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Abstract

We describe a mechanism for replacing files, including open files, of a
read-only file system while the file system remains mounted; the act of re-
placement is transparent to the user. Such a “hot replacement” mechanism
can improve fault-tolerance, performance, or both. Our mechanism mon-
itors, from the client side, the latency of operations directed at each file
system. When latency degrades, the client automatically seeks a replace-
ment file system that is equivalent to but hopefully faster than the current
file system. The files in the replacement file system then take the place of
those in the current file system. This work has particular relevance to mobile
computers, which in some cases might move over a wide area. Wide area
movement can be expected to lead to highly variable response time, and
give rise to three sorts of problems: increased latency, increased failures,
and decreased scalability. If a mobile client moves through regions having
partial replicas of common file systems, then the mobile client can depend
on our mechanism to provide increased fault tolerance and more uniform
performance.
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Chapter 1

Introduction

The strongest trend in the computer industry today is the miniaturization
of workstations into portable “notebook” or “palmtop” computers. Wireless
network links [Cox91] and new internetworking technology [Ioannidis91] offer
the possibility that computing sessions could run without interruption even
as computers move, using information services drawn from an infrastructure
of (mostly) stationary servers.

We contend that operation of mobile computers according to such a
model will raise problems that require re-thinking certain issues in file system
design.1 One such issue is how to cope with a client that moves regularly
yet unpredictably over a wide area.

Several problems arise when a client moves a substantial distance away
from its current set of servers. One is worse latency, since files not cached
at the client must be fetched over longer distances. Another problem is
increased probability of loss of connectivity, since gateway failures often lead
to partitions. The final problem is decreased overall system “scalability”;
more clients moving more data over more gateways means greater stress on
the shared network.

One obvious way to mitigate these problems is to ensure that a file ser-
vice client uses “nearby” servers at all times. A simple motivating example
is that if a computer moves from New York to Boston, then in many cases
it is advantageous to switch to using the Boston copies of “common” files
like those in /usr/ucb. As the client moves, the file service must be able
to provide service first from one server, then from another. This switching
mechanism should require no action on the part of administrators (since
presumably too many clients will move too often and too quickly for ad-

1Examples of such re-thinking can be found in [Tait91b] and [Tait91a].
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2 CHAPTER 1. INTRODUCTION

ministrators to track conveniently) and should be invisible to users, so that
users need not become system administrators or notice when a switch is in
progress.

We have designed and implemented just such a file system — it adap-
tively discovers and mounts a “better” copy of a read-only file system that is
fully or partially replicated. We define a better replica to be one providing
better latency. Running our file service gives a mobile client some recourse
to the disadvantages mentioned above. Our mechanism monitors file ser-
vice latencies and, when response becomes inadequate, performs a dynamic
attribute-guided search for a suitable replacement file system.

Many useful “system” file systems — and almost all file systems that one
would expect to be replicated over a wide area — are typically exported read-
only. Examples include common executables, manual pages, fonts, C/C++
header include files, libraries etc. Indeed, read-only areas of the file space are
growing fast, as programs increase the amount of configuration information,
images, sounds, and on-line help facilities.

Although our work is motivated by the perceived needs of mobile com-
puters that might roam over a wide area and/or frequently cross between
public and private networks, our work can be useful in any environment
characterized by highly variable response time and/or high failure rates.

Note that for a client to continue use of a file system as it moves, there
must be underlying network support that permits the movement of a com-
puter from one network to another without interruption of its sessions. Sev-
eral such schemes have been proposed [Bhagwat93, Carlberg92, Ioannidis91,
Ioannidis92, Johnson93, Myles93, Myles94, Perkins93, Teraoka90, Teraoka91,
Teraoka92, Teraoka93, Wada93].

The remainder of this thesis is organized as follows. In order to make a
self-contained presentation, Chapter 2 provides the necessary explanations
of other systems that we use in constructing ours. Chapter 3 outlines our
design and by its nature includes implementation details; Chapter 4 com-
pletes our implementation notes. Chapter 5 evaluates the work. Chapter
6 provides general experiences, hints, and tips relating to kernel develop-
ment accumulated while doing this work. Lastly, we mention related work
in Chapter 7 and summarize in Chapter 8.



Chapter 2

Background

Our work is implemented in and on SunOS 4.1.2. We have changed the
kernel’s client-side NFS implementation, and outside the operating system
we have made use of the Amd automounter and the RLP resource location
protocol. Each is explained briefly below.

2.1 NFS

Particulars about the NFS protocol and implementation are widely known
and published [Blaze92, Hitz94, Juszczak89, Juszczak94, Keith90, Keith93,
Kleiman86, Macklem91, Pawlowski94, Rosen86, Rosenthal90, Sandberg85a,
Sandberg85b, Schaps93, Srinivasan89, Stein87, Stern92, Sun85, Sun86, Sun89,
Walsh85, Watson92].

For the purpose of our presentation, the only uncommon facts that need
to be known are:

• Translation of a path name to a vnode is done mostly within a single
procedure, called au lookuppn(), that is responsible for detecting and
expanding symbolic links and for detecting and crossing mount points.

• It is at the point during pathname translation where a mount point is
crossed that we trigger much of our code.

• The name of the procedure in which an NFS client makes RPCs to a
server is rfscall(). All of the NFS operation-specific functions (such
as nfs close(), nfs statfs(), nfs getattr(), etc.) eventually call
rfscall() with an operation code and an opaque data structure to be
interpreted by the NFS server. Rfscall() calls an out-of-kernel RPC

3



4 CHAPTER 2. BACKGROUND

routine. It also times out that subroutine call and prints the infamous
message “NFS server XXX not responding — still trying”.

We have made substantial alterations to au lookuppn(), and slight al-
terations to rfscall(), nfs mount(), nfs unmount() and copen().1

We added two new system calls: one for controlling and querying the
added structures in the kernel (nfsmgr ctrl()), and the other for debug-
ging our code (nfsmgr debug()). Additional minor changes in support of
debugging were made to ufs mount() and tmp mount().

Finally, we added fields to three major kernel data structures: vfs and
vnode structures and the open file table. Below we show these modified
structures and describe their most relevant fields.

2.1.1 struct vfs

A vfs is the structure for a Virtual File System [Kleiman86]. A singly-linked
list of such structures exists in the kernel, the head of which is the global
rootvfs — a hand-crafted structure for the root filesystem. This structure
was substantially modified; see Figure 2.1.2 That is not surprising since
most of our work is related to managing filesystems as a whole.

The fields of interest are:

• vfs next is a pointer to the next vfs in the linked list.

• vfs op is a pointer to a function-pointer table. That is, this vfs op can
hold pointers to UFS functions, NFS, PCFS, HSFS, etc. If the vnode
interface calls the function to mount the file system, it will call what-
ever subfield of struct vfsops is designated for the mount function.
That is how the transition from the vnode level to a filesystem-specific
level is made; see also Section 6.1.1.3.

• vfs vnodecovered is the vnode on which this filesystem is mounted.

• vfs flag contains bit flags for characteristics such as whether this
filesystem is mounted read-only, if the setuid/setgid bits should be
turned off when exec-ing a new process, if sub-mounts are allowed,
etc.

1Copen() is the common code for open() and create().
2The C preprocessor (cpp) symbol NFSMGR is used to enclose our code in the kernel

sources. When defined, our changes are included in the built kernel image.



2.1. NFS 5

struct vfs {
struct vfs *vfs_next; /* next vfs in vfs list */
struct vfsops *vfs_op; /* operations on vfs */
struct vnode *vfs_vnodecovered; /* vnode we mounted on */
int vfs_flag; /* flags */
int vfs_bsize; /* native block size */
fsid_t vfs_fsid; /* file system id */
caddr_t vfs_stats; /* filesystem statistics */
caddr_t vfs_data; /* private data */

#ifdef NFSMGR
char vfs_mnt_path[MAXPATHLEN]; /* path where FS mounted */
struct vfs *vfs_replaces; /* replaces which entry */
struct vfs *vfs_replaced_by; /* replaced by which entry */
int vfs_nfsmgr_flags; /* special flags for nfsmgr */
struct median_glob_t vfs_median_info; /* info relevant to medians */
int vfs_queue_size; /* current size of queue */
int vfs_trigger_ratio; /* in %percentage */
dft_t vfs_dft; /* Duplicate File Table */

#endif /* NFSMGR */
};

Figure 2.1: Modified struct vfs

• vfs data is a pointer to opaque data specific to this vfs and the type
of filesystem this one is. For an NFS vfs, this would be a pointer
to struct mntinfo (located in <nfs/nfs clnt.h>) — a large NFS-
specific structure containing such information as the NFS mount op-
tions, NFS read and write sizes, host name, attribute cache limits,
whether the remote server is down or not, and more.

