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Abstract. We show that regarding finite automata (FA) as discrete,
time-invariant linear systems over semimodules, allows to: (1) express
FA minimization and FA determinization as particular observability and
reachability transformations of FA, respectively; (2) express FA pumping
as a property of the FA’s reachability matrix; (3) derive canonical forms
for FAs. These results are to our knowledge new, and they may support a
fresh look into hybrid automata properties, such as minimality. Moreover,
they may allow to derive generalized notions of characteristic polynomials
and associated eigenvalues, in the context of FA.

1 Introduction

The technological developments of the past two decades have nurtured a fas-
cinating and very productive convergence of automata- and control-theory. An
important outcome of this convergence are hybrid automata (HA), a popular
modeling formalism for systems that exhibit both continuous and discrete be-
havior [3,11]. Intuitively, HA are extended finite automata whose discrete states
correspond to the various modes of continuous dynamics a system may exhibit,
and whose transitions express the switching logic between these modes.

HA have been used to model and analyze embedded systems, including auto-
mated highway systems, air traffic management, automotive controllers, robotics
and real-time circuits. They have also been used to model and analyze biologi-
cal systems, such as immune response, bio-molecular networks, gene-regulatory
networks, protein-signaling pathways and metabolic processes.

The analysis of HA typically employs a combination of techniques borrowed
from two seemingly disjoint domains: finite automata (FA) theory and linear
systems (LS) theory. As a consequence, a typical HA course first introduces one
of these domains, next the other, and finally their combination. For example,
it is not unusual to first discuss FA minimization and later on LS observability
reduction, without any formal link between the two techniques.

In this paper we show that FA and LS can be treated in a unified way, as FA
can be conveniently represented as discrete, time-invariant LS (DTLS). Conse-
quently, many techniques carry over from DTLS to FA. One has to be careful
however, because the DTLS associated to FA are not defined over vector spaces,
but over more general semimodules. In semimodules for example, the row rank
of a matrix may differ from its column rank.
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In particular, we show that: (1) deterministic-FA minimization and nondeter-
ministic-FA determinization [2] are particular cases of observability and reach-
ability transformations [5] of FA, respectively; (2) FA pumping [2] is a property
of the reachability matrix [5] associated to an FA; (3) FA admit a canonical FA
in observable or reachable form, related through a standard transformation.

While the connection between LS and FA is not new, especially from a
language-theoretic point of view [2,6,10], our observability and reachability re-
sults for FA are to our knowledge new. Moreover, our treatment of FA as DTLS
has the potential to lead to a knew understanding of HA minimization, and of
other properties common to both FA and LS.

The rest of the paper is organized as follows. Section 2 reviews observability
and reachability of DTLS. Section 3 reviews regular languages, FA and gram-
mars, and introduces the representation of FA as DTLS. Section 4 presents our
new results on the observability of FA. Section 5 shows that these results can
be used to obtain by duality similar results for the reachability of FA. In Sec-
tion 6 we address pumping and minimality of FA. Finally, Section 7 contains our
concluding remarks and directions for future work.

2 Observability and Reachability Reduction of DTLS

Consider a discrete, time-invariant linear system (DTLS) with no input, only
one output, and with no state and measurement noise. Its [I, A, C], state-space
description in left-linear form is then given as below [5]:1

x(0) = I, xT (t + 1) = xT (t)A, y(t) = xT (t)C
where x is the state vector of dimension n, y is the (scalar) output, I is the initial
state vector, A is the state transition matrix of dimension n×n, C is the output
matrix of dimension n×1, and xT is the transposition of x.

Observability. A DTLS is called observable, if its initial state I can be deter-
mined from a sequence of observations y(0), . . . , y(t − 1) [5].

Rewriting the state-space equations in terms of x(0)= I and the given output
up to time t−1 one obtains the following output equation:

[y(0) y(1) . . . y(t − 1)] = IT [C AC . . . At−1C] = IT Ot

Let X be the state space and W = span[C AC. . . AkC. . .] be the A-cyclic subspace
(A-CS) of X generated by C. Since C �=0, the dimension of W is 1≤ k≤n, and
[C AC. . .Ak−1C] is a basis for W [7].2 As a consequence, for each t≥ k, there
exist scalars a0. . .ak−1 such that AtC = (C)a0 + . . .+ (Ak−1C)ak−1.

