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Abstract

Most application provenance systems are hard coded
for a particular type of system or data, while cur-
rent provenance file systems maintain in-memory prove-
nance graphs and reside in kernel space, leading to com-
plex and constrained implementations. Story Book re-
sides in user space, and treats provenance events as a
generic event log, leading to a simple, flexible and eas-
ily optimized system.

We demonstrate the flexibility of our design by adding
provenance to a number of different systems, including
a file system, database and a number of file types, and by
implementing two separate storage backends. Although
Story Book is nearly 2.5 times slower than ext3 under
worst case workloads, this is mostly due to FUSE mes-
sage passing overhead. Our experiments show that cou-
pling our simple design with existing storage optimiza-
tions provides higher throughput than existing systems.

1 Introduction

Existing provenance systems are designed to deal with
specific applications and system architectures, and are
difficult to adapt to other systems and types of data.
Story Book decouples the application-specific aspects of
provenance tracking from dependency tracking, queries
and other mechanisms common across provenance sys-
tems.

Story Book runs in user space, simplifying its im-
plementation, and allowing it to make use of existing,
off-the-shelf components. Implementing provenance
(or any other) file system in user space incurs signifi-
cant overhead. However, our user space design signif-
icantly reduces communication costs for Story Book’s
application-specific provenance extensions, which may
use existing [IPC mechanisms, or even run inside the pro-
cess generating provenance data.

Story Book supports application-specific extensions,
allowing it to bring provenance to new classes of sys-
tems. It currently supports file system and database
provenance and can be extended to other types of sys-
tems, such as Web or email servers. Story Book’s file
system provenance system also supports extensions that
record additional information based on file type. We

have implemented two file-type modules: One records
the changes made by applications to . txt files, and the
other records modifications to .docx metadata, such as
the author name.

Our experiments show that Story Book’s storage and
query performance are adequate for file system prove-
nance workloads where each process performs a hand-
ful of provenance-related actions. However, systems
that service many small requests across a wide range
of users, such as databases and Web servers, gener-
ate provenance information at much higher rates and
with finer granularity. As such systems handle most
of today’s multi-user workloads, we believe they also
provide higher-value provenance information than in-
teractive desktop systems. This space is where Story
Book’s extensible user-space architecture and high write
throughput are most valuable.

The rest of this paper is organized as follows: Sec-
tion 2 describes existing approaches to provenance, Sec-
tion 3 describes the design and implementation of Story
Book, and Section 4 describes our experiments and per-
formance comparisons with PASSv2. We conclude in
Section 5.

2 Background

A survey of provenance systems [14] provides a taxon-
omy of existing provenance databases. A survey of the
taxonomy shows that Story Book is flexible enough to
cover much of the design space targeted by existing sys-
tems. This flexibility comes from Story Book’s layered,
modular approach to provenance tracking (Figure 1).

A provenance source intercepts user interaction
events with application data and sends these events to
application specific extensions which interpret them and
generate provenance inserts into one of Story Book’s
storage backends. Queries are handled by Story Book’s
Story Book API. Story Book relies on external li-
braries to implement each of its modules. FUSE [8]
and MySQL [18] intercept file system and database
events. Extensions to Story Book’s FUSE file sys-
tem, such as the .txt and .docx modules, anno-
tate events with application-specific provenance. These
provenance records are then inserted into either Sta-
sis [12] or Berkeley DB [15]. Stasis stores provenance
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Figure 1: Story Book’s modular approach to provenance track-
ing.

data using database-style no-Force/Steal recovery for its
hashtables, and compressed log structured merge (LSM)
trees [11] for its Rose [13] indexes. Story Book utilizes
Valor [16] to maintain write-ordering between its logs
and the kernel page cache. This reduces the number of
disk flushes, greatly improving performance.

Although Story Book utilizes a modular design that
separates different aspects of its operation into external
modules (i.e., Rose, Valor, and FUSE), it does hardcode
some aspects of its implementation. Simhan’s survey
discusses provenance systems that store metadata sep-
arately from application data, and provenance systems
that do not. One design decision hardcoded into Story
Book is that metadata is always stored separately from
application data for performance reasons. Story Book
stores blob data in a physically separate location on disk
in order to preserve locality of provenance graph nodes
and efficiently support queries.

Story Book avoids hardcoding most of the other de-
sign decisions mentioned by the survey. Because Story
Book does not directly support versioning, application-
specific provenance systems are able to decide whether
to store logical undo/redo records of application opera-
tions to save space and improve performance, or to save
raw value records to reduce implementation time. Story
Book’s .txt module stores patches between text files
rather than whole blocks or pages that were changed.

