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Abstract

More applications nowadays use network and cloud storage; and modern network file system proto-
cols support compounding operations—packing more operations in one request (e.g., NFSv4, SMB). This
is known to improve overall throughput and latency by reducing the number of network round trips. It has
been reported that by utilizing compounds, NFSv4 performance, especially in high-latency networks, can
be improved by orders of magnitude. Alas, with more operations packed into a single message, partial fail-
ures become more likely—some server-side operations succeed while others fail to execute. This places a
greater challenge on client-side applications to recover from such failures. To solve this and simplify appli-
cation development, we designed and built TC-NFS, an NFSv4-based network file system with transactional
compound execution. We evaluated TC-NFS with different workloads, compounding degrees, and network
latencies. Compared to an already existing NFSv4 system that fully utilizes compounds, our end-to-end
transactional support adds as little as ∼1.1% overhead but as much as ∼25× overhead for some intense
micro- and macro-workloads.



Chapter 1

Introduction and Motivation

Over the past several decades, the bandwidth of CPU, memory, storage, and networks have all increased
more than a thousand-fold [33]. Taking full advantage of existing high-bandwidth hardware is particularly
important as Moore’s Law is slowing [45]. For networked storage systems, compounding, which packs many
I/O operations into one message, is an effective mechanism to reduce network latency. Both NFS [35] and
SMB [6] have supported compounds for more than a decade. A recent study [4] showed that I/O-heavy
applications can run orders of magnitude faster with a compound-friendly vectorized file-system API.

In that study, Chen et al. [4] proposed vNFS, which is an NFS client that offers vectorized file-system
APIs to batch multiple file-system operations into one NFSv4 compound procedure [36, 37]. It improved
performance considerably by amortizing RPC latency among the larger number of operations in a single
compound. vNFS improves performance by an order of magnitude, but it indirectly increases the burden on
application developers. When applications issue large compounds consisting of multiple file operations, they
are faced with a complex error handling problem—if the compound fails mid-way, the applications have to
deal with the fact that some operations have already changed the persistent file system state. The complexity
of handling failures inhibit full utilization of NFSv4’s compounds.

Figure 1.1 illustrates this issue. A vNFS client batches 3 write operations into a single VWrite compound,
to create a new user on Unix. If the write to /etc/shadow fails, NFSv4 servers return to the application with
partially completed operations. The application is now responsible for undoing the writes to /etc/passwd

and /etc/group before it can retry. However, another intervening write to the same file offset might have
succeeded and thus the application may end up removing a valid user, overwriting an existing entry, or
corrupting a Unix file critical for authentication. Figure 1.1 demonstrates a trivial example, but other data
intensive real-world applications also face a problem when they are ported to utilize compounding, such as
Hadoop [22, 43, 46], Spark [47] and Powergraph [14].

To address this problem, we added transactional semantics for NFSv4 compounds, thereby reducing
the work required to maintain consistent state when leveraging NFS Compounds. We built a transaction
layer that layers on top of file-system abstraction in NFS servers. This transaction layer takes care of file-
handle management, coordinating concurrent file accesses from multiple clients and restoring consistent
state on errors or a crash. We used an embedded database to manage file-handle metadata and store recovery
records. We used read-write semaphores to coordinate concurrent requests. We also leveraged Copy-on-
Write (CoW) file system semantics to improve performance. We evaluated a prototype implementation using
NFS-Ganesha. We show that our system, called TC-NFS, is comparable to vNFS in terms of performance
for single-client workloads: adding transactional support adds as little as 1.1% overhead to as much as 2.1×
overhead—depending on workload characteristics, compounding degree and network latency. In terms of
multi-client workloads, TC-NFS’s transaction support adds as little as 4.1% to up to 25× of overhead, again
depending on the workload’s intensity.
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NFS Client NFS Server

PUTROOTFH; LOOKUP “etc”; GETFH; GETATTR; SAVEFH;

OPEN “passwd”; WRITE 1800 47; CLOSE; GETFH; GETATTR; RESTOREFH;

OPEN “group”; WRITE 878 11; CLOSE; GETFH; GETATTR; RESTOREFH;

OPEN “shadow”; WRITE 1170 124; CLOSE; GETFH; GETATTR.

Figure 1.1: An NFSv4 compound with 22 operations that writes three files when creating an UNIX user:
/etc/passwd, /etc/group, and /etc/shadow. The stateful NFSv4 server maintains two file handles—
current (CFH) and saved (SFH)—for use with the various operations. To properly create the user, all three
writes (highlighted in red) should succeed.



Chapter 2

Design

This section presents TC-NFS’s design goals, system overview, components, and implementation details.
Although our primary focus is transactional execution of NFS compounds, the key idea of adding transaction
semantics to compound execution is also applicable to other network file systems supporting compounds,
such as SMB [6].

2.1 Design Goals

Four key design goals guided TC-NFS’s design.

2.1.1 Transactional Compounds

This is TC-NFS’s core feature, designed to make NFS easier to use especially in terms of error handling. All
operations in a transactional compound should be executed atomically with proper isolation; the file system
state should be always consistent and committed changes should be durable. To achieve this, we need to
store recovery data into persistent storage before executing mutating operations. We also need to coordinate
concurrent requests and serialize conflicting ones.

2.1.2 Standards Compatibility

TC-NFS should be compatible with the NFSv4 standard while providing an extension to execute compounds
transactionally. It should also allow non-transactional compounds so clients who do not need transaction
semantics do not pay for the associated costs.

2.1.3 Simplicity

Executing many file system operations as one transaction can be difficult. To simplify development we take
advantage of existing work on transactions, by delegating transactional execution to a key-value database
as much as possible. KVFS [38] already demonstrated that it can be efficient to build a transaction file
system on top of a transactional key-value store. Moreover, file system operations may be conflicting (e.g.,
renaming a directory while writing a file inside). For simplicity, TC-NFS supports only homogeneous mu-
tating NFS compounds: vectorized compounds that contain one or more of the same type of operations that
mutate on-disk state. The example compound shown in Figure 1.1 is homogeneous: it contains the same
kind of operation, WRITE. Non-mutating operations such as OPEN, CLOSE, and GETFH are not counted for
homogeneity purposes as they do not change data or metadata on the underlying file system.