If k <n then setting xT Ot =
∑k−1

i=0 (AiC)fi(x1, . . ., xn) to 0 results in k linear
equations fi(x1, . . ., xn)= 0 in n unknowns, as AiC are linearly independent for
i∈ [0, k−1]. Hence, there exist n−k linearly independent vectors x, such that
xT Ot =0, i.e. the dimension of the null space N (Ot)=N (On) is n− k and the
rank ρ(Ot)= ρ(On)= k. If k = n then N (On)= {0}. The set N (On) is called the
unobservable space of the system because y(s)=0 for all s if x(0)∈N (O), and
the matrix O = On is called the observability matrix.
1 The left-linear representation is more convenient in the following sections.
2 This fact is used by the Cayley-Hamilton theorem.
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Fig. 1. Similarity transformations

If ρ(O)= k < n then the system can be reduced to an observable system of
dimension k. The reduction is done as follows. Pick columns C, AC, . . . , Ak−1C
in O and add n− k linearly independent columns, to obtain matrix Q. Then
apply the similarity transformation xT =xT Q, to obtain the following system:

xT (t + 1) = xT (t)AQ = xT (t)Q−1AQ = xT (t)A
y(t) = xT (t)C = xT (t)Q−1C = xT (t)C

The transformation is shown in Figure 1, where ni are the standard basis vectors
for n-tuples (ni is 1 in position i and 0 otherwise), and qi are the column vectors
in Q. Each column i of A is the representation of Aqi in the basis Q, and C is
the representation of C in Q. Since q1, . . . , qk is a basis for W , all Ai,j and Ci

for j ≤ k ≤ i are 0. Hence, the new system has the following form:

[xT
o (t + 1) xT

o (t + 1)] = [xT
o (t) xT

o (t)]
[

Ao A12

0 Ao

]

y(t) = [xT
o (t) xT

o (t)]
[

Co

0

]

where xo has dimension k, xo has dimension n− k, and Ao has dimension k×k.
Instead of working with the unobservable system [A, C] one can therefore work
with the reduced, observable system [Ao, Co] that produces the same output.

Reachability. Dually, the system S = [I, A, C] is called reachable, if its final
state C can be uniquely determined from y(0), . . ., y(t−1). Rewriting the state-
space equation in terms of C, one obtains the following equation:

[y(0) y(1) . . . y(t − 1)]T = [I (IT A)T . . . (IT At−1)T ]T C = RtC

Since RtC =(CT RT
t )T and (IT At−1)T = (AT )t−1I, the reachability problem of

S = [I, A, T ] is the observability problem of the dual system ST = [CT , AT , IT ].
Hence, in order to study the reachability of S, one can study the observability
of ST instead. As for observability, ρ(Rt) = ρ(Rn), where n is the dimension of
the state space X . Matrix R = Rn is called the reachability matrix of S.

Let k = ρ(R). If k =n then the system is reachable. Otherwise, there is an
equivalence transformation xT = xT Q which transforms S into a reachable sys-
tem Sr = [Ir, Ar, Cr] of dimension k. The reachability transformation of S is the
same as the observability transformation of ST .

3 FA as Left-Linear DTLS

Regular expressions. A regular expression (RE) R over a finite set Σ and its
associated semantics L(R) are defined inductively as follows [2]: (1) 0∈RE and
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Fig. 2. (a) DFA M1. (b) DFA M2. (c) DFA M3.

L(0)= ∅; (2) ε∈RE and L(ε)= {ε}; (3) If a∈Σ then a∈RE and L(a)= {a};
(4) If P, Q∈RE then: P + Q∈RE and L(P + Q)=L(P )∪L(Q); P ·Q∈RE and
L(P ·Q)=L(P )×L(Q); P ∗ ∈RE and L(P ∗)= ∪n∈N L(P )n. The denotations
of regular expressions are called regular sets.3

For example, the denotation L(R1) of the regular expression R1 = aa∗+ bb∗,
is the set of all strings (or words) consisting of more than one repetition of a or
of b, respectively. It is custom to write a+ for aa∗, so R1 = a+ + b+. A language
L is a subset of Σ∗ and consequently any regular set is a (regular) language.

If two regular expressions R1, R2 denote the same set one writes R1 =R2. In
general, one can write equations whose indeterminates and coefficients represent
regular sets. For example, X = Xα+ β. Its least solution is X =βα∗ [2].

The structure S =(Σ∗, +, ·, 0, ε) is a semiring, as it has the following proper-
ties: (1) A = (Σ∗, +, 0) is a commutative monoid; (2) C = (Σ∗, ·, ε) is a monoid;
(3) Concatenation left (and right) distributes over sum; (4) Left (and right)
concatenation with 0 is 0. Matrices Mm×n(S) over a semiring with the usual
matrix sum and multiplication also form a semiring, but note that in a semiring
there is no inverse operation for addition and multiplication, so the inverse of
a square matrix is not defined in a classic sense. If V =Mm×1(A) and scalar
multiplication is concatenation then R= (V ,S, ·) is an S-right semimodule [10].

