Finite Automata as Time-Inv Linear Systems Observability, Reachability and More

Radu Grosu
Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400, USA

Abstract

We show that regarding finite automata (FA) as discrete, time-invariant linear systems over semimodules, allows to: (1) express FA minimization and FA determinization as particular observability and reachability transformations of FA, respectively; (2) express FA pumping as a property of the FA's reachability matrix; (3) derive canonical forms for FAs. These results are to our knowledge new, and they may support a fresh look into hybrid automata properties, such as minimality. Moreover, they may allow to derive generalized notions of characteristic polynomials and associated eigenvalues, in the context of FA.

1 Introduction

The technological developments of the past two decades have nurtured a fascinating and very productive convergence of automata- and control-theory. An important outcome of this convergence are hybrid automata (HA), a popular modeling formalism for systems that exhibit both continuous and discrete behavior 3|11. Intuitively, HA are extended finite automata whose discrete states correspond to the various modes of continuous dynamics a system may exhibit, and whose transitions express the switching logic between these modes.

HA have been used to model and analyze embedded systems, including automated highway systems, air traffic management, automotive controllers, robotics and real-time circuits. They have also been used to model and analyze biological systems, such as immune response, bio-molecular networks, gene-regulatory networks, protein-signaling pathways and metabolic processes.

The analysis of HA typically employs a combination of techniques borrowed from two seemingly disjoint domains: finite automata (FA) theory and linear systems (LS) theory. As a consequence, a typical HA course first introduces one of these domains, next the other, and finally their combination. For example, it is not unusual to first discuss FA minimization and later on LS observability reduction, without any formal link between the two techniques.

In this paper we show that FA and LS can be treated in a unified way, as FA can be conveniently represented as discrete, time-invariant LS (DTLS). Consequently, many techniques carry over from DTLS to FA. One has to be careful however, because the DTLS associated to FA are not defined over vector spaces, but over more general semimodules. In semimodules for example, the row rank of a matrix may differ from its column rank.

In particular, we show that: (1) deterministic-FA minimization and nondeter-ministic-FA determinization [2] are particular cases of observability and reachability transformations [5] of FA, respectively; (2) FA pumping [2] is a property of the reachability matrix [5] associated to an FA; (3) FA admit a canonical FA in observable or reachable form, related through a standard transformation.

While the connection between LS and FA is not new, especially from a language-theoretic point of view [2]6|10, our observability and reachability results for FA are to our knowledge new. Moreover, our treatment of FA as DTLS has the potential to lead to a knew understanding of HA minimization, and of other properties common to both FA and LS.

The rest of the paper is organized as follows. Section 2 reviews observability and reachability of DTLS. Section 3 reviews regular languages, FA and grammars, and introduces the representation of FA as DTLS. Section 4 presents our new results on the observability of FA. Section 5 shows that these results can be used to obtain by duality similar results for the reachability of FA. In Section 6 we address pumping and minimality of FA. Finally, Section 7 contains our concluding remarks and directions for future work.

2 Observability and Reachability Reduction of DTLS

Consider a discrete, time-invariant linear system (DTLS) with no input, only one output, and with no state and measurement noise. Its $[I, A, C]$, state-space description in left-linear form is then given as below [5]

$$
x(0)=I, \quad x^{T}(t+1)=x^{T}(t) A, \quad y(t)=x^{T}(t) C
$$

where x is the state vector of dimension n, y is the (scalar) output, I is the initial state vector, A is the state transition matrix of dimension $n \times n, C$ is the output matrix of dimension $n \times 1$, and x^{T} is the transposition of x.

Observability. A DTLS is called observable, if its initial state I can be determined from a sequence of observations $y(0), \ldots, y(t-1)[5$.

Rewriting the state-space equations in terms of $x(0)=I$ and the given output up to time $t-1$ one obtains the following output equation:

$$
[y(0) y(1) \ldots y(t-1)]=I^{T}\left[C A C \ldots A^{t-1} C\right]=I^{T} O_{t}
$$

Let X be the state space and $W=\operatorname{span}\left[C A C \ldots A^{k} C \ldots\right]$ be the A-cyclic subspace ($A-C S$) of X generated by C. Since $C \neq 0$, the dimension of W is $1 \leq k \leq n$, and $\left[C A C \ldots A^{k-1} C\right]$ is a basis for $W[7]$ As a consequence, for each $t \geq k$, there exist scalars $a_{0} \ldots a_{k-1}$ such that $A^{t} C=(C) a_{0}+\ldots+\left(A^{k-1} C\right) a_{k-1}$.

If $k<n$ then setting $x^{T} O_{t}=\sum_{i=0}^{k-1}\left(A^{i} C\right) f_{i}\left(x_{1}, \ldots, x_{n}\right)$ to 0 results in k linear equations $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ in n unknowns, as $A^{i} C$ are linearly independent for $i \in[0, k-1]$. Hence, there exist $n-k$ linearly independent vectors x, such that $x^{T} O_{t}=0$, i.e. the dimension of the null space $\mathcal{N}\left(O_{t}\right)=\mathcal{N}\left(O_{n}\right)$ is $n-k$ and the $\operatorname{rank} \rho\left(O_{t}\right)=\rho\left(O_{n}\right)=k$. If $k=n$ then $\mathcal{N}\left(O_{n}\right)=\{0\}$. The set $\mathcal{N}\left(O_{n}\right)$ is called the unobservable space of the system because $y(s)=0$ for all s if $x(0) \in \mathcal{N}(O)$, and the matrix $O=O_{n}$ is called the observability matrix.