3



Vectorized NFSv4 Client

Files in backup directory#23

Transaction Layer

Write LFH1;
LFH3;⋯⋯ 

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1> 
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
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Figure 2.1: TC-NFS design overview. LFH and NFH stand for local and NFS file handle, respectively; RR#23
is the recovery record of transaction #23; Path is the absolute path of the file that the file handle points to.
File blocks being written are highlighted.

2.1.4 Low Overhead

The overhead of transactional execution should be minimized. For this goal, our key design decision for
TC-NFS is to separate metadata management from data management, as this has helped others before. For
example, WiscKey [26] showed that separating smaller keys from large values greatly improves the per-
formance of key-value stores. Similarly, a key enabler of KVFS’s I/O efficiency was the use of stitching to
reduce write amplification of data blocks in compactions [38]. Therefore, TC-NFS uses a key-value database
for only the metadata and takes advantage of CoW file systems to store data blocks and create backups.

2.2 System Overview

Figure 2.1 shows how TC-NFS executes a compound as a transaction. The transaction layer is TC-NFS’s
server core module: it enforces transaction semantics while other modules store metadata or execute vec-
torized file operations. We use an embedded database for the transaction layer to maintain one-to-one,
bi-directional mappings of NFS file handles (NFH, for clients) and local file handles (LFH) provided by the
server’s backend file system. This layer also coordinates concurrency, data backup, and failure recovery.

For each transactional compound, TC-NFS generates a unique ID that identifies the transaction, as well



as its recovery record and backup files. Figure 2.1 shows an example compound whose transaction ID is
#23, recovery record is RR#23 and backup files are in directory#23.

The recovery record is for crash recovery and contains the compound’s arguments. TC-NFS inserts the
record into the metadata database before TC-NFS executes any operation in the compound. If a compound’s
execution is successful, TC-NFS atomically commits to the database metadata changes together with the
removal of the recovery record. When the TC-NFS server recovers from a crash, the transaction layer looks
up existing recovery records in the database and rolls back all operations performed by incomplete compound
executions before the crash.

2.2.1 Multi-Client Coordination and Locking

To coordinate concurrent accesses from multiple clients or threads, the transaction layer implements a lock-
ing mechanism that atomically locks all files involved in each compound request at the beginning of com-
pound execution and unlocks them after the execution ends. TC-NFS cannot directly use LFH or NFH as the
key for locks because the files needed to be locked in an operation may not necessarily be the files being
operated on directly. For example, in a RENAME operation, we should lock the parent directories of the
source and destination files instead of the files themselves. Moreover, in a compound whose operations have
dependencies, some relevant files may not exist before the compound is executed. For example, in a trans-
actional compound that creates a directory tree via the sequence of mkdir /a and mkdir /a/b, the parent
directory /a does not exist before execution. Therefore, TC-NFS’s transaction layer also maintains a map-
ping between the NFH and the absolute path of the corresponding file. Thus, when locking, the transaction
layer calculates the absolute paths of all relevant files from the provided NFH in PUTFH operations as well
as path components in other operations in the compound arguments; we then use these paths as the locking
keys.

2.2.2 File Creation

When creating a file, the transaction layer allocates a globally unique NFH for the new file. Then TC-
NFS’s backend file system server provides a persistent LFH to retrieve the underlying file. For each new
file, the transaction layer creates a one-to-one mapping between the file’s NFH and LFH. After finishing all
operations in the compound, TC-NFS commits changes of these mappings into the metadata database as a
single database transaction, which provides atomicity for the whole compound execution.

NFSv4 creates files using OPENs with a flag equivalent to O CREAT. An existing file may be successfully
opened by such an OPEN operation as long as O EXCL is not set. Therefore, during crash recovery, we need
to know whether a file was created by an incomplete compound or existed before the compound. The LFH

mapping in the metadata database solves this problem: the file pre-existed iff its LFH is in the database. This
explains why the transaction layer maintains a mapping between NFH and LFH instead of directly using the
LFH given by the backend file system as the unique identifier of a file—we need to query the mapping in
rollback or recovery cases.

2.2.3 File Handle Translation

The transaction layer also performs necessary translation between NFH and LFH for PUTFH, LOOKUP and
GETFH operations. For PUTFH, it receives the NFH from the client and queries the LFH in the metadata
database, and finds the file in the backend file system. For LOOKUP, TC-NFS first looks up in the backend
file system to get the LFH, then finds the corresponding NFH in the database, and finally returns it to the client
in subsequent GETFH operations.



2.2.4 Backing Up

Before executing mutating operations including WRITE, REMOVE, and OPEN with truncation, TC-NFS’s
transaction layer creates backups for the files to be operated on. Backup files for a compound are stored in
a common backup directory named after the compound’s transaction ID. To minimize overhead, TC-NFS
backs up files using a Copy-on-Write (CoW) range-cloning mechanism: only the data blocks that will be
overwritten are cloned into the backup files, saving space and overhead. Figure 2.1 shows this, where the red
color blocks denote the data to be overwritten and the transaction layer clones these blocks into the backup
file as the blue blocks. For REMOVE operations, the transaction layer renames the file to be deleted into
the backup directory; for OPEN operations that truncate existing files, TC-NFS clones the entire file into the
backup.

2.2.5 Rollback on Failure

When the compound execution ends, TC-NFS’s transaction layer checks the execution status. Upon any
error, TC-NFS reverses all the operations that succeeded prior to the error. For example, to reverse CREATE

it removes the created file, and to reverse WRITE it clones the data in backup files back into the source file.

2.3 System Components

We designed TC-NFS on top of NFS-Ganesha [7], an open-source user-space NFS server; Figure 2.2 presents
its basic components and data paths.

