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Abstract
Each file on an NFS server is uniquely identified by

a persistent file handle that is used whenever a client
performs any NFS operation. NFS file handles reveal
significant amounts of information about the server. If
attackers can sniff the file handle, then they may be able
to obtain useful information. For example, the encod-
ing used by a file handle indicates which operating sys-
tem the server is running. The fields of the file handle
contain information such as the date that the file sys-
tem was created—often the same time that the OS was
installed. Since an NFS file handle contains relatively
little random data, it is not difficult to guess. If attackers
can guess a file handle, then they can bypass the normal
mounting procedures. This allows an attacker to access
data without appropriate accounting and logging.

We have analyzed file handles on three common
server operating systems: Linux, FreeBSD, and Solaris.
Each one of them suffers from deficiencies when con-
structing file handles. We have modified the NFS server
on Linux to use only randomly-generated file handles
over the network. This makes it more difficult for an
attacker to guess a file handle, or from utilizing informa-
tion contained within a file handle. To persistently store
file handles we use an in-kernel port of Berkeley DB.
Our performance evaluation shows an acceptable over-
head.

1 Introduction
NFS servers uniquely identify each file using a file han-
dle. When an NFS client performs an operation, it passes
the file handle to the server, which decodes the file han-
dle to determine what object the file handle refers to.
Since NFS is a stateless protocol, a client can present a
file handle to the server at any point in the future. These
file handles must be persistent, so they are typically in
an easy-to-decode format. For example, a typical file
handle contains a file system ID, a device number, an in-
ode number, and a few other house-keeping fields. This
leads to two problems. First, if attackers have access to
NFS file handles, then they can learn information about
the NFS server. Second, because there is little entropy

within the file handle, an attacker can simply guess a file
handle using brute force. For example, a typical Linux
file handle takes about four days to guess on a 1Gbps
network. Once attackers guess a file handle, they can
bypass the normal mount procedures by communicating
directly with the NFS daemon rather than initiating dia-
log with the mount daemon.

This work was done using NFSv3 in anticipation of
applying the lessons to NFSv4, which is currently ex-
perimental and will not be widely used for some time.
NFSv4 was designed to work over WANs, where pack-
ets may traverse many undfriendly networks and attack-
ers could sniff packets without having local access to the
server’s network. In this case, the attacker cannot exe-
cute an attack that would require a login, but may be able
to find another avenue of attack using information found
in the file handles. In addition, although other attacks are
possible, we are tackling some of them. We believe that
any hole one can close is an improvement to security,
however incremental. It should be noted that newer NFS
servers are generally patched so that clients are authenti-
cated with every RPC. Because of this, file handle guess-
ing may have to be combined with IP spoofing for well-
configured servers. Most servers though, have wildcards
in their export lists (such as *.example.com) and so
this is not as big of a problem.

We have analyzed the file handles on three common
operating systems: Linux, FreeBSD, and Solaris. Each
one of them suffers from deficiencies in the construction
of the NFS file handles that may be exploited by an at-
tacker.

When attackers have access to a file handle, they can
glean useful information from it. In this scenario, the at-
tacker has access to one or more file handles, most likely
obtained by sniffing the network. Although it is the case
that an attacker in this position can read files that are
transmitted across the network, this information aids the
attacker in gaining full access to all files. The operating
system that the NFS server is running on is identifyable
by the format of the file handle alone, which already nar-
rows down the avenues of attack.

Fields within the file handle also contain information.
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Some file handles include a file system identifier that is
derived from the time that the file system was created.
If the file system was created during the OS installation,
the attacker can infer which patches are likely to have
been installed because many system administrators in-
stall patches only when first installing the OS.

Of course nmap [6] can be used to guess some of this
information, but it depends on some services to be avail-
able for probing. A conscientious system administrator
would restrict this access, but the information is readily
available in NFS file handles.

If attackers do not want an NFS mount request to
go through the mount daemon, mountd, then they can
guess a valid NFS file handle. This is done by crafting
an RPC for a GETATTR operation, sending it directly to
the NFS daemon, and using a positive reply to verify the
guess. Because NFS file handles have been constructed
with ease of decoding in mind, they contain little random
data. For example, to guess the root file handle on Linux
2.4, only the device major and minor numbers need to
be guessed. If the device is on a SCSI or IDE disk, then
there are only six likely major numbers, and 256 minor
numbers for each major number. An attacker can easily
crack this file handle using brute force.

We have modified the Linux 2.4.22 NFSv3 server to
use randomly-generated file handles over the wire. The
changes were made at the entry and exit points of the
procedures, leaving the NFS server internals unchanged.
In addition, our enhancement requires no change to the
protocol or client code. By using a random file han-
dle, we prevent an attacker from utilizing information
in the file handle and make it significantly more difficult
for an attacker to guess. Because file handles need to
be persistent, we store the mapping from our randomly-
generated file handles to internal file handles using an
in-kernel port of Berkeley DB. Berkeley DB allows us to
efficiently store and retrieve keys and values in this map-
ping. We have evaluated the performance of our system,
and have shown it to have a reasonable overhead under
normal user access patterns.

The rest of this paper is organized as follows. Section
2 describes the current state of NFS security. Section 3
analyzes the security of NFS file handles on three oper-
ating systems. Section 4 describes our design for an im-
proved NFS server. Section 5 evaluates the performance
of our system. We conclude in Section 6.

2 Background
Although security features of the NFS protocol have im-
proved with each subsequent version, many flaws still
remain. We give an overview of NFS in Section 2.1.
We describe the security of NFSv2 and NFSv3 in Sec-
tion 2.2 and the security of NFSv4 in Section 2.3. In
Section 2.4, we present examples of statefulness in NFS

and NFS-like servers in order to show how this quality
provides improved security and performance.