[^0]

Fig. 1. Similarity transformations
If $\rho(O)=k<n$ then the system can be reduced to an observable system of dimension k. The reduction is done as follows. Pick columns $C, A C, \ldots, A^{k-1} C$ in O and add $n-k$ linearly independent columns, to obtain matrix Q. Then apply the similarity transformation $\bar{x}^{T}=x^{T} Q$, to obtain the following system:

$$
\begin{array}{ll}
\bar{x}^{T}(t+1) & =x^{T}(t) A Q=\bar{x}^{T}(t) Q^{-1} A Q=\bar{x}^{T}(t) \bar{A} \\
y(t) & =x^{T}(t) C=\bar{x}^{T}(t) Q^{-1} C=\bar{x}^{T}(t) \bar{C}
\end{array}
$$

The transformation is shown in Figure 1. where n_{i} are the standard basis vectors for n-tuples (n_{i} is 1 in position i and 0 otherwise), and q_{i} are the column vectors in Q. Each column i of \bar{A} is the representation of $A q_{i}$ in the basis Q, and \bar{C} is the representation of C in Q. Since q_{1}, \ldots, q_{k} is a basis for W, all $A_{i, j}$ and C_{i} for $j \leq k \leq i$ are 0 . Hence, the new system has the following form:

$$
\left.\begin{array}{rl}
{\left[\bar{x}_{o}^{T}(t+1)\right.} & \bar{x}_{\bar{o}}^{T}(t+1)
\end{array}\right]=\left[\begin{array}{ll}
\bar{x}_{o}^{T}(t) & \bar{x}_{\bar{o}}^{T}(t)
\end{array}\right]\left[\begin{array}{ll}
\bar{A}_{o} & \bar{A}_{12} \\
0 & \bar{A}_{\bar{o}}
\end{array}\right]
$$

where \bar{x}_{o} has dimension $k, \bar{x}_{\bar{o}}$ has dimension $n-k$, and \bar{A}_{o} has dimension $k \times k$. Instead of working with the unobservable system $[A, C]$ one can therefore work with the reduced, observable system $\left[\bar{A}_{o}, \bar{C}_{o}\right]$ that produces the same output.

Reachability. Dually, the system $S=[I, A, C]$ is called reachable, if its final state C can be uniquely determined from $y(0), \ldots, y(t-1)$. Rewriting the statespace equation in terms of C, one obtains the following equation:

$$
[y(0) y(1) \ldots y(t-1)]^{T}=\left[I\left(I^{T} A\right)^{T} \ldots\left(I^{T} A^{t-1}\right)^{T}\right]^{T} C=R_{t} C
$$

Since $R_{t} C=\left(C^{T} R_{t}^{T}\right)^{T}$ and $\left(I^{T} A^{t-1}\right)^{T}=\left(A^{T}\right)^{t-1} I$, the reachability problem of $S=[I, A, T]$ is the observability problem of the dual system $S^{T}=\left[C^{T}, A^{T}, I^{T}\right]$. Hence, in order to study the reachability of S, one can study the observability of S^{T} instead. As for observability, $\rho\left(R_{t}\right)=\rho\left(R_{n}\right)$, where n is the dimension of the state space X. Matrix $R=R_{n}$ is called the reachability matrix of S.

Let $k=\rho(R)$. If $k=n$ then the system is reachable. Otherwise, there is an equivalence transformation $\bar{x}^{T}=x^{T} Q$ which transforms S into a reachable system $\bar{S}_{r}=\left[\bar{I}_{r}, \bar{A}_{r}, \bar{C}_{r}\right]$ of dimension k. The reachability transformation of S is the same as the observability transformation of S^{T}.

3 FA as Left-Linear DTLS

Regular expressions. A regular expression (RE) R over a finite set Σ and its associated semantics $L(R)$ are defined inductively as follows [2]: (1) $0 \in \mathrm{RE}$ and

Fig. 2. (a) DFA M_{1}. (b) DFA M_{2}. (c) DFA M_{3}.
$L(0)=\emptyset ;(2) \epsilon \in \mathrm{RE}$ and $L(\epsilon)=\{\epsilon\} ;$ (3) If $a \in \Sigma$ then $a \in \mathrm{RE}$ and $L(a)=\{a\} ;$ (4) If $P, Q \in \mathrm{RE}$ then: $P+Q \in \mathrm{RE}$ and $L(P+Q)=L(P) \cup L(Q) ; P \cdot Q \in \mathrm{RE}$ and $L(P \cdot Q)=L(P) \times L(Q) ; P^{*} \in \mathrm{RE}$ and $L\left(P^{*}\right)=\cup_{n \in \mathbb{N}} L(P)^{n}$. The denotations of regular expressions are called regular sets 3

For example, the denotation $L\left(R_{1}\right)$ of the regular expression $R_{1}=a a^{*}+b b^{*}$, is the set of all strings (or words) consisting of more than one repetition of a or of b, respectively. It is custom to write a^{+}for $a a^{*}$, so $R_{1}=a^{+}+b^{+}$. A language L is a subset of Σ^{*} and consequently any regular set is a (regular) language.

If two regular expressions R_{1}, R_{2} denote the same set one writes $R_{1}=R_{2}$. In general, one can write equations whose indeterminates and coefficients represent regular sets. For example, $X=X \alpha+\beta$. Its least solution is $X=\beta \alpha^{*}$ [2].

The structure $\mathcal{S}=\left(\Sigma^{*},+, \cdot, 0, \epsilon\right)$ is a semiring, as it has the following properties: (1) $\mathcal{A}=\left(\Sigma^{*},+, 0\right)$ is a commutative monoid; (2) $\mathcal{C}=\left(\Sigma^{*}, \cdot, \epsilon\right)$ is a monoid; (3) Concatenation left (and right) distributes over sum; (4) Left (and right) concatenation with 0 is 0 . Matrices $\mathcal{M}_{m \times n}(\mathcal{S})$ over a semiring with the usual matrix sum and multiplication also form a semiring, but note that in a semiring there is no inverse operation for addition and multiplication, so the inverse of a square matrix is not defined in a classic sense. If $\mathcal{V}=\mathcal{M}_{m \times 1}(\mathcal{A})$ and scalar multiplication is concatenation then $\mathcal{R}=(\mathcal{V}, \mathcal{S}, \cdot)$ is an \mathcal{S}-right semimodule [10].
Finite automata. A finite automaton (FA) $M=(Q, \Sigma, \delta, I, F)$ is a tuple where Q is a finite set of states, Σ is a finite set of input symbols, $\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the transition function mapping each state and input symbol to a set of states, $I \subseteq Q$ is the set of initial states and $F \subseteq Q$ is the set of final states [2]. If I and $\delta(q, a)$ are singletons, the FA is called deterministic (DFA); otherwise it is called nondeterministic (NFA). Three examples of FAs are shown in Figure 2

