
Kurma: Secure
Geo-DistributedMulti-Cloud Storage Gateways

Ming Chen and Erez Zadok
Stony Brook University

{mchen,ezk}@fsl.cs.sunysb.edu

ABSTRACT
Cloud storage is highly available, scalable, and cost-e�cient.
Yet, many cannot store data in cloud due to security concerns
and legacy infrastructure such as network-attached storage
(NAS). We describe Kurma, a cloud storage gateway system
that allows NAS-based programs to seamlessly and securely
access cloud storage. To share �les among distant clients,
Kurmamaintains a uni�ed �le-system namespace by replicat-
ing metadata across geo-distributed gateways. Kurma stores
only encrypted data blocks in clouds, keeps �le-system and
security metadata on-premises, and can verify data integrity
and freshness without any trusted third party. Kurma uses
multiple clouds to prevent cloud outage and vendor lock-in.
Kurma’s performance is 52–91% that of a local NFS server
while providing geo-replication, con�dentiality, integrity,
and high availability.

CCS CONCEPTS
• Securityandprivacy→Managementandqueryingof
encrypted data; • Computer systems organization →
Cloud computing;

KEYWORDS
Multi-cloud, cloud storage gateways, storage security

ACMReference format:
Ming Chen and Erez Zadok. 2019. Kurma: Secure Geo-Distributed
Multi-Cloud Storage Gateways. In Proceedings of The 12th ACM In-
ternational Systems and Storage Conference, Haifa, Israel, June 3–5,
2019 (SYSTOR’19), 12 pages.
https://doi.org/10.1145/3319647.3325830

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR’19, June 3–5, 2019, Haifa, Israel
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325830

1 INTRODUCTION
Cloud storage has obvious security challenges since tenants
do not control the physical media of their data. Cloud users
also su�er from long latency when data need to be frequently
transferred between branch o�ces and remote clouds. On-
premises cloud storage gateways alleviate these problems by
keeping sensitive data in private storage media, safeguarding
against attacks in public clouds, and caching hot data locally.

Kurma is a cloud-based �le system designed for organiza-
tions that have several to dozens of physical branch o�ces
and want to share data securely among the o�ces. Kurma
uses geo-distributed cloud-storage gateways (one per o�ce)
to collectively provide a uni�ed �le-system namespace for
all o�ces. Each Kurma gateway is physically a coordinated
cluster of on-premises machines, and provides NFS services
to local clients. Kurma gateways use multiple public clouds
as back-ends and use on-premises storage to cache hot data.
Kurma considers the on-premises gateways trusted, and

the public clouds untrusted. Kurma stores only encrypted
and authenticated �le data blocks on clouds; it keeps all sen-
sitive metadata in trusted gateways, including �le-system
metadata, encryption keys, and integrity metadata of data
blocks. Many cloud object stores are eventually consistent,
meaning they may return stale data [4, 6, 59] as with replay
attacks. Kurma e�ciently detects stale data using timestamps
and versions. Kurma has a simple and secure key manage-
ment scheme that does not need any trusted third parties.

Kurma stores data in multiple clouds to tolerate cloud fail-
ures. Kurma increases data availability across clouds using
replication [61], erasure coding [43, 44], or secret sharing [35,
46]. With secret sharing, Kurma provides an additional level
of security such that one compromised cloud cannot recover
any part of the data. Kurma supports AWS S3, Azure Blob
Store, Google Cloud Storage, and Rackspace Cloud Files.
Each Kurma gateway maintains a copy of the whole �le-

system metadata, so that it can still serve local clients after
a network partition. Kurma minimizes its metadata size by
using large data blocks and compression. Metadata changes
made by a Kurma gateway are asynchronously replicated to
all other gateways using Hedwig [54], a publish-subscribe
system that provides guaranteed-delivery of large amounts of
data across the Internet. Kurma provides NFS close-to-open
consistency among clients connected to a common Kurma

Appears	in	the	proceedings	of	the	12th	ACM	Interna6onal	Systems	and	Storage	Conference	(ACM	SYSTOR	'19)

gateway. For clients across geo-distributed gateways, Kurma
provides FIFO consistency [36], trading o� consistency for
higher performance and availability. Thus, operations in dif-
ferent gateways may be con�icting. Kurma detects con�icts
and provides resolution for common types of con�icts.
Kurma uniquely combines many advanced and industry-

proven techniques from prior studies [8, 16, 22, 25, 35, 45, 54]
to achieve high security and availability in a simple way.

