
0 · Gopalan Sivathanu et al.

Dear TOS editors and reviewers,

Attached please find our submission to the ACM Transactions on Storage Systems.

Our paper is titled “End-to-End Abstractions for Application-Aware Storage.” In this arti-
cle, we provide an overview of the problem of “information-gap” in the storage stack, and
present two novel abstractions that effectively bridge this gap, thereby enabling a range
of functionality that is almost impossible to achieve with existing systems and interfaces.
Most of the material in this article forms part of Gopalan Sivathanu’s Ph.D. dissertation.

Our first abstraction isType-Aware Storagethat aims communicating pointer information to
the disk hardware. We have published this abstraction in OSDI 2006. This article includes
a new unpublished case-study of type-aware storage,“Disk-Level Data Consistency.” This
case-study proposes and evaluates how complex higher-level consistency properties can be
achieved at the disk hardware-level, in a file-system–agnostic manner.

Our second abstraction isContext-Aware I/O, a flexible mechanism to communicate be-
tween applications and data, across the storage stack. We present the design, implementa-
tion, and evaluation of the above abstraction, and demonstrate its usefulness through two
separate case-studies. This abstraction and its case-studies have not been published in any
other venue.

Overall, of this 60 page article, about 60 percent is new unpublished material.

This work was completely done when all authors were affiliated with the File systems and
Storage Laboratory at Stony Brook University, New York.

Thank you for your time and effort in reviewing this article.

Sincerely,

Gopalan Sivathanu
Google Inc.

Swaminathan Sundararaman
University of Wisconsin-Madison

Kiron Vijayasankar
Riverbed Technology Inc.

Chaitanya Yalamanchili
Erez Zadok
Stony Brook University

End-to-End Abstractions for Application-Aware
Storage

GOPALAN SIVATHANU
Google Inc.
and
SWAMINATHAN SUNDARARAMAN
University of Wisconsin-Madison.
and
KIRON VIJAYASANKAR
Riverbed Technologies Inc.
and
CHAITANYA YALAMANCHILI
Stony Brook University.
and
EREZ ZADOK
Stony Brook University.

Modern computer systems are a composition of several logically independent layers. Althought
providing many important benefits, this rampant layering has also led to the well-explored problem
of information-divide in the systems stack. Layers hide information, thus constraining function-
ality and limiting the power of individual layers. A particularly striking instance of this general
problem exists in the storage stack today. Modern high-end storage systems have significant

processing capabilities, but despite their potential, storage systems are constrained in their func-
tionality because they are oblivious of higher layers and the applications using them. In this article,
we seek to answer a simple question: how can we convey application-level information across the
diverse modern storage stack in a simple and generic manner? We propose two flexible abstrac-
tions to solve this problem. The first abstraction is the notion of type-awareness in the storage
stack. In type-aware storage, lower layers of the storage stack such as the disk are aware of the
pointer relationships between disk blocks that are imposed by higher layers such as the file system.
Type-awareness enables semantics-aware optimizations and new functionality in the lower layers
of the storage stack. The second abstraction we describe is Context-Aware I/O (CAIO), a generic
mechanism to propagate information end-to-end through the storage stack. CAIO provides a sim-
ple, yet effective interface to communicate application-data and application-I/O relationships to
the storage stack, enabling interesting functionality. Through several case studies, we demonstrate
the flexibility and benefits of both abstractions and show that they present a simple yet effective
general interface to build the next generation of storage systems.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Storage hierarchies;

Author’s Address: Gopalan Sivathanu, 1600 Amphitheater Parkway, Mountain View, CA, 94043
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 1533-3077/20YY/0000-0001 $5.00

ACM Transactions on Storage, Vol. V, No. N, Month 20YY, Pages1–59.

2 · Gopalan Sivathanu et al.

D.4.2 [Operating Systems]: Storage Management—Secondary storage; D.4.2 [Operating Systems]: Storage
Management—Allocation/deallocation strategies; D.4.2 [Operating Systems]: File Systems Management—Ac-
cess methods; D.4.2 [Operating Systems]: File Systems Management—File organization; D.4.6 [Operating
Systems]: Security and Privacy Protection—Access controls; D.4.6 [Operating Systems]: Security and Privacy
Protection—Authentication; D.4.7 [Operating Systems]: Organization and Design—Hierarchical Design

General Terms: Design, Experimentation, Reliability, Security, Measurement, Performance

Additional Key Words and Phrases: Storage Stack, Intelligent Disks, File Systems, Storage Sys-
tems

1. INTRODUCTION

Computer system design over the past years has revolved around the principle of layer-
ing [Dijkstra 1968]. Building systems as a hierarchy of layers enables localized and in-
dependent innovation in the individual layers. For example, in the network protocol stack
comprising layers such as application, transport, network, and data link—each layer can in-
dependently innovate as long as the interface exported to the other layers is intact. With the
growing complexity of today’s systems, layering has becomeand indispensable technique
in hardware and software design.

Despite its obvious benefits, layered system design also comes with an inevitable side-
effect: information available at one layer is not visible atthe other layers beyond what
is permitted by the interface separating those layers. The impact of this lack of informa-
tion is becoming more pronounced in the recent years as thereis a need for individual
layers to support advanced functionality, requiring cross-layer information. This problem
is exacerbated by the fact that recent advancements in computer systems such as virtual
machine technology [Barham et al. 2003] have introduced more layers of virtualization in
the systems stack, further widening this information-gap.Techniques to address this gen-
eral problem of the information-gap across layers have ranged from building application-
extensible OSes [Bershad et al. 1995; Engler et al. 1995] andbrand-new abstractions [Mes-
nier et al. 2003; Sivathanu et al. 2006; MacCormick et al. 2004; Denehy et al. 2002], to
more evolutionary approaches such as applications passinghints [Patterson et al. 1995; Cao
et al. 1996; de Jonge et al. 2003], applications implicitly influencing OS behavior [Arpaci-
Dusseau and Arpaci-Dusseau 2001; Burnett et al. 2002], and automatically inferring cross-
layer information [Arpaci-Dusseau and Arpaci-Dusseau 2001; Sivathanu et al. 2003].

In the modern storage hierarchy, the general problem of information-gap between layers
has hampered development of new functionality. Large-scale storage systems today com-
prise diverse resources that include high processing power, hundreds of gigabytes of RAM,
solid state storage media such as flash, and hundreds or even thousands of disks [EMC
Corporation 1999; Network Appliance Inc. 2006]. Despite these advancements in storage
hardware, storage systems are constrained in the range of functionality they can provide,
because they lack information about higher-level data semantics.

Techniques to address this general problem of the information-gap across layers have
ranged from building application-extensible OSes [Bershad et al. 1995; Engler et al. 1995]
and brand-new abstractions [Mesnier et al. 2003; Sivathanuet al. 2006; MacCormick et al.
2004; Denehy et al. 2002], to more evolutionary approaches such as applications passing
hints [Patterson et al. 1995; Cao et al. 1996; de Jonge et al. 2003], applications implicitly

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 3

influencing OS behavior [Arpaci-Dusseau and Arpaci-Dusseau 2001; Burnett et al. 2002],
and automatically inferring cross-layer information [Arpaci-Dusseau and Arpaci-Dusseau
2001; Sivathanu et al. 2003]. However, none of the existing solutions enable conveying
bothapplication-dataandapplication-I/Orelationships to the storage stack, in an end-to-
end fashion (user applications to the storage hardware).

Our approach to solve the problem of information-gap is to propagateminimal and
genericinformation relating to data and I/O, from higher-level layers of the storage stack to
the lowest-level (the storage hardware). We developed two generic abstractions to encode
structuralandoperationalinformation available at the application-level and communicate
it as part of I/O operations. Our first abstraction istype-awareness, which is to commu-
nicatepointers between disk blocks to the lower layers of the storage stack.Pointers
establish relationships between disk blocks in a generic manner, and are maintained by
layers such as file systems or databases. Our second abstraction is context-aware storage,
which is to communicate higher-levellogical context of I/O operations across the storage
stack. For example, all I/O operations generated from a single user application can be
grouped under the same logical context.

The following are the three key characteristics of our approach that differentiate our
work from previous approaches:

(1) The information being communicated from higher-level layers is already available at
the corresponding layers (e.g., file systems already track block pointers), and hence
communicating such information requires limited and straightforward modifications
to existing infrastructure. More specifically, the modifications required to layers in
our approach areimplementation-level. These modifications are much easier to make
compared to thedesign-levelmodifications required with brand-new abstractions such
as Object-based Storage [Mesnier et al. 2003].

(2) By decoupling thegenerationof information at the higher layers from how the in-
formation isusedat the lower layers, we obviate the need for explicit coordination
between any two layers to support our abstractions. Our pointer or context informa-
tion is not generated with any specific layer or functionality in mind.

(3) Our abstractions extend end-to-end across the storage stack, (i.e., from user applica-
tions to the storage hardware), hence allowing a wide-rangeof interesting functionality
in the different layers of the storage stack.

We have implemented prototypes of both our abstractions andseveral case-studies to
demonstrate their usefulness, for the Linux kernel 2.6.15.To evaluate disk-level func-
tionality, we built our own software-level disk prototyping framework. Our framework
operates as a pseudo device driver that interposes between the file system and the regular
disk drivers. One key challenge in this prototyping environment is to ensure there is no per-
formance interference between the host application and theprocessing at the pseudo driver
layer. By careful use of kernel isolation techniques, we separate the CPU and memory
usage of the software prototype from the “host” applications, thus providing a very close
approximation of an actual hardware prototype with its own processing and memory. We
believe that this prototyping environment is valuable moregenerally for evaluating other
kinds of functionality in the storage system. We also plan torelease the source code of our
framework and the case-studies under GPL.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

4 · Gopalan Sivathanu et al.

The key contributions of this article are as follows:

—Formulation of thepointer abstraction and the design of the Type-Safe Disk interface
that enables easy communication of higher-level pointers to the disk system.

—Design, implementation, and evaluation of two case-studies that demonstrate the secu-
rity functionality and performance optimizations that type-awareness enables.

—Formulation of thehierarchical contextabstraction and the Linux implementation of the
context propagation infrastructure.

—Design, implementation, and evaluation of two case-studies to demonstrate the power
and generality of the context abstraction.

—Implementation of a software-level framework to easily and accurately prototype disk-
level functionality. This framework provides an interesting choice between hardware-
level prototyping and entirely simulation-based prototyping.

The rest of this article is organized as follows. Section 2 discusses some background
information. In Section 3, we present the detailed design, implementation, and evaluation
of type-aware storage. In Sections 4 and 5, we describe two case-studies that use type-
aware storage. Section 6 presents context-aware I/O. In Sections 7 and 8, we describe two
case-studies of context-aware I/O. In Section 9 we discuss related work, and we finally
conclude in Section 10.

2. BACKGROUND

In this section, we discuss background information about the modern storage stack, large-
scale storage systems, RAID levels, and file systems.

2.1 Modern Storage Stack

In the past file systems communicated directly with disks by using hardware-specific infor-
mation such as tracks and sectors. The storage stack has evolved significantly since then.
Disk hardware information is virtualized through block-based interfaces such as SCSI and
ATA. Layers such as RAID [Patterson et al. 1988] or logical volume managers can ex-
ist beneath file systems, and they aggregate several independent disks. File systems are
completely unaware of whether they are communicating with asingle disk system or a
RAID array. In today’s storage stack, even a network can exist between file systems and
the storage hardware [Satran et al. 2004; Sun Microsystems 1989; Callaghan et al. 1995;
Shepler et al. 2003], and higher-level user applications are completely oblivous to these
intermediate layers.

2.2 Large-Scale Storage Systems

Large-scale storage systems today comprise diverse resources that include high process-
ing power, hundreds of gigabytes of RAM, solid state storagemedia such as flash, and
hundreds or even thousands of disks [EMC Corporation 1999].Modern storage systems
run complex software to provide functionality such as reliability, fault-tolerance, and high
performance I/O. One of the challenges in such storage systems is to effectively manage
the wide range of resources to provide optimal performance and customizable features.
However, despite the advancement in storage hardware, the interface used for communi-
cating with hardware devices is still simple and narrow in most scenarios. For example,
the SCSI interface supports just two main primitives, blockread andwrite, resulting

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 5

in the storage system being mostly oblivious to higher-level information. This makes effi-
cient resource management within modern storage systems a difficult problem, as storage
systems cannot discriminate between the different kinds ofinformation they store.

Some existing systems try to work around this problem by exporting more information to
higher-level software [Denehy et al. 2002; IBM 2007a]. For example, certain enterprise-
class storage systems allow higher-level software to choose the RAID level to use for a
new volume, during its creation [IBM 2007b]. However, this requires that the file sys-
tem or higher-level storage software be aware of the characteristics of each volume, which
could be totally tied to the internal architecture of the specific storage systems. For ex-
ample, a storage system could contain several fine-grained RAID levels, and devices such
as NVRAM and solid state memory. Storage architectures could also be different across
vendors and models, and it may be cumbersome to customize filesystems for specific stor-
age systems. Moreover, the abstraction of a volume is in mostcases too coarse-grained to
express difference in access characteristics across files.

3. TYPE-AWARE STORAGE INFRASTRUCTURE

Type-safety is a well explored concept in the field of programming languages, with proven
benefits such as controlled access to memory. We propose to extend the property of type-
awareness and type-safety to the disk subsystem, and show that it can significantly improve
the security and functionality of the disk subsystem. Specifically, we advocate regulating
access to disk blocks to conform to well-defined rules, that are understood and enforced
by the disk itself. In building this, we leverage the fact that the semantics of most file sys-
tems today can be broadly classified into two categories: rawdata blocks, andpointersor
references that implement logical relationships between data blocks (for example, dentries-
inodes and inodes-data blocks). We define atype-awaredisk as one that can differentiate
between these two distinct types of information it stores. Once a disk has this information,
it can exploit this knowledge to provide better functionality. We believe that this simple
type-awareness could be a significant source of semantic information that can bridge the
semantic gap between file systems and storage devices. Although several existing research
projects like Object-based Storage Devices (OSD) explore alternatives to bridge this gap,
we believe that adata-pointerabstraction is the right interface that a disk should provide to
file systems. A disk that is type-aware canenforcetype safety by limiting block accesses to
only the legal set of pointers, thus preventing arbitrary block dereferencing. We call such
a disk atype-safe disk(TSD).

TSDs require a few changes to the current block-based interface. First, like any other
type-safe system, allocation and deallocation has to be under the control of the disk system.
By performing block allocation and de-allocation, a TSD frees the file system from the
need for free-space management. Similar in spirit to type-safe programming languages, a
TSD also exploits its pointer awareness to perform automatic garbage collection of unused
blocks; blocks which have no pointers pointing to them are reclaimed automatically, thus
freeing file systems of the need to track reference counts forblocks in many cases.

In this section we present in more detail, our type-aware storage abstraction, and two
case-studies that we built to show the usefulness of our abstraction.

This section is organized as follows. In Section 3.1 we discuss the utility of pointer
information at the disk. Section 3.2 discusses the design and implementation of the basic
TSD framework. In Section 3.3 we describe file system supportfor TSDs. In Section 3.4

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

6 · Gopalan Sivathanu et al.

we present the software-level disk prototyping environment that we built to evaluate the
idea of TSDs and all our case-studies. We describe our prototype implementation in Sec-
tion 3.5. We present the evaluation of our prototype implementation of TSD in Section 3.6.

3.1 Motivation

In this section we present an extended motivation.

Pointers as a proxy for data semantics.The inter-linkage between blocks conveys rich
semantic information about the structure imposed on the data by higher layers. Most mod-
ern file systems and database systems make extensive use of pointers to organize disk
blocks. For example, in a typical file system, directory blocks logically point to inode
blocks which in turn point to indirect blocks and regular data blocks. Blocks pointed to
by the same pointer block are often semantically related (e.g., they belong to the same file
or directory). Pointers also define reachability: if an inode block is corrupt, the file sys-
tem cannot access any of the data blocks it points to. Thus, pointers convey information
about which blocks impact the availability of the file systemto various degrees. Database
systems are very similar in their usage of pointers. They have B-tree indexes that contain
on-disk pointers, and their extent maps track the set of blocks belonging to a table or index.

In addition to being passively aware of pointer relationships, a type-safe disk takes it one
step further. It actively enforces invariants on data access based on the pointer knowledge
it has. This feature of a TSD enables independent verification of file system operations;
more specifically, it can provide an additional perimeter ofsecurity and integrity in the case
of buggy file systems or a compromised OS. As we show in Section4, a type-safe disk can
limit the damage caused to stored data, even by an attacker with root privileges. We believe
this active nature of control and enforcement possible withthe pointer abstraction makes it
powerful compared to other more passive information-basedinterfaces.

Pointers thus present a simple but general way of capturing application semantics. By
aligning with the core abstraction used by higher-level application designs, a TSD has the
potential to enable on-disk functionality that exploits data semantics. In the next subsec-
tion, we list a few examples of new functionality (some proposed in previous work in the
context of alternative approaches) that TSDs enable.

Applications.There are several possible uses of TSDs.

Selective Data Replication.Since TSDs are capable of differentiating data and point-
ers, they can identify metadata blocks as those blocks that contain outgoing pointers and
replicate them to a higher degree, or distribute them evenlyacross all the disks. This could
provide graceful degradation of availability as provided by D-GRAID [Sivathanu et al.
2004].

Data colocation.Using the knowledge of pointers, a TSD can co-locate blocks along
with their reference blocks (blocks that point to them). In general, blocks will be accessed
just after their pointer blocks are accessed, and hence there would be better locality during
access.

Intelligent Prefetching.TSDs can perform intelligent prefetching of data because ofthe
pointer information. When a pointer block is accessed, a TSDcan prefetch the data blocks
pointed to by it, and store it in the on-disk buffers for improved read performance.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 7

Disk-level security.TSDs can provide new security properties using the pointer knowl-
edge by enforcingimplicit capabilities. We discuss this in detail in Section 4.

Secure deletion.TSDs can perform automatic secure deletion of deleted blocks by track-
ing block liveness using pointer knowledge.

3.2 Type-Safety at the Disk Level

Having pointer information inside the disk system enables enforcement of interesting con-
straints on data access. For example, a TSD allows access to only those blocks that are
reachable through some pointer path. TSDs manage block allocations and enforce that
every block must be allocated in the context of an existing pointer path, thus preventing
allocated blocks from becoming unreachable. More interestingly TSDs enable disk-level
enforcement of much richer constraints for data security asdescribed in our case study in
section 4.

Enforcing such access constraints based on pointer relationships between blocks is a re-
stricted form oftype-safety, a well-known concept in the field of programming languages.
The type information that a TSD exploits, however, is narrower in scope: TSDs just differ-
entiate between normal data and pointers.

We now detail the TSD interface, its operation, and our prototype implementation. Fig-
ure 1 shows the architectural differences between normal disks and a TSD.

Management
Namespace

(a) Traditional Disk (b) Type−safe Disk

R
E
A
D

W
R
I
T
E

D
E
L
E
T
E
_
P
T
R

C
R
E
A
T
E
_
P
T
R

A
L
L
O
C
_
B
L
O
C
K
S

Management Management
Namespace Freespace

R
E
A
D

W
R
I
T
E

DISK/RAID DISK/RAID

Physical StoragePhysical Storage

Management Manager
Pointer

Firmware
Firmware

File SystemFile System

Freespace

Fig. 1. Comparison of traditional disks vs. type-safe disks

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

8 · Gopalan Sivathanu et al.

Disk API. A type-safe disk exports the following primitives, in addition to the basic
block-based API:

—SET BLOCKSIZE(Size): Sets the file system block size in bytes.
—ALLOC BLOCKS(Ref, Hint, Count): AllocatesCount number of new file system blocks

from the disk-maintained free block list, and creates pointers to the allocated blocks,
from blockRef . Allocated blocks need not be contiguous.Ref must be a valid block
number that was previously allocated.Hint is the block number closest to which the
new blocks should be allocated.Hint can be NULL, which means the disk can choose
the new block totally at its own discretion. Returns an arrayof addresses of the newly
allocated blocks, or NULL if there are not enough free blockson the device.