Story Book allows applications to determine the gran-
ularity of their provenance records, and whether to fo-
cus on information about data, processes or both. Simi-
larly, Story Book’s implementation is independent of the
format of extended records, allowing applications to use
metadata standards such as RDF [19] or Dublin Core [2]
as they see fit.

The primary limitation of Story Book compared to
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Figure 2: PASSv2’s monolithic approach to provenance track-
ing. Although Story Book contains more components than
PASSV2, Story Book addresses a superset of PASSv2’s ap-
plications, and leverages existing systems to avoid complex,
provenance-specific code.

systems that make native use of semantic metadata is
that Story Book’s built-in provenance queries would
need to be extended to understand annotations such
as “version-of” or “derived-from,” and act accordingly.
Applications could implement custom queries that make
use of these attributes, but such queries would incur sig-
nificant I/O cost. This is because our schema stores (po-
tentially large) application-specific annotations in a sep-
arate physical location on disk. Of course, user-defined
annotations could be stored in the provenance graph, but
this would increase complexity, both in the schema, and
in provenance query implementations.

Databases such as Trio [20] reason about the quality
or reliability of input data and processes that modify it
over time. Such systems typically cope with provenance
information, as unreliable inputs reflect uncertainty in
the outputs of queries. Story Book targets provenance
over exact data. This is especially appropriate for file
system provenance and regulatory compliance applica-
tions; in such circumstances, it is more natural to ask
which version of an input was used rather than to calcu-
late the probability that a particular input is correct.

2.1 Comparison to PASS

Existing provenance systems couple general provenance
concepts to system architectures, leading to complex in-
kernel mechanisms and complicating integration with
application data representations. Although PASSv2 [9]
suffers from these issues, it is also the closest system to
Story Book (Figure 2).

PASSv2 distinguishes between data attributes, such
as name or creation time, and relationships indicat-
ing things like data flow and versioning. Story Book
performs a similar layering, except that it treats ver-
sioning information (if any) as an attribute. Further-



more, whereas PASSv?2 places such mechanisms in ker-
nel space, Story Book places them in user space.

On the one hand, this means that user-level prove-
nance inspectors could tamper with provenance infor-
mation; on the other it has significant performance and
usability advantages. In regulatory environments (which
cope with untrusted end-users), Story Book should run
in a trusted file or other application server. The security
implications of this approach are minimal: in both cases
a malicious user requires root access to the provenance
server in order to tamper with provenance information.

PASSv2 is a system-call-level provenance system,
and requires that all provenance data pass through rel-
evant system calls. Application level provenance data
is tracked by applications, then used to annotate corre-
sponding system calls that are intercepted by PASSv2.
In contrast, Story Book is capable of system call in-
terception, but does not require it. This avoids the
need for applications to maintain in-memory graphs of
provenance information. Furthermore, it is unclear how
system-call-level instrumentation interacts with mech-
anisms such as database buffer managers which de-
stroy the relationship between application-level opera-
tions and system calls. Story Book’s ability to track
MySQL provenance shows that such systems are easily
handled with our approach.

PASSv2 supersedes PASS, which directly wrote
provenance information to a database. The authors of
the PASS systems concluded that direct database access
was neither “efficient nor scalable,” and moved database
operations into an asynchronous background thread.

Our experiments show that, when properly tuned,
Story Book’s Fable storage system and PASSv2’s Waldo
storage system both perform well enough to allow
direct database access, and that the bulk of prove-
nance overhead is introduced by system instrumenta-
tion, and insertion-time manipulation of provenance
graphs. Story Book suffers from the first bottleneck
while PASSv2 suffers from the latter.

This finding has a number of implications. First, Story
Book performs database operations synchronously, so
its provenance queries always run against up-to-date in-
formation. Second, improving Story Book performance
involves improvements to general-purpose code, while
PASSv2’s bottleneck is in provenance-specific mecha-
nisms.

From a design perspective then, Story Book is at a sig-
nificant advantage; improving our performance is a mat-
ter of utilizing a different instrumentation technology.
In contrast, PASSv2’s bottlenecks stem from a special-
purpose component that is fundamental to its design.

PASSv2 uses a recovery protocol called write ahead
provenance, which is similar to Story Book’s file-system
recovery approach. However, Story Book is slightly

more general, as its recovery mechanisms are capable
of entering into system-specific commit protocols. This
is important when tracking database provenance, as it
allows Story Book to reuse existing durability mecha-
nisms, such as Valor, and inexpensive database replica-
tion techniques. For our experiments, we extended write
ahead provenance with some optimizations employed
by Fable so that PASSv2’s write throughput would be
within an order of magnitude of ours.

