0 : Gopalan Sivathanu et al.

Dear TOS editors and reviewers,
Attached please find our submission to the ACM TransactiorStorage Systems.

Our paper is titled End-to-End Abstractions for Application-Aware Stordda this arti-
cle, we provide an overview of the problem of “informatioapj in the storage stack, and
present two novel abstractions that effectively bridge tiap, thereby enabling a range
of functionality that is almost impossible to achieve wittisting systems and interfaces.
Most of the material in this article forms part of Gopalana@hanu’s Ph.D. dissertation.

Our first abstraction i$ype-Aware Storaghat aims communicating pointer information to
the disk hardware. We have published this abstraction inI@BD6. This article includes
a new unpublished case-study of type-aware storage, Déslel Data Consistency.” This
case-study proposes and evaluates how complex highdetavastency properties can be
achieved at the disk hardware-level, in a file-system—agno&nner.

Our second abstraction Gontext-Aware 1/Qa flexible mechanism to communicate be-
tween applications and data, across the storage stack. é¥emirthe design, implementa-
tion, and evaluation of the above abstraction, and dematests usefulness through two
separate case-studies. This abstraction and its casesshaVye not been published in any
other venue.

Overall, of this 60 page article, about 60 percent is new bliglied material.

This work was completely done when all authors were affitlatéth the File systems and
Storage Laboratory at Stony Brook University, New York.

Thank you for your time and effort in reviewing this article.
Sincerely,

Gopalan Sivathanu
Google Inc.

Swaminathan Sundararaman
University of Wisconsin-Madison

Kiron Vijayasankar
Riverbed Technology Inc.

Chaitanya Yalamanchili
Erez Zadok
Stony Brook University

End-to-End Abstractions for Application-Aware
Storage

GOPALAN SIVATHANU

Google Inc.

and

SWAMINATHAN SUNDARARAMAN
University of Wisconsin-Madison.
and

KIRON VIJAYASANKAR
Riverbed Technologies Inc.

and

CHAITANYA YALAMANCHILI
Stony Brook University.

and

EREZ ZADOK

Stony Brook University.

Modern computer systems are a composition of several logically independent layers. Althought
providing many important benefits, this rampant layering has also led to the well-explored problem
of information-divide in the systems stack. Layers hide information, thus constraining function-
ality and limiting the power of individual layers. A particularly striking instance of this general
problem exists in the storage stack today. Modern high-end storage systems have significant
processing capabilities, but despite their potential, storage systems are constrained in their func-
tionality because they are oblivious of higher layers and the applications using them. In this article,
we seek to answer a simple question: how can we convey application-level information across the
diverse modern storage stack in a simple and generic manner? We propose two flexible abstrac-
tions to solve this problem. The first abstraction is the notion of type-awareness in the storage
stack. In type-aware storage, lower layers of the storage stack such as the disk are aware of the
pointer relationships between disk blocks that are imposed by higher layers such as the file system.
Type-awareness enables semantics-aware optimizations and new functionality in the lower layers
of the storage stack. The second abstraction we describe is Context-Aware I/O (CAIO), a generic
mechanism to propagate information end-to-end through the storage stack. CAIO provides a sim-
ple, yet effective interface to communicate application-data and application-1/0O relationships to
the storage stack, enabling interesting functionality. Through several case studies, we demonstrate
the flexibility and benefits of both abstractions and show that they present a simple yet effective
general interface to build the next generation of storage systems.

Categories and Subject Descriptors: D.40pérating Systems]: Storage ManagementStorage hierarchies

Author’s Address: Gopalan Sivathanu, 1600 Amphitheatekway, Mountain View, CA, 94043

Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfppoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead agtice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 1533-3077/20YY/0000-0001 $5.00

ACM Transactions on Storage, Vol. V, No. N, Month 20YY, Page§9.

2 : Gopalan Sivathanu et al.

D.4.2 [Operating Systems]: Storage ManagementSecondary storageD.4.2 [Operating Systems]: Storage
Management-Allocation/deallocation strategie®.4.2 [Operating Systems): File Systems ManagementAe-
cess methogdD.4.2 [Operating Systems]: File Systems Managementrite organization D.4.6 [Operating
Systems]: Security and Privacy ProtectionAecess controlsD.4.6 [Operating Systems]: Security and Privacy
Protection—Authentication D.4.7 [Operating Systems]: Organization and DesignHierarchical Design

General Terms: Design, Experimentation, Reliability, Security, Measurement, Performance
Additional Key Words and Phrases: Storage Stack, Intelligent Disks, File Systems, Storage Sys-
tems

1. INTRODUCTION

Computer system design over the past years has revolvedditba principle of layer-
ing [Dijkstra 1968]. Building systems as a hierarchy of lesyenables localized and in-
dependent innovation in the individual layers. For examiplé¢he network protocol stack
comprising layers such as application, transport, netyanll data link—each layer can in-
dependently innovate as long as the interface exporteetottier layers is intact. With the
growing complexity of today’s systems, layering has becamgindispensable technique
in hardware and software design.

Despite its obvious benefits, layered system design als@savith an inevitable side-
effect: information available at one layer is not visibletla¢ other layers beyond what
is permitted by the interface separating those layers. mpact of this lack of informa-
tion is becoming more pronounced in the recent years as thereneed for individual
layers to support advanced functionality, requiring ciag®r information. This problem
is exacerbated by the fact that recent advancements in demgystems such as virtual
machine technology [Barham et al. 2003] have introduceckrtayrers of virtualization in
the systems stack, further widening this information-gegrhniques to address this gen-
eral problem of the information-gap across layers haveedrigom building application-
extensible OSes [Bershad et al. 1995; Engler et al. 1995peartt-new abstractions [Mes-
nier et al. 2003; Sivathanu et al. 2006; MacCormick et al.2denehy et al. 2002], to
more evolutionary approaches such as applications passitgfPatterson et al. 1995; Cao
et al. 1996; de Jonge et al. 2003], applications implicitijtiencing OS behavior [Arpaci-
Dusseau and Arpaci-Dusseau 2001; Burnett et al. 2002], atiodatically inferring cross-
layer information [Arpaci-Dusseau and Arpaci-Dusseaul2@vathanu et al. 2003].

In the modern storage hierarchy, the general problem ofrimétion-gap between layers
has hampered development of new functionality. Largeesstarage systems today com-
prise diverse resources that include high processing pbwedreds of gigabytes of RAM,
solid state storage media such as flash, and hundreds orlemesands of disks [EMC
Corporation 1999; Network Appliance Inc. 2006]. Despitesth advancements in storage
hardware, storage systems are constrained in the rangeafdnality they can provide,
because they lack information about higher-level data s¢ing

Techniques to address this general problem of the infoonajap across layers have
ranged from building application-extensible OSes [Bedstizal. 1995; Engler et al. 1995]
and brand-new abstractions [Mesnier et al. 2003; Sivatledal 2006; MacCormick et al.
2004; Denehy et al. 2002], to more evolutionary approachels as applications passing
hints [Patterson et al. 1995; Cao et al. 1996; de Jonge eD@8]2applications implicitly

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 3

influencing OS behavior [Arpaci-Dusseau and Arpaci-Dus2801; Burnett et al. 2002],
and automatically inferring cross-layer information [Agi-Dusseau and Arpaci-Dusseau
2001; Sivathanu et al. 2003]. However, none of the existoigt®ns enable conveying
bothapplication-dataandapplication-1/Orelationships to the storage stack, in an end-to-
end fashion (user applications to the storage hardware).

Our approach to solve the problem of information-gap is toppgateminimal and
genericinformation relating to data and 1/O, from higher-levelday of the storage stack to
the lowest-level (the storage hardware). We developed emeigc abstractions to encode
structuralandoperationalinformation available at the application-level and comicate
it as part of /0 operations. Our first abstractioryipe-awarenesswvhich is to commu-
nicate pointers between disk blocks to the lower layers of the storage stdvddinters
establish relationships between disk blocks in a generiocn@ia and are maintained by
layers such as file systems or databases. Our second albstiacbntext-aware storage
which is to communicate higher-leviegical context of I/O operations across the storage
stack. For example, all I/O operations generated from alesinger application can be
grouped under the same logical context.

The following are the three key characteristics of our apphothat differentiate our
work from previous approaches:

(1) The information being communicated from higher-lewasidrs is already available at
the corresponding layers (e.g., file systems already trémtkipointers), and hence
communicating such information requires limited and gindfiorward modifications
to existing infrastructure. More specifically, the modifioas required to layers in
our approach arenplementation-levelThese modifications are much easier to make
compared to thdesign-levemodifications required with brand-new abstractions such
as Object-based Storage [Mesnier et al. 2003].

(2) By decoupling thegenerationof information at the higher layers from how the in-
formation isusedat the lower layers, we obviate the need for explicit cocation
between any two layers to support our abstractions. Ourtgioor context informa-
tion is not generated with any specific layer or functiowalitmind.

(3) Our abstractions extend end-to-end across the stotagdle ¢i.e., from user applica-
tions to the storage hardware), hence allowing a wide-rahggeresting functionality
in the different layers of the storage stack.

We have implemented prototypes of both our abstractionssamdral case-studies to
demonstrate their usefulness, for the Linux kernel 2.6.T6.evaluate disk-level func-
tionality, we built our own software-level disk prototygiframework. Our framework
operates as a pseudo device driver that interposes betiveditetsystem and the regular
disk drivers. One key challenge in this prototyping envinamt is to ensure there is no per-
formance interference between the host application anpriteessing at the pseudo driver
layer. By careful use of kernel isolation techniques, weasaie the CPU and memory
usage of the software prototype from the “host” applicatichus providing a very close
approximation of an actual hardware prototype with its owocpssing and memory. We
believe that this prototyping environment is valuable mgeaerally for evaluating other
kinds of functionality in the storage system. We also plaretease the source code of our
framework and the case-studies under GPL.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

4 : Gopalan Sivathanu et al.

The key contributions of this article are as follows:

—Formulation of thepointer abstraction and the design of the Type-Safe Disk interface
that enables easy communication of higher-level pointetise disk system.

—Design, implementation, and evaluation of two case-stuthat demonstrate the secu-
rity functionality and performance optimizations thatéypwareness enables.

—Formulation of thehierarchical contextibstraction and the Linux implementation of the
context propagation infrastructure.

—Design, implementation, and evaluation of two case-s&itth demonstrate the power
and generality of the context abstraction.

—Implementation of a software-level framework to easilyl @tcurately prototype disk-
level functionality. This framework provides an interastichoice between hardware-
level prototyping and entirely simulation-based protdatygp

The rest of this article is organized as follows. Sectionstdsses some background
information. In Section 3, we present the detailed desigiplémentation, and evaluation
of type-aware storage. In Sections 4 and 5, we describe tae-s@dies that use type-
aware storage. Section 6 presents context-aware I/O. io88d and 8, we describe two
case-studies of context-aware I/O. In Section 9 we disceissed work, and we finally
conclude in Section 10.

2. BACKGROUND

In this section, we discuss background information aboaitlodern storage stack, large-
scale storage systems, RAID levels, and file systems.

2.1 Modern Storage Stack

In the past file systems communicated directly with disksdiggihardware-specific infor-
mation such as tracks and sectors. The storage stack hasewijnificantly since then.
Disk hardware information is virtualized through blockskd interfaces such as SCSI and
ATA. Layers such as RAID [Patterson et al. 1988] or logicalumee managers can ex-
ist beneath file systems, and they aggregate several indepedisks. File systems are
completely unaware of whether they are communicating witlingle disk system or a
RAID array. In today’s storage stack, even a network cant dsasveen file systems and
the storage hardware [Satran et al. 2004; Sun Microsyst&88; Lallaghan et al. 1995;
Shepler et al. 2003], and higher-level user applicatioescampletely oblivous to these
intermediate layers.

2.2 Large-Scale Storage Systems

Large-scale storage systems today comprise diverse pEsotirat include high process-
ing power, hundreds of gigabytes of RAM, solid state stonagelia such as flash, and
hundreds or even thousands of disks [EMC Corporation 1989®@jdern storage systems
run complex software to provide functionality such as tality, fault-tolerance, and high

performance I/O. One of the challenges in such storagemgsieto effectively manage
the wide range of resources to provide optimal performamcecastomizable features.
However, despite the advancement in storage hardwarentiéwdaice used for communi-
cating with hardware devices is still simple and narrow instrecenarios. For example,
the SCSI interface supports just two main primitives, bloelad andwr i t e, resulting

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 5

in the storage system being mostly oblivious to higherdllinfermation. This makes effi-
cient resource management within modern storage systeiiffscaltproblem, as storage
systems cannot discriminate between the different kindisfofmation they store.

Some existing systems try to work around this problem by gimpmore information to
higher-level software [Denehy et al. 2002; IBM 2007a)]. Feample, certain enterprise-
class storage systems allow higher-level software to ahttos RAID level to use for a
new volume, during its creation [IBM 2007b]. However, thesjuires that the file sys-
tem or higher-level storage software be aware of the cheriatits of each volume, which
could be totally tied to the internal architecture of thedfie storage systems. For ex-
ample, a storage system could contain several fine-graif¢id Rvels, and devices such
as NVRAM and solid state memory. Storage architecturesdcalsio be different across
vendors and models, and it may be cumbersome to customizgsilems for specific stor-
age systems. Moreover, the abstraction of a volume is in oasss too coarse-grained to
express difference in access characteristics across files.

3. TYPE-AWARE STORAGE INFRASTRUCTURE

Type-safety is a well explored concept in the field of progmang languages, with proven
benefits such as controlled access to memory. We proposésciodethe property of type-
awareness and type-safety to the disk subsystem, and shbivdhn significantly improve
the security and functionality of the disk subsystem. Sidly, we advocate regulating
access to disk blocks to conform to well-defined rules, thatuederstood and enforced
by the disk itself. In building this, we leverage the facttttiee semantics of most file sys-
tems today can be broadly classified into two categories:data blocks, angointersor
references thatimplement logical relationships betwesta blocks (for example, dentries-
inodes and inodes-data blocks). We defirtge-awaredisk as one that can differentiate
between these two distinct types of information it storesc®a disk has this information,
it can exploit this knowledge to provide better functiohaliWe believe that this simple
type-awareness could be a significant source of semanticniattion that can bridge the
semantic gap between file systems and storage devices.uglitseveral existing research
projects like Object-based Storage Devices (OSD) explioeenatives to bridge this gap,
we believe that data-pointerabstraction is the right interface that a disk should prewid
file systems. A disk that is type-aware aamforcetype safety by limiting block accesses to
only the legal set of pointers, thus preventing arbitranckldereferencing. We call such
a disk atype-safe diskTSD).

TSDs require a few changes to the current block-based auerfFirst, like any other
type-safe system, allocation and deallocation has to benihd control of the disk system.
By performing block allocation and de-allocation, a TSDeBdhe file system from the
need for free-space management. Similar in spirit to tygfe-programming languages, a
TSD also exploits its pointer awareness to perform autangaibage collection of unused
blocks; blocks which have no pointers pointing to them aotaimed automatically, thus
freeing file systems of the need to track reference countslémks in many cases.

In this section we present in more detail, our type-awareag® abstraction, and two
case-studies that we built to show the usefulness of ouraaititn.

This section is organized as follows. In Section 3.1 we disahe utility of pointer
information at the disk. Section 3.2 discusses the desigriraplementation of the basic
TSD framework. In Section 3.3 we describe file system sugpofSDs. In Section 3.4

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

6 : Gopalan Sivathanu et al.

we present the software-level disk prototyping environthikeat we built to evaluate the
idea of TSDs and all our case-studies. We describe our gpddmplementation in Sec-
tion 3.5. We present the evaluation of our prototype impletaigon of TSD in Section 3.6.

3.1 Motivation
In this section we present an extended motivation.

Pointers as a proxy for data semanticghe inter-linkage between blocks conveys rich
semantic information about the structure imposed on theelokahigher layers. Most mod-
ern file systems and database systems make extensive usintdrpdo organize disk
blocks. For example, in a typical file system, directory Btogically point to inode
blocks which in turn point to indirect blocks and regularalbtocks. Blocks pointed to
by the same pointer block are often semantically relategl,(#rey belong to the same file
or directory). Pointers also define reachability: if an iadadock is corrupt, the file sys-
tem cannot access any of the data blocks it points to. Thustgre convey information
about which blocks impact the availability of the file systenvarious degrees. Database
systems are very similar in their usage of pointers. Theglree indexes that contain
on-disk pointers, and their extent maps track the set olislbelonging to a table or index.

In addition to being passively aware of pointer relatiopsha type-safe disk takes it one
step further. It actively enforces invariants on data astesed on the pointer knowledge
it has. This feature of a TSD enables independent verificaifdile system operations;
more specifically, it can provide an additional perimetesexfurity and integrity in the case
of buggy file systems or a compromised OS. As we show in Sedtiartype-safe disk can
limit the damage caused to stored data, even by an attactteramt privileges. We believe
this active nature of control and enforcement possible thighpointer abstraction makes it
powerful compared to other more passive information-bagedfaces.

Pointers thus present a simple but general way of captupptication semantics. By
aligning with the core abstraction used by higher-leveliappion designs, a TSD has the
potential to enable on-disk functionality that exploitsalaemantics. In the next subsec-
tion, we list a few examples of new functionality (some pregain previous work in the
context of alternative approaches) that TSDs enable.

Applications. There are several possible uses of TSDs.

Selective Data ReplicatiorSince TSDs are capable of differentiating data and point-
ers, they can identify metadata blocks as those blocks trdain outgoing pointers and
replicate them to a higher degree, or distribute them evaeigss all the disks. This could
provide graceful degradation of availability as providgd»GRAID [Sivathanu et al.
2004].

Data colocation.Using the knowledge of pointers, a TSD can co-locate bloéksga
with their reference blocks (blocks that point to them). émgral, blocks will be accessed
just after their pointer blocks are accessed, and hence timaurld be better locality during
access.

Intelligent Prefetching.TSDs can perform intelligent prefetching of data becaugbhef
pointer information. When a pointer block is accessed, a t&Dprefetch the data blocks
pointed to by it, and store it in the on-disk buffers for imped read performance.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 7

Disk-level security.TSDs can provide new security properties using the pointenk-
edge by enforcingmplicit capabilities. We discuss this in detail in Section 4.

Secure deletionTSDs can perform automatic secure deletion of deleted blbgkrack-
ing block liveness using pointer knowledge.

3.2 Type-Safety at the Disk Level

Having pointer information inside the disk system enabldgeement of interesting con-
straints on data access. For example, a TSD allows accesdytthose blocks that are
reachable through some pointer path. TSDs manage blockasibms and enforce that
every block must be allocated in the context of an existinigeo path, thus preventing
allocated blocks from becoming unreachable. More intergist TSDs enable disk-level
enforcement of much richer constraints for data securityesgribed in our case study in
section 4.

Enforcing such access constraints based on pointer neddtijps between blocks is a re-
stricted form oftype-safetya well-known concept in the field of programming languages.
The type information that a TSD exploits, however, is nagoin scope: TSDs just differ-
entiate between normal data and pointers.

We now detail the TSD interface, its operation, and our fyge implementation. Fig-
ure 1 shows the architectural differences between normksdind a TSD.

File System File System
Namespace Freespace Namespace
Management Management Management

A A

READ
VRI TE
READ
VWRI TE
LLOC _BLOCKS

CREATE_PTR
DELETE_PTR

DISK/RAID

<
DISK/RAID

Firmware

Freespace Pointer
Management Manager

Physical Storage

Firmware

Physical Storage

(a) Traditional Disk (b) Type—safe Disk

Fig. 1. Comparison of traditional disks vs. type-safe disks

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

8 : Gopalan Sivathanu et al.

Disk API. A type-safe disk exports the following primitives, in addit to the basic
block-based API:

—SET_BLOCKSIZE(Size): Sets the file system block size in bytes.
—ALLOC_BLOCKS(Ref, Hint, Count): AllocatesCount number of new file system blocks
from the disk-maintained free block list, and creates mmto the allocated blocks,
from block Ref. Allocated blocks need not be contiguouge f must be a valid block
number that was previously allocatefl.int is the block number closest to which the
new blocks should be allocateffint can be NULL, which means the disk can choose

the new block totally at its own discretion. Returns an awbgddresses of the newly
allocated blocks, or NULL if there are not enough free blookghe device.
—ALLOC_CONTIG_BLOCKS(Ref, Hint, Count): Follows the same semantics#13. OC_BLOCKS,
except that it allocateS'ount number of contiguous blocks if available.
—CREATEPTR(Sr¢, Dest): Creates a pointer from blockrc to block Dest. Both Sre
and Dest must be previously allocated. Returns success or failure.
—DELETE_PTR(Sr¢, Dest): Deletes a pointer from blocKrc that points to blockDest.
Semantics similar tCREATE PTR.
—GET_FREE Returns the number of free blocks left.