—ALLOC CONTIG BLOCKS(Ref, Hint, Count): Follows the same semantics asALLOC BLOCKS,
except that it allocatesCount number of contiguous blocks if available.

—CREATE PTR(Src, Dest): Creates a pointer from blockSrc to blockDest. Both Src

andDest must be previously allocated. Returns success or failure.
—DELETE PTR(Src, Dest): Deletes a pointer from blockSrc that points to blockDest.

Semantics similar toCREATE PTR.
—GET FREE: Returns the number of free blocks left.

Managing Block Pointers.A TSD needs to maintain internal data-structures to keep
track of all pointers between blocks. It maintains a pointertracking table calledPTABLE

that stores the set of all pointers. ThePTABLE is indexed by the source block number and
each table entry contains the list of destination block numbers. A newPTABLE entry is
added every time a pointer is created. Based on pointer information, TSD disk blocks are
classified into three kinds: (a)Reference blocks: blocks with both incoming and outgoing
pointers (such as inode blocks). (b)Data blocks: blocks without any outgoing pointers but
just incoming pointers. (c)Root blocks: a pre-determined set of blocks that contain just
outgoing pointers but not incoming pointers. Root blocks are never allocated or freed, and
they are statically determined by the disk. Root blocks are used for storing boot information
or the primary metadata block of file systems (e.g., the Ext2 super block).

Free-Space Management.To perform free-space management at the disk level, we track
live and free blocks. A TSD internally maintains an allocation bitmap,ALLOC-BITMAP,
containing one bit for every logical unit of data maintainedby the higher level software
(e.g., a file system block). The size of a logical unit is set bythe upper-level software
through theSET BLOCKSIZE disk primitive. When a new block need to be allocated, the
TSD can choose a free block closest to the hint block number passed by the caller. Since
the TSD can exploit the low level knowledge it has, it choosesa block number which
requires the least access time from the hint block.

TSDs use the knowledge of block liveness (a block is defined tobe dead if it has no
incoming pointers) to perform garbage collection. Unlike traditional garbage collection
systems in programming languages, garbage collection in TSD happenssynchronously
during a particularDELETE PTR call which deletes the last incoming pointer to a block.
A TSD maintains a reference count table,RTABLE, to speed up garbage collection. The
reference count of a block gets incremented every time a new incoming pointer is created
and is decremented during pointer deletions. When the reference count of a block drops
to zero during aDELETE PTR call, the block is marked free immediately. A TSD per-
forms garbage collection one block at a time as opposed to performing cascading deletes.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 9

Garbage collection of reference blocks with outgoing pointers is prevented by disallowing
deletion of the last pointer to a reference block before all outgoing pointers in it are deleted.

Consistency.As TSDs maintain separate pointer information, TSD pointers could be-
come inconsistent with the file system pointers during system crashes. Therefore, upon a
system crash, the consistency mechanism of the file system istriggered which checks file
system pointers against TSD pointers and first fixes any inconsistencies between both. It
then performs a regular scan of the file system to fix file systeminconsistencies and update
the TSD pointers appropriately. For example, if the consistency mechanism creates a new
inode pointer to fix an inconsistency, it also calls theCREATE PTR primitive to update the
TSD internal pointers. Alternatively, we can obviate the need for consistency mechanisms
by just modifying file systems to use TSD pointers instead of maintaining their own copy
in their meta-data. However, this involves wide-scale modifications to the file system.

File system integrity checkers such asfsck for TSDs have to run in a privileged mode
so that they can perform a scan of the disk without being subjected to the constraints
enforced by TSDs. This privileged mode can use a special administrative interface that
overrides TSD constraints and provides direct access to theTSD pointer management data-
structures.

Block corruption.When a block containing TSD-maintained pointer data-structures
gets corrupted the pointer information has to be recovered,as the data blocks pertaining to
the pointers could still be reachable through the file systemmeta-data. Block corruption
can be detected using well-known methods such as checksumming. Upon detection, the
TSD notifies the file system, which recreates the lost pointers from its meta-data.

3.3 File System Support

We now describe how a file system needs to be modified to use a TSD. We first describe the
general modifications required to make any file system work with a TSD. Next, we describe
our modifications to two file systems, Linux Ext2 and VFAT, to use our framework.

Since TSDs perform free-space management at the disk-level, file systems using TSDs
are freed from the complexity of allocation algorithms, andtracking free block bitmaps and
other related meta-data. However, file systems now need to call the disk API to perform
allocations, pointer management, and getting the free blocks count. The following are the
general modifications required to existing file systems to support type-safe disks:

(1) Themkfs program should set the file system block size using theSET BLOCKSIZE

primitive, and store the primary meta-data block of the file system (e.g., the Ext2 super
block) in one of the TSD root blocks. Note that the TSD root blocks are a designated
set of well-known blocks known to the file system.

(2) The free-space management sub-system should be eliminated from the file system, and
TSD API should be used for block allocations. The file system routine that estimates
free-space, should call theGET FREEdisk API, instead of consulting its own allocation
structures.

(3) Whenever file systems add new pointers to their meta-data, CREATE PTR disk prim-
itive should be called to create a TSD pointer. Similarly, the DELETE PTR primitive
has to be called when pointers are removed from the file system.

In the next two sub-sections we describe the modifications that we made to the Ext2 and
the VFAT file systems under Linux, to support type-safe disks.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

10 · Gopalan Sivathanu et al.

Ext2TSD.We modified the Linux Ext2 file system to support type-safe disks; we call
the modified file systemExt2TSD. The Ext2 file system groups together a fixed number of
sequential blocks into a block group and the file system is managed as a series of block
groups. This is done to keep related blocks together. Each block group contains a copy
of the super block, inode and block allocation data-structures, and the inode blocks. The
inode table is a contiguous array of blocks in the block groupthat contain on-disk inodes.

To modify Ext2 to support TSDs, we removed the notion of blockgroups from Ext2.
Since allocations and de-allocations are done by using the disk API, the file system need
not group blocks based on their order. However, to perform easy inode allocation in tune
with Ext2, we maintain inode groups which we callISEGMENTS. Each isegment contains
a segment descriptor that has an inode bitmap to track the number of free inodes in that
isegment. The inode allocation algorithm of Ext2TSD is sameas that of Ext2. Themkfs
user program of Ext2TSD writes the super block, and allocates the inode segment descrip-
tor blocks, and inode tables using the allocation API of the disk. It also creates pointers
from the super block to all blocks containing isegment descriptors and inode tables.

The organization of file data in Ext2TSD follows the same structure as Ext2. When
a new file data or indirect block is allocated, Ext2TSD callsALLOC BLOCKS with the
corresponding inode block or the indirect block as the reference block. While truncating
a file, Ext2TSD just deletes the pointers in the indirect block branches in the right order
such that all outgoing pointers from the parent block to its child blocks are deleted before
deleting the incoming pointer to the parent block. Thus blocks belonging to truncated or
deleted files are automatically reclaimed by the disk.

In the Ext2 file system, each directory entry contains the inode number for the cor-
responding file or directory. This is a logical pointer relationship between the directory
block and the inode block. In our implementation of Ext2TSD,we create physical pointers
between a directory block and the inode blocks corresponding to the inode numbers con-
tained in every directory entry in the directory block. Modifying the Ext2 file system to
support TSD was relatively simple. It took 8 days for us to build Ext2TSD starting from
a vanilla Ext2 file system. We removed 538 lines of code from Ext2 which are mostly the
code required for block allocation and bitmap management. We added 90 lines of new
kernel code and modified 836 lines of existing code.

3.4 A Software-Level Disk Prototyping Framework

In this section, we describe our generic disk functionalityprototyping framework, DPROTO,
that we built for the Linux kernel 2.6.15.

We developed DPROTO as a pseudo-device driver that stacks ontop of one or more
lower-level disk or software RAID drivers, in a single machine. One of the main chal-
langes in developing DPROTO is isolating the resources consumed by components that are
supposed to go inside the disk firmware if it were a real implementation. For example,
if the functionality being prototyped is a disk-level data compression technique, the part
of DPROTO that performs compression has to consume resources that are completely iso-
lated from that used by applications and file systems, which is difficult in a single machine
setup.

While developing DPROTO we aimed at isolating key resources, CPU and memory, be-
tween disk-level functionality and higher-level applications. For CPU isolation, we use a
multiprocessor setup and ensure that disk-level functionality always gets executed in a ded-
icated processor. For memory isolation, we implemented an isolated preallocated memory

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 11

File System

Generic Block Layer

Queue

DPROTO Request Layer

Service Thread

Processor 1

Processor 2

Preallocated
Memory pool

Disk Hardware

Fig. 2. DPROTO Architecture

pool and ensured that disk functionality never accesses memory beyond the preallocated
range.

Figure 2 shows the architecture of DPROTO. We implemented the pseudo-device driver
as two layers: the upper layer running in the context of the file system and the lower layer
running as a separate thread bound to an isolated CPU. Disk I/O requests generated from
the file system reach the upper layer of DPROTO, which adds therequest to a shared queue.
The lower layer services requests from the queue and eventually passes it down to physical
storage. Any disk-level functionality such as compressionwould be handled by the lower-
level service thread and hence runs in an isolated CPU. All memory allocations done by
both layers of DPROTO use the preallocated memory pool. Therefore, DPROTO requires
specifying the total memory requirement for a given functionality before hand.

To test the performance of a disk-level functionality prototyped using DPROTO, the
comparison reference can be run with one processor disabledand with the appropriate
size of memory preallocated. For example, if a compression disk system is compared to
a regular disk system for a particular workload, the regulardisk run of the workload has
to be done with one processor disabled and the preallocated memory equal to the memory
requirement of the compression disk. With this procedure, the comparison becomes fair
and closely represents the results of a real implementation.

Our implementation of DPROTO had 5,790 lines of new kernel code and 350 lines of
user-level code.

DPROTO Overheads.We evaluated the performance of DPROTO framework as a null
layer that stacks on top of a regular disk. We ran Postmark fortwo different configurations
on an Ext2 file system mounted on the null DPROTO layer, and compared it with Postmark

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

12 · Gopalan Sivathanu et al.

 0

 100

 200

 300

 400

 500

DPROTOExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

373.1 386.8

Wait
User

System

Fig. 3. Postmark results for DPROTO vs. regular disk

run on a regular disk. Figure 3 shows the overheads of DPROTO compared to a regular
disk. The overall elapsed time overhead of DPROTO was 3.6% compared to regular disks.
This is contributed mostly by increased in wait time, causedbecause of an additional level
of indirection in the DPROTO request service queue.

3.5 TSD Implementation

We implemented a prototype TSD using our DPROTO software-level disk prototyping
framework, in the Linux kernel 2.6.15. It contains 3,108 lines of kernel code. The TSD
layer receives all block requests, and redirects the commonread and write requests to the
lower level device driver. The additional primitives required for operations such as block
allocation and pointer management are implemented as driver ioctls.

We implementedPTABLE andRTABLE as in-memory hash tables which gets written out
to disk at regular intervals of time through an asynchronouscommit thread. In implement-
ing theRTABLE, we add an optimization to reduce the number of entries maintained in the
hash table. We add only those blocks whose reference count isgreater than one. A block
which is allocated and which does not have an entry in theRTABLE is deemed to have
a reference count of one and an unallocated block (as indicated by theALLOC BITMAP)
is deemed to have a reference count of zero. This significantly reduces the size of our
RTABLE, because most disk blocks have reference counts of zero or one (e.g., all data
blocks have reference counts zero or one).

Memory usage.In our prototype implementation we maintained all TSD data-structures
in memory. The space overheads associated with TSD pointer tracking and free-space
management is directly related to the number of file system blocks on disk. We found
that the TSD pointer meta-data per file system block will be close to 20 bytes (with an
average of one incoming pointer per block). Assuming a file system block size of 4KB, the
total space overheads for TSDs totals upto 0.5% of the disk size. In a real firmware-level
implementation of TSDs, the entire meta-data need not be maintained in memory. At any
given time, the working-set of TSD pointers is limited to thedirectories and files being
accessed. Hence, we believe that it would be sufficient if a fraction of the TSD meta-data
(about 10%) is cached in memory, and the rest of the meta-datacan be stored on secondary
storage.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 13

3.6 Evaluation

We evaluated the performance of our prototype TSD frameworkin the context of Ext2TSD.
We ran general-purpose workloads and also micro-benchmarks on our prototype and com-
pared them with unmodified Ext2 file system on a regular disk. This section is organized
as follows: first we talk about our test platform, configurations, and procedures. Next, we
analyse the performance of the TSD framework with the Ext2TSD file system.

Test Infrastructure.We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a
250GB, LSILogic SCSI disk. We used Fedora Core 6, running a vanilla Linux 2.6.15
kernel. To ensure a cold cache, we unmounted all involved filesystems between each test.
We ran all tests at least five times and computed 95% confidenceintervals for the mean
elapsed, system, user, and wait times using the Student-t distribution. In each case, the
half-widths of the intervals were less than 5% of the mean. Wait time is the elapsed time
less CPU time used and consists mostly of I/O, but process scheduling can also affect it.
We recorded disk statistics from/proc/diskstats for our test disk. We analysed the
following detailed disk-usage statistics while interpreting the results: the number of read
I/O requests (rio), number of write I/O requests (wio), number of sectors read (rsect),
number of sectors written (wsect), number of read requests merged (rmerge), number
of write requests merged (wmerge), total time taken for read requests (ruse), and the
total time taken for write requests (wuse).

Benchmarks and Configurations.

Postmark.We used Postmark v1.5 to generate an I/O-intensive workload. Postmark
stresses the file system by performing a series of operationssuch as directory lookups,
creations, and deletions on small files [Katcher 1997]. Postmark is typically configured
by specifying a number of initial files, and a fixed number oftransactions. Postmark then
creates the initial pool of files, performs the fixed number oftransactions, and removes any
left over files.

Kernel Compile.To simulate a relatively CPU-intensive user workload, we compiled
the Linux kernel source code. We used a vanilla Linux 2.6.15 kernel, and analyzed the
overheads of Ext2TSD, for themake oldconfig andmake operations combined.

Sprite LFS Benchmarks.To isolate the overheads of individual file system operations,
we ran the entire suite of Sprite LFS benchmarks [Rosenblum 1992]. The Sprite LFS
benchmarks contains two sets of workloads, for meta-data and data operations. The first
set deals with small files and tests, file creation, read, and file deletion. The second set
operates on large files and performs sequential and random reads and writes.

Postmark Results.We ran the Postmark benchmark on three setups: (1) regular Ext2
over a regular disk, (2) regular Ext2 on DPROTO, and (3) Ext2TSD over our implemen-
tation of TSD. We configured Postmark with two different configurations. In the first
configuration, we used 10,000 files with sizes ranging from 100KB to 200KB, and 10,000
transactions. Figure 4(a) shows the overheads of DPROTO andthe TSD infrastructure
for this configuration. As evident from the figure, Ext2 over our prototyping infrastruc-
ture DPROTO had negligible overheads compared to Ext2 over aregular disk. However
Ext2TSD ran 7% faster than regular Ext2 inspite of a 1.3 timesincrease in system time.
The increase in system time is because of the deviceioctls that Ext2TSD calls for the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

14 · Gopalan Sivathanu et al.

 0

 100

 200

 300

 400

 500

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

298.8 295.5
276.3

Wait
User

System

 0

 100

 200

 300

 400

 500

 600

 700

 800

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

468.0 469.6
495.1

Wait
User

System

Fig. 4. Postmark Results: (a) 10,000 files, sizes 100KB to 200KB, 10,000 transactions. Ext2NULL indicates the
results for regular Ext2 over a NULL pseudo-device driver. (b) 1,000 files, sizes 1MB to 3MB, 5,000 transactions.

pointer operations. From the kernel disk I/O statistics, wefound that the 10% decrease
in wait time for Ext2TSD compared to regular Ext2 is caused bymore requests getting
merged at the device driver layer. This is because, block allocation is performed by TSDs
in the case of Ext2TSD, and there was better spatial localitycompared to regular Ext2.

Figure 4(b) shows the results for a different configuration of Postmark. For this we used
1,000 files with sizes ranging from 1MB to 3MB, and performed 5,000 transactions. In this
configuration, Ext2TSD had an elapsed time overhead of 5.7% compared to regular Ext2.
The system time overhead was 1.9 times and wait time was 5% lesser than regular Ext2.
This shows that for larger files, the savings in I/O time because of better spatial locality is
lesser compared to smaller files.

 0

 100

 200

 300

 400

 500

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

300.4 296.5 305.2

Wait
User

System

Fig. 5. Kernel Compile Results. Ext2NULL indicates the results forregular Ext2 over a NULL pseudo-device
driver.

Kernel Compile Results.Results for the kernel compilation benchmark is shown in Fig-
ure 5. Ext2TSD had a small elapsed time overhead of 1.5% compared to regular Ext2.
This was caused by a 7% increase in system time and 60% increase in wait time. The sys-
tem time increase in this case is smaller compared to the Postmark results because kernel
compile is a predominantly CPU-intensive workload and hence has much lesser number of

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 15

pointer operations. The wait time increase is because the main compilation thread waits for
the DPROTO disk thread to complete pointer operations. The wait time increase is more
pronounced here because the time interval between I/O is larger than that of Postmark.

Sprite LFS Benchmark Results.We ran the entire suite of Sprite LFS benchmarks on
Ext2 over a regular disk, and Ext2TSD over our prototype TSD.

Meta-data benchmarks.To generate a small file creation workload, we created 1,000,000
files, with size 4KB each, in 1,000 sub-directories. For reads, we remounted the file system
and read all the 1,000,000 files we created. For deletes, we unlinked all files.

 0

 50

 100

 150

 200

 250

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

144.2
153.5

Elapsed
User

System

 0

 100

 200

 300

 400

 500

 600

 700

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

461.0 447.0

Elapsed
User

System

 0

 50

 100

 150

 200

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

78.3

96.7

Elapsed
User

System

Fig. 6. Sprite LFS benchmarks: (a) Create results. (b) Read results. (c) Delete results.

Figure 6(a) shows the overheads of Ext2TSD. Ext2TSD had an elapsed time overhead
of 6.4% compared to regular Ext2. This is because of a 61% increase in system time.
The system time increase is because of the pointer operations as this workload consists of
intensive meta-data write operations. The wait time mainlycaused by I/O, reduced by 22%
because the TSD allocation policy is favorable for small files.

Figure 6(b) shows the results of the read workload. Ext2TSD performed 3% better than
regular Ext2. The system time reduced by 5% because of two reasons. First, there are
no pointer operations in a read workload. Second, the isolation technique in DPROTO
offloads part of call stack of I/O operations such as lower level SCSI driver calls, to the
DPROTO disk thread.

The delete workload results shown in Figure 6(c) shows that the elapsed time overhead
of Ext2TSD is 23% compared to regular Ext2. This is caused because of a 2.1 times
increase in system time. This increase is because of a large number of pointer deletion
operations happening within a short period of time.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

16 · Gopalan Sivathanu et al.

Overall, even under extremely meta-data intensive workloads, the elapsed time over-
heads are moderate. In most common environments such meta-data intensive workloads
are unlikely.

Data benchmarks.For generating Sprite LFS data benchmark workloads, we useda
large file of size 4GB. For random workloads we performed 10,000 random 4K reads
or writes. To eliminate cache effects, we generated a duplicate free list of random page
numbers. For sequential workloads, we performed 1,000,000sequential 4K reads on the
file.

 0

 20

 40

 60

 80

 100

 120

 140

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

101.6 102.2

Wait
User

System

 0

 10

 20

 30

 40

 50

 60

 70

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

41.8
44.7

Wait
User

System

 0

 20

 40

 60

 80

 100

 120

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

80.2 78.0

Wait
User

System

 0

 20

 40

 60

 80

 100

 120

 140

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

90.5 92.4

Wait
User

System

Fig. 7. Sprite LFS Data benchmark results: (a) Random read. (b) Random write. (c) Sequential Read. (d)
Sequential Write.