PASSv2 supports a number of workloads currently
unaddressed by Story Book, such as network operation
and unified naming across provenance implementations.
The mechanisms used to implement these primitives
in PASSv2 follow from the decision to allow multiple
provenance sources to build provenance graphs before
applying them to the database. Even during local opera-
tion, PASSv2 employs special techniques to avoid cycles
in provenance graphs due to reordering of operations and
record suppression. In the distributed case, clock skew
and network partitions further complicate matters.

In contrast, Story Book appends each provenance op-
eration to a unified log, guaranteeing a consistent, cycle-
free dependency graph (see Section 3.8). We prefer this
approach to custom provenance consensus algorithms,
as the problem of imposing a partial order over events
in a distributed system is well-understood; building a
distributed version of Story Book is simply a matter of
building a provenance source that makes use of well-
known distributed systems techniques such as logical
clocks [6] or Paxos [7].

3 Design and Implementation

Story Book has two primary scalability goals: (1) de-
crease the overhead of logging provenance information,
and (2) decrease the implementation effort required to
track the provenance of applications which use the file
system or other instrumentable storage to organize data.

We discuss Story Book’s application development
model in Section 3.1, and Story Book’s architecture and
provenance file system write path in Section 3.2. We ex-
plain Story Book’s indexing optimizations in Section 3.3
and recovery in Section 3.4. We discuss reuse of third
party code in Section 3.5 and the types of provenance
that are recorded on-disk in Section 3.6. We explain
how Story Book accomplishes a provenance query in
Section 3.7 and describe Story Book’s ability to com-
press and suppress redundant provenance information in
Section 3.8.

3.1 Application Development Model

Story Book provides a number of approaches to
application-specific provenance. The most powerful, ef-
ficient and precise approach directly instruments appli-
cations, allowing the granularity of operations and actors



recorded in the provenance records to match the appli-
cation. This approach also allows for direct communica-
tion between the application and Story Book, minimiz-
ing communication overheads.

However, some applications cannot be easily instru-
mented, and file formats are often modified by many
different applications. In such cases, it makes sense to
track application-specific provenance information at the
file system layer. Story Book addresses this problem by
allowing developers to implement provenance inspec-
tors, which intercept requests to modify particular sets
of files. When relevant files are accessed, the appropriate
provenance inspector is alerted and allowed to log addi-
tional provenance information. Provenance inspectors
work best when the intercepted operations are indicative
of the application’s intent (e.g., an update to a document
represents an edit to the document). Servers that service
many unrelated requests or use the file system primarily
as a block device (e.g., Web servers, databases) are still
able to record their provenance using Story Book’s file-
system provenance API, though they would be better-
served by Story Book’s application-level provenance.

For our evaluation of Story Book’s file system-level
provenance, we implemented a .txt and a .docx
provenance inspector. The .txt inspector records
patches that document changes made to a text file be-
tween the open and close. The . docx inspector records
changes to document metadata (e.g., author names, title)
between the time it was opened and closed. We describe
provenance inspectors in more detail in Section 3.6.3.

3.2 Architecture

Story Book stores three kinds of records: (1) basic
records which are a record of an open, close, read or
write, (2) process records which are a record of a caller-
callee relationship and (3) extended records which are
a record of application-specific provenance information.
These records are generated by the provenance sources
and application specific extensions layers. The storage
backend in Story Book which is optimized for write
throughput by using Rose and Stasis is called Fable. Ba-
sic, process, and extended records are inserted into Fa-
ble, or into the Berkeley DB backend if it is being used.

Rather than synchronously commit new basic, pro-
cess and extended records to disk before allowing up-
dates to propagate to the file system, we use Stasis’ non-
durable commit mechanism and Valor’s write ordering
to ensure that write-ahead records reach disk before file
system operations. This approach is a simplified version
of Speculator’s [10] external synchrony support, in that
it performs disk synchronization before page write-back,
but unlike Speculator, it will not sync the disk before any
event which presents information to the user (e.g., via
ttyl).

This allows Fable to use a single I/O operation to com-
mit batches of provenance operations just before the file
system flushes its dirty pages. Although writes to Stasis’
page file never block log writes or file system writeback,
hash index operations may block if the Stasis pages they
manipulate are not in memory. Unless the system is un-
der heavy memory pressure, the hash pages will be resi-
dent. Therefore, most application requests that block on
Fable I/0O also block on file system 1/O.

