Re-Animator: Versatile High-Fidelity
System-Call Tracing and Replaying

Ibrahim Umit Akgun
Department of Computer Science
Stony Brook University

Research Proficiency Exam

Technical report FSL-19-02

May 17, 2019

Contents

1 Introduction

2 Design
2.1 Goals . . . e
2.1.1 Fidelity e
2.1.2 Minimize Overhead
2.1.3 Scalable and Verifiable
2.1.4 Portability e
2.1.5 Ease of Use and Extensibility,
2.2 Fidelity o e e
22,1 RA-Strace. e e e
222 RA-LTTng e e
2.3 Low-Overhead and Accurate e
23.1 RA-Strace. e e e
232 RA-LTTNEZ o e e e e e e e s e e e
2.4 Scalable and Verifiable e
24.1 Re-Animator Replayer
242 Verifiable e e
243 Concurrent Lock-Free Design
2.4.4 Supporting Multiple Processes o o
2.4.5 Simulated System Calls
2.5 Portable e e e
2.5.1 Source Code Size e e
3 Evaluation
3.1 Testbed e e
32 Benchmarks e
3.2.1 Micro-Benchmarks
3.2.2 Macro-Benchmarks
3.23 Replaying Benchmarks
3.3 FIO Micro-Benchmark
3.4 LevelDB Macro-Benchmark
3.5 MySQL Macro-Benchmark
3.6 Trace StatistiCS e e e e

4 Related Work 21

4.1 Ptrace e e e e e e 21
4.2 Shared-Library Interposition L 21
4.3 In-Kernel Techniques e 21
4.4 Replayer Fidelity e 22
4.5 Scalability e e 22
4.6 Portable Trace Format. e 23
5 Conclusion and Future Work 24
5.1 Future Work L e 24

Abstract

Modern applications are complex and difficult to understand. One approach to investigating their char-
acteristics is system-call tracing: captured traces can be analyzed to gain insight, or replayed to reproduce
and debug behavior in various settings. However, existing system-call tracing tools have several deficiencies:
(1) they often do not capture all the information—such as raw data buffers—needed for full analysis; (2) they
impose high overheads on running applications; (3) they are proprietary or use non-portable trace formats;
and (4) they often do not include versatile and scalable analysis and replay tools.

We have developed two prototype system-call trace capture tools: one based on pt race and the other on
modern Linux tracepoints. Both capture as much information as possible, including complete data buffers,
and produce trace files in a standard DataSeries format. We also developed a prototype replayer that focuses
on system calls related to file-system state. We evaluated our system on long-running server applications such
as key-value stores and databases. We found that pt race-based tracers can impose an order of magnitude
in overhead, but require no superuser privileges or kernel changes. In contrast, our tracepoints-based tracer
requires some kernel changes to capture buffers and optimize trace writing, but it has an overhead of only
1.8-2.3x for macro-benchmark applications. The replayer verifies that its actions are correct, and faithfully
reproduces the on-disk state generated by the original application.

Chapter 1

Introduction

Modern applications are becoming ever more intricate, often using 3"-party libraries that add further com-
plexity [38]. Operating systems are adding multiple layers of virtualization [10, 73] and deep I/O stacks for
both networks and storage devices [11,40,72]. In addition, current storage systems employ space-saving
optimizations, including compression, deduplication, and bit-pattern elimination [13,27,51,53,61,75-77,
84,86,90]. The result is that applications interact with the rest of the system in complex and unpredictable
ways, making it extremely difficult to understand and analyze their behavior.

System-call tracing is a time-honored, convenient technique for tracking an application’s interaction with
the OS: ptrace can be used on a live application to start capturing system-call events, which can then be
converted for human consumption using tools such as st race [89]. Such traces can be replayed to repro-
duce a system’s state, reproduce an application’s behavior without the need to recreate its input conditions
and rerun the application, explore how an application may behave under different system configurations
(e.g., performance analysis or debugging), and even stress-test other components (e.g., the OS or storage
system) [1-3, 8,20, 34,43,44,50,67,68,71, 83, 85,93,94]. Traces can also be analyzed offline (e.g., using
statistical or machine-learning methods) looking for patterns or anomalies that may indicate performance
bottlenecks, security vulnerabilities, etc. [41,52, 69, 70]. Lastly, historical traces can help understand the
evolution of computing and applications over longer time periods. Such long-term traces become more
useful to evaluate the effects of I/Os on modern devices that can wear out quickly (SSDs) or have poorly
understood internal behavior (e.g., garbage collection in shingled drives) [19,23,39,47,55,91,92].

Existing system-call tracing approaches, however, are deficient in several ways: (1) They often do not
capture all the information that is needed to reproduce exact system and storage state. For example, buffers
passed to the read and write system calls are often not captured, or are truncated. (2) Tracing significantly
slows down the traced applications and even the surrounding system. These overheads can be prohibitive
in production environments. As a result, tracing is often avoided in mission-critical settings, and traces of
long-running applications are rare. (3) Past traces have often used their own custom format; documentation
was lacking or non-existent; and sometimes no software or tools were released to process, analyze, or replay
the traces. Some traces (e.g., those from the Sprite project [66]) have been preserved but can no longer be
read due to a lack of tools. (4) Some tracing tools (e.g., st race [89]) have output formats that are intended
for human consumption and are not conducive to automated parsing and replay [33,42, 88].

In this paper we make the following six contributions:

1. We have designed and developed two prototype system-call tracing systems. The first, based on ptrace
and strace, can be used without superuser privileges. The second uses Linux tracepoints [24] and
LTTng [25,59] and requires superuser privileges, but offers much better performance.

2. Both tracing systems capture as many system calls as possible, including all their data buffers and argu-
ments. The information is captured in raw form, thus avoiding unnecessary processing to display them

for human consumption (i.e., “pretty-print”).

. Both systems write the traces in DataSeries [5] format, SNIA’s official format for I/O and other traces.
DataSeries is a compact, efficient, and self-describing binary trace format. This approach automatically
allows users to use existing DataSeries tools to inspect trace files, convert them to plain text or spreadsheet
formats, repack and compress trace files to save space, subset them, and extract statistical information.

. In extensive evaluations, we found that st race imposes a high overhead on running applications, as
much as an order of magnitude; yet on average, our DataSeries-enabled st race performs at least 30%
better. Our tracepoints-based tracing system, while requiring Linux kernel changes to capture data buffers,
adds an overhead of only 1.8-2.3x.

. We developed a DataSeries replayer that can replay most system calls, including all those that relate to
file systems, storage, or persistent state. The replayer is designed to execute system calls as faithfully
and efficiently as possible, preserving event ordering, reproducing identical process and thread states,
handling multiple threads, and being able to replay large traces (hundreds of GB).

. All our code and tools for both tracing systems and for the replayer are planned for open-source release.
In addition, we have written an extensive document detailing the precise DataSeries format of our system-
call trace files to ensure that this knowledge is never lost; this document will also be released and archived
formally at SNIA.

Chapter 2

Design

Re-Animator is designed to: (1) maximize the fidelity of capture and replay, (2) minimize overhead, (3) be
scalable and verifiable, (4) be portable, and (5) be extensible and easy to use. In this section, we first justify
these goals, and then explain how we accomplish them.

2.1 Goals

2.1.1 Fidelity

State-of-the-art techniques for recording and replaying system calls have focused primarily on executing
captured system calls accurately during replay [6, 15, 38,48, 62, 88, 95]. In this work, we consider three
dimensions of replay: (1) timing, (2) dependencies between processes and threads, and (3) on-disk state.

Of these, timing is probably the easiest to handle; the tracer needs to record accurate timestamps, and the
replayer needs to reproduce the timing as precisely as possible [6]. However, many researchers have chosen
a simpler—and entirely defensible—option, which is to simply replay calls as fast as possible (AFAP). That
choice makes sense because it imposes maximum stress on the system being tested, which is often the
preferred approach when replay is used to test new systems. For that reason, although we record accurate
timestamps, we use AFAP replay. Replay that accounts for “think time” remains as future work.

Dependencies in parallel applications are more challenging; replaying dependencies incorrectly can lead
to unreasonable conclusions, and in most cases will produce incorrect results. Previous researchers have
used experimental [62] or heuristic [88] techniques to extract internal dependencies. For the current version
of Re-Animator, we have chosen a conservative approach similar to hfplayer [36]: if two requests overlap
(as measured by their beginning and ending times) we assume that they can be issued in any order; if there is
no such overlap then we preserve the ordering recorded in the trace file. We plan to incorporate techniques
from [88] in the future.

Finally, most prior tracing and replay tools have chosen to discard the actual data that was transferred.
That decision makes sense, because collecting that data slows tracing and consumes significant amounts
of disk space. However, modern storage systems use advanced techniques—such as deduplication [57,
80], compression [16, 53], repeated bit-pattern elimination [77], log-structured merge trees [64, 74], and
Be¢-trees [46]—for which the performance depends on data content. For that reason, we believe that it
is important to have the correct—and verified—state on the file system and disk after executing captured
system calls. We have therefore designed Re-Animator to support the efficient capture and replay not only of
system calls and their parameters, but also buffer contents, so that we can accurately reproduce the final state
generated by the original application. Re-Animator’s replayer supports verification of both return values and
buffer contents (see Section 2.4). We discuss the details of all these features in Section 2.2.

2.1.2 Minimize Overhead

Since the goal of tracing is to record realistic behavior, anything that affects the performance of the traced
application is undesirable. With the exception of tools that capture network packets by sniffing, all tracing
methods necessarily add some overhead, which of course should be minimized. Overhead is introduced in
several ways: (1) as each system call is made, a trace record must be created; (2) any data associated with
the system call (e.g., a path-name or a complete write buffer) must be captured; and (3) the trace information
must be written to a stable storage device. To keep overheads low, some tracing systems such as dtrace [17],
ktrace [30], and SysDIG [14]—all three of which we tested ourselves—drop events when the rate of system
calls exceeds a memory-consumption threshold; this is clearly undesirable if high fidelity is to be achieved.