Finite automata. A finite automaton (FA) M = (Q, Σ, δ, I, F ) is a tuple where
Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ →P(Q) is
the transition function mapping each state and input symbol to a set of states,
I ⊆Q is the set of initial states and F ⊆Q is the set of final states [2]. If I and
δ(q, a) are singletons, the FA is called deterministic (DFA); otherwise it is called
nondeterministic (NFA). Three examples of FAs are shown in Figure 2.

Let δ∗ extend δ to words. A word w∈Σ∗ is accepted by FA M if for any
q0 ∈ I, the set δ∗(q0, w)∩F �= ∅. The set L(M) of all words accepted by M is
called the language of M . For example, L(M1) = L(a+ + b+).

Grammars. A left-linear grammar (LLG) G = (N, Σ, P, S) is a tuple where N
is a finite set of nonterminal symbols, Σ is a finite set of terminal symbols disjoint
from N , P ⊆N×(N ∪ Σ)∗ is a finite set of productions4 of the form A→Bx or
A→x with A, B ∈N and x∈Σ∪{ε}, and S ∈N is the start symbol [2].

A word a1 . . . an is derived from S if there is a sequence of nonterminals
N1 . . .Nn in N such that S →N1 a1 and Ni−1 →Ni ai for each i∈ [2, n]. The set
L(G) of all words derived from S is called the language of G.

3 The concatenation operator · is usually omitted when writing a regular expression.
4 It is custom to write pairs (x, y) ∈ P as x → y.
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Equivalence. FAs, LLGs and REs are equivalent, i.e. L =L(M) for some FA
M if and only if L =L(G) for some LLG G and if and only if L =L(E) for some
RE E [2]. In particular, given an FA M =(Q, Σ, δ, I, F ) one can construct an
equivalent LLG G=(Q ∪ {y}, Σ, P, y) where P is defined as follows: (1) y → q
for each q∈F , (2) q→ ε, for q ∈ I, and (3) r→ q a if r = δ(q, a). Replacing each
set of rules A→α1, . . ., A→αn with one rule A→α1+ . . .+αn leads to a more
concise representation. For example the LLG G1 derived from M1 is:

x1 → ε, y → x2 + x3, x2 → x1a + x2a, x3 → x1b + x3b

Each nonterminal denotes the set of words derivable from that nonterminal.
One can regard G1 as a linear system S over REs. One can also regard G1 as a
discrete, time-invariant linear system (DTLS) S1 defined as below:

xT (t + 1) = xT (t)A, y(t) = xT (t)C

I =

⎡

⎣
ε
0
0

⎤

⎦ A =

⎡

⎣
0 a b
0 a 0
0 0 b

⎤

⎦ C =

⎡

⎣
0
ε
ε

⎤

⎦

The initial state of S1 is the same as the initial state of DFA M1 and it cor-
responds to the production x1 → ε of LLG G1. The output matrix C sums up
the words in x2 and x3. It corresponds to the final states of DFA M1 and to
the production y →x2+x3 in LLG G1. Matrix A is obtained from DFA M1 by
taking v ∈Aij if δ(xi, v)= xj and Aij = 0 if δ(xi, v) �=xj for all v ∈Σ. The set
of all outputs of S1 over time is ∪t∈N{y(t)} = IT A∗C = L(M1).

Matrix A∗ can be computed in R as described in [6]. This provides one method
for computing L(M). Alternatively, one can use the least solution of an RE
equation, and apply Gaussian elimination. This method is equivalent to the
rip-out-and-repair method for converting an FA to an RE [2].

In the following, all four equivalent representations, RE, FA, LLG and DTLS,
of a finite automaton, are simply referred to as an FA. The observability/reacha-
bility problem for an FA is to determine its initial/final state given y(t) for
t∈ [0, n−1]. In vector spaces, these are unique if the rank of O/R is n. In semi-
modules however, the row rank is generally different from the column rank.

4 Observability Transformations of FA

Lack of finite basis. Let I be a set of indices and R be an S-semimodule. A set
of vectors Q = {qi | i∈ I} in R is called linearly independent if no vector qi ∈Q
can be expressed as a linear combination

∑
j ∈ (I−i) qj aj of the other vectors in

Q, for arbitrary scalars aj ∈S. Otherwise, Q is called linearly dependent. The
independent set Q is called a basis for R if it covers R, i.e. span(Q) = R [4].

E0 E1 E2 C AC A2C

E =

⎡

⎣
0 1a2+1b3 1a2a2+1b3b3
2 2a2 2a2a2
3 3b3 3b3b3

⎤

⎦ O =

⎡

⎣
0 a+b a2+b2

ε a a2

ε b b2

⎤

⎦
x1

x2

x3
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Now consider DFA M1. Its observability matrix O is given above. Each row
i of O consists of the words accepted by M1 starting in state xi sorted by their
length in increasing order. Each column j of O is the vector Aj−1C, consisting of
the accepted words of length j−1 starting in xi. The corresponding executions
E0, E1 and E2 of DFA M1 are also given above.