Figure 7(a) shows the results for the random read workload. Ext2TSD had no visible
overheads for this. As this is a read workload, it generated no pointer operations. For
random write, as shown in Figure 7(b), Ext2TSD had an elapsedtime overhead of 6.7%.
This is mainly caused by a 6.7% increase in wait time. The waittime increase is because
the main benchmark thread had to wait for the DPROTO disk thread to service pointer
operations.

Figure 7(c) shows the results for sequential read. The difference in elapsed time between
Ext2TSD and regular Ext2 was negligible. However, the system overhead in Ext2TSD
was 2.3 times. This was offset by a 21% reduction in wait time.As this is a sequential
workload, a very large number I/O operations were executed within a short time interval.
This resulted in making CPU overheads more visible. The CPU overheads were due to lock
contention for the request queue shared by the main benchmark thread and the DPROTO
disk thread. Our implementation uses aspin lock for this, and hence it shows up as

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 17

system time. The wait time decrease is because of better spatial locality in the case of
Ext2TSD.

Figure 7(d) shows the results for sequential writes. The overheads of Ext2TSD were
similar to sequential reads, as our sequential write workload performed overwrites of ex-
isting file data, resulting no additional pointer operations.

In summary, our evaluation shows that the overheads associated with our TSD disk in-
frastructure and the Ext2TSD file system is quite minimal (about 2%) for normal user
workloads. This is shown by the results of our kernel compilation benchmark. For more
I/O-intensive workloads such as Postmark and Sprite meta-data benchmarks, Ext2TSD
shows overheads as high as 23%. We used such benchmarks to show the worst case over-
heads of TSDs. However, such I/O-intensive workloads are uncommon in real scenarios.
Most of the system-time overheads were caused by pointer operations issued by the file
system. This could be reduced by aggregating the operationsand sending it to the disk
system in batches. While the allocation primitive has to be synchronous, pointer creation
and deletion can be made asynchronous.

4. CASE STUDY: ACCESS

We describe how type-safety can enable a disk to provide better security properties than ex-
isting storage systems. We designed and implemented a secure storage system called AC-
CESS (A Capability ConsciousExtendedStorageSystem) using the TSD framework; we
then built a file system on top, called Ext2ACCESS. We first motivate the need for enforc-
ing disk-level capabilities, then present a detailed design of ACCESS. Finally, we describe
our prototype implementation of ACCESS and the implementation of Ext2ACCESS, a file
system that supports ACCESS.

Protecting data confidentiality and integrity during intrusions is crucial: attackers should
not be able to read or write on-disk data even if they gain rootprivileges. One solution is to
use encryption [Blaze 1993; Wright et al. 2003]; this ensures that intruders cannot decipher
the data they steal. However, encryption does not protect the data from being overwritten
or destroyed. An alternative is to use explicit disk-levelcapabilitiesto control access to
data [Aguilera et al. 2003; Gibson et al. 1998]. By enforcingcapabilities independently, a
disk enables an additional perimeter of security even if theOS is compromised. Others ex-
plored using disk-level versioning that never overwrites blocks, thus enabling the recovery
of pre-attack data [Strunk et al. 2000].

ACCESS is a type-safe disk that uses pointer information to enforceimplicit path-based
capabilities, obviating the need to maintain explicit capabilities for all blocks, yet providing
similar guarantees.

ACCESS has five design goals. (1) Provide an infrastructure to limit the scope of confi-
dentiality breaches on data stored on local disks even when the attacker has root privileges
or the OS and file systems are compromised. (2) The infrastructure should also enable pro-
tection of stored data against damage even in the event of a network intruder gaining access
to the raw disk interface. (3) Support efficient and easy revocation of authentication keys,
which should not require costly re-encryptions upon revocation. (4) Enable applications
to use the infrastructure to build strong and easy-to-use security features. (5) Support data
recovery through administrative interfaces even when authentication tokens are lost.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

18 · Gopalan Sivathanu et al.

4.1 Design

The primitive unit of storage in today’s commodity disks is afixed-size disk block. Au-
thenticating every block access using a capability is too costly in terms of performance and
usability. Therefore, there needs to be some criteria by which blocks are grouped and au-
thenticated together. Since TSDs can differentiate between normal data and pointers, they
can perform logical grouping of blocks based on the reference blocks pointing to them.
For example, in Ext2 all data blocks pointed to by the same indirect block belong to the
same file.

ACCESS provides the following guarantee: a blockx cannot be accessed unless a valid
reference blocky that points to this blockx is accessed. This guarantee implies that pro-
tecting access to data simply translates to protecting access to the reference blocks. Such
grouping is also consistent with the fact that users often arrange files of related importance
into individual folders. Therefore, in ACCESS, a single capability would be sufficient to
protect a logical working set of user files. Reducing the number of capabilities required is
not only more efficient, but also more convenient for users.

In ACCESS, blocks can have two capability strings: aread and awrite capability
(we call theseexplicit capabilities). Blocks with associated explicit capabilities, which we
call protectedblocks, can be read or written only by providing the appropriate capability.
By performing an operation on a blockRef using a valid capability, the user gets an
implicit capability to perform the same operation on all blocks pointed to byRef , which
are not directly protected (capability inheritance). If a particular reference blocki points
to another blockj with associated explicit capabilities, then the implicit capability of i is
not sufficient to accessj; the explicit capability ofj is needed to perform operations on it.

As all data and reference blocks are accessed using valid pointers stored on disk, root
blocks are used to bootstrap the operations. In ACCESS, there are three kinds of access
modes: (1) All protected blocks are accessed by providing the appropriate capability for
the operation. (2) Blocks which are not protected can inherit their capability from an
authenticated parent block. (3) Root blocks can be accessedwithout any reference block
by providing the appropriate capability, if they are protected.

ACCESS Meta-Data.ACCESS maintains a table namedKTABLE indexed by the block
number, to store the blocks’read andwrite capabilities. During every block access it
checks if the block has aKTABLE entry. If there is aKTABLE entry, the capability provided
by the user is authenticated against the stored capability before performing the operation.
ACCESS tracks the list of all reference blocks that are accessed successfully in a given
period of time, and uses it to authenticate accesses to the blocks that do not have associated
capabilities.

ACCESS also maintains a temporal access table calledLTABLE which is indexed by
the reference block number. TheLTABLE has entries for all reference blocks whose asso-
ciated implicit capabilities have not timed out. The timed out entries in theLTABLE are
periodically purged.

Preventing Replay Attacks.In ACCESS, data needs to be protected even in situations
where the OS is compromised. Passing clear-text capabilities through the OS interface
could lead to replay attacks by a silent intruder who eavesdrops capabilities. To protect
against this, ACCESS associates a sequence number with capability tokens. To read a
protected block, the user has to provide a HMAC checksum of the capability (Cu) con-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 19

catenated with a sequence number (Su) (Hu = HMAC(Cu + Su, Cu)). This can be
generated using an external key card or a hand-held device that shares sequence numbers
with the ACCESS disk system. Each user has one of these external devices, and ACCESS
tracks sequence numbers for each user’s external device. Upon receivingHu for a block,
ACCESS retrieves the capability token for that block from the KTABLE and computesHA

= HMAC(CA + SA, CA), whereCA andSA are the capability and sequence number for
the block, and are maintained by ACCESS. IfHu andHA do not match, ACCESS denies
access. Skews in sequence numbers are handled by allowing a window of valid sequence
numbers at any given time.

ACCESS Operation.During every reference block access, an optional timeout interval
(Interval) can be provided, during which the implicit capabilities associated with that
reference block will be active. Whenever a reference blockRef is accessed successfully,
an LTABLE entry is added for it. This entry stays untilInterval expires. It is during this
period of time, that we call thetemporal window, all child blocks ofRef which are not
protected inherit the implicit capability of accessingRef . Once the timeout interval ex-
pires, all further accesses to the child blocks are denied. This condition should be captured
by the upper level software, which should prompt the user forthe capability token, and
then call the disk primitive to renew the timeout interval for Ref . The value ofInterval

can be set based on the security and convenience requirements. Long-running applications
that are not interactive in nature should choose larger timeout intervals.

At any instant of time when the OS is compromised, the subset of blocks whose temporal
window is active will be vulnerable to attack. This subset would be a small fraction of the
entire disk data. The amount of data vulnerable during OS compromises can be reduced by
choosing short timeout intervals. One can also force the timeout of the temporal window
using theFORCE TIMEOUT disk primitive described below.

To read a data block in ACCESS, the base pointer should be readfirst from one of the
root blocks, by presenting the appropriate capability. If the access of the root block is
successful, ACCESS will add an entry for the root block in theLTABLE . Once this is
done, all blocks pointed to by the root block that do not have associated capabilities can be
accessed until theLTABLE entry times out. In the context of a file system, the initial root
block read would be its super block, and this occurs duringmount. The temporal locality
of the initial super block access is used as an implicit capability for accessing subsequent
blocks. Whenever an implicit capability for a block needs tobe verified, the disk checks
if the reference block passed by the upper level software hasan LTABLE entry for it. If
an entry does not exist, ACCESS denies access to the block. Ifthe reference block has
an LTABLE entry, ACCESS looks up thePTABLE to find if the reference block indeed has
a pointer to the block whose implicit capability needs to be verified. The reference block
passed by the upper level software is only used for optimizing performance during the
temporal lookup.

For blocks with associated capabilities, the appropriate capability string must be pro-
vided. Each reference block can have its own read and write capabilities depending on the
owner of that reference block. For example, an indirect block of a particular user’s file will
have that user’s capabilities, and cannot be read by anyone other than that person.

ACCESS API.To design the ACCESS API, we extended the TSD API (Section 3.2)
with capabilities, and added new primitives for managing capabilities and timeouts. Note

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

20 · Gopalan Sivathanu et al.

that some of the primitives described below let the file system specify the reference block
through which the implicit capability chain is established. However, as we describe later,
this is only used as a hint by the disk system for performance reasons; ACCESS maintains
its own structures that validate whether the specified reference block was indeed accessed,
and it has a pointer to the actual block being accessed. In this section when we refer to read
or writecapabilities, we mean the HMAC of the corresponding capabilities and a sequence
number.

(1) SET CAPLEN(Length): Sets the length of capability tokens. This setting is global.

(2) ALLOC BLOCKS(Ref, RefrorCw , Count): Operates similar to the TSDALLOC BLOCKS

primitive with the following two changes. (1) IfRef is protected the call takes the
write capability ofRef , Cw; (2) otherwise, the call takes the reference blockRefr of
Ref , to verify that the caller has write access toRef .

(3) ALLOC CONTIG BLOCKS(Ref, RefrorCw , Count): Same as theALLOC BLOCKS

primitive, but allocates contiguous blocks.

(4) READ(Bno, ReforCrw, T imeout): Reads the block represented byBno. Ref is
the reference block that has a pointer toBno. Crw is either the read or the write
capability of blockBno. The second argument of this primitive must beRef if Bno

is not protected for read, and must beCrw if Bno is protected.T imeout is the timeout
interval.

(5) WRITE(Bno, ReforCw, timeout): Writes the block represented byBno. Cw is the
write capability ofBno. Other semantics are similar toREAD.

(6) CREATE PTR(Src, Dest, RefsorCsw , CdworRefdw): Creates a pointer from block
Src to blockDest. If Src orDest are protected, their capabilities have to be provided.
For blocks which are not protected, the caller must provide valid reference blocks
which point toSrc andDest. Note that although the pointer is created only from the
source block, we need the write capability for the destination block as well; without
this requirement, one can create a pointer to any arbitrary block and gain implicit write
capabilities on that block.

(7) DELETE PTR(Src, Dest, RefsorCsw): Deletes a pointer from blockSrc to block
Dest. Write credentials forSrc has to be provided.

(8) KEY CONTROL(Bno, Cow , Cnr, Cnw, Ref): This sets, unsets, or changes the read
and write capabilities associated with the blockBno. Cow is the old write capability
of Bno. Cnr andCnw are the new read and write capabilities respectively. A reference
block Ref that has a pointer toBno needs to be passed only while setting the write
key for a block that did not have a write capability before. For all other operations,
like unsetting keys or changing keys,Ref need not be specified becauseCow can be
used for authentication.

(9) RENEW CAPABILITY (Ref, Crw, Interval): Renews the capability for a given refer-
ence block.Crw is the read or write key associated withRef . Interval is the timeout
interval for the renewal.

(10) FORCE TIMEOUT(Ref): Times out the implicit capabilities associated with refer-
ence blockRef .

(11) SET BLOCKSIZE andGET FREE TSD primitives (Section 3.2) can be called through
a secure administrative interface.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 21

4.2 ACCESS Prototype

We extended our TSD prototype to implement ACCESS. We implemented additional hash
tables for storing theKTABLE andLTABLE required for tracking capabilities and tempo-
ral access locality respectively. All in-memory hash tables were periodically committed
to disk through an asynchronous commit thread. The allocation and pointer management
ioctls in TSD were modified to take capabilities or reference blocks as additional ar-
guments. We implemented theKEY CONTROL primitive as a newioctl in our pseudo-
device driver.

To authenticate theread andwrite operations, we implemented a newioctl, KEY INPUT.
We did this to simplify our implementation and not modify thegeneric block driver. The
KEY INPUT ioctl takes the block number and the capabilities (or reference blocks) as
arguments. The upper level software should call thisioctl before every read or write
operation to authenticate the access. Internally, the diskvalidates the credentials provided
during theioctl and stores the success or failure state of the authentication. When a
read or write request is received, ACCESS checks the state ofthe previousKEY INPUT for
the particular block to allow or disallow access. Once access is allowed for an operation,
the success state is reset. When a validKEY INPUT is not followed by a subsequent read
or write for the block (e.g., due to software bugs), we time out the success state after a
certain time interval. This method of using anioctl for sending the credentials greatly
simplified our prototype implementation, as we did not have to modify the generic block
driver interfaces to send additional arguments during the read and write operations.

4.3 The Ext2ACCESS File System

We modified the Ext2TSD file system described in Section 3.3 tosupport ACCESS; we
call the new file systemExt2ACCESS. To demonstrate a usage model of ACCESS disks,
we protected only the inode blocks of Ext2ACCESS with read and write capabilities. All
other data blocks and indirect blocks had implicit capabilities inherited from their inode
blocks. This way users can have a single read or write capability for accessing a whole file.
An alternative approach may be to protect only directory inode blocks. ACCESS provides
an infrastructure for implementing security at different levels, which upper level software
can use as needed.

4.4 Evaluation

We evaluated the performance of ACCESS using our Ext2ACCESSfile system. We com-
pared Ext2ACCESS with a regular Ext2 file system mounted on a regular disk. The hard-
ware setup we used was same as that for evaluating the TSD infrastructure, described in
Section 3.6. We ran two different workloads: Postmark, kernel compilation as described
below.

Postmark Results.Figure 8 shows the results for Postmark. For this benchmark,we
configured Postmark with 10,000 files of sizes ranging from 100KB to 200KB, and 10,000
transactions. Ext2ACCESS performed 19% better than regular Ext2, mainly because of
a 24% decrease in I/O time. The difference in I/O time in this case is more than that of
Ext2TSD vs. regular Ext2 discussed in Section 3.6 because ACCESS pre-allocates more
memory than regular TSD for its data-structures. This results in reduced cache size making
the impact of spatial locality more pronounced. The system time for Ext2ACCESS was
3 times more than that of regular Ext2 mainly because of pointer and key management

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

22 · Gopalan Sivathanu et al.

 0

 100

 200

 300

 400

 500

 600

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

395.2

319.7

Wait
User

System

Fig. 8. Postmark Results for ACCESS

ioctls issued by Ext2ACCESS.

 0

 100

 200

 300

 400

 500

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

295.6
311.9

Wait
User

System

Fig. 9. Kernel Compile Results for ACCESS

Kernel Compile Results.Figure 9 shows the kernel compilation results for Ext2ACCESS.
As evident from the figure, the overall elapsed time overheadof Ext2ACCESS was 5%
compared to regular Ext2. This is caused by a 29% increase in system time and 2.2 times
increase in wait time. The wait time increase in this case is because the compilation thread
waits for the disk thread to service the key management and pointer operations. The wait
time is more pronounced in this benchmark compared to Postmark, because kernel compi-
lation has a small I/O component by virtue of its CPU-intensive nature.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 23

5. CASE STUDY: DISK-LEVEL DATA CONSISTENCY

A key challenge in persistent data storage on disk is ensuring theconsistencyof data in
the face of crashes. In many cases, on-disk data is unusable unless it conforms to certain
software-specific invariants that define its consistency. For example, an on-disk B-Tree
with dangling pointers in some of its nodes cannot be used to locate data items. Simi-
larly, in a file system, a directory pointing to invalid or unallocated inodes constitutes a
consistency violation.

Given the importance of consistency, most file systems and other software that manage
on-disk storage incorporate mechanisms to ensure on-disk consistency. While some tech-
niques involve optimistically updating on-disk state and thenfixingconsistency violations
based on a disk scan (e.g.,fsck), more modern techniques such as journalling [Gifford
et al. 1988] or Soft updates [Ganger et al. 2000] involve constraining updates in such a way
that consistency is enforced. These mechanisms are quite complex; for example, modern
file systems owe a significant portion of their complexity to satisfying this requirement.

This traditional approach to managing consistency entirely at the file system or software
is fraught with two key weaknesses. First, the disk system iscompletely oblivious to the
consistency of the data it stores, which constrains the range of functionality it can provide.
For example, today’s block-based disk systems cannot perform consistent snapshotting of
data. Snapshotting is a popular and useful feature in the storage industry, but consistent
snapshotting has so far been restricted only to storage systems exporting a richer NFS-
like interface [Hitz et al. 1994]. Similarly, modern storage systems perform backup and
asynchronous remote mirroring [Ji et al. 2003]; consistency-awareness at the storage level
can increase the utility of these techniques.

A second problem with the current approach to consistency management is that every
file system and every software layer that manages on-disk data is forced to duplicate the
mechanisms needed to enforce consistency. This raises the bar for implementing any disk-
resident data structures. Although applications can use generic transactional libraries, it
often requires restructuring the application to be aware oftransactions and tracking trans-
action context across concurrent, asynchronous operations. For example, although the jour-
nalling block device (JBD) layer in Ext3 provides a transactional interface, the Ext3 code-
base had to go through a substantial amount of restructuringto actually use JBD [Tweedie
1998].

To address these problems, we presentACE-Disk, anAutomaticConsistencyEnforcing
Disk, a disk system that preserves the semantic consistencyof stored data. In our approach,
the disk system takes responsibility for consistency management, and thus is empowered to
provide consistency-aware functionality such as snapshotting. Applications simply inform
the disk about the relationship between various blocks thatthe application already knows
about. Specifically, we advocate using aType-Safe Disk(TSD) [Sivathanu et al. 2006], a
disk system that is aware of the pointer relationship between blocks, to get consistency,
with minimal modifications at the software-level.

Our disk-level consistency mechanism enforces the following constraint: the on-disk
version of data should always be consistent. To accomplish this, we need to discover
semantically consistent groups of blocks and commit them atomically to the disk when
they are written by higher level software such as the file system. All inconsistent block
updates should be buffered inside the disk until they becomeconsistent. For example,
when a new file is created, the corresponding directory blockand the inode block have

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

24 · Gopalan Sivathanu et al.

to be updated. When just one of the writes arrives at the disk it indicates an inconsistent
update. In that case, we need to buffer the update until the second block write also arrives.
When both the directory block and inode block writes have arrived at the disk, we need to
ensure (at the disk level) that both these blocks are committed atomically to stable storage.