Figure 3 describes what happens when an applica-
tion P writes to a document. The kernel receives the
request from P and forwards the request to the FUSE
file system (1). FUSE forwards the request to Story
Book’s FUSE daemon (2) which determines the type of
file being accessed. Once the file type is determined,
the request is forwarded to the appropriate provenance
inspector (3). The provenance inspector generates ba-
sic and extended log records (4) and schedules them for
asynchronous insertion into a write-ahead log (5). Fa-
ble synchronously updates (cached) hash table pages and
Rose’s in-memory component (6) and then allows the
provenance inspector to return to the caller P (7). After
some time, the file system flushes dirty pages (8), and
Valor ensures that any scheduled entries in Fable’s log
are written (9) before the file system pages (10). Stasis’
dirty pages are occasionally written to disk to enable log
truncation or to respond to memory pressure (11).
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Figure 3: Write path of Story Book’s provenance file system

3.3 Log Structured Merge Trees

Rose indexes are compressed LSM-trees that have
been optimized for high-throughput and asynchronous,
durable commit. Their contents are stored on disk in



compressed, bulk loaded B-trees. Insertions are serviced
by inserting data into an in-memory red-black tree. Once
this tree is big enough, it is merged with the smallest
on-disk tree and emptied. Since the on-disk tree’s leaf
nodes are laid out sequentially on disk, this merge does
not cause a significant number of disk seeks. Similarly,
the merge produces data in sorted order, allowing it to
contiguously lay out the new version of the tree on disk.

The small on-disk tree component will eventually be-
come large, causing merges with in-memory trees to be-
come prohibitively expensive. Before this happens, we
merge the smaller on-disk tree with a larger on-disk tree,
emptying the smaller tree. By using two on-disk trees
and scheduling merges correctly, the amortized cost of
insertion is reduced to O(log n * y/n), with a constant
factor proportional to the cost of compressed sequential
I/O. B-trees’ O(log n) insertion cost is proportional to
the cost of random I/O. The ratio of random I/O cost to
sequential I/O cost is increasing exponentially over time,
both for disks and for in-memory operations.

Analysis of asymptotic LSM-tree performance shows
that, on current hardware, worst-case LSM-tree through-
put will dominate worst-case B-tree write throughput
across all reasonable index sizes, but that in the best
case for a B-tree, insertions arrive in sorted order, al-
lowing it to write back dirty pages serially to disk with
perfect locality. Provenance queries require fast lookup
of basic records based on inode, not arrival time, forc-
ing Story Book’s indexes to re-sort basic records before
placing them on disk. If insertions do show good locality
(due to skew based on inode, for example), then Rose’s
tree merges will needlessly touch large amounts of clean
data. Partitioning the index across multiple Rose indexes
would lessen the impact of this problem [4].

Sorted data compresses well, and Story Book’s tables
have been chosen to be easily compressible. This al-
lows Rose to use simple compression techniques, such
as run length encoding, to conserve I/0 bandwidth. Su-
perscalar implementations of such compression algo-
rithms compress and decompress with GiB/s throughput
on modern processor cores. Also, once the data has been
compressed for writeback, it is kept in compressed form
in memory, conserving RAM.

3.4 Recovery

As we will see in Section 3.6, the basic records stored in
Fable contain pointers into extended record logs. At run-
time, Fable ensures that extended records reach disk be-
fore the basic records that reference them. This ensures
that all pointers from basic records encountered during
recovery point to complete extended records, so recov-
ery does not need to take any special action to ensure
that the logs are consistent.

If the system crashes while file system (or other ap-

plication) writes are in flight, Story Book must ensure
that a record of the in-flight operations is available in the
provenance records so that future queries are aware of
any potential corruption due to crash.

Since Valor guarantees that Stasis’ write ahead log en-
tries reach disk before corresponding file system opera-
tions, Fable simply relies upon Stasis recovery to recover
from crash. Provenance over transactional systems (such
as MySQL) may make use of any commit and replica-
tion mechanisms supported by the application.

3.5 Reusing User-Level Libraries

Provenance inspectors are implemented as user-level
plugins to Story Book’s FUSE daemon. Therefore, they
can use libraries linked by the application to safely and
efficiently extract application-specific provenance. For
example, our . docx inspector is linked against the XML
parser ExPat [3]. Story Book’s FUSE-based design fa-
cilitates transparent provenance inspectors that require
no application modification and do not force developers
to port user-level functionality into the kernel [17].

3.6 Provenance Schema

Story Book models the system’s provenance using basic
records, process records and extended records. To sup-
port efficient queries, Fable maintains several different
Rose trees and persistent hash indexes. In this section
we discuss the format of these record types and indexes.

