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ABSTRACT
Modern applications use storage systems in complex and
often surprising ways. Tracing system calls is a common ap-
proach to understanding applications’ behavior, allowing of-
�ine analysis and enabling replay in other environments. But
current system-call tracing tools have drawbacks: (1) they
often omit some information—such as raw data bu�ers—
needed for full analysis; (2) they have high overheads; (3) they
often use non-portable trace formats; and (4) they may not
o�er useful and scalable analysis and replay tools.

We have developed Re-Animator, a powerful system-call
tracing tool that focuses on storage-related calls and collects
maximal information, capturing complete data bu�ers and
writing all traces in the standard DataSeries format. We also
created a prototype replayer that focuses on calls related to
�le-system state. We evaluated our system on long-running
server applications such as key-value stores and databases.
Our tracer has an average overhead of only 1.8–2.3⇥, but
the overhead can be as low as 5% for I/O-bound applications.
Our replayer veri�es that its actions are correct, and faith-
fully reproduces the logical �le system state generated by
the original application.
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1 INTRODUCTION
Modern applications are becoming ever more intricate, often
using 3rd-party libraries that add further complexity [40].
Operating systems have multiple layers of abstraction [9, 78]
and deep network and storage stacks [10, 42, 77]. In addition,
storage systems employ techniques like compression, dedu-
plication, and bit-pattern elimination [13, 29, 55, 56, 65, 79–
81, 89, 92, 96]. The result is that applications interact with the
rest of the system in complex, unpredictable ways, making
it di�cult to understand and analyze their behavior.

System-call tracing is a time-honored, convenient way to
study an application’s interaction with the OS; for example,
tools such as strace [95] can record events for human anal-
ysis. Such traces can be replayed [94] to reproduce behavior
without needing to recreate input conditions and rerun the
application, exploring its behavior in di�erent situations (e.g.,
performance tuning or analysis [15, 39, 44, 48, 49, 59, 68, 72,
88, 90, 101]), or to stress-test other components (e.g., the OS
or storage system) [1–3, 8, 21, 36, 45, 46, 51, 72, 73, 76, 87,
91, 99, 100]. Traces can also be analyzed o�ine (e.g., using
statistical or machine-learning methods) to �nd performance
bottlenecks, security vulnerabilities, etc. [43, 74, 75], or iden-
tify malicious behavior [32, 54]. Historical traces can help
understand the evolution of computing and applications over
long intervals. Such long-term traces are useful in evaluating
the e�ects of I/O on devices that wear out quickly (SSDs) or
have complex internal behavior (e.g., garbage collection in
shingled drives) [20, 24, 41, 47, 60, 97, 98].
However, existing system-call tracing approaches have

drawbacks: (1) They often do not capture all the informa-
tion needed to reproduce the exact system and storage state,
such as the full data passed to read and write system calls.
(2) Tracing signi�cantly slows traced applications and even
the surrounding system, which can be prohibitive in produc-
tion environments. Thus, tracing is often avoided in mission-
critical settings, and traces of long-running applications are
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rare. (3) Traces often use custom formats; documentation
can be lacking or non-existent, and sometimes no software
or tools are released to process, analyze, or replay the traces.
Some traces (e.g., those from the Sprite project [71]) have
been preserved but can no longer be read due to a lack of
tools. (4) Some tools (e.g., strace [95]) produce output in-
tended for human consumption and are not conducive to
automated parsing and replay [35, 44, 94].
In this paper, we make the following six contributions:

(1)We have designed and developed Re-Animator, a system-
call tracing package that uses Linux tracepoints [25] and
LTTng [26, 63] to capture traces with low overhead. (2) Our
tracing system captures as much information as possible,
including all data bu�ers and arguments. (3) We write the
traces in DataSeries [5], the format suggested by the Storage
Networking Industry Association (SNIA) for I/O and other
traces. DataSeries is compact, e�cient, and self-describing.
Researchers can use existing DataSeries tools to inspect
trace �les, convert them to plain text or spreadsheet formats,
repack and compress them, subset them, and extract statis-
tical information. (4) Our system adds an average overhead
of only 1.8–2.3⇥ to traced applications (in the best case, only
5%). (5) We developed a prototype replayer that supports 70
selected system calls, including all that relate to �le systems,
storage, or persistent state. The replayer executes the calls as
faithfully and e�ciently as possible and can replay traces as
large as hundreds of GB. (6) All our code and tools for both
tracing and replaying are planned for open-source release. In
addition, we have written an extensive document detailing
the precise DataSeries format of our system-call trace �les
to ensure that this knowledge is never lost; this document
will also be released and archived formally by SNIA.

2 DESIGN
Re-Animator is designed to: (1) maximize the �delity of cap-
ture and replay, (2) minimize overhead, (3) be scalable and
veri�able, (4) be portable, and (5) be extensible and easy to
use. In this section, we �rst justify these goals, and then
explain how we accomplish them.
Any tracing tool can capture sensitive information such

as �le names, inter-�le relations, and even �le contents.
Re-Animator is intended for environments where such cap-
ture and processing of such traces is acceptable to all par-
ties. When privacy is a concern, anonymization may be re-
quired [7, 57], but privacy is outside this paper’s scope.

2.1 Goals
Fidelity. State-of-the-art techniques for recording and re-

playing system calls have focused primarily on timing ac-
curacy [6, 16, 40, 48, 66, 94, 101]. Our work considers three

replay dimensions: (1) timing, (2) process–thread interdepen-
dencies, and (3) the logical POSIX �le-system state. Because
correct replay requires accurately captured data, this paper
focuses primarily on trace capture; our prototype replayer
demonstrates this accuracy but does not seek optimality.