The columns of O belong to the A-cyclic subspace of X generated by C (A-
CS), which has finite dimension in any vector space. In the S-semimodule R,
where S is the semiring of REs, however, A-CS may not have a finite basis.

For example, for DFA M1 it is not possible to find REs rij and vectors Aij C

such that AiC =
∑k

j=1(A
ij C)rij , for ij < i. Intuitively, abstracting out the states

of an FA from its executions, eliminates linear dependencies.
The state information included in E1 and E2 allows to capture their linear

dependence: E2 is obtained from E1 by substituting the last occurrence of states
2 and 3 with the loops 2a2 and 3a3, respectively. Regarding substitution as a
multiplication with a scalar, one can therefore write E2 = E1(2a2 + 3b3).

Indexed boolean matrices. In the above multiplication we tacitly assumed
that, e.g. (1a2)(3b3) = 0, because a b-transition valid in state 3 cannot be taken
in states 1 and 2. Treating independently the σ-successors/predecessors of an FA
M = (Q, Σ, δ, I, F ), for each input symbol σ∈Σ, allows to capture this intuition
in a “stateless” way. Formally, this is expressed with indexed boolean matrices
(IBM), defined as follows [12]: (1) Ci = (i∈F ); (2) Ii = (i∈ I); (2) For each
σ∈Σ, (Aσ)ij = (δ(i, σ)= j); and (3) Aσ1...σn = Aσ1 . . .Aσn . For example, one
obtains the following matrices for the DFA M1:

I =

⎡

⎣
1
0
0

⎤

⎦ Aa =

⎡

⎣
0 1 0
0 1 0
0 0 0

⎤

⎦ Ab =

⎡

⎣
0 0 1
0 0 0
0 0 1

⎤

⎦ C =

⎡

⎣
0
1
1

⎤

⎦

Indexing enforces a word by word analysis of acceptance and ensures, for exam-
ple for M1, that AabC =Aa(AbC)= 0. Consequently, for every word w∈Σ∗ the
vector AwC has row i equal to 1, if and only if, w is accepted starting in xi.

Ordering all vectors AwiC, for wi ∈Σi, in lexicographic order, results in a
boolean observability matrix O = [Aw0C . . . AwmC]. This matrix has n rows and
|Σ|n−1 columns. Its column rank is the dimension of the A-CS W of the boolean
semimodule B because all Oij ∈B. Hence it is finite and less than 2n−1.

C AaC AbC AaaC AabC AbaC AbbC

O =

⎡

⎣
0 1 1 1 0 0 1
1 1 0 1 0 0 0
1 0 1 0 0 0 1

⎤

⎦
x1

x2

x3

For example, matrix O for M1 is shown above. It is easy to see that vectors C,
AaC and AbC are independent. Moreover, AaaC =AaC, AbbC = AbC. Hence, all
vectors AwC, for w∈{a, b}∗, are generated by the basis Q = [C, AaC, AbC].

The structure of O is intimately related to the states and transitions of the
associated FA. Column C is the set of accepting states, and each column AwC
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Fig. 3. (a) FA M4. (b) FA M5. (c) FA M6.

is the set of states that can reach C by reading word w. In other words, AwC is
the set of all w-predecessors of C.

In the following we do not distinguish between an FA and its IBM representa-
tion. The latter is used to find appropriate bases for similarity transformations
and prove important properties about FA. To this end, let us first review and
prove three important properties about the ranks of boolean matrices.

Theorem 1. (Rank independence) If n≥ 3 then the row rank ρr(O) and the
column rank ρc(O) of a boolean matrix O may be different.

Proof. Consider the observability matrices5 of FA M4 and M5 shown in Figure 3:
ρr(O(M4)) = 3, ρc(O(M4)) = 4, and ρr(O(M5)) = 4, ρc(O(M5)) = 3.

C AaC AbC AcC C AaC AbC

O(M4) =

⎡

⎣
0 0 1 1
0 1 1 0
1 1 0 1

⎤

⎦
x1

x2

x3

O(M5) =

⎡

⎢
⎢
⎣

0 0 1
0 1 0
1 1 0
1 0 1

⎤

⎥
⎥
⎦

x1

x2

x3

x4

To ensure that an FA is transformed to an equivalent DFA, it is convenient
to introduce two more ranks: ρd

r(O) and ρd
c(O). They represent the number of

distinct rows and columns in O, respectively. Hence, these ranks consider only
linear dependencies in which the sum is identical to its summands.

