
Supporting Transactions for Bulk NFSv4 Compounds
Wei Su, Akshay Aurora

Stony Brook University
{ suwei,aaurora}@cs.stonybrook.edu

Ming Chen
Google

v.mingchen@gmail.com

Erez Zadok
Stony Brook University

ezk@cs.stonybrook.edu

ABSTRACT
More applications nowadays use network and cloud stor-
age; and modern network �le system protocols support com-
pounding operations—packing more operations in one re-
quest (e.g., NFSv4, SMB). This is known to improve overall
throughput and latency by reducing the number of network
round trips. It has been reported that by utilizing compounds,
NFSv4 performance, especially in high-latency networks, can
be improved by orders of magnitude. Alas, with more oper-
ations packed into a single message, partial failures become
more likely—some server-side operations succeed while oth-
ers fail to execute. This places a greater challenge on client-
side applications to recover from such failures. To solve this
and simplify application development, we designed and built
TC-NFS, an NFSv4-based network �le system with trans-
actional compound execution. We evaluated TC-NFS with
di�erent workloads, compounding degrees, and network la-
tencies. Compared to an already existing NFSv4 system that
fully utilizes compounds, our end-to-end transactional sup-
port adds as little as ⇠1.1% overhead but as much as ⇠25⇥
overhead for some intense micro- and macro-workloads.

CCS CONCEPTS
• Networks ! Network File System (NFS) protocol; •
Information systems ! Database transaction process-
ing.

KEYWORDS
network �le system, transaction, NFSv4
ACMReference Format:
Wei Su, Akshay Aurora, Ming Chen, and Erez Zadok. 2020. Sup-
porting Transactions for Bulk NFSv4 Compounds. In The 13th ACM
International Systems and Storage Conference (SYSTOR ’20), June

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SYSTOR ’20, June 2–4, 2020, Haifa, Israel
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7588-7/20/06. . . $15.00
https://doi.org/10.1145/3383669.3398276

NFS Client NFS Server

PUTROOTFH; LOOKUP “etc”; GETFH; GETATTR; SAVEFH;
OPEN “passwd”; WRITE 1800 47; CLOSE; GETFH; GETATTR; RESTOREFH;
OPEN “group”; WRITE 878 11; CLOSE; GETFH; GETATTR; RESTOREFH;
OPEN “shadow”; WRITE 1170 124; CLOSE; GETFH; GETATTR.

Figure 1: An NFSv4 compound with 22 operations
that writes three �les when creating an UNIX user:
/etc/passwd, /etc/group, and /etc/shadow. The stateful
NFSv4 server maintains two �le handles—current
(CFH) and saved (SFH)—for use with the various
operations. Toproperly create theuser, all threewrites
(highlighted in red) should succeed.

2–4, 2020, Haifa, Israel.ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3383669.3398276

1 INTRODUCTIONANDMOTIVATION
Over the past several decades, the bandwidth of CPU, mem-
ory, storage, and networks have all increased more than a
thousand-fold [27]. Taking full advantage of existing high-
bandwidth hardware is particularly important as Moore’s
Law is slowing [38]. For networked storage systems, com-
pounding, which packs many I/O operations into one mes-
sage, is an e�ective mechanism to reduce network latency.
Both NFS [29] and SMB [3] have supported compounds for
more than a decade. A recent study [1] showed that I/O-
heavy applications can run orders of magnitude faster with
a compound-friendly vectorized �le-system API.
In that study, Chen et al. [1] proposed vNFS, which is an

NFS client that o�ers vectorized �le-system APIs to batch
multiple �le-system operations into one NFSv4 compound
procedure [30, 31]. It improved performance considerably by
amortizing RPC latency among the larger number of opera-
tions in a single compound. vNFS improves performance by
an order of magnitude, but it indirectly increases the burden
on application developers. When applications issue large
compounds consisting of multiple �le operations, they are
faced with a complex error handling problem—if the com-
pound fails mid-way, the applications have to deal with the
fact that some operations have already changed the persis-
tent �le system state. The complexity of handling failures
inhibit full utilization of NFSv4’s compounds.

Figure 1 illustrates this issue. A vNFS client batches 3 write
operations into a single VWrite compound, to create a new
user on Unix. If the write to /etc/shadow fails, NFSv4 servers

1

Appears in the proceedings of the 13th ACM International Systems and Storage Conference (ACM SYSTOR ’20)

return to the application with partially completed operations.
The application is now responsible for undoing the writes
to /etc/passwd and /etc/group before it can retry. However,
another intervening write to the same �le o�set might have
succeeded and thus the application may end up removing a
valid user, overwriting an existing entry, or corrupting a Unix
�le critical for authentication. Figure 1 demonstrates a trivial
example, but other data intensive real-world applications also
face a problem when they are ported to utilize compounding,
such as Hadoop [17, 36, 39], Spark [40] and Powergraph [9].
To address this problem, we added transactional seman-

tics for NFSv4 compounds, thereby reducing the work re-
quired to maintain consistent state when leveraging NFS
Compounds. We built a transaction layer that layers on top
of �le-system abstraction in NFS servers. This transaction
layer takes care of �le-handle management, coordinating
concurrent �le accesses from multiple clients and restoring
consistent state on errors or a crash. We used an embedded
database to manage �le-handle metadata and store recovery
records. We used read-write semaphores to coordinate con-
current requests. We also leveraged Copy-on-Write (CoW)
�le system semantics to improve performance. We evaluated
a prototype implementation using NFS-Ganesha. We show
that our system, called TC-NFS, is comparable to vNFS in
terms of performance for single-client workloads: adding
transactional support adds as little as 1.1% overhead to as
much as 2.1⇥ overhead—depending on workload character-
istics, compounding degree and network latency. In terms of
multi-client workloads, TC-NFS’s transaction support adds
as little as 4.1% to up to 25⇥ of overhead, again depending
on the workload’s intensity.

2 DESIGN
This section presents TC-NFS’s design goals, system overview,
components, and implementation details. Although our pri-
mary focus is transactional execution of NFS compounds,
the key idea of adding transaction semantics to compound
execution is also applicable to other network �le systems
supporting compounds, such as SMB [3].

2.1 Design Goals
Four key design goals guided TC-NFS’s design.

(1) Transactional compounds. This is TC-NFS’s core feature,
designed to make NFS easier to use especially in terms of
error handling. All operations in a transactional compound
should be executed atomically with proper isolation; the �le
system state should be always consistent and committed
changes should be durable. To achieve this, we need to store
recovery data into persistent storage before executing mu-
tating operations. We also need to coordinate concurrent
requests and serialize con�icting ones.

(2) Standards compatibility. TC-NFS should be compati-
ble with the NFSv4 standard while providing an extension
to execute compounds transactionally. It should also allow
non-transactional compounds so clients who do not need
transaction semantics do not pay for the associated costs.

(3) Simplicity. Executing many �le system operations as
one transaction can be di�cult. To simplify development we
take advantage of existing work on transactions, by delegat-
ing transactional execution to a key-value database as much
as possible. KVFS [32] already demonstrated that it can be
e�cient to build a transaction �le system on top of a transac-
tional key-value store. Moreover, �le system operations may
be con�icting (e.g., renaming a directory while writing a �le
inside). For simplicity, TC-NFS supports only homogeneous
mutating NFS compounds: vectorized compounds that con-
tain one or more of the same type of operations that mutate
on-disk state. The example compound shown in Figure 1 is
homogeneous: it contains the same kind of operation,�����.
Non-mutating operations such as ����, �����, and �����
are not counted for homogeneity purposes as they do not
change data or metadata on the underlying �le system.