2.1 NFS Overview
The Network File System (NFS) [10] was developed by
Sun Mircrosystems around 1984. It is a client/server
model which implement a protocol that transparently
provides clients remote access to shared files which re-
side on a server. Using NFS, the client can use the files
as if they were on a locally mounted file system. Files
are identified using file handles, which contain all the
necessary information for the server to identify a file.
The file handle is not interpreted by the client. An ex-
port point is a directory which is the root of a subtree
that is to be exported. The server is configured with a
list of which clients can access a given export point. The
server then exports the directories, making them avail-
able to clients. A client that wishes to mount one of
these directories first contacts the mount daemon on the
server (mountd), and if it is authorized, receives a root
file handle. This file handle can now be presented to
the NFS daemon (nfsd) to access objects in the export
point. From here, the client can perform LOOKUPs to
obtain file handles for other exported objects.

2.2 NFSv2 and NFSv3
NFSv2 implemented minimal security, using only
a client-supplied UID and GID for authentication
(AUTH UNIX) and only supporting UDP [16]. Since the
authentication information is supplied by the client, it is
easy to spoof. NFSv2 used host-based authentication for
mounting, by checking the client’s IP address against the
export list.

When transitioning from NFSv2 to NFSv3 there were
several security enhancements. Perhaps the most im-
portant addition to NFSv3 security was support for Ker-
beros (AUTH KERB) [2]. Although this greatly improved
security, it has not yet been implemented in the Linux
and FreeBSD sources that we studied (versions 2.4.22
and 5.2, respectively). Additionally, since these op-
erating systems did not implement DES authentication
(AUTH DES), the only method to authenticate users is
AUTH UNIX.

Another notable improvement in NFSv3 was support
for TCP. This allows the server to use a more reliable
connection, as well as set up a trusted route using a fire-
wall or VPN. It is also more difficult for an attacker to
inject packets when using TCP.

NFSv3 began supporting 64-byte file handles primar-
ily to make it more difficult for an attacker to guess a file
handle [19]. However, all of the operating systems that
we studied did not use more than 32 bytes, and in some
cases file handles were effectively as short as 12 bytes.

A major weakness of NFSv3 is that it does not pro-

2



vide strong authentication. The strongest authentica-
tion method that is widely implemented is AUTH UNIX,
which could be easily spoofed. Additionally, NFSv3
only uses host-based access control to provide authen-
tication. Even though most servers now authenticate the
client’s IP address for every RPC, they are still suscep-
tible to exploitation using guessed file handles. This can
be accomplished by using IP spoofing or if the attacker is
on the export list (usually because a wildcard was used).

NFSv3 only uses AUTH UNIX or AUTH NONE (no au-
thentication) to authenticate a user while mounting. An
attacker can exploit this weakness in two ways: by ac-
cessing some file or file system characteristics, and by
intercepting a mount request and having the server use a
weaker authentication method than the client requested
[3].

2.3 NFSv4
The most notable security enhancement in NFSv4 is the
RPCSEC GSS security mechanism [4]. It works at the
RPC level, so it can support both UDP and TCP, and can
be implemented for older versions of NFS. NFSv4 spec-
ifies mandatory support for RPCSEC GSS, which pro-
vides authentication, integrity, and privacy. It can pro-
vide support for private and public keys, data encryp-
tion, and strong authentication. It can support several
security mechanisms, including Kerberos 5. In NFSv4,
principal-based authentication is used rather than host-
based. In host-based authentication, the client’s IP ad-
dress is used for authentication, whereas in principal-
based authentication, a single user securely authenticates
to the NFS server [13].

RPCSEC GSS with server-side principal-based authen-
tication provides a secure infrastructure that, if used
properly, could make it difficult to gain unauthorized ac-
cess using guessed file handles. NFSv4 champions this
cause by making it mandatory for implementations to
support a security model that uses end-to-end authenti-
cation, where an end-user on a client mutually authenti-
cates to a principal on the NFS server. However, NFSv4
does have a provision for not using secure authentica-
tion. So for example, if an administrator turns off se-
cure authentication in NFSv4 for reasons of speed, an
attacker may be able to gain unauthorized access using a
guessed file handle just as it would be done in previous
NFS versions.

Rather than having several different daemons as in
previous versions, the NFSv4 server is a single unified
entity. Therefore, clients authenticate directly to the
server instead of authenticating to a separate daemon at
mount time. This improves security because now one
daemon takes care of all operations. This also has the
added benefit of being able to use one well-known port,
so that setting up a firewall, a VPN, or a NAT is easier.

NFSv4 also supports volatile as well as persistent file
handles. Volatile file handles can be set to expire at a
certain time, for example, during file system migration
or during file system renaming. This is useful for man-
aging the server, as well as increasing security. If file
handles only last for a certain amount of time, they are
only valuable for a small window of time. This has the
drawback of increased overhead due to expired file han-
dles, which must be renewed.

The two problems addressed in this paper, file handle
guessability and information leakage, do not appear to
be solved in NFSv4. Although not all implementations
are complete, the published material about the new pro-
tocol does not address either issue.

The NFSv4 protocol specification, as in the previ-
ous NFS versions, does not specify how the file handle
should be constructed. The only requirement is that file
handles should uniquely identify server objects, and that
it is the server’s responsibility to maintain this relation-
ship. Since the specification does not directly provide
for file handle security, NFSv4 file handles may not be
more secure than before. In fact, the experimental imple-
mentation of NFSv4 in the Linux 2.6.0 kernel contains
the same information as in NFSv3.

2.4 A Stateful Server
Using a database to map normal file handles to random
file handles adds some state to NFS, but it does not
break the protocol. The drawbacks from this added state
are minimal, since the database handles crash recovery.
Moreover, this is not the first time that state has been
added to NFS.