Managing Block PointersA TSD needs to maintain internal data-structures to keep
track of all pointers between blocks. It maintains a poimtacking table calle@TABLE
that stores the set of all pointers. TheABLE is indexed by the source block number and
each table entry contains the list of destination block nersb A newPTABLE entry is
added every time a pointer is created. Based on pointemr#ton, TSD disk blocks are
classified into three kinds: (&eference block$locks with both incoming and outgoing
pointers (such as inode blocks). (data blocks blocks without any outgoing pointers but
just incoming pointers. (clRroot blocks a pre-determined set of blocks that contain just
outgoing pointers but not incoming pointers. Root bloclksragver allocated or freed, and
they are statically determined by the disk. Root blocks aegldor storing boot information
or the primary metadata block of file systems (e.g., the Exg@sblock).

Free-Space Managemento perform free-space management at the disk level, we track
live and free blocks. A TSD internally maintains an allooatbitmap,ALLOC-BITMAP,
containing one bit for every logical unit of data maintain®dthe higher level software
(e.g., a file system block). The size of a logical unit is sethwy upper-level software
through theseT_BLOCKSIZE disk primitive. When a new block need to be allocated, the
TSD can choose a free block closest to the hint block numbssgubby the caller. Since
the TSD can exploit the low level knowledge it has, it chooaddock number which
requires the least access time from the hint block.

TSDs use the knowledge of block liveness (a block is defindaetdead if it has no
incoming pointers) to perform garbage collection. Unlikaditional garbage collection
systems in programming languages, garbage collection D & penssynchronously
during a particulanELETE_PTR call which deletes the last incoming pointer to a block.
A TSD maintains a reference count tabfgABLE, to speed up garbage collection. The
reference count of a block gets incremented every time a nemniing pointer is created
and is decremented during pointer deletions. When thearéer count of a block drops
to zero during abELETE_PTR call, the block is marked free immediately. A TSD per-
forms garbage collection one block at a time as opposed fonp&ng cascading deletes.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 9

Garbage collection of reference blocks with outgoing pisits prevented by disallowing
deletion of the last pointer to a reference block beforewtijjoing pointers in it are deleted.

Consistency As TSDs maintain separate pointer information, TSD pofmteuld be-
come inconsistent with the file system pointers during systeashes. Therefore, upon a
system crash, the consistency mechanism of the file systeiggered which checks file
system pointers against TSD pointers and first fixes any sistancies between both. It
then performs a regular scan of the file system to fix file systeonsistencies and update
the TSD pointers appropriately. For example, if the comsisy mechanism creates a new
inode pointer to fix an inconsistency, it also calls trREATE PTR primitive to update the
TSD internal pointers. Alternatively, we can obviate thedéor consistency mechanisms
by just modifying file systems to use TSD pointers instead aifrmaining their own copy
in their meta-data. However, this involves wide-scale rficgions to the file system.

File system integrity checkers suchfasck for TSDs have to run in a privileged mode
so that they can perform a scan of the disk without being stdgeto the constraints
enforced by TSDs. This privileged mode can use a special rasimtive interface that
overrides TSD constraints and provides direct access f6$iepointer management data-
structures.

Block corruption.When a block containing TSD-maintained pointer data-stmes
gets corrupted the pointer information has to be recova®the data blocks pertaining to
the pointers could still be reachable through the file systesta-data. Block corruption
can be detected using well-known methods such as checksigntdpon detection, the
TSD notifies the file system, which recreates the lost parftem its meta-data.

3.3 File System Support

We now describe how a file system needs to be modified to use aWW8krst describe the
general modifications required to make any file system wothk a/irSD. Next, we describe
our modifications to two file systems, Linux Ext2 and VFAT, &ewur framework.

Since TSDs perform free-space management at the disk-fdgedystems using TSDs
are freed from the complexity of allocation algorithms, &maaking free block bitmaps and
other related meta-data. However, file systems now needlttheadisk API to perform
allocations, pointer management, and getting the freekbloount. The following are the
general modifications required to existing file systems ppsut type-safe disks:

(1) Thenkf s program should set the file system block size usingsthe BLOCKSIZE
primitive, and store the primary meta-data block of the filstem (e.g., the Ext2 super
block) in one of the TSD root blocks. Note that the TSD rootkkare a designated
set of well-known blocks known to the file system.

(2) The free-space managementsub-system should be eigdiinam the file system, and
TSD API should be used for block allocations. The file systeatine that estimates
free-space, should call tteeT_FREEdisk API, instead of consulting its own allocation
structures.

(3) Whenever file systems add new pointers to their meta-d&BATE PTR disk prim-
itive should be called to create a TSD pointer. Similarlg tELETE_PTR primitive
has to be called when pointers are removed from the file system

In the next two sub-sections we describe the modificatioaitle made to the Ext2 and
the VFAT file systems under Linux, to support type-safe disks

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

10 . Gopalan Sivathanu et al.

Ext2TSD.We modified the Linux Ext2 file system to support type-saféslisve call
the modified file systerExt2TSD The Ext2 file system groups together a fixed number of
sequential blocks into a block group and the file system isagad as a series of block
groups. This is done to keep related blocks together. Eamtklgroup contains a copy
of the super block, inode and block allocation data-stmastuand the inode blocks. The
inode table is a contiguous array of blocks in the block gritxgp contain on-disk inodes.

To modify Ext2 to support TSDs, we removed the notion of blgcaups from Ext2.
Since allocations and de-allocations are done by usingigheARPI, the file system need
not group blocks based on their order. However, to perforsy @ode allocation in tune
with Ext2, we maintain inode groups which we calEGMENTS Each isegment contains
a segment descriptor that has an inode bitmap to track théauai free inodes in that
isegment. The inode allocation algorithm of Ext2TSD is saw¢hat of Ext2. Thekf s
user program of Ext2TSD writes the super block, and allectte inode segment descrip-
tor blocks, and inode tables using the allocation API of thsik.dIt also creates pointers
from the super block to all blocks containing isegment dpsars and inode tables.

The organization of file data in Ext2TSD follows the same cttite as Ext2. When
a new file data or indirect block is allocated, Ext2TSD calls oc_BLOCKS with the
corresponding inode block or the indirect block as the mfee block. While truncating
a file, Ext2TSD just deletes the pointers in the indirect klbcanches in the right order
such that all outgoing pointers from the parent block to litiidcblocks are deleted before
deleting the incoming pointer to the parent block. Thus kédgelonging to truncated or
deleted files are automatically reclaimed by the disk.

In the Ext2 file system, each directory entry contains thalénaumber for the cor-
responding file or directory. This is a logical pointer relaship between the directory
block and the inode block. In our implementation of Ext2T8[@,create physical pointers
between a directory block and the inode blocks correspgnditthe inode numbers con-
tained in every directory entry in the directory block. Mfyilig the Ext2 file system to
support TSD was relatively simple. It took 8 days for us tdd&Ext2TSD starting from
a vanilla Ext2 file system. We removed 538 lines of code frort2Emhich are mostly the
code required for block allocation and bitmap managemenrd. adied 90 lines of new
kernel code and modified 836 lines of existing code.

3.4 A Software-Level Disk Prototyping Framework

In this section, we describe our generic disk functiongitytotyping framework, DPROTO,
that we built for the Linux kernel 2.6.15.

We developed DPROTO as a pseudo-device driver that stackspoof one or more
lower-level disk or software RAID drivers, in a single maoki One of the main chal-
langes in developing DPROTO is isolating the resourceswoors by components that are
supposed to go inside the disk firmware if it were a real im@etation. For example,
if the functionality being prototyped is a disk-level datanpression technique, the part
of DPROTO that performs compression has to consume resotitaeare completely iso-
lated from that used by applications and file systems, whidfifficult in a single machine
setup.

While developing DPROTO we aimed at isolating key resoyr€&3J and memory, be-
tween disk-level functionality and higher-level applicas. For CPU isolation, we use a
multiprocessor setup and ensure that disk-level funclityredways gets executed in a ded-
icated processor. For memory isolation, we implemented@ated preallocated memory

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 11

File System

Generic Block Layer

DPROTO Request Layer

Processor 1

Preallocated
Memory pool

Disk Hardware

Fig. 2. DPROTO Architecture

pool and ensured that disk functionality never accessesanebeyond the preallocated
range.

Figure 2 shows the architecture of DPROTO. We implementeg#eudo-device driver
as two layers: the upper layer running in the context of tleesfjistem and the lower layer
running as a separate thread bound to an isolated CPU. @sletuests generated from
the file system reach the upper layer of DPROTO, which add®tiest to a shared queue.
The lower layer services requests from the queue and eubmrpaases it down to physical
storage. Any disk-level functionality such as compressionld be handled by the lower-
level service thread and hence runs in an isolated CPU. Afhang allocations done by
both layers of DPROTO use the preallocated memory pool. &fbex, DPROTO requires
specifying the total memory requirement for a given funaility before hand.

To test the performance of a disk-level functionality ptgp®d using DPROTO, the
comparison reference can be run with one processor disaleédvith the appropriate
size of memory preallocated. For example, if a compressigsi gistem is compared to
a regular disk system for a particular workload, the regdisk run of the workload has
to be done with one processor disabled and the preallocaetbny equal to the memory
requirement of the compression disk. With this procedure,domparison becomes fair
and closely represents the results of a real implementation

Our implementation of DPROTO had 5,790 lines of new kernelecand 350 lines of
user-level code.

DPROTO OverheadsWe evaluated the performance of DPROTO framework as a null
layer that stacks on top of a regular disk. We ran Postmartwfodifferent configurations
on an Ext2 file system mounted on the null DPROTO layer, andoewed it with Postmark

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

12 . Gopalan Sivathanu et al.

Wait ——
500 r User o=~y
System m—
z L 373.1 386.8
g 400 -
1S
[}
L
o 300
£
i
kel
@ 200 -
o
K
m]
100 r
0 —
Ext2 DPROTO

Fig. 3. Postmark results for DPROTO vs. regular disk

run on a regular disk. Figure 3 shows the overheads of DPRQ@Tdpared to a regular
disk. The overall elapsed time overhead of DPROTO was 3.G%peoed to regular disks.
This is contributed mostly by increased in wait time, causechuse of an additional level
of indirection in the DPROTO request service queue.

3.5 TSD Implementation

We implemented a prototype TSD using our DPROTO softwaretldisk prototyping
framework, in the Linux kernel 2.6.15. It contains 3,1088mof kernel code. The TSD
layer receives all block requests, and redirects the commemah and write requests to the
lower level device driver. The additional primitives rexpd for operations such as block
allocation and pointer management are implemented asrdroet | s.

We implemente®TABLE andRTABLE as in-memory hash tables which gets written out
to disk at regular intervals of time through an asynchrorammsmit thread. In implement-
ing theRTABLE, we add an optimization to reduce the number of entries ra@ied in the
hash table. We add only those blocks whose reference cogreager than one. A block
which is allocated and which does not have an entry inRIwBLE is deemed to have
a reference count of one and an unallocated block (as iredidat theALLOC _BITMAP)
is deemed to have a reference count of zero. This significaetiuces the size of our
RTABLE, because most disk blocks have reference counts of zeroeofeng., all data
blocks have reference counts zero or one).

Memory usageln our prototype implementation we maintained all TSD dsttaictures
in memory. The space overheads associated with TSD poiateking and free-space
management is directly related to the number of file systemks on disk. We found
that the TSD pointer meta-data per file system block will leselto 20 bytes (with an
average of one incoming pointer per block). Assuming a fiteay block size of 4KB, the
total space overheads for TSDs totals upto 0.5% of the disk $h a real firmware-level
implementation of TSDs, the entire meta-data need not bataiaed in memory. At any
given time, the working-set of TSD pointers is limited to tiieectories and files being
accessed. Hence, we believe that it would be sufficient iéetion of the TSD meta-data
(about 10%) is cached in memory, and the rest of the metacdathe stored on secondary
storage.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 13

3.6 Evaluation

We evaluated the performance of our prototype TSD framewndhe context of Ext2TSD.
We ran general-purpose workloads and also micro-benctsaarkur prototype and com-
pared them with unmodified Ext2 file system on a regular digks $ection is organized
as follows: first we talk about our test platform, configuvas, and procedures. Next, we
analyse the performance of the TSD framework with the Ex21ile system.

Test Infrastructure We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a
250GB, LSlLogic SCSI disk. We used Fedora Core 6, runningrallgaLinux 2.6.15
kernel. To ensure a cold cache, we unmounted all involvedytems between each test.
We ran all tests at least five times and computed 95% confidaetexwals for the mean
elapsed, system, user, and wait times using the Stude@istribution. In each case, the
half-widths of the intervals were less than 5% of the meanit Wae is the elapsed time
less CPU time used and consists mostly of I/0, but procesdsding can also affect it.
We recorded disk statistics frohpr oc/ di skst at s for our test disk. We analysed the
following detailed disk-usage statistics while interprgtthe results: the number of read
I/O requestsr(i 0), number of write 1/0 requests\{ 0), number of sectors readgect),
number of sectors writterwéect), number of read requests mergedrér ge), number
of write requests mergeduier ge), total time taken for read requestsuse), and the
total time taken for write requestaise).

Benchmarks and Configurations.

Postmark.We used Postmark v1.5 to generate an I/O-intensive workld&astmark
stresses the file system by performing a series of operasiotis as directory lookups,
creations, and deletions on small files [Katcher 1997]. mRask is typically configured
by specifying a number of initial files, and a fixed numbetrafisactions Postmark then
creates the initial pool of files, performs the fixed numbdrafisactions, and removes any
left over files.

Kernel Compile.To simulate a relatively CPU-intensive user workload, wenpied
the Linux kernel source code. We used a vanilla Linux 2.6 4mé&l, and analyzed the
overheads of Ext2TSD, for theake ol dconfi g andmake operations combined.

Sprite LFS Benchmarkslo isolate the overheads of individual file system operation
we ran the entire suite of Sprite LFS benchmarks [Rosenbl@82l The Sprite LFS
benchmarks contains two sets of workloads, for meta-dadadata operations. The first
set deals with small files and tests, file creation, read, dedléletion. The second set
operates on large files and performs sequential and rancis eand writes.

Postmark ResultsWe ran the Postmark benchmark on three setups: (1) regutar Ex
over a regular disk, (2) regular Ext2 on DPROTO, and (3) EsiRTover our implemen-
tation of TSD. We configured Postmark with two different cgofations. In the first
configuration, we used 10,000 files with sizes ranging fro®KB®to 200KB, and 10,000
transactions. Figure 4(a) shows the overheads of DPROTQH@SD infrastructure
for this configuration. As evident from the figure, Ext2 over @rototyping infrastruc-
ture DPROTO had negligible overheads compared to Ext2 ovegalar disk. However
Ext2TSD ran 7% faster than regular Ext2 inspite of a 1.3 timesease in system time.
The increase in system time is because of the deviaet | s that Ext2TSD calls for the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

14 . Gopalan Sivathanu et al.

500 800

Wait —— Wait ——
User ===y User ==Y
System m— 700 ¢ System m—
400 r
600 -
298.8 295.5 468.0 . 495.1
300 r 276.3 ? a6

200

Elapsed Time (seconds)
Elapsed Time (seconds)

100

Ext2 Ext2NULL Ext2TSD Ext2 Ext2NULL Ext2TSD

Fig. 4. Postmark Results: (a) 10,000 files, sizes 100KB to 200KB0DQransactions. Ext2NULL indicates the
results for regular Ext2 over a NULL pseudo-device drivby}. 1,000 files, sizes 1MB to 3MB, 5,000 transactions.

pointer operations. From the kernel disk 1/O statistics,faund that the 10% decrease
in wait time for Ext2TSD compared to regular Ext2 is causedriaye requests getting
merged at the device driver layer. This is because, blodkcation is performed by TSDs
in the case of Ext2TSD, and there was better spatial locaditgpared to regular Ext2.

Figure 4(b) shows the results for a different configuratibR@stmark. For this we used
1,000 files with sizes ranging from 1MB to 3MB, and performe@® transactions. In this
configuration, Ext2TSD had an elapsed time overhead of 50¥#pared to regular Ext2.
The system time overhead was 1.9 times and wait time was S8érléisan regular Ext2.
This shows that for larger files, the savings in I/O time beseanf better spatial locality is
lesser compared to smaller files.

500

400

305.2

N}
©
o
o

300

200

Elapsed Time (seconds)

100

Ext2NULL Ext2TSD

Fig. 5. Kernel Compile Results. Ext2NULL indicates the resultsrégular Ext2 over a NULL pseudo-device
driver.

Kernel Compile ResultsResults for the kernel compilation benchmark is shown in Fig
ure 5. Ext2TSD had a small elapsed time overhead of 1.5% c@upa regular Ext2.
This was caused by a 7% increase in system time and 60% iedreasit time. The sys-
tem time increase in this case is smaller compared to theraolstresults because kernel
compile is a predominantly CPU-intensive workload and ledras much lesser number of

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 15

pointer operations. The wait time increase is because tirecoepilation thread waits for
the DPROTO disk thread to complete pointer operations. Tdietime increase is more
pronounced here because the time interval between I/Ogerdnan that of Postmark.

Sprite LFS Benchmark Resultd/e ran the entire suite of Sprite LFS benchmarks on
Ext2 over a regular disk, and Ext2TSD over our prototype TSD.

Meta-data benchmarkslo generate a small file creation workload, we created 10000,
files, with size 4KB each, in 1,000 sub-directories. For sgagk remounted the file system
and read all the 1,000,000 files we created. For deletes, lirikad all files.

250 700
Elapsed —— Elapsed ——
User Sss3 User Sss3
System — 600 - System m—mm
200
§ § 500 461.0
5 1535 5 447.0
53 - 53
® 150 144.2 @
2 £ 400 +
<5} <5}
£ £
[= - L
= 100 - 300
Q Q
2 2
& < 200
w w
50
100
0 0
Ext2 Ext2TSD Ext2 Ext2TSD

200

Elapsed ——

Elapsed Time (seconds)
= =
o u
o o
©
>
B

o
=]

Ext2 Ext2TSD
Fig. 6. Sprite LFS benchmarks: (a) Create results. (b) Read res{djDelete results.

Figure 6(a) shows the overheads of Ext2TSD. Ext2TSD hadapsetl time overhead
of 6.4% compared to regular Ext2. This is because of a 61%&%er in system time.
The system time increase is because of the pointer opesa®this workload consists of
intensive meta-data write operations. The wait time matalysed by 1/0, reduced by 22%
because the TSD allocation policy is favorable for smalsfile

Figure 6(b) shows the results of the read workload. Ext2T8i@opmed 3% better than
regular Ext2. The system time reduced by 5% because of twepnsa First, there are
no pointer operations in a read workload. Second, the isolaéchnique in DPROTO
offloads part of call stack of I/O operations such as loweell &CSI driver calls, to the
DPROTO disk thread.

The delete workload results shown in Figure 6(c) shows tiaetapsed time overhead
of Ext2TSD is 23% compared to regular Ext2. This is causedse of a 2.1 times
increase in system time. This increase is because of a langder of pointer deletion
operations happening within a short period of time.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

16 . Gopalan Sivathanu et al.

Overall, even under extremely meta-data intensive woddp¢he elapsed time over-
heads are moderate. In most common environments such agtantensive workloads
are unlikely.

Data benchmarksFor generating Sprite LFS data benchmark workloads, we ased
large file of size 4GB. For random workloads we performed Q0,tandom 4K reads
or writes. To eliminate cache effects, we generated a dafglifree list of random page
numbers. For sequential workloads, we performed 1,000s86Qential 4K reads on the
file.

70

140 | Wait —— Wait ——
User SxssY User SxssY
System — 60 | System m—m
120
))
° 101.6 102.2 4 50l
< < 44.7
g 100 r 3 418
Q Q
2 L 40 ¢
@ 80 r @
£ 5
- = L
= 60| - 0
Q Q
2 2
< L < 20 r
w 40 w
20 b 10
0 0
Ext2 Ext2TSD Ext2 Ext2TSD
120 - -
Wait —— 140 | Wait ——
User User
| System m— System m——
100
120
))
E al 52 780 £ 10l 04
S S 90.5 -
K2)
2 e0f g 80
[= [=
° ° 60 -
3 3
g g
] o 4r
20 r 20 |
0 0
Ext2 Ext2TSD Ext2 Ext2TSD

Fig. 7. Sprite LFS Data benchmark results: (a) Random read. (b) Bandrite. (c) Sequential Read. (d)
Sequential Write.