(4) Low overhead. The overhead of transactional execution
should be minimized. For this goal, our key design decision
for TC-NFS is to separate metadata management from data
management, as this has helped others before. For example,
WiscKey [21] showed that separating smaller keys from large
values greatly improves the performance of key-value stores.
Similarly, a key enabler of KVFS’s I/O e�ciency was the
use of stitching to reduce write ampli�cation of data blocks
in compactions [32]. Therefore, TC-NFS uses a key-value
database for only the metadata and takes advantage of CoW
�le systems to store data blocks and create backups.

2.2 SystemOverview
Figure 2 shows how TC-NFS executes a compound as a trans-
action. The transaction layer is TC-NFS’s server core module:
it enforces transaction semantics while other modules store
metadata or execute vectorized �le operations. We use an
embedded database for the transaction layer to maintain one-
to-one, bi-directional mappings of NFS �le handles (���, for
clients) and local �le handles (���) provided by the server’s
backend �le system. This layer also coordinates concurrency,
data backup, and failure recovery.
For each transactional compound, TC-NFS generates a

unique ID that identi�es the transaction, as well as its re-
covery record and backup �les. Figure 2 shows an example
compound whose transaction ID is #23, recovery record is
RR#23 and backup �les are in directory#23.

The recovery record is for crash recovery and contains the
compound’s arguments. TC-NFS inserts the record into the

2

Vectorized NFSv4 Client

Files in backup directory#23

Transaction Layer

Write LFH1;
LFH3;⋯⋯

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1>
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
… ...

Compound
Request #23

Original files

TC
N

FS
 S

er
ve

r

Metadata Database

Clone

Figure 2: TC-NFS design overview. LFH and NFH stand
for local and NFS �le handle, respectively; RR#23 is the
recovery record of transaction #23; Path is the absolute
pathof the�le that the�le handlepoints to. File blocks
being written are highlighted.

metadata database before TC-NFS executes any operation in
the compound. If a compound’s execution is successful, TC-
NFS atomically commits to the database metadata changes
together with the removal of the recovery record. When
the TC-NFS server recovers from a crash, the transaction
layer looks up existing recovery records in the database and
rolls back all operations performed by incomplete compound
executions before the crash.

Multi-client coordination and locking. To coordinate con-
current accesses frommultiple clients or threads, the transac-
tion layer implements a locking mechanism that atomically
locks all �les involved in each compound request at the be-
ginning of compound execution and unlocks them after the
execution ends. TC-NFS cannot directly use ��� or ��� as
the key for locks because the �les needed to be locked in an
operation may not necessarily be the �les being operated on
directly. For example, in a ������ operation, we should lock
the parent directories of the source and destination �les in-
stead of the �les themselves. Moreover, in a compoundwhose
operations have dependencies, some relevant �les may not
exist before the compound is executed. For example, in a
transactional compound that creates a directory tree via the
sequence of mkdir /a and mkdir /a/b, the parent directory /a
does not exist before execution. Therefore, TC-NFS’s transac-
tion layer also maintains a mapping between the ��� and the
absolute path of the corresponding �le. Thus, when locking,
the transaction layer calculates the absolute paths of all rele-
vant �les from the provided ��� in ����� operations as well

as path components in other operations in the compound
arguments; we then use these paths as the locking keys.

File creation. When creating a �le, the transaction layer
allocates a globally unique ��� for the new �le. Then TC-
NFS’s backend �le system server provides a persistent ��� to
retrieve the underlying �le. For each new �le, the transaction
layer creates a one-to-one mapping between the �le’s ���
and ���. After �nishing all operations in the compound, TC-
NFS commits changes of these mappings into the metadata
database as a single database transaction, which provides
atomicity for the whole compound execution.
NFSv4 creates �les using ����s with a �ag equivalent to

O_CREAT. An existing �le may be successfully opened by such
an ���� operation as long as O_EXCL is not set. Therefore,
during crash recovery, we need to know whether a �le was
created by an incomplete compound or existed before the
compound. The ���mapping in the metadata database solves
this problem: the �le pre-existed i� its ��� is in the database.
This explains why the transaction layer maintains a mapping
between ��� and ��� instead of directly using the ��� given
by the backend �le system as the unique identi�er of a �le—
we need to query the mapping in rollback or recovery cases.

File handle translation. The transaction layer also performs
necessary translation between��� and ��� for �����, ������
and ����� operations. For �����, it receives the ��� from
the client and queries the ��� in the metadata database, and
�nds the �le in the backend �le system. For ������, TC-
NFS �rst looks up in the backend �le system to get the ���,
then �nds the corresponding ��� in the database, and �nally
returns it to the client in subsequent ����� operations.

Backing up. Before executing mutating operations includ-
ing �����, ������, and ���� with truncation, TC-NFS’s
transaction layer creates backups for the �les to be operated
on. Backup �les for a compound are stored in a common
backup directory named after the compound’s transaction ID.
To minimize overhead, TC-NFS backs up �les using a Copy-
on-Write (CoW) range-cloning mechanism: only the data
blocks that will be overwritten are cloned into the backup
�les, saving space and overhead. Figure 2 shows this, where
the red color blocks denote the data to be overwritten and the
transaction layer clones these blocks into the backup �le as
the blue blocks. For ������ operations, the transaction layer
renames the �le to be deleted into the backup directory; for
���� operations that truncate existing �les, TC-NFS clones
the entire �le into the backup.

Rollback on failure. When the compound execution ends,
TC-NFS’s transaction layer checks the execution status. Upon
any error, TC-NFS reverses all the operations that succeeded
prior to the error. For example, to reverse ������ it removes

3

Metadata
Database

 RPC + Protocol Layer (NFS v4)

MDCACHE: Metadata Cache
File System Abstraction Layer

TC-NFS Transaction Layer

VFS: File System Wrapper

Backup
Manager

Undo
Executor

Metadata
Translator

Offline
Undo Executor

Transaction
Logger

Virtual File System
CoW-enabled File System: XFS, btrfs

SSD with Power-loss Protection

Networking
(TCP/IP)

User
Kernel

System Call/ioctl

NFS Ganesha

Ve
ct

or
iz

ed
 N

FS
v4

 A
PI

Lock Manager

Figure 3: Components of TC-NFS server prototype.
The blue arrows show the data path. We added three
server-side components, shown in green: TXNFS,
transaction logger, and the o�line undo executor. The
rest are existing components.

the created �le, and to reverse ����� it clones the data in
backup �les back into the source �le.

2.3 SystemComponents
We designed TC-NFS on top of NFS-Ganesha [4], an open-
source user-space NFS server; Figure 3 presents its basic
components and data paths.

Transaction layer. We developed TC-NFS’s transaction
layer as a stackable �le system abstraction layer (FSAL). This
layer has four major components that we describe next: a
lock manager, a backup manager, an undo executor, and a
metadata translator.