Developers strived to make NFSv2 and NFSv3 state-
less in order to provide better recoverability in case the
server went down; once the server came back up, it
did not have to reconstruct the state it was in before
it crashed. In particular, clients could resume using a
failed server that came back up without incurring fail-
ures. Although this was a good design goal, the state-
lessness that was present led to added complexity and
problems with the code. The technique used by NFS to
remove state was to create new stateful protocols so that
the actual NFS daemon did not have state. One exam-
ple of moving the state to a new protocol is file locking.
File locking requires the NFS server to maintain state in-
formation about locks. To solve this problem, Sun added
another RPC protocol and daemon (LOCKD) for lock op-
erations. In case the server that was running this dae-
mon went down, Sun added yet another RPC protocol
to handle the recovery of locking information (STATD).
This added complexity causes several problems. For ex-
ample, if the client system goes down, the server is not
notified about the lock being released until the client re-
mounts the server again (there is no timeout) [8]. Even
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after all of this protocol rearrangement, the NFS daemon
still has state. It keeps an RPC reply cache in memory to
handle non-idempotent operations: if a client sends a du-
plicate request, the operation would not be repeated and
the previous server reply is resent. Even so, if the server
crashed after completing an operation and before send-
ing a reply to the client, the operation is repeated when
the server is brought back up, and an error is returned for
the duplicate operation.

The Andrew File System (AFS) [7], developed by
Carnegie Mellon University and IBM decided to imple-
ment a stateful server in order to improve performance,
a quality that NFS was lacking at the time.

Not Quite NFS (NQNFS) attempted to improve NFS
performance at the expense of statelessness. Since the
statelessness in NFS requires RPCs to be entirely syn-
chronous, the client experiences much delay while wait-
ing for RPC replies. The problem was addressed by
adding some state and changing the protocol to imple-
ment client-side caching [9].

NFSv4 dropped the notion of statelessness, and all re-
lated protocols were merged into a single NFSv4 proto-
col. This simplified the interaction between clients and
servers by using a single port to contact the server, im-
proved security since clients interact with one entity, and
improved performance by allowing client-side caching
and compound operations (the client could now send
more than one operation in a single RPC).

3 File Handle Security Analysis
NFS file handles contain system information that may be
viewable by an attacker. The threat model assumes that
the attacker has access to file handles, usually by sniff-
ing the network. Most servers do not encrypt file handles
(mainly because not all implementations of NFSv2 and
NFSv3 support it), and so the system information con-
tained in the handles is in plain view. It is also assumed
that the server is not using strong authentication. This is
reasonable, since weak authentication (AUTh UNIX) is
predominant.

File handles are not very difficult to guess. Since log
files generally only record mount operations, if attack-
ers bypass the mount daemon with a guessed file handle,
then their actions are likely to go unnoticed. The threat
model for this scenario assumes that the attacker can au-
thenticate to the server, but does not have access to file
handles. Authentication can be achieved if the attacker
is on the export list (it is not uncommon for system ad-
ministrators to use wildcards in their export lists), or can
appear to be on the export list using IP spoofing.

In this section we will explore the file handle’s con-
tents for the servers of three major operating systems.
The purpose of this is twofold. First, by inspecting the
kernel source code and network traffic, we analyzed the

type of information that is leaked in a file handle. Sec-
ond, we estimated how much effort would be required to
guess a file handle. The Linux file handle is discussed in
Section 3.1, the FreeBSD file handle in Section 3.2, and
the Solaris file handle in Section 3.3. In Section 3.4 we
discuss the time estimates for guessing the file handles.

3.1 The Linux File Handle
Linux uses the same file handle format for NFSv2 and
NFSv3, though it had an older file handle format that
was used in NFSv2 and became obsolete in Linux 2.4.0.
The current file handle is outlined in Table 1. In prac-
tice, the amount of data in the NFSv2 and NFSv3 file
handle varies from six fields occupying 12 bytes to nine
fields occupying 24 bytes. In NFSv2, 32-byte file han-
dles are required, so the file handle is padded with zeros.
NFSv3 allows variable length file handles so no padding
is required. Since Ext2 and Ext3 are the most commonly
used file systems in Linux, we concentrate on them when
describing file system dependent fields. The following is
an explanation of fields found in the Linux file handle:

fb version is the file handle format’s version num-
ber, which is always 1.

fb auth type is the authentication method, which is
currently 0, but may take on other values in the fu-
ture.

fb fsid type is the method for encoding the fsid of
the export point. This field is currently 0, but may
take on other values in the future.

fb fileid type is the method for encoding the file
information. This byte determines how bytes 13–
24 are set. If this field is set to 0, then this is the
root file handle, and bytes 13–24 are left empty.
The fh fileid type field is set to 1 if the NFS
server is accessing files or directories, or perform-
ing a lookup on a directory. In this case, bytes
13–20 are set, but bytes 21–24 are left empty. If
a lookup is performed on a file, then this field is set
to 2, and bytes 13–24 are set. This field does not
take on any other values. The root file handle is the
easiest to guess since it contains less information
than non-root file handles.

xdev consists of the major number of the exported de-
vice in its first two bytes, and the minor number
in its second two bytes. These are generally small,
easy to guess numbers. Additionally, this field re-
veals the type of drive that the export point is on,
along with some idea of how many other drives of
the same type are on the system (based on the minor
number).

xino is the inode number of the export point. The
root of a file system is usually exported so the in-
ode number of the export point is generally a small
number (almost always 2).
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Length Bytes Field Name Meaning Typical Values
1 1 fb version NFS version Always 1
1 2 fb auth type Authentication method Always 0
1 3 fb fsid type File system ID encoding method Always 0
1 4 fb fileid type File ID encoding method Always either 0, 1, or 2
4 5–8 xdev Major/Minor number of exported

device
Major number 3 (IDE), 8 (SCSI)

4 9–12 xino Export inode number Almost always 2
4 13–16 ino Inode number 2 for /, 19 for /home/foo
4 17–20 gen no Generation number 0xFF16DDF1, 0x3F6AE3C0
4 21–24 par ino no Parent’s inode number 2 for /, 19 for /home
8 25–32 Padding for NFSv2 Always 0