Re-Animator offers two tracing tools: the first is based on st race, which uses the pt race facility to
intercept system calls, and the second is based on LTTng [25, 59], a relatively new Linux facility designed
for tracing kernel events, using tracepoints [24]. The st race approach is simpler for the user but has higher
overhead (see Section 2.3).

2.1.3 Scalable and Verifiable

Like any application, tracing tools should be reliable and should avoid arbitrary limitations. In particular,
it should be possible to trace large applications for significant time periods; that implies that traces must be
captured directly to stable storage (as opposed to fast but small in-memory buffers). Moreover, tracing a
multi-process or multi-threaded application should avoid introducing additional synchronization points that
would affect the application’s behavior. For example, one application thread should not be suspended while
waiting for another thread’s trace information to be written to a common trace file.

In addition, it must be possible to verify that a replayer has replayed a trace correctly. We use three
verification methods that can be disabled if desired: (1) when a system call is issued, we ensure that it
received the same return code (including error codes) that was captured at trace time; (2) for calls that return
information, such as stat and read, we validate the buffer contents; and (3) after a replay completes, we
separately compare the on-disk state with that produced by the original application.

2.1.4 Portability

Tools are only effective if they actually get used; to be usable, a tool must run in the desired environment. To
enhance portability, we use the DataSeries trace format [5] and developed a common library that standardizes
trace capture. (We will release all of our software publicly after publication of this paper.)

2.1.5 Ease of Use and Extensibility

Ease of use is also critical to the effectiveness of a tool. That goal encompasses user-interface design,
flexibility, and power. In the simplest case, the user need only run an application under our version of
strace; the replayer is equally easy to use. The LTTng version is somewhat more challenging, since it
requires a kernel modification, but once that has been done, the capture and replay processes are equally
simple. We have also designed the code so that it is easy to add support for new system calls as necessary.

2.2 Fidelity

In this section we describe how Re-Animator accurately captures system calls, including the data buffers’
contents. We describe our st race and LTTng modifications.

2.2.1 RA-Strace

Figure 2.1 shows the flow for tracing and capturing calls in RA-Strace; green components denote our mod-
ifications or additions. The strace tool is built upon the pt race facility, which (among other things)
hooks into system-call entry and exit points and notifies the tracer of each such occurrence. The tracer can
then use pt race to examine arguments and results as necessary. However, the tracer is a separate process
context, and pt race requires a system call each time the target process’s registers or memory are accessed.
Thus, multiple context switches are needed for st race to gather system-call arguments and results; doing
so introduces significant overheads.

However, ptrace also has an advantage: since the traced process is halted for each system call, the
tracer can delay the traced process until the event has been written to disk. Thus, the strace approach
ensures that no events are ever lost.

Strace
Re-l»f\nlmator - _Strace . Application
ibrary & | integration
@’ A
prodess—vm_ready ® System call
pation pid, | @) signal O
A I . A
System call handlinalayer =71

v_—) ;

Linux Kernel Core

Figure 2.1: Strace architecture. Green boxes denote our additions or changes. After an application issues a
system call (1), it is delivered to pt race (2), which notifies st race (3). Strace uses ptrace calls (4) to
collect information and write it using our library (5); it then uses ptrace (6) to free the process to run (7)
and finally execute the system call (8).

For RA-Strace, we modified st race in two places: the entry and exit points for system calls. Ordering
among threads is maintained by giving each system call a unique, monotonically increasing record ID. (In
some exceptional situations, such as readv, writev, and execve, a single system call generates multiple
trace records, in which case we assign the same ID to all; the DataSeries library disambiguates these cases.)
Re-Animator collects common information for every system call, including the entry and exit times, return
value, error code, process ID, and thread ID. Most calls are captured in the exit handler so that we can access
the data returned by the call. However, non-returning calls such as exit and execve skip through the exit
handler when they succeed, so Re-Animator records those calls at entry time (but still records failures when
they occur).

Despite assigning unique IDs, there is a subtle problem with record ordering. In some cases, clone
will yield to another, newly created thread before returning, so other cloned processes might be recorded
before the first one returns, causing out-of-order trace records. We resolved this issue with an offline post-
processing tool that reorders clone and vfork records in the DataSeries file as needed. This approach is

simpler and more robust than attempting on-the-fly reordering.

One of our most crucial design goals is to gather the data buffers passed to and from system calls. We do
so for 38 system calls. Here, we consider st ructs to be buffers: e.g., the full results of getdents, stat,
and ioct1 are captured. Although this maximalist approach is excellent from a scientific standpoint, it adds
the challenge of efficient data collection. We capture the data using process_vm_readv and ptrace,
plus some strace utility functions, as shown in Figure 2.1, step 4. After the trace information has been
collected, RA-Strace uses our common library (RA-Lib, see Section 2.3) to efficiently write a record to the
DataSeries file (Figure 2.1, step 5). We added a number of optimizations to our common library to ensure
efficiency (see Section 2.3).

2.22 RA-LTTng

LTTng [59] is a extensible framework for Linux kernel tracing. Briefly, tracepoints [24] have been inserted
in important functions, such as the system-call entry and exit handlers. When a tracepoint is activated, LTTng
captures relevant information into a buffer that is shared with a user-level daemon, which then writes it to
a file. To enable parallelism, the shared buffer is divided into sub-buffers, one per process, and the LTTng
daemon uses user-space RCUs via 1iburcu [56] for lockless synchronization with the kernel. The data
is written in the Common Trace Format (CTF) [58]; a tool called babeltrace can convert CTF to other
formats (but it currently supports conversion only to human-readable text format).

Figure 2.2 shows the flow for tracing and capturing calls in LTTng; green components denote our modifi-
cations or additions. To make the system easier to use, we wrote a wrapper (Figure 2.2, step 1) that automates
the tasks of starting the various LTTng components and the traced application.

The design of LTTng and CTF makes it challenging to capture large data buffers, such as when an
application accesses megabytes in a single I/0, since the sub-buffers were designed to handle relatively small
events. Instead, we capture data buffers directly to a secondary disk file using vfs_write (Figure 2.2, step
7). An advantage of using a separate file is that it can be placed on a different, larger storage medium if
desired. We added a unique ID to each trace record and tag each captured buffer with the same ID, so that
we can correlate them offline. To maximize parallelism, when a trace event is captured, we use a spinlock to
assign a particular file offset to that event, and then write the data itself asynchronously. In the rest of this
paper, we refer to this enhanced CTF format with secondary buffer-data files as RA-CTF. We describe the
details of the asynchronous buffer writing process in Section 2.3.

We modified the pre-existing babeltrace tool to generate the DataSeries format [5], which allows
us to group events on a per-thread basis, simplifying replay (CTF is purely sequential). The modified
babeltrace tool also integrates the captured data buffers from the secondary file so that the DataSeries
file produced is self-contained.

Because we write captured buffers asynchronously from multiple threads, they might be stored in a
different order from that of events in the CTF file. Re-Animator tags the buffers with their size and unique
record ID. When we convert CTF files to DataSeries, Re-Animator correlates the records with corresponding
system-call events using unique IDs, and stores them in the correct order in the DataSeries file.

LTTng records the identity of traced process(es) in a hash table indexed by process ID; currently, it does
not insert new PIDs or thread IDs into the table when clone is called. Rather than modifying clone, we
changed the kernel to trace based on the Process Group ID (PGID), which does not change upon clone.
Our wrapper sets the PGID before executing the target application and notifies the kernel. This technique
worked for all of the applications we tested in this paper. (The LTTng developers are working on a proper
solution to track which process should be traced.)

When we capture one of the 38 system calls that involve user data buffers, we first make a copy of that
data (using copy-from_user) so that the user process can continue while we invoke vfs_write. Space
for that copy is allocated using kmalloc or, if that fails due to the size of the allocation, vmalloc (in

Ani ®fork 2
Re-Animator-— ork configurationq
Tracer

NC
3

4 . .
LTTng consumer daemon? LTTng session Application
daemon
! } |
&
S sub-buffers
................... [1][2][3]
©
c
S Y
x Re-Animator kernel - ® v
module integration ¥ Linux Kernel
LTTng kernel modules [<@——— system call
: tracepoints

Figure 2.2: LTTng architecture using Linux kernel tracepoints. Green boxes denote our additions or changes.
Our wrapper (1) launches the LTTng configurator (2), which invokes an LTTng session daemon (3) to control
the operation and the consumer daemon (4) to collect events. LTTng tracepoints place events into sub-buffers
(5) and invoke Re-Animator, which collects data buffers and writes them to a separate disk file (7).

our kernel context, using swappable kernel memory is permissible). Preferring kmalloc saves time in the
common case.

LTTng signals the consumer daemon if any events were lost due to shortage of kernel buffers; we then
increase the number of sub-buffers shared between the kernel and user-space and restart the traced applica-
tion.

2.3 Low-Overhead and Accurate

One of the biggest drawbacks of system call tracing is that it adds overhead that can slow down an application—
even to the point of failure. Adding overhead can also change execution patterns and timings. If we want to
capture and replay server applications, this overhead can cause timeouts and dropped packets, and even failed
queries. Re-Animator offers efficient and optimized versions of st race and LTTng, while maintaining high
fidelity. RA-LTTng minimizes the overhead for capturing buffers and writes them efficiently.

2.3.1 RA-Strace

RA-Strace has two major components: (1) a Re-Animator library (RA-Lib) and (2) st race integration.

We designed RA-Lib as a common API for both RA-Strace and RA-LTTng. RA-Lib is an optimized
library for writing system call information to DataSeries files. Thus it is useful for integration with other
tracing systems such as DTrace [17] and Ktrace [30].