The lock manager (LM) coordinates concurrent compound
operations from multiple clients or threads by locking rele-
vant �les inside a compound. At the beginning of compound
execution, LM scans through the compound arguments to
calculate the absolute paths of all relevant �les that involve in
the compound operations and should be locked. For �����
operations, LM queries the metadata database for the ab-
solute path associated with the provided ��� and updates
LM’s “current path.” For other operations, such as ������
and ����, LM joins the “current path” with the path com-
ponents in the operation arguments. See Figure 1: when
evaluating ������, LM joins the current path “/” with the
������’s argument “etc”, updating the current path to “/etc”;
LM then adds the “current path” along with the read/write
property to a list. Here, ������ is a writing operation while
������� is a reading one. LM also sorts all paths in a com-
pound in lexicographical order to avoid deadlock from com-
peting compounds. Finally, the lockmanager attempts to lock

the sorted paths atomically using read-write semaphores. If
there is more than one compound that contains operations
accessing the same �le, the con�icting compounds will be se-
rialized by the lock manager to ensure isolation of compound
transactions. LM unlocks these paths atomically when the
compound execution ends.

The backupmanager manages backup �les and directories.
Before executing amutating �le operation, it creates a backup
so that the �le can be recovered if the enclosing transaction
aborts. To minimize overhead, it leverages the underlying
�le system’s CoW mechanism and uses the ficlonerange
ioctl to back up only the �le range being changed. When a
compound is successfully committed as a transaction, the
backup manager schedules backup �les to be cleaned up later
by a background process; this also reduces latency overhead
of transactional execution.
The undo executor rolls back all preceding operations in

a compound upon a failure. If one of the operations in the
compound fails with an error, execution stops and the undo
executor starts to roll back. The undo executor iterates over
the compound’s arguments in reverse order, starting from
the last successful operation, all the way to the �rst opera-
tion, and undoes these operations sequentially. For example,
to undo a ������ operation, it removes the created �le; to
undo a ����� operation, it clones the data from the backup
�le into the original �le at the exact position speci�ed by
the ����� argument; and to undo a ������ operation, it
renames the backup �le back to its original name.
The metadata translator manages the one-to-one bidirec-

tional mapping between the NFS (���) and the local �le
handle (���), as well as the mapping between ��� and the
absolute �le’s path. To keep track of the absolute path of the
�le that each ��� points to, the metadata translator joins the
relative path read from FSAL’s metadata and the root path
of the NFS export, which is a known string from the con�g
�le. When the server starts, the root path is assigned to the
root ���. When performing lookups from the root directory,
the metadata translator joins the root path with the path
component names provided in the arguments to build abso-
lute paths for these looked-up �le handles. The same process
runs for other operations such as open, mkdir, and readdir,
thus gradually building absolute paths for all �le handles as
the clients create and access the �les in the TC-NFS server.

When creating a �le, the metadata translator generates a
unique ���: it is used as the NFS �le handle for clients to
identify this �le. The �le’s ��� is associated with its local
�le handle (���) provided by the backend �le system. The
mappings between ��� and ��� and between ��� and the
�le’s absolute path are inserted into the TXN bu�er for even-
tual database commit. When a �le is renamed, the metadata
translator inserts the �le’s ��� along with the new absolute
path into the TXN bu�er (described below), requesting an

4

update of the absolute path in the metadata database. When
deleting a �le, the metadata translator inserts into the TXN
bu�er a negative entry that has the �le’s ��� as the key
and NULL as the value, notifying the transaction layer to
remove the �le from the metadata database when the com-
pound transaction commits. The metadata translator uses
the bidirectional mapping to translate between the two types
of �le handles: for a ������, it converts the ��� from the
server’s backend �le system to the corresponding ��� for
NFS clients; for a �����, it translates the ��� provided by
clients into the corresponding ��� to retrieve the actual �le.

TXN bu�er. TXN bu�er is a contiguously allocated vector
initialized at the beginning of a compound’s execution; each
vector element contains the corresponding ���, ��� and a
pointer to the absolute path of the �le associated with the
���. This data structure bu�ers insertions and deletions of
�le handle mapping that resulted from �le creations and dele-
tions, and path changes made by renaming operations. At the
end of the compound’s execution, TC-NFS combines these
insertions and deletions into a single database transaction.
This not only reduces overheads by consolidating database
changes, but it also ensures atomic execution of compounds
(see Section 2.2). The TXN bu�er, as a vector, runs faster than
hash tables or linked lists because it is a small contiguous
memory block, which helps data locality in CPU caches.

Transaction logger. This is an auxiliary component outside
of the FSAL layer (see Figure 3). It gives each compound a
unique, monotonically increasing 64-bit integer as the trans-
action ID. It then serializes the compound’s request argu-
ments using Protobuf [10], to serve as the recovery record,
and writes the record into the metadata database. The trans-
action logger creates and commits recovery records only
for compounds that contain mutating operations such as
����� and ������. This eliminates overheads that could be
introduced by creating recovery records for non-mutating
operations because there is no need to roll back such oper-
ations. Note that transaction IDs need to be unique during
only one incarnation of a TC-NFS server (i.e., one continuous
run without restart). Upon restart, a TC-NFS server needs to
undo all partial compounds, if any, and then it starts using
transaction IDs from zero.

O�ine undo executor. This is another auxiliary component
outside of the FSAL layer (see Figure 3). It is called every
time the server starts. It checks to see if there is any exist-
ing recovery record in the database. Since a recovery record
is removed when the compound’s execution �nishes, any
remaining recovery record indicates a compound’s execu-
tion was interrupted due to an unexpected server crash. In

that case, the o�ine undo executor examines the protobuf-
encoded recovery record and reverses those operations that
did succeed, by calling the right system calls.

3 IMPLEMENTATION
We implemented a prototype of the TC-NFS server in C and
C++ on Linux, based on NFS-Ganesha [5]. We used libu-
uid [20] to generate UUIDs as ��� in the metadata trans-
lator; we assume that a UUID uniquely identi�es each �le
considering the low probability of collisions [2]. As our NFS
�le handles (���), we chose to use the UUID instead of the
server’s local �le system’s handle (���) for the following two
reasons: (1) As is explained in Section 2.2, we need to check
a �le’s pre-existence using the mapping between ��� and
���. (2) The UUID is a simple and �xed-length data type;
using it as the ��� simpli�es the implementation of the TXN
bu�er and is more e�cient. Conversely, the local �le handles
provided by the backend �le system are variable length and
depend on the type of the �le system. We used LevelDB [19]
as the metadata database and XFS [34] as the server’s back-
end �le system. LevelDB uses less space [6] than RocksDB [8]
and LMDB [13], and is faster than SQLite3 [11, 14]. We also
tested and found that XFS provides better I/O performance
than other popular CoW-based �le systems (i.e., BtrFS [26]).
To o�er clients an option whether to execute compounds
with transaction semantics, we used the most signi�cant
bit of the NFSv4 procedure number; when the bit is not set,
TC-NFS acts as a standard NFSv4 server.