32 33–64 Unused by Linux

Table 1: Summary of contents for the NFSv2 and NFSv3 Linux file handle.

ino is the inode number of the file or directory. Ext2
divides the file system into block groups, and allo-
cates inode numbers by assigning the first unused
inode number in the file’s block group. Therefore
the inode numbers will generally increase sequen-
tially from the starting points of the block groups.
Ext3 uses a similar algorithm.

gen no is the generation number of the file or direc-
tory. In Ext2, there is a variable called event that
is initialized to 0 at boot time and is incremented
by one in many places such that the value is hard
to predict. For example, the value is increased ev-
ery few seconds, when the mouse is moved, and
in various inode operations. In Ext3, the genera-
tion number variable is set to a random number at
mount time and is incremented each time an inode
is allocated.

par ino no is the inode number of the parent direc-
tory.

Assuming that the inode number of the export point
is 2, then the only field that needs to be guessed for a
root file handle is xdev. Common device major num-
bers can be looked up in the Linux kernel source in
Documentation/devices.txt and minor num-
bers are generally small, so this field can be guessed rel-
atively easily. The root file handle is what an attacker
is likely to try to guess, so the added entropy in bytes
13–24 will not deter an attacker.

3.2 The FreeBSD File Handle

The FreeBSD file handle outlined in Table 2 is used both
for NFSv2 and for NFSv3. NFSv2 expects 32-byte file
handles, and since the file handle only utilizes 20 bytes,
it is padded with zeros. NFSv3 does not require this
padding because it allows variable length file handles.
Since UFS is the most commonly used file system in
FreeBSD, we concentrate on it when describing file sys-
tem dependent fields. The following is an explanation of

the fields found in the FreeBSD file handle:

fsid contains the file system ID. In UFS, the first four
bytes are the Unix time when the file system was
created, and the next four bytes are obtained from
the arc4random function. This is the FreeBSD
implementation of the RC4 algorithm that contains
fixes to some problems in the original algorithm
[5]. The fsid is hidden from non-root users in the
statfs system call, but is present in clear text in
file handles. The first four bytes do not have to be
guessed by brute force alone, since the Unix time
when the file system ID was set is a fairly small
window, probably within the past few years. Addi-
tionally, having access to this information can give
an attacker some clues about the exact operating
system that the server is running. The file handle
format will give away that the server is running
FreeBSD, and the Unix time will give some esti-
mate about which version it is. Since it is com-
mon for system administrators to update security
patches when setting up a system, it would be wise
for an attacker to probe for weaknesses discovered
only after this time. This is especially true since not
all administrators patch their systems regularly.

fid len is the length of the rest of the structure. This
is always 12.

fid reserved is padding for word alignment and is
always 0.

ufid ino is the inode number. UFS inode numbers
are allotted in a monotonically increasing fashion,
so files created early will have small inode num-
bers. These are often directories such as / and di-
rectories in the /home directory, which may be of
particular interest to an attacker.

ufid gen is the generation number of the file.
UFS generation numbers are created using the
arc4random function. If this inode was already
assigned an inode number, then it is just incre-
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Length Bytes Field Name Meaning Typical Values
8 1–8 fsid File system ID 0x3F607F14 1C47F86E
2 9–10 fid len Length of the rest of the structure Always 12
2 11–12 fid reserved Word alignment Always 0
4 13–16 ufid ino Inode Number 3, 47
4 17–20 ufid gen Inode Generation Number 0x0C8F960C, 0x9CFF85C7

12 21–32 Padding for NFSv2 Always 0
32 33–64 Unused by FreeBSD

Table 2: Summary of contents for the NFSv2 and NFSv3 FreeBSD file handle.

mented by one.

Guessing a FreeBSD file handle is more difficult than
Linux since eight bytes are random (four bytes of the
fsid field and the ufid gen field). Additionally,
FreeBSD uses a reliable random function as opposed
to the method of obtaining generation numbers in Ext2
found on Linux.

3.3 The Solaris File Handle

The Solaris file handle outlined in Table 3 is used in both
NFSv2 and NFSv3. Since UFS is the most commonly
used file systems in Solaris, we concentrate on it when
describing file system dependent fields. The following
is an explanation of the fields found in the Solaris file
handle:

fh fsid[0-3] is the file system ID. This is the de-
vice major number and minor number, compressed
to fit into 4 bytes.

fh fsid[4-7] is the file system type, which is al-
ways 2 for UFS.

fh len is the size of the fh data field, which is al-
ways 10.

fh data[0-1] is padding for word alignment, which
is always 0.

fh data[2-5] is the inode number of the file. This
is identical to the ufid ino field in the FreeBSD
inode. UFS allocates inode numbers in a mono-
tonically increasing fashion; therefore, files created
early, which may be of interest to an attacker, will
have small inode numbers. This greatly reduces the
search space for inode numbers.

fh data[6-9] is the generation number. UFS gener-
ation numbers are created using the fsirand [14]
function.

fh xlen is the size of the fh xdata field, which is
always 10.

fh xdata[0-1] is padding for word alignment
which is always 0.

fh xdata[2-5] The inode number of the export
point. For root file handles, the information con-
tained in this field is identical to the information in
fh data[2-5].

fh xdata[6-9] The generation number of the ex-

port point. In root file handles, the information con-
tained in this field is identical to the information in
fh data[6-9].

In addition to the generation numbers being leaked,
the attacker can identify the file system and device being
exported from fh fsid. As is the case for Linux, the
root file handle in Solaris is the easiest to guess. This is
because fh xdata is not used.