In this section, we describe the main aspects of our disk-level consistency mechanism.
First, we discuss some related work. Second, we describe howupdate dependencies be-
tween blocks can be inferred from pointers. Third, we present our enhanced pointer in-
terface that make dependency inference robust. Fourth, we describe the consistency en-
forcement process a key issue in disk-level consistency enforcement. We finally detail our
prototype implementation of the system, and discuss some limitations of pointer-driven
consistency.

5.1 Inferring Dependencies from Pointers

Determining semantic relationships between blocks at the disk level requires additional
information exchange between the software layer and the disk. Today’s block-based disks
treat all stored information as opaque data and they do not have knowledge of data seman-
tics. For example, today’s disks cannot differentiate between a data and meta-data block in
a file system. We leverage the idea of Type-Safe Disks (TSDs) [Sivathanu et al. 2006], to
obtain pointer-relationships between blocks as maintained by the higher level software.

Pointers at the disk level not only convey structural information about data items stored
on disk, but also they enable the disk to infer dynamic relationships between blocks that
get updated. For example, when a new blocka is allocated and a pointer is created to it
from another blockb, botha andb depend on each other. If the system crashes when just
one of the blocks is updated, the disk is left in an inconsistent state.

The existing TSD interface consists of primitives for allocation and pointer operations as
discussed in Section 3.2. We discuss how each TSD primitive can be used to infer update
dependencies.

The allocation primitive internally creates a pointer to the newly allocated block, in
the reference block passed. This operation relates two blocks: the newly allocated block
and the reference block. Updating one of the blocks alone clearly leaves the system in an
inconsistent state; hence these two blocks constitute a dependency constraint and they have
to be committed atomically to stable storage.

The pointer creation primitive creates a pointer from any two arbitrary allocated blocks.
In this case, the source blockmustbe written subsequent to the pointer creation operation
to write the new pointer value in it. However, the destination block need not necessarily be
written, as the it is a previously allocated block. For example, while creating a new file in
the Ext2 file system, a pointer gets created from the directory block to an already allocated
inode block that contains the inode of the new file. In this case, both these blocks constitute
a dependency. This is because the directory block has to be updated with the new pointer
to the inode block, and the inode block has to be updated with valid information about
the newly created file. Failure to commit the latter will result in a directory entry pointing
to an invalid inode. As a counter example, if we consider a common index-based storage
structure, a set of index blocks point to data block. In this case, duplicating an index block
for reliability reasons would result in creation of new pointers from the duplicated index
block to the existing data blocks. Here only the index block needs to be written and not the
data blocks. Therefore, the pointer creation primitive provided by TSD does not convey
enough information to decide whether or not the source and destination blocks constitute

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 25

a dependency.
A pointer deletion operation deletes an existing pointer from blocka to block b. This

operation has a special case: if the deleted pointer is the last incoming pointer to blockb,
we garbage collectb and it can be re-allocated during future allocation requests. In both
cases, it is clear that blocka has to be written subsequent to this operation for it to reflect
the pointer deletion. The destination blockb in the case of garbage collection need not be
written. However, it does constitute a dependency:b must not be re-allocated untila is
written. For example, when the last pointer from an inode block to a data block is deleted
during atruncate operation, re-allocating the data block to another inode before the
old inode is written could result in a state where the old inode points to the contents of a
different file. In the normal case of a pointer deletion wheregarbage collection does not
occur, we cannot infer whether the source and destination constitute a dependency for the
same reason as explained in the case of pointer creation.

5.2 An Enhanced Pointer Interface

As described in the previous section, the pointer API exported by a TSD do not always
convey enough information to make correct inferences in a generic manner. In this work,
we fine-tune the TSD API to make it more complete in terms of conveying pointer infor-
mation.

We introduce the notion of asub-blockin a TSD. We use sub-blocks to formalizeallo-
catableunits inside a block, as maintained by the higher-level software. For example, in
Ext2 each inode block can contain several inodes, each of them allocated and freed at the
software level. Although formalizing these units in a precise manner requires knowledge
about the unit size and offsets inside a block, we just need a rudimentary knowledge of
sub-blocks to infer dependencies. For example, to decide whether or not a create or delete
pointer operation constitutes a dependency we just need to know if that pointer points to
a sub-block. This intuition is based on the fact that, to preserve pointer consistency we
need to guarantee two properties: first, no pointer points tounwritten (junk) units, and
second, no allocated units become unreachable. In our inference mechanism we make use
of additional disk primitives for creating and deleting pointers to sub-blocks. Note that the
disk need not track information about sub-blocks, but it just needs to dynamically know
sub-block pointer operations by way of explicit primitives. Higher-level software call the
respective sub-block primitives while creating and deleting pointers to newly allocated or
freed sub-blocks. For example, Ext2 has to call a sub-block pointer creation primitive to
create a pointer between a directory block and inode block while creating a file. From this
we can infer that the directory and inode blocks form a dependency constraint.

We present an extended pointer interface to TSDs that captures most cases of depen-
dency inferences. In the primitives described below, the parametert refers to a logical
timestamp value for the operation. This is to let the disk know about the temporal ordering
of operations as they are issued by the higher level software. The purpose and usage of this
parameter is discussed in detail later in this section.

(1) READ(Blockno): Block read primitive.

(2) WRITE(Blockno, t): Block write primitive.

(3) ALLOC BLOCK(Ref , t): Allocates a new blocka from the disk-maintained free-block
list and creates a pointer to it inRef . BothRef anda constitute a write dependency
constraint.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

26 · Gopalan Sivathanu et al.

(4) CREATE PTR(Src, Dest, t): Creates a new pointer fromSrc to Dest. This primitive
does not create any dependency.

(5) DELETE PTR(Src, Dest, t): Deletes an existing pointer fromSrc to Dest. If this
is the last incoming pointer toDest, Dest is garbage collected (marked free) and it
creates a new dependency between the write ofSrc and the re-allocation ofDest.

(6) MOVE PTR(Src, Dest, Newsrc, t): Moves the source block of an existing pointer
from Src to Newsrc. This operation results in creation of a new dependency for
the writes ofSrc andNewsrc. This primitive is useful for handle cases such as a
rename operation in a file system, or a B-tree node split where pointers need to be
moved from one block to another.

(7) ALLOC SUB BLOCK(Ref , Target, t): Creates a new pointer between blockRef and
block Target. Target is a block that contains multiple allocatable software-level
structures. This primitive is called when a software-levelstructure inTarget is allo-
cated. This disk does not track these structures. This creates a new write dependency
betweenRef andTarget. The disk differentiates this primitive from theCREATE PTR

primitive only to infer dependencies.

(8) FREE SUB BLOCK PTR(Ref , Target, t): Deletes an existing pointer betweenRef

andTarget. Target is a block that contains multiple allocatable software-level struc-
tures. This primitive is called when a software-level structure inTarget is freed. If
this operation deletes the last incoming pointer to blockTarget, Target is garbage
collected and a new dependency is created betweenRef update and re-allocation of
Target. If the pointer deleted is not the last incoming pointer toTarget, a new de-
pendency is created for the update ofRef andTarget.

5.3 Consistency Enforcement

In this Section we detail how an ACE-disk guarantees consistent data commits to stable
storage. Figure 10 shows the overall architecture of an ACE-disk.

An ACE-disk consists of five main components: (1)dependency buffer, a buffer layer
made of high-speed memory where inconsistent block updatesare buffered until the cor-
responding dependency becomes consistent; (2)buffer swap space, a swap area in the disk
which is used to swap out inconsistent buffer data when the cache is full; (3)journal space,
an area on disk which is used to ensure atomic update of resolved dependencies; (4)group
manager, which tracks the pointer operations and constructs dependencies;group index
a data-structure used by the group manager to store disjointdependencies and the blocks
affected by each of those dependencies. The buffer layer acts both as a read and write
cache, and gets invalidated during power down of the disk. All inconsistent block updates
are buffered in the cache to ensure that the state of data stored in place is always consistent.
The swap space is used when the number of inconsistent blocksexceed the size of the high
speed buffer memory.

When an ACE-disk infers a dependency during a pointer operation, it associates agroup
object with that dependency. This group object contains information about the set of blocks
that are affected by that dependency. We use the termsgroup objectanddependency group
interchangeably in the rest of the report to refer to a list ofblocks that needs to be commit-
ted atomically to stable storage to ensure consistency. Agroup entryrefers to a member of
a group which contains a block number and the time at which it was added. When a block
is writtenafter it is added to a dependency group, the corresponding group entry for that

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 27

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���

���
���
���
���
���
���
���

��
��
��
��

W
R

IT
E

R
E

A
D

D
E

LE
T

E
_P

T
R

C
R

E
A

T
E

_P
T

R

A
LL

O
C

_B
LO

C
K

M
O

V
E

_P
T

R

A
LL

O
C

_S
U

B
_B

LO
C

K

F
R

E
E

_S
U

B
_B

LO
C

K

S
of

tw
ar

e
D

is
k

Index
Journal Swap GroupIn Place Data

File System / Software Layer

CacheDependency Manager

Fig. 10. Architecture of an ACE-disk

block is marked “ready.” When all entries in a dependency group are ready, the group is
said to beresolved, and all blocks associated with it can be committed atomically to the
disk.

In a simple case, when the first pointer operation happens in adisk causing a depen-
dency creation between two blocksa andb, a new dependency groupG is created and both
the blocks are added to it. When write requests for botha andb have arrived at the disk,
the dependency groupG is said to beresolvedand all the blocks inG can be committed
atomically to the disk. However, if another pointer operation happens beforeG is resolved
introducing a dependency between blocksb andc, the operationextendsthe existing de-
pendency group. This is because, one of the blocks in the new dependency (blockb) is
already part of an existing dependency. Thus, in this scenario block c should be added to
groupG as well. Therefore, whenever there is a new dependency introduced between any
two blocksx andy by way of a pointer operation, one of the following three actions are
taken:

(1) If bothx andy are not part of any existing dependencies, a new dependency group is
created andx andy are added to it.

(2) If only one ofx or y is associated with an existing dependency groupG, then both
blocks are associated withG and are marked “not ready.”

(3) If both x andy are already associated with the same groupG, then no group action
needs to be taken. However, the entries in the group pertaining to blocksx andy have
to be marked “not ready” as a new constraint is added between the two blocks.

(4) If both x andy are associated with different groupsG1 andG2, thenG1 andG2 are

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

28 · Gopalan Sivathanu et al.

merged, and the entries forx andy are marked “not ready”

As pointer operations construct dependencies between blocks, higher-level software
must ensure that the pointer management primitives are issued to the diskbeforethe source
and destination blocks are updated. This constraint is implicitly enforced for the block al-
location primitive as a block cannot be updated before it is allocated. However for the
pointer creation and deletion primitives, higher-level software has to ensure that it follows
this ordering rule. For example, when acreate happens in Ext2, the sub-block pointer
creation primitive has to be issued for the directory and theinode blocks before the contents
of the blocks are updated.

Temporal Ordering of Operations.ACE-disk’s consistency mechanism relies on the
temporal relationships between operations seen at the disklevel. For example, an entry
in a dependency group is marked ready when a write arrives after the dependency creation.
However, in today’s modern operating systems and disks, operations can be re-ordered at
any level. For example, file systems today predominantly perform asynchronous I/O where
block writes are buffered at the software level and are flushed to the disk in regular inter-
vals of time. Moreover, modern disk device drivers re-orderor merge disk requests before
issuing to the disk for performance reasons. These factors make the temporal ordering of
operations that the disk sees completely different from theorder that the higher-level soft-
ware issued. Therefore, unless additional ordering information is communicated from the
software-level, the disk cannot obtain the precise temporal order of operations.

ACE-disk solves this problem by introducing two constraints on the operations: (a) all
pointer primitives take place synchronously and (b) all operations have associated logical
timestamps. These two constraints enable the disk to obtainprecise temporal ordering of
the operations. Although synchronous pointer operations may affect performance, it is
mitigated by the fact that these operations do not result in block I/O inside the disk, in the
critical path. Timestamps in this case are logical. For example they can be a monotonically
increasing sequence number. Whenever higher-level software issues a pointer operation,
it has to pass a sequence number along with it. Similarly whenthe in-memory copy of a
disk block is updated by the software, a sequence number has to be associated with the
buffer for that block. Whenever a pointer operation introduces a dependency, its sequence
number is associated with the corresponding group entries.The entries are marked ready
only when a subsequent write arrives with sequence number greater than the stored one.
Note that introducing sequence numbers with block I/O operations is simple—we have
modified the Linux kernel to support sequence numbers along with buffers whenever they
are dirtied. This modification was trivial and required changing just 50 lines of code.

When a dependency group is resolved all blocks in the group has to be committed in
place atomically. A power failure while committing a dependency group should not leave
the in place data in an inconsistent state. ACE-disk uses a logging mechanism to ensure
this. All blocks in a resolved groups are first written to a logand synced with a commit
identifier before the in place commit happens. The log is discarded when the in place
commit is complete. After a crash, an ACE-disk checks the logfor valid group data and
replays them. The log contains separate journals for each dependency group and hence
each of them are replayed after the crash to bring the system to a consistent state.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 29

5.4 Bounding Commit Interval

The amount of data lost during a crash depends on the intervalbetween the instant a block
write arrives at the disk and the time when it is actually committed to stable storage. In
an ACE-disk, inconsistent block data gets buffered until the entire dependency group is re-
solved. ACE-disk’s mechanism of managing dependency groups allow extending a group
whenever pointer operations happen from or to a member of thegroup. Thus, during
normal operation, a dependency group could potentially getextended repeatedly during
a continuous workload that performs pointer operations. For example, in Ext2, for a re-
cursive directory creation workload, the entire working set would form part of the same
dependency group as all blocks branch out from the inode of the root directory. More-
over, as pointer operations always precede the block write operations, a dependency group
could never get resolved for a continuous workload. This is because before the time when
all blocks in a group are marked ready, the group could be extended several times with new
blocks or new dependencies for the existing blocks. This results in two problems. First,
large amounts of data may get lost in the event of a crash, although the on-disk state is con-
sistent. Second, excessively long dependency groups require buffering of a large number
of blocks and hence impose onerous space requirements.

Bounding the interval between dependency commits is challenging particularly at the
disk level because the disk has no knowledge about intermediate versions of block data
that are known to the higher-level software. This is becausemost higher-level software
buffer writes and hence the versions of block data that reachthe disk could be a small
subset of total number of versions that the software knows about. For example, if a file
is created in Ext2, an inode block is modified. Before the inode block write is issued to
the disk, if another file is created whose inode is in the same block, the disk sees only
the version of the block updated with both inodes. Therefore, the disk cannot spawn a
new dependency group during a pointer operation for a block,when the existing group
containing a block has reached a time threshold.

Blocking pointer operations at the disk level until an existing dependency is commit-
ted could be a solution to the bounding problem, but requiresradical modifications to the
higher-level software to support it. This is because software such as file systems perform
locking of data-structures at an operation level. When a pointer operation blocks, the file
system could sleep after grabbing a lock on the data-structure which reside on a block
that needs to be committed for some dependency to resolve. This could result in a dead-
lock as the block containing the data-structure cannot be committed until the operation in
execution completes.

An ACE disk solves this problem by having new error modes for pointer creation opera-
tions. The allocation and pointer management primitives could optionally return one of the
following errors to the higher-level software:SYNC BOTH, SYNC SRC, or SYNC DEST. As
the names indicate, the disk can fail a pointer operation andchoose to request the higher
level software to write the source, destination, or both blocks associated with that opera-
tion. Upon receiving one of these errors the software shouldissue a write of the current
version of the corresponding blocks, and then retry the pointer operation. At the disk level,
whenever a dependency group is unresolved beyond a time threshold it isfrozen. When-
ever new dependencies are created for a block that is alreadypart of a frozen group and in
an “not ready” state, the disk returns one of three errors mentioned above, depending on
whether the block is the source, destination, or when both the source and destination blocks

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

30 · Gopalan Sivathanu et al.

exist in frozen groups in “not ready” state. This way of forcing the software to commit the
intermediate version of the data helps the disk to spawn new dependency groups for blocks
that are already ready in a frozen group. An ACE-disk ensuresthat at a block is never part
of more than two groups at a time, the older of which is frozen.This is done by ensuring
that a group is not frozen until all blocks in the group are notpart of any other frozen
group. This method ensures commit of dependency groups in tune with the block write
interval of the higher level software. We verified the correctness of our bounding solution
by implementing this in the Ext2 file system. Each every case,the commit interval of the
dependency groups were in tune with that of the software level write-back interval.

5.5 Implementation

We implemented a prototype ACE-disk as a pseudo-device driver in the Linux kernel 2.6.15
that stacks on top of an existing disk block driver. The pseudo device driver layer receives
all block requests, and redirects the common read and write requests to the lower level de-
vice driver after the required processing. The additional primitives required for operations
such as block allocation and pointer management are implemented as driverioctls.

To enable sequence numbers with block I/O requests, we addeda new field to the buffer
header object and therequest token object in the Linux kernel. Whenever a buffer is
marked dirty, we generate a sequence number and update it in the buffer header. When a
write is issued for a buffer, the sequence number is carried over to therequest object and
hence available to the ACE-disk pseudo-device driver. Sequence numbers are generated
by an atomic increment of a counter value. The same counter value is used during pointer
operations and modifying buffers. Our prototype ACE-disk contained 6,900 lines of kernel
code of which 3,060 lines of code were reused from the existing TSD prototype.

5.6 Limitations of Pointer-driven Consistency

While the update dependency information conveyed by pointers is quite rich and as we
show, sufficient to enforce consistency, it has some limitations when compared to the more
general notion of transactional consistency. Specifically, the dependency information con-
veyed by pointers is limited to a pair of blocks; e.g., if a pointer is created between two
blocks, the two blocks will be updated atomically. However,our mechanism cannot sup-
port atomic commits of an arbitrary group of blocks. For example, on creation of a new
directory (i.e., mkdir) in ext2, a pointer is created from the parent directory block to the
inode of the child directory, and the inode initialized. Then a new block is allocated for the
child directory and a pointer created between the child inode and the child directory’s new
data block. With a transactional system, these three blockswill be committed atomically.
But in our case, the first pointer creation and the initialized inode could be committed be-
fore the second pointer creation. As a result, a directory inode may end up with a state
where it has no blocks at all, which is an apparent violation of consistency.

However, we argue that this consistency problem falls undera class ofonline-patchable
consistency violations. For example, just by looking at theinitialized directory inode with
no pointers, it is unambiguous that a crash happened just before the new directory’s block
got allocated, so it is safe to immediately allocate a new block for the directory and assign it
to the inode. Note that in contrast, a more “real” consistency problem would be a directory
pointing to the wrong inode, perhaps a regular file inode, where it is not obvious what the
correct state should be. Pointer consistency could lead to such transient online-patchable
consistency violations the violation is readily and unambiguously identifiable and the fix

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 31

for that is obvious as well. Most importantly, the fix to such aviolation is local, in that it
does not require looking at the global state of the file system. We believe that the pointer-
derived consistency semantics is thus a useful and simpler counterpart to the more general
transactional consistency.

5.7 Evaluation

We evaluated the performance of our prototype ACE-disk using Ext2ACE. We ran both a
general purpose workload and a micro-benchmarks on our implementation and compared
it with a regular Ext2 and Ext3 file systems running on a normaldisk. We compared our
system with Ext3 because it is a journalling file system that provides similar consistency
guarantees as ACE-disk at the software level. For all benchmarks we used Ext3 in its
default journalling mode (ordered writes mode). In this mode file meta-data alone is jour-
nalled and it is written to the journal only after the corresponding data blocks are written
directly in place.

For all benchmarks we included the file system unmount time inour calculation. This
is because ACE-disk commits dependency groups asynchronously using separate kernel
threads, and a file system unmount procedure blocks until alloutstanding threads have
completed their commit operation. This is relevant even fornormal Ext2 and Ext3 as they
commit all outstanding dirty data during an unmount.