2.3.1 Transaction Layer

We developed TC-NFS’s transaction layer as a stackable file system abstraction layer (FSAL). This layer has
four major components that we describe next: a lock manager, a backup manager, an undo executor, and a
metadata translator.

Lock Manager

The lock manager (LM) coordinates concurrent compound operations from multiple clients or threads by
locking relevant files inside a compound. At the beginning of compound execution, LM scans through
the compound arguments to calculate the absolute paths of all relevant files that involve in the compound
operations and should be locked. For PUTFH operations, LM queries the metadata database for the absolute
path associated with the provided NFH and updates LM’s “current path.” For other operations, such as
LOOKUP and OPEN, LM joins the “current path” with the path components in the operation arguments. See
Figure 1.1: when evaluating LOOKUP, LM joins the current path “/” with the LOOKUP’s argument “etc”,
updating the current path to “/etc”; LM then adds the “current path” along with the read/write property
to a list. Here, CREATE is a writing operation while READDIR is a reading one. LM also sorts all paths
in a compound in lexicographical order to avoid deadlock from competing compounds. Finally, the lock
manager attempts to lock the sorted paths atomically using read-write semaphores. If there is more than one
compound that contains operations accessing the same file, the conflicting compounds will be serialized by
the lock manager to ensure isolation of compound transactions. LM unlocks these paths atomically when the
compound execution ends.
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Figure 2.2: Components of TC-NFS server prototype. The blue arrows show the data path. We added three
server-side components, shown in green: TXNFS, transaction logger, and the offline undo executor. The rest
are existing components.

Backup Manager

The backup manager manages backup files and directories. Before executing a mutating file operation, it
creates a backup so that the file can be recovered if the enclosing transaction aborts. To minimize overhead,
it leverages the underlying file system’s CoW mechanism and uses the ficlonerange ioctl to back up only
the file range being changed. When a compound is successfully committed as a transaction, the backup
manager schedules backup files to be cleaned up later by a background process; this also reduces latency
overhead of transactional execution.

Undo Executor

The undo executor rolls back all preceding operations in a compound upon a failure. If one of the operations
in the compound fails with an error, execution stops and the undo executor starts to roll back. The undo
executor iterates over the compound’s arguments in reverse order, starting from the last successful operation,
all the way to the first operation, and undoes these operations sequentially. For example, to undo a CREATE

operation, it removes the created file; to undo a WRITE operation, it clones the data from the backup file into
the original file at the exact position specified by the WRITE argument; and to undo a REMOVE operation, it
renames the backup file back to its original name.



Metadata Translator

The metadata translator manages the one-to-one bidirectional mapping between the NFS (NFH) and the
local file handle (LFH), as well as the mapping between NFH and the absolute file’s path. To keep track of
the absolute path of the file that each NFH points to, the metadata translator joins the relative path read from
FSAL’s metadata and the root path of the NFS export, which is a known string from the config file. When
the server starts, the root path is assigned to the root NFH. When performing lookups from the root directory,
the metadata translator joins the root path with the path component names provided in the arguments to build
absolute paths for these looked-up file handles. The same process runs for other operations such as open,
mkdir, and readdir, thus gradually building absolute paths for all file handles as the clients create and
access the files in the TC-NFS server.

When creating a file, the metadata translator generates a unique NFH: it is used as the NFS file handle
for clients to identify this file. The file’s NFH is associated with its local file handle (LFH) provided by the
backend file system. The mappings between LFH and NFH and between LFH and the file’s absolute path are
inserted into the TXN buffer for eventual database commit. When a file is renamed, the metadata translator
inserts the file’s NFH along with the new absolute path into the TXN buffer (described below), requesting an
update of the absolute path in the metadata database. When deleting a file, the metadata translator inserts
into the TXN buffer a negative entry that has the file’s NFH as the key and NULL as the value, notifying the
transaction layer to remove the file from the metadata database when the compound transaction commits.
The metadata translator uses the bidirectional mapping to translate between the two types of file handles:
for a LOOKUP, it converts the LFH from the server’s backend file system to the corresponding NFH for NFS
clients; for a PUTFH, it translates the NFH provided by clients into the corresponding LFH to retrieve the
actual file.

2.3.2 TXN Buffer

TXN buffer is a contiguously allocated vector initialized at the beginning of a compound’s execution; each
vector element contains the corresponding NFH, LFH and a pointer to the absolute path of the file associated
with the NFH. This data structure buffers insertions and deletions of file handle mapping that resulted from
file creations and deletions, and path changes made by renaming operations. At the end of the compound’s
execution, TC-NFS combines these insertions and deletions into a single database transaction. This not only
reduces overheads by consolidating database changes, but it also ensures atomic execution of compounds
(see Section 2.2). The TXN buffer, as a vector, runs faster than hash tables or linked lists because it is a small
contiguous memory block, which helps data locality in CPU caches.

2.3.3 Transaction Logger

This is an auxiliary component outside of the FSAL layer (see Figure 2.2). It gives each compound a unique,
monotonically increasing 64-bit integer as the transaction ID. It then serializes the compound’s request
arguments using Protobuf [15], to serve as the recovery record, and writes the record into the metadata
database. The transaction logger creates and commits recovery records only for compounds that contain
mutating operations such as WRITE and REMOVE. This eliminates overheads that could be introduced by
creating recovery records for non-mutating operations because there is no need to roll back such operations.
Note that transaction IDs need to be unique during only one incarnation of a TC-NFS server (i.e., one
continuous run without restart). Upon restart, a TC-NFS server needs to undo all partial compounds, if any,
and then it starts using transaction IDs from zero.



2.3.4 Offline Undo Executor

This is another auxiliary component outside of the FSAL layer (see Figure 2.2). It is called every time the
server starts. It checks to see if there is any existing recovery record in the database. Since a recovery record
is removed when the compound’s execution finishes, any remaining recovery record indicates a compound’s
execution was interrupted due to an unexpected server crash. In that case, the offline undo executor examines
the protobuf-encoded recovery record and reverses those operations that did succeed, by calling the right
system calls.