Theorem 2. (Rank bounds) The various row and column ranks are bounded
and related to each other by the following inequalities:

1≤ ρr(O)≤ ρd
r(O)≤n, 1≤ρc(O)≤ ρd

c(O)≤ 2n−1, 1≤ ρc(O)≤Cn
�n/2� + �n/2�

Proof. First and second inequalities are obvious. For the third observe that:
(1) The set of combinations Cn

i is independent; (2) It covers all Cn
j with j > i;

(3) Only i−1 independent vectors may be added to Cn
i from all Cn

j , with j < i.

The A-CS of B is very similar to the A-CS of a vector space. For example, let
AkC be the set of all vectors AwC with |w|= k. Then the following holds.

Theorem 3. (Rank computation) If all vectors in AkC are linearly dependent
on a basis Q for [C AC . . . Ak−1C], then so are all the ones in AjC, with j ≥ k.

Proof. The proof is identical to the one for vector spaces, except that induction
is on the length of words in AwC, and AkC are sets of vectors.

5 We show only the basis columns of the observability matrix.
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Fig. 4. (a) FA M7. (b) FA M8.

Observability transformations. The four ranks discussed above suggest the
definition of four equivalence transformations xT =xT Q, where Q consists of the
independent (or the distinct), rows (or columns) in O, respectively. Each state
q ∈Q of the resulting FA M , is therefore a subset of the states of M , and each
σ-transition to q in M is computed by representing its σ-predecessor Aσq in Q.

Row-basis transformations. These transformations utilize sets of observably-
equivalent states in M to build the independent states q ∈Q of M . The length
of the observations, necessary to characterize the equivalence, is determined by
Theorem 3. The equivalence among state-observations itself, depends on whether
ρr(O) (linear equivalence) or ρd

r(O) (identity equivalence) is used.
Using ρr(O), one fully exploits linear dependencies to reduce the number of

states in M . For example, suppose that x3 = x1 + x2, and that x1 and x2 are
independent. Then one can replace the states x1, x2 and x3 in M , with states
q1 = {x1, x3} and q2 = {x2, x3} in M . This generalizes to multiple dependencies,
and each new state q ∈Q contains only one independent state x. Consequently,
the language L(q)=L(x). Among the states q ∈Q, the state C is accepting, and
each q that contains an initial state in M is initial in M .

The transitions among states q ∈Q are inferred from the transitions in M .
The general rule is that qi

σ→ qj , if all states in qi are σ-predecessors of the states
in qj . However, as Q is not necessarily a column basis, the σ-predecessor of a
state like q1 above, could be either x1 or x3, which are not in Q. Extending
x1 to q1 does not do any harm, as L(q1)=L(x1). Ignoring state x3 does not
do any harm either, as x3 is covered by x1 and x2, possibly on some other
path. These completion rules are necessary when computing the “inverse” of Q,
i.e. representing AQ in Q to obtain A.

Theorem 4. (Row reduction) Given FA M with ρr(O)= k < n, let R be a row
basis for O. Define Q = [q1, . . ., qk] as follows: for every i∈ [1, k] and j ∈ [1, n], if
row Oj is linearly dependent on Ri then qij =1; otherwise qij =0. Then a change
of basis xT = xT Q obeying above completion rules results in FA M that: (1) has
same output; (2) has states with independent languages.

Proof. (1) States q satisfy L(q)= L(x), where x is the independent state in q.
Transitions Aσ = Q−1[Aσq1. . .Aσqn], have Aσqi as the σ-predecessors of states
in qi. The role of Q−1 is to represent Aσqi in Q. If this fails, it is corrected as
discussed above. (2) Dependent rows have been identified with their summands.

For example, consider FA M7 in Figure 4(a). The observability matrix O of M7

is given below:6

6 We show only part of the columns in O.
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C AaC AbC AaaC AabC AbaC AbbC q1 q2 q3

O(M7) =

⎡

⎢
⎢
⎣

0 0 0 1 0 1 0
0 1 0 1 0 0 0
1 1 0 1 0 1 0
0 1 0 1 0 1 0

⎤

⎥
⎥
⎦

x1

x2

x3

x4

Q(M7) =

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1 1 0

⎤

⎥
⎥
⎦

Row x4 =x1 +x2. This determines the construction of Q as shown above. Using
Q in xT =xT Q, results in FA M8 shown in Figure 4(b). Note that Aaq1 = x4 has
been removed when representing Aaq1 in Q.

Using ρr(O) typically results in an NFA, even when starting with a DFA. This
is because vectors in Q may have overlapping rows, due to linear dependencies
in O. The use of ρd

r(O) ensures a resulting DFA, as columns do not overlap.
Identity equivalence also simplifies the transformation. First, Theorem 3 and

the computation of ρd
r can be performed on-the-fly as a partition-refinement: [C],

partitions states, based on observations of length 0; [C AC], further distinguishes
the states in previous partition, based on observations of length 1; and so on.
Second, no completion is ever necessary, as Aq is always representable in Q.