We described RA-Strace’s integration in Section 2.2. We now describe how RA-Lib’s modular design
handles writing system call records efficiently. Integrating support for capturing a new system call is easy
thanks to C++ abstractions, but the latter tend to add overheads. RA-Lib works as a router: it gets trace data
and calls the corresponding handler to create an appropriate DataSeries record for writing. We designed RA-
Lib independent of any capturing technique or the underlying OS; for example, we do not hard-code system
call numbers, which change between OSes. RA-Lib has two main data structures to support this translation
flexibility: (1) mapping system-call names to handler functions and DataSeries accessor objects that are
responsible for writing system calls according to their types to DataSeries files, and (2) mapping system-call
argument types to DataSeries types. These mapping mechanisms are heavily used; our initial implementation
was 3x times slower than the one reported in this paper. We profiled the code and changed many critical
data structures to improve lookup and insert speeds (e.g., ordered hash maps permit enumeration in sorted
order, but we had no need for such enumeration). We also added internal caching of frequently accessed
DataSeries objects, to avoid having to re-retrieve them from the DataSeries file. We chose TCMalloc [32]
over several other memory allocators as it provided the best performance for this project.

2.3.2 RA-LTTng

We detailed RA-LTTng’s mechanisms for capturing buffers in Section 2.2. When RA-LTTng gets the cap-
tured buffer’s content, it offloads the writing to a work queue (configurable, but we currently limit it to
holding 32 items). Linux’s work queue will then spawn at most 32 kernel worker threads to write one item
each to persistent storage. This asynchrony allows the traced application to continue execution, interleav-
ing with the kernel worker threads. When tracing an application that allocates a lot of memory and also
runs CPU-intensive tasks, it is possible that the OS will not be able to schedule the trace-writing kthreads
frequently enough to flush those trace records. To avoid losing any records, RA-LTTng blocks the traced
application until the work queue drains, an approach that can further slow down applications but guarantees
high fidelity. Slowdown due to a full work queue can be reduced by raising its maximum size above 32
items.

2.4 Scalable and Verifiable

In this section, we explain how Re-Animator provides a scalable and verifiable framework for both capturing
and replaying. We first describe how our LTTng integration facilitates system-call tracing to make replaying
verifiable. We then provide a detailed architectural design for Re-Animator’s scalable and verifiable replayer,
called RA-Replayer.

We have explained how Re-Animator captures buffers accurately and efficiently in Sections 2.2 and 2.3.
Re-Animator leverages LTTng’s architecture to collect as much data as it can without adding significant
overhead. Capturing complete buffer data allows RA-Replayer to verify system calls on the fly and generate
the same final disk state.

2.4.1 Re-Animator Replayer

We now detail the design of RA-Replayer. There are four major principles in our design: (1) verifiable,
(2) concurrent lock-free design, (3) supporting multi-process applications with a user-space file-descriptor
manager, and (4) simulating system calls that cannot be replayed.

2.4.2 Verifiable

During replay, Re-Animator checks that return values match those from the original run and that buffers con-
tain the same content. Here, “buffers” refers to every single memory region that contains execution-related
data, including results for calls like stat, utimes, getdents, ioctl, fcntl, etc. Since the trace file
contains buffer contents for system calls that pass data to the kernel and change on-disk state, we can perform
the same operation with the same data to produce the same on-disk state as the original execution. We have
confirmed that Re-Animator generates the same content as the traced application by running several micro-
and macro-benchmarks (see Section 3) and comparing the directory trees after the replay run. However, there
are necessarily some limitations since a generated file’s at ime, mt ime, and ct ime will not be the same
(absent a ut imes call), and the results of reading procfs files like /sys/block/sda/sdal/stat
might be different.

RA-Replayer links with complex DataSeries libraries among others (e.g., 1 ibc): it is therefore possible
that some of these libraries will open, close, or otherwise manipulate file descriptors without our knowledge
(e.g., the DataSeries library opens a descriptor for every extent (section) of a trace file so it can read from
that extent’s offsets while avoiding 1seeks). Therefore, RA-Replayer also periodically scans its own file
descriptors and validates that their expected state (open or closed) matches what our user-space file descriptor
manager expects. The frequency of verifying FDs is configurable and can also be disabled.

2.4.3 Concurrent Lock-Free Design

Reading a trace file is often an I/O-bound task [5]. Fortunately, DataSeries stores traces efficiently, reducing
I/0, and offers multi-threaded replay. We now describe the general architecture of RA-Replayer (Figure 2.3)
and explain why it is scalable and low-overhead.

To coordinate replay without introducing extra system calls, we use lock-free data structures provided by
Intel’s Threading Building Blocks [45]. RA-Replayer is divided into two major components: First, a single
thread reads the DataSeries file and fills a priority queue (PQ) for each execution thread; there is one thread
for each process or thread being replayed. A DataSeries file is naturally divided into extents (see Section 2.5),
one for each type of system call. The reader thread retrieves several records from these extents and inserts
them into the PQs; at run time it measures the rate that the execution threads drain their PQs and dynamically
adjusts the amount of data it next retrieves from the extents. Second, execution threads drain their PQs and
execute system calls with appropriate arguments. RA-Replayer supports 67 system calls (including those
that we can only simulate). Each call’s implementation provides functions to execute it, verify its results,
and optionally log results.

In both the reader and the execution threads, we use TCMalloc [32] for efficient, concurrent memory
allocation.

2.4.4 Supporting Multiple Processes

RA-Replayer can replay multi-process applications by spawning threads inside the replayer. Since the re-
player is a single process, we have a user-space file-descriptor manager that keeps track of file descriptor
allocations for each emulated process. The manager keeps track of FD changes caused by operations such
as dup, pipe, and execve, including supporting unusual cases such as the O_CLOEXEC flag. This was

Data Series

(] O
o) o)
= =
(2] (2]
o s D E D D D D o
c o c o
® S © >
C ~- C =~
® U ®
= = .
o) Batch reading
3, 3, |
~ ~
== <P T Reader thread
y
m m if
- - verifier
o S 7
D D
o S o S /i
Q 6- Q 6- /,,/,I
= S

>
/
—a]
e
\
\
\
\
\

P T o

Linux Kernel

Figure 2.3: RA-Replayer architecture.

particularly important for correctly replaying two processes that exchange data over a pipe. Our earlier
prototype attempted to replay all traced processes inside a single replayer process, but it proved too complex
to manage the per-process FD states and to avoid deadlocking on reading a pipe if the pipe-writer event had
not yet happened (and cannot be replayed while the single replayer thread is blocked). The lesson we learned
is that any high-fidelity replayer should be multi-threaded to better emulate the original traced environment.

2.4.5 Simulated System Calls

We designed Re-Animator to capture as much data as possible, which means that it sometimes captures
system calls, parameters, and buffers that cannot be replayed (such as operations on sockets, which would
require complex connections to network resources that might not behave in a reproducible fashion). Instead,
we simulate these calls using data recorded in the DataSeries file, by discarding the call and assuming it
succeeded or failed as before, and filling in any buffers such as those returned from a socket. Capturing
data for simulated system calls not only enables future research opportunities but also helps us keep our FD
mappings accurate.

2.5 Portable

To allow our tools to be used as widely as possible, we store trace output in the DataSeries format [5],
and to design our replayer to read that same format. DataSeries is a compact, flexible, and fast format first

10

developed at HP Labs; a C++ library and associated tools provide easy access to the format.

A DataSeries file is organized into a number of extents, each of which has a schema defined in the file
header. We are using an updated version of the SNIA schema for system-call traces [78], which we plan to
submit to SNIA when it is complete. In our design each extent stores records of the same system call type.
One exception is multi-record system calls such as writev: we store an initial record with the common
information (file descriptor, offset, and iovcnt), followed by IV records, one for each iovec. Unlike prior
tools, which tended to capture only the information of interest to a particular researcher, we have opted for a
maximalist approach, recording as much data as possible. Doing so has two advantages: (1) it enables fully
accurate replay, and (2) it ensures that a future researcher—even one doing work we did not envision—will
not be limited by a lack of information. (E.g., Ou et al. [65] concluded that fcnt 1 calls were never used in
the LASR traces, when in fact those calls were simply not captured.)

In particular, in addition to all system call parameters, we record the precise time the call began and
ended, plus the PID, thread ID, parent PID, and process group ID of the issuing process. If the call failed,
we also record the errno returned. By default we also record the data buffers for reads and writes. Lastly,
each record of a trace is assigned a unique, monotonically increasing record ID.

When replaying, we reproduce nearly all calls precisely—even failed ones. The original success or
failure status of a call is verified to ensure that the replay has been accurate, and we compare all returned
information (e.g., stat results and data returned by read) to the original values.

However, there are certain practical exceptions to our “replicate everything” philosophy: for example, if
it were followed slavishly, replaying network activity would require that all remote computers be placed into
a state identical to how they were at the time of capture. Given the complexities of the Internet and systems
such as DNS, such precise reproduction is impossible. Instead, we simulate the network: sockets are created
but not connected, and I/O calls on socket file descriptors are simply discarded.

2.5.1 Source Code Size

Over a period of three years, we wrote nearly 20,000 lines of C/C++ code (LoC). We added or modified
1,783 LoC in strace, 3,928 LoC for the tracer-integration library with DataSeries, 7,760 for the replayer
and another 1,005 for the record-sorter tool. We added or modified 1,135 LoC in LTTng’s kernel module,
1,624 LoC for the LTTng user-level tools, and finally 2,347 LoC for the babeltrace2ds converter.

11

Chapter 3

Evaluation

Our Re-Animator evaluation goals were to measure its overheads, show replayer performance numbers, and
get a taste for other practical uses of the portable trace files we have collected (e.g., useful statistics).

3.1 Testbed

Our testbed includes four identical Dell R-710 servers, each with two Intel Xeon quad-core 2.4GHz CPUs
and configured to boot with 4GB RAM. Each server ran CentOS Linux v7.6.1810, but we installed and
ran our own 4.19.19 kernel with RA-LTTng code changes. Each server had three drives to minimize I/O
interference: (1) A Seagate ST9146852SS 148GB SAS as a boot drive. (2) An Intel SSDSC2BA200G3
200GB SSD (“test drive”) for the benchmark’s test data (e.g., where MySQL would write its database). We
used an SSD since they are becoming popular on servers due to their superior random-access performance.
(3) A separate Seagate ST9500430SS 500GB SAS HDD (“trace-capture drive”) for recording the captured
traces, also used for reading traces back during replay onto the test drive. Since our traces are written
sequentially, using a non-SSD drive here did not impact trace-writing or trace-reading performance, as SAS
drives offer good sequential performance.