2.4 Implementation

We implemented a prototype of the TC-NFS server in C and C++ on Linux, based on NFS-Ganesha [8]. We
used libuuid [25] to generate UUIDs as NFH in the metadata translator; we assume that a UUID uniquely
identifies each file considering the low probability of collisions [5]. As our NFS file handles (NFH), we chose
to use the UUID instead of the server’s local file system’s handle (LFH) for the following two reasons: (1)
As is explained in Section 2.2, we need to check a file’s pre-existence using the mapping between NFH and
LFH. (2) The UUID is a simple and fixed-length data type; using it as the NFH simplifies the implementation
of the TXN buffer and is more efficient. Conversely, the local file handles provided by the backend file
system are variable length and depend on the type of the file system. We used LevelDB [24] as the metadata
database and XFS [41] as the server’s backend file system. LevelDB uses less space [9] than RocksDB [11]
and LMDB [18], and is faster than SQLite3 [16, 19]. We also tested and found that XFS provides better I/O
performance than other popular CoW-based file systems (i.e., BtrFS [32]). To offer clients an option whether
to execute compounds with transaction semantics, we used the most significant bit of the NFSv4 procedure
number; when the bit is not set, TC-NFS acts as a standard NFSv4 server.

2.4.1 Hooks

To ease the development of the transaction layer in NFS-Ganesha’s workflow, we added three hooks into
its FSAL export operations: (1) start compound is called before a compound executes, it initializes the
necessary data structures including the TXN buffer and invokes the transaction logger to create and com-
mit a recovery record. Locking is also performed in this function. (2) end compound is called after the
compound’s execution has ended. Here we check the status of the compound’s execution to decide whether
to rollback. We then delete the recovery record from the database and clean up data structures created in
start compound. Finally, we unlock relevant files in this compound to let other conflicting compounds
in. (3) backup nfs4 op is invoked before each compound operation execution; it backs up the file to be
operated on using the backup manager.

2.4.2 Asynchronous Backup Cleanup

The backup manager removes the backup files after a compound’s execution ends. To reduce overhead,
we clean up asynchronously: in end compound we submit the compound’s transaction ID to the cleanup
thread’s message queue. The cleanup thread removes backup files asynchronously; this reduces the time to
process a transactional compound because we defer the cleanup that otherwise would have taken place in
end compound.

2.4.3 Improving Durability and Fsync Performance

Commitment of recovery records and file handles into the transactional database is important to maintain
transaction semantics; such operations, however, can be expensive due to fsync [17] calls to persist the



data. We chose to use an enterprise-grade SSD with power-loss protection (i.e., a capacitor-backed cache)
as the backend storage device for two reasons: (1) such an SSD can write much faster when writes just have
to go to its internal RAM, and (2) the capacitor ensures that writes are not lost in the event of abrupt power
loss.

2.4.4 Code Size

Our TC-NFS prototype server adds 5,700 Lines of C code (LoC) into NFS-Ganesha for implementing
TXNFS, transactional hooks, and the lock manager. The transaction logger, offline undo executor, and
the lock manager add 5,321 C++ LoCs, including 1,831 LOCs of tests. We also added 2,099 C++ LoCs into
for testing the FSAL layer in NFS-Ganesha.

2.4.5 Limitations

Our prototype currently fully supports transaction semantics for the following operations: OPEN, WRITE,
REMOVE, CREATE, and LINK. In terms of RENAME operations, we provide transaction support for simple
cases in which only files are renamed. Renaming directories can be more complex and is subject to future
work.



Chapter 3

Evaluation

3.1 Methodology

3.1.1 Experimental Testbed Setup

We validate TC-NFS’s transaction semantics and evaluate its performance using the prototype we imple-
mented. Our testbed consists of three identical machines running Ubuntu 18.04 with Linux kernel v4.15.
Each machine is equipped with a six-core Intel Xeon X5650 CPU, 64GB of RAM, and an Intel 10GbE NIC.
One machine acts as the NFS server and the other two as clients. The NFS server exports to the client an
XFS file system, stored on an Intel DC S3700 200GB SSD. To test multi-client workloads, we installed four
KVM virtual machines running Ubuntu 18.04 on each client machine, so there are 8 clients in total. These
machines are connected with a 10GbE switch, and we measured an average RTT of 0.2ms between them.
To emulate different network latencies, we injected delays of 1–30ms into the outbound link of the server
using netem. The test NFS export uses the default options: the attribute cache (ac option) is enabled and
the maximum read/write size (rsize/wsize options) is 1MB. For each experiment, we report the average
measure of 16 runs excluding a preceding warm-up run.

3.1.2 Correctness of Transaction

We designed a series of test cases to verify the transaction semantics when TC-NFS executes compounds
with transaction support enabled. The test cases, as well as their expected outcomes are described next. We
used multithreading to simulate multiple clients.

Atomicity Tests

We issue a compound that contains a sequence of NFS file operations, with a forced invalid request mid-way
to cause an error. We expect that the partially executed compound is rolled back entirely (i.e., file system
state is rolled back to exactly where it was before the compound began executing). Our tests cover all NFS
operations for which TC-NFS provides transaction support.

Serializability Tests

These tests check if TC-NFS can serialize and isolate concurrent compound requests from multiple clients.
There are two test cases: (1) Files and directories creation and removal. One writer thread constantly creates a
set of files or directories using one transactional compound, and several reader threads check for the existence
of the files or directories concurrently. We expect that the reader threads will see either all files or directories
exist or none of them exist, but they will never detect partial existence. (2) File reading and writing. Several
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writer threads write some data to a file in parallel. Each writer thread writes data of some fixed content, and
the data every thread writes is different. A number of reader threads concurrently read the file to check its
content. We expect that the content of the file matches the data of one of the writers writes, and it should not
be a mixture.

We performed the aforementioned test cases using the vNFS client and TC-NFS server. All tests passed
as expected. When using the vanilla NFS-Ganesha as the server, the test cases failed as expected due to a
lack of transaction support.