Theorem 5. (Deterministic row reduction) Given an FA M with ρd
r(O)= k <n

proceed as in Theorem 4 but using ρd
r(O). Then if M is a DFA, then so is M .

Proof. (1) Theorem 4 ensures correctness. (2) States in Q are disjoint. Hence,
no row in A= Q−1AQ has two entries for the same input symbol.

For example, let us apply Theorem 5 to the DFA M2 in Figure 2(b). The corre-
sponding observability matrix is shown below:

C AbC AabC AbbC q1 q2 q3

O(M2) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

x1

x2

x3

x4

x5

Q(M2) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

Rows x2 = x3 and x4 =x5. This determines the construction of the basis Q as
shown above. Using this basis in the equivalence transformation, results in DFA
M3, which is shown graphically in Figure 2(c).

Corollary 1 (Myhill-Nerode theorem). Theorem 5 is equivalent to the DFA
minimization algorithm of the Myhill-Nerode theorem [2].

Column-basis transformations. These transformations pick Q as a column
basis for O. The definition of basis depends on the notion of linear independence
used, and this also impacts the column rank computation via Theorem 3.

Using ρr(O), one fully exploits linear dependencies, and chooses a minimal
column basis Q as the states of M . The transitions of M are then determined
by representing all the predecessors AQ of the states Q = [q1 . . . qk] of M in Q.
In contrast to the general row transformation, Aqi, for i∈ [1, k], is representable
in Q, as Q is a column basis for O. Hence, no completion is ever necessary. Like
in vector spaces, the resulting matrices A are in companion form.
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Fig. 5. (a) NFA M9. (b) DFA M10. (c) DFA M11. (d) NFA M12.

Theorem 6. (Column reduction) Given an FA M with ρc(O)= k < n. Define
Q as a column basis of O. Then a change of basis xT =xT Q results in FA M
with: (1) same output; (2) states with a distinguishing accepting word.

Proof. (1) Transitions Aσ =Q−1[Aσq1. . .Aσqn], have Aσqi as the σ-predecessors
of states in qi. The role of Q−1 is to represent Aσqi in Q, and this never fails.
(2) Dependent columns in O have been identified with their summands.

For example, consider the FA M5 shown in Figure 3(b) and its associated ob-
servability matrix, shown below of Figure 3(b). No row-rank reduction applies,
as ρr(O)= 4. However, as ρc(O)= 3, one can apply a column-basis reduction,
with Q as the first three columns of O. The resulting FA is shown in Figure 3(c).

The column-basis transformation for ρd
c(O) simplifies, as dependence reduces

to identity. Moreover, in this case M can be constructed on-the-fly, as follows:
Start with Q, Qn = [C]. Then repeatedly remove the first state q ∈Qn, and add
the transition p

σ→ q to A for each p∈Aq. If p �∈Q, then also add p at the end of
Q and Qn. Stop when Qn is empty. The resulting M

T
is deterministic.

Theorem 7. (Deterministic column transformation) Given FA M proceed as
in Theorem 6 but using ρd

c(O). Then M
T

is a DFA with |Q| ≤ 2n−1.

Proof. Each row of A
T

σ has a single 1 for each input symbol σ ∈Σ.

For example, consider the FA M11 shown in Figure 5(c). Construct the basis Q
by selecting all columns in O. Using this basis in the equivalence transformation
xT = xT Q, results in the FA M12 shown in Figure 5(d).

5 Reachability Transformations of FA

The boolean semiring B is commutative, that is ab = ba holds. When viewed
as a semimodule, left linearity is therefore equivalent to right linearity, that is∑

i∈ I xi ai =
∑

i∈ I ai xi. This in turn means that (AB)T =BT AT .
Consequently, in B the reachability of an FA M = [I, A, C] is reducible to the

observability of the FA MT = [CT , AT , IT ], and all the results and transforma-
tions in Section 4, can be directly applied without any further proof!

For illustration, consider the FA M9 shown in Figure 5(a). The reachability
matrix RT (M9) is given below. It is identical to O(MT

9 ).



204 R. Grosu

x23
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a,b
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x2

x1

x3
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bb
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b

b
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x4

Fig. 6. (a) NFA M13. (b) NFA M14.