Although our four servers had the same hardware and software, we verified that identical, repeated
experiments on them yielded results that did not deviate by more than 1-2% across servers.

3.2 Benchmarks

We ran a large number of micro- and macro-benchmarks. Micro-benchmarks are useful to highlight the
worst-case behavior of a system by focusing on specific operations. Macro-benchmarks show the realistic,
real-world performance of applications with mixed workloads. For brevity, we describe only a subset of those
tests in this paper, focusing on the most interesting trends, including worst-case scenarios. All benchmarks
were run at least five times; standard deviations were less than 5% of the mean unless otherwise reported.
Each benchmark was repeated under four different conditions: (1) an unmodified program (called “Vanilla™)
without any tracing to serve as the baseline; (2) the program as traced using an unmodified strace tool
(“Strace”) where all (text) output was saved to a file on the trace-capture drive to simulate capturing actual
trace records; (3) the program as traced using our modified st race, which directly writes a DataSeries file
onto the trace-capture drive (“RA-Strace”); and (4) the program traced using our modified LTTng, which
directly records binary in RA-CTF format (“RA-LTTng”) (see Section 2.2.2).

12

3.2.1 Micro-Benchmarks

To capture traces, we first ran the FIO micro-benchmark [29], which tests read and write performance for
both random and sequential patterns; each FIO test ran with 1, 2, 4, and 8 threads. We configured FIO with
an 8GB dataset size to ensure it exceeded our 4GB server RAM size and thus exercised sufficient I/Os. (We
also ran several micro-benchmarks using Filebench [4] but omit the results since they did not differ much
from FIO’s.)

3.2.2 Macro-Benchmarks

We ran two realistic macro-benchmarks: (1) LevelDB [54], a key-value (KV) store with its own dbbench
exerciser. We asked LevelDB to run 8 different pre-configured I/O-intensive phases: fillseq, fillsync, fill-
random, overwrite, readrandom1, readrandom?2, readseq, and readreverse. We configured database sizes of
1GB, 2GB, 4GB, and 8GB (by asking dbbench to generate 10, 20, 40, and 80 million KV pairs, respec-
tively); and for each DB size we ran LevelDB with 1, 2, 4, and 8 threads. Finally, because RA-LTTng
currently does not capture mmap events, we configured LevelDB to use regular read and write system
calls. (2) MySQL [81] with an 8GB database size. We configured sysbench [82] to run 4 threads that
issue queries to MySQL for a fixed one-hour period.

3.2.3 Replaying Benchmarks

We report the times to replay some of the larger DataSeries trace files we captured. As described in Sec-
tion 2.4, our replayer runs as-fast-as-possible (AFAP), verifies all system call return values and buffers at
runtime, ensures an accurate on-disk state replay, and preserves non-overlapping events’ timings. We re-
played every trace captured in this project and manually verified (e.g., using diff -r) the on-disk state
after replay compared with the vanilla program; no anomalies were found. Our replay timings do not include
the time to run diff, since such verification would not normally be necessary in a “production” environ-
ment.

Recall that RA-LTTng stores traces using the enhanced RA-CTF format (Linux’s CTF format for system-
call records, modified to include record IDs, plus separate indexed binary files to store system-call buffers);
therefore we used the offline babeltrace2ds tool we developed to convert RA-CTF traces to DataSeries
format before replaying the latter. Babeltrace can consume a lot of I/O and CPU processing cycles to
convert between formats, in part because it has to build global mapping tables for objects between the two
formats; nevertheless, this conversion need only be done once and can be performed offline without affecting
any application’s run. In a large experiment we conducted, babeltrace2ds took 13 hours to convert a
255GB RA-CTF file (from a LevelDB experiment) to a 214GB DataSeries file; the latter file size is smaller
because the DataSeries binary format is more compact than RA-CTF’s. The conversion was accomplished
on a VM configured with 128GB RAM. At its peak, babeltrace2ds’s resident memory size exceeded
60GB. These figures justify our choice to perform this conversion offline, rather than attempt to integrate
a complex and large DataSeries library, all written in C++, into the C-based Linux kernel. Optimizing
babeltrace2ds—currently single-threaded—was not an express goal of this project and is left to future
work.

3.3 FIO Micro-Benchmark

We report the time (in minutes) to run FIO with 1 or 8 threads. (The results with 2 and 4 threads were in
between the reported values, but we do not have enough data to establish a trend curve based on the number

13

30 . 30 29.2
H Vanilla elapsed M Strace elapsed

25 M Vanilla user 25 M Strace user
. ® Vanilla system] I Strace system
3 3
520 520
£ £
‘§’15 E 15

12.7 s 13.1
£ £ 11.4
= =

10 8.8
< 510 7.1
= = 5.1

> 2.3 2.1 2.3 >
04 -’ .

0 0

1 8 1 8

Number of Threads Number of Threads
(a) Vanilla (b) Strace
30 30
B RA-Strace elapsed B RA-LTTng elapsed

M RA- -

25 23.9 RA-Strace user 25 B RA-LTTng user
! | RA-Strace system . B RA-LTTng system
3 3
520 520
£ £
1S S
215 <15 13.7
g 10.8 E
510 7.3 8.0 7.1 510

4.6
> 5 2.9 25 3.1
0.7 - 0.5 -
0 0
1 8 1 8
Number of Threads Number of Threads
(c) RA-Strace (d) RA-LTTng

Figure 3.1: FIO random read times in minutes (elapsed, user, and system).

of threads.) We report elapsed, user, and system times separately. We include all dirty-data flushing as well
as trace records persisting in our measurements.

Figures 3.1, 3.2, 3.3, and 3.4 show FIO’s random-read, sequential-read, random-write, and sequential-
write times, respectively. Several trends seen in this data were the same for FIO’s sequential reads and
both random and sequential writes. These trends (some of which are unsurprising) are: (1) Compared to
Vanilla, all tracing takes longer. (2) Strace was the slowest, followed by RA-Strace, with RA-LTTng being
the most efficient tracer. (3) Running FIO with 8 threads instead of one reduces overall times thanks to
better I/O and CPU interleaving. Our servers have 8 cores each, and their SSDs are inherently parallel
devices that can process multiple I/Os concurrently [18,26,49]. We focus on the one-thread results below.
(4) Strace adds significant user time to allocate and copy buffers from the traced process, and to format
them for human consumption. Strace also adds significant system (kernel) time due to context switches and
ptrace handling. Together with the additional I/O needed to write its human-formatted output, Strace takes
2.3—-11x longer than Vanilla (an untraced FIO). (5) RA-Strace improves on Strace primarily due to writing
an efficient binary-formatted DataSeries file, but still incurs significant user- and system-time overheads.
Compared to Vanilla, RA-Strace’s elapsed times are 1.9-7.9x slower; RA-Strace is still 22-45% better than
Strace. (6) RA-LTTng further improves overheads thanks to its efficient, in-kernel, asynchronous tracing and
logging. Compared to Vanilla, RA-LTTng’s elapsed times are only 8-33% slower; RA-LTTng is 1.7-7.2x

14

14 ® Vanilla elapsed 14 M Strace elapsed
12 u Van!lla user 12 12.0 M Strace user
_ M Vanilla system . M Strace system

10 10
> >
£ £
ES® E8
(] (]
E 6 €6
= =
54 S a4
o o

2 1.1 1.1 2

- 0.2 0.2 - 0.2 0.2
0 0
1 8 1 8
Number of Threads Number of Threads
(a) Vanilla (b) Strace

[
S
N
~

m RA-Strace elapsed M RA-LTTng elapsed
W RA-Strace user B RA-LTTng user

12 12
- ® RA-Strace system B RA-LTTng system
210 210
e 8.3 3
8 £8
g 6 5.4 5.6 OE" 6
= 4.4 [=
S a 3.5 38 S4
o o
2 2 1.3 1.1
0 0
1 8 1 8
Number of Threads Number of Threads
(c) RA-Strace (d) RA-LTTng

Figure 3.2: FIO sequential read times in minutes (elapsed, user, and system).

faster than RA-Strace. (7) RA-LTTng adds much less user and system time overhead than Strace and RA-
Strace, because it performs most its actions inside the kernel and we use asynchronous threads that permit
better interleaving of I/O and CPU activities. (8) The FIO random-read test is the most challenging: unlike
writes, which can be processed asynchronously, uncached reads are synchronous. Sequential reads are easier
to handle than random reads thanks to read-ahead, which is why even the Vanilla elapsed time for random-
read (Figure 3.1(a)) takes about 10x longer the other three FIO runs. This makes all elapsed times (for
Strace, RA-Strace, and RA-LTTng) in Figure 3.1 longer than their counterparts in other FIO runs. Because
the system is more frequently blocked on I/Os in FIO’s random-read benchmark, the overheads imposed by
tracing, relative to Vanilla, are lower: 2.3 x for Strace, 1.9x for RA-Strace, and 1.1x for RA-LTTng.
Figure 3.5 shows the elapsed time needed to replay the FIO traces captured by RA-LTTng; the traces
captured with RA-Strace were functionally identical although event timings differed, but executing them
as-fast-as-possible (AFAP) was nearly identical to the results in this figure. (We remind the reader than an
optimized replayer was not an express goal of the work reported in this paper.) We observed the following
trends: (1) Overall, RA-Replayer has to read the trace file from disk and process it before it can be replayed.
Thus, RA-Replayer adds significant user time with one thread. (2) Whereas the FIO application has to
perform CPU computations (e.g., compute random offsets to write), RA-Replayer does not need to do so
(or user times would have been even longer). (3) Because RA-Replayer performs CPU processing and