The fields specific to our work are described in Section 3.4.1.1.
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2.1.2 struct vnode

This structure was only slightly modified; see Figure 2.2. A vnode exists
for each open file or directory.3 The parts of the kernel that access vnodes
directly are the filesystem sections. Therefore a vnode is a representation
of open files from the filesystem’s point of view. Only one vnode exists for
each open file, no matter how many processes have opened it, or even if the
file has several names (via hard or symbolic links).

struct vnode {
u_short v_flag; /* vnode flags */
u_short v_count; /* reference count */
u_short v_shlockc; /* # of shared locks */
u_short v_exlockc; /* # of exclusive locks */
struct vfs *v_vfsmountedhere; /* ptr to vfs mounted here */
struct vnodeops *v_op; /* vnode operations */
union {
struct socket *v_Socket; /* unix ipc */
struct stdata *v_Stream; /* stream */
struct page *v_Pages; /* vnode pages list */

} v_s;
struct vfs *v_vfsp; /* ptr to vfs we are in */
enum vtype v_type; /* vnode type */
dev_t v_rdev; /* device (VCHR, VBLK) */
long *v_filocks; /* File/Record locks ... */
caddr_t v_data; /* private data for fs */

#ifdef NFSMGR
char v_relpath[MAXPATHLEN]; /* rel path from mnt pt */
struct timeval v_last_used; /* time vnode was last used */

#endif /* NFSMGR */
};

Figure 2.2: Modified struct vnode

Structure fields relevant to our work are:
3There are other entities represented as vnodes, such as devices and network commu-

nication end-points, but these are irrelevant to our work.
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• v flag contains bit flags for characteristics such as whether this vnode
is the root of its filesystem, if it has a shared or exclusive lock, whether
pages should be cached, if it is a swap device, etc.

• v count is incremented each time a new process opens the same vnode.

• v vfsmountedhere, if non-null, contains a pointer to the vfs which is
mounted on this vnode. This vnode thus is a directory which is a
mount point for a mounted filesystem.

• v op is a pointer to a function-pointer table. That is, this v op can
hold pointers to UFS functions, NFS, PCFS, HSFS, etc. If the vnode
interface calls the function to open a file, it will call whatever subfield of
struct vnodeops is designated for the open function. That is how the
transition from the vnode level to a filesystem-specific level is made;
see also Section 6.1.1.3.

• v vfsp is a pointer to the vfs which this vnode belongs to. If the value
of the field v vfsmountedhere is non-null, it is also said that v vfsp
is the parent filesystem of the one mounted here.

• v type is used to distinguish between a regular file, a directory, a
symbolic link, a block/character device, a socket, a Unix pipe (fifo),
etc.

• v data is a pointer to opaque data specific to this vnode. For an NFS
vfs, this might be a pointer to struct rnode (located in <nfs/rnode.h>)
— a remote filesystem-specific structure containing such information
as the file-handle, owner, user credentials, file size (client’s view), and
more.

The fields specific to our work are described in Section 3.4.1.2.

2.1.3 struct file

This structure was also only slightly modified; see Figure 2.3. A file struc-
ture exists for each file opened by a process. The kernel modules that access
this structure directly are those that handle processes and user contexts.
Therefore a struct file is a representation of open files from the user’s and
process’ points of view. The various complex interactions between struct
file and struct vnode are de-mystified after the brief explanation of var-
ious fields in this structure.

Fields of use to us are:
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struct file {
int f_flag; /* see below */
short f_type; /* descriptor type */
short f_count; /* reference count */
short f_msgcount; /* references from message queue */
struct fileops {
int (*fo_rw)();
int (*fo_ioctl)();
int (*fo_select)();
int (*fo_close)();

} *f_ops;
caddr_t f_data; /* ptr to file specific struct (vnode/socket) */
off_t f_offset;
struct ucred *f_cred; /* user credentials who opened file */

#ifdef NFSMGR
char f_path[MAXPATHLEN]; /* path name (rel. to mnt pt.) */

#endif /* NFSMGR */
};

Figure 2.3: Modified struct file

• f flag contains bit flags for characteristics such as whether this file is
readable/writable/executable by the current process, if it was created
new or opened for appending, [non]blocking modes, and many more.

• f type determines if this file is a “real” vnode or just a network
socket.4

• f count is incremented for each process referring to the same file in
the Global Open File Table.

• f data is a pointer to an opaque and specific data — depending on
whether this file is a vnode or a socket.

4Arguably these should not have to be distinguished at this point. After all, the vnode
interface should not care if something is a vnode or a network file-descriptor. This is the
unfortunate result of the “hacks” that were made to the original BSD 4.3 kernels (of which
SunOS 4.x was based on) when networking code was added later.
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• f offset is the offset into the file.

The fields specific to our work are described in Section 3.4.1.3.
There is only one Global Open File Table in the kernel. It has a lim-

ited size with some provisions to extend it dynamically if need be. Each
u (user-specific) structure has an array of pointers to its open files. These
u.u pofile arr[idx] are pointers into the global open file table.

When two different processes open the same file (by name or by link)
they get two different struct file entries in the global open file table. Each
file structure contains an f offset field so that each process can maintain
a different offset. Each file structure however, will have an f data field that
points to the same vnode.

The vnode structure contains the flags needed for performing advisory
locking [SMCC90a, SMCC90b], and has a reference count of how many
processes opened it.

Things get more complicated when a process opens a file then forks.
The child inherits the same file structure pointer that the parent has. That
means that if the child seeks elsewhere into the file, the parent will too, since
they have the same f offset field!5

The last bit of missing information is how does the kernel tell that more
than one process is sharing the same entry in the global file table. The
answer is that each file structure contains an f count field — a reference
count similar to, but different from, the one in the vnode structure.

2.2 RLP

We use the RLP resource location protocol [Accetta83] when seeking a re-
placement file system. RLP is a general-purpose protocol that allows a site
to send broadcast or unicast request messages asking either of two questions:

1. Do you (recipient site) provide this service?

2. Do you (recipient site) know of any site that provides this service?

A service is named by the combination of its transport service (e.g.,
TCP), its well-known port number as listed in /etc/services, and an ar-
bitrary string that has meaning to the service. Since we search for an NFS-
mountable file system, our RLP request messages contain information such

5Obviously code can break if people don’t know of this feature. These semantics exist
to support fork/dup/pipe. If a child wants to maintain a different offset into the same
file, it must close and reopen it.
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as the NFS transport protocol (UDP [rfc0768]), port number (2049) and
service-specific information such as the name of the root of the file system.

2.3 Amd

Amd [Pendry91, Stewart93] is a widely-used automounter daemon. Its most
common use is to demand-mount file systems and later unmount them after
a period of disuse; however, Amd has many other capabilities.

Amd operates by mimicking an NFS server. An Amd process is identified
to the kernel as the “NFS server” for a particular mount point. The only
NFS calls for which Amd provides an implementation are those that perform
name resolution: lookup, readdir, and readlink. Since a file must have
its name resolved before it can be used, Amd is assured of receiving control
during the first use of any file below an Amd mount point. Amd checks
whether the file system mapped to that mount point is currently mounted;
if not, Amd mounts it, makes a symbolic link to the mount point, and
returns to the kernel. If the file system is already mounted, Amd returns
immediately.

An example, taken from our environment, of Amd’s operation is the
following. Suppose /u is designated as the directory in which all user file
systems live; Amd services this directory. At startup time, Amd is instructed
that the private mount point (for NFS filesystem which it will mount) is /n.
If any of the three name binding operations mentioned above occurs for
any file below /u, then Amd is invoked.6 Amd consults its maps, which
indicate that /u/foo is available on server bar. This file system is then
mounted locally at /n/bar/u/foo and /u/foo is made a symbolic link to
/n/bar/u/foo. (Placing the server name in the name of the mount point is
purely a configuration decision, and is not essential.)

Our work is not dependent on Amd; we use it for convenience. Amd
typically controls the (un)mounting of all file systems on the client machines
on which it runs, and there is no advantage to our work in circumventing it
and performing our own (un)mounts.

6Amd is invoked for every file operation which traverses its automount filesystem or
acts on its node. Most of these operations are empty stubs and simply return without
performing any action (for example, NFS WRITE). Once the name resolution passed
the path component of the automounter, by crossing the symbolic link which Amd had
presented it with, the invoking process is not at the “mercy” of the automounter any
more, but whatever filesystem server it crossed over to.
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2.3.1 How Our Work Goes Beyond Amd

Amd does not already possess the capabilities we need, nor is our work a
simple extension to Amd. Our work adds at least three major capabilities:

1. Amd keeps a description of where to find to-be-mounted file systems
in “mount-maps.” These maps are written and maintained by ad-
ministrators and are static in the sense that Amd has no ability for
automated, adaptive, unplanned discovery and selection of a replace-
ment file system.

2. Because it is only a user-level automount daemon, Amd has limited
means to monitor the response of rfscall() or any other kernel rou-
tine.

Many systems provide a tool, like nfsstat, that returns timing infor-
mation gathered by the kernel. However, nfsstat is inadequate be-
cause it is not as accurate as our measurements, and provides weighted
average response time rather than measured response time. Our method
additionally is less sensitive to outliers, and measures both short-term
and long-term performance.

3. Our mechanism provides for transparently switching open files from
one file system to its replacement.

Amd might be considered the more “natural” place for our user-level
code, since Amd makes similar mount decisions based on some criteria. Some
coding could have been saved and speedups made if we placed our user-level
management code inside Amd. However, we saw two main problems with
this approach:

1. Amd is maintained by different people, and we would have to contin-
ually keep Amd and our programs in sync.

2. Not everyone uses Amd as their automounter, if any at all. By placing
our code inside Amd we would have forced other administrators to run
and maintain Amd as well.