3.6.1 Basic Records

Story Book uses basic records to record general prove-
nance. To determine the provenance or history of an ar-
bitrary file, Story Book must maintain a record of which
processes read from and wrote to which objects. Story
Book clients achieve this by recording a basic record for
every create, open, close, read and write regardless of
type. The format of a basic record is as follows:

ino —Basic Record Extended Record Log
finojsingss A

u MagicNumber
pid —Process Record \ H RecordData
(pid|ino|pGiag )
.
H
< >4 N————

file name im0 W exit gexel exe ex# )
(filename |inoX (ext [exe (exe |exf)

Figure 4: Story Book Database Layout. Table keys are bold.
"H’ indicates the table is a hash table.



GLOBAL ID The ID of the process performing the op-
eration. This ID is globally unique across reboots.

PARENT GLOBAL ID The global ID of the parent of
the process performing the operation.

INODE The inode number of a file or object id.

EXECUTABLE ID The global ID corresponding to the
absolute path of the executable or other name asso-
ciated with this process.

OPERATION Indicates if the process performed a read,
write, open or close.

LSN The log sequence number of the record, used for
event ordering and lookup of application-specific
extended records

Figure 4 illustrates how Fable stores basic records. Ex-
ecutable paths are stored using two hash tables that map
between executable ID’s and executable names (Cexe’ to
’ex#’) and (Cex#’ to ’exe’). The first is used during in-
sertion; the second to retrieve executable names during
queries. File names are handled in a similar fashion. Fa-
ble stores the remaining basic record attributes in a Rose
table, sorted by inode / object id.

3.6.2 Process Records

Story Book uses process records to record parent-child
relationships. When processes perform file operations
Story Book records their executable name and process
ID within a basic record. However, Story Book cannot
rely on every process to perform a file operation (e.g., the
cat program in Figure 5), and must also record process
records alongside basic records and application-specific
provenance. Process records capture the existence of
processes that might never access a file. The format of a
process record is as follows:

index
Qid —Process Record
indexor.thread
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Figure 5: A provenance query. On the left is the data used to
construct the provenance graph on the right. The query begins
with a hash lookup on the file name’s inode whose provenance
we determine (< “index”;3 >).

GLOBAL ID The ID of the process performing the file
access. This ID is globally unique across reboots.

PARENT GLOBAL ID OR FILE INODE Contains
either the global ID of the parent of this process or
the inode of a file this process modified or read.

EXECUTABLE ID Global ID corresponding to the ab-
solute path of the executable.

LSN The log sequence number of the record, used to
establish the ordering of child process creation and
file operations during provenance queries.

Before Story Book emits a basic record for a process it
first acquires all the global IDs of that process’s parents
by calling a specially added system call. It records a
process record for every (global ID,parent global
ID) pair it has not already recorded as a process record
at some earlier time.

The exact mechanisms used to track processes vary
with the application being tracked, but file system prove-
nance is an informative example. By generating process
records during file access rather than at fork and exit,
file system provenance is able to avoid logging process
records for processes that do not modify files. This al-
lows it to avoid maintenance of a provenance graph in
kernel RAM during operation, but is not sufficient to re-
flect process reparenting that occurs before a file access
or a change in the executable name that occurs after the
last file access.

3.6.3 Extended Records

Story Book manages application-specific provenance by
having each application’s provenance inspector attach
additional application-specific information to a basic
record. This additional information is called an ex-
tended record. Extended records are not stored in Rose,
but rather are appended in chronological order to a log.
This is because their format and length may vary and
extended records are not necessary to reconstruct the
provenance of a file in the majority of cases. However,
the extended record log cannot be automatically trun-
cated, since it contains the only copy of the provenance
information stored in the extended records. An extended
record can have multiple application-specific entries or
none at all. The format of an extended record is as fol-
lows:

MAGIC NUMBER Indicates the type of the record data
that is to follow. For basic or process records with
no application-specific data to store this value is 0.
RECORD DATA Contains any application-specific data.

Each basic and process record must refer to an ex-
tended record because the offset of the extended record
is used as an LSN. If this were not true Rose would have
to add another column to the basic record table. In addi-
tion to an LSN it would need the offset into the extended
record log for basic records which refer to application-
specific provenance. Compressing the basic record ta-



ble with this additional column would be more difficult
and would increase Story Book’s overhead. Records that
have no application-specific data to store need not incur
an additional write since the magic number for an empty
extended record is zero and can be recorded by making
a hole in the file. Reading the extended record need only
be done when explicitly checking for a particular kind of
application-specific provenance in a basic record.