Let δ^{*} extend δ to words. A word $w \in \Sigma^{*}$ is accepted by FA M if for any $q_{0} \in I$, the set $\delta^{*}\left(q_{0}, w\right) \cap F \neq \emptyset$. The set $L(M)$ of all words accepted by M is called the language of M. For example, $L\left(M_{1}\right)=L\left(a^{+}+b^{+}\right)$.
Grammars. A left-linear grammar (LLG) $G=(N, \Sigma, P, S)$ is a tuple where N is a finite set of nonterminal symbols, Σ is a finite set of terminal symbols disjoint from $N, P \subseteq N \times(N \cup \Sigma)^{*}$ is a finite set of production \int^{4} of the form $A \rightarrow B x$ or $A \rightarrow x$ with $A, B \in N$ and $x \in \Sigma \cup\{\epsilon\}$, and $S \in N$ is the start symbol [2].

A word $a_{1} \ldots a_{n}$ is derived from S if there is a sequence of nonterminals $N_{1} \ldots N_{n}$ in N such that $S \rightarrow N_{1} a_{1}$ and $N_{i-1} \rightarrow N_{i} a_{i}$ for each $i \in[2, n]$. The set $L(G)$ of all words derived from S is called the language of G.

[^1]Equivalence. FAs, LLGs and REs are equivalent, i.e. $L=L(M)$ for some FA M if and only if $L=L(G)$ for some LLG G and if and only if $L=L(E)$ for some RE E [2]. In particular, given an FA $M=(Q, \Sigma, \delta, I, F)$ one can construct an equivalent LLG $G=(Q \cup\{y\}, \Sigma, P, y)$ where P is defined as follows: (1) $y \rightarrow q$ for each $q \in F$, (2) $q \rightarrow \epsilon$, for $q \in I$, and (3) $r \rightarrow q a$ if $r=\delta(q, a)$. Replacing each set of rules $A \rightarrow \alpha_{1}, \ldots, A \rightarrow \alpha_{n}$ with one rule $A \rightarrow \alpha_{1}+\ldots+\alpha_{n}$ leads to a more concise representation. For example the LLG G_{1} derived from M_{1} is:

$$
x_{1} \rightarrow \epsilon, \quad y \rightarrow x_{2}+x_{3}, \quad x_{2} \rightarrow x_{1} \mathrm{a}+x_{2} \mathrm{a}, \quad x_{3} \rightarrow x_{1} \mathrm{~b}+x_{3} \mathrm{~b}
$$

Each nonterminal denotes the set of words derivable from that nonterminal. One can regard G_{1} as a linear system S over REs. One can also regard G_{1} as a discrete, time-invariant linear system (DTLS) S_{1} defined as below:

$$
\begin{gathered}
x^{T}(t+1)=x^{T}(t) A, \quad y(t)=x^{T}(t) C \\
I=\left[\begin{array}{l}
\epsilon \\
0 \\
0
\end{array}\right] \quad A=\left[\begin{array}{lll}
0 & \mathrm{a} & \mathrm{~b} \\
0 & \mathrm{a} & 0 \\
0 & 0 & \mathrm{~b}
\end{array}\right] \quad C=\left[\begin{array}{l}
0 \\
\epsilon \\
\epsilon
\end{array}\right]
\end{gathered}
$$

The initial state of S_{1} is the same as the initial state of DFA M_{1} and it corresponds to the production $x_{1} \rightarrow \epsilon$ of LLG G_{1}. The output matrix C sums up the words in x_{2} and x_{3}. It corresponds to the final states of DFA M_{1} and to the production $y \rightarrow x_{2}+x_{3}$ in LLG G_{1}. Matrix A is obtained from DFA M_{1} by taking $v \in A_{i j}$ if $\delta\left(x_{i}, v\right)=x_{j}$ and $A_{i j}=0$ if $\delta\left(x_{i}, v\right) \neq x_{j}$ for all $v \in \Sigma$. The set of all outputs of S_{1} over time is $\cup_{t \in \mathbb{N}}\{y(t)\}=I^{T} A^{*} C=L\left(M_{1}\right)$.

Matrix A^{*} can be computed in \mathcal{R} as described in [6]. This provides one method for computing $L(M)$. Alternatively, one can use the least solution of an RE equation, and apply Gaussian elimination. This method is equivalent to the rip-out-and-repair method for converting an FA to an RE [2].

In the following, all four equivalent representations, RE, FA, LLG and DTLS, of a finite automaton, are simply referred to as an FA. The observability/reachability problem for an FA is to determine its initial/final state given $y(t)$ for $t \in[0, n-1]$. In vector spaces, these are unique if the rank of O / R is n. In semimodules however, the row rank is generally different from the column rank.

4 Observability Transformations of FA

Lack of finite basis. Let I be a set of indices and \mathcal{R} be an \mathcal{S}-semimodule. A set of vectors $Q=\left\{q_{i} \mid i \in I\right\}$ in \mathcal{R} is called linearly independent if no vector $q_{i} \in Q$ can be expressed as a linear combination $\sum_{j \in(I-i)} q_{j} a_{j}$ of the other vectors in Q, for arbitrary scalars $a_{j} \in \mathcal{S}$. Otherwise, Q is called linearly dependent. The independent set Q is called a basis for \mathcal{R} if it covers \mathcal{R}, i.e. $\operatorname{span}(Q)=\mathcal{R}$ [4].

$$
E=\left[\begin{array}{ccc}
E_{0} & E_{1} & E_{2} \\
0 & 1 \mathrm{a} 2+1 \mathrm{~b} 3 & 1 \mathrm{a} 2 \mathrm{a} 2+1 \mathrm{~b} 3 \mathrm{~b} 3 \\
2 & 2 \mathrm{a} 2 & 2 \mathrm{a} 2 \mathrm{a} 2 \\
3 & 3 \mathrm{~b} 3 & 3 \mathrm{~b} 3 \mathrm{~b} 3
\end{array}\right] \quad O=\left[\begin{array}{ccc}
C & A C & A^{2} C \\
0 & \mathrm{a}+\mathrm{b} & \mathrm{a}^{2}+\mathrm{b}^{2} \\
\epsilon & \mathrm{a} & \mathrm{a}^{2} \\
\epsilon & \mathrm{~b} & \mathrm{~b}^{2}
\end{array}\right] \begin{gathered}
x_{1} \\
x_{2} \\
x_{3}
\end{gathered}
$$

Now consider DFA M_{1}. Its observability matrix O is given above. Each row i of O consists of the words accepted by M_{1} starting in state x_{i} sorted by their length in increasing order. Each column j of O is the vector $A^{j-1} C$, consisting of the accepted words of length $j-1$ starting in x_{i}. The corresponding executions E_{0}, E_{1} and E_{2} of DFA M_{1} are also given above.