Chapter 3

Design

The key issues we see in this work are:

1. Is a switching mechanism really needed? Why not use the same file
systems no matter where you are?

2. When and how to switch from one replica to another.

3. How to ensure that the new file system is an acceptable replacement
for the old one.

4. How to ensure consistency if updates are applied across different repli-
cas.

5. Fault tolerance: how to protect a client from server unavailability.

6. Security: NFS is designed for a local “workgroup” environment in
which the space of user IDs is centrally controlled.

These issues are addressed below. Not all implementation details are
mentioned in this section. The rest of the implementation which did not
have direct impact on the design of our system is detailed in Chapter 4.

3.1 Demonstrating the Need

We contend that adaptive client-server matchups are desirable because run-
ning file system operations over many network hops is bad for mobile and/or
wide area computing in three ways: increased latency, increased failures, and
decreased scalability. It is hard to ascertain exact failure rates and load on

12



3.1. DEMONSTRATING THE NEED 13

shared resources without undertaking a full-scale network study; however,
we were able to gather some key data to support our claim. We performed
a simple study to measure how latency increases with distance.

First, we used the traceroute program1 to gather <hop-count, latency>
data points measured between a host at Columbia and several other hosts
around the campus, city, region, and continent. The results are listed in
Table 3.1. Latencies were measured by a Columbia host, which is a Sun-

Hostname NFS Time Ping Time No. Hops
(seconds) (mSec)

ground.cs.columbia.edu 4.55 4 1
tune.cs.columbia.edu 8.60 6 2
sol.ctr.columbia.edu 10.68 9 3
omnigate.clarkson.edu 339.26 482 10
gatekeeper.dec.com 97.90 198 12
mvb.saic.com 157.58 287 13
pit-manager.mit.edu 138.01 158 13
wuarchive.wustl.edu 401.60 979 18
zaphod.ncsa.uiuc.edu 183.06 227 19

Table 3.1: NFS Read Latency, Network Hop Count, and Ping Time of Var-
ious Hosts (1KB block size)

4/75 equipped with a microsecond resolution clock. The cost of entering
the kernel and reading the clock is negligible, and so the measurements are
accurate to a small fraction of a millisecond.

We used the ping program with 1024-byte packets because the default
size of ping packets (56 bytes) is too small to mimic NFS traffic.

Next, we mounted NFS file systems that are exported Internet-wide
by certain hosts. We measured the time needed to copy 1MB from these
hosts using a 1KB block size. We took measurements with two different
datagram sizes: 40 bytes and 8KB, hypothesizing that distance degrades
performance worse when packets are large. Forty bytes is the minimum
packet sent by traceroute; eight kilobytes was chosen since it is the size of
NFS block transfers in our facility. A typical result is plotted in Figure 3.1.
Latency jumps by almost two orders of magnitude at the tenth hop, which

1Written by Van Jacobson and widely available by anonymous ftp from ftp.uu.net in
/networking/ip/trace/traceroute pkg.tar.Z.
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Figure 3.1: NFS Read Latency vs. Network Hop Count (1KB block size)

represents the first host outside Columbia. Each plotted point is the median
of 10 trials. We performed similar studies, measuring latency to 25 hosts
that are each a number of hops away from Columbia; all results were similar
to those plotted in Figure 3.1.

We conclude that (current) NFS performance over long distances is poor;
too many UDP packets are lost resulting in retransmission requests of whole
blocks. However, if we could constrain ourselves to using NFS servers in our
“neighborhood,” we could keep performance reasonable.

3.2 When to Switch

We have modified the kernel so that rfscall() measures the latency of
every NFS lookup and maintains a per-filesystem data structure storing a
number of recently measured latencies.

We chose to time the lookup operation rather than any other operation
or mixture of operations for two reasons. The first is that lookup is the
most frequently invoked NFS operation. We experimented and found that
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Figure 3.2: Variability and Latency of NFS Operations

other calls did not generate enough data points to accurately characterize
latency. The second reason is that lookup exhibits the least performance
variability of the common NFS operations.2 Limiting variability of mea-
sured server latencies is important in our work, since we want to distinguish
transient changes in server performance from long-term changes. It took lots
of experimentation to come to a meaningful and stable measurement mech-

2These are the NFS GETATTR, NFS READ, and sometimes NFS NULL operations.
The latter might have been better suited for our needs as it exhibits the least variability,
but it does not occur often enough. Note also that the null operation does not account
for the whole performance of the server (for example, including disk performance), but
mostly characterizes the network.
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anism. At the outset of our work, we measured variances in the latency
of the most common NFS operations and discovered huge swings, shown in
Figure 3.2, even in an extended LAN environment that has been engineered
to be uniform and not to have obvious bottlenecks. The measured standard
deviations were 1027 msec for all NFS operations, 2547 msec for read, and
only 596 msec for lookup.

After addition of each newly measured lookup operation, the median
latency is computed over the last 30 and 300 calls. We compute medians
because medians are relatively insensitive to outliers. We take a data point
no more than once per second, so during busy times these sampling intervals
correspond to 30 seconds and 5 minutes, respectively.

The signal to switch is when, at any moment, the short-term median
latency exceeds the long-term median latency by a factor of 2. This policy
provides insurance against anomalies like ping-pong switching between a pair
of file systems: a file system can be replaced no more frequently than every
5 minutes. Looking for a factor of two difference between short-term and
long-term medians is our attempt to detect a change in performance which
is substantial and “sudden,” yet not transient. The length of the short-
term and long-term medians as well as the ratio used to signal a switch
are heuristics chosen after experimentation in our environment.3 All these
parameters can be changed from user level through a debugging system call
that we have added; see Section 4.2.

3.3 Locating a Replacement

When a switch is triggered, rfscall() starts a non-blocking RPC4 out to
our user-level process named nfsmgrd. The call names the guilty file server,
the root of the file system being sought, the kernel architecture, the current
median (round-trip time) values, and any mount options affecting the file
system. Nfsmgrd uses this information to compose and broadcast an RLP
request. The file system name keys the search, while the server name is a
filter: the search must not return the same file server that is already in use.

The RLP message is received by the nfsmgrd at other sites on the same
broadcast subnet. To formulate a proper response, an nfsmgrd must have
a view of mountable file systems stored at its site and also mounted file
systems that it is using — either type could be what is being searched

3A better trigger function would take into account the absolute latency; see Section
8.1.

4Non-blocking operation is provided by a special kernel implementation of Sun RPC.
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for. Both pieces of information are trivially accessible through /etc/fstab,
/etc/exports, and /etc/mtab.

The nfsmgrd at the site that originated the search uses the first response
it gets; we suppose that the speed with which a server responds to the RLP
request gives a hint about its future performance. (The Sun Automounter
[Callaghan89] makes the same assumption about replicated file servers.) If
a read-only replacement file system is available, nfsmgrd instructs Amd to
mount it5 and terminates the out-of-kernel RPC, telling the kernel the names
of the replacement server and file system. The flow of control is depicted in
Figure 3.3.

AMD

NFSMGRD

Switching Host

Server  1

Server  n

RLPD

1: RPC
    out

5,6: Mount
      Syscall

4: Mount
   Replacement 7: Response

8: RPC
   Return

2: RLP
   Request

2: RLP
   Request

3: RLP Response

KERNEL

RLPD

Figure 3.3: Flow of Control During a Switch

3.4 Using the Replacement

Once a replacement file system has been located and mounted, all future
attempts to open files on the replaced file system will be routed to the
replacement whenever the two files are identical. Also, in all cases for which
it is possible, open files on the replaced file system will be switched to their

5Amd provides an RPC interface used by its query client amq that we use to query and
control Amd.
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equivalents on the replacement. We describe these two cases in Sections
3.4.2 and 3.4.3, respectively.

3.4.1 Relevant Changes to Kernel Data Structures

In order to accommodate file system replacement, we have added some fields
to three important kernel data structures: struct vfs, which describes
mounted file systems; struct vnode, which describes open files; and struct
file, which describes file descriptors.

3.4.1.1 struct vfs

See Figure 2.1 for a complete listing of this structure, and Section 2.1.1
for explanation of important fields in the structure as it existed before our
changes. The fields we added to struct vfs are:

• vfs mnt path is valid in every vfs; it stores the absolute pathname of
the file system’s mount point. It is used to locate a vfs based on its
mount-point name, and in the construction of full pathnames from the
root to the actual file being replaced (concatenating this field with the
relative pathname of the file from mount-point).

• vfs replaces is valid in the vfs structure of the replacement file sys-
tem; it points to the vfs structure of the file system being replaced.

• vfs replaced by is valid in the replaced file system’s vfs struct; it
points to the vfs structure of the replacement file system. When a
replacement file system is mounted, our altered version of nfs mount()
sets the replaced and replacement file systems pointing to each other.

• vfs nfsmgr flags is valid for any NFS file system. One flag indicates
whether the file system is managed by nfsmgrd and is turned on by our
nfsmgr ctrl() system call. The idea is to provide the administrators
of the client host the ability to control which filesystems are managed
by our code, and suspend any use of it when needed.

Another flag indicates whether a file system switch is in progress. Part
of the filesystem switching process involve making asynchronous out-
of-kernel RPCs. The calls invoke local daemons, which may call other
local daemons and remote servers. Obviously the initiating process
is blocked until all answers are returned to the kernel, or if timeouts
are reached. That opens the possibility that another process might
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hit a threshold, and cause another search for a replacement filesystem
to the same one in progress. To avoid this problem, only one process
is allowed to be the (inadvertent) initiator of a filesystem search; all
other processes see that the flag is on, and block until the flag is off.