Postmark Results.We configured Postmark to create 30,000 files whose sizes ranging
from 512 bytes to 10 KB, and perform 250,000 operations in 200directories. This work-
load particularly stresses the ACE-disk as a large number ofdependencies get created and
resolved during the meta-data operations. The time taken for the Postmark benchmark for
Ext2, Ext3, and Ext2ACE are shown in Figure 11(a).

 0

 100

 200

 300

 400

 500

 600

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

197.5

533.4

275.3

Wait
User

System

 0

 10

 20

 30

 40

 50

 60

 70

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

58.3 58.7
61.1Wait

User
System

Fig. 11. (a) Postmark and (b) OpenSSH compile Results for ACE-Disk

Ext2ACE on top of ACE-disk had an elapsed time overhead of 40%compared to regular
Ext2 on a normal disk. Although the system time increase is 2.6 times relatively, this has
not contributed much to the elapsed time overhead. As mentioned earlier, this overhead is
because of dependency tracking during every block write andpointer operations. The wait
time increase (32%) is predominantly because all blocks arewritten out twice in the case
of an ACE-disk to ensure atomic commits of dependency groups. All block data is written
out to the journal first and after the journal is synced, in-place commits happen. Ext3 ran
almost twice as slow as Ext2 because of its ordered journalling mode. Ext2ACE is faster
than Ext3 in this case because ACE-disk journals both data and meta-data blocks and for a
small file workload such as Postmark, random writes get converted to sequential ones. The
in-place commit of data in ACE-disk happens in an asynchronous manner.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

32 · Gopalan Sivathanu et al.

Compile Benchmark Results.To simulate a relatively CPU-intensive user workload, we
compiled the OpenSSH source code. We used OpenSSH version 4.5, and analyzed the
overheads of Ext3 and Ext2ACE for theuntar, configure, andmake stages com-
bined. These operations in combination constitute a significant amount of CPU and I/O
operations. The results for OpenSSH compilation is shown inFigure 11(b).

The times taken by Ext2 and Ext3 for the compilation workloadare almost similar.
This is because this is a mostly CPU-intensive workload. Ext2ACE had an elapsed time
overhead of 5% compared to Ext2 and Ext3. This is because of the increase in wait time (1
sec vs. 3.4 secs). The increase in wait time is caused by the CPU context switches between
the main compilation process and the asynchronous dependency commit threads of ACE-
disk. Since this is a CPU-intensive workload, the context switch time is more pronounced
than Postmark. In a real environment, as the dependency commits are performed inside
the disk, this context switch overhead would not be seen. Thesystem time overhead is not
significant for Ext2ACE in this case because there are relatively few I/O operations that
require processing to track dependencies.

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 211.8 215.2 217.6

Wait
User

System

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 216.6 217.6 219.2

Wait
User

System

Fig. 12. (a) Create and (b) Unlink micro-Benchmark Results for ACE-Disk

Micro-Benchmarks.We ran two micro-benchmarks to obtain the overheads of thecreate
andunlink file system operations. We evaluated these two operations because both of
them exercise the ACE-disk’s dependency trackers and consistency enforcement mecha-
nism. For the create workload, we created 500 directories with 1,000 files each totaling
to 500,000 files. For the unlink workload, we removed all created files and directories.
The results of thecreate andunlink workloads are shown in Figures 12(a) and 12(b),
respectively.

For thecreate workload, Ext2ACE had an overhead 2.7% compared to Ext2. This is
mostly caused by the increase in wait time due to the additional I/O operations writing out
block data twice for ensuring atomicity in block commits. For theunlink workload the
results of Ext2ACE is similar to Ext2 and Ext3 asunlink results in smaller number of
writes than creates, because freed blocks are not written tothe disk.

Overall ACE-disks have small overheads for normal user workloads. When the work-
load is highly I/O-intensive, more information needs to be tracked by the disk to manage
dependencies. This results in more CPU time which is mitigated by the fact that the disk
uses its own isolated CPU in a real environment.

6. CONTEXT-AWARE I/O INFRASTRUCTURE

In this section, we present the concept ofContext-Aware I/O(CAIO), a simple and generic
way for applications to convey arbitrary information abouttheir I/O behavior and relation-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 33

ships, without worrying about how the information will be used by the storage stack. In
CAIO, an application-levelcontextis propagated along with an I/O operation across the
entire storage stack, in an end-to-end fashion. An application-level context is represented
by one or morecontext identifiers. For example, a database application can have a unique
identifier that it can propagate along with every I/O it generates, such that any storage layer
can easily group all I/O generated by the database application. This also enables the lower
layers of the storage stack to associate the data corresponding to the I/O with higher-level
contexts and easily track the application’s working-set.

In addition to working-set identification, application contexts also enable a new class
of functionality that uses application-I/O relationships, such as easy and flexible perfor-
mance isolation in large-scale distributed storage, and access-pattern aware caching and
prefetching within the storage hardware.

To make CAIO a generic framework, we decouple thegenerationof application-level
information from how the information isusedwithin the storage stack. Most hint-based
proposals to address the problem of information-gap in the past have tied these together.
For example, in hint-based prefetching systems, the application provides hints of its future
access, but the hints are specifically designed with prefetching in mind. The problem with
such function-specific hints is that they require coordination and agreement between the
layers involved. In a multi-vendor setup, such coordination translates into industry-wide
consensus on the interface, a standardization process thattakes years. In addition, such an
approach cannot scale in an end-to-end manner to the multi-layered storage stacks that we
have today.

Decoupling the generator and consumer of the context information leads to an interesting
challenge: when the application could conceivably use morethan one possible granularity
of grouping I/O, how can it decide which one to use while beingoblivious to how the
grouping is interpreted by the lower level? For example, a database application can group
the I/O requests it generates based on the database user, session, transaction, or query on
behalf of which the I/O is issued; but the lower layers are oblivious to the granularity of
the context. To solve this issue, contexts in CAIO arehierarchical. With hierarchical
contexts, higher layers can encode multiple granularitiesof grouping, and the lower layers
can decide which granularity is the best for the particular functionality that they provide.

Even in a hierarchical context, individual levels in the hierarchy remain completely
opaque to the storage stack. For implementing functionality that needs more informa-
tion about what these levels in the context mean, contexts can be annotatedofflineat any
specific layer. In such cases, CAIO contexts will be used onlyas naming-identifiers to
associate higher-level semantics.

We illustrate the generality and power of the context abstraction by prototyping and
evaluating two case studies. Our first case study is an automatic working set identifier,
WorkSIDE, which operates at the block-based storage hardware layer.WorkSIDE automat-
ically tracks the data working set required for an application context to run to completion.
WorkSIDE correlates contexts with the I/O and the corresponding data they access, thus
obtaining a complete view of the entire set of data items thatthe particular application con-
text requires. This working set can then be preloaded as appropriate in order to improve
performance and availability, or to enable power optimizations. The second case study is a
context-aware cache-placement algorithm within the disk that automatically tracks which
application-level contexts exhibit sequential streamingaccess pattern and avoids caching

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

34 · Gopalan Sivathanu et al.

requests with that context. We demonstrate the usefulness of both of our case-studies using
prototype implementations we built for the Linux kernel, and evaluate various workloads.

The rest of this section is organized as follows. In Section 6.1 we discuss the utility of
CAIO by presenting a few potential applications. In Section6.2 we present a taxonomy of
the various kinds of contexts in storage. We detail how we generalize the CAIO interface
in Section 6.3. In Section 6.4, we describe CAIO design and application support.

6.1 The Utility of Context-Aware I/O

In this section we describe several usage scenarios that motivate tracking context informa-
tion in the different layers of the storage stack. Many of these utilities cannot be imple-
mented effectively without explicitly propagating application-level contexts. In Sections 7
and 8, we demonstrate our implementation of the first two usage scenarios described below.

Working-set Aware Features.Identifying working sets of data for individual applica-
tions at the lower layers of the storage stack, enables interesting functionality such as
application-aware prefetching [Patterson et al. 1995], power-savings [Zhu et al. 2005; Wed-
dle et al. 2007], selective recovery of failed hardware [Magoutis et al. 2007], and improved
data availability [Sivathanu et al. 2004]. We describe our implementation of a disk-level
working-set identifier and its usefulness in detail under Section 7.

Adaptive Caching and Prefetching.The efficacy of caching and prefetching depends on
the ability to identify access patterns. Context can enablecaching and prefetching mecha-
nisms to adapt their policies based on access patterns. Section 8 describes our implemen-
tation of a context-aware disk-level caching mechanism.

Application-Aware Performance Isolation.Scheduling algorithms at different levels of
the storage stack can leverage application-level contextsin scheduling decisions. For ex-
ample, fair share disk schedulers can enforce fairness based on higher level logical tasks as
against OS processes. Application-based resource isolation has been previously explored
in the context of a single OS in Resource Containers [Banga etal. 1999]. Contexts can
enable flexible resource isolation in an end-to-end fashioneven in distributed storage.

Optimized Data Layout.File systems can use higher level contexts as hints for optimal
data placement on disk. Co-locating files and directories created in the same context could
be beneficial under certain scenarios to achieve better spatial locality during reads.

Improved Accounting.Context information associated with I/O operations can greatly
help in I/O trace analysis. Trace analysis for resource consumption can be more accurate
when it makes use of logical contexts pertaining to precise higher-level tasks. Contexts
can also provide valuable hints about the dependencies of I/O operations and the causal
relationships between them, for trace-based intrusion detection systems [King and Chen
2003].

6.2 Context Types

Context in storage is quite useful as seen from the kind of functionality it enables (described
in Section 6.1). We now definecontextas follows:A context in storage is a reference or
identification used to group, on some basis, several I/O operations or data.

We now describe the types of contexts that are relevant to storage.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 35

DB Session A Database X

Table Y

Record Z

Transaction B

Query C

(a) (b) (c)

home

abc.txt

john

/

Fig. 13.Examples of how hierarchical contexts can be constructed. (a) shows an access-bound context hierarchy.
(b) and (c) show data-bound context hierarchies.

Data-Bound vs. Access-Bound.The two primary entities in storage are (a) data, and (b)
I/O operations on data. Context in storage is mainly used forgrouping several such data
items or I/O operations. Therefore we classify context in storage broadly into two types:
data-bound and access bound.

A context is said to bedata-boundif it can be used to group several data items stored
on disk, based on some metric. This grouping is independent of the way the data is ac-
cessed. For example, a data-bound context can group all blocks belonging to the same
database table or file. Data-bound contexts can group data based on arbitrary criteria such
as logical abstractions (files, directories, database tables, etc.), owning application or user,
security domains, and so on. Data-bound contexts can be usedto communicate higher-
level data-structures to the disk, and enable functionality such as fault-isolated placement
in RAID [Sivathanu et al. 2004].

Note that the notion of data-bound contexts is similar in concept with other abstractions
such as type-aware storage (Section 3) or object-based interface [Mesnier et al. 2003].
These other abstractions can be used as an alternative to data-bound contexts.

Access-boundcontexts relate operations rather than the data pertainingto them. For
example, an access-bound context can group all block write operations resulting from a
single database query. Access-bound contexts enable new functionality that solely depend
on the characteristics of individual I/O requests. The caching and prefetching functionality
described in Section 6.1 requires access-bound contexts.

Figure 13 shows a few examples of context hierarchies. Figure 13(a) shows a possible
access-bound hierarchy for a database application. Figures 13(b) and 13(c) show data-
bound context hierarchies that communicate data abstractions.

Repeatable vs. Non-Repeatable.The lifetime of a context identifier is defined by the
application that generates it. When a single context identifier is used every time to refer to
a particular logical context, we call it arepeatablecontext. For example, when a context
is used to group files within an access-control domain, the same identifier has to be reused
every time when operations are performed on that domain. Applications have to generate
such contexts using a deterministic method and may maintainpersistent states to track
contexts.

Non-repeatablecontexts have transient identifiers. For example, if apid is used as a
context identifier to group I/O operations generated by a particular program, every time

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

36 · Gopalan Sivathanu et al.

the program runs, the identifier becomes different, although the logical context remains the
same. Non-repeatable contexts do not require any state to bemaintained at the application-
level.

6.3 Generalizing the Interface

In this section, we describe how we can cope with arbitrary context generation process
at the application-level, and achieve independence between the generation and usage of
application-contexts. We also describe how lower layers ofthe storage stack can extend
contexts or correlate across different context types.

Hierarchical Contexts.To achieve generality in the CAIO interface, the context gener-
ation process at the application-level must not make any assumptions about how the lower
layers use the context. However, at the application-level,there may be several different
ways to generate a context, each useful for different kinds of functionality at the lower
layers. A single application-wide context identifier can beused to easily group all data
required by the application, whereas more fine-grained context identifiers within an appli-
cation help communicate different streams of I/O requests generated by sub-components
within same application. For example, a single DBMS-wide context can be used to group
all I/O and data that the DBMS manages. This enables functionality such as working-set
identification for the entire DBMS. On the other hand, a per database session-level context
can be used for easy performance isolation between databaseuser sessions. We use the
termcontext granularityto refer to the different possible ways to generate contextswithin
an application.

Therefore, for generalizing the interface without hampering the kind of functionality it
enables, we evolve a context scheme where the application can encode all possible granu-
larities as a single context, passing downcontext hierarchies(for access-bound and data-
bound) rather than a single identifier. For example, a DBMS can generate access-bound
contexts in granularities such as sessions, transactions,and individual queries, and data-
bound contexts in granularities such as databases, tables,and records.

Lower layers of the storage stack can use hierarchical contexts without making assump-
tions about what each of the levels in the hierarchy mean. Forexample, a caching layer
that wants to classify some context to exclude caching (e.g., sequential contexts) can track
the statistics on sequentiality at each level of the contexthierarchy, and then choose the
highest level that exhibits homogeneity in the access pattern. Depending on the specific
behavior the layer is looking at (e.g., sequentiality, correlated access of the same pieces
of data), the definition of homogeneity changes. Hierarchical contexts enable decoupling
the application from worrying about which behavioral properties the lower layers are in-
terested in; instead the application just conveys its state, and the lower layers make their
independent decisions on the notion of homogeneity they care about, based on the layers’
own per-context statistics.

Note that for a context hierarchy chain in CAIO to be meaningful, every context in
the chain should qualify a logical subset of the access or data domain qualified by its
parent context. For example, a per-query context identifiercan be a child of the transaction
identifier in which the query is a part. However, a context identifier that qualifies the class
of all select queries in a DBMS cannot be a child of any particular transaction identifier,
asselect queries can be part of any transaction.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 37

Annotating Contexts with Semantics.Certain functionality may require more informa-
tion about what each level in the hierarchy means, at some specific layer in the storage
stack. For example, a context-based proportional-share disk scheduler needs share propor-
tions to be associated with levels in the context hierarchy.For this purposeofflinemech-
anisms can be used to annotate context identifiers with functionality specific information.
For example, applications can co-ordinate with a specific file system through offlineioctls
to associate locality hints with stored context identifiers. Note that these annotations are
not part of the CAIO infrastructure, but can be done separately between any two layers that
needs to coordinate to implement a specific functionality. In the example of a proportional-
share disk scheduler, the application and the disk scheduler need to co-ordinate offline to
annotate context levels with share proportions.

Context Transformation.With hierarchical contexts, any layer in the storage stack can
add new levels to the context chain, as long as the subset invariant is preserved. For access-
bound contexts, the subset relationship is maintained as anoperation propagates from top
to bottom. For example, aselectquery generated from a database gets transformed into
one or more file read operations at the file system, and then further transformed into several
block read operations at the device driver or the disk level.Therefore, any layer in the stack
can add new levels to communicate grouping of sub-operations at their level.

However, for data-bound contexts, subset relationship is harder to ensure across layers.
This is because the data abstractions used by higher layers in many cases are not super-
sets of the lower level abstractions. For example, an application can store several B-trees
within a single file, and hence there is no subset relationship between the abstractions used
by this application and that of the file system. Therefore generic transformation of data-
bound contexts across layers is harder to achieve; but lowerlayers can associate new data-
bound context hierarchies with I/O, if the application doesnot pass a data-bound context.
We impose a constraint that intermediate layers should not add new levels to data-bound
contexts, unless the higher-level layer did not specify a context of its own.

Correlating Across Context Types.Data-bound and access-bound contexts passed by
the application can be completely independent of each otherand need not necessarily in-
dicate association between the operation and the data it operates. This makes generation
of contexts at the application-level much less complicated. However, lower layers that use
these contexts can maintain their own history information of contexts, and correlating data-
bound and access-bound contexts. Correlating context types enables useful functionality.
For example, identifying the working set of data accessed byan access-bound context can
be useful for implementing interesting optimizations as described in our first case-study
detailed under Section 7.

6.4 CAIO Design

End-to-end association of context with I/O requires passing application-generated context
with every I/O operation throughout its lifetime. We evolvea framework through which
context can be passed from an application all the way down to the storage hardware (e.g.,
a disk). In this section, we describe the changes required tothe storage stack and user
applications, to support contexts.

We propagate context in the storage stack by means ofcontext objects. A context object
contains upto two context chains, one each for data-bound and access-bound types. These
context types are based on the discussion under Section 6.2.Context objects also carry

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

38 · Gopalan Sivathanu et al.

information about the repeatability of the context chains.Repeatability is at the granularity
of an entire chain and not the individual context identifierswithin a chain. The structure of
a context object is shown in Listing 1.

struct caio_context {
int data_bound[MAX_DATA_LEVELS];
int access_bound[MAX_ACCESS_LEVELS];
short data_levels;
short access_levels;
int flags;

};

Listing 1. Structure of a context object. The fields datalevels and accesslevels indicate the
number of levels in the data and access-bound context chains. Flags contain information
about repeatability and inheritance properties (Section 6.4) for the context.

Associating Contexts with I/O.The CAIO framework contains a user library that exports
routines to construct context objects and add new levels of hierarchy to existing context ob-
jects. User applications can generate context objects through these routines and associate
them with I/O operations. Our framework provides three different ways for user appli-
cations to associate contexts with I/O operations. They are, (a) an extended system call
interface (b) group contexts and (c) context inheritance. We detail each of these mecha-
nisms below.

An Extended System Call Interface.We have an extended system call interface that
passes context objects along with storage primitives such asopen,read,write,unlink,
etc. Each of these I/O system calls include an additional argument for the context object.
The framework also includes a wrapper library for user applications to call these new sys-
tem calls. Listing 2 shows an usage scenario for the extendedsystem call interface. Note
that when there is a single context object that needs to be passed for several system calls,
group contextscan be used for better performance, as described below.

Group Contexts.For applications that need to perform a several I/O operations with a
single context object, we provide a new system call for setting and unsetting contexts into
the kernel. The scope of this association is just the specificthread of execution. Therefore
applications can first set a context and then issue any numberof regular I/O system calls
(such asopen or read), and the corresponding context object will be associated with
every operation.

Context Inheritance.To support easy usage of contexts in cases where the smallestgran-
ularity is a process, our framework includes a context inheritance mechanism using which
any process can set aninheritable contextinto the kernel. All child processes and threads
of such a process will then inherit the same context hierarchy. We developed this feature so
that there would be no modifications required to applications whose lowest context granu-
larity is a process. For example, if a project compilation task requires several applications
such asgcc, ld, binutils etc., the entire compilation task can be run through a shell
that has an inheritable context set, instead of modifying every application to pass contexts.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 39

int fd; char buf[128];
struct caio_context *context;

/* Allocates and sets top-level databound

* and accessbound identifers as 1 */
context = caio_create_context(1, 1);

/* Adds a new level to the access/data

* hierarchy with identifier 2 */
caio_add_level(context, 2, 2);

/* CAIO system call interface */
fd = caio_open("/home/joe/abc.txt",

O_RDONLY, &context);
err = caio_read(fd, buf, 128, &context);
caio_close(fd, &context);

Listing 2. Passing contexts from the user-level using the CAIO extended system call inter-
face. Note that in this case group context (described in Section 6.4) can be used as well,
because a single context object is used for all calls.