Figure 7(a) shows the results for the random read workload2TSD had no visible
overheads for this. As this is a read workload, it generategh@inter operations. For
random write, as shown in Figure 7(b), Ext2TSD had an elatisezloverhead of 6.7%.
This is mainly caused by a 6.7% increase in wait time. The tiraie increase is because
the main benchmark thread had to wait for the DPROTO diskathtte service pointer
operations.

Figure 7(c) shows the results for sequential read. Therdiffee in elapsed time between
Ext2TSD and regular Ext2 was negligible. However, the systeerhead in Ext2TSD
was 2.3 times. This was offset by a 21% reduction in wait tirAs.this is a sequential
workload, a very large number I/O operations were execuifdme short time interval.
This resulted in making CPU overheads more visible. The CRigreads were due to lock
contention for the request queue shared by the main benkfhraad and the DPROTO
disk thread. Our implementation usespi n_| ock for this, and hence it shows up as

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 17

system time. The wait time decrease is because of bettarkwatality in the case of
Ext2TSD.

Figure 7(d) shows the results for sequential writes. Thetmads of Ext2TSD were
similar to sequential reads, as our sequential write wadklperformed overwrites of ex-
isting file data, resulting no additional pointer operasion

In summary, our evaluation shows that the overheads assdaiath our TSD disk in-
frastructure and the Ext2TSD file system is quite minimalo(&t2%) for normal user
workloads. This is shown by the results of our kernel contipfebenchmark. For more
I/O-intensive workloads such as Postmark and Sprite mata-benchmarks, Ext2TSD
shows overheads as high as 23%. We used such benchmarkswtthehoorst case over-
heads of TSDs. However, such 1/O-intensive workloads aoeommon in real scenarios.
Most of the system-time overheads were caused by pointeatipes issued by the file
system. This could be reduced by aggregating the operagiotisending it to the disk
system in batches. While the allocation primitive has toyrekronous, pointer creation
and deletion can be made asynchronous.

4. CASE STUDY: ACCESS

We describe how type-safety can enable a disk to providertstturity properties than ex-
isting storage systems. We designed and implemented aesstouage system called AC-
CESS A Capability ConsciousExtendedStorage System using the TSD framework; we
then built a file system on top, called Ext2ACCESS. We firstivat¢ the need for enforc-
ing disk-level capabilities, then present a detailed desfgACCESS. Finally, we describe
our prototype implementation of ACCESS and the implemeémaif Ext2ACCESS, a file
system that supports ACCESS.

Protecting data confidentiality and integrity during irdians is crucial: attackers should
not be able to read or write on-disk data even if they gainpogtleges. One solution is to
use encryption [Blaze 1993; Wright et al. 2003]; this ensthat intruders cannot decipher
the data they steal. However, encryption does not proteai#tta from being overwritten
or destroyed. An alternative is to use explicit disk-lesapabilitiesto control access to
data [Aguilera et al. 2003; Gibson et al. 1998]. By enforatagabilities independently, a
disk enables an additional perimeter of security even ifdsds compromised. Others ex-
plored using disk-level versioning that never overwritegks, thus enabling the recovery
of pre-attack data [Strunk et al. 2000].

ACCESS is a type-safe disk that uses pointer informatiomforeeimplicit path-based
capabilities, obviating the need to maintain explicit daifiges for all blocks, yet providing
similar guarantees.

ACCESS has five design goals. (1) Provide an infrastructulienit the scope of confi-
dentiality breaches on data stored on local disks even wieattacker has root privileges
or the OS and file systems are compromised. (2) The infrastrRishould also enable pro-
tection of stored data against damage even in the event tf@rieintruder gaining access
to the raw disk interface. (3) Support efficient and easy cation of authentication keys,
which should not require costly re-encryptions upon retiooa (4) Enable applications
to use the infrastructure to build strong and easy-to-useritg features. (5) Support data
recovery through administrative interfaces even whenemitbation tokens are lost.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

18 . Gopalan Sivathanu et al.

4.1 Design

The primitive unit of storage in today’s commodity disks ifix@d-size disk block. Au-
thenticating every block access using a capability is tadlgan terms of performance and
usability. Therefore, there needs to be some criteria bgkvhiocks are grouped and au-
thenticated together. Since TSDs can differentiate batweemal data and pointers, they
can perform logical grouping of blocks based on the refezdsiocks pointing to them.
For example, in Ext2 all data blocks pointed to by the saméaeatiblock belong to the
same file.

ACCESS provides the following guarantee: a blackannot be accessed unless a valid
reference blocly that points to this block is accessed. This guarantee implies that pro-
tecting access to data simply translates to protectingsadeethe reference blocks. Such
grouping is also consistent with the fact that users oftesmraye files of related importance
into individual folders. Therefore, in ACCESS, a single &hitity would be sufficient to
protect a logical working set of user files. Reducing the nendf capabilities required is
not only more efficient, but also more convenient for users.

In ACCESS, blocks can have two capability strings: ead and awr i t e capability
(we call thesexplicit capabilitie3. Blocks with associated explicit capabilities, which we
call protectedblocks, can be read or written only by providing the apprajgrcapability.
By performing an operation on a blodRef using a valid capability, the user gets an
implicit capabilityto perform the same operation on all blocks pointed tddy, which
are not directly protected (capability inheritance). Ifaxtprular reference blockpoints
to another bloclj with associated explicit capabilities, then the impli@pability ofi is
not sufficient to accesg the explicit capability ofj is needed to perform operations on it.

As all data and reference blocks are accessed using validepsistored on disk, root
blocks are used to bootstrap the operations. In ACCESSs tirerthree kinds of access
modes: (1) All protected blocks are accessed by providiegaghpropriate capability for
the operation. (2) Blocks which are not protected can inhbgir capability from an
authenticated parent block. (3) Root blocks can be accesgitedut any reference block
by providing the appropriate capability, if they are pra¢et

ACCESS Meta-DataACCESS maintains a table namedaBLE indexed by the block
number, to store the blocks'ead andwr i t e capabilities. During every block access it
checks if the block haswTABLE entry. If there is K TABLE entry, the capability provided
by the user is authenticated against the stored capabdftyr® performing the operation.
ACCESS tracks the list of all reference blocks that are esmEsuccessfully in a given
period of time, and uses it to authenticate accesses todbkdihat do not have associated
capabilities.

ACCESS also maintains a temporal access table caltedLE which is indexed by
the reference block number. TheaBLE has entries for all reference blocks whose asso-
ciated implicit capabilities have not timed out. The timad entries in the.TABLE are
periodically purged.

Preventing Replay Attackdn ACCESS, data needs to be protected even in situations
where the OS is compromised. Passing clear-text capabilitirough the OS interface
could lead to replay attacks by a silent intruder who eawsslcapabilities. To protect
against this, ACCESS associates a sequence number withiligpmkens. To read a
protected block, the user has to provide a HMAC checksum ettpability () con-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 19

catenated with a sequence numb&p)((H, = HMAC(C, + Sy, Cy)). This can be
generated using an external key card or a hand-held de\atsliares sequence numbers
with the ACCESS disk system. Each user has one of these akttavices, and ACCESS
tracks sequence numbers for each user’s external deviam kdgeivingH,, for a block,
ACCESS retrieves the capability token for that block fromkhltABLE and computeg 4
=HMAC(Ca+ Sa,C4a), whereC4 andS, are the capability and sequence number for
the block, and are maintained by ACCESSHIf and H 4 do not match, ACCESS denies
access. Skews in sequence numbers are handled by allowimglawvof valid sequence
numbers at any given time.

ACCESS OperationDuring every reference block access, an optional timedatval
(Interval) can be provided, during which the implicit capabilities@sated with that
reference block will be active. Whenever a reference blek is accessed successfully,
anLTABLE entry is added for it. This entry stays unfibterval expires. It is during this
period of time, that we call theemporal windowall child blocks of Re f which are not
protected inherit the implicit capability of accessiRg f. Once the timeout interval ex-
pires, all further accesses to the child blocks are denibis dondition should be captured
by the upper level software, which should prompt the usethercapability token, and
then call the disk primitive to renew the timeout interval fee f. The value ofinterval
can be set based on the security and convenience requirerheng-running applications
that are not interactive in nature should choose largerdimhimtervals.

At any instant of time when the OS is compromised, the subisBtoks whose temporal
window is active will be vulnerable to attack. This subsetidde a small fraction of the
entire disk data. The amount of data vulnerable during OScomises can be reduced by
choosing short timeout intervals. One can also force thedumof the temporal window
using theroRCE TIMEOUT disk primitive described below.

To read a data block in ACCESS, the base pointer should befiresattom one of the
root blocks, by presenting the appropriate capability. hi iccess of the root block is
successful, ACCESS will add an entry for the root block in thesLE. Once this is
done, all blocks pointed to by the root block that do not hassmaiated capabilities can be
accessed until theTABLE entry times out. In the context of a file system, the initiadtro
block read would be its super block, and this occurs duningnt . The temporal locality
of the initial super block access is used as an implicit caipafor accessing subsequent
blocks. Whenever an implicit capability for a block needdeoverified, the disk checks
if the reference block passed by the upper level softwareahasasLE entry for it. If
an entry does not exist, ACCESS denies access to the blodke Heference block has
anLTABLE entry, ACCESS looks up theTABLE to find if the reference block indeed has
a pointer to the block whose implicit capability needs to befied. The reference block
passed by the upper level software is only used for optirgipiarformance during the
temporal lookup.

For blocks with associated capabilities, the appropriagability string must be pro-
vided. Each reference block can have its own read and wnitehikities depending on the
owner of that reference block. For example, an indirectlbtif@ particular user’s file will
have that user’s capabilities, and cannot be read by anytbee thhan that person.

ACCESS APITo design the ACCESS API, we extended the TSD API (Sectioh 3.2
with capabilities, and added new primitives for managingadalities and timeouts. Note

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

20 . Gopalan Sivathanu et al.

that some of the primitives described below let the file systpecify the reference block
through which the implicit capability chain is establishétbwever, as we describe later,
this is only used as a hint by the disk system for performaeasans; ACCESS maintains
its own structures that validate whether the specified eefez block was indeed accessed,
and it has a pointer to the actual block being accessed.dsétition when we refer to read
or write capabilities we mean the HMAC of the corresponding capabilities and aeece
number.

(1) seT.CAPLEN(Length): Sets the length of capability tokens. This setting is globa

(2) ALLOC_BLOCKS(Ref, Ref.orC,,, Count): Operates similar to the TSELLOC_BLOCKS
primitive with the following two changes. (1) IRef is protected the call takes the
write capability ofRe f, C,,; (2) otherwise, the call takes the reference bl@dzlf,. of
Ref, to verify that the caller has write accessief .

(3) ALLOC_CONTIG_BLOCKS(Ref, Ref,orCy,,Count): Same as th@&LLOC_BLOCKS
primitive, but allocates contiguous blocks.

(4) READ(Bno, ReforC,,,, Timeout): Reads the block represented By.o. Ref is
the reference block that has a pointerBao. C,.,, is either the read or the write
capability of blockBno. The second argument of this primitive mustRef if Bno
is not protected for read, and must@g,, if Bno is protectedTimeout is the timeout
interval.

(5) WRITE(Bno, ReforC,, timeout): Writes the block represented Bno. C,, is the
write capability of Bno. Other semantics are similar KEAD.

(6) CREATEPTR(Src, Dest, RefsorCgy, CaworRefa,): Creates a pointer from block
SrctoblockDest. If Srcor Dest are protected, their capabilities have to be provided.
For blocks which are not protected, the caller must providiédweference blocks
which point toSrc and Dest. Note that although the pointer is created only from the
source block, we need the write capability for the destomablock as well; without
this requirement, one can create a pointer to any arbitlagktand gain implicit write
capabilities on that block.

(7) DELETE.-PTR(Src, Dest, RefsorCs,). Deletes a pointer from blockrc to block
Dest. Write credentials foSrc has to be provided.

(8) KEY_CONTROL(Bno, Coy, Cryr, Cruw, Ref): This sets, unsets, or changes the read
and write capabilities associated with the bldgko. C,,, is the old write capability
of Bno. C,,,- andC,,, are the new read and write capabilities respectively. Arezfee
block Ref that has a pointer t&#no needs to be passed only while setting the write
key for a block that did not have a write capability beforer Bt other operations,
like unsetting keys or changing keyBe f need not be specified becausg, can be
used for authentication.

(9) RENEW_CAPABILITY (Ref, Cry, Interval): Renews the capability for a given refer-
ence block (.., is the read or write key associated witla f. Interval is the timeout
interval for the renewal.

(10) FORCETIMEOUT(Ref): Times out the implicit capabilities associated with refer
ence blockRef.

(11) seT_BLOCKSIZE andGET_FREE TSD primitives (Section 3.2) can be called through
a secure administrative interface.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 21

4.2 ACCESS Prototype

We extended our TSD prototype to implement ACCESS. We impleed additional hash
tables for storing th&TABLE andLTABLE required for tracking capabilities and tempo-
ral access locality respectively. All in-memory hash tablere periodically committed
to disk through an asynchronous commit thread. The allogaihd pointer management
i octl sin TSD were modified to take capabilities or reference ok additional ar-
guments. We implemented tik&Y _CONTROL primitive as a new oct | in our pseudo-
device driver.

To authenticate theead andwr i t e operations, we implemented anewct | , KEY_INPUT.
We did this to simplify our implementation and not modify theneric block driver. The
KEY_INPUT i oct | takes the block number and the capabilities (or referenoekb) as
arguments. The upper level software should call thtost | before every read or write
operation to authenticate the access. Internally, thewdib#ates the credentials provided
during thei oct| and stores the success or failure state of the authenticatMhen a
read or write request is received, ACCESS checks the stéite girevioukEY _INPUT for
the particular block to allow or disallow access. Once aséesallowed for an operation,
the success state is reset. When a valid _INPUT is not followed by a subsequent read
or write for the block (e.g., due to software bugs), we timé the success state after a
certain time interval. This method of using aoct | for sending the credentials greatly
simplified our prototype implementation, as we did not havenbdify the generic block
driver interfaces to send additional arguments duringéfagl and write operations.

4.3 The Ext2ACCESS File System

We modified the Ext2TSD file system described in Section 3.8umport ACCESS; we
call the new file systenExt2ACCESSTo demonstrate a usage model of ACCESS disks,
we protected only the inode blocks of Ext2ACCESS with readl\arite capabilities. All
other data blocks and indirect blocks had implicit capébasiinherited from their inode
blocks. This way users can have a single read or write capedioit accessing a whole file.
An alternative approach may be to protect only directorglmblocks. ACCESS provides
an infrastructure for implementing security at differemtdls, which upper level software
can use as needed.

4.4 Evaluation

We evaluated the performance of ACCESS using our Ext2 ACCiESSystem. We com-
pared Ext2ACCESS with a regular Ext2 file system mounted @yalar disk. The hard-
ware setup we used was same as that for evaluating the TSi3tinfcture, described in
Section 3.6. We ran two different workloads: Postmark, &Ekoompilation as described
below.

Postmark ResultsFigure 8 shows the results for Postmark. For this benchnveek,
configured Postmark with 10,000 files of sizes ranging fro®KI®to 200KB, and 10,000
transactions. Ext2ACCESS performed 19% better than re@ixe, mainly because of
a 24% decrease in I/O time. The difference in I/O time in thasecis more than that of
Ext2TSD vs. regular Ext2 discussed in Section 3.6 becauseESS pre-allocates more
memory than regular TSD for its data-structures. This tesureduced cache size making
the impact of spatial locality more pronounced. The systieme for Ext2ACCESS was
3 times more than that of regular Ext2 mainly because of poiahd key management

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

22 . Gopalan Sivathanu et al.

600 -
Wait C——
User
500 | System m—
o)
S 400k 395.2
(&}
3]
L 319.7
2 300
£
o
(3]
2 200 |
s
W
100
0 ||
Ext2 Ext2ACCESS

Fig. 8. Postmark Results for ACCESS

i oct| sissued by Ext2ACCESS.

500 -
Wait T
User o=y
System —
400
w
g
8 295.6 311.9
\3,_’/ 300 —_— S
GJ
= §
'_
- 200 -
Q
[%]
o
©
w
100
. N §

Ext2 Ext2ACCESS

Fig. 9. Kernel Compile Results for ACCESS

Kernel Compile ResultsFigure 9 shows the kernel compilation results for Ext2ACSES
As evident from the figure, the overall elapsed time overhwadixt2ACCESS was 5%
compared to regular Ext2. This is caused by a 29% increasestara time and 2.2 times
increase in wait time. The wait time increase in this casecabse the compilation thread
waits for the disk thread to service the key management aimdguaperations. The wait
time is more pronounced in this benchmark compared to Poktinecause kernel compi-
lation has a small I/O component by virtue of its CPU-inteasiature.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 23

5. CASE STUDY: DISK-LEVEL DATA CONSISTENCY

A key challenge in persistent data storage on disk is enguhi@econsistencyf data in
the face of crashes. In many cases, on-disk data is unusalelestit conforms to certain
software-specific invariants that define its consistenayr éxample, an on-disk B-Tree
with dangling pointers in some of its nodes cannot be useddat¢ data items. Simi-
larly, in a file system, a directory pointing to invalid or Ulogated inodes constitutes a
consistency violation.

Given the importance of consistency, most file systems amer software that manage
on-disk storage incorporate mechanisms to ensure on-diskistency. While some tech-
nigues involve optimistically updating on-disk state ahertfixing consistency violations
based on a disk scan (e.§sck), more modern techniques such as journalling [Gifford
et al. 1988] or Soft updates [Ganger et al. 2000] involve traiming updates in such a way
that consistency is enforced. These mechanisms are quitpler; for example, modern
file systems owe a significant portion of their complexity aisfying this requirement.

This traditional approach to managing consistency egtaethe file system or software
is fraught with two key weaknesses. First, the disk systeooimpletely oblivious to the
consistency of the data it stores, which constrains thegrafifunctionality it can provide.
For example, today’s block-based disk systems cannotperfonsistent snapshotting of
data. Snapshotting is a popular and useful feature in thhagandustry, but consistent
snapshotting has so far been restricted only to storagersgséxporting a richer NFS-
like interface [Hitz et al. 1994]. Similarly, modern stoeagystems perform backup and
asynchronous remote mirroring [Ji et al. 2003]; consistemeareness at the storage level
can increase the utility of these techniques.

A second problem with the current approach to consistenayagement is that every
file system and every software layer that manages on-diskigddorced to duplicate the
mechanisms needed to enforce consistency. This raiseatliertmplementing any disk-
resident data structures. Although applications can usergetransactional libraries, it
often requires restructuring the application to be awareasfsactions and tracking trans-
action context across concurrent, asynchronous opesafian example, although the jour-
nalling block device (JBD) layer in Ext3 provides a trangatl interface, the Ext3 code-
base had to go through a substantial amount of restructtoiagtually use JBD [Tweedie
1998].

To address these problems, we pregedE-Disk anAutomaticConsistencyenforcing
Disk, a disk system that preserves the semantic consistéistyred data. In our approach,
the disk system takes responsibility for consistency mamant, and thus is empowered to
provide consistency-aware functionality such as snatisigotApplications simply inform
the disk about the relationship between various blocksttieapplication already knows
about. Specifically, we advocate usingygpe-Safe DisKTSD) [Sivathanu et al. 2006], a
disk system that is aware of the pointer relationship betwsecks, to get consistency,
with minimal modifications at the software-level.

Our disk-level consistency mechanism enforces the foligngonstraint: the on-disk
version of data should always be consistent. To accomptish tve need to discover
semantically consistent groups of blocks and commit thesmattally to the disk when
they are written by higher level software such as the fileesystAll inconsistent block
updates should be buffered inside the disk until they becoomsistent. For example,
when a new file is created, the corresponding directory bk the inode block have

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

24 . Gopalan Sivathanu et al.

to be updated. When just one of the writes arrives at the disidicates an inconsistent
update. In that case, we need to buffer the update until ttensiblock write also arrives.
When both the directory block and inode block writes havivedrat the disk, we need to
ensure (at the disk level) that both these blocks are comdmgtiomically to stable storage.

In this section, we describe the main aspects of our diséHewnsistency mechanism.
First, we discuss some related work. Second, we describeupdate dependencies be-
tween blocks can be inferred from pointers. Third, we presen enhanced pointer in-
terface that make dependency inference robust. Fourth,eserithe the consistency en-
forcement process a key issue in disk-level consistenayreament. We finally detail our
prototype implementation of the system, and discuss somigations of pointer-driven
consistency.