3.4 Time Estimates
After analyzing the contents of each operating system’s
file handle, we estimated the time required to guess each
one. For this test, we used two dual 900MHz Itanium
computers with 8GB of RAM with two dedicated con-
nections: 1Gbps and 100Mbps. One machine acted as
the NFS server, and the other as the rogue host that was
guessing the file handle. Table 4 shows the time required
to guess a Linux file handle. For a frame of reference,
the speeds for ping flooding are provided. Ping flooding
sends packets as fast as they come back, or 100 pack-
ets/sec, whichever is greater. It should be noted that the
network of a real-world server is a shared medium and
therefore the times described will be vary depending on
other traffic.

1Gbps 100Mbps
Guess attempts/sec 13,119 6,996
Guess Mbps sent 17.0 8.8
Guess Mbps received 7.8 3.9
Ping Mbps sent 23.0 20.0
Ping Mbps received 23.0 14.0

Table 4: Speeds for file handle guessing compared to speeds
for ping flooding.

The file handles for the three operating systems
are roughly equivalent in size, so we can use the at-
tempts/sec metric as an estimate for all three. Since
the 1Gbps connection was roughly twice as fast as the
100Mbps, we will only discuss time estimates for the
1Gbps connection, and the 100Mbps can be obtained by
doubling it.

The Linux root file handle, where only the major and
minor numbers have to be guessed, can be guessed in
under one second. The non-root file handle has an in-
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Length Bytes Field Name Meaning Typical Values
4 1–4 fh fsid[0-3] Derived from device major/minor num-

bers.
0x01980000

4 5–8 fh fsid[4-7] File system type 2 for UFS
2 9–10 fh len size of fh data Always 10
2 11–12 fh data[0-1] Make the inode number word aligned Always 0
4 13–16 fh data[2-5] Inode number 4 for /, 37 for /home/foo
4 17–20 fh data[6-9] Generation number 0x72D2970C, 0x2482AAF4
2 21–22 fh xlen size of fh xdata Always 10
2 23–24 fh xdata[0-1] Make the inode number word aligned Always 0
4 25–28 fh xdata[2-5] Inode number of the export point 4 for /
4 29–32 fh xdata[6-9] Generation number of the export point 0x72D2970C

32 33–64 Unused by Solaris

Table 3: Summary of contents for the NFSv2 and NFSv3 Solaris file handle.

ode number which is generally small, a four byte gen-
eration number which must be obtained by brute force,
and sometimes the parent inode number which is also
generally small. This time required to guess four ran-
dom bytes is about 3.5 days. To obtain the amount of
time required to guess a file handle, this time must be
multiplied by a constant to account for a small number
of guesses to guess the device numbers and inode num-
ber (these can also be obtained with non-privileged com-
mands like ls and mount if the attacker has an account on
the server). Additionally, we don’t need to guess a spe-
cific file handle, since once we have one we can obtain
the rest through lookups. Therefore we should divide the
time by the number of objects present on the file system.

The FreeBSD file handle is more difficult to guess be-
cause it contains eight random bytes: four bytes for the
generation number, and four bytes in the fsid. It also
contains the Unix time when the file system was created,
which can be estimated, and an inode number which is
generally low. This makes the FreeBSD file handle the
most secure of the three file systems, since guessing the
eight random bytes will take many years.

The Solaris root file handle contains only four ran-
dom bytes for the generation number. The fsid and in-
ode number can be easily guessed. Guessing this file
handle would take about a week on the 1Gbps network
and two weeks on the 100Mbps network. This is about
as secure as the non-root file handle on Linux. Guessing
the non-root file handle is more difficult, since now there
are eight random bytes, making it as time-consuming as
guessing the FreeBSD file handle.

Attempting to guess a file handle at full speed will
probably flood the network, which will likely attract the
attention of a system administrator. However, since the
average file system lasts for years, the attacker can use a
small fraction of the bandwidth for a longer amount of
time and have a good chance of not being noticed. For
example, if an attacker uses 10% of the bandwidth, the

required time for a non-root Linux file handle will be 35
days, which is still very acceptable. Even if 1% is used,
it will still be guessed in under a year. The information
on the server is likely to persist for longer than this time.

4 Design
We had the following four goals while designing our sys-
tem:

File Handle Security Our primary design goal was to
prevent information from leaking through the NFS
file handle and making the file handles more dif-
ficult to guess. To achieve this goal we use
only random file handles on the wire. This was
accomplished by obtaining random bytes from
/dev/urandom [17]. This is a character spe-
cial file in Linux which gathers environmental noise
from sources such as device drivers to make a
strong pseudo-random number generator.

Compatibility Since updating code on all clients is not
practical, the implementation should only modify
the NFS server and not change the NFS protocol or
client code. The file handles should be persistent
and the same design should work on all versions of
NFS.

Performance and Efficiency If system administrators
are to be expected to secure their systems with
this server enhancement, it needs to run with min-
imal overhead and not consume too much mem-
ory. In our design, we addressed these issues by us-
ing only kernel-level code and an efficient in-kernel
database.

Simplicity We kept our design simple so it would not
introduce new security flaws or adverse side ef-
fects in the kernel. Most importantly, we strived
to change the NFS daemon module code as little as
possible.

In Section 4.1 we discuss how we used databases to
carry out these goals; in Section 4.2 we describe the
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changes made to the NFS daemon code; and in Section
4.3 we describe the database that was ported.

4.1 Database Schema
In order to realize the central goal of improving file han-
dle security, we chose to create a mapping between nor-
mal NFS file handles and file handles consisting entirely
of random bytes. Since this mapping must be persis-
tent, we used a Linux kernel port of Berkeley DB (BDB)
[12]. This database was previously ported by our re-
search group when we saw that it could be useful in vari-
ous parts of the kernel. Some uses include implementing
extended attributes or ACLs in the VFS to enhance file
systems that do not natively support them, per-page virus
scanning states, per-file cipher keys and checksums, and
implementing the /proc file system using the database
so that it is persistent and easy to use.