Of the three dimensions above, timing is probably the eas-
iest to handle; the tracer must record accurate timestamps,
and the replayer should reproduce them as precisely as pos-
sible [6]. However, many researchers have chosen a simpler—
and entirely defensible—option: replay calls as fast as possi-
ble (AFAP), imposing maximum stress on the system under
test, which is often the preferred approach when evaluating
new systems. For that reason, although we capture precise
timestamps, our prototype uses AFAP replay.
Dependencies in parallel applications are more challeng-

ing; replaying them incorrectly can lead to unreasonable con-
clusions or even incorrect results. Previous researchers have
used experimental [66] or heuristic [94] techniques to extract
internal dependencies. The current version of Re-Animator
uses a conservative heuristic similar to hfplayer [38]: if two
requests overlap in time, we assume that they can be issued
in any order; if there is no overlap then we preserve the
ordering recorded in the trace �le.
Finally, most prior tracing and replay tools discard the

transferred data to speed tracing and reduce trace sizes. How-
ever, modern storage systems use advanced techniques—such
as deduplication [61, 85], compression [17, 56], repeated bit-
pattern elimination [81], etc.—whose performance depends
on data content. We thus designed Re-Animator to optionally
support e�cient capture and replay of full bu�er contents so
as to accurately reproduce the original application’s results.

Since capturing data bu�ers can generate large trace �les,
Re-Animator can optionally replace the data with summary
hashes. However, full data capture can enable future research
into areas such as (1) space-saving storage options (e.g., com-
pression, deduplication); (2) copy-on-write and snapshot
features; (3) complex program behaviors; and (4) security.
We discuss the details of our features in Section 2.2.

Minimize overhead. Since our goal is to record realistic
behavior, anything that a�ects the traced application’s per-
formance is undesirable. Tracing necessarily adds overhead
in several ways: (1) as each system call is made, a record
must be created; (2) any data associated with the call (e.g.,
a pathname or a complete write bu�er) must be captured;
and (3) the information must be written to stable storage. To
reduce overhead, some tracing systems, such as DTrace [18],
ktrace [33], and SysDIG [14]—all of which we tested—drop
events under heavy load; this is clearly harmful to high �-
delity. Some tools can be con�gured to block the application
instead of losing events, which is also undesirable since it can
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a�ect the application’s timing. Re-Animator’s primary trac-
ing tool, RA-LTTng, is based on LTTng [26, 63], an e�cient
Linux tracing facility [25]. However, LTTng does not capture
bu�er contents, so we had to add that feature. RA-LTTng
uses a combination of blocking, asynchronous, and lockless
mechanisms to ensure we capture all events, including data
bu�ers, while keeping overhead low.

Scalable and veri�able. Tracing tools should always avoid
arbitrary limitations. It should be possible to trace large appli-
cations for long periods, so traces must be captured directly
to stable storage (as opposed to fast but small in-memory
bu�ers). In addition, it must be possible to verify that replay
has been done correctly. We use three veri�cation methods:
(1) when a system call is issued, we ensure that it received
the same return code (including error codes) as was captured;
(2) for calls that return information, such as stat and read,
we validate the returned data; and (3) after replay completes,
we separately compare the logical POSIX �le system state
with that produced by the original application.

Portability. Tools are only e�ective if they are usable in
the desired environment. To enhance portability, we chose
the DataSeries trace format [5] and developed a common
library that standardizes trace capture.

Ease of use and extensibility. User-interface design, �exi-
bility, and power are all critical to a tool’s e�ectiveness. Our
framework requires a kernel patch, but capture and replay
use simple command-line tools. It is easy to add support for
new system calls as necessary.

2.2 Fidelity
Re-Animator is based on LTTng [63], an extensible Linux
kernel tracing framework. LTTng inserts tracepoints [25] in
functions such as the system-call entry and exit handlers.
When a tracepoint is hit, information is captured into a bu�er
shared with a user-level daemon, which thenwrites it to a �le.
For parallelism, the shared bu�er is divided into sub-bu�ers,
one per traced process; the LTTng daemon uses user-space
RCUs [27] for lockless synchronization with the kernel. The
data is written in Linux’s Common Trace Format (CTF) [62],
which the babeltrace tool converts to human-readable text.

Figure 1 shows LTTng’s �ow for tracing and capturing
calls; green components denote our changes. For ease of use,
a wrapper (Figure 1, step 1) automates the tasks of starting
the LTTng components and the traced application.
Since the sub-bu�ers were designed for small records, it

is hard to capture large data bu�ers, such as when a single
I/O writes megabytes. Instead, we capture those directly to
a secondary �le (Figure 1, step 7) in a compact format that
contains a cross-reference to the CTF �le, the data, and its
length. An advantage of the separate �le is that it can be
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Figure 1: LTTng architecture using Linux kernel trace-
points. Green boxes denote our additions or changes.
Our wrapper (1) launches the LTTng con�gurator
(2), which invokes an LTTng session daemon (3) to
control the operation and the consumer daemon (4) to
collect events. LTTng tracepointsplace events into sub-
bu�ers (5) and invoke Re-Animator, which collects
data bu�ers and writes them to a separate disk �le (7).

placed on a di�erent, larger or faster storage device. For par-
allelism, when we capture one of the 38 system calls that
involve data, we copy the user bu�er, choose a �le o�set
under a spinlock, and then write the data asynchronously. In
the rest of this paper, we refer to this enhanced CTF format
with secondary bu�er-data �les as RA-CTF.

We modi�ed babeltrace to generate the DataSeries for-
mat [5], which can group events on a per-thread basis and
includes the captured data, simplifying replay.
To correctly capture system calls in multi-threaded and

multi-process applications, we modi�ed LTTng to follow
forked processes. (LTTng’s developers are working on a
more complete solution to the problem of process tracking.)