5.1 Inferring Dependencies from Pointers

Determining semantic relationships between blocks at thle ldvel requires additional
information exchange between the software layer and the d@iaday’s block-based disks
treat all stored information as opaque data and they do nvetkrsowledge of data seman-
tics. For example, today’s disks cannot differentiate leetwa data and meta-data block in
a file system. We leverage the idea of Type-Safe Disks (TSBisafthanu et al. 2006], to
obtain pointer-relationships between blocks as maintginyethe higher level software.

Pointers at the disk level not only convey structural infation about data items stored
on disk, but also they enable the disk to infer dynamic retethips between blocks that
get updated. For example, when a new bladk allocated and a pointer is created to it
from another block, botha andb depend on each other. If the system crashes when just
one of the blocks is updated, the disk is left in an inconsistéate.

The existing TSD interface consists of primitives for alltion and pointer operations as
discussed in Section 3.2. We discuss how each TSD primiéinebe used to infer update
dependencies.

The allocation primitive internally creates a pointer te thewly allocated block, in
the reference block passed. This operation relates twakéldbe newly allocated block
and the reference block. Updating one of the blocks aloraxlgiéeaves the system in an
inconsistent state; hence these two blocks constituteendigmcy constraint and they have
to be committed atomically to stable storage.

The pointer creation primitive creates a pointer from any asbitrary allocated blocks.
In this case, the source blookustbe written subsequent to the pointer creation operation
to write the new pointer value in it. However, the destinatitock need not necessarily be
written, as the it is a previously allocated block. For examwhile creating a new file in
the Ext2 file system, a pointer gets created from the dirgdttmck to an already allocated
inode block that contains the inode of the new file. In thisechsth these blocks constitute
a dependency. This is because the directory block has to detegwith the new pointer
to the inode block, and the inode block has to be updated vailial information about
the newly created file. Failure to commit the latter will ri¢$in a directory entry pointing
to an invalid inode. As a counter example, if we consider aroomindex-based storage
structure, a set of index blocks point to data block. In thise; duplicating an index block
for reliability reasons would result in creation of new peirs from the duplicated index
block to the existing data blocks. Here only the index bloekds to be written and not the
data blocks. Therefore, the pointer creation primitivevided by TSD does not convey
enough information to decide whether or not the source astindd¢ion blocks constitute

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 25

a dependency.

A pointer deletion operation deletes an existing pointenfiblocka to blockb. This
operation has a special case: if the deleted pointer is héneoming pointer to block,
we garbage colledt and it can be re-allocated during future allocation recgielt both
cases, it is clear that bloekhas to be written subsequent to this operation for it to reflec
the pointer deletion. The destination bldck the case of garbage collection need not be
written. However, it does constitute a dependericmust not be re-allocated until is
written. For example, when the last pointer from an inodeklo a data block is deleted
during at r uncat e operation, re-allocating the data block to another inodereethe
old inode is written could result in a state where the old spdints to the contents of a
different file. In the normal case of a pointer deletion whgaebage collection does not
occur, we cannot infer whether the source and destinatioatitote a dependency for the
same reason as explained in the case of pointer creation.

5.2 An Enhanced Pointer Interface

As described in the previous section, the pointer API exgztblly a TSD do not always
convey enough information to make correct inferences inrede manner. In this work,
we fine-tune the TSD API to make it more complete in terms ofvegimg pointer infor-
mation.

We introduce the notion of sub-blockin a TSD. We use sub-blocks to formalialo-
catableunits inside a block, as maintained by the higher-levelhemfe. For example, in
Ext2 each inode block can contain several inodes, each of #llecated and freed at the
software level. Although formalizing these units in a psecmanner requires knowledge
about the unit size and offsets inside a block, we just neadlementary knowledge of
sub-blocks to infer dependencies. For example, to decidghehn or not a create or delete
pointer operation constitutes a dependency we just needdw kK that pointer points to
a sub-block. This intuition is based on the fact that, to @nes pointer consistency we
need to guarantee two properties: first, no pointer pointsnteritten (junk) units, and
second, no allocated units become unreachable. In ouemiermechanism we make use
of additional disk primitives for creating and deleting pi@irs to sub-blocks. Note that the
disk need not track information about sub-blocks, but it peseds to dynamically know
sub-block pointer operations by way of explicit primitivédigher-level software call the
respective sub-block primitives while creating and dakgointers to newly allocated or
freed sub-blocks. For example, Ext2 has to call a sub-bladkter creation primitive to
create a pointer between a directory block and inode blodleweheating a file. From this
we can infer that the directory and inode blocks form a depang constraint.

We present an extended pointer interface to TSDs that eptapst cases of depen-
dency inferences. In the primitives described below, theupeter: refers to a logical
timestamp value for the operation. This is to let the diskvkiabout the temporal ordering
of operations as they are issued by the higher level softldre purpose and usage of this
parameter is discussed in detail later in this section.

(1) READ(Blockno): Block read primitive.
(2) WRITE(Blockno, t): Block write primitive.

(3) ALLOC_BLOCK(Ref,t): Allocates a new block from the disk-maintained free-block
list and creates a pointer to it iRef. Both Re f anda constitute a write dependency
constraint.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

26 . Gopalan Sivathanu et al.

(4) CREATEPTR(STc, Dest, t): Creates a new pointer froirc to Dest. This primitive
does not create any dependency.

(5) DELETE_PTR(STc, Dest, t): Deletes an existing pointer frotsirc to Dest. If this
is the last incoming pointer t®est, Dest is garbage collected (marked free) and it
creates a new dependency between the writérofand the re-allocation abest.

(6) MOVE_PTR(Src, Dest, Newsre, t): Moves the source block of an existing pointer
from Src to Newsrc. This operation results in creation of a new dependency for
the writes ofSrc and Newsrce. This primitive is useful for handle cases such as a
r ename operation in a file system, or a B-tree node split where poémeed to be
moved from one block to another.

(7) ALLOC_SUB_BLOCK(Ref, Target,t): Creates a new pointer between bldgkf and
block T'arget. Target is a block that contains multiple allocatable softwareslev
structures. This primitive is called when a software-lestelicture inT'arget is allo-
cated. This disk does not track these structures. Thiseseahew write dependency
betweenRe f andT arget. The disk differentiates this primitive from tleREATE_PTR
primitive only to infer dependencies.

(8) FREE.SUB_.BLOCK_PTR(Ref, Target, t): Deletes an existing pointer betwe&e f
andTarget. Target is a block that contains multiple allocatable softwareelestruc-
tures. This primitive is called when a software-level staue in T'arget is freed. If
this operation deletes the last incoming pointer to bldek get, T'arget is garbage
collected and a new dependency is created betw&ghupdate and re-allocation of
Target. If the pointer deleted is not the last incoming pointeffiorget, a new de-
pendency is created for the updateftff andT arget.

5.3 Consistency Enforcement

In this Section we detail how an ACE-disk guarantees comsistata commits to stable
storage. Figure 10 shows the overall architecture of an AGEK-

An ACE-disk consists of five main components: @Bpendency buffern buffer layer
made of high-speed memory where inconsistent block updaéebuffered until the cor-
responding dependency becomes consistertiu{fr swap space swap area in the disk
which is used to swap out inconsistent buffer data when tbleecss full; (3)journal space
an area on disk which is used to ensure atomic update of exdRpendencies; (gyoup
manager which tracks the pointer operations and constructs degresids;group index
a data-structure used by the group manager to store disiepegndencies and the blocks
affected by each of those dependencies. The buffer layerbaxth as a read and write
cache, and gets invalidated during power down of the diskindbnsistent block updates
are buffered in the cache to ensure that the state of datddtoplace is always consistent.
The swap space is used when the number of inconsistent lacked the size of the high
speed buffer memory.

When an ACE-disk infers a dependency during a pointer ojeerdt associates group
object with that dependency. This group object containeimation about the set of blocks
that are affected by that dependency. We use the tgroug objectanddependency group
interchangeably in the rest of the report to refer to a lidilotks that needs to be commit-
ted atomically to stable storage to ensure consistencyoAp entryrefers to a member of
a group which contains a block number and the time at whiclag added. When a block
is written after it is added to a dependency group, the corresponding graup fen that

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 27

File System / Software Layer o
S
’ ik £
x| o (o]
Q = oE| x| 2 2
ol wl 9 &8 £33 0p]
R E
x| 3| 9 < L 3|9 7
o| Wl | © I I
J x| W S| Q| w
2| Ol o O| w
< 4 x
b4 (TR
Dependency Manager < > Cache
X
\ 4 v 2
O
In Place Data Journal Swap Group

Index

Fig. 10. Architecture of an ACE-disk

block is marked “ready.” When all entries in a dependencygrare ready, the group is
said to beresolved and all blocks associated with it can be committed atoryicalthe
disk.

In a simple case, when the first pointer operation happengdiskacausing a depen-
dency creation between two blocksindb, a new dependency grodpis created and both
the blocks are added to it. When write requests for bodmdb have arrived at the disk,
the dependency grouf is said to beesolvedand all the blocks iz can be committed
atomically to the disk. However, if another pointer opevathappens befor@ is resolved
introducing a dependency between bloékandc, the operatiorextendghe existing de-
pendency group. This is because, one of the blocks in the eperdlency (block) is
already part of an existing dependency. Thus, in this sé@béwck ¢ should be added to
groupG as well. Therefore, whenever there is a new dependencyduntex between any
two blocksz andy by way of a pointer operation, one of the following three @t are
taken:

(1) If bothz andy are not part of any existing dependencies, a new dependeoap
created ana andy are added to it.

(2) If only one ofz or y is associated with an existing dependency gréypghen both
blocks are associated with and are marked “not ready.”

(3) If both z andy are already associated with the same gr6lghen no group action
needs to be taken. However, the entries in the group pantpiniblocksr andy have
to be marked “not ready” as a new constraint is added betweetwb blocks.

(4) If bothz andy are associated with different grougs andG-, thenG; andG, are

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

28 . Gopalan Sivathanu et al.

merged and the entries far andy are marked “not ready”

As pointer operations construct dependencies betweerkdldigher-level software
must ensure that the pointer management primitives areddsuthe dislbbeforethe source
and destination blocks are updated. This constraint isigitiglenforced for the block al-
location primitive as a block cannot be updated before itllscated. However for the
pointer creation and deletion primitives, higher-levdtware has to ensure that it follows
this ordering rule. For example, whercaeat e happens in Ext2, the sub-block pointer
creation primitive has to be issued for the directory andribde blocks before the contents
of the blocks are updated.

Temporal Ordering of OperationsACE-disk’s consistency mechanism relies on the
temporal relationships between operations seen at thelelisk For example, an entry
in a dependency group is marked ready when a write arrivesta dependency creation.
However, in today’s modern operating systems and disksatipas can be re-ordered at
any level. For example, file systems today predominantlfoperasynchronous I/O where
block writes are buffered at the software level and are fldshehe disk in regular inter-
vals of time. Moreover, modern disk device drivers re-oanerge disk requests before
issuing to the disk for performance reasons. These factakenihe temporal ordering of
operations that the disk sees completely different fronotider that the higher-level soft-
ware issued. Therefore, unless additional ordering in&ion is communicated from the
software-level, the disk cannot obtain the precise tempoder of operations.

ACE-disk solves this problem by introducing two constraioh the operations: (a) all
pointer primitives take place synchronously and (b) allrafiens have associated logical
timestamps. These two constraints enable the disk to optairise temporal ordering of
the operations. Although synchronous pointer operatioay affect performance, it is
mitigated by the fact that these operations do not resultaokdl/O inside the disk, in the
critical path. Timestamps in this case are logical. For g¥arthey can be a monotonically
increasing sequence number. Whenever higher-level saftisaues a pointer operation,
it has to pass a sequence number along with it. Similarly wherin-memory copy of a
disk block is updated by the software, a sequence numbemhias associated with the
buffer for that block. Whenever a pointer operation introgfsia dependency, its sequence
number is associated with the corresponding group enffies.entries are marked ready
only when a subsequent write arrives with sequence numigateyrthan the stored one.
Note that introducing sequence numbers with block I/O dpara is simple—we have
modified the Linux kernel to support sequence numbers aldtighwffers whenever they
are dirtied. This modification was trivial and required chiag just 50 lines of code.

When a dependency group is resolved all blocks in the grosgdéde committed in
place atomically. A power failure while committing a dependy group should not leave
the in place data in an inconsistent state. ACE-disk useggirilg mechanism to ensure
this. All blocks in a resolved groups are first written to a bgd synced with a commit
identifier before the in place commit happens. The log isatded when the in place
commit is complete. After a crash, an ACE-disk checks theftmgalid group data and
replays them. The log contains separate journals for eagardiency group and hence
each of them are replayed after the crash to bring the systencdnsistent state.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 29

5.4 Bounding Commit Interval

The amount of data lost during a crash depends on the inteetaken the instant a block
write arrives at the disk and the time when it is actually catted to stable storage. In
an ACE-disk, inconsistent block data gets buffered unélehtire dependency group is re-
solved. ACE-disk’s mechanism of managing dependency gralipw extending a group
whenever pointer operations happen from or to a member oftbep. Thus, during
normal operation, a dependency group could potentiallyegetnded repeatedly during
a continuous workload that performs pointer operationg. eéxample, in Ext2, for a re-
cursive directory creation workload, the entire working weuld form part of the same
dependency group as all blocks branch out from the inodeefdbt directory. More-
over, as pointer operations always precede the block wpigeations, a dependency group
could never get resolved for a continuous workload. Thiseisanise before the time when
all blocks in a group are marked ready, the group could beneei@ several times with new
blocks or new dependencies for the existing blocks. Thiglte# two problems. First,
large amounts of data may get lost in the event of a crastguadththe on-disk state is con-
sistent. Second, excessively long dependency groupsreciuffering of a large number
of blocks and hence impose onerous space requirements.

Bounding the interval between dependency commits is ahngiltgy particularly at the
disk level because the disk has no knowledge about inteatedersions of block data
that are known to the higher-level software. This is becamest higher-level software
buffer writes and hence the versions of block data that rélaehdisk could be a small
subset of total number of versions that the software knovesiabFor example, if a file
is created in Ext2, an inode block is modified. Before the ebtbck write is issued to
the disk, if another file is created whose inode is in the saloekbthe disk sees only
the version of the block updated with both inodes. Thereftite disk cannot spawn a
new dependency group during a pointer operation for a blatien the existing group
containing a block has reached a time threshold.

Blocking pointer operations at the disk level until an exigtdependency is commit-
ted could be a solution to the bounding problem, but requadical modifications to the
higher-level software to support it. This is because sakveaich as file systems perform
locking of data-structures at an operation level. When atgoioperation blocks, the file
system could sleep after grabbing a lock on the data-strietthich reside on a block
that needs to be committed for some dependency to resohis.cdbld result in a dead-
lock as the block containing the data-structure cannot pengitted until the operation in
execution completes.

An ACE disk solves this problem by having new error modes fon{er creation opera-
tions. The allocation and pointer management primitivegatoptionally return one of the
following errors to the higher-level softwareYNC_BOTH, SYNC_SRC, Or SYNC_DEST. As
the names indicate, the disk can fail a pointer operationciodse to request the higher
level software to write the source, destination, or bottckdoassociated with that opera-
tion. Upon receiving one of these errors the software shimslge a write of the current
version of the corresponding blocks, and then retry thetpowperation. At the disk level,
whenever a dependency group is unresolved beyond a timghthickeit isfrozen When-
ever new dependencies are created for a block that is alpsatipf a frozen group and in
an “not ready” state, the disk returns one of three errorstimesd above, depending on
whether the block is the source, destination, or when betlsdlurce and destination blocks

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

30 . Gopalan Sivathanu et al.

exist in frozen groups in “not ready” state. This way of foigthe software to commit the
intermediate version of the data helps the disk to spawn mp&ridency groups for blocks
that are already ready in a frozen group. An ACE-disk endilvagsat a block is never part
of more than two groups at a time, the older of which is froZBis is done by ensuring
that a group is not frozen until all blocks in the group are patt of any other frozen
group. This method ensures commit of dependency groupswith the block write
interval of the higher level software. We verified the cotness of our bounding solution
by implementing this in the Ext2 file system. Each every ctsecommit interval of the
dependency groups were in tune with that of the softward esite-back interval.

5.5 Implementation

We implemented a prototype ACE-disk as a pseudo-devicedrithe Linux kernel 2.6.15

that stacks on top of an existing disk block driver. The psedeVice driver layer receives
all block requests, and redirects the common read and vesifgasts to the lower level de-
vice driver after the required processing. The additiomahjives required for operations
such as block allocation and pointer management are implestas driver oct | s.

To enable sequence numbers with block 1/0 requests, we added field to the buffer
header object and theequest token object in the Linux kernel. Whenever a buffer is
marked dirty, we generate a sequence number and updaténé butfer header. When a
write is issued for a buffer, the sequence number is carnedto ther equest objectand
hence available to the ACE-disk pseudo-device driver. 8ecgnumbers are generated
by an atomic increment of a counter value. The same counliee \®used during pointer
operations and modifying buffers. Our prototype ACE-disktained 6,900 lines of kernel
code of which 3,060 lines of code were reused from the exjStBD prototype.

5.6 Limitations of Pointer-driven Consistency

While the update dependency information conveyed by p@Erigequite rich and as we
show, sufficient to enforce consistency, it has some linoitstwhen compared to the more
general notion of transactional consistency. Specifictily dependency information con-
veyed by pointers is limited to a pair of blocks; e.g., if amger is created between two
blocks, the two blocks will be updated atomically. Howewar mechanism cannot sup-
port atomic commits of an arbitrary group of blocks. For epdamon creation of a new
directory (i.e., mkdir) in ext2, a pointer is created frone farent directory block to the
inode of the child directory, and the inode initialized. Titeenew block is allocated for the
child directory and a pointer created between the childénaad the child directory’s new
data block. With a transactional system, these three blewidkbe committed atomically.
But in our case, the first pointer creation and the initiaiz@de could be committed be-
fore the second pointer creation. As a result, a directoogénmay end up with a state
where it has no blocks at all, which is an apparent violatibcomsistency.

However, we argue that this consistency problem falls uad#gass obnline-patchable
consistency violations. For example, just by looking atittigalized directory inode with
no pointers, it is unambiguous that a crash happened justdtfe new directory’s block
got allocated, so itis safe to immediately allocate a newlbfor the directory and assign it
to the inode. Note that in contrast, a more “real” consisggmmoblem would be a directory
pointing to the wrong inode, perhaps a regular file inode,relitds not obvious what the
correct state should be. Pointer consistency could leaddb sansient online-patchable
consistency violations the violation is readily and unaguioiusly identifiable and the fix

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 31

for that is obvious as well. Most importantly, the fix to suchialation islocal, in that it
does not require looking at the global state of the file systém believe that the pointer-
derived consistency semantics is thus a useful and simpierterpart to the more general
transactional consistency.

5.7 Evaluation

We evaluated the performance of our prototype ACE-diskgiEixt2ACE. We ran both a
general purpose workload and a micro-benchmarks on oueimghtation and compared
it with a regular Ext2 and Ext3 file systems running on a nordisk. We compared our
system with Ext3 because it is a journalling file system thiavjges similar consistency
guarantees as ACE-disk at the software level. For all beacksnwe used Ext3 in its
default journalling mode (ordered writes mode). In this mditt meta-data alone is jour-
nalled and it is written to the journal only after the corresging data blocks are written
directly in place.

For all benchmarks we included the file system unmount timeuincalculation. This
is because ACE-disk commits dependency groups asynchsiynosing separate kernel
threads, and a file system unmount procedure blocks untidwaitanding threads have
completed their commit operation. This is relevant evemfmmmal Ext2 and Ext3 as they
commit all outstanding dirty data during an unmount.

Postmark ResultsWe configured Postmark to create 30,000 files whose sizesngang
from 512 bytes to 10 KB, and perform 250,000 operations in @@gctories. This work-
load particularly stresses the ACE-disk as a large numbéepé&ndencies get created and
resolved during the meta-data operations. The time takethéoPostmark benchmark for
Ext2, Ext3, and Ext2ACE are shown in Figure 11(a).