3.7 Provenance Query

Story Book acquires the provenance of a file by looking
up its inode in the (file name, ino) hash table. The
inode is used to begin a breadth first search in the basic
and process record tables. We perform a transitive clo-
sure over sets of processes that wrote to the given file (or
other files encountered during the search), over the set
of files read by these processes, and over the parents of
these processes. We search in order of decreasing LSN
and return results in reverse chronological order.

3.8 Compression and Record Suppression

Rose tables provide high-performance column-wise data
compression. Rose’s basic record table run length en-
codes all basic record columns except the LSN, which
is stored as a 16 bit diff in the common case, and the
opcode, which is stored as an uncompressed 8 bit value.
The process record table applies run length encoding to
the process id, and ex#. It attempts to store the remain-
ing columns as 16 bit deltas against the first entry on
the page. The hash tables do not support compression,
but are relatively small, as they only store one value per
executable name and file in the system.

In addition to compression, Story Book supports
record suppression, which ignores multiple calls to read
and write from the same process to the same file. This is
important for programs that deal with large files; without
record suppression, the number of (compressed) entries
stored by Rose is proportional to file sizes.

Processes that wish to use record suppression need
only store the first and last read and write to each file
they access. This guarantees that the provenance graphs
generated by Story Book’s queries contain all tainting
processes and files, but it loses some information re-
garding the number of times each dependency was es-
tablished at runtime. Unlike existing approaches to
record suppression, this scheme cannot create cyclic de-
pendency graphs. Therefore, Story Book dependency
graphs can never contain cycles, no special cycle detec-
tion or removal techniques are required.

However, record suppression can force queries to treat
suppressed operations as though they happened in race.
If this is an issue, then record suppression can be dis-
abled or (in some circumstances) implemented using
application-specific techniques that cannot lead to the

detection of false races.

Note that this scheme never increases the number of
records generated by a process, as we can interpret se-
quences such as “open, read, close” to mean a single
read. Record suppression complicates recovery slightly.
If the sequence “open, read, ..., crash” is encountered, it
must be interpreted as: “open, begin read, ..., end read,
crash.” Although this scheme requires up to two entries
per file accessed by each process, run length encoding
usually ensures that the second entry compresses well.

4 Evaluation

Story Book must provide fast, high-throughput writes in
order to avoid impacting operating system and existing
application performance. However, it must also index
its provenance records so that it can provide reasonable
query performance. Therefore, we focus on Story Book
write throughput in Section 4.2, a traditional file system
workload in Section 4.3, and a traditional database work-
load in Section 4.4. We measure provenance read perfor-
mance in Section 4.5.

4.1 Experimental Setup

We used eight identical machines, each with a 2.8GHz
Xeon CPU and 1GB of RAM for benchmarking. Each
machine was equipped with six Maxtor DiamondMax
10 7,200 RPM 250GB SATA disks and ran CentOS 5.2
with the latest updates as of September 6, 2008. For
the file system workload in Section 4.3 Story Book uses
a modified 2.6.25 kernel to ensure proper write order-
ing, and for all other systems an unmodified 2.6.18 ker-
nel was used. To ensure a cold cache and an equivalent
block layout on disk, we ran each iteration of the rele-
vant benchmark on a newly formatted file system with
as few services running as possible. For query bench-
marks, database files are copied fresh to the file system
each time. We ran all tests at least four times and com-
puted 95% confidence intervals for the mean elapsed,
system, user, and wait times using the Student’s-¢ dis-
tribution. In each case, unless otherwise noted, the half
widths of the intervals were less than 5% of the mean.
Wait time is elapsed time less system and user time and
mostly measures time performing I/O, though it can also
be affected by process scheduling. Except in Figure 6
and Figure 7 where we are measuring throughput and
varying Cj size explicitly, all cache sizes are consistent
for all systems across all experiments. Berkeley DB’s
cache is set to 128MiB, and Stasis’ page cache is set to
100MiB with a Rose Cj of 22MiB, allocating a total of
122MiB to Fable.

Provenance Workloads. The workload we use to
evaluate our throughput is a shell script which creates
a file hierarchy with an arity of 14 that is five levels
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Figure 6: Performance of Waldo and Story Book’s insert tool
on logs of different sizes.

deep where each directory contains a single file. Sep-
arate processes copy files in blocks from parent nodes to
child nodes. This script was designed to generate a dense
provenance graph to provide a lower bound on query
performance and to demonstrate write performance. We
refer to this script as the tree dataset. With no WAL
truncation, the script generates a 3.5GiB log of uncom-
pressed provenance data in Story Book, and a 244MiB
log of compressed (pruned) provenance data in PASSv2.
Fable compresses provenance events on the fly, so that
the database file does not exceed 400MiB in size.