• vfs median info contains almost all of the pertinent information about
the performance of the file system, including the 300 most recent
nfs lookup() response times, the 30 most recent measures, the trig-
ger ratio, many pointers in support of the double-threading nature of
this data structure, and more.

• The field vfs dft is the Duplicate File Table (DFT). This per-filesystem
table lists which files in the replacement file system have been com-
pared to the corresponding file on the original file system mounted
by Amd. Only equivalent files can be accessed on the replacement
file system. The mechanism for making comparisons is described in
Section 3.4.2.

The size of the DFT is fixed (but changeable) so that new entries
inserted will automatically purge old ones. This is a simple method to
maintain “freshness” of entries.

The DFT is a hash table whose entries contain a file pathname relative
to the mount point, a pointer to the vfs structure of the replacement
file system, and an extra pointer for threading the entries in insertion
order. This doubly-threaded data structure permits fast lookups keyed
by pathname and quick purging of older entries.

• vfs queue size tells how many entries were allocated in the DFT. It
is used especially when a DFT needs to be purged; we improve speed
by not freeing and then re-allocating kernel memory for DFT entries.

3.4.1.2 struct vnode

See Figure 2.2 for a complete listing of this structure, and Section 2.1.2
for explanation of important fields in the structure as it existed before out
changes. The two fields we added to struct vnode are:

• v relpath is valid in every vnode which may be replaced. It stores the
relative pathname of the file from the root of the mounted filesystem.
It is used to construct full pathnames of two files to be compared, and
in determining the filename of an opened file during the process of hot
replacement. See Sections 3.4.2 and 3.4.3.
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• v last used is valid for every NFS vnode. This is the last time that
rfscall() made a remote call on behalf of this vnode. This informa-
tion is used in our “hot replacement”.

3.4.1.3 struct file

See Figure 2.3 for a complete listing of this structure, and Section 2.1.3
for explanation of important fields in the structure as it existed before our
changes. The only field we added to struct file is:

• f path is valid in every open file on an NFS filesystem. It is very
similar to the v relpath field added to the vnode structure. This
field is necessary to distinguish among several opened file-descriptors
to the same hard-linked file, when the open() calls used different path
names. See Section 2.1.3 for details of the interaction between the file
and vnode structures in the SunOS 4.x kernel.

3.4.2 After Replacement: Handling New Opens

When Amd mounts a file system it makes a symlink from the desired location
of the file system to the mount point. For example, /u/foo would be a
symlink pointing to the real mount point of /n/bar/u/foo; by our local
convention, this would indicate that server bar exports /u/foo. Users and
application programs know only the name /u/foo.

The information that bar exports a proper version of /u/foo is placed in
Amd’s mount-maps by system administrators who presumably ensure that
the file system bar:/u/foo is a good version of whatever /u/foo should
be. Therefore, we regard the information in the client’s Amd mount-maps
as authoritative, and consider any file system that the client might mount
and place at /u/foo as a correct and complete copy of the file system. We
call this file system the master copy, and use it for comparison against the
replacement file systems that our mechanism locates and mounts.

The new open algorithm is shown in Figure 3.4. After a replacement file
system has been mounted, whenever name resolution must be performed for
any file on the replaced file system, the file system’s DFT is first searched
for the relative pathname.

If the DFT contains an entry for the pathname, then the file on the
replacement file system has already been compared to its counterpart on
the master copy. A field in the DFT tells if the comparison was successful
or not. If not, then the rest of the pathname has to be resolved on the master
copy. If the comparison was successful, then the file on the replacement file
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open() {
examine vfs_replaced_by field to see if there is

a replacement file system;
if (no replacement file system) {

continue name resolution;
return;

}
if (DFT entry doesn’t exist) {

create and begin DFT entry;
call out to perform file comparison;
finish DFT entry;

}
if (files equivalent) {

get vfs of replacement from vfs_replaces field;
continue name resolution on replacement file system;

} else
continue name resolution on master copy;

}

Figure 3.4: New Open Algorithm

system is used; in that case, name resolution continues at the root of the
replacement file system.

If the DFT contains no entry for the pathname, then it is unknown
whether the file on the replacement file system is equivalent to the corre-
sponding file on the master copy. The two files must be compared.

To test equivalence, au lookuppn() calls out of the kernel to nfsmgrd,
passing it the two host names, the name of the file system, and the relative
pathname to be compared. Au lookuppn() gathers all this information as
follows:

1. The filesystem switch trigger happens while resolving a pathname,
finding that the v vfsmountedhere field of that current vnode is not
NULL, indicating that this is a mount point. The vfs mnt path of
this vfs is recorded as the mount point of the master filesystem.

2. If the vfs replaced by field of the vfs of that vnode is not NULL,



22 CHAPTER 3. DESIGN

there is a replacement filesystem for this vfs. The vfs mnt path of it
is recorded as the mount point of the replacement filesystem.

3. Since au lookuppn() did not complete resolving the full pathname,
the unresolved part is the relative (to the mount point) pathname to
the file being resolved.

Each of the two mount point names (one per host) is prepended to the
name of the file to be compared, yielding two full pathnames to (hopefully)
the same file, but on two different filesystems.

At this point a partial DFT entry is constructed, and a flag in it is
turned on to indicate that there is a comparison in progress and that no
other process should initiate the same comparison.6

NFSMGRD
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1: RPC
    out

KERNEL

CHECKSUMD

Server  2

CHECKSUMD

Switched Host

2: Checksum
   Request

2: Checksum
   Request

3: Checksum
   Reply

3: Checksum
   Reply

4: RPC
   Return

Figure 3.5: Flow of Control During File Comparison

Nfsmgrd then applies, at user level, whatever tests might be appropriate
to determine whether the two files are equivalent. This flow of control is
depicted in Figure 3.5. A more complete example of our new pathname
resolution scheme is shown in Figure 3.6. Presently, we are performing file
checksum comparison: nfsmgrd calls a checksumd daemon on each of the

6This avoids the need to lock the call out to nfsmgrd.
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file servers, requesting the checksum of the file being compared. Check-
sumd, which we have written for this work, computes MD4 file checksums
[Rivest91] on demand and then stores them for later use; checksums can also
be pre-computed and stored.

Resolve PATH1="/n/host1/gnu/bin/emacs"

Resolve PATH0="/amd/gnu/bin/emacs"

Construct replacement pathname:

let PATH2 = RESOLVED + MNTPT2

let PATH2 = "/n/host2/gnu/bin/emacs"

Return PATH1:

"/n/host1/gnu/bin/emacs" "/n/host2/gnu/bin/emacs"

YesNo

No

let RESOLVED="/n/host1/gnu"

let REMAINDER="/bin/emacs"

let MNTPT2="/n/host2/gnu"

Find mount point of replacement:

Return PATH2:

. . . follow vfsp1->vfs_replaced_by->vfs_mnt_path.

. . . checks if vfsp1->vfs_replaced_by is not NULL.

Is there

a replacement filesystem?

Yes

Compare files:
Is PATH1==PATH2 ?

   so future comparisons are faster.

. . . "/amd/gnu" is a symlink made by amd to

the automounted filesystem.

...also store equivalence in vfsp1->vfs_dft

Figure 3.6: An Example of the New Pathname Resolution Algorithm

Nfsmgrd collects the two checksums, compares them, and responds to
the kernel, telling au lookuppn() which pathname to use, indicating the
file on the replacement file system if possible. Au lookuppn() completes the
construction of the DFT entry, unlocks it, and marks which vfs is the proper
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one to use whenever the same pathname is resolved again.
In this fashion, all new pathname resolutions are re-directed to the re-

placement file system whenever possible.
Note that the master copy could be unmounted (e.g., Amd by default

unmounts a file system after a few minutes of inactivity7), and this would
not affect our mechanism. The next (new) use of a file in that file system
would cause some master copy to be automounted, before any of our code
is encountered.

3.4.3 After Replacement: Handling Files Already Open

When a file system is replaced, it is possible that some files will be open on
the replaced file system at the moment when the replacement is mounted.
Were these processes to continue to use the replaced file system, several
negative consequences might ensue. First, since the replacement is presumed
to provide faster response, the processes using files open on the replaced file
systems experience worse service. Second, since the total number of mounted
file systems grows as replacements happen, the probability rises that some
file system eventually becomes unavailable and causes processes to block.
Further, the incremental effect of each successive file system replacement
operation is reduced somewhat, since files that are open long-term do not
benefit from replacement. Finally, kernel data structures grow larger as the
number of mounted file systems climbs. Motivated by these reasons, we
decided to switch open files from the replaced file system to the replacement
file system whenever the file on the replacement file system is equivalent to
that on the master copy.

Although this idea might at first seem preposterous, it is not, since we
restrict ourselves to read-only file systems. We assume that files on read-
only file systems8 change very infrequently and/or are updated with care
to guard against inconsistent reads.9 Whether operating conditions uphold

7Note also that a filesystem cannot be unmounted, even if nfs umount is called, as long
as there are open file-descriptors in use on that filesystem. That means that even if we
can avoid using a filesystem because we have a replacement for it, we may not be able to
release the kernel resources it occupies.

8That is, they are exported as read-only to some hosts (including our client hosts),
although they might be exported as read-write to others.

9An example of “careful update” is provided by the SUP utility [Shafer92]. SUP
transfers the new file to a temporary name, renames the target file to another temporary
name, renames the newly transferred file to the final name, and then unlinks the old file
which was also renamed. This is meant to make sure that any open descriptors on the old
file can still access it and will not encounter possible paging problems.