I AT
a I AT

b I AT
aaI AT

bbI AT
acI AT

bcI q1 q2 q3 q4

RT (M9) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

x1

x2

x3

x4

x5

Q(M9) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

Each row i of RT corresponds to state xi. A column AT
wI of RT is 1 in row i iff

xi is reachable from I with wR, or dually, if state xi accepts w in MT .7

Row-basis transformations. These transformations utilize sets of reachability-
equivalent states in M to build the independent states q ∈Q of M . These states
are, as discussed before, the observability equivalent states of MT .

Theorem 8. (Row reduction) Given an FA M , Theorem 4 applied to MT re-
sults in an FA M with: (1) same output; (2) states with independent sets of
reaching words.
For example, in RT (M9) above, row x4 =x2 +x3. This determines the construc-
tion of the basis Q, also shown above. Using this basis in the equivalence trans-
formation, results in the DFA M10 shown in Figure 5(b).

Identifying linearly dependent states with their generators and repairing lone
σ-successors might preclude M

T
to be a DFA, even if MT was a DFA. Identifying

only states with identical reachability however, ensures it.

Theorem 9. (Deterministic row reduction) If MT is a DFA, then Theorem 5
applied to MT ensures that M

T
is also a DFA.

For example, let us apply Theorem 9 to the NFA M13 shown in Figure 6(a),
the dual of the DFA M2 shown in Figure 2(b). Hence, MT

11 = M2 is a DFA. The
reachability matrix RT (M13) is shown below. It is identical to O(M2).

I AT
b I AT

abI AT
bbI q1 q2 q3

RT (M13) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

x1

x2

x3

x4

x5

Q(M13) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

7 We write wR for the reversed form of w.
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Fig. 7. (a) FA M15. (b) FA M16. (c) FA M17. (d) FA M18.

Rows x2 =x3 and x4 =x5. This determines the construction of the basis Q as
shown above. Using this basis in the equivalence transformation, results in NFA
M14, shown graphically in Figure 6(c). The FA MT

14 is a DFA, and MT
14 =M3.

Column-basis transformations. Given an FA M , these transformations con-
struct FA M by choosing a column basis of RT as the states Q of M .

The general form of the transformations uses the full concept of linear de-
pendency, in order to look for a column basis in RT . Hence, this transformation
computes the smallest possible column basis.

Theorem 10. (Column reduction) Given FA M , Theorem 6 used on MT results
in FA M with: (1) same output; (2) states reached with a distinguishing word.

Consider the NFA M4 shown in Figure 3(a). Neither a row nor a column-basis
observability reduction is applicable to M4. However, one can apply a column-
basis reachability reduction to M4. The matrix RT (M4) is given below.

I AT
a I AT

b I AT
c I q1 q2

RT (M4) =

⎡

⎣
1 0 0 0
1 0 0 0
0 1 1 1

⎤

⎦
x1

x2

x3

Q(M4) =

⎡

⎣
1 0
1 0
0 1

⎤

⎦

Columns 1 and 2 form a basis for RT . This determines the construction of Q as
shown above. Using Q in xT = xT Q results in NFA M15, shown in Figure 7(a).

In this case, the column-basis reachability transformation is identical to a
row-basis reachability transformation. Consequently, the latter transformation
would not require any automatic completion of the σ-successors qT Aσ of q ∈Q.

Given an FA M , the deterministic column-basis transformation, with column
rank ρd

c(R
T ), always constructs a DFA M . This construction is dual to the

deterministic column-basis observability transformation.

Theorem 11. (Deterministic column transformation) Given an FA M , Theo-
rem 7 applied to MT results in the DFA M .

Consider for example the NFA M17 shown in Figure 7(c). Its reachability matrix
RT (M17) is given below, where only the interesting columns are shown.

I AT
a I AT

b I q1 q2 q3

RT (M17) =
[

1 0 1
0 1 1

]
x1

x2
Q(M17) =

[
1 0 1
0 1 1

]

As columns one and two form a basis for RT , the general column-basis trans-
formation is the identity. The deterministic one is not, as it includes all distinct
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columns of RT in Q, as shown above. Using Q in xT =xT Q results in the DFA
M18 shown in Figure 7(d). This DFA has one more state, compared to M17.

Applying a deterministic column-basis transformation to an FA M , does not
necessarily increase the number of states of M . For example, applying such a
transformation to NFA M6 shown in Figure 3(c), results in the DFA M16 shown
in Figure 7(b), which has the same number of states as M6. Moreover, in this
case, the general and the deterministic column-basis transformations coincide.

Corollary 2 (NFA determinization algorithm). Theorem 11 is equivalent
to the NFA determinization algorithm [2].

6 The Pumping Lemma and FA Minimality

In previous sections we have shown that a control-theoretic approach to FA
complements, and also allows to extend the reach of, the graph-theoretic ap-
proach. In this section we give two additional examples: An alternative proof of
the pumping lemma [2]; A alternative approach to FA minimization. Both take
advantage of the observability and reachability matrices.

