatléd memory regions [13,
14].

Our broader goal is to use probabilistic models of prograhmakimr, learned from
traces, for multiple purposes, including program undeuditeg [6], program visualiza-
tion [8], and anomaly detection [12] (by checking future swof the program against
the model).
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