Context Propagation.In CAIO, each layer receives contexts from the layer above and
passes it to the layer below after using them if applicable. Note that a single operation at a
particular layer could translate into multiple operationsin the layers below. For example,
a file create operation at the file system level could result inmultiple block write requests
to the device driver. Therefore it is each layer’s responsibility to propagate context objects
appropriately to the layer below. In cases where there are more virtualization layers such
as software RAID or logical volume managers (LVMs), such layers should be aware of
contexts and propagate them below. Any layer can choose to store contexts in its own
structures for its needs, before passing them down.

Hardware Interface Extensions.To propagate contexts end-to-end, we extend storage
hardware interfaces to pass generic context objects along with every I/O request. For exam-
ple, the SCSI/IDEread andwrite primitives take context objects. There are a number
of proposals in the past that suggest interface extensions to disk systems for communicat-
ing higher-level semantic information [de Jonge et al. 2003; Mesnier et al. 2003; Sivathanu
et al. 2006; MacCormick et al. 2004]. We believe that the generality of the CAIO interface
would make it easier for disk vendors to adopt.

Dealing with Operation coalescence.Multiple logically independent I/O operations
may be coalesced into one at any layer in the stack. For example, multiple file write oper-
ations to the contents of the same file block could result in a single block I/O at the disk
level due to write buffering. To handle such cases, we support multiple context objects to
be associated with a single lower level I/O. Layers that receive these contexts must process
them one by one as if they were from different I/O operations.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

40 · Gopalan Sivathanu et al.

Storing Contexts.Repeatable contexts may need to be stored by layers to implement
optimizations that involve tracking context history, or correlating different context types.
We developed acontext-store in-memory data-structure as part of our framework
to enable easy storage of context hierarchies at any layer ofthe storage stack. A context
store manages context hierarchy in a tree structure in whicheach node represents a context
identifier of a specific level in the hierarchy identified by its depth in the tree. Each tree
node also includes aprivate datafield where information about that specific chain can
be stored. The context-store structure provides primitives for common operations such as
adding new chains and updating private data.

6.5 Linux Implementation

We implemented our CAIO framework in the Linux kernel 2.6.15. We added new sys-
tem calls for context-aware file I/O operations and implemented a user-level library for
applications to easily use the new system call interface. The new system calls allowed con-
text objects to be passed withopen, read, write, pread, pwrite, close, mkdir,
unlink, rmdir andreaddir operations. We modified the following objects to add
a new field to store contexts. (a)task struct which represents a running process or
thread. (b)buffer head which represents a block buffer in memory. (c)bio which
represents an I/O to a block device. Thebuffer head andbio objects can optionally
contain a list of contexts during operation coalescence.

We implemented the new system calls as wrappers to the unmodified system call han-
dlers for the operations. The wrapper system calls set the context object in thecurrent
task object before calling the unmodified handlers. Note that the wrapper calls unset the
context upon completion of a system call, so that the scope ofa passed context would
be just that system call. The different layers in the OS that service the I/O operation use
the context object from thecurrent task object and propagate it to the corresponding
buffer head andbio objects appropriately. As thetask struct object is unique to
a particular process or thread, this method works for multi-process workloads as well.

For group contexts, we added a new system call which assigns or removes the corre-
sponding context in the currenttask struct object. For inheritable contexts, we mod-
ified thefork system call to copy the context object of the parent, to the forked process.
We also implemented the context-store data-structure as part of the kernel so that any layer
such as the file system or device driver can maintain its own store.

Overall, the modifications required to implement the CAIO framework were small. We
added only 350 lines of new kernel code and 150 lines of user-level code.

Application Support.The method of generating contexts at the application-levelde-
pends on specific application architectures. In general, ifan application can classify its
activities into distinct logical tasks, and (or) if it can group data it uses based on some
criteria, it can generate contexts in a meaningful manner. Based on the kind of application,
the granularity and type of contexts it can generate can vary. Some low level applications
such as Unix utilities (e.g.,ls, cat, etc.) can just provide an interface to the caller to pass
contexts (e,g., command line arguments). We have modified some basic utility programs
such ascp, cat, andls to accept contexts as command line arguments. This enables a
higher level caller application (e.g., a shell script) to group all its operations under the same
context.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 41

Context-Aware MySql.We have modified the MySql DBMS [MySQL AB 2005] with
InnoDB [InnoDB 2007] as the storage engine, to generate and propagate contexts at var-
ious granularities. MySql has the notion of database clientconnections which can obtain
service from the DBMS. Each client connection gets servicedby a separate MySql thread,
and can run several transactions and queries. We modified MySql to pass contexts at three
granularities in the form of a hierarchy: connection-level, transaction-level, and a single
query-level. Overall the modifications required to propagate contexts across the various
layers of MySql and InnoDB were simple. We added only 30 linesof new code and modi-
fied 345 lines of existing code, mostly for passing an additional argument for a number of
functions. We use our Context-Aware MySql as an applicationto evaluate our framework
and some of the case-studies described in Sections 7 and 8.

6.6 Evaluation

We evaluated the overheads associated with passing contextobjects across the storage stack
for all file system operations. In this section we first describe our test setup and the details
of the experiments we ran. Note that the setup described in this section applies to all our
benchmarks presented under Sections 7 and 8 as well.

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a 74GB, 10Krpm, Ultra-
320 SCSI disk. We used Fedora Core 6, running a Linux 2.6.15 kernel. To ensure a cold
cache, we unmounted all involved file systems between each test. We ran all tests at least
five times and computed 95% confidence intervals for the mean elapsed, system, user, and
wait times using the Student-t distribution. In each case, the half-widths of the intervals
were less than 5% of the mean.

Experiments.In this section we describe the set of experiments and their configurations
that we used for evaluating the CAIO and the case-studies.

Postmark.For an I/O-intensive workload, we used Postmark [VERITAS Software 1999],
a popular file system benchmarking tool. Postmark stresses the file system by performing a
series of file system operations such as directory lookups, creations, and deletions on small
files.

TPC-C. TPC-C [Transaction Processing Performance Council 2004] is an On-Line Trans-
action Processing (OLTP) benchmark that performs small 4 KBrandom reads and writes.
Two-thirds of the I/Os are reads. We set up TPC-C with 50 warehouses and 20 clients. We
compare our context-aware MySql running on our CAIO framework with regular MySql
running on a vanilla kernel. The metric for evaluating TPC-Cperformance is the number of
transactions completed per minute (tpmC). We report tpmC numbers for each benchmark.

Results.Figure 14 shows the overheads of our CAIO framework for Postmark for two
different number of operations. As seen from the figure the overall elapsed time overheads
were small (2% to 4%) compared to regular I/O. This overhead is mainly because of the
additional user-to-kernel copies for communicating context objects from applications.

TPC-C Results.The TPC benchmark results for regular MySQL and our modified context-
aware MySQL ran over the CAIO kernel is shown in Table I. The workload loads tables
into a Mysql server at start-up and runs a mix of queries on these tables for a user de-
fined time. As seen from throughput and response time numbers, overheads of the CAIO
framework is quite small.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

42 · Gopalan Sivathanu et al.

 0

 20

 40

 60

 80

 100

CAIOVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

70.9
69.8

Wait
User

System

(a) 50,000 Operations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

CAIOVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

138.9
145.5

Wait
User

System

(b) 100,000 Operations

Fig. 14. Postmark Results for CAIO Framework

Regular CAIO
Response Time (s) Response Time (s)

Delivery 0.096 0.109
New Order 0.039 0.064

Order Status 0.033 0.29
Payment 0.000 0.000

Stock Level 0.169 0.524
Throughput (tpmC) 67.13 64.35

Table I. TPC-C Benchmark results for the CAIO framework

7. CASE STUDY: WORKING SET IDENTIFIER

Our first case study is the automaticWorking Set IDEntifier (WorkSIDE). WorkSIDE that
uses both access-bound and data-bound contexts to automatically infer the minimum set of
data items required to be available in order for an application (or a specific instance of an
application) to run to completion.

7.1 Motivation

This ability to accurately identify working sets of application contexts at a fine grained
level has various kinds of applications.

Performance.The working set of the application can be preloaded into a much faster but
smaller memory hierarchy (e.g., a flash storage layer that provides about 100x better ran-
dom access read performance), thus essentially shielding the application from performance
variability due to disk access.

Availability. WorkSIDE enables fault-isolated placement of applicationworking sets
enabling truly graceful degradation during multiple disk failures similar to D-GRAID [Si-
vathanu et al. 2004]. While D-GRAID could just co-locate files or directories, WorkSIDE
can co-locate higher-level application working-sets within failure domains.

Power Savings.Many recent systems have looked at saving power by switchingoff a
subset of disks in a large RAID array in such a way that applications can still function

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 43

properly without the switched-off disks [Zhu et al. 2005; Weddle et al. 2007]. These
systems go to great complexity to identify the subset of datathat is currently under use, yet
these techniques are most often approximate and too coarse-grained. Being more informed
about the application’s access patterns and data abstractions, WorkSIDE can do a better job
at such power optimizations by being more aggressive and more accurate.

Disconnected operation.Another usage scenario for WorkSIDE is when the user wants
to preload the working set for a specific application contextin local storage for discon-
nected operation, say, in a mobile environment. This enables Coda-like hoarding [Kistler
and Satyanarayanan 1991], but can be much more accurate, fine-grained and automated.
For example, if the user works only on a specific build target in a large body of source code,
just the subset of source files (and the metadata) needed for the target can be automatically
preloaded to local storage.

The key to WorkSIDE is its ability to correlate a repeatable access context with the data
context it accesses. WorkSIDE achieves this by associatingwith each node of the access
context hierarchy, the aggregated set of data items that areaccessed by that context. Se-
mantic aggregation of such data is possible because data-bound contexts are hierarchical
in nature conveying data abstractions in several granularities (such as files or directories).
Tracking working set at an aggregated level enables much simpler and reliable tracking of
repeatability. For instance, if an application touches different parts of a file in its different
runs, block-level tracking may not find much of a repeatability, whereas tracking at the
file-level would indicate the pattern. Since the data context hierarchy essentially contains
information of the entire data abstraction tree, it can track this information at various gran-
ularities, and decide on which granularity provides the best trade-off between the amount
of data to be preloaded and ensuring completeness for the application.

7.2 Design

To determine the working set of a higher level logical task, WorkSIDE has to track history
of both data-bound and access-bound contexts for every task. We designed WorkSIDE
as an on-disk mechanism to demonstrate its working as part ofthe firmware of a high-
end block-based RAID storage system. WorkSIDE can potentially exist at any layer of
the storage stack such as the file system or the device driver.Through our design, we
show that even in the lowest layer of the storage stack (the storage hardware), working set
identification can be done to an acceptable level of accuracy, through context-aware I/O.

For WorkSIDE to correctly determine the working set of data for a given access-bound
context, the higher application has to pass data contexts tocommunicate the semantic
organization of data. This can relate to on-disk structuressuch as B-trees, database tables,
files, and directories. In this section, we first detail how access-bound contexts can be
associated with corresponding data-bound contexts. We then discuss a few policies that
can be adopted to determine the granularity of the working set of a given context. Lastly,
we present our prototype implementation of WorkSIDE.

Associating Access with Data.WorkSIDE maintains two context stores (described in
Section 6.4) to track access-bound and data-bound contextsrespectively. Each store has
context trees to represent the hierarchy. We call tree nodesin the access and data stores as
Access-Context Nodes(ACNs) andData Context Nodes(DCNs) respectively. Note that,
as data-bound context is mainly used to communicate the semantic structure of data, it
need not necessarily be passed by the higher-level application for every I/O request. For

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

44 · Gopalan Sivathanu et al.

example, if a DBMS uses thetable andrecord abstractions as data-bound contexts,
it may pass the context hierarchy only when such abstractions are created (e.g., a table
creation) or updated (e.g., a new record insertion). For example, the DBMS need not pass
data-bound contexts for everyselect query. To handle this condition, WorkSIDE may
have to map access-bound contexts accompanying a block I/O request with a pre-existing
data-bound context hierarchy.

The following are the contents of a DCN: (a) A context identifier. (b) The number of
blocks in the entire sub-tree with the node as root. (c) A listof block numbers associated
with the context (if it is a leaf node). Every time a block I/O has an accompanying data-
bound context chain, the corresponding block number is added to the leaf DCN of the
chain. (d) A list of pointers to its child nodes. (e) A back-pointer to its parent node. This
is used to increment the number of blocks in every parent along the chain when there is a
new addition to a leaf node.

While adding a node to the tree, we enforce thesingle parentconstraint, where every
node must have at most one parent. When there is a context chain passed, that violates
this condition, we truncate the chain after the spurious node while adding it to the tree.
In almost all common cases, this would not affect the accuracy of the data-bound context
tree, as most data-abstractions already follow this rule. For example, a single block cannot
belong to more than one file (except in rare cases such as hardlinks in Ext2).

WorkSIDE also maintains a hash table,BDTABLE, to map block numbers to the cor-
responding leaf nodes in the data context tree. TheBDTABLE is used to lookup the data
context for any block when an I/O request to it does not have anassociated data-bound
context. Upon receiving a block I/O request with a access-bound context, WorkSIDE can
map the corresponding block number to any level of abstraction in the data-bound hier-
archy by just traversing through the parent back-pointers in each node in the data context
tree.

In the next section, we describe how this infrastructure is augmented with association
policies to determine the optimal granularity of associating a data-bound working set for a
given access-bound context.

Working Set Identification.Identifying the working set for a given node in the access-
bound context tree involves associating that ACN with one ormore DCNs. Therefore every
ACN in the access store contains pointers to one or more DCNs.

Greatest-Common-Prefix Mode.We designed WorkSIDE to operate under two different
modes for choosing the appropriate DCN for a given ACN. In thefirst (and simple) mode,
which we call theGreatest Common Prefix(GCP) mode, WorkSIDE maintains utmost one
DCN per ACN. Whenever there is an I/O in the context of an ACN, the request block
number is looked up in theBDTABLE to find the leaf DCN to which the block number
is associated. The leaf DCN is associated with the ACN if the ACN did not previously
have a DCN associated. If not, the greatest common prefix nodein the tree (starting from
the root) for the new leaf DCN and the previously associated DCN is computed (using
the parent back-pointers) and associated with the ACN. The working-set is enumerated by
just traversing the sub-tree starting from the associated DCN. This method of enumerating
the working set for an ACN ensures completeness, but under some scenarios there could
be a significant number of falsely associated blocks. For example, if an access contextA

reads files/home/john/plan.txt and/home/john/private/list.txt, the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 45

GCP method of association would include the entire contentsof /home/john/ in the
working set ofA. A variant of the GCP mode mitigates this problem under some sce-
narios by tracking the longest depth to traverse while enumerating blocks, along with
the ACN. With this, the working set ofA would just include files up to depth level 3
(/home/john/private).

Multi-DCN Mode. In the second mode, which we call theMulti-DCN mode, WorkSIDE
tracks a list of DCNs per ACN. Every ACN has a list of duplicateeliminated pointers
to parent DCNs. To enumerate the working set for a given ACN, the following pro-
cedure is used: for each DCN associated, all blocks belonging to their immediate chil-
dren are included. For example, if an ACNB reads files/home/john/plan.txt and
/home/john/private/list.txt,DCNs for/home/john and/home/john/private
will be associated withB. While enumerating the working set ofB, all files (not sub-
directories) under/home/john and/home/john/private will be included. There-
fore, the multi-DCN mode of association provides more accurate identification of working
sets. However, this method needs to track more information per ACN. In the procedure
described above, we choose the hierarchy one level above theleaf DCN for every block
access. However, the number of such levels can be configurable based on specific system
and workload requirements.

WorkSIDE can also track information required for both GCP and multi-DCN modes si-
multaneously (every ACN can have both the list of parent DCNsand a single GCP node).
Based on the kind of usage scenario for the working set, enumeration process can be de-
cided dynamically to choose the optimal granularity.

Prefetcher.We developed an on-disk prefetching tool that uses WorkSIDEto enumer-
ate the working set of access-bound contexts and prefetch them into a faster storage. For
prefetching, we tracked the repeatability of the working set of each ACN, and for repeat-
able ACNs, we prefetch and serve the entire working set from the faster storage medium.
Currently we use RAM to cache prefetched working sets, but this could even be a fast sec-
ondary storage device such as flash. While deciding whether to prefetch a working set, we
take into consideration the size of the working set and the available space in the prefetch
cache. In our design, we use a simple scheme where we prefetchworking sets less than half
the size of the prefetch cache subject to remaining space availability in the cache. More
advanced algorithms such as best-fit and worst-fit can also beimplemented to decide the
appropriate working sets to prefetch.

To evaluate our working-set aware prefetcher, we compiled several modules in the Linux
kernel source, ande2fsprogs package [Ts’o 2008], with inheritable contexts. We found
that once working-sets were identified by WorkSIDE and prefetched into RAM by our
prefetcher, there were no requests sent to the disk during the compile workload. There-
fore, working-set aware prefetching of data enables turning off disk drives (and hence save
power) in the case of repeatable workloads.

7.3 Implementation

We implemented a prototype of WorkSIDE and our prefetching tool as a pseudo-device
driver in Linux kernel 2.6.15 that stacks on top of an existing disk block driver. The
pseudo-device driver receives all block requests, and redirects the common read and write
requests to the lower level device driver, after storing context information that needs to
be tracked. Our prototype of WorkSIDE included both the GCP and multi-DCN modes

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

46 · Gopalan Sivathanu et al.

Disk device drivers

Working set
Manager

Prefetcher

User Applications

File Systems

Disk

Context
Store

WorkSIDE Pseudo−device Driver

Fig. 15. Prototype implementation of WorkSIDE in the Linux kernel. The prefetcher component in WorkSIDE
prefetches common working-sets into memory to save power.

of associating data-bound contexts. It contains 3,020 lines of new kernel code. Figure 15
shows the architecture of our prototype.

For testing WorkSIDE, we also modified the VFS layer of the Linux kernel to encode the
pathname of the entity being operated (file or directory) along with every lower level I/O
request. File system meta-data blocks such as super blocks,bitmaps and directory blocks
have to be dealt with separately, as they may not particularly belong to a specific applica-
tion. To handle such blocks, we modified the Linux Ext2 file system to associate a generic
“common” context which can be interpreted by any layer as onethat is not associated with
any particular access-bound context. We call our modified Ext2 file system, Ext2C.

7.4 Evaluation

We evaluated the correctness and performance of our prototype implementation of Work-
SIDE. For correctness we used a Linux kernel module build process, and for performance,
we used the Postmark benchmark described under Section 6.4.

Completeness of the Working-Set.To verify the completeness of the working-sets iden-
tified by WorkSIDE, we implemented a prefetch cache layer beneath the file system that
prefetches the working-set for selected access-bound contexts. We then simulated a disk
crash by disallowing disk I/O from our pseudo-device driver, and repeated the workloads
for the corresponding contexts. We performed this for kernel modules compiles and sev-
eral micro-benchmarks, and in all cases the prefetch cache layer serviced all I/O requests.
This shows that working-sets identified by WorkSIDE are complete.

Kernel Modules Build.Our goal during this test was to evaluate the correctness of the
working set identification mechanism of WorkSIDE. We untarred a vanilla Linux 2.6.15
kernel on our Ext2C file system mounted over our WorkSIDE pseudo-device driver. We did

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 47

Module # Directories # Files # Blocks (4k)
Ext2 14 315 1149
Ext3 14 328 1452

ReiserFS 14 328 1432
NTFS 14 320 1769

Table II. Compilation Working Set Statistics

this through a shell that has an inheritable access-bound context set (described under Sec-
tion 6.4), with depth one. We then remounted the file system toeliminate cache effects and
compiled the source-code of a few file systems (Ext2, Ext3, Reiserfs, and Ntfs) under the
fs/ sub-directory of the kernel source. While compiling each file system, we used differ-
ent shells with different second-level inheritable contexts set. All compilations were done
with the same top-level hierarchy of context, but for each compilation, the second-level
was different. Therefore, we were able to track the working-set of each of the individual
compilations. Note that we initialized the build process through “make install” sep-
arately at the beginning, and remounted the file system aftereach compilation. We ran this
test over WorkSIDE for both GCP and multi-DCN modes of operation.