4.2 Provenance Throughput

PASSv2 consists of two primary components: (1) an
in-kernel set of hooks that log provenance to a write-
ahead log, and (2) a user-level daemon called Waldo
which reads records from the write-ahead log and stores
them in a Berkeley Database (BDB) database. We used
a pre-release version of PASSv2, which could not reli-
ably complete I/O intensive benchmarks. We found that
their pre-release kernel was approximately 3x slower
than Story Book’s FUSE-based provenance file system,
but expect their kernel’s performance to change signifi-
cantly as they stabilize their implementation. Therefore,
we focus on log processing comparisons here.

For both Story Book and PASSv2, log generation
was at least an order of magnitude slower than log
processing. However, as we will see below, most of
Story Book’s overhead is due to FUSE instrumentation,
not provenance handling. We expect log processing
throughput to be Story Book’s primary bottleneck when
it is used to track provenance in systems with lower in-
strumentation overheads.

By default, Waldo durably commits each insertion
into BDB. When performing durable inserts, Waldo is
at least ten times slower than Fable. Under the as-
sumption that it will eventually be possible for PASSv2
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Figure 7: Performance of Story Book’s Fable backend with
varying in-memory tree component sizes.

to safely avoid these durable commits, we set the
BDB_TXN_NOSYNC option, which allows BDB to com-
mit without performing synchronous disk writes.

We processed the provenance events generated by the
tree dataset with Waldo and Story Book. This produced
a 3.5GiB Story Book log and a 244MiB Waldo log. We
then measured the amount of time it took to process
these logs using Waldo, Fable and Story Book’s Berke-
ley DB backend.

Rose uses 100MiB for its page cache and 172MiB for
its Cy tree. Both Berkeley DB and Waldo use 272MiB
for their page cache size. Our optimized version of
Waldo performs 3.5 times faster than Fable. However,
PASSv2 performs a significant amount of preprocessing,
record suppression and graph-pruning to its provenance
data before writing it to the Waldo log. Fable interleaves
these optimizations with provenance event handling and
database operations. We are unable to measure the over-
head of PASSv2’s preprocessing steps, making it diffi-
cult to compare Waldo and Fable performance.

Story Book’s Berkeley DB backend is 2.8 times
slower than Fable. This is largely due to Fable’s amor-
tization of in-memory buffer manager requests, as User
CPU time dominated Berkeley DB’s performance dur-
ing this test. Because Rose’s LSM-trees are optimized
for extremely large data sets, we expect the performance
gap between Berkeley DB and Fable to increase with
larger provenance workloads.

4.3 File System Performance

Story Book’s write performance depends directly on the
size of its in-memory Cj tree. In Figure 7 we compare
the throughput of our Rose backend when processing a
1536MiB WAL and 3072MiB WAL generated from our
tree dataset. Since Rose must perform tree merges each
time Cy becomes full, throughput drops significantly if
we allocate less than 22MiB to Cy. We set Cy to 22MiB
for the remainder of the tests.

Figure 8 measures the performance of a multi-
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Figure 8: Performance of Story Book compared to ext 3 and
FUSE for I/0 intensive file system workloads.

threaded version of Postmark [5] on top of ext3, on
top of FuseFs, a “pass through” FUSE file system that
measures Story Book’s instrumentation overhead, and
on top of TxtFs, a Story Book provenance file system
that records diffs when .txt files are modified. When
running under TxtFS, each modification to a text file
causes it to be copied to an object store in the root par-
tition. When the file is closed, a diff is computed and
stored as an external provenance record. This signifi-
cantly impacts performance as the number of . txt files
increases.

We initialized Postmark’s number of directories to
890, its number of files to 9,000, its number of trans-
actions to 3,600, its average filesize to 190 KiB, and its
read and write size to 28KiB. These numbers are based
on the arithmetic mean of file system size from Agar-
wal’s 5-year study[l]. We scaled Agarwal’s numbers
down by 10 as they represented an entire set of file sys-
tem modifications, but the consistent scaling across all
values maintains their ratios with respect to each other.
We ran this test using 30 threads as postmark was in-
tended to emulate a mail server which currently would
use worker threads to do work. Because FUSE aggre-
gates message passing across threads, both TxtFS and
FuseFs perform better under concurrent workloads with
respect to Ext3. We repeated each run, increasing the
percentage of . txt files in the working set from 5% to
25%, while keeping all the other parameters the same
(Text files are the same size as the other files in this test).