15

12) 12 11.7
: xan!::a elapsed M Strace elapsed
anilla user | Strace user
10 .
- M Vanilla system A10 I Strace system
2 3
5 8 58 70 7.3
£ £
v 6 o 6 5.2
£ £ 4.3
e, =, 35
< S '
& &
2 1.6 1.6 2
N ETTN X
R —— 0
0
1 8 1 8
Number of Threads Number of Threads
(a) Vanilla (b) Strace

=
N

=

N

m RA-Strace elapsed H RA-LTTng elapsed
M RA-Strace user B RA-LTTng user
M RA-Strace system B RA-LTTng system

8.4
6.1
5.1
4.1 4.2
3.2
1 8

=
o
[y
o

(o]
(o]

>
»

Run Time (minutes)
[e)]

Run Time (minutes)
(o))

2.0 2.0
2 2 1.1 1.1
o B
0 0
1 8
Number of Threads Number of Threads
(c) RA-Strace (d) RA-LTTng

Figure 3.3: FIO random write times in minutes (elapsed, user, and system).

memory operations, it can interleave those with I/O activity of replaying the actual trace. Thus, overall
elapsed time overheads are more moderate than might be expected (0-72% slower). (4) One exception to
these observations is the random-read FIO benchmark. As explained above for trace-capture results, this
benchmark has the worst I/O behavior. Because 1/O is much slower here, RA-Replayer can catch up faster
when replaying AFAP events. And because RA-Replayer does not have the same “think time” that FIO
requires, overall RA-Replayer performs faster than the original FIO benchmark: 39% faster for one thread
and 10% faster for 8 threads.

We noted that with 8 threads, system time overheads can reach 37x and user times reach as high as
46 <. We investigated this overhead and found it due to a large number sched_yield system calls that the
Intel’s Threading Building Blocks (TBB) [45] executes in order to coordinate multiple threads: 1-8 replayer
threads, one master reader thread to coordinate reading from extents, and multiple threads that RA-Replayer
spawns to read from different extents; although we spawn one thread per extent type, which corresponds
to a specific system call, most of these threads are idle because we found that many applications execute
a small number of system calls most of the time (see Section 3.6). For example, the FIO sequential-read
experiment needs to executes 2.1M system calls recorded in the trace file. The TBB library adds another
1.1M sched_yield calls but these consume a negligible amount of time (see Figure 3.5(b)). The number
of sched_yields grows to 1.5M for 2 threads, 10.7M calls for 4 threads, and then jumps up to 422M

16

[y
N
=
N

M Strace elapsed
H Vanilla elapsed 10.9 M Strace user

M Vanilla user

W Strace system

A10 B Vanilla system ,\10
%) v
[[}
58 58
= <
£ E
(] 6] 6
£ £
g c 4
= 3
o o

2 1.0 1.0 2

o2 0.3 o2 0.3
0 0
1 8 1 8
Number of Threads Number of Threads
(a) Vanilla (b) Strace
12 m RA-Strace elapsed 12 B RA-LTTng elapsed
10 W RA-Strace user 10 B RA-LTTng user

m RA-Strace system B RA-LTTng system

7.9
5.9 :
4.7
3.8 3.9 i
2.9
2 11 11 1.1
0
1 8

o]
o]

Run Time (minutes)
[e)]

Run Time (minutes)
[e)]

4 4
2
0
1 8
Number of Threads Number of Threads
(c) RA-Strace (d) RA-LTTng

Figure 3.4: FIO sequential write times in minutes (elapsed, user, and system).

sched_yieldcalls for 8 threads. At that point the contention for our 8-core servers becomes unreasonable:
8 replayer threads, one master reader thread, and several more active threads that DataSeries spawns to read
from different extents concurrently. That contention causes the system time to grow considerably in the
8-thread case. We plan to investigate ways to reduce this contention in future research.

3.4 LevelDB Macro-Benchmark

Figure 3.6 reports the total run time for LevelDB on a 1GB database, using 4 threads and the default sequence
of phases described in Section 3.2. Note that the 1GB DB is smaller than our 4GB system memory; this is
actually a worst-case benchmark compared to larger DB sizes because more system calls can execute without
blocking on slow 1/Os, while Re-Animator still need to persistently record every system call and its buffers
to a dedicated trace-capture drive. Thus, the overhead of Re-Animator is higher in this case. We can see
that Strace was more than 10x slower than the vanilla program. RA-Strace improved this overhead to 7.8 x,
thanks to our more efficient binary trace format. RA-LTTng improved this overhead even further, to 2.3 %,
due to its in-kernel asynchronous tracing infrastructure.

Figure 3.7 shows LevelDB’s random-read performance (in ms/operation) for different-sized databases.
We chose to report detailed results for Level DB because the random-read phase showed the most interesting

17

30 mVanilla
M Replayed ,»v?’

N
o

Run Time (minutes)
=
[9,]

10
5
0
elapsed user elapsed
1
Number of Threads
(a) Random Read
12
H Vanilla
10 mReplayed

Run Time (minutes)
(o)}

elapsed

elapsed user
1
Number of Threads

(c) Random Write

user
8

user
8

Run Time (minutes)

O R N W b U1 O N

9 H Vanilla A
8 mReplayed

elapsed user

elapsed user
1 8
Number of Threads

(b) Sequential Read

m Vanilla o

5 M Replayed i K
>
4 ”
3
2
1 “:b“;y “53“;»
< <
N o°y? N B

0

elapsed user sys elapsed user sys

1 8

Number of Threads

(d) Sequential Write

Figure 3.5: Elapsed time for vanilla execution vs. replayed trace (minutes). Note the Y-axis ranges differ in

each bar graph.

Elapsed Time
(Hours)
D

2
0.6
0 []
Vanilla

patterns and also exercises both the I/O subsystem and the OS intensely. We omit results for st race alone

6.7

Strace RA-Strace

Figure 3.6: LevelDB elapsed times (hours).

1.3

RA-LTTng

because it ran fairly slowly: on the 1GB DB, st race was more than 7x slower than RA-Strace.

18

900

cb
800
700
600
a 500
o
2
400 ™
9 Q %N%.
300
200
100
QQ
e e e eV e e® % % % &? o
(\\\\ (\\\\ (\\\\’b (\\\\% ,&(A ‘(AC ’dac \S’bc ‘(‘(\ '(‘(\ ’\'\(\ ’<\(\
\? N2 \? N\ Q\P"S q&(’ q&" ?\Ps g&\ q&\ v ?&\

Figure 3.7: LevelDB read-random latency for different-sized databases (in milliseconds per operation).

As expected, latency grows as the DB size grows. Once the DB size grows to 8GB—double the 4GB
RAM of our test servers—significant swapping and paging activity takes place; even for vanilla instances,
the latency for 8GB is more than 10x larger than for the 4GB DB.

On the whole, we see that RA-Strace is slower than vanilla on every DB size, commensurate with our
micro-benchmarks results (Section 3.3). When the DB size fits in memory (1GB), RA-Strace is 14.5x%
slower; when the DB size is large enough to cause more I/O activity (8GB), this relative overhead drops to
2.8 because system calls become more I/O-bound and run longer.

Relative to Vanilla, when the DB fits in memory (1GB), RA-LTTng is 3.5 slower; when the DB size
is large enough to cause more 1/O activity (§GB), this relative overhead drops to only 9% slower, thanks to
RA-LTTng’s superior scalability. Overall, RA-LTTng performs better than RA-Strace in all four DB sizes:
1.7-4.2x better.

Both RA-Strace and RA-LTTng show a jump in latency when going from 2GB to 4GB DB sizes—an
increase not seen in the vanilla benchmark (dbbench). The reason is that the 4GB DB mostly fits in memory
under Vanilla, and hence incurs few paging I/Os, especially because dbbench generates its data on the fly
(in memory). Tracing, however, requires additional I/Os to write the trace itself, and these I/Os compete for
page-cache space (and shared I/O busses) with the benchmark itself.

We captured a small trace of LevelDB running on a 250MB database, using one thread, with the default
sequence of phases described in Section 3.2: it took 81 seconds elapsed time. The DataSeries trace file for
this experiment was 25GB in size. Replaying it took 300 seconds, or 3.7 longer. We verified the on-disk
state after replaying this trace and it was identical to the original LevelDB run. Improving RA-Replayer’s
speed is part of our future work.

19

3.5 MySQL Macro-Benchmark

100,000,000 38.58M 21.16M
2.41M >-25M 139M
-~ 1,000,000 0.33M
o)
ke
‘g 10,000 1,696
o 106
o II
1
Vanilla Strace RA-Strace RA-LTTng

m Total Queries m Transactions

Figure 3.8: Counts (logig) of MySQL queries and transactions completed within a one-hour period.

Figure 3.8 shows the counts of total queries and transactions completed within one hour by sysbench
issuing requests to MySQL (on a log; scale). One or more queries were sent as a single transaction, hence
the number of transactions is lower than the total number of queries. In one hour, Vanilla completed 38.5M
queries. Relative to Vanilla, Strace performed extremely poorly—more than four orders of magnitude worse;
the overheads added by st race were just high enough to cause nearly all the MySQL queries to fail due
to timeouts. Because our RA-Strace is more efficient than st race, it was able to complete 5.3M queries
(about 14% of Vanilla’s performance); and because our RA-LTTng is even more efficient than RA-Strace, it
completed 21.2M queries (about 55% of Vanilla, or 4 x more than RA-Strace). These measurements explain
why users are leery of tracing live “production” applications and justify why system call tracing must have
overheads that are as low possible.

3.6 Trace Statistics

DataSeries comes with a tool called dsstatgroupby, which can extract useful statistics from DataSeries
trace files. Although a detailed analysis of such statistics is beyond the scope of this paper, to demonstrate the
usefulness of using traces beyond just replaying them, we highlight a few useful metrics that we extracted.