Memory-mapped�les. Many modern applications use mmap
to access for e�cient �le access. Unlike user-level system-
call tracers [7], RA-LTTng can capture and replay mmaped
operations. To do so, we integrated two new kernel trace-
points into LTTng’s framework. When an application reads
an mmaped �le for the �rst time, a page fault fetches its data.
RA-LTTng tracks every insertion into the page cache; if it
is to an mmaped �le, we add it to a map of inode numbers to
page lists and capture the page contents. We also capture
page cache insertions caused by readahead operations.
When an application writes to an mmaped �le, the cached

page is marked dirty, to be later �ushed. RA-LTTng monitors
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all cache write-backs for mmaped �les and writes a copy of
the page’s contents to the secondary trace �le; this is per-
formed asynchronously along with regular write and related
system calls as described in Section 2.3. We avoid duplicate
writes; for example, if a write causes a page cache write-back
operation, we record only the write event and its data.
RA-Replayer fully supports tracing the entire mmap API

by replaying reads and writes captured from mmaped �le ac-
cesses. We use pseudo-system-call records, mmap_pread and
mmap_pwrite, for these operations. RA-Replayer can replay
mmap_pread and mmap_pwrite “natively” by accessing related
pages and causing page faults accordingly, or it can emulate
the mmap system calls’ actions by calling pread and pwrite.
RA-Replayer manages the virtual memory layout for each
replayed process; it keeps track of replayed virtual memory
areas andwhere theymap to traced processes’ virtual address
spaces. RA-Replayer can also replay supporting functions
for mmap such as msync, madvise, and mprotect.

2.3 Low-Overhead and Accurate
One of the biggest drawbacks of tracing is that it slows the
application, changing execution patterns and timings. Server
applications can experience timeouts, dropped packets, and
even failed queries. Re-Animator minimizes overhead while
maintaining high �delity.
We detailed RA-LTTng’s mechanisms for capturing sys-

tem calls and their data into two separate �les in Section 2.2.
LTTng allocates a �xed amount of sub-bu�er memory; it
was designed to cap overheads even if events are dropped (it
counts and reports the number of drops). By default, LTTng
allocates 4MB for the sub-bu�ers. We veri�ed that by expand-
ing them to just 64MB—negligible in today’s computers—
none of our experiments lost a single event.
In addition, we implemented a pseudo-blocking mode in

RA-LTTng to ensure that it never loses events. When the sub-
bu�ers �ll, RA-LTTng throttles applications that produce
too much trace data. First, we try to switch contexts to the
user-level process that drains sub-bu�ers (lttng-consumerd)
using the Linux kernel’s yield_to API. However, yielding to
a speci�c task inside the kernel succeeds only if the target is
in the ����� or ������� queues. If we are unable to activate
the consumer daemon, we sleep for 1ms and then yield to the
scheduler. This gives the consumer time to be (re-)scheduled
and drain the sub-bu�ers. We detail the overhead of blocking
mode in Section 3.3.
We took a di�erent approach to capturing data bu�ers,

which are much larger than LTTng’s event records. When
RA-LTTng gets the bu�er’s content, it o�oads writing to a
Linux workqueue (currently con�gured to 32 entries). Linux
spawns up to one kernel thread per workqueue entry to write

the data to disk. This asynchrony allows the traced applica-
tion to continue in parallel. When tracing an application that
generates events at an unusually high rate, it is possible that
the OS will not be able to schedule the trace-writing kthreads
frequently enough to �ush those records. To avoid losing
any data, RA-LTTng con�gures the work queues to block
(throttle) the traced application until the queue drains, which
can slow the application but guarantees high �delity. The
overhead can be further reduced by increasing the maximum
size of the work queue (at the cost of more kernel memory
and CPU cycles).

In the future we plan to integrate LTTng’s capture mech-
anism with our data-bu�er workqueues while maintaining
the goal of capturing all events.

2.4 Veri�able
We have explained how Re-Animator captures bu�ers accu-
rately and e�ciently in Sections 2.2 and 2.3. Re-Animator
leverages LTTng’s architecture to collect as much data as
it can without adding signi�cant overhead. Capturing com-
plete bu�er data allows RA-Replayer to verify system calls
on the �y and generate the same logical disk state.
During replay, Re-Animator checks that return values

match those from the original run and that bu�ers con-
tain the same content. Here, “bu�ers” refers to any region
that contains execution-related data, including results from
calls like stat, getdents, ioctl, fcntl, etc. Since the trace �le
tracks all calls that pass data to the kernel and change the
logical POSIX �le system state, we can perform the same op-
erations with the same data to produce the same logical state
as the original execution. Furthermore, RA-Replayer veri�es
that each call produces the same results (including failures
and error codes). We have con�rmed that Re-Animator gen-
erates the same content as the traced application by running
several micro- and macro-benchmarks (see Section 3) and
comparing the directory trees after the replay run. Note that
bit-for-bit identity cannot be achieved, since a generated �le’s
timestamps will not be the same (absent a utimes call), and
the results of reading procfs �les like /proc/meminfo might
be di�erent. Thus, when we use the term “logical state” we
are referring to those parts of the state that can reasonably
be recreated in a POSIX environment, and RA-Replayer’s
veri�cation checks only those �elds. Both Re-Animator and
RA-Replayer are con�gurable. For example, if Re-Animator
is run with data-bu�er capture disabled, RA-Replayer al-
lows the user to replay writes using either random bytes or
repeated patterns. In that case, RA-Replayer automatically
adapts to the captured trace (e.g., it does not try to verify
bu�er contents that were never captured). RA-Replayer also
supports logging with multiple warning levels, and logs can
be redirected to a �le. Lastly, the aforementioned checks to
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verify bu�er contents and return values can be enabled (dis-
playing warnings or optionally aborting on any mismatch).

Our current work has focused primarily on accurate trace
capture, so RA-Replayer is only a prototype. Nevertheless,
we have ensured that its design will support future enhance-
ments to minimize overhead, reproduce inter-thread depen-
dencies, and maximize accuracy and �exibility. These fea-
tures remain as future work.

2.5 Portable
To allow our tools to be used as widely as possible, we cap-
ture and replay in DataSeries [5], a compact, �exible, and fast
format developed at HP Labs; a C++ library and associated
tools provide easy access. A DataSeries �le contains a num-
ber of extents, each with a schema de�ned in the �le header.
We developed an updated version of the SNIA schema for
system-call traces [83], which SNIA plans to adopt. Each
extent stores records of one system-call type. Unlike prior
tools, which often captured only the information of inter-
est to a particular researcher, we have chosen a maximalist
approach, recording as much data as possible. Doing so has
two advantages: (1) it enables fully accurate replay, and (2) it
ensures that a future researcher—even one doing work we
did not envision—will not be limited by a lack of information.
In particular, in addition to all system call parameters,

we record the precise time the call began and ended, the
PID, thread ID, parent PID, process group ID, and errno. By
default we also record the data bu�ers for reads and writes.