3.4. USING THE REPLACEMENT 25

this assumption or not, the problem of a file being updated10 while being
read exists independently of our work, and our work does not increase that
danger.

We allow for a replacement file system to be itself replaced. This raises
the possibility of creating a “chain” of replacement file systems. Switching
vnodes from the old file system to its replacement limits this chain to length
two (the master copy and the current replacement) in steady state. For
example, if host A is replaced by host B, and host B is replaced by C, we
“short circuit” the replacement information stored in the vfs structure and
allow for C to directly replace A; see Sections 3.4.1.1 and 4.2. This saves us
unnecessary comparisons and delays while we have to contact more hosts.
After all, host B has already been determined as “bad”, so there is no need
to use it any longer.

Hot replacement requires knowing pathnames. Thanks to our changes,
the vfs structure records the pathname it is mounted on and identifies the
replacement file system; also, the relative pathname of the file is stored
in the file table entry. This information is extracted, combined with the
host names, and passed out to nfsmgrd to perform comparison, as described
above. If the comparison is successful, the pathname on the replacement file
system is looked up, yielding a vnode on the replacement file system. This
vnode simply replaces the previous vnode in all entries in the open file table.
This results in a switch the next time a process uses an open file descriptor.

The “hot replacement” code scans through the global open file table,
keying on entries by (a pointer to the) vfs. Once an entry is found that uses
the file system being replaced, a secondary scan locates all other entries us-
ing the same vnode. In a single entry into the kernel (i.e., “atomically”), all
file descriptors pointing to that vnode are switched, thereby avoiding com-
plex questions of locking and reference counting. A table scan is necessary
because while vnodes point to their vfs, the reverse is not true.

Hot replacement is made possible by the statelessness of NFS and by
the vfs/vnode interfaces within the kernel. Since the replaced server keeps
no state about the client, and since the open file table knows only a pointer
to a vnode, switching this pointer in every file table entry suffices to do hot
replacement.

An interesting issue is at which time to perform the hot replacement
of vnodes. Since each file requires a comparison to determine equivalence,
switching vnodes of all the open files of a given file system could be a lengthy
process. The four options we considered are:

10That is, updated by a host to which the file system is exported read-write.
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1. Switch as soon as a replacement file system is mounted (the early
approach).

2. Switch only if/when an RPC for that vnode hangs (the late approach).

3. Switch if/when the vnode is next used (the “on-demand” approach).

4. Switch whenever a daemon instructs it to (the “flexible” approach).

The decision to switch earlier or later is affected by the tradeoff that early
switching more quickly switches files to the faster file system and improves
fault tolerance by reducing the number of file systems in use, but possibly
wastes effort. Vnode switching is a waste if the switched vnode will not be
used again. Early switching also has the disadvantage of placing the entire
delay of switching onto the single file reference that is unlucky enough to be
the next one.

We chose the “flexible” approach of having a daemon make a system call
into the kernel which then sweeps through the open file table and replaces
some of the vnodes which can be replaced. We made this choice for three
reasons. First, we lacked data indicating how long a vnode lingers after
its final use. Second, we suspected that such data, if obtained, would not
conclusively decide the question in favor of an early or late approach. Third,
the daemon solution affords much more flexibility, including the possibility
of more “intelligent” decisions such as making the switch during an idle
period.

We emphasize that the system call into the kernel switches “some” of
the vnodes, since it may be preferable to bound the delay imposed on
the system by one of these calls. Two such bounding policies that we
have investigated are, first, switching only N vnodes per call, and, second,
switching only vnodes that have been accessed in the past M time units.
Assuming that file access is bursty (a contention supported by statistics
[Ousterhout85, Ruemmler93]), the latter policy reduces the amount of time
wasted switching vnodes that will never be used again. We are currently
using this policy of switching only recently used vnodes; this policy makes
use of the v last used field that we added to the vnode structure.

Note that if the time since last use is chosen such that vnodes used since
the last run of the daemon are switched, then processes will not remain
hung indefinitely waiting for a remote file system (assuming that the file
causing the hang can be replaced). Since rfscall() will have timestamped
the vnode at the beginning of the hung call, the next run of the daemon will
cause an attempt to switch the vnode of the hung call. If we want to make
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sure processes are “unhung” sooner we could increase the frequency of the
daemon’s run.

However, vnodes that cannot be replaced still pose a rather difficult
problem. They can easily bring a machine down, especially if the processes
that are hung on the RPC call are vital to the stability of the system.

3.5 Security

The NFS security model is the simple uid/gid borrowed from UNIX, and is
appropriate only in a “workgroup” situation where there is a central admin-
istrative authority. Transporting a portable computer from one NFS user
ID domain to another presents a security threat, since processes assigned
user ID X in one domain can access exported files owned by user ID X in
the second domain.

Accordingly, we have altered rfscall() so that every call to a replace-
ment file system has its user ID and group ID both mapped to “nobody”
(i.e., value -2). Therefore, only world-readable files on replacement file sys-
tems can be accessed. Of course any files left owned by “nobody” will be at
risk.

3.6 Code Size

Counting blank lines, comments, and debugging support, we have written
close to 11,000 lines of C. More than half is for user-level utilities: 1200 lines
for the RLP library and daemon, 3200 for nfsmgrd, 700 lines for checksumd,
and 1200 lines for a control utility (called nfsmgr ctl). New kernel code totals
4000 lines, of which 800 are changes to SunOS, mostly in the NFS module.
The remaining 3200 lines comprise the four modules we have added: 880
lines to deal with storing and computing medians; 780 lines are the “core
NFS management” code, which performs file system switching, pathname
storage and replacement, and out-of-kernel RPC; 540 lines to manage the
DFT; and 1000 lines to support the nfsmgr ctl system call.

The nfsmgr ctl system call allows query and control over almost all
data structures and parameters of the added facility. We chose a system
call over a kmem program for security. This facility was used heavily during
debugging; however, it is meant also for system administrators and other
interested users who would like to change these “magic” variables to values
more suitable for their circumstances. See Section 4.2 for more details.
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Implementation

4.1 RLP

We implemented only the parts of the Resource Location Protocol which we
needed:

• RLP MSG WHO ANYWHERE PROVIDES

• RLP MSG DOES ANYONE PROVIDE

• RLP MSG THEY PROVIDE

See an introduction of RLP in section 2.2.
We use RLP in its “miscellaneous” message format, one allowing the

client to send an arbitrary byte-stream, which is meaningful only to the
server which can decode it. The actual fields in the arbitrary field are as
follows:

1. msg size: the total size of this message.

2. hostname: the hostname of the filesystem which is now considered bad
and which we are trying to replace. If the same server which is bad
receives this RLP request, it is forbidden from answering for itself, to
avoid picking the same bad host as a replacement for itself.

3. filesystem: the name of the filesystem for which a replacement is
sought. The name of the filesystem (for example /usr/gnu) is insuffi-
cient to describe everything that is in that filesystem. That is why we
also relied on comparing individual files to determine their existence
and equivalence. See Section 3.4.2.

28
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4. flags: arbitrary flags describing the replaced filesystem. This field
was not in use in our work, and is there for future expansion. One
possible use for it was to tell the remote resource server that the re-
placed filesystem needs to be mounted with special privileges (say the
anon=0 option). A remote server might then decide not to reply to
such a client for security reasons.

5. architecture: the host architecture of the replaced filesystem is used
to advise the client whether the server is likely to supply it with the
same type files it needs. The server reports back if its architecture is
identical to that of the client or not. The client then may choose to
select or decline using that server.

4.2 Management and Control Facilities

We thought of several ways to query and control various features of our
system. One mechanism which might have not required any kernel modi-
fications was to use the kernel memory access mechanism, /dev/kmem, and
write a program that “walks” the different structures in the kernel, retriev-
ing information as needed, and very carefully modifying others. There were
several problems with this approach:

1. Security: it is better for the kernel to protect itself against malicious
processes rather than rely on user-level programs not corrupting vital
kernel data. A program that can read kernel memory might be abused
or misused into reading or modifying parts of the kernel for which it
was not designed.

2. Atomicity: some of the management and control operations we allow
require the operation go to completion, and that no other process could
access that data being modified (i.e., exclusive lock). Otherwise kernel
data will be left in a corrupt state. Kernel facilities are provided to
system calls to make them more atomic, and it is a lot easier to lock
out certain parts of our code while they are being modified with the
appropriate spl level.1

3. Portability: some operating systems such as CMU’s “UX” server for
Mach-3 don’t have a kmem interface, making any future port of our
system more difficult. Eventually a system-call mechanism would have
had to be used.

1The spl are kernel routines that Set Process Lock levels.
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Accordingly we decided to add a new system call to the kernel. A system
call is a considered a mechanism far “cleaner” than kmem. (However, it does
require access to kernel source.)

Our system call is designed with “object oriented” like programming
style in mind. The calling convention of nfsmgr ctrl() take 3 arguments:

1. obj: is the code for the object we want to manipulate or query.

2. cmd: is the command code we want to apply to the object.

3. args: is a pointer to a control structure which contains the necessary
information which needs to be passed to the kernel. It also provides
allocated space in the user-space for operations which need to return
data back to the user process.

Following are the various “objects” which could be manipulated using
the system call, and the commands which could be applied to them:

1. NMO NONE: no (N)FS (M)anager (O)bject needs to be manipulated.
This one exists mostly for trapping errors, and serves as the “null”
call.