The columns of O belong to the A-cyclic subspace of X generated by C (ACS), which has finite dimension in any vector space. In the \mathcal{S}-semimodule \mathcal{R}, where \mathcal{S} is the semiring of REs, however, A-CS may not have a finite basis.

For example, for DFA M_{1} it is not possible to find REs $r_{i_{j}}$ and vectors $A^{i_{j}} C$ such that $A^{i} C=\sum_{j=1}^{k}\left(A^{i_{j}} C\right) r_{i_{j}}$, for $i_{j}<i$. Intuitively, abstracting out the states of an FA from its executions, eliminates linear dependencies.

The state information included in E_{1} and E_{2} allows to capture their linear dependence: E_{2} is obtained from E_{1} by substituting the last occurrence of states 2 and 3 with the loops 2a2 and 3a3, respectively. Regarding substitution as a multiplication with a scalar, one can therefore write $E_{2}=E_{1}(2 \mathrm{a} 2+3 \mathrm{~b} 3)$.

Indexed boolean matrices. In the above multiplication we tacitly assumed that, e.g. $(1 \mathrm{a} 2)(3 \mathrm{~b} 3)=0$, because a b-transition valid in state 3 cannot be taken in states 1 and 2. Treating independently the σ-successors/predecessors of an FA $M=(Q, \Sigma, \delta, I, F)$, for each input symbol $\sigma \in \Sigma$, allows to capture this intuition in a "stateless" way. Formally, this is expressed with indexed boolean matrices (IBM), defined as follows [12]: (1) $C_{i}=(i \in F) ;(2) I_{i}=(i \in I) ;$ (2) For each $\sigma \in \Sigma,\left(A_{\sigma}\right)_{i j}=(\delta(i, \sigma)=j)$; and (3) $A_{\sigma_{1} \ldots \sigma_{n}}=A_{\sigma_{1}} \ldots A_{\sigma_{n}}$. For example, one obtains the following matrices for the DFA M_{1} :

$$
I=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad A_{a}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad A_{b}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Indexing enforces a word by word analysis of acceptance and ensures, for example for M_{1}, that $A_{a b} C=A_{a}\left(A_{b} C\right)=0$. Consequently, for every word $w \in \Sigma^{*}$ the vector $A_{w} C$ has row i equal to 1 , if and only if, w is accepted starting in x_{i}.

Ordering all vectors $A_{w_{i}} C$, for $w_{i} \in \Sigma^{i}$, in lexicographic order, results in a boolean observability matrix $O=\left[A_{w_{0}} C \ldots A_{w_{m}} C\right]$. This matrix has n rows and $|\Sigma|^{n}-1$ columns. Its column rank is the dimension of the A-CS W of the boolean semimodule \mathcal{B} because all $O_{i j} \in \mathbb{B}$. Hence it is finite and less than $2^{n}-1$.

$$
O=\left[\begin{array}{ccccccc}
C & A_{a} C & A_{b} C & A_{a a} C & A_{a b} C & A_{b a} C & A_{b b} C \\
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \begin{aligned}
& \\
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}
$$

For example, matrix O for M_{1} is shown above. It is easy to see that vectors C, $A_{a} C$ and $A_{b} C$ are independent. Moreover, $A_{a a} C=A_{a} C, A_{b b} C=A_{b} C$. Hence, all vectors $A_{w} C$, for $w \in\{a, b\}^{*}$, are generated by the basis $Q=\left[C, A_{a} C, A_{b} C\right]$.

The structure of O is intimately related to the states and transitions of the associated FA. Column C is the set of accepting states, and each column $A_{w} C$

Fig. 3. (a) FA M_{4}. (b) FA M_{5}. (c) FA M_{6}.
is the set of states that can reach C by reading word w. In other words, $A_{w} C$ is the set of all w-predecessors of C.

In the following we do not distinguish between an FA and its IBM representation. The latter is used to find appropriate bases for similarity transformations and prove important properties about FA. To this end, let us first review and prove three important properties about the ranks of boolean matrices.

Theorem 1. (Rank independence) If $n \geq 3$ then the row rank $\rho_{r}(O)$ and the column rank $\rho_{c}(O)$ of a boolean matrix O may be different.

Proof. Consider the observability matrice 5 of FA M_{4} and M_{5} shown in Figure 3 $\rho_{r}\left(O\left(M_{4}\right)\right)=3, \rho_{c}\left(O\left(M_{4}\right)\right)=4$, and $\rho_{r}\left(O\left(M_{5}\right)\right)=4, \rho_{c}\left(O\left(M_{5}\right)\right)=3$.

$$
\begin{gathered}
C A_{a} C \quad A_{b} C A_{c} C \\
O\left(M_{4}\right)=\begin{array}{ccc}
C & A_{a} C & A_{b} C \\
{\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] x_{x_{1}}} \\
x_{2} \\
x_{3}
\end{array} \\
{\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}}
\end{gathered}
$$

To ensure that an FA is transformed to an equivalent DFA, it is convenient to introduce two more ranks: $\rho_{r}^{d}(O)$ and $\rho_{c}^{d}(O)$. They represent the number of distinct rows and columns in O, respectively. Hence, these ranks consider only linear dependencies in which the sum is identical to its summands.