Hooks. To ease the development of the transaction layer
in NFS-Ganesha’s work�ow, we added three hooks into its
FSAL export operations: (1) start_compound is called before
a compound executes, it initializes the necessary data struc-
tures including the TXN bu�er and invokes the transaction
logger to create and commit a recovery record. Locking is
also performed in this function. (2) end_compound is called
after the compound’s execution has ended. Here we check
the status of the compound’s execution to decide whether to
rollback. We then delete the recovery record from the data-
base and clean up data structures created in start_compound.
Finally, we unlock relevant �les in this compound to let other
con�icting compounds in. (3) backup_nfs4_op is invoked be-
fore each compound operation execution; it backs up the �le
to be operated on using the backup manager.

Asynchronous backup cleanup. The backup manager re-
moves the backup �les after a compound’s execution ends.
To reduce overhead, we clean up asynchronously: in end_compound
we submit the compound’s transaction ID to the cleanup
thread’s message queue. The cleanup thread removes backup

5

�les asynchronously; this reduces the time to process a trans-
actional compound because we defer the cleanup that oth-
erwise would have taken place in end_compound.

Improving durability and fsync performance. Commitment
of recovery records and �le handles into the transactional
database is important to maintain transaction semantics;
such operations, however, can be expensive due to fsync [12]
calls to persist the data. We chose to use an enterprise-grade
SSD with power-loss protection (i.e., a capacitor-backed
cache) as the backend storage device for two reasons: (1)
such an SSD can write much faster when writes just have
to go to its internal RAM, and (2) the capacitor ensures that
writes are not lost in the event of abrupt power loss.

Code size. Our TC-NFS prototype server adds 5,700 Lines
of C code (LoC) into NFS-Ganesha for implementing TXNFS,
transactional hooks, and the lock manager. The transaction
logger, o�ine undo executor, and the lock manager add 5,321
C++ LoCs, including 1,831 LOCs of tests. We also added 2,099
C++ LoCs into for testing the FSAL layer in NFS-Ganesha.

Limitations. Our prototype currently fully supports trans-
action semantics for the following operations: ����, �����,
������, ������, and ����. In terms of ������ operations,
we provide transaction support for simple cases in which
only �les are renamed. Renaming directories can be more
complex and is subject to future work.

4 EVALUATION
We validate TC-NFS’s transaction semantics and evaluate
its performance using the prototype we implemented. Our
testbed consists of three identical machines running Ubuntu
18.04 with Linux kernel v4.15. Each machine is equipped
with a six-core Intel Xeon X5650 CPU, 64GB of RAM, and an
Intel 10GbE NIC. One machine acts as the NFS server and the
other two as clients. The NFS server exports to the client an
XFS �le system, stored on an Intel DC S3700 200GB SSD. To
test multi-client workloads, we installed four KVM virtual
machines running Ubuntu 18.04 on each client machine, so
there are 8 clients in total. These machines are connected
with a 10GbE switch, and we measured an average RTT of
0.2ms between them. To emulate di�erent network latencies,
we injected delays of 1–30ms into the outbound link of the
server using netem. The test NFS export uses the default
options: the attribute cache (ac option) is enabled and the
maximum read/write size (rsize/wsize options) is 1MB. For
each experiment, we report the average measure of 16 runs
excluding a preceding warm-up run.

We designed a series of test cases to verify the transaction
semantics when TC-NFS executes compounds with transac-
tion support enabled. The test cases, as well as their expected

outcomes are described next. We used multithreading to sim-
ulate multiple clients.

Atomicity tests. We issue a compound that contains a se-
quence of NFS �le operations, with a forced invalid request
mid-way to cause an error. We expect that the partially ex-
ecuted compound is rolled back entirely (i.e., �le system
state is rolled back to exactly where it was before the com-
pound began executing). Our tests cover all NFS operations
for which TC-NFS provides transaction support.

Serializability tests. These tests check if TC-NFS can serial-
ize and isolate concurrent compound requests from multiple
clients. There are two test cases: (1) Files and directories cre-
ation and removal. One writer thread constantly creates a set
of �les or directories using one transactional compound, and
several reader threads check for the existence of the �les or di-
rectories concurrently. We expect that the reader threads will
see either all �les or directories exist or none of them exist,
but they will never detect partial existence. (2) File reading
and writing. Several writer threads write some data to a �le
in parallel. Each writer thread writes data of some �xed con-
tent, and the data every thread writes is di�erent. A number
of reader threads concurrently read the �le to check its con-
tent. We expect that the content of the �le matches the data
of one of the writers writes, and it should not be a mixture.
We performed the aforementioned test cases using the

vNFS client and TC-NFS server. All tests passed as expected.
When using the vanilla NFS-Ganesha as the server, the test
cases failed as expected due to a lack of transaction support.

Performance benchmarks. We benchmarked TC-NFS with
micro- and macro-workloads. We experimented with both
the in-kernel NFS client and open source vNFS client; we
reproduced those results—that the vectorized NFS client sig-
ni�cantly outperforms the in-kernel NFS client regardless
whether the NFS server is transactional or not. Since TC-
NFS focuses on transactional execution of compounds on the
server-side, all �gures shown here consistently use the same
vNFS client and compare TC-NFS’s transactional server with
a non-transactional baseline—the vanilla NFS-Ganesha server.
To the best of our knowledge, TC-NFS is the �rst system that
adds transactional compounds support to the network �le
system, and thus we did not �nd any counterpart system for
TC-NFS to comparewith. Results of single-client benchmarks
are shown in terms of TransactionSlowdown, which is de�ned
as the ratio of the workload’s runtime on TC-NFS to that on
the vanilla NFS-Ganesha server. Those of multi-client bench-
marks are presented as RelativeThroughput, which is the ratio
of the workload’s total throughput on TC-NFS to that of the
baseline. We used relative throughput as results for multi-
client benchmarks because we �xed the runtime of each
experiment run in those benchmarks to 30 seconds, in order

6

to have all clients saturatedwith the test workloads. It is more
reasonable to count total bytes operated on and calculate the
overall throughput. In any 3D �gures, the Z axis is vertical.

4.1 Micro-workloads
4.1.1 Write files. To evaluate TC-NFS’s transaction over-
head, we compared its performance against the vanilla NFS-
Ganesha server (baseline) on a workload of fully writing
1,000 �xed-sized �les; we varied the �le size from 1KB to
16MB in powers of 2, the network latency from 0.2ms to
5.2ms and the number of clients from 1 to 8.

Single client. Figure 4 shows the results of the benchmark
when there is only one client. TC-NFS had to synchronously
write a recovery record into LevelDB, lock the �les to be
written, and create backup �les before writing; therefore it
performed slower than the baseline, especially when the �le
size was small. The worst case occurred when the �le size
was 4KB and the latency was 0.2ms: the relative runtime was
1.55⇥ (an overhead of 55% compared with the original NFS-
Ganesha server). TC-NFS’s overhead dropped when the �le
size grew larger and the network latency increased because
the time spent on data writing and network transmission
became dominant. When the �le size was 1MB or larger,
the overhead was less than 12%; This suggests that we can
reduce the overhead of transactional execution by packing
more data to write in one compound.