When replaying, we reproduce nearly all calls precisely—
even failed ones. The original success or failure status of a
call is veri�ed to ensure that the replay has been accurate,
and we compare the returned information (e.g., stat results
and data returned by read) to the original values.
However, there are certain practical exceptions to our

“replicate everything” philosophy: for example, if it were fol-
lowed slavishly, replaying network activity would require
that all remote computers be placed into a state identical to
how they were at the time of capture. Given the complexities
of the Internet and systems such as DNS, such precise re-
production is impossible. Instead, we simulate the network:
sockets are created but not connected, and I/O calls on socket
�le descriptors are simply discarded.

Source code size. Over a period of 3.5 years, wewrote nearly
20,000 lines of C/C++ code (LoC). We added 3,957 LoC for
the library that integrates the tracer with DataSeries, 8,422
for the replayer and another 1,005 for the record-sorter tool.
We added or modi�ed 2,124 LoC in LTTng’s kernel module,
1,696 LoC for the LTTng user-level tools, and �nally 2,565
LoC for the babeltrace2ds converter.

3 EVALUATION
Our Re-Animator evaluation goals were to measure the over-
head of tracing, demonstrate that accurate replay is possible,
and get a taste for other practical uses of the portable trace
�les we have collected (e.g., useful statistics).

Testbed. Our testbed includes four identical Dell R-710
servers, each with two Intel Xeon quad-core 2.4GHz CPUs
and con�gured to boot with a deliberately small 4GB of RAM.
Each server ran CentOS Linux v7.6.1810, but we installed
and ran our own 4.19.19 kernel with the RA-LTTng code
changes. Each server had three drives to minimize I/O in-
terference: (1) A Seagate ST9146852SS 148GB SAS as a boot
drive. (2) An Intel SSDSC2BA200G3 200GB SSD (“test drive”)
for the benchmark’s test data (e.g., where MySQL would
write its database). We used an SSD since they are becom-
ing popular on servers due to their superior random-access
performance. (3) A separate Seagate ST9500430SS 500GB
SAS HDD (“trace-capture drive”) for recording the captured
traces, also used for reading traces back during replay onto
the test drive. Our traces are written (appended) sequentially
in two di�erent �le streams (CTF and RA-CTF). But from
the disk’s perspective, we are generating random accesses
because a single HDD head has to seek constantly between
those two streams, to append to two di�erent �les. This seek-
ing is compounded by the fact that CTF records are small
and written frequently whereas RA-CTF records are compar-
atively large but produced less often. For that reason, we also
experimented with writing the trace �les to a faster device
(Samsung MZ1LV960HCJH-000MU 960GB M.2 NVMe).

Although all servers had the same hardware and software,
we veri�ed that when repeated, all experiments yielded re-
sults that did not deviate by more than 1–2% across servers.

3.1 Benchmarks
We ran a large number of micro- and macro-benchmarks.
Micro-benchmarks can highlight the worst-case behavior of
a system by focusing on speci�c operations. Macro-bench-
marks show the realistic, real-world performance of applica-
tions with mixed workloads. For brevity, we describe only a
subset of our tests in this paper, focusing on themost interest-
ing trends, including worst-case scenarios. All benchmarks
were run at least �ve times; standard deviations were less
than 5% of the mean unless otherwise reported. Each bench-
mark was repeated under two di�erent conditions: (1) an
unmodi�ed program (called “Vanilla”) without any tracing,
to serve as a baseline; and (2) the program traced using our
modi�ed LTTng, which directly records results in RA-CTF
format (“RA-LTTng”) (see Section 2.2).
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Micro-benchmarks. To capture traces, we �rst ran the FIO
micro-benchmark [31], which tests read and write perfor-
mance for both random and sequential patterns; each FIO
test ran with 1, 2, 4, and 8 threads. We con�gured FIO with
an 8GB dataset size to ensure it exceeded our server’s 4GB of
RAM and thus exercised su�cient I/Os. (We also ran several
micro-benchmarks using Filebench [4] but omit the results
since they did not di�er much from FIO’s.)

Macro-benchmarks. We ran two realistic macro-bench-
marks: (1) LevelDB [58], a key-value (KV) store with its
own dbbench exerciser. We ran 8 di�erent pre-con�gured
I/O-intensive phases: �llseq, �llsync, �llrandom, overwrite,
readrandom1, readrandom2, readseq, and readreverse. We
selected DB sizes of 1GB, 2GB, 4GB, and 8GB by asking
dbbench to generate 10, 20, 40, and 80 million KV pairs, re-
spectively; and for each size we ran LevelDB with 1, 2, 4, and
8 threads. Finally, although LevelDB uses mmap by default, we
also con�gured it to use regular read and write calls, which
exposed di�erent behavior that we captured and analyzed.
(2) MySQL [70] with an 8GB database size. We con�gured
sysbench [86] to run 4 threads that issued MySQL queries
for a �xed one-hour period.

Format conversion. Recall that RA-LTTng stores traces
using our enhanced RA-CTF format (Linux’s CTF for sys-
tem calls, slightly enhanced, plus separate binary �les to
store system-call bu�ers); therefore we wrote babeltrace2ds,
which converts RA-CTF traces to DataSeries format before
replaying the latter. Babeltrace2ds can consume a lot of I/O
and CPU cycles, but the conversion is done only once and can
be performed o�ine without a�ecting an application’s be-
havior. In one large experiment, babeltrace2ds took 13 hours
to convert a 255GB RA-CTF �le (from a LevelDB experiment)
to a 214GB DataSeries �le; the latter is smaller because the
DataSeries format is more compact than RA-CTF’s. The con-
version was done on a VM con�gured with 128GB RAM.
At its peak, babeltrace2ds’s resident memory size exceeded
60GB. These �gures justify our choice to perform this con-
version o�ine, rather than attempting to integrate the large
and complex DataSeries library, all written in C++, into the
C-based Linux kernel. Optimizing babeltrace2ds—currently
single-threaded—was not a goal of this project.
Because RA-Replayer is a prototype, we omit results for

it here, as they would not be indicative of the performance
of a production version.