The server must be able to translate one file handle
type to the other. On the entry point to a function, the
NFS server converts the random file handle that it re-
ceives to a normal NFS file handle. There are also cases
where the server needs to convert a normal file handle to
a random file handle. This is done most often to check
for existing mappings. One of the drawbacks of BDB
is that it does not adequately support bidirectional map-
pings, so we decided to use two databases, one to map
random file handles to normal ones (regular.db),
and one for the reverse mapping (random.db). To in-
crease efficiency, we used hash tables as the indexing
method. Additionally, since all systems studied have
constant parts (see file handle tables in Section 3), it
would have been possible to store only the file informa-
tion in the databases and rebuild the file handles before
use. We chose not to do this because it would add more
complexity to the code and would have to be changed
for different servers.

A system administrator can change and query the
number of random bytes used for the random file han-
dles through the /proc file system. Using more ran-
dom bytes is beneficial because there are fewer conflicts
in the databases and the random file handles are more
difficult to guess. There are three drawbacks to using
larger file handles: there is more overhead since more
data has to be transmitted between the client and server,
random byte generation takes more time, and more ker-
nel memory is consumed.

4.2 NFS Server Changes
Next, we discuss the necessary changes we made to the
NFS server code for the various types of procedures.

Exporting If the databases do not already exist, they
are created on a separate drive when the server exports a
mount point. The databases should be on a separate, un-
exported drive to ensure that they are not accessible from

the outside. The databases are now ready to be queried
and updated.

Mounting random.db is queried to check if this
mount point is already mapped to a random file han-
dle. This would occur if this directory was previously
mounted. In this case, the random file handle associated
with the mount point is returned to the user. If this is the
first time that a client is mounting this directory, a new
random file handle is generated, the regular and random
file handles are stored in both databases, and the random
one is sent back to the client.

General NFS Operations The input to all operations
is a file handle to operate on, but most do not return a file
handle to the user. These procedures are GETATTR, SE-
TATTR, ACCESS, READLINK, READ, WRITE, REMOVE,
RMDIR, RENAME, LINK, READDIR, FSSTAT, FSINFO,
PATHCONF, and COMMIT. In these cases, the random
file handle that the server receives is translated to a reg-
ular file handle, and execution proceeds normally.

Create Operations The CREATE, MKDIR, SYMLINK,
and MKNOD operations receive a file handle of the direc-
tory where the new file is being created and the name of
the new file, and send a new file handle back to the client.
The execution of these operations is shown in Figure 1.
These procedures begin their execution in the same man-
ner as the general operations described above. However,
after the NFS procedure executes, a new file handle must
be sent back. We first check if this file handle is already
in random.db. If it is, we send back its corresponding
random file handle. Otherwise we create a new random
file handle, store both file handles in the databases, and
return the random file handle. We also ensure that the
random file handle chosen has not already been used.

Unlink Operations The REMOVE and RMDIR opera-
tions receive a file handle as a parameter, but do not re-
turn one back to the client. For these operations, the
database entries are removed if the object is removed
(i.e., the reference count reaches zero).

LOOKUP The LOOKUP operation usually behaves like
a general NFS operation, but if the file being looked up
has not been seen before (for example, on a legacy file
system), the file handles are stored in the databases as in
the create operations.

READDIRPLUS The READDIRPLUS operation re-
ceives a file handle for a directory, and returns a list of
entries in the directory along with their attributes. The
incoming file handle is first translated to a normal file
handle as in the general NFS operations. The file handle
for each file in the directory is converted to a random file
handle before it is returned to the client.
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Figure 1: A create operation

4.3 Berkeley DB
Having the database reside in the kernel improves both
speed and security. Berkeley DB (BDB) is a widely-
used and reliable product. It provides the ability to effi-
ciently and persistently store key-value pairs using hash
tables, B+-trees, queues, and logical record number in-
dexing. BDB is a stable, fully featured, and widely-
used embedded database with support for transactions
and replication. BDB can store data both on disk and in
memory. An in-memory database is useful because ker-
nel code can take advantage of a complex and efficient
data structure that supports concurrent access. If an on-
disk database is used, then a backing store is provided
to the application with only small development costs
thanks to the high-level BDB API. BDB also fully sup-
ports concurrency and recoverability. Since BDB takes
care of concurrency, there was no need to be concerned
with cases such as mountd and nfsd accessing the
databases simultaneously. Also, since BDB handles re-
coverability, the client will not incur additional stale file
handles in the event of a server crash.

4.4 Porting Berkeley DB
We decided to port the Berkeley DB (BDB) package into
the Linux kernel because there is a definite need to effi-
ciently store data inside the Linux kernel without having
to reimplement complex data structures. As mentioned
previously, our research group ported the database after
finding many uses for it in the kernel.

Figure 2 shows the components of the BDB source
that were identified and ported to the kernel to build a
fully-functional in-kernel database that has support for
BDB’s core functionality. In the first prototype, repli-
cation, RPC, cryptography, and other useful but non-
essential features were not included. The components
have been grouped by their functionality. The arrows
indicate the components’ calling conventions.

lock/mutex/

fileops/ mp/

log/ os/

Data Storage

Locking

Buffer Pool

btree/

db/

Access Methods

hash/qam/

Transactions

txn/

API

env/

Figure 2: In-Kernel Berkeley DB Architecture

The application accesses the database methods using
the APIs provided by the db/ and env/ directories.
The APIs use one of the two access methods we have
ported which are in the btree/ and hash/ directo-
ries. These directories provide algorithms to efficiently
store and retrieve data.

The transaction component provided by the txn/ di-
rectory allows a set of operations to be applied atom-
ically. There is complete support for roll-back in all
transactions. Critical sections that require atomic oper-
ations need to make use of the lock component in the
lock/ directory.

During initialization, Berkeley DB allocates a large
buffer pool for storing in-kernel memory images of the
database. All transactions and queries access the mem-
ory provided by the fileops/ and mp/ directories of
the buffer pool component.