FuseFS and ext3 remain constant throughout the
benchmark. TxtFS’s initial overhead on top of FuseF's
is 9%, and is 76% on top of Ext3. As the number of
copies to TxtFS’s object store and the number of diffs
increases, TxtFS’s performance worsens. At 25% .txt
files, TxtFs has a 40% overhead on top of FuseFs, and
is 2.2 times slower than Ext 3.

Regular Story Book
Response Time (s) Response Time (s)
Delivery 52.6352 53.423
New Order 45.8146 48.037
Order Status 44.4822 47.4768
Payment 44.2592 46.6032
Stock Level 53.6332 55.1508
Throughput (tpmC) 201.82 196.176

Table 1: Average response time for TPC-C Benchmark

400
Elapsed —— 353.2
350 + User === ﬁ
System m—
300t 281.0
(2]
2 250 ¢ 2118 [\
g 200}
UE-‘ 150 138.3
00} TN\ P
68055 4 i §
50 1 284 N\<q @ \
) N\

70..70.,.20.,.20.,.30.,. 30, %0...%0.,.50.,. 5
O‘bolbo “/o, Sg\bdbo o Sg\bolbo 0 Sg"bdbo 0 Sg*boibo R(0) Se

Figure 9: Performance of a provenance query.

44 MySQL TPC-C

Next, we instrumented MySQL in order to measure the
performance of a user-level Story Book provenance sys-
tem. This workload has significantly lower instrumen-
tation overhead than our FUSE file system. We imple-
mented a tool that reads MySQL’s general query log and
determines which transactions read from and wrote to
which tables. It translates this information into Story
Book provenance records by treating each operation in
the general log as a process (We set the process “exe-
cutable name” to the query text).

We measured the performance impact of our prove-
nance tracking system on a copy of TPC-C configured
for 50 warehouses and 20 clients. In Table 1 we list
two configurations: Regular and Story Book. Re-
sponse times under Story Book increased by an average
of 4.24%, while total throughput dropped by 2.80%.

4.5 Provenance Read

To evaluate Story Book’s query performance, we com-
pared the query performance of our Berkeley DB back-
end to that of Fable. Our BDB database uses the same
table schema and indexes as Fable, except that it uses
B-trees in the place of Stasis’ Rose indexes.

We generated our database by processing the entire
tree dataset, which is designed to create dense prove-
nance graphs. This results in a 400MiB database for



Fable, and a 905MiB database for Berkeley DB. We
randomly selected a sequence of 50 files from our tree
dataset, and we perform just the first 10 queries in our
first data point, then the first 20 queries and so on.

In both cases, the data set fits in RAM, so both sys-
tems spend the majority of their time in User. As ex-
pected, runtime increases linearly with the number of
queries for both systems. Fable is 3.8 times slower than
Berkeley DB in this experiment.

Provenance queries on the tree dataset result in a large
number of point queries because our database is indexed
by inode, and each inode only has a few entries. Al-
though Rose provides very fast tree iterators, it must
check multiple tree components per point query. In con-
trast, Berkeley DB must only consult a single B-tree per
index lookup. Rose was originally intended for use in
versioning systems, where queries against recently mod-
ified data can be serviced by looking at a single tree com-
ponent. Our provenance queries must obtain all index
entries, and cannot make use of this optimization.

5 Conclusions

Our implementation of Story Book focuses on minimiz-
ing the amount of state held in RAM and on simpli-
fying the design of provenance systems. It is able to
either record exact provenance information, or to ap-
ply a straightforward record-suppression scheme. Al-
though our Berkeley DB based backend provides supe-
rior query performance, the Fable backend provides su-
perior write throughput, and should scale gracefully to
extremely large data sets.

Story Book’s support for system-specific durability
protocols allows us to apply Story Book to a wide range
of applications, including MySQL. It also allows us to
use Valor to avoid synchronous log writes, removing the
primary bottleneck of existing systems.

Story Book’s application development model and the
simplicity of our provenance data model make it easy to
add support for new types of provenance systems, and to
store additional information on a per-file basis.

Story Book’s primary overhead comes from its FUSE
file system instrumentation layer. Our experiments show
that Story Book’s underlying provenance database pro-
vides much greater throughput than necessary for most
file system provenance workloads. This, coupled with
Story Book’s extensibility, allow it to be applied in more
demanding environments such as databases and other
multiuser applications.
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