3.2 FIOMicro-Benchmark
We report the time (in minutes) to run FIOwith 1 or 8 threads.
(The results with 2 and 4 threads were between the reported
values, but we do not have enough data to establish a curve
based on the number of threads.) We report elapsed, user,

and system times separately. The results include the time for
�ushing all dirty data and persisting trace records.
Figures 2 and 3 show FIO’s read and write times, respec-

tively. Several trends in this data were the same for sequen-
tial reads and both random and sequential writes. These
trends (some of which are unsurprising) are: (1) Compared
to Vanilla, all tracing takes longer. (2) Running FIO with
8 threads instead of one reduced overall times thanks to
better I/O and CPU interleaving. Our servers have 8 cores
each, and their SSDs are inherently parallel devices that
can process multiple I/Os concurrently [19, 28, 50]. We fo-
cus on the single-threaded results below. (3) RA-LTTng is
low-overhead thanks to its e�cient, in-kernel, asynchro-
nous tracing and logging. Compared to Vanilla, RA-LTTng’s
elapsed times are only 8–33% slower. This is because RA-
LTTng performs most of its actions in the kernel, and we use
asynchronous threads to permit interleaved I/O and CPU
activities. (4) The FIO random-read test is the most challeng-
ing; unlike writes, which can be processed asynchronously,
uncached reads are synchronous. Sequential reads are easier
to handle than random ones thanks to read-ahead, which
is why even the Vanilla elapsed time for random reads (Fig-
ure 2(a)) was about 10⇥ longer than the other three FIO runs.
This made all elapsed times in Figures 2(a) and 2(b) longer
than their counterparts in other �gures. Because the system
was more frequently blocked on I/Os in FIO’s random-read
benchmark, the overheads imposed by tracing, relative to
Vanilla, were lower: only 1.1⇥.

3.3 LevelDBMacro-Benchmark
We ran LevelDB on a 1GB database, using 4 threads and the
default sequence of phases described in Section 3.1. The Lev-
elDB benchmarks took 36 minutes without tracing and 78
minutes with RA-LTTng tracing enabled (2.2⇥ longer). Note
that the 1GB DB is smaller than our 4GB system memory;
this is actually a worst-case benchmark compared to larger
DB sizes because more system calls can execute without
blocking on slow I/Os, while Re-Animator still needs to per-
sistently record every system call, including its bu�ers, to a
dedicated trace-capture drive. Thus, the relative overhead of
Re-Animator is higher in this case. Nevertheless, RA-LTTng
had an overhead of only 2.2⇥, thanks to its asynchronous
in-kernel tracing infrastructure.
Figure 4 shows LevelDB’s random-read performance (in

ms/operation) for di�erent-sized databases. We chose to re-
port detailed results for LevelDB because the random-read
phase showed the most interesting patterns and also exer-
cised both the I/O subsystem and the OS intensely.

As expected, latency grew with the DB size. Once the DB
size reached 8GB—double the 4GB RAM of our test servers—
signi�cant swapping and paging activity took place; even
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Figure 2: FIO randomand sequential read times inminutes (elapsed, user, and system). Vanilla denotes FIOwithout
tracing; RA-LTTng denotes FIO with full tracing enabled. Note that the Y-axis scales di�er between the random
and sequential pairs of �gures.
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Figure 3: FIO random and sequential write times in minutes (elapsed, user, and system). Vanilla denotes FIO
without tracing; RA-LTTng denotes FIO with full tracing enabled. Note that the Y-axis scales di�er between the
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Figure 4: LevelDB read-random latency for di�erent-
sized databases (inmilliseconds per operation).

for vanilla instances, the latency for 8GB was more than 10⇥
larger than for the 4GB DB.

Relative to Vanilla, when the DB �t in memory (1GB), RA-
LTTng was 3.5⇥ slower; when the DB was large enough to
cause more I/O activity (8GB), this overhead dropped to only
9% slower, thanks to RA-LTTng’s scalability.

RA-LTTng showed a latency jump going from the 2GB
to the 4GB DB—an increase not seen in the vanilla bench-
mark (db_bench). The reason is that the 4GB DB mostly �ts
in memory under Vanilla, and hence incurs few paging I/Os,
especially because db_bench generates its data on the �y (in
memory). Tracing, however, requires additional I/Os to write
the trace itself: therefore, db_bench and these I/Os compete
with the benchmark itself for page-cache space (and shared
I/O buses).

We captured a small trace of LevelDB running on a 250MB
database, using one thread, with the default sequence of
phases described in Section 3.1; the elapsed time was 81 sec-
onds. The DataSeries �le for this experiment was 25GB. We
veri�ed the logical POSIX �le system state after replaying
this trace; it was identical to the original LevelDB run.

We also captured a LevelDB workload with 80M KV pairs,
running on a server with 24GB RAM (instead of 4GB). We
found that runtime did not change substantially, because
LevelDB was surprisingly CPU-bound: 30–32% of the cycles
were to compress and decompress its own data, and 25–26%
were to memcpy bu�ers before decompression and then look
up keys.
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Figure 5:RA-LTTngblocking-modeoverheads for trac-
ing LevelDB db_bench with its default database con-
�guration. We used 3 di�erent RA-LTTng sub-bu�er
sizes (4MB, 2MB, and 1MB); we show user, system, and
elapsed times for each experiment. The table below
also shows the elapsed time overheads relative to the
4MB baseline and the number of yield calls executed.