The in-kernel memory image is copied onto a phys-
ical storage device periodically using the data storage
methods in the os/ directory. All components record
database operations in log files using the methods in the
log/ directory. The data storage component is respon-
sible for translating database operations like put into
file system operations like write.

The file sync method commits the data to the back-
ing store.

5 Evaluation
We developed a prototype for the NFSv3 server en-
hancement on Linux 2.4.24. We added 513 lines of code
to the in-kernel NFS daemon (4 lines to export.c,
49 lines to nfs3proc.c, 3 lines to nfs3xdr.c, 64
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lines to nfsctl.c, and 393 lines in our own files). We
tested the enhancement using 4, 32, and 64-byte random
file handles to represent the full range of possibilities.
We compare these results with those obtained from the
vanilla NFS server.

Our NFS client machine was a 1.7 GHz Pentium 4
with 1 GB of RAM running Red Hat 9 with a vanilla
2.4.24 kernel. The server machine was a 500MHz Pen-
tium 3 with 128MB of RAM running Red Hat 9 with a
vanilla 2.4.24 kernel (using the KBDB module and our
modified nfsd module). We chose to use the faster ma-
chine as the client to ensure that the machine issuing the
RPCs would not be the bottleneck. The mount point on
the server was on an 18.3GB 15,000 RPM Maxtor At-
las SCSI disk formatted with Ext2. To isolate perfor-
mance characteristics, the databases were written to a
different identical disk. The two machines were directly
connected using a dedicated gigabit Ethernet link.

We ran all tests at least 10 times and computed 95%
confidence intervals for the means using the student-t
distribution. In each case, the half-width of the interval
was less than 5% of the mean.

In Section 5.1 we describe the configurations we
tested; in Section 5.2 we describe the SPEC SFS bench-
mark; and in Section 5.3 we describe the Am-Utils
benchmark.

5.1 Configurations
We used the following seven configurations to evaluate
our NFS server enhancement:

VAN A vanilla NFS server running on the 2.4.24 ker-
nel. It serves as a baseline for performance of other
configurations.

ENH-4 Our enhanced NFS server using 4 byte random
file handles. This is the smallest file handle that can
be used.

ENH-32 Our enhanced NFS server using 32 byte ran-
dom file handles. This is a commonly used file han-
dle size and also the median size file handle that can
be used.

ENH-64 Our enhanced NFS server using 64 byte ran-
dom file handles. This is the largest file handle size
that the NFSv3 protocol allows.

ENH-NODB Our enhanced NFS server which generates
32-byte random numbers, but does not store them
in the database or use them. This demonstrates the
overhead of generating random numbers without
using the database.

ENH-NORAND Our enhanced NFS server that does not
generate random numbers. The database mapping
is the identity function, and all database operations
are still performed. This demonstrates the overhead
of using the database without generating random
numbers.

ENH-NORDP Similar to ENH-NORAND except that
it does not perform database operations for the
READDIRPLUS RPC. This was tested because
READDIRPLUS is an expensive and seldom used
operation.

5.2 SPEC SFS

One of the tests we used to evaluate the performance of
our enhancements to the NFS server was the SPEC SFS
3.0 benchmark [11, 15], which is the official benchmark
for measuring NFS server throughput and response time.
SFS’s predecessors invoked system calls and therefore
results were inaccurate because they were dependent on
the client’s implementation. SFS 1.0 addressed this issue
by crafting its own RPCs. Given a requested load, SFS
generates an increasing load of operations and measures
the response time until the server is saturated. This is the
maximum sustained load that the server can handle un-
der this requested load. As the requested load increases,
response time diminishes.

SFS 1.0 had four major deficiencies:

• It used the LADDIS [18] workload which con-
tained a mix of operations obtained from an inac-
curate study.

• All files created were 136KB, which is unrepresen-
tative for modern workloads.

• It was only able to measure the throughput of the
server, not latency.

• It still had some dependencies on the NFS client
and was not entirely portable.

SFS 2.0 fixed these shortcomings and added support
for NFSv3 and TCP. SPEC SFS 3.0 updated some im-
portant algorithms such as time measurement, workload
regulation, and file operations.

We ran SPEC SFS 3.0 with various requested loads
(multiples of 50) generated by one process. It tested
NFSv3 over UDP. All other parameters were left at the
default settings. Results for sustained loads are shown
in Figures 3 and 4. Note that in these two figures, both
the X and Y axes do not begin at zero.

During this discussion, overheads will be given for
peak loads, and the overhead for a requested load of 700
(where different configurations diverged the most) will
be given in square brackets. When benchmarking VAN,
the server was able to satisfy requested loads of up to 500
ops/sec. When the requested load was increased to 600
ops/sec, the actual performance began to degrade. ENH-
4, ENH-32, and ENH-64 were able to satisfy requested
loads of up to 450 ops/sec. The overheads for the three
file handle sizes were 11.1% [23.3%], 11.3% [29.5%],
and 13.3% [31.7%], respectively. The small decline in
performance between different size file handles is due to
added network I/O, increased time for looking up larger
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Figure 3: SFS-3.0 operations per second. Comparison be-
tween vanilla NFS server (VAN) and enhanced server using 4,
32, and 64-byte random file handles (ENH-4, ENH-32, ENH-
64).
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Figure 4: SFS-3.0 operations per second. Comparison be-
tween vanilla NFS server (VAN), the enhanced server without
the database (ENH-NODB), the enhanced server without the
READDIRPLUS operation (ENH-NORDP) the enhanced server
without the random byte generation (ENH-NORAND), and the
enhanced server using 32-byte file handles (ENH-32).

keys in the database, and increased time in obtaining ran-
dom numbers.