3.1.3 Performance Benchmarks

We benchmarked TC-NFS with micro- and macro-workloads. We experimented with both the in-kernel NFS
client and open source vNFS client; we reproduced those results—that the vectorized NFS client significantly
outperforms the in-kernel NFS client regardless whether the NFS server is transactional or not. Since TC-
NFS focuses on transactional execution of compounds on the server-side, all figures shown here consistently
use the same vNFS client and compare TC-NFS’s transactional server with a non-transactional baseline—the
vanilla NFS-Ganesha server. To the best of our knowledge, TC-NFS is the first system that adds transactional
compounds support to the network file system, and thus we did not find any counterpart system for TC-NFS
to compare with. Results of single-client benchmarks are shown in terms of Transaction Slowdown, which
is defined as the ratio of the workload’s runtime on TC-NFS to that on the vanilla NFS-Ganesha server.
Those of multi-client benchmarks are presented as Relative Throughput, which is the ratio of the workload’s
total throughput on TC-NFS to that of the baseline. We used relative throughput as results for multi-client
benchmarks because we fixed the runtime of each experiment run in those benchmarks to 30 seconds, in
order to have all clients saturated with the test workloads. It is more reasonable to count total bytes operated
on and calculate the overall throughput. In any 3D figures, the Z axis is vertical.

3.2 Micro-Workloads

3.2.1 Write Files

To evaluate TC-NFS’s transaction overhead, we compared its performance against the vanilla NFS-Ganesha
server (baseline) on a workload of fully writing 1,000 fixed-sized files; we varied the file size from 1KB to
16MB in powers of 2, the network latency from 0.2ms to 5.2ms and the number of clients from 1 to 8.
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Figure 3.1: TC-NFS’s relative performance when writing 1,000 fixed-size files of 1K–16M. Transaction
slowdown is defined as the ratio of TC-NFS’s completion time to the vanilla NFS-Ganesha server’s comple-
tion time (higher Z values are worse).



Single Client

Figure 3.1 shows the results of the benchmark when there is only one client. TC-NFS had to synchronously
write a recovery record into LevelDB, lock the files to be written, and create backup files before writing;
therefore it performed slower than the baseline, especially when the file size was small. The worst case oc-
curred when the file size was 4KB and the latency was 0.2ms: the relative runtime was 1.55× (an overhead of
55% compared with the original NFS-Ganesha server). TC-NFS’s overhead dropped when the file size grew
larger and the network latency increased because the time spent on data writing and network transmission
became dominant. When the file size was 1MB or larger, the overhead was less than 12%; This suggests that
we can reduce the overhead of transactional execution by packing more data to write in one compound.

Multiple Clients

To evaluate the multi-client performance and scalability of TC-NFS, we ran the same workload on multiple
clients. In this experiment, we distributed the 1,000 files evenly among the clients and repeated the workload
until it ran for at least 30 seconds. Figure 3.2 shows the results of the multi-client benchmark.

As the number of clients increased, the relative performance of TC-NFS dropped dramatically especially
for small files (≤ 256KB). The worst-case performance was when the file size was 1KB with 8 clients: TC-
NFS’s performance was only 3.8% of the vanilla NFS-Ganesha server (25× overhead). For small files (≤
128KB), the average relative throughput was 0.19 (i.e., 4.3× overhead). This is because the synchronous I/O
and backup creation required for transaction writes significantly limits TC-NFS’s ability to scale with the
number of concurrent clients, whereas the vanilla NFS-Ganesha server scales well because it does not en-
force transactional semantics. Figure 3.3 compares the scalability of TC-NFS and the vanilla NFS-Ganesha
server. TC-NFS failed to scale its write throughput with the number of clients. Worse, we witnessed perfor-
mance declines on TC-NFS when there were more than 4 clients. We analyze and discuss this issue below.
Figure 3.2 indicates that when the file size exceeded 256KB, TC-NFS’s throughput approached that of the
vanilla NFS-Ganesha. However, that was because the throughput of large-size writing was capped by the
backend storage hardware (the SSD) and unable to scale on both TC-NFS and vanilla NFS-Ganesha (see
“VFS, 1M” and “TXNFS, 1M” lines in Figure 3.3).
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Figure 3.2: TC-NFS’s relative performance when multiple clients write 1,000 fixed-size files in parallel.
Relative throughput is defined as the ratio of TC-NFS’s throughput to the vanilla NFS-Ganesha server’s
throughput (higher Z values are better).
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Local Workload Simulation.

To understand this performance bottleneck, we wrote a C program to simulate the Writefiles workload lo-
cally. We ran two workloads: interleaving-backup and no-backup. Both workloads write 1,000 equally sized
files repeatedly for at least 30 seconds. fsync is called after each write to match the behavior of the sim-
ulated workloads with that of the NFS server. Data is written to the SSD that TC-NFS’s server used as the
backend storage in our tests. The workloads may write the data in parallel using multiple threads, simulating
the multi-client case. The only difference is that the interleaving-backup workload utilizes copy-on-write
cloning to create a backup for the target file before each data write, whereas no-backup does not create any
backup. The two workloads mimic the internal workflow of TC-NFS and the vanilla NFS-Ganesha server,
respectively.

We tested the two workloads using 1, 2, 4, and 8 threads; and we varied file sizes using 4K, 16K, 128K,
and 1M. Figure 3.4(a) shows the results of the simulated Writefiles workloads on XFS. By comparing the
throughput of the two workloads for the same file size (i.e., the solid and dotted lines of the same color in
Figure 3.4(a)), we show that, on average, the interleaving-backup workload was 4.6× slower than the no-
backup workload. We also repeated the same experiment on BtrFS; the results (shown in Figure 3.4(b)) were
worse: Btrfs’s throughput was 5× worse than XFS.