Multiple clients. To evaluate the multi-client performance
and scalability of TC-NFS, we ran the same workload on
multiple clients. In this experiment, we distributed the 1,000
�les evenly among the clients and repeated the workload
until it ran for at least 30 seconds. Figure 5 shows the results
of the multi-client benchmark.
As the number of clients increased, the relative perfor-

mance of TC-NFS dropped dramatically especially for small
�les ( 256KB). The worst-case performance was when the
�le size was 1KB with 8 clients: TC-NFS’s performance was
only 3.8% of the vanilla NFS-Ganesha server (25⇥ overhead).
For small �les ( 128KB), the average relative throughput

4K 16K 64K 256K 1M 4M 16M
5.2

4.2
3.2

2.2
1.2

0.2

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1K
Netw

ork
 L

ate
ncy

 (m
s)

File Sizes (log2)T
ra

n
sa

ct
io

n
 S

lo
w

d
o

w
n

 (
x

)

 1 1.2 1.4 1.6

Figure 4: TC-NFS’s relative performancewhenwriting
1,000 �xed-size �les of 1K–16M. Transaction slow-
down is de�ned as the ratio of TC-NFS’s completion
time to the vanilla NFS-Ganesha server’s completion
time (higher Z values are worse).

was 0.19 (i.e., 4.3⇥ overhead). This is because the synchro-
nous I/O and backup creation required for transaction writes
signi�cantly limits TC-NFS’s ability to scale with the num-
ber of concurrent clients, whereas the vanilla NFS-Ganesha
server scales well because it does not enforce transactional se-
mantics. Figure 6 compares the scalability of TC-NFS and the
vanilla NFS-Ganesha server. TC-NFS failed to scale its write
throughput with the number of clients. Worse, we witnessed
performance declines on TC-NFSwhen there weremore than
4 clients. We analyze and discuss this issue below. Figure 5
indicates that when the �le size exceeded 256KB, TC-NFS’s
throughput approached that of the vanilla NFS-Ganesha.
However, that was because the throughput of large-size writ-
ing was capped by the backend storage hardware (the SSD)
and unable to scale on both TC-NFS and vanilla NFS-Ganesha
(see “VFS, 1M” and “TXNFS, 1M” lines in Figure 6).

Localworkloadsimulation. To understand this performance
bottleneck, we wrote a C program to simulate the Write�les
workload locally. We ran two workloads: interleaving-backup
and no-backup. Both workloads write 1,000 equally sized
�les repeatedly for at least 30 seconds. fsync is called after
each write to match the behavior of the simulated workloads
with that of the NFS server. Data is written to the SSD that
TC-NFS’s server used as the backend storage in our tests.
The workloads may write the data in parallel using multiple

4K 16K 64K 256K 1M 4M 16M
87654321

 0

 0.2

 0.4

 0.6

 0.8

 1

1K
Num

ber
 of C

lie
nts

File Sizes (log2)

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

 0 0.2 0.4 0.6 0.8 1

Figure 5: TC-NFS’s relative performance when mul-
tiple clients write 1,000 �xed-size �les in parallel.
Relative throughput is de�ned as the ratio of TC-
NFS’s throughput to the vanilla NFS-Ganesha server’s
throughput (higher Z values are better).

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

S
p
ee

d
u
p
 R

at
io

Number of Clients

VFS, 4K
VFS, 16K

VFS, 128K
VFS, 1M

TXNFS, 4K
TXNFS, 16K

TXNFS, 128K
TXNFS, 1M

Figure 6: Speedup ratio of TC-NFS and vanilla NFS-
Ganesha server as the number of clients increases. VFS
denotes the vanilla NFS-Ganesha server. For brevity,
we only show a few representative �le size (higher Y
values are better).7

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of Threads

4K

16K

128K

1M

Figure 7: Throughput of the locally simulated Write-
�les workload. Solid lines show the results of the “no-
backup”workload;dotted lines showthe“interleaving-
backup” workload (higher Y values are better).

threads, simulating the multi-client case. The only di�erence
is that the interleaving-backup workload utilizes XFS’s CoW
cloning to create a backup for the target �le before each data
write, whereas no-backup does not create any backup. The
two workloads mimic the internal work�ow of TC-NFS and
the vanilla NFS-Ganesha server, respectively.
We tested the two workloads using 1, 2, 4, and 8 threads;

and we varied �le sizes using 4K, 16K, 128K, and 1M. Figure 7
shows the results of the simulated Write�les workloads. By
comparing the throughput of the two workloads for the same
�le size (i.e., the solid and dotted lines of the same color in
Figure 7), we show that, on average, the interleaving-backup
workload was 4.6⇥ slower than the no-backup workload. We
also repeated the same experiment on BtrFS; the results were
worse: Btrfs’s throughput was 5⇥ worse than XFS.

This experiment shows that the backup creation in TC-
NFS’s transaction layer is the main reason for the perfor-
mance bottleneck, and hence restricts TC-NFS’s scalability,
especially with more than 4 clients (as per Figure 6). In sum,
performing CoW cloning and synchronized �le write is slow
on XFS and BtrFS. If the CoW feature gets optimized in these
local �le systems (outside the scope of this work), TC-NFS’s
performance and overall transactional write throughput will
improve too.

Non-transactional workload. To improve performance, TC-
NFS lets clients disable transaction support for compounds
that do not need transactional semantics. Here, the transac-
tion layer does not create backups or recovery records, but
it still locks �les and commits their metadata changes into
the database to ensure the transactional semantics of other
transactional compounds.

We repeated the experimentwithout enforcing transaction
semantics when writing the �les. Figure 8 shows TC-NFS’s
relative performancewhenwriting �les without transactions,
compared to the vanilla NFS-Ganesha server. The average rel-
ative throughput of writing small �les was 0.7, indicating an
average of 43% overhead. In the worst case, with 16KB-large

4K 16K 64K 256K 1M 4M 16M
 1
 2
 3
 4
 5
 6
 7
 8

 0

 0.2

 0.4

 0.6

 0.8

 1

1K

N
um

be
r o

f C
lie

nt
s

File Sizes (log2)

R
el

at
iv

e
T

h
ro

u
g
h

p
u

t

 0 0.2 0.4 0.6 0.8 1

Figure 8: TC-NFS’s relative performance when clients
running the Write�les workload chose not to use
transaction support (higher Z values are better).

4K 64K 128K 1M
 1
 2
 3
 4
 5
 6
 7
 8

 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r o

f C
lie

nt
s

File Sizes

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

 0 0.2 0.4 0.6 0.8 1

Figure 9: TC-NFS’s relative performance when
Ramdisk is used as the backend storage system (higher
Z values are better).

�les and 3 clients, the relative throughput was 0.56. Still, per-
formance in other cases was better: with more than 6 clients,
relative throughput numbers in most cases exceeded 0.7.
In this non-transactional experiment, TC-NFS’s relative

performance did not drop as the number of clients increased,
suggesting that TC-NFS’s write throughput scales well with
the number of clients in this setting. This further con�rms
that the reason for the performance bottleneck seen in Fig-
ure 5 is that XFS’s slow CoW cloning.