LevelDB using mmap vs. read/write. LevelDB uses mmap by
default, but it can also use regular read and write system
calls. To brie�y demonstrate RA-LTTng’s utility in investi-
gating application behavior, we traced LevelDB using both
modes.We ran LevelDB benchmarks with a 10MKV database
con�guration. In mmap mode, RA-LTTng captured around
100,000 4KB-sized page-read operations; in read/writemode,
we captured nearly 9.8 million operations, mostly small pread
requests, around 2.2–2.3KB in size (LevelDB writes small
KV pairs). Many of these preads read the same page-cached
data repeatedly. As anticipated, we also observed that the
captured DataSeries �le in read/write mode was 56⇥ larger
than in mmap mode. These �gures demonstrate RA-LTTng’s
usefulness: a LevelDB application developer may want to
investigate running it with mmap (seeing only unique reads
and writes) or without (seeing all repeated, cached reads,
with their original sizes)—and then optimize the program.

Replaying LevelDB on di�erent �le systems. We also ran a
short experiment to test RA-Replayer’s utility for evaluating
other �le systems. We captured a trace of LevelDB with 5M
KV pairs running on Ext4 and replayed it on di�erent �le
systems. On XFS the system time for this workload was 18%
lower, whereas on Btrfs the system time was 31% higher.
Btrfs supports data compression options; when replaying
with the base (LZO) compression, no space was saved on
disk, because LevelDB by default already compresses its data,
but Btrfs’s compress-force=zlib option was able to save 17%
further space—but the system time was 10% higher than
without compression.

RA-LTTng blockingmode. Section 2.3 explained how we in-
tegrated blocking mode into RA-LTTng. We now show how
much overhead blocking mode can introduce with di�erent
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Figure 6: Results of HDD vs. NVMe devices used to
record traces, along three dimensions: (i) capturing
traces onHDD vs. NVMe (yellow vs. blue bars); (ii) cap-
turing with data bu�ers vs. only system-call metadata
(hatched pattern vs. clear); and (iii) capturing LevelDB
using mmap vs. read/write (separated by vertical dotted
line).

sizes of sub-bu�ers, as seen in Figure 5. We traced db_bench
with its default con�guration (100MB database size). We
found out that without any blocking functionality, the min-
imum amount of sub-bu�er memory we needed to ensure
that RA-LTTng will not lose any events is 4MB. Considering
the 4MB sub-bu�er con�guration as a baseline, we calculated
overheads based on the elapsed time for tracing under the de-
fault event-dropping mode and our enhanced blocking mode
(which does not lose any events). If we put memory pres-
sure on RA-LTTng in blocking mode, RA-LTTng throttles
the application, and we then see higher system and elapsed
times. The additional system time is explained by correla-
tion with the number of yields that RA-LTTng performed.
Note that the reason there were (just) 53 yields in the 4MB
con�guration is that RA-LTTng starts throttling just before
the sub-bu�ers get 100% full. The threshold for the throttling
system is also con�gurable (we used 80%).

Tracing LevelDB on NVMe vs. HDD.. Initially our experi-
ments used a large, inexpensive, SAS HDD to store traces.
But, as we found the HDD to be too slow for large-scale
tracing, we wanted to show how much performance can be
improved by using a faster tracing device such as an NVMe
SSD (Figure 6). Although Re-Animator was designed for high
�delity and thus to capture full data bu�ers, for many users it
is enough to capture just system-call meta-data events (and
perhaps small bu�ers). To explore these options, we also
compared cases where we captured data bu�ers, captured
only system-call metadata, and captured with and without
mmap support. We con�gured db_bench for a 1GB database
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and ran ten di�erent experiments. We repeated each experi-
ment �ve times and ensured that the standard deviation was
below 5% of the mean. Figure 6 shows that tracing with data
bu�ers added anywhere from 20% overhead (best case of
mmap enabled & NVMe) to 126% overhead (worst case of mmap
disabled & HDD) The higher overheads were because when
LevelDB is con�gured to not use mmap, it issues a (p)read or
f(p) write for each access and therefore invokes a large num-
ber of system calls. That causes Re-Animator to add 22–79%
more overhead compared to the mmap-enabled versions of the
same con�gurations. If a user wants to reduce overheads and
does not need to capture data bu�er contents, Re-Animator
o�ers trace capturing with only 5–17% overhead. We ob-
served that switching the trace-capture device from HDD to
NVMe reduced the tracing overhead by 14-30% when data-
bu�er capturing was enabled. However, if we only captured
system-call metadata (no data bu�ers), there was a negligi-
ble overhead di�erence between using HDD and NVMe as
trace-capture device; that is because the HDD is fast enough
when the amount of data written to it sequentially is smaller.

During these experiments, we also discovered an example
of interactions between tracing performance and the behav-
ior of the traced program. The LevelDB benchmark uses a
foreground thread to exercise the database; a background
thread compacts data and pushes it down the LSM tree. The
foreground thread monitors the progress of compaction and
uses two heuristics if compaction falls behind: (1) when a
threshold of uncompacted data is reached, the foreground
thread sleeps for 1ms to let the background thread run, and
(2) if a higher threshold is reached, the foreground thread
blocks until compaction has made signi�cant progress. In ad-
dition, these compactions might create an avalanche of multi-
level compactions [53]. By their nature, these two threads
issue di�erent numbers of system calls, which in turn means
they are delayed by di�erent amounts when we trace them.
In the benchmark, the compaction thread issued more calls.
When we ran the test with mmap disabled, we observed dif-
ferent behavior depending on the device used to store traces.
Storing traces on the HDD slowed the compaction thread
signi�cantly more, and hence the 1ms sleep happened more
frequently. In contrast, storing traces to the faster NVMe
device had less impact, so that the compaction did not fall so
far behind. However, while this case did complete faster than
when tracing to the HDD, we also observed around 20million
more pread calls when storing traces on the NVMe. Interest-
ingly, when we increased LevelDB’s in-memory bu�ers from
the default 4MB to 100MB, the behavioral di�erence between
recording traces on HDD and NVMe disappeared. While we
are still investigating the exact reasons for these e�ects, we
believe they are due to the number of compactions: with less
memory, LevelDB has to perform compaction more often,
which moves more data across its layers. Kannan et al. [53]

38.58

21.16

2.41 1.32
0

20

40

Vanilla RA-LTTng

Co
un

t (
M

ill
io

ns
) Total Queries

Transactions

Figure 7: Counts (Millions) of MySQL queries and
transactions completed within a one-hour period.

have also reported that increasing the in-memory bu�er sizes
can reduce compaction frequency. We believe that LevelDB
should not be hard-coding its bu�er sizes but rather should
adapt them to the workload (or at least permit users to con-
�gure that amount at run time). Nevertheless, this somewhat
counter-intuitive �nding highlights the usefulness of tracing
applications to understand their behavior.