This experiment shows that the backup creation in TC-NFS’s transaction layer is the main reason for
the performance bottleneck, and hence restricts TC-NFS’s scalability, especially with more than 4 clients (as
per Figure 3.3). In sum, performing CoW cloning and synchronized file write is slow on XFS and BtrFS.
If the CoW feature gets optimized in these local file systems (outside the scope of this work), TC-NFS’s
performance and overall transactional write throughput will improve too.

Non-Transactional Workload

To improve performance, TC-NFS lets clients disable transaction support for compounds that do not need
transactional semantics. Here, the transaction layer does not create backups or recovery records, but it still
locks files and commits their metadata changes into the database to ensure the transactional semantics of
other transactional compounds.

We repeated the experiment without enforcing transaction semantics when writing the files. Figure 3.5
shows TC-NFS’s relative performance when writing files without transactions, compared to the vanilla NFS-
Ganesha server. The average relative throughput of writing small files was 0.7, indicating an average of 43%
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Figure 3.4: Throughput of the locally simulated Writefiles workload. Solid lines show the results of the
“no-backup” workload; dotted lines show the “interleaving-backup” workload (higher Y values are better).

overhead. In the worst case, with 16KB-large files and 3 clients, the relative throughput was 0.56. Still,
performance in other cases was better: with more than 6 clients, relative throughput numbers in most cases
exceeded 0.7.

In this non-transactional experiment, TC-NFS’s relative performance did not drop as the number of
clients increased, suggesting that TC-NFS’s write throughput scales well with the number of clients in this
setting. This further confirms that the reason for the performance bottleneck seen in Figure 3.2 is that XFS’s
slow CoW cloning.

Ramdisk

We also experimented with the Writefiles workload on Ramdisk. We created a disk image file on tmpfs,
formatted the image file with XFS and mounted it as the backend storage of TC-NFS and the vanilla NFS-
Ganesha server. We ran the Writefiles workload on both TC-NFS and the vanilla NFS-Ganesha server
with the same sets of number of clients and file sizes settings; on TC-NFS we enabled transaction support.
Figure 3.6 shows that using Ramdisk, TC-NFS’s performance relative to the vanilla server increased signifi-
cantly: the average relative throughput of writing small files was 0.86 (versus 0.19 on SSD). This is because
the time needed for fsync and CoW cloning is greatly reduced. Although Ramdisk is an unlikely practical
backend storage, this experiment demonstrates the throughput possible; it confirms the source of overheads
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Figure 3.5: TC-NFS’s relative performance when clients running the Writefiles workload chose not to use
transaction support (higher Z values are better).
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Figure 3.6: TC-NFS’s relative performance when Ramdisk is used as the backend storage system (higher Z
values are better).

seen in Figures 3.2 and 3.3: slow synchronous I/O and CoW operations on SSD.

Multi-Client with Shared Files

TC-NFS uses the lock manager to coordinate concurrent compound execution and serializes conflicting
compounds. To test TC-NFS’s performance when multiple clients share some files, we ran the Writefiles
workload on TC-NFS with the same set of number of clients and file sizes, but clients share a fraction of files
to write. We define the sharing degree as the percentage of files in a client’s task list that are shared by all
clients. For example, if there are 5 clients, each writing 200 files, a 20% sharing degree means that 160 files
are unique to each client and 40 files are common and written by all clients. Files are accessed in random
order.

Figure 3.7 shows TC-NFS’s relative performance when the sharing degree is 5% and 20%. We believe
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Figure 3.7: TC-NFS’s relative performance when there are shared files among clients that execute the Write-
files workload. Here relative throughput is defined as TC-NFS’s write throughput when there are shared files
to that when each client write independent set of files (higher Z values are better).

that 5% and 20% of sharing degrees are representative settings for real-world workloads. According to Leung
et al. [23], in a real-world corporate data center, up to 16.6% of files get shared by 2 clients concurrently;
7.3% of files are shared by more than 2 clients in the corporate data center whereas only 0.3% of files are
shared by over 2 clients in the engineering data center. Thus, we can regard a 20% sharing degree as an
extreme case and 5% as a more common case.

Here, the baseline is TC-NFS’s write throughput when running the Writefiles workload without any file
sharing among clients. A surprising discovery seen in Figure 3.7 is that the performance of Writefiles with
shared files was better than without sharing. When the sharing degree was 5%, the throughput of Writefiles
with file sharing was 6% higher than the baseline on average for small files (i.e., ≤ 128K); with a sharing
degree of 20%, Writefiles with shared files was on average 9% faster for small files. When the sharing degree
was 20%, there were 8 threads, and the file size was 8K, the relative throughput was the highest and reached
1.77, meaning 77% faster than the non-sharing workload.

While counter-intuitive, this is explained in Figures 3.3 and 3.4: TC-NFS’s total throughput increased
when fewer clients wrote files in parallel with transaction support. When clients write to the same files,
some compounds are serialized. This serialization reduces parallelism, which reduces contention in XFS’s
CoW operation, and hence overall throughput increases. When the files were greater than 128K, the relative
throughput was close to 1.0. This is because NFS-Ganesha’s RPC layer limits the size of a compound to
1MB. Therefore, when the write size is large, fewer WRITE operations fit in one compound. Because TC-
NFS executes each compound as a transaction, access to a list of files with conflicting ones may not be
serialized as these WRITE operations are distributed across a larger number of compounds, each of which
only contains a few operations.

3.2.2 Read Files

We also compared the throughput of TC-NFS with the vanilla NFS-Ganesha server to read 1,000 files en-
tirely, using the same set of file sizes and number of clients; we did not inject additional network latencies;
see Figure 3.8. The overhead of Readfiles was smaller. For small files (≤ 128KB), the average relative
throughput was 0.74 (35% overhead). The worst case was when the file size was 1KB and there were 6
clients: relative throughput was 0.58 (72% overhead), much better than the Writefiles workload. This was
because TC-NFS did not create backups or recovery records for READ operations; therefore the overhead
was smaller and only came from looking up file handles in LevelDB and locking the target files. Without
backup creation, TC-NFS’s read throughput was able to scale normally with multiple clients, and its relative
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Figure 3.8: TC-NFS’s relative performance when multiple clients read 1,000 fixed-size files in parallel.
Relative throughput is defined the same as that in Figure 3.2 (higher Z values are better).

throughput to the vanilla NFS-Ganesha server was stable regardless of the number of clients.