Theorem 12 (Pumping Lemma). If L is a regular set then there exists a
constant p such that every word w∈L of length |w| ≥ p can be written as xyz,
where: (1) 0 < |y|, (2) |xz| ≤ p, and (2) xyiz ∈L for all i≥0

Proof. Consider a DFA M accepting L. Since M is deterministic, each column of
RT is a standard basis vector ni, and there are at most n such distinct columns
in RT . Hence, for every word w of length greater than n, there are words xyz =w
satisfying (1) and (2) such that IT Ax = IT Axy. Since IT Axyi = IT AxyAyi−1 , it
follows that IT AxyizC = IT AwC, for all i≥ 0.

Canonical Forms. Row- and column-basis transformations are related to each
other. Let Qc ∈Mi×j(B), Qr ∈Mi×k(B) be the observability column and row
basis for an FA M . Let Ac = Q−1

c AQc and Ar = Q−1
r AQr.

Theorem 13 (Row and column basis). There is a matrix R∈Mk×j(B) such
that: (1) Qc = QrR; (2) Ac = R−1ArR; (3) Ar = RAcR

−1.

Proof. (1) Let B(m) be the index in O of the independent row of qm ∈Qr

and C(n) be the index in O of the independent column qn ∈Qc, and define
Rmn =OB(m)C(n), for m∈ [1, k], n∈ [1, j]. Then Qc = QrR; (2) As a consequence
Ac =(QrR)−1A(QrR)=R−1ArR; (3) This implies that Ar = RAcR

−1.

Hence, Ar is obtained through a reachability transformation with column basis
R after an observability transformation with column basis Qc. Let O and R
be the column basis observability and reachability transformations, respectively.
We call Mo = O(R(M)) and Mr = R(O(M)) the canonical observable and
reachable FAs of M , respectively.
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Fig. 8. (a) DFA M19. (b) NFA M20. (c) NFA M21.

Theorem 14 (Canonical FA). For any FA M , R(Mo)=Mr and O(Mr)=Mo.

Minimal FA. Canonical FAs are often minimal wrt. to the number of states.
For example, M11 and M12 in Figure 5 are both minimal FAs. Moreover, FA
M11 is canonical reachable and FA M12 is canonical observable.

For certain FAs however, the canonical FAs are not minimal. A necessary
condition for the lack of minimality, is the existence of a weaker form of linear
dependence among the basis vectors of the observability/reachability matrices:
A set of vectors Q = {qi | i∈ I} in R is called weakly linearly dependent if there
are two disjoint subsets I1, I2 ⊂ I, such that

∑
i∈ I1

qi =
∑

i∈ I2
qi [8].

For example, the DFA M19 in Figure 8(a) has the canonical reachable FA M20

shown in Figure 8(b), which is minimal. The observability matrix of M20 shown
below, has 7 independent columns. The canonical observable FA of M19 and M20

has therefore 7 states! As a consequence, it is not minimal. Note however, that
AbC +AbbC =AabC +AbaC. Hence, the 7 columns are weakly dependent.

C AaC AbC AaaC AabC AbaC AbbC q1 q2 q3 q4 q5 q6

O(M20) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 0 1
0 1 1 0 1 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 1 0
1 1 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1

x2

x3

x4

x5

x6

Q(M20) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 15 (Minimal FA). Given the observability matrix O of an FA M ,
choose Q as a set basis [13] of O, such that AQ is representable in Q. Then the
equivalence transformation xT =xT Q results in a minimal automaton.
Alternatively, minimization can be reduced to computing the minimal boolean
relation corresponding to O. For example, the Karnaugh blocks [9] in O(M20)
provide several ways of constructing Q. One such way is Q(M20) shown above,
where one block is the first column in O(M20), and the other blocks correspond
to its rows. The resulting FA is M21. Both alternatives lead to NP-complete
algorithms. Reachability is treated in a dual way, by manipulating R.

Since all equivalent FAs admit an equivalence transformation resulting in the
same DFA, and since from this DFA one can obtain all other FAs through an
equivalence transformation, all FAs are related through an equivalence transfor-
mation! This provides a cleaner way of dealing with the minimal FAs, when
compared to the terminal FA (incorporating all other FA), discussed in [1].
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7 Conclusions

We have shown that regarding finite automata (FA) as discrete, time-invariant
linear systems over semimodules, allows to unify DFA minimization, NFA deter-
minization, DFA pumping and NFA minimality as various properties of observ-
ability and reachability transformations of FA. Our treatment of observability
and reachability may also allow us to generalize the Cayley-Hamilton theorem
to FA and derive a characteristic polynomial. In future work, we would therefore
like to investigate this polynomial and its associated eigenvalues.
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