3.4 MySQLMacro-Benchmark
Figure 7 shows the counts of total queries and transactions
completed within one hour by sysbench issuing requests to
MySQL. One or more queries were sent as a single transac-
tion; hence the number of transactions is lower than the
total number of queries. In one hour, Vanilla completed
38.5M queries. On the same test, RA-LTTng completed 21.2M
queries (about 55% of Vanilla) in one hour.

3.5 Trace Statistics
DataSeries comes with a tool called dsstatgroupby, which
can calculate useful statistics from trace �les. As an exam-
ple of its utility, we highlight a few helpful metrics that
we extracted in our experiments. For example, the LevelDB
experiment executed a total of 6,378,938 system calls (23
unique calls). 99.87% of those were to write and pread. The
distribution of bu�er sizes passed to write ranged from 20B
to 64KB, with many odd and sub-optimal sizes just above
4KB. We noted that over 3M write calls used a speci�c—and
ine�cient—size of 138B. We hypothesize that the odd-sized
writes are related to atomic transactions in this KV store,
suggesting that there may be signi�cant room for improving
LevelDB’s performance with an alternate data structure.

Similarly, the MySQL experiment executed 8,763,035 sys-
tem calls (37 unique) in total. Four dominating calls—pwrite,
pread, fsync, and write—accounted for 99.95% of the opera-
tions. Most preads were exactly 16KB in size and thus highly
e�cient. There were 2.5M fsyncs (e.g., to �ush transaction
logs). We further explored the latency quantiles of fsync:
about 20% of all calls took less than 1ms, but 0.01% (about
250) took over 100ms to complete, exhibiting tail latencies
also observed by other researchers [24, 41, 47, 60].
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4 RELATEDWORK
System calls can be traced by using ptrace, by interposing
shared libraries, or with in-kernel methods.

Ptrace. Because ptrace [37] has been part of the Unix API
for decades, it is an easy way to track process behavior.
strace [95], released for SunOS in 1991, was one of the ear-
liest tools to build upon ptrace; a Linux implementation
soon followed, and most other Unix variants o�er similar
programs such as truss [30] and tusc [11]. On Microsoft
Windows, StraceNT [34] o�ers a similar facility.

All of these approaches share a similar drawback: because
the trace is collected by a separate process that uses sys-
tem calls to access information in the target application, the
overhead is unusually high (as much as an order of magni-
tude).1 In most cases, the CPU cost of collecting information
overwhelms the I/O cost of writing trace records. In theory,
the cost could be reduced by modifying the ptrace interface,
e.g., by arranging to have system-call parameters collected
and reported in a single ptrace operation. To our knowledge,
however, there have been no e�orts along these lines.
Many modern applications use mmap to more e�ciently

read and write �les, but ptrace-based systems cannot cap-
ture mmaped events (e.g., page faults and dirty-page �ushes).
In-kernel tracers (e.g., TraceFS [7]) can do so. RA-LTTng also
captures and replays mmaped events with a minimal Linux
kernel modi�cation; see Section 2.2.

Shared-library interposition. A faster alternative to ptrace
that still requires no kernel changes is to interpose a shared
library that replaces all system calls with a trace-collecting
version [23, 64]. Since the shared library runs in the same
process context as the application, data can be capturedmuch
more e�ciently. However, there are also a few drawbacks:
(1) the technique does not capture early-in-process activity
(such as loading the shared libraries themselves; (2) interpo-
sition can be di�cult in chrooted environments where the
special library might not be available; (3) trace collection in
a multi-threaded process might require additional synchro-
nization; and (4) interposing other libraries as well can be
challenging.

In-kernel techniques. The lowest-overhead approach to
capturing program activity is to do so directly in the kernel,
where all system calls are interceptable and all parameters
are directly available. Several BSD variants, including Mac
OS X, o�er ktrace [33], which uses kernel hooks to capture
system-call information. Solaris supports DTrace [18] and
Windows o�ers Event Tracing for Windows (ETW) [67]. All

1We initially considered using strace for this project, but our evaluations
showed that its overhead was at least 5–15⇥ and often exceeded two orders
of magnitude. We therefore did not consider strace a viable alternative
for our purposes, as the overhead was too high to be considered practical.

of these approaches capture into an in-kernel bu�er that is
later emptied by a separate thread or process. Since kernel
memory is precious, all of these tools limit the memory they
use to store traced events, and drop events if not enough
memory is available. We have veri�ed this event-drop phe-
nomenon experimentally for both DTrace and ktrace. ETW
further limits any single captured event to 64KB.
The Linux Kprobes facility [22] has been used to collect

read andwrite operations [84], but the approachwas complex
and incomplete. A more thorough implementation is Flex-
Trace [93], which allows users to make �ne-grained choices
about what to trace; FlexTrace also o�ers a blocking option
so that no events are lost. However, it does not capture data
bu�ers, and the �ne-grained tracing can be a disadvantage if
the traces are later used for a di�erent purpose, since desired
data might not have been captured.
Linux’s LTTng allows the user to allocate ample kernel

bu�ers to record system calls, limited only by the system’s
RAM capacity. However, as we noted in Section 2.3, vanilla
LTTng does not capture data bu�ers. RA-LTTng captures
those bu�ers directly to a separate �le for later post-process-
ing (and blocks the application if the bu�ers are not �ushed
fast enough, ensuring high �delity).