Wait —— 61.1
User <1)
System m— o

User 5591
System mmm—

Elapsed Time (seconds)
©
8
8

Elapsed Time (seconds)

Ext2 Ext3 EXt2ACE Ext2 Ext3 EXt2ACE

Fig. 11. (a) Postmark and (b) OpenSSH compile Results for ACE-Disk

Ext2ACE on top of ACE-disk had an elapsed time overhead of d6ftpared to regular
Ext2 on a normal disk. Although the system time increase@dighes relatively, this has
not contributed much to the elapsed time overhead. As meadiearlier, this overhead is
because of dependency tracking during every block writepaiicter operations. The wait
time increase (32%) is predominantly because all blocksvaitéen out twice in the case
of an ACE-disk to ensure atomic commits of dependency grodibblock data is written
out to the journal first and after the journal is synced, iaepl commits happen. Ext3 ran
almost twice as slow as Ext2 because of its ordered joungattiode. Ext2ACE is faster
than Ext3 in this case because ACE-disk journals both datareta-data blocks and for a
small file workload such as Postmark, random writes get avest¢o sequential ones. The
in-place commit of data in ACE-disk happens in an asynchuemoanner.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

32 . Gopalan Sivathanu et al.

Compile Benchmark Result$o simulate a relatively CPU-intensive user workload, we
compiled the OpenSSH source code. We used OpenSSH verSioantl analyzed the
overheads of Ext3 and Ext2ACE for thumt ar, confi gur e, andnake stages com-
bined. These operations in combination constitute a sagrifiamount of CPU and 1/0
operations. The results for OpenSSH compilation is shoviigare 11(b).

The times taken by Ext2 and Ext3 for the compilation workl@ad almost similar.
This is because this is a mostly CPU-intensive workload 2B&E had an elapsed time
overhead of 5% compared to Ext2 and Ext3. This is becausedfithease in wait time (1
sec vs. 3.4 secs). The increase in wait time is caused by tbecGRtext switches between
the main compilation process and the asynchronous depeyxdemmit threads of ACE-
disk. Since this is a CPU-intensive workload, the contextawtime is more pronounced
than Postmark. In a real environment, as the dependency iterare performed inside
the disk, this context switch overhead would not be seen.sybtem time overhead is not
significant for Ext2ACE in this case because there are velgtifew 1/0 operations that
require processing to track dependencies.

Wait —— Wait ——
250 User £Ss31 250 User £Ss31
System mmmm 2118 215.2 217.6 System mmmm 216.6 217.6 2192

200

200
150 150

100 100

Elapsed Time (seconds)
Elapsed Time (seconds)

50 50

Ext2 Ext3 Ext2ACE Ext2 Ext3 Ext2ACE

Fig. 12. (a) Create and (b) Unlink micro-Benchmark Results for ACEKD

Micro-BenchmarksWe ran two micro-benchmarksto obtain the overheads aftleat e
andunl i nk file system operations. We evaluated these two operatiacesuse both of
them exercise the ACE-disk’s dependency trackers and stensy enforcement mecha-
nism. For the create workload, we created 500 directoriéis #4000 files each totaling
to 500,000 files. For the unlink workload, we removed all teddiles and directories.
The results of ther eat e andunl i nk workloads are shown in Figures 12(a) and 12(b),
respectively.

For thecr eat e workload, Ext2ACE had an overhead 2.7% compared to ExtZ iBhi
mostly caused by the increase in wait time due to the ade@itid® operations writing out
block data twice for ensuring atomicity in block commits.rHeeunl i nk workload the
results of Ext2ACE is similar to Ext2 and Ext3 aal i nk results in smaller number of
writes than creates, because freed blocks are not writtéretdisk.

Overall ACE-disks have small overheads for normal user leads. When the work-
load is highly I/O-intensive, more information needs to taked by the disk to manage
dependencies. This results in more CPU time which is miidéty the fact that the disk
uses its own isolated CPU in a real environment.

6. CONTEXT-AWARE I/0 INFRASTRUCTURE

In this section, we present the concepGaintext-Aware I/qCAIO), a simple and generic
way for applications to convey arbitrary information abthéir I/O behavior and relation-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 33

ships, without worrying about how the information will beedsby the storage stack. In
CAIO, an application-levetontextis propagated along with an 1/0O operation across the
entire storage stack, in an end-to-end fashion. An apphicdével context is represented
by one or moreontext identifiersFor example, a database application can have a unique
identifier that it can propagate along with every 1/O it gextes, such that any storage layer
can easily group all I/O generated by the database applicafihis also enables the lower
layers of the storage stack to associate the data corresgpoadhe 1/0 with higher-level
contexts and easily track the application’s working-set.

In addition to working-set identification, application ¢erts also enable a new class
of functionality that uses application-1/O relationshigsich as easy and flexible perfor-
mance isolation in large-scale distributed storage, awcéss=pattern aware caching and
prefetching within the storage hardware.

To make CAIO a generic framework, we decouple glemerationof application-level
information from how the information igsedwithin the storage stack. Most hint-based
proposals to address the problem of information-gap in #e pave tied these together.
For example, in hint-based prefetching systems, the agifgic provides hints of its future
access, but the hints are specifically designed with ptefegdn mind. The problem with
such function-specific hints is that they require coordoratnd agreement between the
layers involved. In a multi-vendor setup, such coordimatimnslates into industry-wide
consensus on the interface, a standardization procedsikiestyears. In addition, such an
approach cannot scale in an end-to-end manner to the ray#iréd storage stacks that we
have today.

Decoupling the generator and consumer of the context irdiiom leads to an interesting
challenge: when the application could conceivably use g one possible granularity
of grouping 1/0, how can it decide which one to use while beitgdjvious to how the
grouping is interpreted by the lower level? For example,talulsse application can group
the 1/0 requests it generates based on the database us@nsé®nsaction, or query on
behalf of which the I/O is issued; but the lower layers arevidls to the granularity of
the context. To solve this issue, contexts in CAIO hierarchical With hierarchical
contexts, higher layers can encode multiple granularitiggouping, and the lower layers
can decide which granularity is the best for the particulactionality that they provide.

Even in a hierarchical context, individual levels in therhrehy remain completely
opaque to the storage stack. For implementing functigntiat needs more informa-
tion about what these levels in the context mean, contextbeannotatedffline at any
specific layer. In such cases, CAIO contexts will be used aslyyaming-identifiers to
associate higher-level semantics.

We illustrate the generality and power of the context altiva by prototyping and
evaluating two case studies. Our first case study is an atiomarking set identifier,
WorkSIDE which operates at the block-based storage hardware MfgekSIDE automat-
ically tracks the data working set required for an appl@matontext to run to completion.
WOorkSIDE correlates contexts with the I/O and the corresjimndata they access, thus
obtaining a complete view of the entire set of data itemstti@particular application con-
text requires. This working set can then be preloaded apppte in order to improve
performance and availability, or to enable power optimarag. The second case study is a
context-aware cache-placement algorithm within the disit automatically tracks which
application-level contexts exhibit sequential streamangess pattern and avoids caching

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

34 . Gopalan Sivathanu et al.

requests with that context. We demonstrate the usefulddésgtoof our case-studies using
prototype implementations we built for the Linux kerneldavaluate various workloads.

The rest of this section is organized as follows. In Sectidnvée discuss the utility of
CAIO by presenting a few potential applications. In SecBdhwe present a taxonomy of
the various kinds of contexts in storage. We detail how weegadize the CAIO interface
in Section 6.3. In Section 6.4, we describe CAIO design ampdiegtion support.

6.1 The Utility of Context-Aware I/O

In this section we describe several usage scenarios thatateotracking context informa-
tion in the different layers of the storage stack. Many ofthatilities cannot be imple-
mented effectively without explicitly propagating apg@limn-level contexts. In Sections 7
and 8, we demonstrate our implementation of the first two@isagnarios described below.

Working-set Aware Featuresdentifying working sets of data for individual applica-
tions at the lower layers of the storage stack, enableseistieg functionality such as
application-aware prefetching [Patterson et al. 1995)igvesavings [Zhu et al. 2005; Wed-
dle et al. 2007], selective recovery of failed hardware [blatis et al. 2007], and improved
data availability [Sivathanu et al. 2004]. We describe ooplementation of a disk-level
working-set identifier and its usefulness in detail undeatiga 7.

Adaptive Caching and Prefetchinghe efficacy of caching and prefetching depends on
the ability to identify access patterns. Context can enadébhing and prefetching mecha-
nisms to adapt their policies based on access patternsos8atlescribes our implemen-
tation of a context-aware disk-level caching mechanism.

Application-Aware Performance Isolatiorscheduling algorithms at different levels of
the storage stack can leverage application-level coniexasheduling decisions. For ex-
ample, fair share disk schedulers can enforce fairnessllmskigher level logical tasks as
against OS processes. Application-based resource molads been previously explored
in the context of a single OS in Resource Containers [Bangéd 41999]. Contexts can
enable flexible resource isolation in an end-to-end faski@m in distributed storage.

Optimized Data LayoutFile systems can use higher level contexts as hints for @btim
data placement on disk. Co-locating files and directorieatedd in the same context could
be beneficial under certain scenarios to achieve betteinsfmatality during reads.

Improved AccountingContext information associated with 1/0 operations caratlye
help in 1/O trace analysis. Trace analysis for resource wmpsion can be more accurate
when it makes use of logical contexts pertaining to precigbédr-level tasks. Contexts
can also provide valuable hints about the dependencie®©obperations and the causal
relationships between them, for trace-based intrusioactien systems [King and Chen
2003].

6.2 Context Types

Contextin storage is quite useful as seen from the kind aftfanality it enables (described
in Section 6.1). We now defineontextas follows: A context in storage is a reference or
identification used to group, on some basis, several |/O aifmrs or data

We now describe the types of contexts that are relevant tageo

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 35

/

DB Session A Dat abase X
i l home
Transaction B Table Y
\L l j ohn
Query C Record Z

abc. t xt
(a) (b) (c)

Fig. 13.Examples of how hierarchical contexts can be construct@dsiows an access-bound context hierarchy.
(b) and (c) show data-bound context hierarchies.

Data-Bound vs. Access-Bountihe two primary entities in storage are (a) data, and (b)
I/O operations on data. Context in storage is mainly usedfouping several such data
items or 1/O operations. Therefore we classify context arage broadly into two types:
data-bound and access bound.

A context is said to belata-boundf it can be used to group several data items stored
on disk, based on some metric. This grouping is independethieovay the data is ac-
cessed. For example, a data-bound context can group akdlmonging to the same
database table or file. Data-bound contexts can group dataltwn arbitrary criteria such
as logical abstractions (files, directories, databasesakkc.), owning application or user,
security domains, and so on. Data-bound contexts can betassmmmunicate higher-
level data-structures to the disk, and enable functignalith as fault-isolated placement
in RAID [Sivathanu et al. 2004].

Note that the notion of data-bound contexts is similar incegt with other abstractions
such as type-aware storage (Section 3) or object-basediaicée]Mesnier et al. 2003].
These other abstractions can be used as an alternativeatbdand contexts.

Access-boundontexts relate operations rather than the data pertatoitigem. For
example, an access-bound context can group all block wpégations resulting from a
single database query. Access-bound contexts enable metidoality that solely depend
on the characteristics of individual 1/0 requests. The gaghnd prefetching functionality
described in Section 6.1 requires access-bound contexts.

Figure 13 shows a few examples of context hierarchies. Eig8(a) shows a possible
access-bound hierarchy for a database application. FdiBé) and 13(c) show data-
bound context hierarchies that communicate data absirecti

Repeatable vs. Non-Repeatabléhe lifetime of a context identifier is defined by the
application that generates it. When a single context ifients used every time to refer to
a particular logical context, we call it eepeatablecontext. For example, when a context
is used to group files within an access-control domain, theesdentifier has to be reused
every time when operations are performed on that domainliégifons have to generate
such contexts using a deterministic method and may maip@isistent states to track
contexts.

Non-repeatableontexts have transient identifiers. For example,ifi @ is used as a
context identifier to group I/O operations generated by déiqdar program, every time

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

36 . Gopalan Sivathanu et al.

the program runs, the identifier becomes different, altihdahg logical context remains the
same. Non-repeatable contexts do not require any statenhaivgained at the application-
level.

6.3 Generalizing the Interface

In this section, we describe how we can cope with arbitramtext generation process
at the application-level, and achieve independence betese generation and usage of
application-contexts. We also describe how lower layerthefstorage stack can extend
contexts or correlate across different context types.

Hierarchical Contexts.To achieve generality in the CAIO interface, the contextegen
ation process at the application-level must not make anynagsons about how the lower
layers use the context. However, at the application-ldhele may be several different
ways to generate a context, each useful for different kirfdsictionality at the lower
layers. A single application-wide context identifier canused to easily group all data
required by the application, whereas more fine-grainedestidentifiers within an appli-
cation help communicate different streams of 1/O requestetated by sub-components
within same application. For example, a single DBMS-widetest can be used to group
all I/0 and data that the DBMS manages. This enables furaityrsuch as working-set
identification for the entire DBMS. On the other hand, a péadase session-level context
can be used for easy performance isolation between datakasesessions. We use the
termcontext granularityto refer to the different possible ways to generate contgittsn
an application.

Therefore, for generalizing the interface without hampgthe kind of functionality it
enables, we evolve a context scheme where the applicatroarzade all possible granu-
larities as a single context, passing dogamtext hierarchie¢for access-bound and data-
bound) rather than a single identifier. For example, a DBM$ generate access-bound
contexts in granularities such as sessions, transacamasindividual queries, and data-
bound contexts in granularities such as databases, talol@secords.

Lower layers of the storage stack can use hierarchical gtségthout making assump-
tions about what each of the levels in the hierarchy mean.ekample, a caching layer
that wants to classify some context to exclude caching,(seguential contexts) can track
the statistics on sequentiality at each level of the corftéextarchy, and then choose the
highest level that exhibits homogeneity in the access patt®epending on the specific
behavior the layer is looking at (e.g., sequentiality, etated access of the same pieces
of data), the definition of homogeneity changes. Hieraadhgontexts enable decoupling
the application from worrying about which behavioral prdjes the lower layers are in-
terested in; instead the application just conveys its statd the lower layers make their
independent decisions on the notion of homogeneity they about, based on the layers’
own per-context statistics.

Note that for a context hierarchy chain in CAIO to be meanihgévery context in
the chain should qualify a logical subset of the access a damain qualified by its
parent context. For example, a per-query context identifiarbe a child of the transaction
identifier in which the query is a part. However, a contexhiifeer that qualifies the class
of all sel ect queriesina DBMS cannot be a child of any particular trarisadtentifier,
assel ect queries can be part of any transaction.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 37

Annotating Contexts with SemantidSertain functionality may require more informa-
tion about what each level in the hierarchy means, at somafgpkayer in the storage
stack. For example, a context-based proportional-shakesgheduler needs share propor-
tions to be associated with levels in the context hierarétoy. this purposeffline mech-
anisms can be used to annotate context identifiers with ifumadity specific information.
For example, applications can co-ordinate with a speciicsfjistem through offlinectls
to associate locality hints with stored context identifiekote that these annotations are
not part of the CAIO infrastructure, but can be done seprbtween any two layers that
needs to coordinate to implement a specific functionalityhe example of a proportional-
share disk scheduler, the application and the disk schededsl to co-ordinate offline to
annotate context levels with share proportions.

Context TransformationWith hierarchical contexts, any layer in the storage stawok c
add new levels to the context chain, as long as the subsetdantve preserved. For access-
bound contexts, the subset relationship is maintained aparation propagates from top
to bottom. For example, selectquery generated from a database gets transformed into
one or more file read operations at the file system, and thémefuransformed into several
block read operations at the device driver or the disk |eUeérefore, any layer in the stack
can add new levels to communicate grouping of sub-opematibtheir level.

However, for data-bound contexts, subset relationshipiddr to ensure across layers.
This is because the data abstractions used by higher layenamy cases are not super-
sets of the lower level abstractions. For example, an agtjdic can store several B-trees
within a single file, and hence there is no subset relatigriseiween the abstractions used
by this application and that of the file system. Thereforeegiertransformation of data-
bound contexts across layers is harder to achieve; but liayers can associate new data-
bound context hierarchies with I/O, if the application daespass a data-bound context.
We impose a constraint that intermediate layers should adebn@w levels to data-bound
contexts, unless the higher-level layer did not specifyraext of its own.

Correlating Across Context TypeBata-bound and access-bound contexts passed by
the application can be completely independent of each atheémneed not necessarily in-
dicate association between the operation and the dataratgse This makes generation
of contexts at the application-level much less complicakémlvever, lower layers that use
these contexts can maintain their own history informatiocomtexts, and correlating data-
bound and access-bound contexts. Correlating contexs typables useful functionality.
For example, identifying the working set of data accesseadrbgccess-bound context can
be useful for implementing interesting optimizations asadved in our first case-study
detailed under Section 7.

6.4 CAIO Design

End-to-end association of context with 1/0 requires pasaipplication-generated context
with every /O operation throughout its lifetime. We evolwdramework through which
context can be passed from an application all the way dowhe®torage hardware (e.g.,
a disk). In this section, we describe the changes requirgdetstorage stack and user
applications, to support contexts.
We propagate context in the storage stack by meansrext objectsA context object

contains upto two context chains, one each for data-boudderess-bound types. These
context types are based on the discussion under SectiorO@2text objects also carry

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

38 . Gopalan Sivathanu et al.

information about the repeatability of the context chaRepeatability is at the granularity
of an entire chain and not the individual context identifigithin a chain. The structure of
a context object is shown in Listing 1.

struct caio_context {
i nt data_bound][MAX_ DATA LEVELS];
i nt access_bound[MAX_ACCESS LEVELS];
short data | evels;
short access | evels;
int flags;

}s

Listing 1. Structure of a context object. The fields disteels and accedgvels indicate the
number of levels in the data and access-bound context chielags contain information
about repeatability and inheritance properties (Sectidhfér the context.

Associating Contexts with I/OThe CAIO framework contains a user library that exports
routines to construct context objects and add new levelgoéichy to existing context ob-
jects. User applications can generate context objectsigftrthese routines and associate
them with 1/0O operations. Our framework provides threeatiéht ways for user appli-
cations to associate contexts with 1/0O operations. They(@)ean extended system call
interface (b) group contexts and (c) context inheritance. d&tail each of these mecha-
nisms below.

An Extended System Call Interfacé/e have an extended system call interface that
passes context objects along with storage primitives ssich@n, r ead, w i t e,unl i nk,
etc. Each of these I/O system calls include an additionalraemt for the context object.
The framework also includes a wrapper library for user aapions to call these new sys-
tem calls. Listing 2 shows an usage scenario for the extesgletdm call interface. Note
that when there is a single context object that needs to segdder several system calls,
group contextgan be used for better performance, as described below.

Group Contexts.For applications that need to perform a several /0O operatwith a
single context object, we provide a new system call forsgttind unsetting contexts into
the kernel. The scope of this association is just the spehifad of execution. Therefore
applications can first set a context and then issue any nuaflvegular I/O system calls
(such asopen orr ead), and the corresponding context object will be associatiékd w
every operation.

Context InheritanceTo support easy usage of contexts in cases where the sngzest
ularity is a process, our framework includes a context itthece mechanism using which
any process can set arheritable contexinto the kernel. All child processes and threads
of such a process will then inherit the same context hiesaMdle developed this feature so
that there would be no modifications required to applicaiwhose lowest context granu-
larity is a process. For example, if a project compilaticskteequires several applications
such agycc, | d, bi nuti | s etc., the entire compilation task can be run through a shell
that has an inheritable context set, instead of modifyiragyeapplication to pass contexts.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 39

int fd; char buf[128];
struct cai o_context *context;

/+* Al'locates and sets top-Ievel databound
* and accessbound identifers as 1 */
context = caio _create_context(1, 1);

/= Adds a new | evel to the access/data
* hierarchy with identifier 2 */
cai o_add_| evel (context, 2, 2);

[+ CAIO systemcall interface */
fd = cai o_open("/hone/joelabc.txt",
O RDONLY, &context);
err = caio_read(fd, buf, 128, &context);
cai o_cl ose(fd, &context);

Listing 2. Passing contexts from the user-level using thé@éxtended system call inter-
face. Note that in this case group context (described ini@eét4) can be used as well,
because a single context object is used for all calls.

Context Propagationln CAIO, each layer receives contexts from the layer abowk an
passes it to the layer below after using them if applicabkgeNhat a single operation at a
particular layer could translate into multiple operatiom¢he layers below. For example,
a file create operation at the file system level could resuttuttiple block write requests
to the device driver. Therefore it is each layer’s respdtisilto propagate context objects
appropriately to the layer below. In cases where there are mictualization layers such
as software RAID or logical volume managers (LVMs), suctelayshould be aware of
contexts and propagate them below. Any layer can choosete sbntexts in its own
structures for its needs, before passing them down.