Theorem 2. (Rank bounds) The various row and column ranks are bounded and related to each other by the following inequalities:

$$
1 \leq \rho_{r}(O) \leq \rho_{r}^{d}(O) \leq n, 1 \leq \rho_{c}(O) \leq \rho_{c}^{d}(O) \leq 2^{n}-1,1 \leq \rho_{c}(O) \leq C_{\lceil n / 2\rceil}^{n}+\lfloor n / 2\rfloor
$$

Proof. First and second inequalities are obvious. For the third observe that: (1) The set of combinations C_{i}^{n} is independent; (2) It covers all C_{j}^{n} with $j>i$; (3) Only $i-1$ independent vectors may be added to C_{i}^{n} from all C_{j}^{n}, with $j<i$.

The A-CS of \mathcal{B} is very similar to the $\mathrm{A}-\mathrm{CS}$ of a vector space. For example, let $A^{k} C$ be the set of all vectors $A_{w} C$ with $|w|=k$. Then the following holds.

Theorem 3. (Rank computation) If all vectors in $A^{k} C$ are linearly dependent on a basis Q for $\left[C A C \ldots A^{k-1} C\right]$, then so are all the ones in $A^{j} C$, with $j \geq k$.

Proof. The proof is identical to the one for vector spaces, except that induction is on the length of words in $A_{w} C$, and $A^{k} C$ are sets of vectors.

[^2]

Fig. 4. (a) FA M_{7}. (b) FA M_{8}.

Observability transformations. The four ranks discussed above suggest the definition of four equivalence transformations $\bar{x}^{T}=x^{T} Q$, where Q consists of the independent (or the distinct), rows (or columns) in O, respectively. Each state $q \in Q$ of the resulting FA \bar{M}, is therefore a subset of the states of M, and each σ-transition to q in \bar{M} is computed by representing its σ-predecessor $A_{\sigma} q$ in Q.

Row-basis transformations. These transformations utilize sets of observablyequivalent states in M to build the independent states $q \in Q$ of \bar{M}. The length of the observations, necessary to characterize the equivalence, is determined by Theorem 3 The equivalence among state-observations itself, depends on whether $\rho_{r}(O)$ (linear equivalence) or $\rho_{r}^{d}(O)$ (identity equivalence) is used.

Using $\rho_{r}(O)$, one fully exploits linear dependencies to reduce the number of states in \bar{M}. For example, suppose that $x_{3}=x_{1}+x_{2}$, and that x_{1} and x_{2} are independent. Then one can replace the states x_{1}, x_{2} and x_{3} in M, with states $q_{1}=\left\{x_{1}, x_{3}\right\}$ and $q_{2}=\left\{x_{2}, x_{3}\right\}$ in \bar{M}. This generalizes to multiple dependencies, and each new state $q \in Q$ contains only one independent state x. Consequently, the language $L(q)=L(x)$. Among the states $q \in Q$, the state C is accepting, and each q that contains an initial state in M is initial in \bar{M}.

The transitions among states $q \in Q$ are inferred from the transitions in M. The general rule is that $q_{i} \xrightarrow{\sigma} q_{j}$, if all states in q_{i} are σ-predecessors of the states in q_{j}. However, as Q is not necessarily a column basis, the σ-predecessor of a state like q_{1} above, could be either x_{1} or x_{3}, which are not in Q. Extending x_{1} to q_{1} does not do any harm, as $L\left(q_{1}\right)=L\left(x_{1}\right)$. Ignoring state x_{3} does not do any harm either, as x_{3} is covered by x_{1} and x_{2}, possibly on some other path. These completion rules are necessary when computing the "inverse" of Q, i.e. representing $A Q$ in Q to obtain \bar{A}.

Theorem 4. (Row reduction) Given $F A M$ with $\rho_{r}(O)=k<n$, let R be a row basis for O. Define $Q=\left[q_{1}, \ldots, q_{k}\right]$ as follows: for every $i \in[1, k]$ and $j \in[1, n]$, if row O_{j} is linearly dependent on R_{i} then $q_{i j}=1$; otherwise $q_{i j}=0$. Then a change of basis $\bar{x}^{T}=x^{T} Q$ obeying above completion rules results in FA \bar{M} that: (1) has same output; (2) has states with independent languages.

Proof. (1) States q satisfy $L(q)=L(x)$, where x is the independent state in q. Transitions $\bar{A}_{\sigma}=Q^{-1}\left[A_{\sigma} q_{1} \ldots A_{\sigma} q_{n}\right]$, have $A_{\sigma} q_{i}$ as the σ-predecessors of states in q_{i}. The role of Q^{-1} is to represent $A_{\sigma} q_{i}$ in Q. If this fails, it is corrected as discussed above. (2) Dependent rows have been identified with their summands.

For example, consider FA M_{7} in Figure 4(a). The observability matrix O of M_{7} is given below

[^3]Row $x_{4}=x_{1}+x_{2}$. This determines the construction of Q as shown above. Using Q in $\bar{x}^{T}=x^{T} Q$, results in FA M_{8} shown in Figure 4(b). Note that $A_{a} q_{1}=x_{4}$ has been removed when representing $A_{a} q_{1}$ in Q.

Using $\rho_{r}(O)$ typically results in an NFA, even when starting with a DFA. This is because vectors in Q may have overlapping rows, due to linear dependencies in O. The use of $\rho_{r}^{d}(O)$ ensures a resulting DFA, as columns do not overlap.

Identity equivalence also simplifies the transformation. First, Theorem 3 and the computation of ρ_{r}^{d} can be performed on-the-fly as a partition-refinement: $[C]$, partitions states, based on observations of length $0 ;[C A C]$, further distinguishes the states in previous partition, based on observations of length 1 ; and so on. Second, no completion is ever necessary, as $A q$ is always representable in Q.
Theorem 5. (Deterministic row reduction) Given an FA M with $\rho_{r}^{d}(O)=k<n$ proceed as in Theorem 4 but using $\rho_{r}^{d}(O)$. Then if M is a $D F A$, then so is \bar{M}.
Proof. (1) Theorem 4 ensures correctness. (2) States in Q are disjoint. Hence, no row in $\bar{A}=Q^{-1} A Q$ has two entries for the same input symbol.
For example, let us apply Theorem 5to the DFA M_{2} in Figure 2(b). The corresponding observability matrix is shown below:

$$
O\left(M_{2}\right)=\left[\begin{array}{cccc}
C & A_{b} C & A_{a b} C & A_{b b} C \\
{\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array} \quad Q\left(M_{2}\right)=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\right.
$$

Rows $x_{2}=x_{3}$ and $x_{4}=x_{5}$. This determines the construction of the basis Q as shown above. Using this basis in the equivalence transformation, results in DFA M_{3}, which is shown graphically in Figure 2(c).
Corollary 1 (Myhill-Nerode theorem). Theorem 5 is equivalent to the DFA minimization algorithm of the Myhill-Nerode theorem [2].