Finally, unlike strace and RA-LTTng, which have custom
code to capture every ioctl type, neither ktrace nor DTrace
can capture bu�ers unless their length is easily known
(e.g., the 3rd argument to read), and thus neither captures
ioctl bu�ers at all. Moreover, ktrace �ushes its records
synchronously: in one experiment we conducted (FIO 8GB
random read using one thread), ktrace imposed higher
overheads than RA-LTTng, consuming at least 70% more
system time and at least 50% more elapsed time.

Replayer �delity. To the best of our knowledge, no system-
call replayer exists that can replay the bu�ers’ data (e.g., to
write). ROOT [94], which is based on strace, concentrates
on solving the problem of correctly ordering multi-threaded
traces. It does not capture or replay actual system-call bu�ers.
//TRACE [66] also concentrates on parallel replay but does
not reproduce the data passed from read and to write. We
attempted to compare ROOT and //TRACE to RA-Replayer
but were unable to get them to run, even with the help of
their original authors.

RA-Replayer has options to verify that each replayed sys-
tem call returned the same status (or error if traced as such),
and to verify each bu�er (e.g., after a read). If any deviation
is detected, we can log a warning and either continue or
abort the replay. We are not aware of any other system-call
replayer with such run-time veri�cation capabilities.

Thus, RA-Replayer faithfully reproduces the logical POSIX
�le system state: �le names and namespaces, �le contents,
and most inode metadata (e.g., inode type, size, permissions,
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and UID and GID if replayed by a superuser). Because re-
playing happens after the original capture, one limitation
we have is that we do not reproduce inode access, change,
and modi�cation times accurately—but the relative ordering
of these timestamps is preserved.

Like hfplayer [38, 39], we use heuristics to determine how
to replay events across multiple threads: any calls whose
start-to-end times did not overlap are replayed in that order.
We have also investigated other types of recording and

replaying frameworks, such as Mozilla RR [69]. Mozilla RR
is designed for deterministic recording and debugging; it
replays a traced execution alongside an actual binary: for any
system call in the binary, Mozilla RR emulates it from the
traced data and skips executing the actual call. RA-LTTng
is di�erent because (1) we do not require having a binary to
replay, and (2) we actually want to re-execute the original
system calls so as to reproduce OS and �le system behavior
as faithfully as possible.

Scalability. All system-call tracers can capture long-run-
ning programs, but using a binary trace format (e.g., as all
in-kernel tracers do) allows such tools to reduce I/O bottle-
necks and the chance of running out of storage space.
ROOT [94] parses traces from several formats and then

produces a C program that, when compiled and run, will
replay the original system calls. We believe this compiler-
based approach is limited: whereas RA-Replayer can replay
massive traces (we replayed traces that were hundreds of GB
in size), compiling and running such huge programs may be
challenging if not impossible on most systems.

Portable trace format. DTrace [18], ktrace [33], and
ETW [67] use their own binary trace formats. Strace does
not have a binary format; its human-readable output is
hard to parse to reproduce the original binary system-call
data [35, 44, 94]. (In fact, one of the reasons we could not
get ROOT to run, despite seeking assistance from its au-
thors, is that the text output format of strace has changed
in a fashion that is almost imperceptible to humans but in-
compatible with ROOT’s current code.) Only LTTng uses
a binary format, CTF [62], that is intended for long-term
use. However, CTF is relatively new and it remains to be
seen whether it will be widely adopted; in addition, because
it is a purely sequential format, it is di�cult to use with a
multi-threaded replayer. Non-portable, non-standard, and
poorly documented formats have hampered researchers in-
terested in system call analysis and replay (including us)
for decades. Thus, we chose DataSeries [5], a portable, well
documented, open-source, SNIA-supported standard trace
format. DataSeries comes with many useful tools to repack
and compress trace �les, extract statistics from them, and
convert them to other formats (e.g., such as plain text and
CSV). The SNIA Trace Repository [82] o�ers approximately

4TB of traces in this format. We left LTTng’s CTF format in
place so as not to require massive code changes or complex
integration of C++ into the kernel; instead, we wrote a stan-
dalone tool that converts CTF �les to DataSeries ones o�ine.

Low-overheadnetworked storage tracing. Another approach
to tracing storage systems is network monitoring [12, 52].
However, it is limited only to network �le-systems and is
limited to capturing information transmitted between nodes:
system calls intercepted by client-side caches do not produce
network activity and hence are not caught. Re-Animator,
however, o�ers richer traces, such as capturing mmap-related
reads and writes. Conversely, collecting traces by passive
network monitoring can have low overheads.

5 CONCLUSIONS AND FUTUREWORK
Tracing and trace replay are essential tools for understand-
ing systems and analyzing their performance. We have built
Re-Animator, which captures system-call traces in a portable
format and replays them accurately. Our capture method,
based on LTTng, requires small kernel modi�cations but has
and average overhead of only 1.8–2.3⇥ compared to an un-
traced application; the lowest overhead was just 5%. Unlike
previous systems, we capture all information, including data
bu�ers for system calls such as read and write, needed to
reproduce the original application exactly.
Our replayer is designed for precise �delity. Since it has

access to the original data, it correctly reproduces behavior
even on systems that employ data-dependent techniques
such as compression and deduplication. The replayer veri�es
its actions as it performs them, ensuring that the �nal logical
POSIX �le system state matches the original. We have traced
and replayed a number of popular applications and servers,
comparing outputs to ensure that they are correct.

Future work. The work described in this paper concen-
trated on building a powerful tool, and we have provided
a few examples of RA-LTTng’s research usefulness. Re-
Animator can be applied to research such as application
performance analysis, cyber-security, and machine learning,
among others, and we now plan to use it to collect and
analyze long-term application traces. We also plan to
integrate Linux workqueues to RA-LTTng for capturing CTF
records and unifying the trace capturing system.
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