2. NMO DFT: manage the Duplicate File Table. The allowed operations
are:

• NMC READ: this (N)FS (M)anager (C)ommand will read the full
contents of the DFT into user space. A client we wrote using this
system call displays the full DFT in tabular form.

• NMC WRITE: this command will overwrite arbitrary entries in the
DFT.

• NMC ADD: add entries to the DFT.

• NMC DEL: remove entries from the DFT, given a pathname.

• NMC CLEAR: clear a single entry from the DFT, given a table index.

• NMC RESET: clear all the entries from the DFT.

3. NMO RFSI: manage the RFSI, the Replacement File System Informa-
tion. To facilitate the ability to query a filesystem and find a re-
placement for it, each vfs contains pointers to the filesystem it re-
places and to the one that replaces it — the fields vfs replaces and
vfs replaced by in the vfs structure; see Figure 2.1. The operations
allowed on the RFSI are identical to those for NMO DFT.
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4. NMO DFT SIZE: Size of the DFT. Allowed operations are:

• NMC READ: return the current number of entries in the DFT.

• NMC GETMAX: return the size of the allocated DFT. This is the
maximum number of entries that could fit in the DFT.

• NMC SETMAX: set the maximum size of the DFT. This could be
used to extend or truncate (via kernel “realloc” routines) the
length of the DFT.

5. NMO RFSI SIZE: Size of the RFSI. The only allowed operation is NMC READ
which returns the current size of the RFSI. The maximum size of the
RFSI cannot be controlled externally. It is equal to the number of vfs
structures that exist in the kernel, and grows or shrinks with them.

6. NMO MGMT: NFS management flag per filesystem. The only three oper-
ations allowed here are NMC READ, NMC SETON, and NMC SETOFF. They
return the current value of this flag, set it to on, or turn it off, respec-
tively.

7. NMO MEDIAN SET: Median set is the long-term queue of measured round-
trip times of the nfs lookup operations. Allowed operations are:

• NMC READ will read the current median value of the long queue.

• NMC GETMIN will read the current number of medians stored in the
queue. The queue gets reset each time a replacement is made,
and no new replacements are made until the queue is full again.
This tells us how many data points we have already accumulated.

• NMC GETMAX tells us the value of the most recent median entered,
the one at the very top of the queue.

8. NMO MEDIAN SUBSET: Median subset is the short-term queue of mea-
sured round-trip times. Allowed operations are identical to those al-
lowed on the full-size median queue (NMC MEDIAN SET).

9. NMO TRIGGER RATIO: Trigger ratio between the median of the short-
term queue and the long-term one. Allowed operations are NMC READ
for checking the current ratio, and NMC WRITE for changing it.

10. NMO SWITCH NOW: Forced switching flag. This controls a bit in the vfs
structure’s field vfs nfsmgr flags, as described in Section 3.4.1.1.
The only three operations allowed here are NMC READ, NMC SETON, and
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NMC SETOFF. They return the current value of this flag, set it on, or
turn it off, respectively. Setting this flag to on will force a switching
of this filesystem the next time an NFS lookup operation is performed
on it.

The last field of nfsmgr ctrl() is used not just to return values to the
user, but to pass to the kernel whatever necessary information it requires.
Many of the operations listed above are specific to a particular filesystem,
such as DFT operations. For these operations, the name of the filesystem
(mount point) must be passed to the kernel. The system call will search
for the vfs with the same name in the vfs mnt path field, and if found, will
apply the operation requested to the DFT of the vfs in question.

4.3 Debugging Facilities

This nfsmgr debug() system call is very simple. It passes an integer to the
kernel, and returns a status back. The integer is a bit-mask for turning on
debugging (mostly using printf()s) for at various parts of our code. Of
course, prior to this mechanism working, we had to wrap parts of debugging
code with the appropriate bit-mask tests.



Chapter 5

Evaluation

This system was implemented and received use on a limited number of (Sun-
4, 40MHz SparcStation II) machines.

The goal of this work is to improve overall file system performance —
under certain circumstances, at least — and to improve it enough to justify
the extra complexity. For this method to really work, it must have:

1. Low overhead latency measurement between switches.

2. A quick switch.

3. Low overhead access to the replacement after a switch.

4. No anomalies or instabilities, like ping-pong switching.

5. No process hangs due to server failures when a replacement is available.

6. No security or administrative complications.

We have carried out several measurements aimed at evaluating how well
our mechanism meets these goals.

The overhead between switches is that of performance monitoring. The
added cost of timing every rfscall() we found too small to measure. The
cost of computing medians could be significant, since we retain 300 values.
But we implemented a fast incremental median algorithm that requires just
a negligible fraction of the time in nfs lookup(). The kernel data structures
are not so negligible: retaining 300 latency measurements costs about 2KB
per file system. The reason for the expansion is the extra pointers that
must be maintained to make the incremental median algorithm work. The
extra fields in the struct vfs, struct vnode, struct file are small, with
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the exception of the DFT, which is large. The current size of each (per-
filesystem) DFT is 60 slots which occupy a total of 1KB-2KB on average.

Our measured overall switch time is approximately 3 sec. This is the
time between the request for a new file system and when the new file system
is mounted (messages 1-8 in Figure 3.3). Three seconds is comparable to the
time needed in our facility to mount a file system whose location is already
encoded in Amd’s maps (about 1-2 seconds in our environment), suggesting
that most of the time goes to the mount operation.

The overhead after a switch consists mostly of doing equivalence checks
outside the kernel; the time to access the vfs of the replacement file system
and DFT during au lookuppn() is immeasurably small. Only a few millisec-
onds are devoted to calling checksumd: 5-7 msec if the checksum is already
computed. This call to checksumd is done once and need not be done again
so long as a record of equivalence remains in the DFT. If checksums have to
be computed, it would take about 5-6 msec more per 1MB of data already
loaded in memory, for the comparisons to complete.

A major issue is how long to cache DFT entries that indicate equiv-
alence. Being stateless, NFS does not provide any sort of server-to-client
cache invalidation information. Not caching at all ensures that files on the
replacement file system are always equal to those on the master copy; but
of course the repeated comparisons somewhat defeat the purpose of using
the replacement. We suppose that most publicly-exported read-only file sys-
tems have their contents changed rarely, and thus one should cache to the
maximum extent. Accordingly, we manage the DFT cache by LRU.

As mentioned above, switching instabilities are all but eliminated by
preventing switches more frequently than every 5 minutes.

In one experiment we performed, an Emacs process was started from
a filesystem on a slow server to be replaced. We simulated the slowing of
the server by artificially raising the round-trip times of the NFS lookup
operations going to this server. In the midst of our editing within Emacs,
the trigger ratio was reached. A flurry of activity ensued, and a replacement
was found and mounted. Within only a few seconds the open vnode for the
Emacs process was replaced for us by one on the replacement filesystem,
and our process was released from its hung state for us to resume editing.

Since we map the uid of all outgoing NFS calls to replacement filesystem
to that of “nobody,” we avoid potential security problems with users being
able to access files owned by others in a different administrative domain.
We chose suitable defaults for the variables of our system such that no
changes need be made; however, if necessary, privileged users and system-
administrators can use our control facilities to tune system parameters.
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5.1 Experience

5.1.1 What is Read-Only

Most of the files in our facility reside on read-only file systems. However,
sometimes one can be surprised. For example, Emacs is written to require a
world-writable lock directory. In this directory Emacs writes files indicating
which users have which files in use. The intent is to detect and prevent
simultaneous modification of a file by different processes. A side effect is
that the “system” directory in which Emacs is housed (at our installation,
/usr/local) must be exported read-write.

Deployment of our file service spurred us to change Emacs. We wanted
/usr/local to be read-only so that we could mount replacements dynami-
cally. Also, at our facility there are several copies of /usr/local per subnet,
which defeats Emacs’ intention of using /usr/local as a universally shared
location. We re-wrote Emacs to write its lock files in the user’s home di-
rectory since (1) for security, our system administrators wish to have as few
read-write system areas as possible and, (2) in our environment by far the
likeliest scenario of simultaneous modification is between two sessions of the
same user, rather than between users.

Note also that it is not necessary that the whole filesystem being switched
be exported read-only, only the parts that are requested. That depends on
the ability of the system to allow this. For example, Solaris 2.x [SMCC90c]
allows arbitrary parts of a filesystem to be exported with different permis-
sions, but SunOS 4.x [SMCC90d] only allows sibling subdirectories of a
filesystem to be exported with different permissions.

5.1.2 Suitability of Software Base

5.1.2.1 Kernel

The vfs and vnode interfaces in the kernel greatly simplified our work. In
particular, hot replacement proved far easier than we had feared, thanks to
the vnode interface. The special out-of-kernel RPC library also was a major
help. Nevertheless, work such as ours makes painfully obvious the benefits
of implementing file service out of the kernel. The length and difficulty
of the edit-compile-reboot-debug cycle, and the primitive debugging tools
available for the kernel were truly debilitating. Recent developments in
kernel technologies such as layered kernel modules in Solaris 2.x [SMCC92a]
and multi-server systems such as the GNU Hurd [Bushnell94] or the CMU
“US” server would have been tremendous to us.
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5.1.2.2 RLP

RLP was designed in 1983, when the evils of over-broadcasting were not as
deeply appreciated as they are today and when there were few multicast
implementations. Accordingly, RLP is specified as a broadcast protocol. A
more up-to-date protocol would use multicast. The benefits would include
causing much less waste (i.e., bothering hosts that lack an RLP daemon)
and contacting many more RLP daemons. Not surprisingly, we encountered
considerable resistance from our bridges and routers when trying to propa-
gate an RLP request. A multicast RLP request would travel considerably
farther.