Column-basis transformations. These transformations pick Q as a column basis for O. The definition of basis depends on the notion of linear independence used, and this also impacts the column rank computation via Theorem 3.

Using $\rho_{r}(O)$, one fully exploits linear dependencies, and chooses a minimal column basis Q as the states of \bar{M}. The transitions of \bar{M} are then determined by representing all the predecessors $A Q$ of the states $Q=\left[q_{1} \ldots q_{k}\right]$ of \bar{M} in Q. In contrast to the general row transformation, $A q_{i}$, for $i \in[1, k]$, is representable in Q, as Q is a column basis for O. Hence, no completion is ever necessary. Like in vector spaces, the resulting matrices \bar{A} are in companion form.

Fig. 5. (a) NFA M_{9}. (b) DFA M_{10}. (c) DFA M_{11}. (d) NFA M_{12}.

Theorem 6. (Column reduction) Given an $F A M$ with $\rho_{c}(O)=k<n$. Define Q as a column basis of O. Then a change of basis $\bar{x}^{T}=x^{T} Q$ results in $F A \bar{M}$ with: (1) same output; (2) states with a distinguishing accepting word.

Proof. (1) Transitions $\bar{A}_{\sigma}=Q^{-1}\left[A_{\sigma} q_{1} \ldots A_{\sigma} q_{n}\right]$, have $A_{\sigma} q_{i}$ as the σ-predecessors of states in q_{i}. The role of Q^{-1} is to represent $A_{\sigma} q_{i}$ in Q, and this never fails. (2) Dependent columns in O have been identified with their summands.

For example, consider the FA M_{5} shown in Figure 3(b) and its associated observability matrix, shown below of Figure 3(b). No row-rank reduction applies, as $\rho_{r}(O)=4$. However, as $\rho_{c}(O)=3$, one can apply a column-basis reduction, with Q as the first three columns of O. The resulting FA is shown in Figure 3(c).

The column-basis transformation for $\rho_{c}^{d}(O)$ simplifies, as dependence reduces to identity. Moreover, in this case \bar{M} can be constructed on-the-fly, as follows: Start with $Q, Q_{n}=[C]$. Then repeatedly remove the first state $q \in Q_{n}$, and add the transition $p \xrightarrow{\sigma} q$ to \bar{A} for each $p \in A q$. If $p \notin Q$, then also add p at the end of Q and Q_{n}. Stop when Q_{n} is empty. The resulting \bar{M}^{T} is deterministic.

Theorem 7. (Deterministic column transformation) Given FA M proceed as in Theorem 6 but using $\rho_{c}^{d}(O)$. Then \bar{M}^{T} is a DFA with $|Q| \leq 2^{n}-1$.
Proof. Each row of \bar{A}_{σ}^{T} has a single 1 for each input symbol $\sigma \in \Sigma$.
For example, consider the FA M_{11} shown in Figure 5 (c). Construct the basis Q by selecting all columns in O. Using this basis in the equivalence transformation $\bar{x}^{T}=x^{T} Q$, results in the FA M_{12} shown in Figure (5).

5 Reachability Transformations of FA

The boolean semiring \mathcal{B} is commutative, that is $a b=b a$ holds. When viewed as a semimodule, left linearity is therefore equivalent to right linearity, that is $\sum_{i \in I} x_{i} a_{i}=\sum_{i \in I} a_{i} x_{i}$. This in turn means that $(A B)^{T}=B^{T} A^{T}$.

Consequently, in \mathcal{B} the reachability of an FA $M=[I, A, C]$ is reducible to the observability of the FA $M^{T}=\left[C^{T}, A^{T}, I^{T}\right]$, and all the results and transformations in Section 4. can be directly applied without any further proof!

For illustration, consider the FA M_{9} shown in Figure 5(a). The reachability matrix $R^{T}\left(M_{9}\right)$ is given below. It is identical to $O\left(M_{9}^{T}\right)$.

Fig. 6. (a) NFA M_{13}. (b) NFA M_{14}.

$$
R^{T}\left(M_{9}\right)=\left[\begin{array}{ccccccc}
I & A_{a}^{T} I & A_{b}^{T} I & A_{a a}^{T} I & A_{b b}^{T} I & A_{a c}^{T} I & A_{b c}^{T} I \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3} \\
& x_{4} \\
& x_{5}
\end{aligned} \quad Q\left(M_{9}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Each row i of R^{T} corresponds to state x_{i}. A column $A_{w}^{T} I$ of R^{T} is 1 in row i iff x_{i} is reachable from I with w^{R}, or dually, if state x_{i} accepts w in $M^{T} \square$

Row-basis transformations. These transformations utilize sets of reachabilityequivalent states in M to build the independent states $q \in Q$ of \bar{M}. These states are, as discussed before, the observability equivalent states of M^{T}.
Theorem 8. (Row reduction) Given an $F A M$, Theorem 4 applied to M^{T} results in an $F A \bar{M}$ with: (1) same output; (2) states with independent sets of reaching words.
For example, in $R^{T}\left(M_{9}\right)$ above, row $x_{4}=x_{2}+x_{3}$. This determines the construction of the basis Q, also shown above. Using this basis in the equivalence transformation, results in the DFA M_{10} shown in Figure 5 (b).

Identifying linearly dependent states with their generators and repairing lone σ-successors might preclude \bar{M}^{T} to be a DFA, even if M^{T} was a DFA. Identifying only states with identical reachability however, ensures it.
Theorem 9. (Deterministic row reduction) If M^{T} is a DFA, then Theorem 5 applied to M^{T} ensures that \bar{M}^{T} is also a DFA.