Hardware Interface Extensiondo propagate contexts end-to-end, we extend storage
hardware interfaces to pass generic context objects aldhgwery I/0O request. For exam-
ple, the SCSI/IDE ead andwr i t e primitives take context objects. There are a number
of proposals in the past that suggest interface extensiodisk systems for communicat-
ing higher-level semantic information [de Jonge et al. 2008snier et al. 2003; Sivathanu
et al. 2006; MacCormick et al. 2004]. We believe that the galitg of the CAIO interface
would make it easier for disk vendors to adopt.

Dealing with Operation coalescenc#lultiple logically independent 1/O operations
may be coalesced into one at any layer in the stack. For exeampiltiple file write oper-
ations to the contents of the same file block could result imgle block 1/O at the disk
level due to write buffering. To handle such cases, we suppoltiple context objects to
be associated with a single lower level I/O. Layers thativedhese contexts must process
them one by one as if they were from different I/O operations.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

40 . Gopalan Sivathanu et al.

Storing ContextsRepeatable contexts may need to be stored by layers to ireplem
optimizations that involve tracking context history, oredating different context types.
We developed @ont ext - st or e in-memory data-structure as part of our framework
to enable easy storage of context hierarchies at any layttreaftorage stack. A context
store manages context hierarchy in a tree structure in wdach node represents a context
identifier of a specific level in the hierarchy identified by @depth in the tree. Each tree
node also includes private datafield where information about that specific chain can
be stored. The context-store structure provides pringtiee common operations such as
adding new chains and updating private data.

6.5 Linux Implementation

We implemented our CAIO framework in the Linux kernel 2.6.M/e added new sys-
tem calls for context-aware file 1/O operations and impletedra user-level library for
applications to easily use the new system call interface.riéw system calls allowed con-
text objects to be passed witipen, read, wi t e, pread, pwite,cl ose, nkdir,
unl i nk, rndi r andr eaddi r operations. We modified the following objects to add
a new field to store contexts. (apsk_st ruct which represents a running process or
thread. (b)ouf f er _head which represents a block buffer in memory. @)o which
represents an 1/O to a block device. Tinaf f er _head andbi o objects can optionally
contain a list of contexts during operation coalescence.

We implemented the new system calls as wrappers to the ufiesbdistem call han-
dlers for the operations. The wrapper system calls set thiegbobject in theur r ent
task object before calling the unmodified handlers. Note @ wrapper calls unset the
context upon completion of a system call, so that the scope mdissed context would
be just that system call. The different layers in the OS tkatise the 1/0 operation use
the context object from theur r ent task object and propagate it to the corresponding
buf f er _.head andbi o objects appropriately. As theask st r uct object is unique to
a particular process or thread, this method works for nprtlieess workloads as well.

For group contexts, we added a new system call which assigrenmves the corre-
sponding context in the currehisk st r uct object. For inheritable contexts, we mod-
ified thef or k system call to copy the context object of the parent, to thiesft process.
We also implemented the context-store data-structurerasfthie kernel so that any layer
such as the file system or device driver can maintain its oane st

Overall, the modifications required to implement the CAl@nfiework were small. We
added only 350 lines of new kernel code and 150 lines of wsexttode.

Application SupportThe method of generating contexts at the application-ldeel
pends on specific application architectures. In generanifpplication can classify its
activities into distinct logical tasks, and (or) if it canogip data it uses based on some
criteria, it can generate contexts in a meaningful mannasel on the kind of application,
the granularity and type of contexts it can generate can \&ayne low level applications
such as Unix utilities (e.gl,s, cat , etc.) can just provide an interface to the caller to pass
contexts (e,g., command line arguments). We have modifiegk dmsic utility programs
such axp, cat , andl s to accept contexts as command line arguments. This enables a
higher level caller application (e.g., a shell script) towgp all its operations under the same
context.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 41

Context-Aware MySqglWe have modified the MySqgl DBMS [MySQL AB 2005] with
InnoDB [InnoDB 2007] as the storage engine, to generate amplgate contexts at var-
ious granularities. MySql has the notion of database clienhections which can obtain
service from the DBMS. Each client connection gets servimed separate MySql thread,
and can run several transactions and queries. We modifiedjMy$ass contexts at three
granularities in the form of a hierarchy: connection-lg¥ensaction-level, and a single
query-level. Overall the modifications required to progagantexts across the various
layers of MySql and InnoDB were simple. We added only 30 liofasew code and modi-
fied 345 lines of existing code, mostly for passing an addé&l@argument for a number of
functions. We use our Context-Aware MySql as an applicatioevaluate our framework
and some of the case-studies described in Sections 7 and 8.

6.6 Evaluation

We evaluated the overheads associated with passing cobjexts across the storage stack
for all file system operations. In this section we first ddseur test setup and the details
of the experiments we ran. Note that the setup describedsrséittion applies to all our
benchmarks presented under Sections 7 and 8 as well.

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a 74GKrpm, Ultra-
320 SCsil disk. We used Fedora Core 6, running a Linux 2.6.frkekeTo ensure a cold
cache, we unmounted all involved file systems between eathWé ran all tests at least
five times and computed 95% confidence intervals for the mksgused, system, user, and
wait times using the Studentdistribution. In each case, the half-widths of the intesval
were less than 5% of the mean.

Experiments.In this section we describe the set of experiments and tbeiigurations
that we used for evaluating the CAIO and the case-studies.

Postmark. For an I/O-intensive workload, we used Postmark [VERITASWare 1999],
a popular file system benchmarking tool. Postmark strebsed#e system by performing a
series of file system operations such as directory lookupations, and deletions on small
files.

TPC-C. TPC-C [Transaction Processing Performance Council 2@} On-Line Trans-
action Processing (OLTP) benchmark that performs small 4a®lom reads and writes.
Two-thirds of the I/Os are reads. We set up TPC-C with 50 wawshs and 20 clients. We
compare our context-aware MySql running on our CAIO framéweaith regular MySq|l
running on a vanilla kernel. The metric for evaluating TP@eZformance is the number of
transactions completed per minute (tpmC). We report tpm@hmars for each benchmark.

Results.Figure 14 shows the overheads of our CAIO framework for Pastrfor two
different number of operations. As seen from the figure trexalelapsed time overheads
were small (2% to 4%) compared to regular I/O. This overheadainly because of the
additional user-to-kernel copies for communicating cenddjects from applications.

TPC-C ResultsThe TPC benchmark results for regular MySQL and our modifedext-
aware MySQL ran over the CAIO kernel is shown in Table |I. Theklaad loads tables
into a Mysql server at start-up and runs a mix of queries osdtables for a user de-
fined time. As seen from throughput and response time numtregsheads of the CAIO
framework is quite small.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

42 . Gopalan Sivathanu et al.

100 180

Wait —— Wait ——
User ©==xY User &===Y
System m— 160 System m— 1455

80 1 70.9 140 f I

120 -
60 [
100 -

80
40

Elapsed Time (seconds)
Elapsed Time (seconds)

60 [

20 | 40

0 [0
Vanilla CAIO Vanilla CAIO

(a) 50,000 Operations (b) 100,000 Operations

Fig. 14. Postmark Results for CAIO Framework

Regular CAIO
Response Time (s) Response Time (s)
Delivery 0.096 0.109
New Order 0.039 0.064
Order Status 0.033 0.29
Payment 0.000 0.000
Stock Level 0.169 0.524
Throughput (tpmC) 67.13 64.35

Table I. TPC-C Benchmark results for the CAIO framework

7. CASE STUDY: WORKING SET IDENTIFIER

Ouir first case study is the automaiitor king Set | DEntifier (WorkSIDB. WorkSIDE that
uses both access-bound and data-bound contexts to autaltyatifer the minimum set of
data items required to be available in order for an appbeafor a specific instance of an
application) to run to completion.

7.1 Motivation

This ability to accurately identify working sets of appliian contexts at a fine grained
level has various kinds of applications.

Performance.The working set of the application can be preloaded into amfiaster but
smaller memory hierarchy (e.g., a flash storage layer tlatigees about 100x better ran-
dom access read performance), thus essentially shielkrapplication from performance
variability due to disk access.

Availability. WorkSIDE enables fault-isolated placement of applicatimrking sets
enabling truly graceful degradation during multiple diakdres similar to D-GRAID [Si-
vathanu et al. 2004]. While D-GRAID could just co-locatedilar directories, WorkSIDE
can co-locate higher-level application working-sets aitfailure domains.

Power SavingsMany recent systems have looked at saving power by switobfing
subset of disks in a large RAID array in such a way that apfitina can still function

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 43

properly without the switched-off disks [Zhu et al. 2005; dtlée et al. 2007]. These
systems go to great complexity to identify the subset of thethis currently under use, yet
these techniques are most often approximate and too cgeas®d. Being more informed
about the application’s access patterns and data abstractorkSIDE can do a better job
at such power optimizations by being more aggressive ané axurate.

Disconnected operationAnother usage scenario for WorkSIDE is when the user wants
to preload the working set for a specific application conteXbcal storage for discon-
nected operation, say, in a mobile environment. This esabtala-like hoarding [Kistler
and Satyanarayanan 1991], but can be much more accuratgrdimed and automated.
For example, if the user works only on a specific build tamgetliarge body of source code,
just the subset of source files (and the metadata) needdu:ftarget can be automatically
preloaded to local storage.

The key to WorkSIDE is its ability to correlate a repeatalleess context with the data
context it accesses. WorkSIDE achieves this by associatitigeach node of the access
context hierarchy, the aggregated set of data items thaicessed by that context. Se-
mantic aggregation of such data is possible because datadlmmntexts are hierarchical
in nature conveying data abstractions in several grarig¢aiisuch as files or directories).
Tracking working set at an aggregated level enables muchlsirand reliable tracking of
repeatability. For instance, if an application touchefedént parts of a file in its different
runs, block-level tracking may not find much of a repeatghilvhereas tracking at the
file-level would indicate the pattern. Since the data carftérarchy essentially contains
information of the entire data abstraction tree, it cankithcs information at various gran-
ularities, and decide on which granularity provides the brasle-off between the amount
of data to be preloaded and ensuring completeness for tHieatpm.

7.2 Design

To determine the working set of a higher level logical tasky¥%IDE has to track history
of both data-bound and access-bound contexts for every t&&kdesigned WorkSIDE
as an on-disk mechanism to demonstrate its working as pahteofirmware of a high-
end block-based RAID storage system. WorkSIDE can potgngaist at any layer of
the storage stack such as the file system or the device driveough our design, we
show that even in the lowest layer of the storage stack (drage hardware), working set
identification can be done to an acceptable level of accutiaryugh context-aware 1/0.

For WorkSIDE to correctly determine the working set of datad given access-bound
context, the higher application has to pass data context®rnumunicate the semantic
organization of data. This can relate to on-disk structateh as B-trees, database tables,
files, and directories. In this section, we first detail howess-bound contexts can be
associated with corresponding data-bound contexts. Wedlseuss a few policies that
can be adopted to determine the granularity of the workih@fa given context. Lastly,
we present our prototype implementation of WorkSIDE.

Associating Access with DataVorkSIDE maintains two context stores (described in
Section 6.4) to track access-bound and data-bound comisfisctively. Each store has
context trees to represent the hierarchy. We call tree niodbs access and data stores as
Access-Context Nod¢ACNs) andData Context NodefDCNS) respectively. Note that,
as data-bound context is mainly used to communicate thergersdructure of data, it
need not necessarily be passed by the higher-level applicitr every 1/0 request. For

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

44 . Gopalan Sivathanu et al.

example, if a DBMS uses thieabl e andr ecor d abstractions as data-bound contexts,
it may pass the context hierarchy only when such abstractwoe created (e.g., a table
creation) or updated (e.g., a new record insertion). Fomgka, the DBMS need not pass
data-bound contexts for evesel ect query. To handle this condition, WorkSIDE may
have to map access-bound contexts accompanying a blockdfi@st with a pre-existing
data-bound context hierarchy.

The following are the contents of a DCN: (a) A context ideatifi(b) The number of
blocks in the entire sub-tree with the node as root. (c) Adfdtlock numbers associated
with the context (if it is a leaf node). Every time a block I/@shan accompanying data-
bound context chain, the corresponding block number is ddole¢he leaf DCN of the
chain. (d) A list of pointers to its child nodes. (e) A backigter to its parent node. This
is used to increment the number of blocks in every parentgatioa chain when there is a
new addition to a leaf node.

While adding a node to the tree, we enforce sigle parentconstraint, where every
node must have at most one parent. When there is a context phssed, that violates
this condition, we truncate the chain after the spuriousenetile adding it to the tree.
In almost all common cases, this would not affect the acquofithe data-bound context
tree, as most data-abstractions already follow this rude eikample, a single block cannot
belong to more than one file (except in rare cases such asrierdi Ext2).

WorkSIDE also maintains a hash tabEpTABLE, to map block numbers to the cor-
responding leaf nodes in the data context tree. BbeABLE is used to lookup the data
context for any block when an 1/O request to it does not havassociated data-bound
context. Upon receiving a block 1/0 request with a accesmbaontext, WorkSIDE can
map the corresponding block number to any level of abstradti the data-bound hier-
archy by just traversing through the parent back-pointeesich node in the data context
tree.

In the next section, we describe how this infrastructureuignaented with association
policies to determine the optimal granularity of assongt data-bound working set for a
given access-bound context.

Working Set Identificationldentifying the working set for a given node in the access-
bound context tree involves associating that ACN with ormaore DCNs. Therefore every
ACN in the access store contains pointers to one or more DCNSs.

Greatest-Common-Prefix Mod&Ve designed WorkSIDE to operate under two different
modes for choosing the appropriate DCN for a given ACN. Infits¢ (and simple) mode,
which we call theGreatest Common Pref(xsCP) mode, WorkSIDE maintains utmost one
DCN per ACN. Whenever there is an 1/O in the context of an AOMN tequest block
number is looked up in theDpTABLE to find the leaf DCN to which the block number
is associated. The leaf DCN is associated with the ACN if t@NAdid not previously
have a DCN associated. If not, the greatest common prefix imatthe tree (starting from
the root) for the new leaf DCN and the previously associat€NDs computed (using
the parent back-pointers) and associated with the ACN. Tdr&ing-set is enumerated by
just traversing the sub-tree starting from the associatetl O his method of enumerating
the working set for an ACN ensures completeness, but undee stenarios there could
be a significant number of falsely associated blocks. Fomgkea, if an access context
reads filed hone/ j ohn/ pl an. t xt and/ hone/j ohn/ private/list.txt,the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 45

GCP method of association would include the entire contehtshone/ j ohn/ in the
working set of A. A variant of the GCP mode mitigates this problem under sooee s
narios by tracking the longest depth to traverse while ematimg blocks, along with
the ACN. With this, the working set off would just include files up to depth level 3
(/ hone/ j ohn/ pri vat e).

Multi-DCN Mode. In the second mode, which we call thilti-DCN mode WorkSIDE
tracks a list of DCNs per ACN. Every ACN has a list of duplicateninated pointers
to parent DCNs. To enumerate the working set for a given AQH, following pro-
cedure is used: for each DCN associated, all blocks belgnirtheir immediate chil-
dren are included. For example, if an AGRreads files hore/ j ohn/ pl an. t xt and
/hone/john/private/list.txt,DCNsfor/ home/johnand/ home/john/private
will be associated withB. While enumerating the working set &f, all files (not sub-
directories) undet home/ j ohn and/ hone/ j ohn/ pri vat e will be included. There-
fore, the multi-DCN mode of association provides more aamuidentification of working
sets. However, this method needs to track more informatswndCN. In the procedure
described above, we choose the hierarchy one level aboueah®CN for every block
access. However, the number of such levels can be configubabkd on specific system
and workload requirements.

WorkSIDE can also track information required for both GCHE anulti-DCN modes si-
multaneously (every ACN can have both the list of parent D@nis a single GCP node).
Based on the kind of usage scenario for the working set, eratior process can be de-
cided dynamically to choose the optimal granularity.

Prefetcher.We developed an on-disk prefetching tool that uses WorkStb&nhumer-
ate the working set of access-bound contexts and prefe¢ch ihto a faster storage. For
prefetching, we tracked the repeatability of the workingcfeeach ACN, and for repeat-
able ACNs, we prefetch and serve the entire working set floafaster storage medium.
Currently we use RAM to cache prefetched working sets, hatcbuld even be a fast sec-
ondary storage device such as flash. While deciding whettpmefetch a working set, we
take into consideration the size of the working set and tladlae space in the prefetch
cache. In our design, we use a simple scheme where we prefetking sets less than half
the size of the prefetch cache subject to remaining spadkabiity in the cache. More
advanced algorithms such as best-fit and worst-fit can alsmplemented to decide the
appropriate working sets to prefetch.

To evaluate our working-set aware prefetcher, we compégdal modules in the Linux
kernel source, anel2f spr ogs package [Ts'0 2008], with inheritable contexts. We found
that once working-sets were identified by WorkSIDE and poéfed into RAM by our
prefetcher, there were no requests sent to the disk dursngdmpile workload. There-
fore, working-set aware prefetching of data enables tgrofhidisk drives (and hence save
power) in the case of repeatable workloads.

7.3 Implementation

We implemented a prototype of WorkSIDE and our prefetchoa &is a pseudo-device
driver in Linux kernel 2.6.15 that stacks on top of an exigtitisk block driver. The
pseudo-device driver receives all block requests, andeetdithe common read and write
requests to the lower level device driver, after storingterhinformation that needs to
be tracked. Our prototype of WorkSIDE included both the GGE multi-DCN modes

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

46 . Gopalan Sivathanu et al.

User Applications
!

File Systems

|
WorkSIDE Pseudo—device Driver

Context Working set
Store Manager

!

Disk device drivers

Fig. 15. Prototype implementation of WorkSIDE in the Linux kernéhe Prefetcher component in WorkSIDE
prefetches common working-sets into memory to save power.

Prefetcher

of associating data-bound contexts. It contains 3,028 lofenew kernel code. Figure 15
shows the architecture of our prototype.

For testing WorkSIDE, we also modified the VFS layer of theukikernel to encode the
pathname of the entity being operated (file or directoryhglwith every lower level I1/O
request. File system meta-data blocks such as super bloitksps and directory blocks
have to be dealt with separately, as they may not partigubaiong to a specific applica-
tion. To handle such blocks, we modified the Linux Ext2 filetegsto associate a generic
“common” context which can be interpreted by any layer astbagis not associated with
any particular access-bound context. We call our modifie@ Ebe system, Ext2C.

7.4 Evaluation

We evaluated the correctness and performance of our ppatatyplementation of Work-
SIDE. For correctness we used a Linux kernel module buildgss, and for performance,
we used the Postmark benchmark described under Section 6.4.

Completeness of the Working-S&t verify the completeness of the working-sets iden-
tified by WorkSIDE, we implemented a prefetch cache layerch#énthe file system that
prefetches the working-set for selected access-bounexisntWe then simulated a disk
crash by disallowing disk 1/O from our pseudo-device driward repeated the workloads
for the corresponding contexts. We performed this for Kemmedules compiles and sev-
eral micro-benchmarks, and in all cases the prefetch cagtee serviced all /0 requests.
This shows that working-sets identified by WorkSIDE are ctategp

Kernel Modules Build.Our goal during this test was to evaluate the correctnedseof t
working set identification mechanism of WorkSIDE. We urgdra vanilla Linux 2.6.15
kernel on our Ext2C file system mounted over our WorkSIDE gdeedevice driver. We did

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : a7

Module # Directories #Files # Blocks (4k)
Ext2 14 315 1149
Ext3 14 328 1452

ReiserFS 14 328 1432
NTFS 14 320 1769

Table Il. Compilation Working Set Statistics

this through a shell that has an inheritable access-boumgxioset (described under Sec-
tion 6.4), with depth one. We then remounted the file systeafitanate cache effects and
compiled the source-code of a few file systems (Ext2, Ext&dREs, and Ntfs) under the
f s/ sub-directory of the kernel source. While compiling eaah $ystem, we used differ-
ent shells with different second-level inheritable cotgeset. All compilations were done
with the same top-level hierarchy of context, but for eachmpitation, the second-level
was different. Therefore, we were able to track the worlgegef each of the individual
compilations. Note that we initialized the build proces®tigh ‘meke i nst al | " sep-
arately at the beginning, and remounted the file system edieln compilation. We ran this
test over WorkSIDE for both GCP and multi-DCN modes of ogerat

Under the GCP mode, we noticed that the working sets of evegjesfile system com-
pilation was identified as a the root of the kernel source {féés is because, a file system
module compilation would refer to files undemcl ude/ andf s/ and hence the greatest
common prefix node becomes the root of the kernel source.