Ramdisk. We also experimented with the Write�les work-
load on Ramdisk. We created a disk image �le on tmpfs,
formatted the image �le with XFS and mounted it as the
backend storage of TC-NFS and the vanilla NFS-Ganesha
server. We ran the Write�les workload on both TC-NFS and
the vanilla NFS-Ganesha server with the same sets of number
of clients and �le sizes settings; on TC-NFS we enabled trans-
action support. Figure 9 shows that using Ramdisk, TC-NFS’s
performance relative to the vanilla server increased signif-
icantly: the average relative throughput of writing small
�les was 0.86 (versus 0.19 on SSD). This is because the time
needed for fsync and CoW cloning is greatly reduced. Al-
though Ramdisk is an unlikely practical backend storage,
this experiment demonstrates the throughput possible; it
con�rms the source of overheads seen in Figures 5 and 6:
slow synchronous I/O and CoW operations on SSD.

8

4K 16K 64K 256K
 2
 4
 6
 8

 0

 0.5

 1

 1.5

 2

1K

File Sizes (log2)

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

(W
it

h
 S

h
ar

in
g

)

 0 0.5 1 1.5 2

(a) 5%

4K 16K 64K 256K
 2
 4
 6
 8

 0

 0.5

 1

 1.5

 2

1K

N
um

be
r

of
 C

lie
nt

s

File Sizes (log2)

 0 0.5 1 1.5 2

(b) 20%

Figure 10: TC-NFS’s relative performance when there
are shared �les among clients that execute the Write-
�les workload. Here relative throughput is de�ned as
TC-NFS’swrite throughputwhen there are shared�les
to that when each client write independent set of �les
(higher Z values are better).

Multi-client with shared �les. TC-NFS uses the lock man-
ager to coordinate concurrent compound execution and seri-
alizes con�icting compounds. To test TC-NFS’s performance
when multiple clients share some �les, we ran the Write�les
workload on TC-NFSwith the number of clients and �le sizes,
but clients share a fraction of �les towrite.We de�ne the shar-
ing degree as the percentage of �les in a client’s task list that
are shared by all clients. For example, if there are 5 clients,
each writing 200 �les, a 20% sharing degree means that 160
�les are unique to each client and 40 �les are common and
written by all clients. Files are accessed in random order.

Figure 10 shows TC-NFS’s relative performance when the
sharing degree is 5% and 20%. We believe that 5% and 20%
of sharing degrees are representative settings for real-world
workloads. According to Leung et al. [18], in a real-world
corporate data center, up to 16.6% of �les get shared by 2
clients concurrently; 7.3% of �les are shared by more than 2
clients in the corporate data center whereas only 0.3% of �les
are shared by over 2 clients in the engineering data center.
Thus, we can regard a 20% sharing degree as an extreme case
and 5% as a more common case.
Here, the baseline is TC-NFS’s write throughput when

running the Write�les workload without any �le sharing
among clients. A surprising discovery seen in Figure 10 is
that the performance of Write�les with shared �les was bet-
ter than without sharing. When the sharing degree was 5%,
the throughput of Write�les with �le sharing was 6% higher
than the baseline on average for small �les (i.e.,  128K);
with a sharing degree of 20%, Write�les with shared �les
was on average 9% faster for small �les. When the sharing
degree was 20%, there were 8 threads, and the �le size was
8K, the relative throughput was the highest and reached 1.77,
meaning 77% faster than the non-sharing workload.
While counter-intuitive, this is explained in Figures 6

and 7: TC-NFS’s total throughput increased when fewer
clients wrote �les in parallel with transaction support. When
clients write to the same �les, some compounds are serialized.

4K 16K 64K 256K 1M 4M 16M
8
7
6
5
4
3
2
1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1K

N
um

be
r o

f C
lie

nt
s

File Sizes (log2)

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t 0 0.2 0.4 0.6 0.8 1

Figure 11: TC-NFS’s relative performance when
multiple clients read 1,000 �xed-size �les in parallel.
Relative throughput is de�ned the same as that in
Figure 5 (higher Z values are better).

This serialization reduces parallelism, which reduces con-
tention in XFS’s CoW operation, and hence overall through-
put increases. When the �les were greater than 128K, the
relative throughput was close to 1.0. This is because NFS-
Ganesha’s RPC layer limits the size of a compound to 1MB.
Therefore, when the write size is large, fewer ����� oper-
ations �t in one compound. Because TC-NFS executes each
compound as a transaction, access to a list of �les with con-
�icting ones may not be serialized as these����� operations
are distributed across a larger number of compounds, each
of which only contains a few operations.

4.1.2 Read files. We also compared the throughput of TC-
NFS with the vanilla NFS-Ganesha server to read 1,000 �les
entirely, using the same set of �le sizes and number of clients;
we did not inject additional network latencies; see Figure 11.
The overhead of Read�les was smaller. For small �les (
128KB), the average relative throughput was 0.74 (35% over-
head). The worst case was when the �le size was 1KB and
there were 6 clients: relative throughput was 0.58 (72% over-
head), much better than the Write�les workload. This was
because TC-NFS did not create backups or recovery records
for ���� operations; therefore the overhead was smaller and
only came from looking up �le handles in LevelDB and lock-
ing the target �les. Without backup creation, TC-NFS’s read
throughput was able to scale normally with multiple clients,
and its relative throughput to the vanilla NFS-Ganesha server
was stable regardless of the number of clients.

4.1.3 Compounding degree. To amortize network and I/O
latency, it is desirable to write a large number of NFS �les at
once, but in practice, this is not always possible. To study the
potential bene�t, we varied the number of �les in each com-
pound as well as the �le size and compared the time taken by
TC-NFS and the vanilla NFS-Ganesha server to serve 1,000
compounds. We did not inject additional network latency in
this experiment. Figure 12 shows that when writing one 1KB
�le in each compound, TC-NFS performed the worst and
was 3.1⇥ slower than the vanilla NFS-Ganesha server; the

9

1K 2K 4K 8K 16K 32K 64K 128K

 1
 2

 4
 8

 16
 32 1

 1.5

 2

 2.5

 3

File
s P

er
 C

al
l (

lo
g 2

)

File Sizes (log2)T
ra

n
sa

ct
io

n
 S

lo
w

d
o

w
n

 (
x

)

 1 1.5 2 2.5 3

Figure 12: TC-NFS’s relative performance when writ-
ing a di�erent number of equally sized �les, ranging
from 1K to 128K. No extra latency added. The Y axis
shows the number of �les written per compound
(higher Z values are worse).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.2 5.2 10.2 15.2 20.2 25.2 30.2T
ra

n
sa

ct
io

n
 S

lo
w

d
o
w

n
 (

x
)

Network Latency (ms)

rm −Rf
cp

cp −Rs
ls −lR

Figure 13: TC-NFS’s runtime relative to the non-
transactional baseline when symbolically copying
(cp -Rs), listing (ls -Rl), and removing (rm -Rf) a Linux
source tree. The Y-axis is logarithmic (higher Y values
are worse).

overhead dropped to 63% when writing 32 ⇥ 128KB �les in a
single compound request. Therefore, compounds with fewer
operations can add signi�cant overhead due to TC-NFS’s
transactional nature; we can lower this overhead by packing
more operations and more data to write in a compound.

4.2 Macro-workloads
To evaluate TC-NFS using realistic applications, we ran work-
loads from GNU Coreutils and BSD Tar. We compare TC-
NFS’s with the non-transactional NFS-Ganesha server while
using the vNFS client for both.