Under the GCP mode, we noticed that the working sets of every single file system com-
pilation was identified as a the root of the kernel source tree. This is because, a file system
module compilation would refer to files underinclude/ andfs/ and hence the greatest
common prefix node becomes the root of the kernel source.

When we ran the test under the multi-DCN mode, we saw WorkSIDEidentify separate
working sets for each of the file system compilation contexts. Table II shows the total num-
ber of directories, files, and blocks associated with the working set of each compilation.
We identified these by dumping the entire access-bound context tree of WorkSIDE and
their associated DCNs. In each compilation context, the generated object files were also
included in the working set as the same inheritable context was passed for write operations
as well.

We also used the Multi-DCN mode of WorkSIDE to calculate the working-sets for kernel
compilation withmake allnoconfig andmake allyesconfig. For compilation
usingmake allnoconfig, the size of the working-set came out to 32.6MB. Formake
allyesconfig, the working-set size was 3GB. As the object files during compilation
are created from the same context, they were included in the working-set.

Postmark.To evaluate the performance overheads of WorkSIDE, we used an I/O-intensive
benchmark, Postmark. We ran our modified Postmark that passes context objects with each
I/O request, over WorkSIDE in its two modes, and compared it with regular Postmark run-
ning on top of a normal disk. For the regular Postmark we used unmodified Ext2 as the file
system and for WorkSIDE evaluation, we used our modified Ext2C file system. Figure 16
shows the overheads of WorkSIDE compared to regular disks.

WorkSIDE under the GCP mode of operation had an elapsed time overhead of 1.5%
compared to regular disk. The overhead mainly consists of system time (12%) caused
because of updating context trees and tracking greatest common prefixes. Under the multi-
DCN mode of operation the elapsed time overhead was 3.7% compared to a regular disk,
caused by a 20% increase in system time. The increase in overheads compared to GCP
mode is because under the multi-DCN mode, WorkSIDE has to track multiple data nodes
per access-node. If WorkSIDE is implemented in a real disk, tracking context trees would

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

48 · Gopalan Sivathanu et al.

 0

 50

 100

 150

 200

 250

MDCNGCPVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

170.5 173.1 176.9

Wait
User

System

Fig. 16. Postmark Results for WorkSIDE (200 Sub-directories, 20,000 Files, and 200,000 Transactions.). This
shows the overheads associated with the process of working-set identification at the disk-level.

be done by the disk firmware and hence would not incur the host CPU overheads.

8. CASE STUDY: CONTEXT-AWARE CACHING

Modern large-scale storage systems have hundreds of gigabytes of built-in main mem-
ory [EMC Corporation 1999], primarily for caching purposes. However, today’s storage
systems cannot adapt their caching policies based on application-level workloads or data
semantics, as they lack information about higher level semantics. This is caused by an
excessively simple disk interface [Denehy et al. 2002; Sivathanu et al. 2004]. Application-
aware caching policies have been found to be quite useful in the context of OS level
caches [Cao et al. 1996]. Yet today’s disk systems cannot even separate independent I/O
streams generated by two different applications, making itharder to implement application-
aware caching policies.

In this section we design and evaluateContext-Aware Cache(CA-cache), an on-disk
caching mechanism that differentiates independent I/O streams using logical contexts and
tunes its caching policies based on individual access patterns.

8.1 Design

We designedCA-cacheas an on-disk LRU write-through cache layer. The goal ofCA-cache
is to identify sequential streams of I/O and disable cachingtheir data, as mostly sequential
I/O streams do not benefit from read caching. As we are interested in the access-patterns
to tune the caching policy, this application uses access-bound contexts.

Architecture. CA-cacheconsists of a set of dynamically-built context trees and an LRU
cache. Each tree represents a group of hierarchical contexts with the same root context.
Each node represents the hierarchical context specified by the path from the root of the tree
to that node. Context trees are created or updated on each read request that specifies an
access-bound context.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 49

Classification of Contexts.Each node in the tree contains the following information
about a particular context: (a) the inferred access-pattern for the particular context, (b)
the block number for the last read I/O request required to track sequentiality, and (c) two
counters that track the number of successive sequential andrandom read requests in the
past. A context node is initialized as random-access upon creation. Based on the last read
request and the current request, either the sequential or the random counter is incremented
and the other is reset. When the values of the counters exceeda threshold, the node is
classified as sequential or random as appropriate. Note thatan already classified node
could be re-classified when its access pattern changes. Uponreceiving any read request,
the counters in all nodes that are part of the current contextare updated and the nodes
are re-classified if needed. We call the number of sequentialread request required for
classifying a node as sequential, thesequential threshold. The sequential threshold is
configurable, and can range somewhere between 10 and 100. A sequential-access node is
re-classified as random upon a single out-of-order read.

Caching Methodology.Our classification scheme allows for different hierarchy levels
in the same context chain to be classified differently. For example, two sub-contexts that
are part of the same parent may be doing sequential I/O in their own levels. However, since
the I/O from the sub-contexts could be received interleaved, the parent would be classified
as random.CA-cachedoes not require context identifiers to be repeatable. Therefore, it
contains a mechanism to automatically forget contexts based on a timeout. We periodically
purge context tree entries that represent inactive contexts (without any requests) beyond a
time threshold.

8.2 Evaluation

We implemented a prototype of our on-disk caching mechanismas a pseudo-device driver
in the Linux 2.6.15 kernel similar to WorkSIDE. We maintain the context trees in mem-
ory and an asynchronous kernel thread wakes up periodicallyto purge timed out context
entries. If the block is present in the LRU cache, the pseudo-device driver services the re-
quest from the cache, thereby avoiding a request to the lowerlevel. Otherwise, the request
is directed to the lower level and the cache is updated on completion of the request, if the
request belongs to a random-access context.

Read Micro-benchmark.To evaluateCA-cache, we ran a micro-benchmark that gener-
ates synthetic random and sequential read workloads simultaneously and calculated the
overall throughput of the random workload. We compared the throughput results ofCA-
cachewith a vanilla LRU cache layer which treats all contexts equally. Both CA-cacheand
vanilla LRU cache used 4MB of cache (1,024 4KB pages) for thisbenchmark.

We ran a user program that generates workloads shown in Figure 17. The user program
has four execution contexts (threads), A, B, C, and D which use their own files for I/O.
Thread A reads a 4GB file sequentially with context{1–2–5} (see Figure 17). Thread B
reads a 4GB file sequentially, but it uses contexts{1-3-7} and{1-3-8} for alternate reads.
Thread C is identical to thread B, but it uses contexts{1–4–9} and{1–4–10}. Thread
D reads random locations from a 4GB file using context{1–2–6}. For thread D, we use
a random number generator that repeats itself every 1,024 reads. The threads run until
any one of the sequential threads exits after reading 4GB of data. In our experiment, the
throughput of the random workload when run under the vanillaLRU cache was 0.098 MB
per second, whereas withCA-cache, the throughput was 7.71 MB/Sec.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

50 · Gopalan Sivathanu et al.

Sequential

Random

5 6 7 8 9 10

2 3 4

1

3 4

Fig. 17. Context tree used for CA-cache micro-benchmark. After our micro-benchmark, CA-cache classified the
grayed nodes as sequential and the rest as random.

MySQL Micro-benchmark.For this benchmark, We created two identical tablesSEQ

andRAND in MySQL with 4,200,000 records each, and ran random and sequential query
logs simultaneously. The tables were approximately 233MB in size. The sequential query
log contained aselect * query on the table. For a random workload, we selected a
subset of the records at random and issued select queries based on their record IDs. To
show the benefits of caching random streams alone, we repeated the random query log
ten times. We also ran the sequential log in a loop till the random workload completed.
We determined the throughput of the random workload (numberof queries executed per
second) while the sequential workload was running in parallel. It was 266.13 queries per
second without selective caching, while it was 614.15 queries per second with selective
caching.

9. RELATED WORK

In this section, we discuss related research for the concepts, techniques, and insights used
in our abstractions and the case-studies that we developed.

9.1 Briding the Information-Gap in the Storage Stack

Several systems have been proposed with the overall goal of bridging the information-gap
in the system stack. In this section, we classify existing research in this area into four
categories: extensible systems, richer abstractions, hint-based interfaces, and inference-
based systems. The related work for the case-studies for each abstraction is discussed
under their respective sections.

Extensible Systems.Building extensible systems are a solution to the problem ofinformation-
gap in the storage stack. Extensible operating systems [Bershad et al. 1995; Seltzer et al.
1994] allow applications to implement their own policies for traditional operating system
tasks, by ensuring a safe execution environment for them. A related approach is the one
taken by Exokernel [Engler et al. 1995], which advocates building a minimal operating
system and have everything else be implemented in application libraries.

The notion of extensibility has also been explored at the hardware level. For example,
active disks [Acharya et al. 1998; Riedel 1999] enable applications to download code into
the disk that is run within the disk controller. Such code canimplement arbitrary filter-
ing of data based on application level predicates, and even perform more sophisticated
operations such as search [L. Huston and R. Sukthankar and R.Wickremesinghe and M.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 51

Satyanarayanan and G. R. Ganger and E. Riedel and A. Ailamaki2004] without actu-
ally transferring data out of the disk subsystem. Scriptable RPC [Sivathanu et al. 2002]
proposes making the interface of a network file server extensible so that clients can dy-
namically implement flexible cache consistency and concurrency policies.

All these systems provide a lot of control to the applicationand in the process, essentially
ties them together. For applications to actually use such extensible layers, they need to have
a reasonably intricate understanding of the system, thus making them complex to design.
Nevertheless, for applications that really require such control and can utilize it sensibly,
these provide the right level of abstraction.

Hint-Based Interfaces.A more evolutionary approach that past research has explored
is to provide specific primitives at the system level that theapplications can use to convey
information to the operating system. Informed prefetching[Tomkins et al. 1997] is an ex-
ample of such a system. By enabling the application to conveyinformation on its future
access pattern, the operating system acquires knowledge about the application that it uses
to perform more intelligent prefetching. Another example is the Logical disk [de Jonge
et al. 2003], which provides an interface for the applications to encode locality hints by
creating lists of blocks. Researchers have also looked at the flip-side of the problem: pro-
vide information about the operating system to the application so that the application can
make intelligent decisions. Infokernel [Arpaci-Dusseau et al. 2003], and icTCP [Gunawi
et al. 2004] advocate the approach of the operating system exporting a minimal amount of
internal information which the applications then use to tune their behavior.

Previous work has also looked at the idea of conveying application knowledge through
new abstractions. Perhaps the closest to our work is the ideaof Resource Containers [Banga
et al. 1999], which allows applications to group requests into a resource container which
is then treated as a logical principal for the purposes of resource isolation. However, even
Resource Containers were built with the specific goal of resource accounting.

One commonality between many of these hint-based approaches is that the hints are
often tied to a specific kind of optimization or functionality. In other words, the information
being transferred is designed with a particular purpose in mind. This in turn limits the
flexibility of such a system because each new class of functionality may require yet another
new primitive to be added to the interface.

Richer Abstractions.Our work is closely related to a large body of work examining
new interfaces between file systems and disk storage. For example, logical disks expand
the block-based interface by exposing a list-based mechanism that file systems use to con-
vey grouping between blocks [de Jonge et al. 2003]. The Universal File Server [Birrell
and Needham 1980] has two layers where the lower layer existsin the storage level,
thereby conveying directory-file relationships to the storage layer. More recent research
has suggested the evolution of the storage interface from the current block-based form to
a higher-level abstraction. Object-based Storage Device (OSD) is one example [Mesnier
et al. 2003]; in OSDs the disk manages variable-sized objects instead of blocks. Object-
based disks handle block allocation within an object, but still do not have information
on the relationships across objects. Another example is Boxwood [MacCormick et al.
2004]; Boxwood considers making distributed file systems easier to develop by provid-
ing a distributed storage layer that exports higher-level data structures such as B-Trees.
ExRAID [Denehy et al. 2002] explores the utility of exposinghardware specific informa-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

52 · Gopalan Sivathanu et al.

tion from a RAID device to the higher layers such as the file system.
These interfaces are designed with some specific applications or scenarios in mind. For

example, it is hard to implement a database in an object-based disk. This illustrates that it
is hard to design a generic interface that is suitable for a wide-range of applications.

Inference-Based Systems.Inference-based systems take the extreme approach of mak-
ing no modifications to interfaces, butinfer cross-layer information without explicit trans-
fer for information across the layers.. Gray-box systems [Arpaci-Dusseau and Arpaci-
Dusseau 2001] is an early example of such an approach. An application with “gray-box”
knowledge of the operating system attempt to implicitly control the operating system be-
havior by tuning its workload in such a way that it takes the operating system to a state
that results in the desired policy. Another system built along the same philosophy is
semantically-smart disks [Sivathanu et al. 2004] in which the storage system infers knowl-
edge about the higher layers by carefully observing traffic patterns and correlating them to
higher level operations.

Although inference-based techniques are valuable from theviewpoint of being easily
deployable and less intrusive, these approaches have theirown limitations because they are
heavily constrained in terms of not changing interfaces. This in many cases results in addi-
tional complexity, making it hard to reason about correctness while also limiting the usage
of such inferred knowledge to less aggressive applicationsthat can tolerate inaccuracy.

9.2 Type-Safety

The concept of type safety has been widely used in the contextof programming languages.
Type-safe languages such as Java are known to make programming easier by providing
automatic memory management. More importantly, they improve security by restricting
memory access to legal data structures. Type-safe languages use a philosophy very similar
to our model: a capability to an encompassing data structureimplies a capability to all
entities enclosed within it. Type-safety has also been explored in the context of building
secure operating systems. For example, the SPIN operating system [Bershad et al. 1995]
enabled safe kernel-level extensions by constraining themto be written in Modula-3, a
type-safe language. Since the extension can only access objects it has explicit access to, it
cannot change arbitrary kernel state. More recently, the Singularity operating system [Hunt
et al. 2005] used a similar approach, attempting to improve OS robustness and reliability
by using type-safe languages and clearly defined interfaces.

9.3 Capability-Based Access Control

Network-Attached Secure Disks (NASDs) incorporate capability based access control in
the context of distributed authentication using object-based storage [Gibson et al. 1998;
Aguilera et al. 2003; Miller et al. 2002]. Temporal timeoutsin ACCESS are related to
caching capabilities during a time interval in OSDs [Azagury et al. 2003]. The notion
of using a single capability to access a group of blocks has been explored in previous
research [Gobioff 1999; Miller et al. 2002; Aguilera et al. 2003].

In contrast to their object-level capability enforcement,ACCESS uses implicit path-
based capabilities using pointer relationships between blocks.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 53

9.4 The Notion of Context in Storage

The idea of tagging requests with identifiers has been explored in the context of distributed
systems for performance debugging, profiling, etc. Pinpoint [Chen et al. 2002] and Mag-
pie [Barham et al. 2003] are examples of systems in this category. Recently, Thereska et al.
proposed applying a similar idea in the context of distributed storage systems mainly for
performance monitoring [Thereska et al. 2006]. All these systems look at tagging requests
in a causal chain with a certain identifier so that the entirepathof a logical request (which
may involve multiple physical network hops) can be tracked.Researchers have also looked
at implicitly inferring this causal knowledge without explicit tagging [Aguilera et al. 2003;
Gniady et al. 2004; Li et al. 2004] but it involves significantcomplexity compared to the
explicit tagging approach. These systems only operate within the scope of one logical re-
quest and are targeted at a specific application. In contrast, CAIO allows for a more general
expression of application level semantics to cater to a widevariety of applications.

Previous work has also looked at conveying application-level grouping through new ab-
stractions similar to our notion of context. Perhaps the closest to our work is the idea
of Resource Containers [Banga et al. 1999], which allows applications to group requests
into a resource container which is then treated as a logical principal for the purposes of
resource isolation and accounting. However, similar to thesystems discussed above, re-
source containers were also built with the specific goal of resource accounting and convey
information on one specific kind of grouping.

Our work on context-aware I/O also fits into a class of other work on general solutions
for bridging the information gap across system layers. Workin this area mainly belongs in
three categories: extensible systems, hint-based interfaces, and implicit techniques to infer
information or exert control.

9.5 File System Consistency

Consistency mechanisms for file systems have been explored extensively. Early file sys-
tems such as FFS [McKusick et al. 1984] relied on a global scanof disk metadata to fix
consistency problems. This mechanism, called the file system consistency check (fsck)
was in popular use until recently in the Linux Ext2 and Windows VFAT file systems.
However, as increasing disk sizes made such global scans more and more expensive, more
efficient mechanisms have become popular. Journalling, originally proposed as early as
in the Cedar file system [Gifford et al. 1988], uses database like transactions for metadata
updates. Modern file systems such as Ext3 and Windows NTFS usejournalling for file
system consistency. Another technique proposed for file system consistency is Soft Up-
dates [Ganger et al. 2000; McKusick and Ganger 1999], which orders updates carefully so
that pointer dependencies get updated in the right order. Soft updates is somewhat similar
in spirit to our approach since it is also pointer-based. A relatively recent study evaluated
the trade-offs between journalling and soft updates [Seltzer et al. 2000].

Database systems have for long used mechanisms for consistency. Consistency in databases
is enforced via transactions; the ARIES transaction based recovery mechanism [Mohan
et al. 1992] is used quite widely in database systems. The basic technique is to group all
related updates into a single transaction that is then committed to disk atomically, so that
the state remains consistent. As we described in Section 5.6, transactions are more general
and powerful than pointer-based consistency, but using transactions requires a fair bit of
work at the application level. Our mechanism provides a simpler yet effective alternative

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

54 · Gopalan Sivathanu et al.

to transactions, although not as general.
Consistency at the disk level has been explored in the context of Semantically-smart

disks (SDS) [Sivathanu et al. 2003]. In that paper, the authors implement journalling un-
derneath unmodified Ext2 by utilizing inferred semantic knowledge. However, in their
work, the disk system had to be aware of the specific structures at the file system level and
thus was tied to a specific file system. Further, it required a synchronous mount of the file
system. Our work explores enforcing consistency in a mannergeneric to the higher level
software. However, in the process, we require changing the file system or software above
to use the pointer API. We therefore view both these approaches as complementary.

10. CONCLUSIONS

As Butler Lampson said, interface design is one the most complex aspects of system de-
sign, while also being the most important. Interface designers have traditionally embraced
the philosophy of minimalism—hide as much information about the layers as possible,
so that the layers can innovate and evolve independently. This approach, despite all its
merits, has the downside of obscuring what a layer knows about its inputs, thus limiting
functionality. At the other extreme, some systems have explored how to completely tie
the layers together, by having extensible layers, or exposing detailed information about
the inner semantics of a layer. What we have explored in this article is a middle-ground,
where we send a small amount of information across layers. Bymaking the generation
of the information separate from how the information is used, we enable the layers to be
independent of each other, while still enabling arbitrary grouping and relationships to be
conveyed across the storage stack.

10.1 Lessons Learned

We now discuss four key lessons learnt through our experience in evolving and prototyping
our end-to-end abstractions and the case-studies. We believe these lessons would be useful
for future interface designers not only in the storage domain, but also more generally in
computer systems.

Lesson 1: Generalizing structural and operational information in storage is
possible.

Our pointer abstraction shows that higher-level structures such as files, directories, database
tables, or B-trees can be formalized in a generic manner by way of pointers. The funda-
mental insight behind the pointer abstraction is that today’s disk systems store data in the
form of fixed size blocks. Therefore, to implement higher-level structures on top of this
simple abstraction, relationships have to be established between these individual blocks.
Most file systems and other storage software today maintain these relationships through
explicitpointers. Even if pointers areimplicit as in the case of extent-based storage design,
it is straightforward to generate them explicitly for communicating to the storage stack.