For example, let us apply Theorem 9 to the NFA M_{13} shown in Figure 6(a), the dual of the DFA M_{2} shown in Figure 2(b). Hence, $M_{11}^{T}=M_{2}$ is a DFA. The reachability matrix $R^{T}\left(M_{13}\right)$ is shown below. It is identical to $O\left(M_{2}\right)$.

$$
R^{T}\left(M_{13}\right)=\left[\begin{array}{cccc}
I & A_{b}^{T} I & A_{a b}^{T} I & A_{b b}^{T} I \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3} \\
& x_{4} \\
& x_{5}
\end{aligned} \quad Q\left(M_{13}\right)=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

[^4]

Fig. 7. (a) FA M_{15}. (b) FA M_{16}. (c) FA M_{17}. (d) FA M_{18}.

Rows $x_{2}=x_{3}$ and $x_{4}=x_{5}$. This determines the construction of the basis Q as shown above. Using this basis in the equivalence transformation, results in NFA M_{14}, shown graphically in Figure 6(c). The FA M_{14}^{T} is a DFA, and $M_{14}^{T}=M_{3}$.

Column-basis transformations. Given an FA M, these transformations construct FA \bar{M} by choosing a column basis of R^{T} as the states Q of \bar{M}.

The general form of the transformations uses the full concept of linear dependency, in order to look for a column basis in R^{T}. Hence, this transformation computes the smallest possible column basis.

Theorem 10. (Column reduction) Given FA M, Theorem 6 used on M^{T} results in $F A \bar{M}$ with: (1) same output; (2) states reached with a distinguishing word.

Consider the NFA M_{4} shown in Figure 3(a). Neither a row nor a column-basis observability reduction is applicable to M_{4}. However, one can apply a columnbasis reachability reduction to M_{4}. The matrix $R^{T}\left(M_{4}\right)$ is given below.

$$
R^{T}\left(M_{4}\right)=\begin{array}{ccccc}
I & A_{a}^{T} I & A_{b}^{T} I A_{c}^{T} I & q_{1} q_{2} \\
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}} & Q\left(M_{4}\right)=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

Columns 1 and 2 form a basis for R^{T}. This determines the construction of Q as shown above. Using Q in $\bar{x}^{T}=x^{T} Q$ results in NFA M_{15}, shown in Figure 7(a).

In this case, the column-basis reachability transformation is identical to a row-basis reachability transformation. Consequently, the latter transformation would not require any automatic completion of the σ-successors $q^{T} A_{\sigma}$ of $q \in Q$.

Given an FA M, the deterministic column-basis transformation, with column rank $\rho_{c}^{d}\left(R^{T}\right)$, always constructs a DFA \bar{M}. This construction is dual to the deterministic column-basis observability transformation.

Theorem 11. (Deterministic column transformation) Given an FA M, Theorem 7 applied to M^{T} results in the DFA \bar{M}.

Consider for example the NFA M_{17} shown in Figure 7(c). Its reachability matrix $R^{T}\left(M_{17}\right)$ is given below, where only the interesting columns are shown.

$$
R^{T}\left(M_{17}\right)=\begin{array}{ccc}
I & A_{a}^{T} I & A_{b}^{T} I \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}}
\end{array} \quad Q\left(M_{17}\right)=\left[\begin{array}{ccc}
q_{1} & q_{2} & q_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

As columns one and two form a basis for R^{T}, the general column-basis transformation is the identity. The deterministic one is not, as it includes all distinct
columns of R^{T} in Q, as shown above. Using Q in $\bar{x}^{T}=x^{T} Q$ results in the DFA M_{18} shown in Figure 7(d). This DFA has one more state, compared to M_{17}.

Applying a deterministic column-basis transformation to an FA M, does not necessarily increase the number of states of M. For example, applying such a transformation to NFA M_{6} shown in Figure 3(c), results in the DFA M_{16} shown in Figure 7(b), which has the same number of states as M_{6}. Moreover, in this case, the general and the deterministic column-basis transformations coincide.

Corollary 2 (NFA determinization algorithm). Theorem 11 is equivalent to the NFA determinization algorithm [2].

6 The Pumping Lemma and FA Minimality

In previous sections we have shown that a control-theoretic approach to FA complements, and also allows to extend the reach of, the graph-theoretic approach. In this section we give two additional examples: An alternative proof of the pumping lemma [2]; A alternative approach to FA minimization. Both take advantage of the observability and reachability matrices.

Theorem 12 (Pumping Lemma). If L is a regular set then there exists a constant p such that every word $w \in L$ of length $|w| \geq p$ can be written as xyz, where: (1) $0<|y|$, (2) $|x z| \leq p$, and (2) $x y^{i} z \in L$ for all $i \geq 0$

Proof. Consider a DFA M accepting L. Since M is deterministic, each column of R^{T} is a standard basis vector n_{i}, and there are at most n such distinct columns in R^{T}. Hence, for every word w of length greater than n, there are words $x y z=w$ satisfying (1) and (2) such that $I^{T} A_{x}=I^{T} A_{x y}$. Since $I^{T} A_{x y^{i}}=I^{T} A_{x y} A_{y^{i-1}}$, it follows that $I^{T} A_{x y^{i} z} C=I^{T} A_{w} C$, for all $i \geq 0$.

Canonical Forms. Row- and column-basis transformations are related to each other. Let $Q_{c} \in \mathcal{M}_{i \times j}(\mathcal{B}), Q_{r} \in \mathcal{M}_{i \times k}(\mathcal{B})$ be the observability column and row basis for an FA M. Let $A_{c}=Q_{c}^{-1} A Q_{c}$ and $A_{r}=Q_{r}^{-1} A Q_{r}$.

Theorem 13 (Row and column basis). There is a matrix $R \in \mathcal{M}_{k \times j}(\mathcal{B})$ such that: (1) $Q_{c}=Q_{r} R$; (2) $A_{c}=R^{-1} A_{r} R$; (3) $A_{r}=R A_{c} R^{-1}$.