The rest of this paper is organized as follows. §2 discusses
the design. §3 describes the implementation of our Kurma
prototype. §4 evaluates its performance. §5 discusses related
work. §6 concludes and discusses future work.

2 DESIGN
We present Kurma’s threat model, design goals, architecture,
metadata management, security, multi-cloud redundancy,
consistency, and persistent caching.

2.1 Threat Model
Our threat model re�ects the settings of an organization with
o�ces in multiple regions, and employees in these o�ces
store and share �les via Kurma gateways.
Public clouds are not trusted. Data stored in cloud may

be leaked or tampered by malicious tenants and compro-
mised providers. Transferring data to clouds is vulnerable
to man-in-the-middle attacks. Eventually-consistent clouds
may return stale data. Cloud outage happens [3, 57].
Clients are trusted. Clients represent internal employees

and are generally trustworthy with proper access control.
Kurma supports NFSv4 with advanced ACLs [50].
Kurma gateways are trusted. They provide consolidated

security services. Kurma gateways can authenticate each
other and establish trusted secret channels. Each gateway is
a cluster of computers that �ts in one access-controlled room.

2.2 Design Goals
Kurma has four goals in descending order of importance:

(1) Strong security: Kurma should ensure con�dential-
ity, integrity, and freshness to both �le data andmeta-
data while outsourcing storage to clouds.

(2) High availability: Kurma should have no single
point of failure, and be available despite network
partitions and outage of a small subset of clouds.

(3) High performance: Kurma should minimize the
performance penalty of its security features, and
overcome the high latency of remote cloud storage.

(4) High�exibility: Kurma should be con�gurable in
many aspects to support �exible trade-o� among
security, availability, performance, and cost.

Region
1

Clients

Region
2

metadata

metadata

metadata

Region
3

Azure
S3

Google

Untrusted

Secure
Gateway

Public Clouds

Rackspace

storage

Figure 1: Kurma architecture with three gateways.
Each dashed oval represents an o�ce in a region,
where there are clients and a Kurma gateway. Each
gateway is a cluster of coordinated machines rep-
resented by three inter-connected racks. The green
arrows connecting gateways are private secret chan-
nels for replicating �le-system and security metadata.
Each gateway has local storage for cache. Clocks of all
machines are synchronized using NTP [41].

2.3 Architecture
Figure 1 shows Kurma’s architecture. Kurma uses trusted
on-premises machines and storage to build gateways that
seamlessly protect data in clouds. For strong security, Kurma
uses public clouds to store only encrypted �le blocks, but
not any metadata. Instead, Kurma store all metadata, includ-
ing �le block mapping and �le keys, in trusted on-premises
machines; and uses a secret channel between each pair of
gateways for distributing metadata among gateways.

For high availability, Kurma uses multiple clouds as back-
ends. Kurma stores �le-system metadata in ZooKeeper [25],
which is distributed and highly available. Each Kurma gate-
way runs a separate ZooKeeper instance that stores a full
replica of the whole �le-system metadata; thus, outage in
one region will not bring down gateways in other regions.
For high performance, each Kurma gateway uses a per-

sistent write-back cache to avoid the long latency of cloud
accesses. Kurma replicates metadata asynchronously among
gateways detecting and resolving con�icts as needed.
To be �exible, Kurma supports three redundancy mech-

anisms when storing data in multiple clouds: replication,
erasure coding, and secret sharing. They enable a wide range
of trade-o�s among availability, performance, and costs.

Figure 2 shows the Kurma servers and their components.
Each gateway has three types of servers. NFS Servers export
�les to clients via NFS; each NFS Server has a Cache Module

2

Clients

AzureS3 GooglePublic
Clouds

Other
GatewaysKurma Gateway

Rackspace

Figure 2: Kurma gateway components. A gateway con-
sists of three types of servers as separated by dashed
lines: NFS, Gateway, and Metadata Servers. Each NFS
Server has a persistent Cache Module and a Gateway
Module. Each Gateway Server has six modules: �le
system (FS), con�guration (Con�g),metadata, security,
cloud, and garbage collection (GC). Each Metadata
Server has a ZooKeeperModule and a HedwigModule.
NFS Servers and Metadata Servers have local storage
for data cache andmetadata backups, respectively.

that has a persistent cache (see §2.8). For requests to meta-
data and uncached data, each NFS Server uses its Gateway
Module to talk to Gateway Servers’ FS Module using RPCs.