RLP uses UDP by default. Since UDP does not guarantee delivery of
packets, there is a realistic limit on how large a single packet could be for
reliable delivery; large packets are more likely not to get delivered correctly
and will require a retransmission. Also, most applications which use UDP
avoid exceeding 8KB, because most UDP implementations have been written
to match the default buffer sizes of NFS, and hardly ever allow you to reach
the protocol limit of 64KB as described in [Stevens94]. The information
necessary for our attribute-guided search for filesystems could have reached
these limits.1 A better protocol, using TCP for example, will remove these
limitations. It would also be necessary to send out only minimal information,
and then exchange further information on a “need to know” basis, and if
asked, with remote resource servers; a hierarchical organization such as that
successfully used in [Dyer88, Mockapetris87a, Mockapetris87b, SMCC93,
Noor94] might be more suitable.

Finally, having exclusively used RLP’s “catch-all” message format (see
Section 4.1) and not what it was primarily designed for is further evidence
of its unsuitability for this work.

5.1.2.3 NFS

NFS is ill-suited for “cold replacement” (i.e., new opens on a replacement
file system) caused by mobility, but is well suited for “hot replacement”
because of its statelessness.

NFS’ lack of cache consistency callbacks has long been bemoaned, and
it affects this work since there is no way to invalidate DFT entries. Since we
restrict ourselves to slowly-changing read-only files, the danger is assumed
to be limited, but is still present. Most newer file service designs include

1Under SunOS, the maximum path name length alone, MAXPATHLEN, is 4096 bytes
long.



5.1. EXPERIENCE 37

cache consistency protocols. However, such protocols are not necessarily a
panacea. Too much interaction between client and server can harm perfor-
mance, especially if these interactions take place over a long distance and/or
a low bandwidth connection. See [Tait92] for a design that can ensure con-
sistency with relatively little client-server interaction.

The primary drawback of using NFS for mobile computing is its limited
security model. Not only can a client from one domain access files in another
domain that are made accessible to the same user ID number, but even a
well-meaning client cannot prevent itself from doing so, since there is no
good and easy way to tell when a computer has moved into another uid/gid
domain.

Our work was based on version 2 of the NFS protocol. Version 3 [Pawlowski94,
SMCC94] of the protocol fixes some of the problems of the current version.
For example, it allows for use of TCP, dynamically adjusting buffer sizes,
and asynchronous writes — which would definitely improve its performance
over wide-area networks.

NFS version 3 also provides better support for security:

• A new NFS operation, ACCESS, allows the client to request from the
server a list of access rights per filehandle. The server will check the
permissions — possibly through a set of ACLs and uid/gid mappings
— and decide which of the access requests to grant and which not.
This is a more flexible and finer grained method than the version 2 of
the protocol, in which the only reliable way to determine if a client
had access to the server’s files was to try the operation and see if it
failed.

• A new authentication model has been added, using the Kerberos au-
thentication protocol [Steiner88, Lunt90, Bellovin91].
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Experiences

6.1 Experiences in Kernel Development

During the time we worked on this system, we have gained considerable
experience developing and testing kernel code. It has proven to be a chal-
lenging task. These comments were borne out of working in the SunOS 4.x
operating system, but they are valuable nonetheless to many other environ-
ments based on a monolithic kernel.

6.1.1 Debugging

The largest single problem when developing kernel code is debugging. Each
time a new test had to be made, we had to edit kernel sources, rebuild the
kernel executable (/vmunix), install it, reboot, wait for the machine to come
up, and then start our tests. This whole cycle, for a SparcStation II averaged
around 30 minutes for very small code changes. (That might explain why
this work spanned over several years.)

6.1.1.1 printf()s

The best method for debugging kernels which we came to use was copious
printf statements in small code sections that had to be debugged at the
moment. We had to be careful about how many and where we placed these
print statements. For example, busy sections such as the name resolution
function (au lookuppn()) are bad places to insert them, because the amount
of output that will get generated by the kernel — which gets printed on the
console and added to a syslog [SMCC90e] daemon — is so voluminous that
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the machine spends most of its time displaying debugging output, and user
processes are pushed down the scheduling priority.1

However, not even using printf helped us at times. Output has to
pass through a kernel buffer, out to the syslog mechanism, and then to the
console (or wherever /etc/syslog.conf directs it to). When a kernel panic
occurs, the kernel printf buffer almost certainly has some output that has
not been flushed to the console. That output is lost when the machine
panics. Unfortunately, that output is the most critical to have, because it is
the debugging information just leading to the panic. The best ways to avoid
these problems were to be extremely careful when writing kernel code. See
Section 6.1.2.

Our solution was to introduce a new system call dedicated to turning
kernel debugging on and off for any section of our code, and for querying or
even changing information that is accumulated by the filesystem code. See
Sections 4.2 and 4.3.

6.1.1.2 Kernel Debuggers

We have tried other methods for debugging kernels, such as using kadb.
But we found these to be cumbersome and greatly lacking in flexibility as
compared to user-level debuggers such as gdb.2

6.1.1.3 Source Browsing

SunOS 4.1.2’s kernel sources number almost a half a million of C code lines.
No one person could be an expert in every part of this large system. Our
work mainly concentrated on less than one tenth of that amount, and on
the whole, no more than one fifth of the code (about 73,000 lines) had to
be looked at to achieve our goals. In one respect, this exemplifies just how
much modularity there is in the kernel. On the other hand, we had to learn
how the SunOS kernel operates all on our own, testing one section at a time.
A lot of time was spent placing printf statements at various points in the
kernel, and checking what output was produced.

That is how we learned the execution flow in the kernel. It is difficult to
know at any given point how did the kernel get there. One of the main rea-
sons is the so-called “object-oriented” programming style the SunOS kernel
has. Many routines are not called directly, but as a consequence of a macro

1Console output is considered a high-priority event in SunOS 4.x.
2Gdb has the ability to debug kernels over the network and/or from processes, but it

is only possible for micro-kernel based operating-systems, such as Mach 3.0 [Stallman94].
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expansion on a field of a structure containing opaque data and generic struc-
tures full of pointers to functions. One of these functions is dereferenced,
and then called on the actual data point it was passed. Here is an example
from <sys/vnode.h> showing how this is achieved:

#define VOP_GETATTR(VP,VA,C) (*(VP)->v_op->vn_getattr)(VP,VA,C)

The operation might have been applied to any vnode, but at that level
the knowledge of what filesystem that vnode belonged to was lost. The best
way we found to recover that information was to compare the addresses of
the pointers to the functions — in this example, comparing *(VP)->v op
with the global &nfs vnodeops. That way we could tell the vnode in ques-
tion is an NFS one.

Another problem was the lack of documentation specific to SunOS ker-
nels or even more general about “modern” operating system resembling
SunOS. The books available to us at the time were outdated, too broad, or
inapplicable [Bach86, Leffler89, Tanenbaum87].

6.1.2 Coding Practices

When coding in the kernel, we found many of our assumptions and experi-
ences accumulated over years of user-level programming to be false. These
proved to be futile; the slightest problem in the kernel causes a panic, fol-
lowed by a long kernel-dump of memory pages, and the obvious need to fix
the code.

These are some of our recommendations when writing kernel code:

• pointers: Be very careful with pointers. Don’t ever assume that the
value of a pointer you are passing around is what you thought it was.
Always check to make sure. When your code is working flawlessly,
you can remove extraneous checks to speed it up. Many times, due to
memory allocation and/or alignment problems, pointers and their data
get corrupted. Also important is to initialize values of any allocated
data (static, automatic, etc.). Most user-level compilers these days
will make sure values of stack or heap allocated storage is zeroed first.
That is not so in the kernel (for speed reasons), so you must initialize
all values yourself. Besides, initialization is just good programming
practice.

• memory: In the kernel you don’t have infinite amounts of memory,
not even virtual memory. Every byte you use comes out of a fixed
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amount of physical memory the kernel takes away from the rest of the
system when it starts up. You can easily run off the end of the kernel
memory by calling too many nested functions (recursion is not a good
idea either), by using many (or large) automatic or static variables,
and of course, by forgetting to call the proper kernel free routine for
something you have allocated. For example, using large automatic
strings allocated for deeply nested functions accounted for several days
of frustrating debugging, faced with the obscure “watchdog reset —
rebooting” messages.

• output: as mentioned in section 6.1.1.1, it is not recommended to
generate too much output to the console for several reasons: you want
the kernel print buffer to flush in time, too much output in frequently
called kernel functions may slow the system manyfold, and it is easier
to look at less debugging output at the critical moment than many
pages of useless information. Other methods we used included “timed
output”. That is, we turn on verbose output from some code section
for only a short period of time, which automatically turns itself off.

• backup kernel: always keep a backup kernel image in available for
use. We always left a known working kernel in /vmunix.good, which
we were able to specify at boot time in case our newly installed kernel
failed to boot or crashed frequently.

6.2 Vendor Bugs

Even if you are an experienced C programmer and wrote bug-free kernel
code, you may still get kernel panics. Kernel code of vendors is hardly bug-
free. In our case, hundreds of patches exist for various versions of SunOS
4.x.