GNU Coreutils. We used the ported Coreutils programs to
list, copy, symlink-copy and then remove the Linux-4.20.7
source tree: it contains 62,447 �les with an average size of
14.9KB, 4,148 directories with average 15 children per di-
rectory, and 35 symbolic links. Figure 13 shows the relative
runtime of recursive-listing (ls -lR), copy (cp -R), symlink-
copy (cp -Rs), and recursive-removal (rm -rf) on TC-NFS
compared with the vanilla NFS-Ganesha server.
When the network latency is 0.2ms, symlink-copy and

recursive-removal added 49.5% and 41.5% overhead, respec-
tively. Regular copy had a lower overhead of 34.5%. Metadata-
intensive workloads had higher overhead because the time

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.2 5.2 10.2 15.2 20.2 25.2T
ra

n
sa

ct
io

n
 S

lo
w

d
o
w

n
 (

x
)

Network Latency (ms)

tar−compress

untar−decompress

Figure 14: TC-NFS’s runtime relative to the non-
transactional baseline when archiving and extracting
the Linux-4.6.3 source tree, with and without xz
compression (higher Y values are worse).

used for these operations themselves (such as ������ and
������) was short and extra operations added by trans-
action support account for a larger part of the total run-
time. Recursive-listing had the smallest overhead of 18.3%
because it was not a mutating workload and TC-NFS did
not have to commit anything to the metadata database. Its
overhead came only from locking the directories ls -lR read.
As expected, when network latency increased, overheads
decreased because the time used for network transmission
started to dominate. When the latency was 30.2ms, the over-
head of all threeworkloads dropped below 10%. The overhead
of ls -lR dropped below 5% when the latency was greater
than 5ms, and got as low as 1.1% when latency was 30.2ms.

BSD Tar. We used tar to archive and compress a Linux-
4.20.7 source tree, and untar to decompress and extract the
created archive. tar created a 104MB archive through reading
62,447 small �les with the xz option enabled (default com-
pression used by kernel.org). untar extracted the archive by
reversing the process. There were also metadata operations
on 35 symbolic links and 4,148 directories.

Figure 14 shows the relative runtime of tar/untar on TC-
NFS compared to the vanilla NFS-Ganesha server. When
there was no added latency, untar’s worst-case overhead was
25%. When the latency was greater than 25ms, the overhead
dropped below 10%. untar’s overhead on TC-NFS mainly
came from database interactions as well as �les locking:
untar created a large number of new �les and thus TC-NFS
needed to create and commit recovery records regarding
these ����/������ operations, allocate UUIDs for new �les,
and commit these UUIDs with their corresponding �le sys-
tem handles and absolute paths into the database. When
creating new �les, TC-NFS needed to lock their parent di-
rectories; moreover, when writing data to �les, TC-NFS also
had to lock the target �les.

tar’s runtime on TC-NFS was close to that on vanilla NFS-
Ganesha server, and the worst case overhead was 6.1%. The
overhead was small because tar read a lot of �les but created

10

only one �le and constantly appended data to it. Reading
�les does not trigger backup or transactional database writes.
Workloads packed with mutating metadata operations im-
pose a higher overhead on TC-NFS, but tar performed only
onemetadata operation, to create the archive �le. Writing the
archive caused TC-NFS to create backups, but in practice, TC-
NFSwould not take time cloning data for append-only writes,
thanks to our range-backup mechanism (see Section 2.2).

Although transaction support introduces an overhead, ap-
plications still run much faster when using a vectorized vNFS
client with the transactional TC-NFS server, compared to
using an in-kernel NFSv4 client with the non-transactional
vanilla NFS-Ganesha server. For example, when using vNFS
as the client and TC-NFS as the server, and depending on
network latency, untar ran 2.73–116.7⇥, faster compared to
the in-kernel NFSv4 client with the vanilla NFS-Ganesha
server. Therefore, TC-NFS’s performance is fairly reasonable
when used together with a vectorized NFSv4 client. In fact,
transactional semantics makes more sense when one tries to
perform multiple operations at once, atomically.

5 RELATEDWORK
Transactions in database management systems [8, 16, 19, 23–
25] are well studied and have greatly simpli�ed application
development. Transactional storage (e.g., object, �le system,
or distributed) is also not new. However, to the best of our
knowledge, no prior work considered executing NFSv4 com-
pounds transactionally.We classify existing work as (1) trans-
actional �le systems and (2) transactional distributed storage.

Transactional�le systems. Transactional �le systems let de-
velopers o�oad the work of maintaining a consistent storage
state to the �le system. Microsoft’s TxF [37] and QuickSil-
ver’s [28] database �le systems leverage the early incorpora-
tion of transaction support into the OS. Transactional NTFS
(TxF) allows �le operations on an NTFS �le system volume
to be performed as a transaction. TxF transactions increase
application reliability by protecting data integrity across
failures and simplify application development by greatly
reducing the amount of error handling code.
Spillane et al. [33] implemented transactional �le access

via lightweight kernel extensions in Valor, enabling high-
performance transactions on any Linux �le system through
several new system calls. KVFS [32] implements a transac-
tional �le-system on top of a key-value database backed by
a VT-Tree—an LSM-Tree with enhancements to workloads
with large sequential I/Os.

TxFS [15] utilizes Ext4’s journal to support atomicity, con-
sistency, and durability; it o�ers a simple begin/commit/abort
application API, but it supports only data operations and not
meta-data ones that we needed. TxFS modi�es the kernel
VFS directly; our initial experiments on its prototype showed

high overhead for all I/Os even when clients do not need
transaction semantics. We chose to develop TC-NFS with
user-level code in part to avoid the need for custom ker-
nel changes. TxF, Valor, KVFS, and TxFS are all local �le
systems and only KVFS does not require platform-speci�c
dependencies or kernel changes.

Transactional distributed storage. Distributed �le systems
expose storage units to clients over a network. The Wave
Transactional File System (WTF) [7] is a distributed �le sys-
tem that lets applications operate on multiple �les transac-
tionally using a �le slicing API, boosting performance by
leveraging references to existing data. However, its multi-
�le operations are limited to yank and concatenate. Calv-
inFS [35] leverages a distributed database to build a scalable
distributed �le system with WAN replication and strong con-
sistency guarantees. It implements compound transactions
to scale read/write metadata operations but does not expose
an interface to perform multi-�le operations. Tyr [22] im-
plements transactions using a blob-storage API. It enables
applications to operate on multiple blobs atomically with-
out complex application-level coordination while providing
sequential consistency under heavy access concurrency. Un-
like TC-NFS, Tyr lacks support for transactions on metadata
operations as it is built on top of blob APIs.

6 CONCLUSIONS
NFSv4 compounds greatly improve performance but they
also impose a burden on application developments due to
complex error handling of large compounds. To solve this,
we proposed TC-NFS, an NFSv4-based network �le system
that supports transactional compound execution. TC-NFS
uses an embedded transactional database to manage its re-
covery records and mappings between NFS �le handles and
local �le handles. To minimize overhead, TC-NFS utilizes
Copy-on-Write mechanisms in modern �le systems, to create
partial or full �le backups without copying data unnecessar-
ily. Benchmarks of our prototype demonstrated that when
compounds are utilized, TC-NFS’s transaction support adds
approximately 1.1% to 25⇥ of overhead compared to a vanilla
non-transactional NFSv4 server. This overhead is acceptable
compared to the orders of magnitude of performance im-
provement from large compounds [1]; therefore we believe
that transactional execution of compounds is not only desir-
able but also practical.