The context-aware storage abstraction provides a means to formalizeoperationalinfor-
mation in addition to structural knowledge. By way of hierarchical context identifiers, we
show how application-level operational contexts can be encoded in a generic manner even
for complex storage applications such as databases.

Lesson 2: Requiring just implementation-level modifications to existing in-
frastructures is a virtue in interface design.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 55

Both our abstractions require only implementation-level modifications to existing soft-
ware layers. Our straightforward implementations of the Ext2TSD and VFATTSD file
systems that support the type-aware storage abstractions indicate that as long as there is
not a need to redesign existing infrastructures, interfacechanges are easy to be adopted
and deployed. The limited changes that we made to the MySQL and the Linux kernel to
support hierarchical contexts corroborate this fact.

Lesson 3: Annotating pointers or contexts with application-level attributes
enables a wider range of functionality.

To support new features that need to be tuned for specific applications or storage lay-
ers, annotating generic information with optionalattributesproves to be useful. These
attributes need not be part of the main interface, but can be communicatedoffline be-
tween specific layers. For example, the share proportion fordifferent contexts in our a
proportional-share disk scheduler can be set offline by the administrator, specifically in the
disk scheduler layer.

Lesson 4: Decoupling the generation of information from itsusage has its
own limitations

Although our abstractions enable a wide-range of new functionality in the storage stack,
they cannot support certain kinds of features that require precise application-specific in-
formation. For example, although type-awareness enables disks to group blocks based
on pointers, disks cannot precisely identify if a particular group represents a file, direc-
tory, or a database table. Although it is true that a large class of new functionality can
be achieved without such knowledge, some features that needs to use more fine-grained
application-specific information cannot be implemented without help from applications.
Similarly, although context-aware storage encodes all granularities of application contexts,
lower layers cannot identify what each level in the hierarchy means, which may be needed
for certain functionality.

10.2 Future Work

In this section, we discuss potential future directions to explore in the topic addressed by
this article. We first talk about how the general principle behind our abstractions can extend
more broadly in other domains. We then discuss two possible future directions to develop
new applications using our abstractions.

Generalizing Information in Other Domains.What we have explored in this article is
how structural and operational knowledge about application data can be formalized and
used to bridge the information-gap in the storage stack. This general principle of formaliz-
ing the differentpropertiesof application data is relevant in other domains. For example,
it could be interesting to explore if security polices can beformalized in a minimal and
generic manner and propagated across the systems stack to enable a new class of secure
systems, where different layers can independently providesecurity features without ex-
plicit coordination from applications.

Applications in Virtual Machine Environments.The growing popularity of virtual ma-
chine technology exacerbates the problem of information-gap in the systems stack, as it
introduces another layer of virtualization. Bridging the gap in this context enables highly
useful optimizations and new functionality at the virtual machine host. For example, if the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

56 · Gopalan Sivathanu et al.

host kernel is aware of structural information about data invirtual machines, it can im-
plement security features such as global anti-virus checking, intrusion detection, or access
control, that cannot be bypassed by any guest virtual machine.

Applications in Distributed Environments.Distributed environments present a similar
scenario as virtual machines in the aspect of information-gap. We believe that the notion
of hierarchical contexts enables a wide range of functionality in distributed systems. Start-
ing from straightforward features such as distributed performance isolation, contexts can
potentially go a long way in enabling more complex and interesting functionality such as
custom reliability and consistency policies and so on.

10.3 Summary

Overall, we find that type-awareness and context-awarenessin the storage stack enables
an interesting set of new functionality and optimizations,with minimal modifications to
existing infrastructures. We believe that our abstractions explore an interesting and effec-
tive design choice in the large spectrum of work on alternative interfaces to storage. As
described in Section 10.2, we believe that the insights derived in this article apply broadly
in several other systems domains.

REFERENCES

ACHARYA , A., UYSAL , M., AND SALTZ , J. 1998. Active disks: programming model, algorithms and evaluation.
In Eighth International Conference on Architectural Supportfor Programming Languages and Operating
Systems. ACM, San Jose, CA, 81–91.

AGUILERA, M. K., JI , M., L ILLIBRIDGE , M., MACCORMICK, J., OERTLI, E., ANDERSEN, D., BURROWS,
M., MANN , T., AND THEKKATH , C. A. 2003. Block-level security for network-attached disks. InProceed-
ings of the Second USENIX Conference on File and Storage Technologies (FAST ’03). USENIX Association,
San Francisco, CA, 159–174.

AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P.,AND MUTHITACHAROEN, A. 2003. Per-
formance debugging for distributed systems of black boxes.In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03). ACM SIGOPS, Bolton Landing, NY, 74–89.

ARPACI-DUSSEAU, A. C. AND ARPACI-DUSSEAU, R. H. 2001. Information and Control in Gray-Box Systems.
In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01). ACM, Banff,
Canada, 43–56.

ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., BURNETT, N. C., DENEHY, T. E., ENGLE, T. J., GU-
NAWI , H. S., NUGENT, J. A., AND POPOVICI, F. I. 2003. Transforming policies into mechanisms with
Infokernel. InProceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03). ACM
SIGOPS, Bolton Landing, NY, 90–105.

AZAGURY, A., DREIZIN, V., FACTOR, M., HENIS, E., NAOR, D., RINETZKY, N., RODEH, O., SATRAN ,
J., TAVORY, A., AND YERUSHALMI, L. 2003. Towards an object store. InMass Storage Systems and
Technologies (MSST). USENIX Association, Berkeley, CA, USA.

BANGA , G., DRUSCHEL, P., AND MOGUL, J. C. 1999. Resource Containers: A New Facility for Resource
Management in Server Systems. InProceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI 1999). ACM SIGOPS, New Orleans, LA, 45–58.

BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I.,
AND WARFIELD, A. 2003. Xen and the art of virtualization. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03). ACM SIGOPS, Bolton Landing, NY, 164–177.

BARHAM , P., ISAACS, R., MORTIER, R., AND NARAYANAN , D. 2003. Magpie: Online modelling and
performance-aware systems. InProceedings of the 2003 ACM Workshop on Hot Topics in Operating Sys-
tems (HotOS IX). USENIX Association, Lihue, Hawaii, 85–90.

BERSHAD, B., SAVAGE , S., PARDYAK , P., SIRER, E. G., BECKER, D., FIUCZYNSKI , M., CHAMBERS, C.,
AND EGGERS, S. 1995. Extensibility, safety, and performance in the SPIN operating system. InProceedings

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 57

of the 15th ACM Symposium on Operating System Principles (SOSP ’95). ACM SIGOPS, Copper Mountain
Resort, CO, 267–284.

BIRRELL, A. D. AND NEEDHAM, R. M. 1980. A universal file server. InIEEE Transactions on Software
Engineering. Vol. SE-6. IEEE Press, Piscataway, NJ, USA, 450–453.

BLAZE , M. 1993. A cryptographic file system for Unix. InProceedings of the first ACM Conference on
Computer and Communications Security. ACM, Fairfax, VA, 9–16.

BURNETT, N. C., BENT, J., ARPACI-DUSSEAU, A. C.,AND ARPACI-DUSSEAU, R. H. 2002. Exploiting Gray-
Box Knowledge of Buffer-Cache Contents. InProceedings of the Annual USENIX Technical Conference.
USENIX Association, Monterey, CA, 29–44.

CALLAGHAN , B., PAWLOWSKI , B., AND STAUBACH , P. 1995. NFS Version 3 Protocol Specification. Tech.
Rep. RFC 1813, Network Working Group. June.

CAO, P., FELTEN, E. W., KARLIN , A. R., AND L I , K. 1996. Implementation and performance of integrated
application-controlled file caching, prefetching, and disk scheduling. ACM Transactions on Computer Sys-
tems 14,4, 311–343.

CHEN, M., K ICIMAN , E., FRATKIN , E., FOX, A., AND BREWER, E. 2002. Pinpoint: Problem determination
in large, dynamic, internet services. InProceedings of the 2002 International Conference on Dependable
Systems and Networks (DSN 2002). IEEE Computer Society, Bethesda, MD, 595–604.

DE JONGE, W., KAASHOEK, M. F., AND HSIEH, W. C. 2003. The logical disk: A new approach to improving
file systems. InProceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03). ACM
SIGOPS, Bolton Landing, NY.

DENEHY, T. E., ARPACI-DUSSEAU, A. C.,AND ARPACI-DUSSEAU, R. H. 2002. Bridging the information gap
in storage protocol stacks. InProceedings of the Annual USENIX Technical Conference. USENIX Association,
Monterey, CA, 177–190.

DIJKSTRA, E. W. 1968. The structure of the ’THE’-multiprogramming system. InCommunications of the ACM.
Vol. 11, Issue 5. ACM, New York, NY, USA, 341–346.

EMC CORPORATION. 1999. Symmetrix 3000 and 5000 Enterprise Storage Systems.Product description guide.

ENGLER, D., KAASHOEK, M. F., AND O’TOOLE JR., J. 1995. Exokernel: An operating system architecture
for application-level resource management. InProceedings of the 15th ACM Symposium on Operating System
Principles (SOSP ’95). ACM SIGOPS, Copper Mountain Resort, CO, 251–266.

GANGER, G. R., MCKUSICK, M. K., SOULES, C. A. N., AND PATT, Y. N. 2000. Soft updates: a solution to
the metadata update problem in file systems.ACM Trans. Comput. Syst. 18,2, 127–153.

GIBSON, G. A., NAGLE, D. F., AMIRI , K., BUTLER, J., CHANG, F. W., GOBIOFF, H., HARDIN , C., RIEDEL,
E., ROCHBERG, D., AND ZELENKA , J. 1998. A cost-effective, high-bandwidth storage architecture. In
Proceedings of the Eighth International Conference on Architectural Support for Programming Langauges
and Operating Systems (ASPLOS-VIII). ACM, New York, NY, 92–103.

GIFFORD, D. K., NEEDHAM, R. M.,AND SCHROEDER, M. D. 1988. The Cedar File System.Communications
of the ACM 31,3, 288–298.

GNIADY, C., BUTT, A. R.,AND HU, Y. C. 2004. Program-counter-based pattern classificationin buffer caching.
In Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI 2004). ACM
SIGOPS, San Francisco, CA, 395–408.

GOBIOFF, H. 1999. Security for a high performance commodity storagesubsystem. Ph.D. thesis, Carnegie
Mellon University. citeseer.ist.psu.edu/article/gobioff99security.html.

GUNAWI , H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2004. Deploying Safe User-
Level Network Services with icTCP. InProceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI 2004). ACM SIGOPS, San Francisco, CA, 317–332.

HITZ , D., LAU , J., AND MALCOLM , M. 1994. File System Design for an NFS File Server Appliance. In
Proceedings of the USENIX Winter Technical Conference. USENIX Association, San Francisco, CA, 235–
245.

HUNT, G., LAURUS, J., ABADI , M., A IKEN , M., BARHAM , P., FAHNDRICH, M., HAWBLITZEL , C., HODSON,
O., LEVI , S., MURPHY, N., STEENSGAARD, B., TARDITI , D., WOBBER, T., AND Z ILL , B. 2005. An
Overview of the Singularity Project. Tech. Rep. MSR-TR-2005-135, Microsoft Research.

IBM. 2007a. IBM System Storage DS6800.http://www-03.ibm.com/systems/storage/disk/
ds6000/index.html.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

58 · Gopalan Sivathanu et al.

IBM. 2007b. IBM System Storage DS8000 Turbo.http://www-03.ibm.com/systems/storage/
disk/ds8000/index.html.

INNODB. 2007. Innobase oy. www.innodb.com.

JI , M., VEITCH, A., AND WILKES, J. 2003. Seneca: remote mirroring done write. InProceedings of the Annual
USENIX Technical Conference. USENIX Association, San Antonio, TX.

KATCHER, J. 1997. PostMark: A new filesystem benchmark. Tech. Rep. TR3022, Network Appliance.www.
netapp.com/tech_library/3022.html.

K ING, S. AND CHEN, P. 2003. Backtracking Intrusions. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03). ACM SIGOPS, Bolton Landing, NY.

K ISTLER, J. J.AND SATYANARAYANAN , M. 1991. Disconnected operation in the Coda file system. InPro-
ceedings of 13th ACM Symposium on Operating Systems Principles. ACM Press, Asilomar Conference Center,
Pacific Grove, CA, 213–225.

L. HUSTON AND R. SUKTHANKAR AND R. WICKREMESINGHE AND M. SATYANARAYANAN AND G. R.
GANGER AND E. RIEDEL AND A. A ILAMAKI . 2004. Diamond: A Storage Architecture for Early Discard in
Interactive Search. InProceedings of the Third USENIX Conference on File and Storage Technologies (FAST
2004). USENIX Association, San Francisco, CA, 73–86.

L I , Z., CHEN, Z., SRINIVASAN , S. M., AND ZHOU, Y. 2004. C-miner: Mining block correlations in storage
systems. InFAST ’04: Proceedings of the 3rd USENIX Conference on File and Storage Technologies. USENIX
Association, Berkeley, CA, USA, 173–186.

MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH , C.,AND ZHOU, L. 2004. Boxwood: Abstractions
as the foundation for storage infrastructure. InProceedings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004). ACM SIGOPS, San Francisco, CA, 105–120.

MAGOUTIS, K., DEVARAKONDA , M., AND MUNISWAMY-REDDY, K. 2007. Galapagos: Automatically discov-
ering application-data relationships in networked systems. InProceedings of the 10th IFIP/IEEE International
Symposium on Integrated Network Management. IEEE, Munich, Germany, 701–704.

MCKUSICK, M. K. AND GANGER, G. R. 1999. Soft Updates: A Technique for Eliminating Most Synchronous
Writes in the Fast Filesystem. InProceedings of the Annual USENIX Technical Conference, FREENIX Track.
USENIX Association, Monterey, CA, 1–18.

MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,AND FABRY , R. S. 1984. A fast file system for UNIX.ACM
Transactions on Computer Systems 2,3 (August), 181–197.

MESNIER, M., GANGER, G. R.,AND RIEDEL, E. 2003. Object based storage.IEEE Communications Maga-
zine 41, 84–90. ieeexplore.ieee.org.

M ILLER , E., FREEMAN, W., LONG, D., AND REED, B. 2002. Strong security for network-attached storage.
In Proceedings of the First USENIX Conference on File and Storage Technologies (FAST 2002). USENIX
Association, Monterey, CA, 1–13.

MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND SCHWARZ, P. 1992. ARIES: a transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging.ACM
Trans. Database Syst. 17,1, 94–162.

MYSQL AB. 2005. MySQL: The World’s Most Popular Open Source Database.www.mysql.org.

NETWORK APPLIANCE INC. 2006. Network Appliance FAS6000 Series. Product Data Sheet.

PATTERSON, D., GIBSON, G.,AND KATZ , R. 1988. A case for redundant arrays of inexpensive disks (RAID).
In Proceedings of the ACM SIGMOD. ACM Press, Chicago, IL, 109–116.

PATTERSON, R., GIBSON, G., GINTING , E., STODOLSKY, D., AND ZELENKA , J. 1995. Informed Prefetching
and Caching. InProceedings of the 15th ACM Symposium on Operating System Principles (SOSP ’95). ACM
SIGOPS, Copper Mountain Resort, CO, 79–95.

RIEDEL, E. 1999. Active disks: Remote execution for network-attached storage. Tech. Rep. CMU-CS-99-177,
Carnegie-Mellon University. November.

ROSENBLUM, M. 1992. The design and implementation of a log-structuredfile system. Ph.D. thesis, Electrical
Engineering and Computer Sciences, Computer Science Division, University of California.

SATRAN , J., METH, K., SAPUNTZAKIS, C., CHADALAPAKA , M., AND ZEIDNER, E. 2004. Internet small
computer systems interface (iSCSI). Tech. Rep. RFC 3720, Network Working Group. April.

SELTZER, M., ENDO, Y., SMALL , C., AND SMITH , K. 1994. An introduction to the architecture of the VINO
kernel. Tech. Rep. TR-34-94, EECS Department, Harvard University.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage · 59

SELTZER, M. I., GANGER, G. R., MCKUSICK, M. K., SMITH , K. A., SOULES, C. A. N.,AND STEIN, C. A.
2000. Journaling versus soft updates: Asynchronous meta-data protection in file systems. InProc. of the
Annual USENIX Technical Conference. USENIX Association, San Diego, CA, 71–84.

SHEPLER, S., CALLAGHAN , B., ROBINSON, D., THURLOW, R., BEAME, C., EISLER, M., AND NOVECK, D.
2003. NFS Version 4 Protocol. Tech. Rep. RFC 3530, Network Working Group. April.

SIVATHANU , G., SUNDARARAMAN , S., AND ZADOK , E. 2006. Type-safe disks. InProceedings of the 7th
Symposium on Operating Systems Design and Implementation (OSDI 2006). ACM SIGOPS, Seattle, WA,
15–28.

SIVATHANU , M., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2002. Evolving RPC for active
storage. InProceedings of the 10th Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, San Jose, CA, 264–276.

SIVATHANU , M., PRABHAKARAN , V., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2004. Im-
proving storage system availability with D-GRAID. InProceedings of the Third USENIX Conference on File
and Storage Technologies (FAST 2004). USENIX Association, San Francisco, CA, 15–30.

SIVATHANU , M., PRABHAKARAN , V., POPOVICI, F. I., DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. 2003. Semantically-Smart Disk Systems. InProceedings of the Second USENIX
Conference on File and Storage Technologies (FAST ’03). USENIX Association, San Francisco, CA, 73–88.

STRUNK, J. D., GOODSON, G. R., SCHEINHOLTZ, M. L., SOULES, C. A. N., AND GANGER, G. R. 2000.
Self-securing storage: Protecting data in compromised systems. InProceedings of the 4th Usenix Symposium
on Operating System Design and Implementation (OSDI ’00). USENIX Association, San Diego, CA, 165–180.

SUN M ICROSYSTEMS. 1989. NFS: Network file system protocol specification. Tech. Rep. RFC 1094, Network
Working Group. March.

THERESKA, E., SALMON , B., STRUNK, J., WACHS, M., ABD-EL-MALEK , M., LOPEZ, J., AND GANGER,
G. R. 2006. Stardust: Tracking activity in a distributed storage system. InProceedings of the Joint Inter-
national Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’06). ACM, Saint
Malo, France, 3–14.

TOMKINS, A., PATTERSON, R., AND GIBSON, G. 1997. Informed Multi-Process Prefetching and Caching.In
Proceedings of the 1997 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.
ACM SIGOPS, Seattle, WA, 100–114.

TRANSACTION PROCESSINGPERFORMANCECOUNCIL. 2004. TPC Benchmark C, Standard Specification.
www.tpc.org/tpcc.

TS’ O, T. 2008. E2fsprogs: Ext2/3/4 filesystem utilities.http://e2fsprogs.sourceforge.net.
TWEEDIE, S. 1998. Journaling the Linux ext2fs filesystem.
VERITAS SOFTWARE. 1999. VERITAS file server edition performance brief: A PostMark 1.11 benchmark

comparison. Tech. rep., Veritas Software Corporation. June.http://eval.veritas.com/webfiles/
docs/fsedition-postmark.pdf.

WEDDLE, C., OLDHAM , M., QIAN , J., WANG, A. A., REIHER, P., AND KUENNING, G. 2007. PARAID:
A gear-shifting power-aware RAID. InProceedings of the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07). USENIX Association, San Jose, CA, 245–260.

WRIGHT, C. P., MARTINO, M., AND ZADOK , E. 2003. NCryptfs: A secure and convenient cryptographic file
system. InProceedings of the Annual USENIX Technical Conference. USENIX Association, San Antonio,
TX, 197–210.

ZHU, Q., CHEN, Z., TAN , L., ZHOU, Y., KEETON, K., AND WILKES, J. 2005. Hibernator: Helping disk arrays
sleep through the winter. InProceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP
’05). ACM Press, Brighton, UK, 177–190.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