The system administrators at our site have installed most of these patches,
and were constantly installing new ones. However, the sources we were work-
ing from were those of the original unpatched system. That meant that the
kernels we were building from original sources did not include any bug fixes.
We had our kernels crash several times due to known bugs which we had no
source fixes to.

In a few occasions, we tried to install binary kernel patches to object
modules for those files which we knew we were not modifying, and work-
ing under the assumption that it is better to fix some bugs than none at
all. That assumption only worked half of the time. Often, large patches
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are distributed in collections known as “Jumbo Kernel Patches”. These are
such extensive patches that they span many kernel modules, and make in-
compatible changes that must be coordinated among different code sections.
Installing only a few of them, and expecting the rest to be generated from
sources often did not work. If we were lucky, the kernel would not build due
to missing symbols. If we were unlucky, the kernel linked, but failed to run
at some stage, sometimes several days after the system was rebooted.
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Related Work

Underlying our work is the idea that in order for mobile computing to be-
come the new standard model of computing, adaptive resource location and
management will have to become an automatic function of distributed ser-
vices software. The notion of constantly-networked, portable computers
running modern operating systems is relatively new. Accordingly, we know
of no work other than our own (already cited) on the topic of adaptive,
dynamic mounting.

The Coda file system [Satyanarayanan90] supposes that mobile comput-
ing will take place in the form of “disconnected operation,” and describes in
[Kistler91] a method in which the user specifies how to “stash” (read/write)
files before disconnection and then, upon reconnection, have the file service
run an algorithm to detect version skew. Coda can be taken as a point of
contrast to our system, since the idea of disconnection is antithetical to our
philosophy. We believe trends in wireless communication point to the ability
to be connected any time, anywhere. Users may decide not to connect (e.g.,
for cost reasons) but will not be forced not to connect (e.g., because the
network is unreliable or not omnipresent). We call this mode of operation
elective connectivity.

An obvious alternative to our NFS-based effort is to employ a file system
designed for wide-area and/or multi-domain operation. Such file systems
have the advantages of a cache consistency protocol and a security model
that recognizes the existence of many administrative domains. Large scale
file systems include AFS [Howard88] and its spinoffs, Decorum [Kazar90]
and IFS (Institutional File System) [Howe92]. Experiments involving AFS
as a “nation-wide” file service have been going on for years [Spector89]. This
effort has focused on stitching together distinct administrative domains so
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as to provide a single unified naming and protection space. However, some
changes are needed to the present authentication model in order to support
the possibility of a mobile client relocating in a new domain. In particular,
if the relocated client will make use of local services, then there should be
some means whereby one authentication agent (i.e., that in the new domain)
would accept the word of another authentication agent (i.e., that in the
client’s home domain) regarding the identity of the client. Such could be
made possible by cooperating Identification Servers [Johns93a, Johns93b].
For example, a client’s RLP request could cause a server receiving it to call
the client’s identd server to find the identity of the user who initiated the
request. The server may decide to deny the request if identification could
not be made, or perhaps choose to ask another server (perhaps a master
identification server back at the client’s home base) for identity confirmation.
Once an identity is confirmed, the server may log that information for future
reference or for tracking in case of suspected break-in attempts.

The IFS project has also begun to investigate alterations to AFS in sup-
port of mobile computers [Honeyman91]. Specifically, they are investigating
cache pre-loading techniques for disconnected operation and transport pro-
tocols that are savvy about the delays caused by “cell handoff” — the time
during which a mobile computer moves from one network to another.

Solaris 2.3’s CacheFS [SMCC92b] allows for effective caching and syn-
chronization of data between a client and NFS server. The main benefits
of such a caching mechanism is the ability to use smaller, lighter, and less
power-consuming disk drives — especially important for mobile computers.

Plan 9’s bind command has been designed to make it easy to mount new
file systems. In particular, file systems can be mounted “before” or “after”
file systems already mounted at the same point. The before/after concept
replaces the notion of a search path. Plan 9 also supports the notion of a
“union mount” [Pike91, Presotto92]. Several filesystem could be unified into
one large one. Whenever files are identical, a client host might get parts of
these files from any number of servers used to form the union. If one such
server becomes inaccessible, but others still do, the client will continue to
receive uninterrupted file service.

The Plan 9 bind mechanism is a more elegant alternative to our dou-
ble mounting plus comparison. However, a binding mechanism — even an
unusually flexible one such as that of Plan 9 — addresses only part of the
problem of switching between file systems. The harder part of the problem
is determining when to switch and whom to switch to.



Chapter 8

Conclusion

We have described the operation, performance, and convenience of a trans-
parent, adaptive mechanism for file system discovery and replacement. The
adaptiveness of the method lies in the fact that a file service client no longer
depends solely on a static description of where to find various file systems,
but instead can invoke a resource location protocol to inspect the local area
for file systems to replace the ones it already has mounted.

Such a mechanism is generally useful, but offers particularly important
support for mobile computers that may experience drastic differences in re-
sponse time as a result of their movement. Reasons for experiencing variable
response include:

1. Moving beyond the home administrative domain and so increasing the
“network distance” between client and server.

2. Moving between high-bandwidth private networks and low-bandwidth
public networks (such movement might occur even within a small ge-
ographic area).

While our work does not address how to access replicated read/write
file systems or how to access one’s home directory while on the move, our
technique does bear on the problems of the mobile user. Specifically, by using
our technique, a mobile user can be relieved of the choice of either suffering
with poor performance or devoting substantial local storage to “system”
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files.1 Instead, the user could rely on our mechanism to continuously locate
copies of system files that provide superior latency, while allocating all or
most of his/her limited local storage to caching or stashing read/write files
such as those from the home directory.

Our work is partitioned into three modular pieces: heuristic methods for
detecting performance degradation and triggering a search; a search tech-
nique coupled with a method for testing equivalence versus a master copy;
and a method for force-switching open files from the use of vnodes on one file
system to vnodes on another (i.e., “hot replacement”). There is little inter-
relationship among these techniques, and so our contributions can be viewed
as consisting not just of the whole, but also of the pieces. Accordingly, we
see the contributions of our work as:

1. The observation that file system switching might be needed and useful.

2. The idea of an automatically self-reconfiguring file service, and of bas-
ing the reconfiguration on measured performance.

3. Quantification of the heuristics for triggering a search for a replacement
file system.

4. The realization that a “hot replacement” mechanism should not be dif-
ficult to implement in an NFS/vnodes setting, and the implementation
of such a mechanism.

8.1 Future Work

There are several directions for future work in this area.
The major direction is to adapt these ideas to a file service that supports

a more appropriate security model. One part of an “appropriate” security
model is support for cross-domain authentication such that a party from
one domain can relocate to another domain and become authenticated in
that domain. Another part of an appropriate security model should include

1One might suppose that a “most common subset” of system files could be designated
and loaded. However, specifying such a subset is ever harder as programs depend on more
and more files for configuration and auxiliary information. This approach also increases
the user’s responsibility for system administration, which we regard as a poor way to
design systems. One possible solution is a caching filesystem such as [SMCC92b]. With a
caching filesystem, only a small working set of files most frequently used are stored on a
smaller local disk, alleviating the need to go to a remote server for file access. Only when
rarely used files are requested, a file search on remote hosts could be conducted, perhaps
using our switching mechanism.
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accounting protocols allowing third parties to advertise and monitor (i.e.,
“sell”) the use of their exported file systems. Within the limited context
of NFS, a small step in the right direction would be a mechanism that
allows clients (servers) to recognize servers (clients) from a different domain.
The most recent version of Kerberos contains improved support for cross-
domain authentication, so another step in the right direction would be to
integrate the latest Kerberos with NFS, perhaps as originally sketched in
[Glover93, Steiner88, Lunt90, Bellovin91].

Another desirable idea is to convert from using a single method of exact
file comparison (i.e., checksumd) to per-user, possibly inexact comparison.
For example, object files produced by gcc contain a timestamp in the first 16
bytes; two object files may be equal except for the embedded timestamps,
which can be regarded as an insignificant difference. Another example is
that data files may be equal except for gratuitous differences in floating-
point format (e.g., 1.7 vs. 1.7000 vs. 1.70e01). Source files may be compared
ignoring comments and/or white space. Intelligent comparison programs like
diff or spiff [Nachbar88] know how to discount certain simple differences.

Other extensions and improvements to our work include:

• Adding an absolute measure of performance to the trigger function.
Currently it will only switch if a relative change for the worse had oc-
cured, but not if persistent yet bad performance exists. More generally,
we believe that a better trigger function could be found.

• Converting RLP from a broadcast protocol to a multicast protocol.

• Reimplementing RLP in an environment that supports out-of-kernel
file service implementations (e.g., multi-server Mach 3.0).

• Upon first access to a replacement filesystem, retrieve the checksum
information for the whole filesystem to the local client. This is usually
a small index file which will not take much to store locally on the home
system. It would improve performance because for each new pair-
comparison, there would be no need for checksumd to send a message
to the host of the master copy — already determined as unsuitable —
to get the checksum information for the file in question. The checksum
information will reside locally.

• Investigate the possibility of breaking processing out of hung RPCs.
If we could do that, and find a replacement to the hung fileserver
(without of course accessing it again), we could switch the vnodes of
these processes to replacement servers as well.
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• Using MD5 [Rivest92] checksums rather than MD4, because they are
slightly more secure.

• Finish the implementation of RLP, for the sake of completeness.
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