When we ran the test under the multi-DCN mode, we saw WorkStlektify separate
working sets for each of the file system compilation contekéble Il shows the total num-
ber of directories, files, and blocks associated with thekingrset of each compilation.
We identified these by dumping the entire access-bound xiomee of WorkSIDE and
their associated DCNs. In each compilation context, theegead object files were also
included in the working set as the same inheritable contastpassed for write operations
as well.

We also used the Multi-DCN mode of WorkSIDE to calculate tloeking-sets for kernel
compilation withmake al | noconfi g andmake al | yesconfi g. For compilation
usingmake al | noconfi g, the size of the working-set came out to 32.6MB. Fake
al I yesconfi g, the working-set size was 3GB. As the object files during citatipn
are created from the same context, they were included in ¢king-set.

Postmark. To evaluate the performance overheads of WorkSIDE, we usé@antensive
benchmark, Postmark. We ran our modified Postmark that passgext objects with each
I/O request, over WorkSIDE in its two modes, and comparedtft regular Postmark run-
ning on top of a normal disk. For the regular Postmark we usedadified Ext2 as the file
system and for WorkSIDE evaluation, we used our modified Exif2 system. Figure 16
shows the overheads of WorkSIDE compared to regular disks.

WorkSIDE under the GCP mode of operation had an elapsed tirméhead of 1.5%
compared to regular disk. The overhead mainly consists steay time (12%) caused
because of updating context trees and tracking greateshoorprefixes. Under the multi-
DCN mode of operation the elapsed time overhead was 3.7% a@upo a regular disk,
caused by a 20% increase in system time. The increase ineagstcompared to GCP
mode is because under the multi-DCN mode, WorkSIDE has ¢# traultiple data nodes
per access-node. If WorkSIDE is implemented in a real disicking context trees would

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

48 . Gopalan Sivathanu et al.

Wait ——
250 User =%
g System m—
c
o 200
: 170.5 173.1 176.9
e L
o 150
S
l_
3 100
(%)
o
<
w 50
ol eeesss 20 S 0 OB
Vanilla GCP MDCN

Fig. 16. Postmark Results for WorkSIDE (200 Sub-directories, ADfEs, and 200,000 Transactions.). This
shows the overheads associated with the process of woskiniglentification at the disk-level.

be done by the disk firmware and hence would not incur the hBkt @/erheads.

8. CASE STUDY: CONTEXT-AWARE CACHING

Modern large-scale storage systems have hundreds of dgasaby built-in main mem-
ory [EMC Corporation 1999], primarily for caching purposé$owever, today’s storage
systems cannot adapt their caching policies based on afiplelevel workloads or data
semantics, as they lack information about higher level sgitea This is caused by an
excessively simple disk interface [Denehy et al. 2002;tBaau et al. 2004]. Application-
aware caching policies have been found to be quite usefuhéncbntext of OS level
caches [Cao et al. 1996]. Yet today’s disk systems cannot ssparate independent I/O
streams generated by two different applications, makihgitier to implement application-
aware caching policies.

In this section we design and evalud&entext-Aware CachécA-cachg, an on-disk
caching mechanism that differentiates independent I/€asts using logical contexts and
tunes its caching policies based on individual accessrpatte

8.1 Design

We designeaA-cacheas an on-disk LRU write-through cache layer. The goalmitache

is to identify sequential streams of I/O and disable cacttiefr data, as mostly sequential
I/O streams do not benefit from read caching. As we are irteaties the access-patterns
to tune the caching policy, this application uses accesswboontexts.

Architecture. cA-cacheconsists of a set of dynamically-built context trees and R L
cache. Each tree represents a group of hierarchical cenagttt the same root context.
Each node represents the hierarchical context specifidudyyeth from the root of the tree
to that node. Context trees are created or updated on eathagaest that specifies an
access-bound context.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 49

Classification of ContextsEach node in the tree contains the following information
about a particular context: (a) the inferred access-paftarthe particular context, (b)
the block number for the last read 1/0O request required ttktszquentiality, and (c) two
counters that track the number of successive sequentialeamabm read requests in the
past. A context node is initialized as random-access upestion. Based on the last read
request and the current request, either the sequentia¢ eatidom counter is incremented
and the other is reset. When the values of the counters exctedshold the node is
classified as sequential or random as appropriate. Noteathaiready classified node
could be re-classified when its access pattern changes. tdpeiving any read request,
the counters in all nodes that are part of the current corextupdated and the nodes
are re-classified if needed. We call the number of sequerd# request required for
classifying a node as sequential, treequential threshold The sequential threshold is
configurable, and can range somewhere between 10 and 10@QuaArg@l-access node is
re-classified as random upon a single out-of-order read.

Caching MethodologyOur classification scheme allows for different hierarchyele
in the same context chain to be classified differently. Faneple, two sub-contexts that
are part of the same parent may be doing sequential I/O indivei levels. However, since
the 1/0O from the sub-contexts could be received interleatredparent would be classified
as random.cA-cachedoes not require context identifiers to be repeatable. Ttwereit
contains a mechanism to automatically forget contextsthasa timeout. We periodically
purge context tree entries that represent inactive canf@sithout any requests) beyond a
time threshold.

8.2 Evaluation

We implemented a prototype of our on-disk caching mechaasmpseudo-device driver
in the Linux 2.6.15 kernel similar to WorkSIDE. We maintalretcontext trees in mem-
ory and an asynchronous kernel thread wakes up periodiafiyrge timed out context
entries. If the block is present in the LRU cache, the psedeidee driver services the re-
quest from the cache, thereby avoiding a request to the l@wvel. Otherwise, the request
is directed to the lower level and the cache is updated on tiiop of the request, if the

request belongs to a random-access context.

Read Micro-benchmarkTo evaluateca-cache we ran a micro-benchmark that gener-
ates synthetic random and sequential read workloads simadusly and calculated the
overall throughput of the random workload. We compared ltheughput results ofA-
cachewith a vanilla LRU cache layer which treats all contexts dlyu8oth cA-cacheand
vanilla LRU cache used 4MB of cache (1,024 4KB pages) forlibischmark.

We ran a user program that generates workloads shown ind=igurThe user program
has four execution contexts (threads), A, B, C, and D whiahthsir own files for I/O.
Thread A reads a 4GB file sequentially with contékt+2-5 (see Figure 17). Thread B
reads a 4GB file sequentially, but it uses cont§Xts3-7} and{1-3-8} for alternate reads.
Thread C is identical to thread B, but it uses contetts4—9 and {1-4-1¢. Thread
D reads random locations from a 4GB file using contgikt2—6. For thread D, we use
a random number generator that repeats itself every 1,0&#sreThe threads run until
any one of the sequential threads exits after reading 4GRtaf. dn our experiment, the
throughput of the random workload when run under the vahiR& cache was 0.098 MB
per second, whereas witta-cache the throughput was 7.71 MB/Sec.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

50 . Gopalan Sivathanu et al.

0 O Sequential
O Random

Fig. 17. Context tree used for CA-cache micro-benchmark. After daraabenchmark, CA-cache classified the
grayed nodes as sequential and the rest as random.

MySQL Micro-benchmarkFor this benchmark, We created two identical talde®)
andrRAND in MySQL with 4,200,000 records each, and ran random andesgigl query
logs simultaneously. The tables were approximately 233M8&Ze. The sequential query
log contained &el ect * query on the table. For a random workload, we selected a
subset of the records at random and issued select queried bagheir record IDs. To
show the benefits of caching random streams alone, we reptaterandom query log
ten times. We also ran the sequential log in a loop till thedoem workload completed.
We determined the throughput of the random workload (nurobeueries executed per
second) while the sequential workload was running in palralt was 266.13 queries per
second without selective caching, while it was 614.15 aqgeper second with selective
caching.

9. RELATED WORK

In this section, we discuss related research for the coactgathniques, and insights used
in our abstractions and the case-studies that we developed.

9.1 Briding the Information-Gap in the Storage Stack

Several systems have been proposed with the overall goaildafibg the information-gap
in the system stack. In this section, we classify existirgpagch in this area into four
categories: extensible systems, richer abstractiong;blaised interfaces, and inference-
based systems. The related work for the case-studies for aastraction is discussed
under their respective sections.

Extensible System®uilding extensible systems are a solution to the probleimfofmation-
gap in the storage stack. Extensible operating systemsliiRdret al. 1995; Seltzer et al.
1994] allow applications to implement their own policies faditional operating system
tasks, by ensuring a safe execution environment for themel&ed approach is the one
taken by Exokernel [Engler et al. 1995], which advocateddmg a minimal operating
system and have everything else be implemented in apiichitiraries.

The notion of extensibility has also been explored at thelhare level. For example,
active disks [Acharya et al. 1998; Riedel 1999] enable a&pfibins to download code into
the disk that is run within the disk controller. Such code taplement arbitrary filter-
ing of data based on application level predicates, and eeeionmn more sophisticated
operations such as search [L. Huston and R. Sukthankar awiddRremesinghe and M.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 51

Satyanarayanan and G. R. Ganger and E. Riedel and A. Ailagtdd] without actu-
ally transferring data out of the disk subsystem. Scrigd®PC [Sivathanu et al. 2002]
proposes making the interface of a network file server eiinso that clients can dy-
namically implement flexible cache consistency and comnay policies.

All these systems provide a lot of control to the applicatod in the process, essentially
ties them together. For applications to actually use sutdnsible layers, they need to have
a reasonably intricate understanding of the system, thingéhem complex to design.
Nevertheless, for applications that really require suahtrob and can utilize it sensibly,
these provide the right level of abstraction.

Hint-Based InterfacesA more evolutionary approach that past research has explore
is to provide specific primitives at the system level thatdpelications can use to convey
information to the operating system. Informed prefetcHiFgmkins et al. 1997] is an ex-
ample of such a system. By enabling the application to comfeymation on its future
access pattern, the operating system acquires knowleage e application that it uses
to perform more intelligent prefetching. Another exampdhe Logical disk [de Jonge
et al. 2003], which provides an interface for the appligadito encode locality hints by
creating lists of blocks. Researchers have also lookecedtighiside of the problem: pro-
vide information about the operating system to the appticado that the application can
make intelligent decisions. Infokernel [Arpaci-Dusse&ale2003], and icTCP [Gunawi
et al. 2004] advocate the approach of the operating systgartxg a minimal amount of
internal information which the applications then use tcetthreir behavior.

Previous work has also looked at the idea of conveying agtidioc knowledge through
new abstractions. Perhaps the closest to our work is theifdeasource Containers [Banga
et al. 1999], which allows applications to group requests amresource container which
is then treated as a logical principal for the purposes afue= isolation. However, even
Resource Containers were built with the specific goal ofussmaccounting.

One commonality between many of these hint-based appreashbat the hints are
often tied to a specific kind of optimization or functionglitn other words, the information
being transferred is designed with a particular purposeimdmThis in turn limits the
flexibility of such a system because each new class of fumality may require yet another
new primitive to be added to the interface.

Richer AbstractionsOur work is closely related to a large body of work examining
new interfaces between file systems and disk storage. Fang®galogical disks expand
the block-based interface by exposing a list-based meshethiat file systems use to con-
vey grouping between blocks [de Jonge et al. 2003]. The Usald-ile Server [Birrell
and Needham 1980] has two layers where the lower layer eixistise storage level,
thereby conveying directory-file relationships to the at layer. More recent research
has suggested the evolution of the storage interface frensubhrent block-based form to
a higher-level abstraction. Object-based Storage De®@&L)) is one example [Mesnier
et al. 2003]; in OSDs the disk manages variable-sized abjastead of blocks. Object-
based disks handle block allocation within an object, bilitdb not have information
on the relationships across objects. Another example isMBod [MacCormick et al.
2004]; Boxwood considers making distributed file systensiegado develop by provid-
ing a distributed storage layer that exports higher-leehdtructures such as B-Trees.
EXRAID [Denehy et al. 2002] explores the utility of exposimgrdware specific informa-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

52 . Gopalan Sivathanu et al.

tion from a RAID device to the higher layers such as the filéesys

These interfaces are designed with some specific applitsatioscenarios in mind. For
example, it is hard to implement a database in an objectebdisk. This illustrates that it
is hard to design a generic interface that is suitable fordewange of applications.

Inference-Based Systenisference-based systems take the extreme approach of mak-
ing no modifications to interfaces, binfer cross-layer information without explicit trans-
fer for information across the layers.. Gray-box systemgpfki-Dusseau and Arpaci-
Dusseau 2001] is an early example of such an approach. Aicapph with “gray-box”
knowledge of the operating system attempt to implicitly ttohthe operating system be-
havior by tuning its workload in such a way that it takes theraging system to a state
that results in the desired policy. Another system builingldhe same philosophy is
semantically-smart disks [Sivathanu et al. 2004] in whighgtorage system infers knowl-
edge about the higher layers by carefully observing trafiitguns and correlating them to
higher level operations.

Although inference-based techniques are valuable fronvighepoint of being easily
deployable and less intrusive, these approaches havetheiimitations because they are
heavily constrained in terms of not changing interfacess ihmany cases results in addi-
tional complexity, making it hard to reason about correstnghile also limiting the usage
of such inferred knowledge to less aggressive applicatizatscan tolerate inaccuracy.

9.2 Type-Safety

The concept of type safety has been widely used in the coot@gxbgramming languages.
Type-safe languages such as Java are known to make progngneasier by providing
automatic memory management. More importantly, they inm@igecurity by restricting
memory access to legal data structures. Type-safe languagea philosophy very similar
to our model: a capability to an encompassing data strudtopées a capability to all
entities enclosed within it. Type-safety has also beenagrglin the context of building
secure operating systems. For example, the SPIN operatitgns [Bershad et al. 1995]
enabled safe kernel-level extensions by constraining tteebe written in Modula-3, a
type-safe language. Since the extension can only accessteiijhas explicit access to, it
cannot change arbitrary kernel state. More recently, thguBarity operating system [Hunt
et al. 2005] used a similar approach, attempting to impro8e@ustness and reliability
by using type-safe languages and clearly defined interfaces

9.3 Capability-Based Access Control

Network-Attached Secure Disks (NASDs) incorporate cdfgltiased access control in
the context of distributed authentication using objectdubstorage [Gibson et al. 1998;
Aguilera et al. 2003; Miller et al. 2002]. Temporal timeoinsACCESS are related to
caching capabilities during a time interval in OSDs [Azagat al. 2003]. The notion
of using a single capability to access a group of blocks has lexplored in previous
research [Gobioff 1999; Miller et al. 2002; Aguilera et 2003].

In contrast to their object-level capability enforcemeifCESS uses implicit path-
based capabilities using pointer relationships betweeckisl

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 53

9.4 The Notion of Context in Storage

The idea of tagging requests with identifiers has been eggliorthe context of distributed
systems for performance debugging, profiling, etc. Pinp@hen et al. 2002] and Mag-
pie [Barham et al. 2003] are examples of systems in this oage&ecently, Thereska et al.
proposed applying a similar idea in the context of distiioustorage systems mainly for
performance monitoring [Thereska et al. 2006]. All thesstems look at tagging requests
in a causal chain with a certain identifier so that the emtéath of a logical request (which
may involve multiple physical network hops) can be trackeesearchers have also looked
at implicitly inferring this causal knowledge without eigit tagging [Aguilera et al. 2003;
Gniady et al. 2004, Li et al. 2004] but it involves significammplexity compared to the
explicit tagging approach. These systems only operatamiitie scope of one logical re-
guest and are targeted at a specific application. In con€asO allows for a more general
expression of application level semantics to cater to a wédiety of applications.

Previous work has also looked at conveying applicatioedlgrouping through new ab-
stractions similar to our notion of context. Perhaps thesedb to our work is the idea
of Resource Containers [Banga et al. 1999], which allowdiegjipns to group requests
into a resource container which is then treated as a logitatipal for the purposes of
resource isolation and accounting. However, similar tosiystems discussed above, re-
source containers were also built with the specific goal eduece accounting and convey
information on one specific kind of grouping.

Our work on context-aware 1/O also fits into a class of otherkwem general solutions
for bridging the information gap across system layers. Vilotkis area mainly belongs in
three categories: extensible systems, hint-based intsgfand implicit techniques to infer
information or exert control.

9.5 File System Consistency

Consistency mechanisms for file systems have been explgtedsévely. Early file sys-
tems such as FFS [McKusick et al. 1984] relied on a global s¢atisk metadata to fix
consistency problems. This mechanism, called the file sysi@nsistency check (fsck)
was in popular use until recently in the Linux Ext2 and WindoWFAT file systems.
However, as increasing disk sizes made such global scaresandrmore expensive, more
efficient mechanisms have become popular. Journallingjrally proposed as early as
in the Cedar file system [Gifford et al. 1988], uses datahiiedriansactions for metadata
updates. Modern file systems such as Ext3 and Windows NTF$usaalling for file
system consistency. Another technique proposed for fileeBysonsistency is Soft Up-
dates [Ganger et al. 2000; McKusick and Ganger 1999], whidbrs updates carefully so
that pointer dependencies get updated in the right ordérufdates is somewhat similar
in spirit to our approach since it is also pointer-based. latieely recent study evaluated
the trade-offs between journalling and soft updates [8ekral. 2000].

Database systems have for long used mechanisms for cartsis@onsistency in databases
is enforced via transactions; the ARIES transaction basedvery mechanism [Mohan
et al. 1992] is used quite widely in database systems. The tehnique is to group all
related updates into a single transaction that is then ctteuitio disk atomically, so that
the state remains consistent. As we described in Sectigtr&ractions are more general
and powerful than pointer-based consistency, but usims#éietions requires a fair bit of
work at the application level. Our mechanism provides a myet effective alternative

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

54 . Gopalan Sivathanu et al.

to transactions, although not as general.

Consistency at the disk level has been explored in the cbpnfeSemantically-smart
disks (SDS) [Sivathanu et al. 2003]. In that paper, the asthoplement journalling un-
derneath unmodified Ext2 by utilizing inferred semantic \klemlge. However, in their
work, the disk system had to be aware of the specific strugttrthe file system level and
thus was tied to a specific file system. Further, it requiregh@lsronous mount of the file
system. Our work explores enforcing consistency in a magegeric to the higher level
software. However, in the process, we require changing llnsystem or software above
to use the pointer API. We therefore view both these appmmak complementary.

10. CONCLUSIONS

As Butler Lampson said, interface design is one the most tengspects of system de-
sign, while also being the most important. Interface desigihave traditionally embraced
the philosophy of minimalism—hide as much information abihe layers as possible,
so that the layers can innovate and evolve independentlis diproach, despite all its
merits, has the downside of obscuring what a layer knowstat®oinputs, thus limiting
functionality. At the other extreme, some systems haveagrd how to completely tie
the layers together, by having extensible layers, or exygodetailed information about
the inner semantics of a layer. What we have explored in ttig&is a middle-ground,
where we send a small amount of information across layersmBking the generation
of the information separate from how the information is ysee enable the layers to be
independent of each other, while still enabling arbitramyuping and relationships to be
conveyed across the storage stack.

10.1 Lessons Learned

We now discuss four key lessons learnt through our expegignevolving and prototyping
our end-to-end abstractions and the case-studies. Weddliese lessons would be useful
for future interface designers not only in the storage domiait also more generally in
computer systems.

Lesson 1: Generalizing structural and operational inforntian in storage is
possible.

Our pointer abstraction shows that higher-level strustsueh as files, directories, database
tables, or B-trees can be formalized in a generic manner lyyolrpointers. The funda-
mental insight behind the pointer abstraction is that t&ddigk systems store data in the
form of fixed size blocks. Therefore, to implement higheselestructures on top of this
simple abstraction, relationships have to be establisle¢dd®en these individual blocks.
Most file systems and other storage software today maint@iset relationships through
explicitpointers. Even if pointers aimplicit as in the case of extent-based storage design,
it is straightforward to generate them explicitly for commizating to the storage stack.

The context-aware storage abstraction provides a meansit@fizeoperationalinfor-
mation in addition to structural knowledge. By way of hiefzsical context identifiers, we
show how application-level operational contexts can be@dead in a generic manner even
for complex storage applications such as databases.

Lesson 2: Requiring just implementation-level modificatis to existing in-
frastructures is a virtue in interface design.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 55

Both our abstractions require only implementation-levetifications to existing soft-
ware layers. Our straightforward implementations of thé2ESD and VFATTSD file
systems that support the type-aware storage abstractiditate that as long as there is
not a need to redesign existing infrastructures, intertdmnges are easy to be adopted
and deployed. The limited changes that we made to the MyS@LtfaLinux kernel to
support hierarchical contexts corroborate this fact.