3.2.3 Compounding Degree
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Figure 3.9: TC-NFS’s relative performance when writing a different number of equally sized files, ranging
from 1K to 128K. No extra latency added. The Y axis shows the number of files written per compound
(higher Z values are worse).

To amortize network and I/O latency, it is desirable to write a large number of NFS files at once, but in
practice, this is not always possible. To study the potential benefit, we varied the number of files in each
compound as well as the file size and compared the time taken by TC-NFS and the vanilla NFS-Ganesha
server to serve 1,000 compounds. We did not inject additional network latency in this experiment. Figure 3.9
shows that when writing one 1KB file in each compound, TC-NFS performed the worst and was 3.1× slower
than the vanilla NFS-Ganesha server; the overhead dropped to 63% when writing 32 × 128KB files in a
single compound request. Therefore, compounds with fewer operations can add significant overhead due to
TC-NFS’s transactional nature; we can lower this overhead by packing more operations and more data to
write in a compound.
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3.3 Macro-Workloads

To evaluate TC-NFS using realistic applications, we ran workloads from GNU Coreutils and BSD Tar. We
compare TC-NFS’s with the non-transactional NFS-Ganesha server while using the vNFS client for both.

3.3.1 GNU Coreutils

We used the ported Coreutils programs to list, copy, symlink-copy and then remove the Linux-4.20.7 source
tree: it contains 62,447 files with an average size of 14.9KB, 4,148 directories with average 15 children per
directory, and 35 symbolic links. Figure 3.10 shows the relative runtime of recursive-listing (ls -lR), copy
(cp -R), symlink-copy (cp -Rs), and recursive-removal (rm -rf) on TC-NFS compared with the vanilla
NFS-Ganesha server.

When the network latency is 0.2ms, symlink-copy and recursive-removal added 49.5% and 41.5% over-
head, respectively. Regular copy had a lower overhead of 34.5%. Metadata-intensive workloads had higher
overhead because the time used for these operations themselves (such as CREATE and REMOVE) was short
and extra operations added by transaction support account for a larger part of the total runtime. Recursive-
listing had the smallest overhead of 18.3% because it was not a mutating workload and TC-NFS did not have
to commit anything to the metadata database. Its overhead came only from locking the directories ls -lR

read. As expected, when network latency increased, overheads decreased because the time used for network
transmission started to dominate. When the latency was 30.2ms, the overhead of all three workloads dropped
below 10%. The overhead of ls -lR dropped below 5% when the latency was greater than 5ms, and got as
low as 1.1% when latency was 30.2ms.

3.3.2 BSD Tar

We used tar to archive and compress a Linux-4.20.7 source tree, and untar to decompress and extract the
created archive. tar created a 104MB archive through reading 62,447 small files with the xz option enabled
(default compression used by kernel.org). untar extracted the archive by reversing the process. There
were also metadata operations on 35 symbolic links and 4,148 directories.
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Figure 3.11: TC-NFS’s runtime relative to the non-transactional baseline when archiving and extracting the
Linux-4.6.3 source tree, with and without xz compression (higher Y values are worse).

Figure 3.11 shows the relative runtime of tar/untar on TC-NFS compared to the vanilla NFS-Ganesha
server. When there was no added latency, untar’s worst-case overhead was 25%. When the latency was
greater than 25ms, the overhead dropped below 10%. untar’s overhead on TC-NFS mainly came from
database interactions as well as files locking: untar created a large number of new files and thus TC-NFS
needed to create and commit recovery records regarding these OPEN/CREATE operations, allocate UUIDs for
new files, and commit these UUIDs with their corresponding file system handles and absolute paths into the
database. When creating new files, TC-NFS needed to lock their parent directories; moreover, when writing
data to files, TC-NFS also had to lock the target files.

tar’s runtime on TC-NFS was close to that on vanilla NFS-Ganesha server, and the worst case overhead
was 6.1%. The overhead was small because tar read a lot of files but created only one file and constantly
appended data to it. Reading files does not trigger backup or transactional database writes. Workloads
packed with mutating metadata operations impose a higher overhead on TC-NFS, but tar performed only
one metadata operation, to create the archive file. Writing the archive caused TC-NFS to create backups, but
in practice, TC-NFS would not take time cloning data for append-only writes, thanks to our range-backup
mechanism (see Section 2.2).

Although transaction support introduces an overhead, applications still run much faster when using a
vectorized vNFS client with the transactional TC-NFS server, compared to using an in-kernel NFSv4 client
with the non-transactional vanilla NFS-Ganesha server. For example, when using vNFS as the client and
TC-NFS as the server, and depending on network latency, untar ran 2.73–116.7×, faster compared to the
in-kernel NFSv4 client with the vanilla NFS-Ganesha server. Therefore, TC-NFS’s performance is fairly
reasonable when used together with a vectorized NFSv4 client. In fact, transactional semantics makes more
sense when one tries to perform multiple operations at once, atomically.



Chapter 4

Related Work

Transactions in database management systems [11, 21, 24, 28–30] are well studied and have greatly sim-
plified application development. Transactional storage (e.g., object, file system, or distributed) is also not
new. However, to the best of our knowledge, no prior work considered executing NFSv4 compounds trans-
actionally. We classify existing work as (1) fault-tolerant distributed file systems, (2) compounding of I/O
operations, (3) transactional file systems and, (4) transactional distributed storage.

4.1 Fault-Tolerant Distributed File Systems

The failure of a certain server in a distributed storage system can lead to massive data loss and client machine
paralysis. There have been a number of distributed file systems that aim to address this problem. For
example, FT-NFS [31] by Peyrouze and Muller is a fault-tolerant NFS server that can be resilient to a single
failure by replicating the main memory of the primary and backup server as file caches, and updating these
caches atomically when performing file system operations using a two-phase commit protocol.