Proof. (1) Let $B(m)$ be the index in O of the independent row of $q_{m} \in Q_{r}$ and $C(n)$ be the index in O of the independent column $q_{n} \in Q_{c}$, and define $R_{m n}=O_{B(m) C(n)}$, for $m \in[1, k], n \in[1, j]$. Then $Q_{c}=Q_{r} R$; (2) As a consequence $A_{c}=\left(Q_{r} R\right)^{-1} A\left(Q_{r} R\right)=R^{-1} A_{r} R$; (3) This implies that $A_{r}=R A_{c} R^{-1}$.
Hence, A_{r} is obtained through a reachability transformation with column basis R after an observability transformation with column basis Q_{c}. Let \mathcal{O} and \mathcal{R} be the column basis observability and reachability transformations, respectively. We call $M_{o}=\mathcal{O}(\mathcal{R}(M))$ and $M_{r}=\mathcal{R}(\mathcal{O}(M))$ the canonical observable and reachable FAs of M, respectively.

Fig. 8. (a) DFA M_{19}. (b) NFA M_{20}. (c) NFA M_{21}.
Theorem 14 (Canonical FA). For any FA $M, \mathcal{R}\left(M_{o}\right)=M_{r}$ and $\mathcal{O}\left(M_{r}\right)=M_{o}$.
Minimal FA. Canonical FAs are often minimal wrt. to the number of states. For example, M_{11} and M_{12} in Figure 5 are both minimal FAs. Moreover, FA M_{11} is canonical reachable and FA M_{12} is canonical observable.

For certain FAs however, the canonical FAs are not minimal. A necessary condition for the lack of minimality, is the existence of a weaker form of linear dependence among the basis vectors of the observability/reachability matrices: A set of vectors $Q=\left\{q_{i} \mid i \in I\right\}$ in \mathcal{R} is called weakly linearly dependent if there are two disjoint subsets $I_{1}, I_{2} \subset I$, such that $\sum_{i \in I_{1}} q_{i}=\sum_{i \in I_{2}} q_{i}$ [8].

For example, the DFA M_{19} in Figure 8(a) has the canonical reachable FA M_{20} shown in Figure (b), which is minimal. The observability matrix of M_{20} shown below, has 7 independent columns. The canonical observable FA of M_{19} and M_{20} has therefore 7 states! As a consequence, it is not minimal. Note however, that $A_{b} C+A_{b b} C=A_{a b} C+A_{b a} C$. Hence, the 7 columns are weakly dependent.

$$
O\left(M_{20}\right)=\left[\begin{array}{lllllll}
C A_{a} C A_{b} C A_{a a} C & A_{a b} C & A_{b a} C & A_{b b} C \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3} \\
& x_{4} \\
& x_{5} \\
& x_{6}
\end{aligned} \quad Q\left(M_{20}\right)=\left[\begin{array}{llllll}
q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Theorem 15 (Minimal FA). Given the observability matrix O of an $F A M$, choose Q as a set basis [13] of O, such that $A Q$ is representable in Q. Then the equivalence transformation $\bar{x}^{T}=x^{T} Q$ results in a minimal automaton.
Alternatively, minimization can be reduced to computing the minimal boolean relation corresponding to O. For example, the Karnaugh blocks [9] in $O\left(M_{20}\right)$ provide several ways of constructing Q. One such way is $Q\left(M_{20}\right)$ shown above, where one block is the first column in $O\left(M_{20}\right)$, and the other blocks correspond to its rows. The resulting FA is M_{21}. Both alternatives lead to NP-complete algorithms. Reachability is treated in a dual way, by manipulating R.

Since all equivalent FAs admit an equivalence transformation resulting in the same DFA, and since from this DFA one can obtain all other FAs through an equivalence transformation, all FAs are related through an equivalence transformation! This provides a cleaner way of dealing with the minimal FAs, when compared to the terminal FA (incorporating all other FA), discussed in (1].

7 Conclusions

We have shown that regarding finite automata (FA) as discrete, time-invariant linear systems over semimodules, allows to unify DFA minimization, NFA determinization, DFA pumping and NFA minimality as various properties of observability and reachability transformations of FA. Our treatment of observability and reachability may also allow us to generalize the Cayley-Hamilton theorem to FA and derive a characteristic polynomial. In future work, we would therefore like to investigate this polynomial and its associated eigenvalues.

Acknowledgments. I would like to thank Gene Stark and Gheorghe Stefanescu for their insightful comments to the various drafts of this paper. This research was supported in part by NSF Faculty Early Career Award CCR01-33583.

References

1. Nivat, M., Arnold, A., Dicky, A.: A note about minimal nondeterministic automata. EATCS 45, 166-169 (1992)
2. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling. Prentice-Hall, Englewood Cliffs (1972)
3. Alur, R., Coucoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicolin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Sciences 138, 3-34 (1995)
4. Beasley, L.B., Guterman, A.E., Jun, Y.B., Song, S.Z.: Linear preservers of extremes of rank inequalities over semirings: Row and column ranks. Linear Algebra and its Applications 413, 495-509 (2006)
5. Chen, C.T.: Linear System Theory Design. Holt, Reinhart and Winston (1984)
6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)
7. Friedberg, S.H., Insel, A.J., Spence, L.E.: Linear Algebra. Prentice-Hall, Englewood Cliffs (1989)
8. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Springer, Heidelberg (2008)
9. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Transactions of American Institute of Electrical Engineers 72(9), 593-599 (1953)
10. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer, Heidelberg (1986)
11. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and Computation 185(1), 103-157 (2003)
12. Salomaa, A.: Theory of Automata. Pergamon Press, Oxford (1969)
13. Stockmeyer, L.J.: The set basis problem is NP-complete. Technical Report RC5431, IBM (1975)

[^0]: ${ }^{1}$ The left-linear representation is more convenient in the following sections.
 ${ }^{2}$ This fact is used by the Cayley-Hamilton theorem.

[^1]: ${ }^{3}$ The concatenation operator \cdot is usually omitted when writing a regular expression.
 ${ }^{4}$ It is custom to write pairs $(x, y) \in P$ as $x \rightarrow y$.

[^2]: ${ }^{5}$ We show only the basis columns of the observability matrix.

[^3]: ${ }^{6}$ We show only part of the columns in O.

[^4]: ${ }^{7}$ We write w^{R} for the reversed form of w.

