
Linux NFSv4.1 Performance Under a Microscope
Ming Chen,1 Dean Hildebrand,2 Geoff Kuenning,3 Soujanya Shankaranarayana,1

mchen@cs.stonybrook.edu, dhildeb@us.ibm.com, geoff@cs.hmc.edu, soshankarana@cs.stonybrook.edu

Vasily Tarasov,1,2 Arun O. Vasudevan,1 Erez Zadok,1 and Ksenia Zakirova3

{vass, aolappamanna, ezk}@cs.stonybrook.edu, kzakirova@g.hmc.edu
1Stony Brook University, 2IBM Research—Almaden, and 3Harvey Mudd College

Appears as an extended abstract in the proceedings of the 2014 USENIX LISA conference

Abstract

NFS is a highly popular method of consolidating file

resources. NFSv4.1, the latest version, has improve-

ments in security, maintainability, and performance.

We present a detail-oriented benchmarking study of

NFSv4.1 to help system administrators understand its

performance and take its advantage in production sys-

tems.

Our testbed consists of six identical Dell machines.

One NFS server connects to five clients via a 1GbE net-

work. We began with a random read workload, where

the five clients randomly read a 20GB NFS file exported

by the server for 5 minutes. We observed that, in Linux

2.6.32, each client’s throughput started around 22MB/s

but gradually decreased to around 5MB/s. We found the

culprit to be the clients’ read-ahead algorithm, which is

aggressive and vulnerable to false-positive error. The

clients pre-fetched data not needed and wasted around

80% of network bandwidth. The read-ahead algorithm

in Linux 3.12.0 is more conservative and the clients

achieved consistent 22MB/s throughput.

Switching to sequential read, we observed a winner-

loser phenomenon where three (winners) clients’

throughput is 28MB/s, while the other (losers) two’s

throughput is 14MB/s. The winners and losers differ in

multiple runs of the same experiments. This is caused

by a HashCast effect on our NIC with eight transmit

queues. The Linux TCP stack uses hashing when de-

ciding which TCP flow goes to which NIC queue. The

clients with collided hash share one queue, and become

losers as each queue has the same throughput. We note

that multi-queue NIC are popular nowadays, and Hash-

Cast affects multi-queue NIC servers hosting concurrent

data-intensive TCP streams, such as file-servers, video-

servers, etc.

We benchmarked NFS delegation which transfers the

control of a file from the server to clients. We found

delegation especially helpful for file locking operations

which, in addition to incurring multiple NFS messages,

invalidate the locked file’s entire client-side cache. Our

micro-benchmark showed that NFS delegation saved up

to 90% of network traffic and significantly boosted per-

formance. Delegations is expected to benefit perfor-

mance most of the time as “file sharing is rarely con-

current”. But it hurts performance if concurrent and

conflicting file sharing does happen. We found that, in

Linux, a delegation conflict incurs a delay of at least

100ms—more than 500× the RTT of our network!

We found that writing NFS files with the O SYNC

flag, which causes more metadata to be written syn-

chronously, has a side effect on the journaling of ext4,

and can wastes more than 50% of disk write band-

width. We also noted that the TCP Nagle algorithm,

which trades latency for bandwidth by coalescing multi-

ple small packets, may hurt the performance of latency-

sensitive NFS workloads. However, the Linux NFS has

no mechanism to turn off the algorithm, even though the

socket API supports this with the SO NODELAY option.

By showing how unexpected behaviors in memory

management, networking, and local file systems cause

counterintuitive NFS performance, we call for system

administrators’ attention to NFSv4.1’s intricate interac-

tions with other OS subsystems. For a more flexible

NFS, we urge the NFS developers to avoid hard-coded

parameters and policies.

1