In addition, Garcı́a et al. introduced Expand [13], which is a fault-tolerant parallel file system that
achieves parallelism by transparently pooling multiple NFS servers as a single file system, distributing file
data among these servers, and implementing fault tolerance using RAID techniques. Batsakis and Burns
proposed NFS with Cluster Delegation (CD-NFS) which extends NFSv4’s concept of file delegations to
allow a file to be delegated to a cluster of clients. Under cluster delegation, updates to the file data are
propagated to multiple clients, and the data update is not lost in case of failure of a client because it can be
committed to the server by any other node.

These solutions focus on resilience to crash and failure of the server or client and thus make the storage
systems more reliable, but they are not sufficient to address the error handling problem of a batch of file
system operations issued by the client application.

4.2 Compounding of I/O Operations

Compounding is a popular technique that can amortize latency and improve throughput by consolidating
many small I/O requests into fewer larger ones. The CFQ I/O scheduler in Linux [1] can coalesce adjacent
disk I/Os to reduce disk seeks and improve throughput. The Batch-Aware Distributed File System (BAD-
FS) [2] by Bent et al. explicitly controls the batching of I/O-intensive workloads and can reduce the slow
wide-area I/O traffic by up to an order of magnitude. Taking advantage of the fact that files can be processed
in any order in many bulk I/O workloads, Dynamic sets [40] provides set-based APIs to allow the distributed
file system clients to prefetch files in the optimal order and pace, thus overlapping computation and I/O of
applications and minimizing overall latencies.
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NFSv4 [36] introduces compounds, allowing clients to pack a large number of file system operations
into a single network request, to amortize RTT latency and improve performance. vNFS [4] by Chen et al.
provides a set of vectorized APIs to make applications fully utilize compounding in NFSv4, achieving I/O
performance boosts by up to two orders of magnitude.

Compounding greatly improves I/O throughput of networked and distributed file systems, but it can make
error handling more difficult for client applications, which is the reason we propose TC-NFS.

4.3 Transactional File Systems

Transactional file systems let developers offload the work of maintaining a consistent storage state to the file
system. Microsoft’s TxF [44] and QuickSilver’s [34] database file systems leverage the early incorporation
of transaction support into the OS. Transactional NTFS (TxF) allows file operations on an NTFS file system
volume to be performed as a transaction. TxF transactions increase application reliability by protecting
data integrity across failures and simplify application development by greatly reducing the amount of error
handling code.

Spillane et al. [39] implemented transactional file access via lightweight kernel extensions in Valor, en-
abling high-performance transactions on any Linux file system through several new system calls. KVFS [38]
implements a transactional file-system on top of a key-value database backed by a VT-Tree—an LSM-Tree
with enhancements to workloads with large sequential I/Os.

TxFS [20] utilizes Ext4’s journal to support atomicity, consistency, and durability; it offers a simple
begin/commit/abort application API, but it supports only data operations and not meta-data ones that we
needed. TxFS modifies the kernel VFS directly; our initial experiments on its prototype showed high over-
head for all I/Os even when clients do not need transaction semantics. We chose to develop TC-NFS with
user-level code in part to avoid the need for custom kernel changes. TxF, Valor, KVFS, and TxFS are all
local file systems and only KVFS does not require platform-specific dependencies or kernel changes.

The Zettabyte File System (ZFS) [3] aims to provide strong data integrity for storage systems of large
capacity. It comes with a volume manager to pool the underlying storage devices and a Data Management
Unit (DMU) layer to provide the transactional object storage interface. Because ZFS’s transaction support
is at the object level, not the file level, one needs to implement transactional file system operations on their
own based on the DMU layer; that is challenging and similar to writing a new full-featured file system.

TFFS [12] by Gal and Toledo is a transactional file system designed for flash memory on small embed-
ded devices where memory resources are fairly restrictive. It offers a set of non-POSIX file system opera-
tions optimized for raw flash storage and a simple begin-end style transactional API. TFFS uses a pruned
version search tree to support atomicity as well as logs to implement ACID semantics. Many of TFFS’s
design choices are intended to maximize memory efficiency and may sacrifice performance (e.g., not having
buffers), making TFFS less suitable for regular or distributed computer systems.

4.4 Transactional Distributed Storage

Distributed file systems expose storage units to clients over a network. The Wave Transactional File System
(WTF) [10] is a distributed file system that lets applications operate on multiple files transactionally using
a file slicing API, boosting performance by leveraging references to existing data. However, its multi-file
operations are limited to yank and concatenate. CalvinFS [42] leverages a distributed database to build
a scalable distributed file system with WAN replication and strong consistency guarantees. It implements
compound transactions to scale read/write metadata operations but does not expose an interface to perform
multi-file operations. Tyr [27] implements transactions using a blob-storage API. It enables applications
to operate on multiple blobs atomically without complex application-level coordination while providing



sequential consistency under heavy access concurrency. Unlike TC-NFS, Tyr lacks support for transactions
on metadata operations as it is built on top of blob APIs.



Chapter 5

Conclusions

NFSv4 compounds greatly improve performance but they also impose a burden on application developments
due to complex error handling of large compounds. To solve this, we proposed TC-NFS, an NFSv4-based
network file system that supports transactional compound execution. TC-NFS uses an embedded transac-
tional database to manage its recovery records and mappings between NFS file handles and local file handles.
To minimize overhead, TC-NFS utilizes Copy-on-Write mechanisms in modern file systems, to create par-
tial or full file backups without copying data unnecessarily. Benchmarks of our prototype demonstrated that
when compounds are utilized, TC-NFS’s transaction support adds approximately 1.1% to 25× of overhead
compared to a vanilla non-transactional NFSv4 server. This overhead is acceptable compared to the orders of
magnitude of performance improvement from large compounds [4]; therefore we believe that transactional
execution of compounds is not only desirable but also practical.
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