For example, the LevelDB experiment executed a total of 6,378,938 system calls (23 unique calls).
99.87% of all those calls were to write and pread. The distribution of buffer sizes passed to write
ranged from 20B to 64KB, with many odd and sub-optimal sizes just above 4KB. We noted that over 3M
write calls used a specific—and highly inefficient-buffer size of 138B. We hypothesize that the odd-sized
writes are related to atomic transactions in this KV store, suggesting that there may be significant room for
improving LevelDB’s performance by using an alternate data structure.

Similarly, the MySQL experiment executed a total of 8,763,035 system calls (37 unique). Four domi-
nating calls—pwrite, pread, fsync, and write—accounted for 99.95% of the calls. We found that
most pread calls were exactly 16KB in size and thus highly efficient. We also observed 2.5M fsync calls
(e.g., to flush transaction logs). We further explored the latency quantiles of £sync: about 20% of all calls
took less than 1ms but 0.01% of all calls (about 250) took over 100ms to complete (exhibiting tail latencies
observed by other researchers [23,39,47,55]).

20

Chapter 4

Related Work

There are several approaches to tracing system calls: based on ptrace, interposing shared libraries, and
in-kernel methods.

4.1 Ptrace

Because pt race [35] has been part of the Unix API for decades, it is an easy way to track process behavior.
strace [89], released for SunOS in 1991, was one of the earliest tools to build upon ptrace; a Linux
implementation soon followed, and most other Unix variants offer similar programs such as t russ [28] and
tusc [12]. On Microsoft Windows, StraceNT [31] offers a similar facility.

All of these approaches share a similar drawback: because the trace is collected by a separate process
that uses system calls to access information in the target application, overheads are unusually high (as much
as an order of magnitude). In most cases, the CPU cost of collecting information overwhelms the I/O cost
of writing trace records. In theory, the cost could be reduced by modifying the pt race interface, e.g.,
by arranging to have system-call parameters collected and reported in a single pt race operation. To our
knowledge, however, there have been no efforts along these lines.

4.2 Shared-Library Interposition

A faster alternative to pt race that still requires no kernel changes is to interpose a shared library that re-
places all system calls with a trace-collecting version [22, 60]. Since the shared library runs in the same
process context, data can be captured much more efficiently. However, there are also a few drawbacks:
(1) the technique does not capture early-in-process activity (such as loading the shared libraries themselves;
(2) interposition may be difficult in chrooted environments where the special library might not be avail-
able; (3) trace collection in a multithreaded process may require additional synchronization; and (4) if the
user wishes to interpose more than one library, integration may be challenging. However, nothing in Re-
Animator’s design would preclude our techniques from being used in an interposition context.

4.3 In-Kernel Techniques

The lowest-overhead approach to capturing program activity is to do so directly in the kernel, where all
system calls are interceptable and all parameters are directly available. Several BSD variants, including
Mac OS X, offer ktrace [30], which uses kernel hooks to capture system-call information. Solaris supports
Dtrace [17] and Windows offers Event Tracing for Windows (ETW) [63]. All of these approaches capture

21

events into an in-kernel buffer that is later emptied by a separate thread or process. Since kernel memory
is a precious resource, all of these in-kernel tools limit how much memory they use to store traced events,
and they drop events if not enough memory is available. We have verified this event-drop experimentally for
both dtrace and ktrace; ETW further limits any single captured event to 64KB in size.

The Linux Kprobes facility [21] has been used to collect read and write operations [79], but the approach
was complex and incomplete. A more thorough implementation is FlexTrace [87], which allows users to
make fine-grained choices about what to trace; FlexTrace also offers a blocking option so that no events are
lost. However, it does not capture data buffers.

Linux’s LTTng allows the user to allocate ample kernel buffers to record system calls, limited only by the
system’s RAM capacity; however, as we noted earlier, vanilla LTTng does not capture data buffers. Our RA-
LTTng captures those buffers directly to a separate file for later post-processing (and blocks the application
if the buffers are not flushed fast enough, ensuring high fidelity).

Many modern applications use mmap to more efficiently read and write files, but pt race-based systems
cannot capture mmaped events (e.g., page faults and dirty page flushes). In-kernel tracers can do so (e.g.,
TraceFS [7]). RA-LTTng currently does not track those events but we plan to add the capability as part of
our future work.

Finally, unlike st race and RA-LTTng, which have custom code to capture every ioct1 type, neither
Ktrace nor DTrace can capture buffers unless their length is easily known (e.g., the 3™ argument to read),
and thus neither captures 1oct 1 buffers at all. Moreover, Ktrace flushes its records synchronously: in one
experiment we conducted (FIO 8GB random-read using one thread), Ktrace imposed higher overheads than
our RA-LTTng, consuming at least 70% more system time and at least 50% more elapsed time.

4.4 Replayer Fidelity

To the best of our knowledge, no system-call replayer exists that can replay the buffers’ data (e.g.,towrite).
ROOT [88], which is based on st race, concentrates on solving the problem of correctly ordering multi-
threaded traces. It does not capture or replay actual system-call buffers. /TRACE [62] also concentrates on
parallel replay but does not reproduce the data passed from read and to write. We attempted to compare
ROOT and //TRACE to RA-Replayer but were unable to get them to run, even with the help of their original
authors.

RA-Replayer has options to verify that each replayed system call returned the same status (or error if
traced as such), as well as to verify each buffer (e.g., after a read). If any deviation is detected, we support
options to log a warning and then either continue or abort the replay. We are not aware of any other system-
call replayer with such run-time verification capabilities.

Thus, RA-Replayer faithfully reproduces on-disk state: file names and namespaces, file contents, and
most inode metadata (e.g., inode type, size, and UID and GID if replayed by a superuser). Because replaying
happens after the original capture, one limitation we have is that we do not reproduce inode access, change,
and modification times accurately—but the relative ordering of these timestamps is preserved.

Like hf-player [36,37], we use heuristics to determine how to replay events across multiple threads: any
calls whose start-to-end times did not overlap are replayed in that order.

4.5 Scalability

All system-call tracers can capture long-running programs, but using a binary trace format (e.g., as all in-
kernel tracers do) enables such tools to reduce I/O bottlenecks and the chance of running out of storage
space. That is why we modified st race to capture raw data and buffers and store them in the DataSeries
format, rather than verbosely displaying the traced calls for human consumption.

22

ROOT [88] parses traces from several formats and then produces a C program that, when compiled and
run, will replay the original system calls. We believe this compiler-based approach is limited: whereas RA-
Replayer can replay massive traces (we replayed traces that were hundreds of GB in size), compiling and
running such huge programs may be challenging if not impossible on most systems.

4.6 Portable Trace Format

Dtrace [17], ktrace [30], and ETW [63] use their own binary trace formats. St race does not have a binary
format; its human-readable output is hard to parse to reproduce the original binary system call data [33,
42, 88]. (In fact, one of the reasons we could not get ROOT to run, despite seeking assistance from its
authors, is that the text output format of st race has changed in a fashion that is almost imperceptible to
humans but incompatible with ROOT’s current code.) Only LTTng uses a binary format, CTF [58], that is
intended for long-term use. However, CTF is relatively new and it remains to be seen whether it will be
widely adopted; in addition, because it is a purely sequential format, it is difficult to use with a multithreaded
replayer. Non-portable, non-standard, and poorly documented formats have hampered researchers interested
in system call analysis and replay (including us) for decades. Thus, we chose DataSeries [5], a portable,
well documented, open-source, SNIA-supported standard trace format. Our RA-Strace writes DataSeries
files directly. DataSeries comes with many useful tools to repack and compress trace files, extract statistics
from them, and convert them to other useful formats (e.g., such as plain text and CSV). The SNIA Trace
Repository [9] offers approximately 4TB of traces in this format. We left LTTng’s CTF format in place, so
as not to require massive code changes or complex integration of C++ into the kernel; instead, we wrote a
standalone tool that can convert CTF files to DataSeries ones offline.

23

Chapter 5

Conclusion and Future Work

Tracing and trace replay are essential tools for debugging systems and analyzing their performance. We have
built Re-Animator, which captures system-call traces in a portable format and replays them accurately. We
found that regular st race can impose overheads as high as an order of magnitude for applications such
as LevelDB and MySQL. We provide two capture methods, one based on st race, which operates entirely
at the user level but with overheads of 7.3—7.8x, and a second one based on LTTng, which requires small
kernel modifications but runs with lower overheads of only 1.8-2.3 x compared to an untraced application.
Unlike previous systems, we capture all information, including data buffers for system calls such as read
and write, needed to reproduce the original application exactly.

Our replayer is designed for precise fidelity. Since it has access to the original data, it correctly repro-
duces behavior even on modern systems that employ data-dependent techniques such as compression and
deduplication. The replayer verifies its actions as it performs them, ensuring that the final on-disk state
matches the original. We have traced and replayed a number of popular applications and servers, comparing
outputs to ensure that they are correct.

5.1 Future Work

(1) In the future, we plan to add support for tracing applications that use mmap to read and write files
(which is possible only when tracing at the kernel level). (2) We will also investigate adding our user-
level modifications to similar tools that run on DTrace- and kt race-based systems. (3) The kernel-based
tracing systems we investigated can lose CTF events under heavy loads when insufficient kernel memory
buffers are available (but not system call buffers). We plan to investigate techniques to throttle applications
that generate many events, to allow traces to be written persistently without loss of any event. (4) Finally,
using our tools, we plan to collect long-term traces that will enable new areas of research, such as cyber-
security and machine learning.

24

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Cristina L. Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, and Roy H. Campbell. Metadata
traces and workload models for evaluating big storage systems. In 2012 IEEE Fifth International
Conference on Utility and Cloud Computing, pages 125-132. IEEE, 2012.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Towards realistic file-
system benchmarks with CodeMRI. ACM Performance Evaluation Review, 36(2):52-57, September
2008.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Generating realistic im-
pressions for file-system benchmarking. In Proceedings of the Seventh USENIX Conference on File
and Storage Technologies (FAST ’09), pages 125-138, San Francisco, CA, February 2009. USENIX
Association.

George Amvrosiadis and Vasily Tarasov. Filebench github repository, 2016. https://github.com/
filebench/filebench/wiki.