ACKNOWLEDGMENTS
We thank the anonymous Systor reviewers for their valuable
comments. This work was made possible in part thanks to
Dell-EMC, NetApp, and IBM support; and NSF awards CCF-
1918225, CNS-1900706, CNS-1729939, and CNS-1730726.

11

REFERENCES
[1] Ming Chen, Dean Hildebrand, Henry Nelson, Jasmit Saluja, Ashok

Subramony, and Erez Zadok. vNFS: Maximizing NFS performance
with compounds and vectorized I/O. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST), pages 301–314,
Santa Clara, CA, February-March 2017. USENIX Association.

[2] Raymond Chen. When you start talking about numbers as small as
2�122, you have to start looking more closely at the things you thought
were zero. https://devblogs.microsoft.com/oldnewthing/20160114-
00/?p=92851, January 2016.

[3] MicrosoftCorporation. Servermessageblock (SMB)protocol. Technical
report [MS-SMB] - v20180912, Microsoft Corporation, September 2018.

[4] Philippe Deniel, Thomas Leibovici, and Jacques-Charles Lafoucrière.
GANESHA, a multi-usage with large cache NFSv4 server. In Linux
Symposium, page 113, 2007.

[5] Philippe Deniel, Thomas Leibovici, and Jacques-Charles
Lafoucriere. GANESHA, a multi-usage with large cache
NFSv4 server. Work-in-Progress Report, February 2007.
http://www.usenix.org/events/ fast07/wips/deniel.pdf .

[6] Paul Dix. Benchmarking leveldb vs. rocksdb vs. hyperleveldb vs.
lmdb performance for in�uxdb. https://www.in�uxdata.com/
benchmarkingleveldb-vs-rocksdb-vs-hyperleveldb-vs-lmdb-
performance-forin�uxdb/ (visitedon05/26/2017), 2014.

[7] Robert Escriva and Emin Gün Sirer. The design and implementation
of the Warp transactional �lesystem. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), pages
469–483, 2016.

[8] Facebook. RocksDB. https:// rocksdb.org/ , September 2019.
[9] Joseph EGonzalez, Yucheng Low,Haijie Gu, DannyBickson, andCarlos

Guestrin. Powergraph: Distributed graph-parallel computation on
natural graphs. In Presented as part of the 10th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 12), pages
17–30, 2012.

[10] Google. Protocol bu�ers. https://developers.google.com/protocol-
bu�ers.

[11] Google. Leveldb benchmarks. http://www.lmdb.tech/bench/
microbench/benchmark.html, Jul 2011.

[12] M. Haardt and M. Coleman. fsync(2). Linux Programmer’s Manual,
Section 2, 2001.

[13] Gavin Henry. Howard chu on lightning memory-mapped database.
IEEE Software, 36(6):83–87, 2019.

[14] D. R. Hipp. SQLite. www.sqlite.org, February 2006.
[15] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng, Vijay

Chidambaram, and Emmett Witchel. TxFS: Leveraging �le-system
crash consistency to provide ACID transactions. In Proceedings of the
Annual USENIX Technical Conference, Boston, MA, July 2018. USENIX
Association.

[16] Avinash Lakshman and Prashant Malik. Cassandra: structured storage
system on a p2p network. In Proceedings of the 28th ACM symposium
on Principles of distributed computing, PODC ’09, pages 5–5, New York,
NY, USA, 2009. ACM.

[17] Chuck Lam. Hadoop in action. Manning Publications Co., 2010.
[18] AndrewW Leung, Shankar Pasupathy, Garth R Goodson, and Ethan L

Miller. Measurement and analysis of large-scale network �le system
workloads. In USENIX annual technical conference, volume 1, pages
5–2, 2008.

[19] LevelDB, September 2019. https://github.com/google/ leveldb.
[20] Libuuid API. UUID - DCE compatible Universally Unique

Identi�er library, May 2009. http://man7.org/ linux/man-
pages/man3/uuid.3.html.

[21] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan
Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. WiscKey: Separating keys from values in SSD-conscious
storage. ACM Transactions on Storage (TOS), 13(1):5, 2017.

[22] Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jesús Montes, and
María S Pérez. Týr: Blob storagemeets built-in transactions. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 49. IEEE Press, 2016.

[23] MongoDB, Inc. MongoDB: The database for modern applications.
https://www.mongodb.com/ , September 2019.

[24] MySQL AB. MySQL: The world’s most popular open source database.
www.mysql.org, July 2005.

[25] Eric Newcomer and Philip A. Bernstein. Principles of Transaction
Processing. Morgan Kaufmann, 2009.

[26] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree
�lesystem. Trans. Storage, 9(3):9:1–9:32, August 2013.

[27] StephenM. Rumble, DiegoOngaro, Ryan Stutsman,Mendel Rosenblum,
and John K. Ousterhout. It’s time for low latency. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, 2011.

[28] F. Schmuckand J.Wylie. Experiencewith transactions inQuickSilver. In
Proceedingsof the13thACMSymposiumonOperatingSystemsPrinciples
(SOSP ’91), pages 239–253, Paci�c Grove, CA, October 1991. ACM Press.

[29] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. Network �le system (NFS) version 4 protocol. RFC
3530, NetworkWorking Group, April 2003.

[30] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. NFS version 4 protocol. RFC 3530, NetworkWorking
Group, April 2003.

[31] S. Shepler, M. Eisler, and D. Noveck. NFS version 4 minor version 1
protocol. RFC 5661, NetworkWorking Group, January 2010.

[32] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Malpani, Binesh An-
drews, Justin Seyster, and Erez Zadok. Building workload-independent
storage with VT-trees. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), San Jose, CA, February 2013. USENIX
Association.

[33] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and M. Chinni.
Enabling transactional �le access via lightweight kernel extensions.
In Proceedings of the Seventh USENIX Conference on File and Storage
Technologies (FAST ’09), pages 29–42, San Francisco, CA, February 2009.
USENIX Association.

[34] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck. Scalability in the XFS �le system. In Proceedings of the Annual
USENIX Technical Conference, pages 1–14, SanDiego, CA, January 1996.

[35] Alexander Thomson and Daniel J Abadi. CalvinFS: Consistent WAN
replication and scalable metadata management for distributed �le
systems. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST), Santa Clara, CA, February 2015. USENIX
Association.

[36] J Venner. Pro hadoop: Build scalable. Distributed Applications in the
Cloud, Berkeley: Apress, 2009.

[37] S.Verma. TransactionalNTFS (TxF). http://msdn2.microsoft.com/en-
us/ library/aa365456.aspx , 2006.

[38] M. Mitchell Waldrop. The chips are down for Moore’s law. Nature,
530(7589):144–147, 2016.

[39] TomWhite. Hadoop: The de�nitive guide. " O’Reilly Media, Inc.", 2012.
[40] Matei Zaharia,Mosharaf Chowdhury,Michael J Franklin, Scott Shenker,

Ion Stoica, et al. Spark: Cluster computingwithworking sets. HotCloud,
10(10-10):95, 2010.

12