Lesson 3: Annotating pointers or contexts with applicatidavel attributes
enables a wider range of functionality.

To support new features that need to be tuned for specifidcapipins or storage lay-
ers, annotating generic information with optiorsiributesproves to be useful. These
attributes need not be part of the main interface, but candnenwnicatedffline be-
tween specific layers. For example, the share proportionifégrent contexts in our a
proportional-share disk scheduler can be set offline by dnaistrator, specifically in the
disk scheduler layer.

Lesson 4: Decoupling the generation of information from itssage has its
own limitations

Although our abstractions enable a wide-range of new fonelity in the storage stack,
they cannot support certain kinds of features that requieeipe application-specific in-
formation. For example, although type-awareness enalié&s tb group blocks based
on pointers, disks cannot precisely identify if a particidaoup represents a file, direc-
tory, or a database table. Although it is true that a largescla new functionality can
be achieved without such knowledge, some features thaisrteasse more fine-grained
application-specific information cannot be implementethaut help from applications.
Similarly, although context-aware storage encodes allggaities of application contexts,
lower layers cannot identify what each level in the hiergineteans, which may be needed
for certain functionality.

10.2 Future Work

In this section, we discuss potential future directionsxpl@re in the topic addressed by
this article. We first talk about how the general principlbibe our abstractions can extend
more broadly in other domains. We then discuss two posdiitled directions to develop
new applications using our abstractions.

Generalizing Information in Other Domain&Vhat we have explored in this article is
how structural and operational knowledge about applicatiata can be formalized and
used to bridge the information-gap in the storage stacks géneral principle of formaliz-
ing the differentpropertiesof application data is relevant in other domains. For exampl
it could be interesting to explore if security polices canftwenalized in a minimal and
generic manner and propagated across the systems stachltie @nnew class of secure
systems, where different layers can independently pros@beirity features without ex-
plicit coordination from applications.

Applications in Virtual Machine Environment3he growing popularity of virtual ma-
chine technology exacerbates the problem of informatiap-ig the systems stack, as it
introduces another layer of virtualization. Bridging thepgn this context enables highly
useful optimizations and new functionality at the virtuachine host. For example, if the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

56 . Gopalan Sivathanu et al.

host kernel is aware of structural information about dataiitual machines, it can im-
plement security features such as global anti-virus cimgglintrusion detection, or access
control, that cannot be bypassed by any guest virtual machin

Applications in Distributed Environment®istributed environments present a similar
scenario as virtual machines in the aspect of informatiap-d\Ve believe that the notion
of hierarchical contexts enables a wide range of functignial distributed systems. Start-
ing from straightforward features such as distributed grentince isolation, contexts can
potentially go a long way in enabling more complex and irgéng functionality such as
custom reliability and consistency policies and so on.

10.3 Summary

Overall, we find that type-awareness and context-awarandhg storage stack enables
an interesting set of new functionality and optimizatiowgh minimal modifications to
existing infrastructures. We believe that our abstrastiexplore an interesting and effec-
tive design choice in the large spectrum of work on alteweaititerfaces to storage. As
described in Section 10.2, we believe that the insightyddiin this article apply broadly
in several other systems domains.

REFERENCES

ACHARYA, A., UYSAL, M., AND SALTZ, J. 1998. Active disks: programming model, algorithms aradustion.

In Eighth International Conference on Architectural Suppfmt Programming Languages and Operating
SystemsACM, San Jose, CA, 81-91.

AGUILERA, M. K., Ji, M., LILLIBRIDGE, M., MACCORMICK, J., CERTLI, E., ANDERSEN D., BURROWS,
M., MANN, T.,AND THEKKATH, C. A. 2003. Block-level security for network-attachedkdis In Proceed-
ings of the Second USENIX Conference on File and Storagendkgies (FAST '03)USENIX Association,
San Francisco, CA, 159-174.

AGUILERA, M. K., MoGuUL, J. C., WENER, J. L., REYNOLDS, P.,AND MUTHITACHAROEN, A. 2003. Per-
formance debugging for distributed systems of black bokesroceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '‘08CM SIGOPS, Bolton Landing, NY, 74-89.

ARPACI-DUSSEAU, A. C. AND ARPACI-DUSSEAU, R. H. 2001. Information and Control in Gray-Box Systems.
In Proceedings of the 18th ACM Symposium on Operating Systemsigfes (SOSP '01)ACM, Banff,
Canada, 43-56.

ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., BURNETT, N. C., DENEHY, T. E., ENGLE, T. J., QU-
NAWI, H. S., NUGENT, J. A., AND Popovicl, F. |. 2003. Transforming policies into mechanisms with
Infokernel. InProceedings of the 19th ACM Symposium on Operating Systan@gkes (SOSP '03)ACM
SIGOPS, Bolton Landing, NY, 90-105.

AZAGURY, A., DREIZIN, V., FACTOR, M., HENIS, E., NAOR, D., RINETZKY, N., RODEH, O., SATRAN,

J., TAVORY, A., AND YERUSHALMI, L. 2003. Towards an object store. Mass Storage Systems and
Technologies (MSSTYSENIX Association, Berkeley, CA, USA.

BANGA, G., DRUSCHEL, P.,AND MoOGuUL, J. C. 1999. Resource Containers: A New Facility for Ressurc
Management in Server Systems. Rroceedings of the Third Symposium on Operating SystenmigrDasd
Implementation (OSDI 1999ACM SIGOPS, New Orleans, LA, 45-58.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R., RRATT, I.,
AND WARFIELD, A. 2003. Xen and the art of virtualization. Rroceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '08CM SIGOPS, Bolton Landing, NY, 164-177.

BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN, D. 2003. Magpie: Online modelling and
performance-aware systems. Pmoceedings of the 2003 ACM Workshop on Hot Topics in Opeyailys-
tems (HotOS IX)USENIX Association, Lihue, Hawaii, 85-90.

BERSHAD, B., SAVAGE, S., RRDYAK, P., SRER, E. G., BECKER, D., Fluczynski, M., CHAMBERS, C.,
AND EGGERS S. 1995. Extensibility, safety, and performance in theNSjerating system. IRroceedings

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 57

of the 15th ACM Symposium on Operating System PrincipleSPS@5) ACM SIGOPS, Copper Mountain
Resort, CO, 267-284.

BIRRELL, A. D. AND NEEDHAM, R. M. 1980. A universal file server. IHEEEE Transactions on Software
Engineering \Vol. SE-6. IEEE Press, Piscataway, NJ, USA, 450-453.

BLAzE, M. 1993. A cryptographic file system for Unix. IRroceedings of the first ACM Conference on
Computer and Communications Securé&CM, Fairfax, VA, 9-16.

BURNETT, N. C., BENT, J., ARPACI-DUSSEAU, A. C.,AND ARPACI-DUSSEAU, R. H. 2002. Exploiting Gray-
Box Knowledge of Buffer-Cache Contents. Rroceedings of the Annual USENIX Technical Conference
USENIX Association, Monterey, CA, 29-44.

CALLAGHAN, B., PAWLOWSKI, B., AND STAUBACH, P. 1995. NFS Version 3 Protocol Specification. Tech.
Rep. RFC 1813, Network Working Group. June.

Cao, P., FELTEN, E. W., KARLIN, A. R.,AND L1, K. 1996. Implementation and performance of integrated
application-controlled file caching, prefetching, andkdssheduling. ACM Transactions on Computer Sys-
tems 144, 311-343.

CHEN, M., KICIMAN, E., FRRATKIN, E., FOXx, A., AND BREWER, E. 2002. Pinpoint: Problem determination
in large, dynamic, internet services. Rroceedings of the 2002 International Conference on Dealeled
Systems and Networks (DSN 2Q0ZEE Computer Society, Bethesda, MD, 595-604.

DE JONGE, W., KAASHOEK, M. F.,AND HsSIEH, W. C. 2003. The logical disk: A new approach to improving
file systems. IProceedings of the 19th ACM Symposium on Operating Systentigfes (SOSP '03)ACM
SIGOPS, Bolton Landing, NY.

DENEHY, T. E., ARPACI-DUSSEAU, A. C.,AND ARPACI-DUSSEAU, R. H. 2002. Bridging the information gap
in storage protocol stacks. Rroceedings of the Annual USENIX Technical Conferebd&ENIX Association,
Monterey, CA, 177-190.

DIJKSTRA, E. W. 1968. The structure of the 'THE'-multiprogrammingtsm. InCommunications of the ACM
Vol. 11, Issue 5. ACM, New York, NY, USA, 341-346.

EMC CORPORATION 1999. Symmetrix 3000 and 5000 Enterprise Storage Systernduct description guide.

ENGLER, D., KAASHOEK, M. F., AND O’'TOOLE JR., J. 1995. Exokernel: An operating system architecture
for application-level resource managementPhceedings of the 15th ACM Symposium on Operating System
Principles (SOSP '95)ACM SIGOPS, Copper Mountain Resort, CO, 251-266.

GANGER, G. R., McKusick, M. K., SOULES, C. A. N.,AND PATT, Y. N. 2000. Soft updates: a solution to
the metadata update problem in file syste®@M Trans. Comput. Syst. 18,127-153.

GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUTLER, J., CHANG, F. W., GOBIOFF, H., HARDIN, C., REDEL,

E., ROCHBERG D., AND ZELENKA, J. 1998. A cost-effective, high-bandwidth storage aetitre. In
Proceedings of the Eighth International Conference on Aectural Support for Programming Langauges
and Operating Systems (ASPLOS-VIAECM, New York, NY, 92-103.

GIFFORD, D. K., NEEDHAM, R. M.,AND SCHROEDER M. D. 1988. The Cedar File Systeif@ommunications
of the ACM 313, 288-298.

GNIADY, C., BUTT, A. R.,AND Hu, Y. C. 2004. Program-counter-based pattern classificatiboffer caching.

In Proceedings of the 6th Symposium on Operating SystemsrDesiimplementation (OSDI 2004ACM
SIGOPS, San Francisco, CA, 395-408.

GOBIOFF, H. 1999. Security for a high performance commodity storsglesystem. Ph.D. thesis, Carnegie
Mellon University. citeseer.ist.psu.edu/article/gdtéi®security.html.

GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2004. Deploying Safe User-
Level Network Services with icTCP. IRroceedings of the 6th Symposium on Operating SystemsrDasily
Implementation (OSDI 2004ACM SIGOPS, San Francisco, CA, 317-332.

Hitz, D., LAU, J.,AND MALCOLM, M. 1994. File System Design for an NFS File Server Appliante
Proceedings of the USENIX Winter Technical Confered®ENIX Association, San Francisco, CA, 235—
245.

HUNT, G., LAURUS, J., ABADI, M., AIKEN, M., BARHAM, P., AHNDRICH, M., HAWBLITZEL, C., HODSON,
O., LEVI, S., MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T., AND ZILL, B. 2005. An
Overview of the Singularity Project. Tech. Rep. MSR-TR-2A(B5, Microsoft Research.

IBM. 2007a. IBM System Storage DS6800t t p: / / www 03. i bm coni syst ens/ st or age/ di sk/
ds6000/ i ndex. htm .

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

58 . Gopalan Sivathanu et al.

IBM. 2007h. IBM System Storage DS8000 Turbbt t p: // ww 03. i bm com syst ens/ st or age/
di sk/ ds8000/i ndex. html .

INNODB. 2007. Innobase oy. www.innodb.com.

Ji, M., VEITCH, A., AND WILKES, J. 2003. Seneca: remote mirroring done writePtaceedings of the Annual
USENIX Technical Conference SENIX Association, San Antonio, TX.

KATCHER, J. 1997. PostMark: A new filesystem benchmark. Tech. ReBO0ZR, Network Appliancewwm.
net app. conf tech_li brary/3022. htni .

KING, S. AND CHEN, P. 2003. Backtracking Intrusions. Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '08CM SIGOPS, Bolton Landing, NY.

KISTLER, J. J.AND SATYANARAYANAN , M. 1991. Disconnected operation in the Coda file systemPrin
ceedings of 13th ACM Symposium on Operating Systems ResdyeCM Press, Asilomar Conference Center,
Pacific Grove, CA, 213-225.

L. HUSTON AND R. SUKTHANKAR AND R. WICKREMESINGHE AND M. SATYANARAYANAN AND G. R.
GANGER AND E. RIEDEL AND A. AILAMAKI .2004. Diamond: A Storage Architecture for Early Discard in
Interactive Search. IRroceedings of the Third USENIX Conference on File and §®ieechnologies (FAST
2004) USENIX Association, San Francisco, CA, 73-86.

L1, Z., CHEN, Z., SRINIVASAN, S. M.,AND ZHOU, Y. 2004. C-miner: Mining block correlations in storage
systems. IFAST '04: Proceedings of the 3rd USENIX Conference on FiteStorage Technologied SENIX
Association, Berkeley, CA, USA, 173-186.

MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH, C.,AND ZHOU, L. 2004. Boxwood: Abstractions
as the foundation for storage infrastructurePhceedings of the 6th Symposium on Operating SystemsrDesig
and Implementation (OSDI 2004)CM SIGOPS, San Francisco, CA, 105-120.

MAGOUTIS, K., DEVARAKONDA, M., AND MUNISWAMY-REDDY, K. 2007. Galapagos: Automatically discov-
ering application-data relationships in networked systedmProceedings of the 10th IFIP/IEEE International
Symposium on Integrated Network ManagemBtEE, Munich, Germany, 701-704.

McKusick, M. K. AND GANGER, G. R. 1999. Soft Updates: A Technique for Eliminating Mogh&ronous
Writes in the Fast Filesystem. FProceedings of the Annual USENIX Technical Conference, BNRE Track
USENIX Association, Monterey, CA, 1-18.

McKusick, M. K., Joy, W. N., LEFFLER, S. J. AND FABRY, R. S. 1984. A fast file system for UNIXACM
Transactions on Computer System8 2August), 181-197.

MESNIER, M., GANGER, G. R.,AND RIEDEL, E. 2003. Object based storagEEE Communications Maga-
zine 41 84-90. ieeexplore.ieee.org.

MILLER, E., FREEMAN, W., LONG, D., AND REED, B. 2002. Strong security for network-attached storage.
In Proceedings of the First USENIX Conference on File and $®réechnologies (FAST 2002)SENIX
Association, Monterey, CA, 1-13.

MoOHAN, C., HADERLE, D., LINDSAY, B., PRAHESH, H., AND SCHWARZ, P. 1992. ARIES: a transaction
recovery method supporting fine-granularity locking andigbrollbacks using write-ahead loggincACM
Trans. Database Syst. 17, 94-162.

MYSQL AB. 2005. MySQL: The World's Most Popular Open Sourcedbase ww. nysql . or g.

NETWORKAPPLIANCEINC. 2006. Network Appliance FAS6000 Series. Product Data{Shee

PATTERSON, D., GIBSON, G.,AND KATZ, R. 1988. A case for redundant arrays of inexpensive disk$BlR
In Proceedings of the ACM SIGMOBCM Press, Chicago, IL, 109-116.

PATTERSON, R., GBSON, G., GINTING, E., STODOLSKY, D.,AND ZELENKA, J. 1995. Informed Prefetching
and Caching. IfProceedings of the 15th ACM Symposium on Operating Systemiftes (SOSP '95)ACM
SIGOPS, Copper Mountain Resort, CO, 79-95.

RIEDEL, E. 1999. Active disks: Remote execution for network-ditéat storage. Tech. Rep. CMU-CS-99-177,
Carnegie-Mellon University. November.

ROSENBLUM, M. 1992. The design and implementation of a log-structditecsystem. Ph.D. thesis, Electrical
Engineering and Computer Sciences, Computer Sciencei@iyigniversity of California.

SATRAN, J., METH, K., SAPUNTZAKIS, C., CHADALAPAKA , M., AND ZEIDNER, E. 2004. Internet small
computer systems interface (iISCSI). Tech. Rep. RFC 3726ydile Working Group. April.

SELTZER, M., ENDO, Y., SMALL, C.,AND SMITH, K. 1994. An introduction to the architecture of the VINO
kernel. Tech. Rep. TR-34-94, EECS Department, Harvard esity.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

End-to-End Abstractions for Application-Aware Storage : 59

SELTZER, M. |., GANGER, G. R., McKusick, M. K., SMITH, K. A., SOULES, C. A. N.,AND STEIN, C. A.
2000. Journaling versus soft updates: Asynchronous negtajaotection in file systems. roc. of the
Annual USENIX Technical Conferend@¢SENIX Association, San Diego, CA, 71-84.

SHEPLER, S., CALLAGHAN , B., ROBINSON, D., THURLOW, R., BEAME, C., BISLER, M., AND NOVECK, D.
2003. NFS Version 4 Protocol. Tech. Rep. RFC 3530, Networkkiig Group. April.

SIVATHANU, G., SUNDARARAMAN, S.,AND ZADOK, E. 2006. Type-safe disks. Rroceedings of the 7th
Symposium on Operating Systems Design and Implement&8DI(2006) ACM SIGOPS, Seattle, WA,
15-28.

SIVATHANU , M., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2002. Evolving RPC for active
storage. InProceedings of the 10th Conference on Architectural SupjeorProgramming Languages and
Operating Systems (ASPLOBLM, San Jose, CA, 264-276.

SIVATHANU , M., PRABHAKARAN, V., ARPACI-DUSSEAU, A. C.,AND ARPACI-DUSSEAU, R. H. 2004. Im-
proving storage system availability with D-GRAID. Rroceedings of the Third USENIX Conference on File
and Storage Technologies (FAST 2Q043ENIX Association, San Francisco, CA, 15-30.

SIVATHANU , M., PRABHAKARAN, V., Popovicl, F. I., DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. 2003. Semantically-Smart Disk Systems.Phoceedings of the Second USENIX
Conference on File and Storage Technologies (FAST. USENIX Association, San Francisco, CA, 73-88.

STRUNK, J. D., GooDsON G. R., SHEINHOLTZ, M. L., SOULES, C. A. N.,AND GANGER, G. R. 2000.
Self-securing storage: Protecting data in compromisetBys InProceedings of the 4th Usenix Symposium
on Operating System Design and Implementation (OSDI O8ENIX Association, San Diego, CA, 165-180.

SUN MICROSYSTEMS 1989. NFS: Network file system protocol specification. Tédbp. RFC 1094, Network
Working Group. March.

THERESKA, E., SALMON, B., STRUNK, J., WACHS, M., ABD-EL-MALEK, M., LOPEZ J.,AND GANGER,

G. R. 2006. Stardust: Tracking activity in a distributedrag®e system. IiProceedings of the Joint Inter-
national Conference on Measurement and Modeling of Com@ystems (SIGMETRICS’Q6)CM, Saint
Malo, France, 3-14.

TOMKINS, A., PATTERSON, R.,AND GIBSON, G. 1997. Informed Multi-Process Prefetching and Caching.
Proceedings of the 1997 ACM SIGMETRICS Conference on Memsumt and Modeling of Computer Systems
ACM SIGOPS, Seattle, WA, 100-114.

TRANSACTION PROCESSINGPERFORMANCE COUNCIL. 2004. TPC Benchmark C, Standard Specification.
www. t pc. or g/ t pcc.

Ts'o, T. 2008. E2fsprogs: Ext2/3/4 filesystem utilitids. t p: / / e2f spr ogs. sour cef or ge. net .

TWEEDIE, S. 1998. Journaling the Linux ext2fs filesystem.

VERITAS SOFTWARE. 1999. VERITAS file server edition performance brief: A Rdatk 1.11 benchmark
comparison. Tech. rep., Veritas Software CorporationeJunt p: / / eval . veri tas. conf webfil es/
docs/ fsedition- post mark. pdf .

WEDDLE, C., OLDHAM, M., QIAN, J., WANG, A. A., REIHER, P.,AND KUENNING, G. 2007. PARAID:

A gear-shifting power-aware RAID. IRroceedings of the Fifth USENIX Conference on File and $@ra
Technologies (FAST '07WUSENIX Association, San Jose, CA, 245-260.

WRIGHT, C. P., MARTINO, M., AND ZADOK, E. 2003. NCryptfs: A secure and convenient cryptograpléc fi
system. InProceedings of the Annual USENIX Technical Confereid®ENIX Association, San Antonio,
TX, 197-210.

ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEETON, K., AND WILKES, J. 2005. Hibernator: Helping disk arrays
sleep through the winter. IRroceedings of the 20th ACM Symposium on Operating Systentgdkes (SOSP
'05). ACM Press, Brighton, UK, 177-190.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