Eric Anderson, Martin F. Arlitt, Charles B. Morrey III, and Alistair Veitch. DataSeries: An efficient,
flexible, data format for structured serial data. ACM SIGOPS Operating Systems Review, 43(1), January
2009.

Eric Anderson, Mahseh Kallahalla, Mustafa Uysal, and Ram Swaminathan. Buttress: A toolkit for flex-
ible and high fidelity I/O benchmarking. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pages 45-58, San Francisco, CA, March/April 2004. USENIX Association.

Akshat Aranya, Charles P. Wright, and Erez Zadok. Tracefs: A file system to trace them all. In
Proceedings of the USENIX Conference on File and Storage Technologies (FAST), pages 129-143, San
Francisco, CA, March/April 2004. USENIX Association.

Maen M. Al Assaf, Mohammed I. Alghamdi, Xunfei Jiang, Ji Zhang, and Xiao Qin. A pipelining
approach to informed prefetching in distributed multi-level storage systems. In Proceedings of the 11th

IEEE International Symposium on Network Computing and Applications, Cambridge, MA, August
2012. IEEE.

Storage Networking Industry Association. IOTTA trace repository. http://iotta.snia.org, February 2007.
Cited December 12, 2011.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03), pages 164—177, Bolton Landing, NY, October
2003. ACM SIGOPS.

25

https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki
http://iotta.snia.org

[11] Muli Ben-Yehuda, Michel Factor, Eran Rom, Ashivay Traeger, Eran Borovik, and Ben-Ami Yassour.
Adding advanced storage controller functionality via low-overhead virtualization. In Proceedings of
the Tenth USENIX Conference on File and Storage Technologies (FAST ’12), San Jose, CA, February
2012. USENIX Association.

[12] Chris Berlin. tusc - trace unix system calls. Hewlett-Packard Development Company, L.P., 2011.
http://hpux.connect.org.uk/hppd/hpux/Sysadmin/tusc-8.1/man.html.

[13] Jeff Bonwick. ZFS deduplication, November 2009. https://blogs.oracle.com/bonwick/
zfs-deduplication-v2, Retreived April 17, 2019.

[14] Gianluca Borello. System and application monitoring and troubleshooting with sysdig. In Proceedings
of the 2015 USENIX Systems Administration Conference (LISA ’15). USENIX Association, November
2015. https://sysdig.com.

[15] Alan D. Brunelle. Blktrace user guide, February 2007.

[16] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-line data compression in a log-structured file
system. In Proceedings of the 4th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2-9, Boston, MA, October 1992. ACM Press.

[17] Brian M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumentation of produc-
tion systems. In Proceedings of the Annual USENIX Technical Conference, pages 15-28, 2004.

[18] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of exploiting internal parallelism of
flash memory based solid state drives in high-speed data processing. In Proceedings of the 17th IEEE
International Symposium on High Performance Computer Architecture, HPCA ’11, pages 266277,
2011.

[19] William Chen. You must unlearn what you have learned ...about SSDs, February 2014. Available
from http://storage.toshiba.com/corporateblog.

[20] Youmin Chen, Jiwu Sh, Jiaxin Ou, and Youyou Lu. HiNFS: A persistent memory file system with both
buffering and direct-access. ACM Transactions on Storage, 14(1):4:1-4:30, April 2018.

[21] Will Cohen. Gaining insight into the Linux kernel with kprobes. RedHat Magazine, March 2005.

[22] Timothy W. Curry. Profiling and tracing dynamic library usage via interposition. In USENIX Confer-
ence Proceedings, pages 267-278, Boston, MA, June 1994. USENIX. https://www.usenix.org/legacy/
publications/library/proceedings/bos94/curry.html.

[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74-80,
February 2013.

[24] Mathieu Desnoyers. Using the Linux kernel tracepoints, 2016. https://www.kernel.org/doc/
Documentation/trace/ tracepoints.txt.

[25] Mathieu Desnoyers and Michel R. Dagenais. Lockless multi-core high-throughput buffering scheme
for kernel tracing. Operating Systems Review, 46(3):65-81, 2012.

[26] Cagdas Dirik and Bruce Jacob. The performance of PC solid-state disks (SSDs) as a function of
bandwidth, concurrency, device architecture, and system organization. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA 09, pages 279-289, New York,
NY, USA, 2009. ACM.

26

http://hpux.connect.org.uk/hppd/hpux/Sysadmin/tusc-8.1/man.html
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://sysdig.com
http://storage.toshiba.com/corporateblog
https://www.usenix.org/legacy/publications/library/proceedings/bos94/curry.html
https://www.usenix.org/legacy/publications/library/proceedings/bos94/curry.html
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt

[27]

(28]

[29]
[30]

[31]

(32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

Laura DuBois, Marshall Amaldas, and E. Sheppard. Key considerations as deduplication evolves into
primary storage. White Paper 223310, NetApp, Inc., March 2011.

Sean Eric Fagan. truss - trace system calls. FreeBSD Foundation, July 24 2017. https://www.freebsd.
org/cgi/man.cgi?truss.

fio—flexible I/O tester. http://freshmeat.net/projects/fio/.

FreeBSD Foundation. ktrace -- enable kernel process tracing, July 24 2017. https://www.freebsd.org/
cgi/man.cgi? query=ktrace&manpath=FreeBSD+ 12.0-RELEASE+and+Ports.

Pankaj Garg. StraceNT - strace for Windows. https://github.com/10n3c0d3r/stracent. Visited April 23,
2019.

Sanjay Ghemawat. TCMalloc: Thread-caching malloc. https://gperftools.github.io/ gperftools/tcmalloc.
html, April 2019.

Roberto Gioiosa, Robert W. Wisniewski, Ravi Murty, and Todd Inglett. Analyzing system calls in
multi-OS hierarchical environments. In Proceedings of the 5th International Workshop on Runtime
and Operating Systems for Supercomputers. ACM, 2015.

Dinan Srilal Gunawardena, Richard Harper, and Eno Thereska. Data store including a file location
attribute. United States Patent 8,656,454, December 1 2010.

M. Haardt and M. Coleman. ptrace(2). Linux Programmer’s Manual, Section 2, November 1999.

Alireza Haghdoost, Weiping He, Jerry Fredin, and David H.C. Du. hfplayer: Scalable replay for
intensive block I/0 workloads. ACM Transactions on Storage (TOS), 13(4):39, 2017.

Alireza Haghdoost, Weiping He, Jerry Fredin, and David H.C. Du. On the accuracy and scalability
of intensive I/O workload replay. In /5th {USENIX} Conference on File and Storage Technologies
({FAST} 17), pages 315-328, 2017.

Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: Understanding the I/O behavior of Apple desktop applications. In Pro-
ceedings of the 23rd ACM Symposium on Operating System Principles (SOSP ’11), Cascais, Portugal,
October 2011. ACM Press.

Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Reducing file system
tail latencies with Chopper. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST’ 15, pages 119-133, Berkeley, CA, USA, 2015. USENIX Association.

Dean Hildebrand, Anna Povzner, Renu Tewari, and Vasily Tarasov. Revisiting the storage stack in
virtualized NAS environments. In Proceedings of the Workshop on 1/0O Virtualization (WIOV), 2011.

Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6(3):151-180, November 1999.

Jifi Horky and Roberto Santinelli. From detailed analysis of 10 pattern of the HEP applications
to benchmark of new storage solutions. Journal of Physics: Conference Series, 331, 2011. http:
//inspirehep.net/record/ 1111456/ files/jpconf11 _331_052008.pdf.

27

https://www.freebsd.org/cgi/man.cgi?truss
https://www.freebsd.org/cgi/man.cgi?truss
http://freshmeat.net/projects/fio/
https://www.freebsd.org/cgi/man.cgi?query=ktrace&manpath=FreeBSD+12.0-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=ktrace&manpath=FreeBSD+12.0-RELEASE+and+Ports
https://github.com/l0n3c0d3r/stracent
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
http://inspirehep.net/record/1111456/files/jpconf11_331_052008.pdf
http://inspirehep.net/record/1111456/files/jpconf11_331_052008.pdf

[43]

[44]

[45]
[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]
[57]

H. Howie Huang, Nan Zhang, Wei Wang, Gautam Das, and Alexander S. Szalay. Just-in-time analytics
on large file systems. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), San Jose, CA, February 2011. USENIX Association.

Zhisheng Huo, Limin Xiao, Qiaoling Zhong, Shupan Li, Ang Li, Li Ruan, Shouxin Wang, and Lihong
Fu. MBFS: a parallel metadata search method based on Bloomfilters using MapReduce for large-scale
file systems. Journal of Supercomputing, 72(8):3006-3032, August 2016.

Intel Corporation. Threading building blocks(tbb). https://www.threadingbuildingblocks.org, April 2019.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao, Ankur Mittal,
Prashant Pandey, Phaneendra Reddy, Leif Walsh, et al. BetrFS: A right-optimized write-optimized file
system. In Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST),
pages 301-315, Santa Clara, CA, February 2015. USENIX Association.

Nikolai Joukov, Ashivay Traeger, Rakesh Iyer, Charles P. Wright, and Erez Zadok. Operating system
profiling via latency analysis. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 89-102, Seattle, WA, November 2006. ACM SIGOPS.

Nikolai Joukov, Timothy Wong, and Erez Zadok. Accurate and efficient replaying of file system traces.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST), pages 337-350,
San Francisco, CA, December 2005. USENIX Association.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. The multi-streamed solid-state
drive. In HotStorage ’14: Proceedings of the 6th USENIX Workshop on Hot Topics in Storage, Philadel-
phia, PA, June 2014. USENIX.

Yangwook Kang, Jingpei Yang, and Ethan L. Miller. Efficient storage management for object-based
flash memory. In Proceedings of the 18th International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS), pages 407-409, Miami Beach, FL,
August 2010. IEEE.

Ricardo Koller and Raju Rangaswami. I/O deduplication: Utilizing content similarity to improve I/O
performance. Trans. Storage, 6(3):13:1-13:26, September 2010.

Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via system call traces. IEEE Soft-
ware, 14(5):24-42, 1997.

Rachita Kothiyal, Vasily Tarasov, Priya Sehgal, and Erez Zadok. Energy and performance evalua-
tion of lossless file data compression on server systems. In Proceedings of the Second ACM Israeli
Experimental Systems Conference (SYSTOR ’09), Haifa, Israel, May 2009. ACM.

LevelDB, January 2012. http://code.google.com/p/leveldb.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the tail: Hardware,
os, and application-level sources of tail latency. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC’ 14, pages 9:1-9:14, New York, NY, USA, 2014. ACM.

liburcu. Userspace RCU. https://liburcu.org, April 2019.

Xing Lin, Fred Douglis, Jim Li, Xudong Li, Robert Ricci, Stephen Smaldone, and Grant Wallace.
Metadata considered harmful. . . to deduplication. In HotStorage’15, 2015.

28

https://www.threadingbuildingblocks.org
http://code.google.com/p/leveldb
https://liburcu.org

[58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Linux Foundation. The common trace format. https://diamon.org/ctf/, April 2019.
LTTng. LTTng: an open source tracing framework for Linux. https://Ittng.org, April 2019.

Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. A multi-level approach for under-
standing 1/O activity in HPC applications. In IEEE International Conference on Cluster Computing
(CLUSTER), September 2013.

Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun Shastry, Pilip Shilane, Sun Zhen, Vasily Tarasov,
and Erez Zadok. Using hints to improve inline block-layer deduplication. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST), Santa Clara, CA, February 2016.
USENIX Association.

Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio Lopez, James Hendricks, Gregory R.
Ganger, and David O’Hallaron. //TRACE: Parallel trace replay with approximate causal events. In
Proceedings of the Fifth USENIX Conference on File and Storage Technologies (FAST ’07), pages
153-167, San Jose, CA, February 2007. USENIX Association.

Microsoft Corporation. Event Tracing. https://docs.microsoft.com/en-us/ windows/ desktop/etw/
event-tracing-portal . Visited April 23, 2019.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-tree
(Ism-tree). Acta Inf., 33(4):351-385, 1996.

Jiaxin Ou, Kiwu Shu, and Youou Lu. A high performance file system for non-volatile main memory. In
Proceedings of the Eleventh European Conference on Computer Systems, pages 12:1-12:16, London,
UK, April 2016. ACM.

John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson, and Brent B. Welch.
The Sprite network operating system. /IEEE Computer, 21(2):23-36, February 1988.

Thiago Emmanuel Pereira, Livia Sampaio, and Francisco Vilar Brasileiro. On the accuracy of trace
replay methods for file system evaluation. In Proceedings of the 21st International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), San
Francisco, CA, February 2014.

Thiago Emmanuel Pereira, Jonhnny Weslley Silva, Alexandro Soares, and Francisco Brasileiro. BeeFS:
A cheaper and naturally scalable distributed file system for corporate environments. In Proceedings
of the 28th Brazilian Symposium on Computer Networks and Distributed Systems (SBRC), Gramado,
Brazil, May 2010.

Niels Provos. Improving host security with system call policies. In Proceedings of the 12th USENIX
Security Symposium, pages 257-272, Washington, DC, August 2003.

Amit Purohit, Charles P. Wright, Joseph Spadavecchia, and Erez Zadok. Cosy: Develop in user-land,
run in kernel-mode. In Proceedings of the 2003 ACM Workshop on Hot Topics in Operating Systems
(HotOS IX), pages 109—114, Lihue, Hawaii, May 2003. USENIX Association.

Jian-Ping Qiu, Guang-Yan Zhang, and Ji-Wu Shu. DMStone: A tool for evaluating hierarchical storage
management systems. Journal of Software, 23:987-995, April 2012.

Himanshu Raj and Karsten Schwan. High performance and scalable I/O virtualization via self-
virtualized devices. In Proceedings of the 16th IEEE International Symposium on High Performance
Distributed Computing (HPDC), 2007.

29

https://diamon.org/ctf/
https://lttng.org
https://docs.microsoft.com/en-us/windows/desktop/etw/event-tracing-portal
https://docs.microsoft.com/en-us/windows/desktop/etw/event-tracing-portal

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

[87]

Jose Renato Santos, Yoshio Turner, G.(John) Janakiraman, and Ian Pratt. Bridging the gap between
software and hardware techniques for I/O virtualization. In Proceedings of the Annual USENIX Tech-
nical Conference, Boston, MA, June 2008. USENIX Association.

Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Malpani, Binesh Andrews, Justin Seyster, and Erez
Zadok. Building workload-independent storage with VT-trees. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), San Jose, CA, February 2013. USENIX Association.

Mark A. Smith, Jan Pieper, Daniel Gruhl, and Lucas Vill Real. IZO: Applications of large-window
compression to virtual machine management. In Proceedings of the USENIX Large Installation System
Administration Conference (LISA), 2008.

Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. iDedup: Latency-aware, inline
data deduplication for primary storage. In Proceedings of the Tenth USENIX Conference on File and
Storage Technologies (FAST ’12), San Jose, CA, February 2012. USENIX Association.

Vaughn Stewart. Pure storage 101: Adaptive data reduction. https://blog.purestorage.com/
pure-storage- 101-adaptive-data-reduction, March 2014,

Storage Networking Industry Association. Posix system-call trace common semantics. https://members.
snia.org/wg/iottatwg/document/ 8806, September 2008. Accessible only to SNIA IOTTATWG members.

Jian Sun, Zhan-huai Li, Xiao Zhang, Qin-lu He, and Huifeng Wang. The study of data collecting
based on kprobe. In 2011 Fourth International Symposium on Computational Intelligence and Design,
volume 2, pages 35-38. IEEE, 2011.

Zhen “Jason” Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov, Nong Xiao, and
Erez Zadok. Cluster and single-node analysis of long-term deduplication patterns. ACM Transactions
on Storage (TOS), 14(2), May 2018.

Sun Microsystems. MySQL. www.mysql.com, Dec 2008.

sysbench. Scriptable database and system performance benchmark. https://github.com/akopytov/
sysbench, April 2019.

Rukma Talwadker and Kaladhar Voruganti. ParaSwift: File i/o trace modeling for the future. In
Proceedings of the 28th USENIX Large Installation Systems Administration Conference (LISA), pages
119-132, Seattle, WA, November 2014. USENIX Association.

Vasily Tarasov, Deepak Jain, Geoff Kuenning, Sonam Mandal, Karthikeyani Palanisami, Philip Shilane,
Sagar Trehan, and Erez Zadok. Dmdedup: Device mapper target for data deduplication. In Proceedings
of the Linux Symposium, pages 83-95, Ottawa, Canada, July 2014.

Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A nine year study of file system
and storage benchmarking. ACM Transactions on Storage (TOS), 4(2):25-80, May 2008.

Yoshihiro Tsuchiya and Takashi Watanabe. DBLK: Deduplication for primary block storage. In Pro-
ceedings of the IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST), 2011.

Marc-André Vef, Vasily Tarasov, Dean Hildebrand, and André Brinkmann. Challenges and solutions
for tracing storage systems: A case study with spectrum scale. ACM Transactions on Storage (TOS),
14(2):18, 2018.

30

https://blog.purestorage.com/pure-storage-101-adaptive-data-reduction
https://blog.purestorage.com/pure-storage-101-adaptive-data-reduction
https://members.snia.org/wg/iottatwg/document/8806
https://members.snia.org/wg/iottatwg/document/8806
www.mysql.com
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. ROOT: Replaying
multithreaded traces with resource-oriented ordering. In Proceedings of the 24th ACM Symposium on
Operating System Principles (SOSP ’13), pages 373-387, Farmington, PA, November 2013. ACM
Press.

Wikimedia Foundation. strace. https://en.wikipedia.org/wiki/Strace. Visited April 22, 2019.

Yair Wiseman, Karsten Schwan, and Patrick M. Widener. Efficient end to end data exchange using
configurable compression. ACM SIGOPS Operating Systems Review, 39(3):4-23, 2005.

Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding long tails in the
cloud. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’ 13, pages 329-342, Berkeley, CA, USA, 2013. USENIX Association.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz. DeTail: Reducing
the flow completion time tail in datacenter networks. In Proceedings of the ACM SIGCOMM 2012

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM 12, pages 139-150, Helsinki, Finland, 2012.

Quan Zhang, Dan Feng, Fang Wang, and Sen Wu. Mlock: building delegable metadata service for the
parallel file systems. Science China Information Systems, 58(3):1-14, March 2015.

Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Zettabyte
reliability with flexible end-to-end data integrity. In Proceedings of the 29th IEEE Symposium on Mass
Storage Systems and Technologies, Long Beach, CA, May 2013.

Ningning Zhu, Jiawu Chen, and Tzi-Cker Chiueh. TBBT: Scalable and accurate trace replay for file
server evaluation. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST),
pages 323-336, San Francisco, CA, December 2005. USENIX Association.

31

https://en.wikipedia.org/wiki/Strace

	Introduction
	Design
	Goals
	Fidelity
	Minimize Overhead
	Scalable and Verifiable
	Portability
	Ease of Use and Extensibility

	Fidelity
	RA-Strace
	RA-LTTng

	Low-Overhead and Accurate
	RA-Strace
	RA-LTTng

	Scalable and Verifiable
	Re-Animator Replayer
	Verifiable
	Concurrent Lock-Free Design
	Supporting Multiple Processes
	Simulated System Calls

	Portable
	Source Code Size

	Evaluation
	Testbed
	Benchmarks
	Micro-Benchmarks
	Macro-Benchmarks
	Replaying Benchmarks

	FIO Micro-Benchmark
	LevelDB Macro-Benchmark
	MySQL Macro-Benchmark
	Trace Statistics

	Related Work
	Ptrace
	Shared-Library Interposition
	In-Kernel Techniques
	Replayer Fidelity
	Scalability
	Portable Trace Format

	Conclusion and Future Work
	Future Work