To target the cause of the performance degradation
for the enhanced server, we isolated two costly aspects:
database operations (ENH-NORAND) and random num-
ber generation (ENH-NODB). ENH-NODB performed
similarly to VAN with only a 1.2% [4.2%] overhead,
whereas ENH-NORAND was close to ENH-4 with a 9.8%
[27.0%] overhead. It is clear that the database is the
main reason for the performance degradation of the en-
hanced server. This is because each NFS RPC requires
at least one database operation, which is costly.

Table 5 shows the breakdown for NFS operations in
the SFS 3.0 benchmarks for NFSv3. It should be noted
that READDIRPLUS accounts for 9% of the operations.
This is a particularly expensive operation for our server

enhancement, because it requires a database operation
for every file in the directory. To determine how much
this operation affected the results of the enhanced server,
we tested the ENH-NORDP configuration. It satisfied re-
quested loads up to 450 ops/sec, and had an overhead of
9.8% [17.9%] load. The ENH-NORDP configuration is
11.1% slower than ENH-NORAND at a requested load of
700 ops/sec (they have the same peak).

There are still problems with SFS, which we came
across when using the benchmark. The first issue is that
the clients bombard the server with RPCs, which is fine
for measuring peak sustained throughput, but does not
simulate a normal workload. It should therefore be used
together with another benchmark that includes CPU ac-
tivity and is not so I/O intensive, as we did with Am-
Utils (Section 5.3). The second issue is that since the
workload was obtained from Sun Microsystems’ net-
work, the operations mix is only truly characteristic of
Solaris clients and servers in 1997 when SFS was stan-
dardized. After observing the network traffic for the
three operating systems discussed in this paper, we have
determined that Linux and FreeBSD do not use READ-
DIRPLUS. This implies that our enhancement would ac-
tually perform close to ENH-NORDP on these systems in
practice. Instead of issuing this RPC, Linux and Free-
BSD clients do a LOOKUP and GETATTRs for each ob-
ject in the directory. Since SPEC SFS already has differ-
ent source code for each operating system, it should not
be difficult to use a different mix of operations for each
client while keeping the results comparable (for exam-
ple, Linux clients should use READDIR and GETATTRs,
while Solaris will use READDIRPLUS).

NFS Operation SFS 3.0 NFSv3
LOOKUP 27%
READ 18%
WRITE 9%
GETATTR 11%
READLINK 7%
READDIR 2%
CREATE 1%
REMOVE 1%
FSSTAT 1%
SETATTR 1%
READDIRPLUS 9%
ACCESS 7%
COMMIT 5%

Table 5: Percentage of NFS operations for the SFS 3.0 Bench-
mark using NFSv3.

5.3 Am-Utils

We also tested our NFS server enhancements using
builds of Am-Utils version 6.1b3. This version of Am-
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Utils contains 430 files and more than 60,000 lines of C
code. The build process begins by running several hun-
dred small configuration tests to detect system features.
It then builds a shared library, ten binaries, four scripts,
and documentation: a total of 152 new files and 19 new
directories.

Though the Am-Utils compile is CPU intensive, it
contains a fair mix of file system operations. We used
the Tracefs aggregate driver to measure the operation
mix [1]. For this benchmark, 25% of the operations
are writes, 22% are lseek operations, 20.5% are reads,
10% are open operations, 10% are close operations,
and the remaining operations are a mix of other opera-
tions such as readdir and lookup. Am-Utils pro-
vides a more balanced mix of CPU and I/O operations
compared to SPEC SFS 3.0, which exercises I/O quite
heavily. Although the mix of NFS operations for the SFS
workload is based on actual use, it does not take CPU-
driven operations into account. This workload demon-
strates the performance impact a user sees when using
our NFS server enhancement under a normal workload.

VAN ENH-32
Elapsed time 151.9s 156.0s
System time 37.7s 37.6s
Wait time 39.2s 49.9s

Table 6: Am-Utils results. Comparison between vanilla NFS
server (VAN) and enhanced server with 32-byte random file
handles (ENH-32).

We tested the performance of ENH-32 against VAN

since 32 bytes is the most common file handle size. Ta-
ble 6 shows the results. ENH-32 only had a 2.7% over-
head for elapsed time and a 27.3% overhead for wait
time. The system times were statistically indistinguish-
able. The wait time is primarily I/O with some time
spent by the scheduler. In this case, I/O consists of
client-side disk I/O (for binaries like the compiler), net-
work I/O, and server response time (time spent by the
client waiting for an RPC reply). The overhead for wait
time is the cause of the elapsed time overhead. The
elapsed time overhead is lower because of I/O and CPU
interleaving, which is characteristic of actual usage.

In summary, we evaluated our NFS server enhance-
ment using both SPEC SFS and Am-Utils. We showed
that the security enhancement has an acceptable over-
head over the vanilla NFS server.

6 Conclusions

Our work has two contributions. First, we have created
a simple and effective solution to prevent information
leakage in NFS file handles and make it considerably
more difficult for attackers to guess file handles. We
have also laid the groundwork for future improvements,

not only to NFSv2 and NFSv3, but also to NFSv4. The
enhancement also runs with acceptable overhead, mak-
ing it practical.

Second, Berkeley DB is the first port of such an effi-
cient and robust database to the Linux kernel. Not only
was this useful for improving NFS security, but it can
now also be used for other applications.

6.1 Future Work

In the future we plan on improving the performance by
using encryption instead of the databases. In this case,
only the encrypted file handles would be present on the
wire.

This work will also extend to NFSv4. As mentioned
earlier, this project was done with the goal of applying
the lessons to NFSv4. Since the NFSv4 file handles in
the Linux 2.6.0 kernel contain the same information as
those for NFSv3, we can easily use the same technique
to secure the new file handles. We will also use NFSv4’s
volatile file handles to implement short-lived file handles
so that the window in which an attacker can use a stolen
or guessed file handle is as small as possible. It will
also be possible to assign a different file handle to every
client, so that stronger authentication and more versatile
access controls can be implemented.
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