Gateway Servers break �les into blocks, and use its Cloud
Module to store encrypted blocks as key-value objects in
clouds after replication, erasure coding, or secret sharing
(according to con�guration). The Con�g Module parses con-
�guration parameters; the Security Module performs au-
thenticated encryption of each block; the Garbage Collection
(GC) Module deletes stale data blocks from clouds and stale
metadata from metadata servers. The FS Module manages
�le-system namespace and handles con�icts (see §2.7).
Metadata Servers run ZooKeeper to store the �le-system

metadata (e.g., �le attributes, block versions). They also run
Hedwig [54] to receive messages of metadata updates from
other gateways. For each message, Hedwig noti�es a respon-
sible Gateway Server (speci�cally its Metadata Module) to
apply the metadata update in the local gateway.

Kurma supports volumes, each of which is a separate �le-
system tree that can be exported via NFS to clients. Kurma
assigns an NFS Server and a Gateway Server to each vol-
ume; uses ZooKeeper to coordinate the assignment. A client
can mount to any NFS Server, which will either process the
client’s NFS requests, or redirect the requests to the respon-
sible NFS Server using NFSv4 referrals [50].

2.4 MetadataManagement
Each Kurma gateway maintains a replica of the entire �le-
system metadata in a local ZooKeeper instance, thus meta-
data operations can be processed without synchronizing
with other gateways. This is safer and faster than storing

Figure 3: Simpli�ed Kurma data structures in Thrift.
i16 is a 16-bit integer. Thrift does not have a native
i128; we emulated it using two i64s. list and map
are builtin linear and associative containers, respec-
tively. We omit common attributes such as mode, uid,
and other data structures for directories and volumes.

metadata in clouds. Each Kurma gateway asynchronously
replicates metadata changes to all other gateways.

Figure 3 showsKurma’s �le-systemmetadata format. Kurma
uniquely identi�es a gateway using a 16-bit GatewayID;
and a �le-system object using an ObjectID. Kurma never
reuses ObjectIDs because its 128-bit id allows one billion
machines to create one billion �les per second for more than
1013 years. In ObjectID, the creator distinguishes ob-
jects that are created simultaneously in multiple gateways
with the same id; the type tells if it is a �le or a directory.

Besides common attributes (e.g., size and mode), each
Kurma �le-system object has a timestamp of the last update
by any remote gateway and a set of �ags. One such �ag is
to indicate if a �le is only visible in one gateway but not in
other gateways; it is used to resolve con�icts (see §2.7).

As shown in Figure 3, a Kurma �le includes ObjectIDs
of the �le and its parent, attributes, and the block shift (i.e.,
lo�2 of the block size). block_versions and block-
_creators record �le blocks’ version numbers and creator
gateways, respectively. redundancy encodes the redun-
dancy type and parameters (e.g., “r-4” means replication with
four copies). cloud_ids encodes the cloud backend; for
example, “S3a” represents a bucket named “a” in Amazon’s
AWS S3. keymap stores the �le’s secret key (see §2.5).

Storingmetadata in distributed and durable ZooKeeper [25]
makes Kurma resilient to node failures and power outage.
Since ZooKeeper is an in-memory store, thus Kurma, like
HDFS [9] and GFS [21], also keeps its metadata in-memory
so that metadata operations are fast. Kurma minimizes the
memory footprint of its metadata using three strategies:

(1) Kurma uses a large block size (defaults to 1MB but
con�gurable) so that �les have fewer blocks and thus
less metadata. A large block size also helps through-
put because cloud accesses are often bottlenecked by
network latency instead of bandwidth; and it saves

3

Figure 4: Authenticated encryption of a Kurma �le
block. AES runs in CTRmode without padding.

costs because some clouds (e.g., AWS and Azure)
charge by request counts.

(2) For each block, Kurma stores only a 64-bit version
number and a 16-bit GatewayID in ZooKeeper;
stores other metadata (e.g., the o�set and timestamp)
in clouds; and generates the cloud object key on the
�y as illustrated in Figure 4.

(3) Kurma compresses its metadata. The block version
numbers are particularly compressible because most
versions are small and neighboring versions are of-
ten numerically close thanks to data locality.

2.5 Security
Kurma stores each encrypted block as a key-value object:
the key is derived from the block’s metadata; the value is a
concatenation of ciphertext andmessage authentication code
(MAC) as shown in Figure 4. Kurma protects data integrity
by embedding into each cloud object encrypted metadata
including the block o�set, version, creator, and timestamp.
Kurma uses the o�set to detect intra- and inter-�le swapping
attacks that swap data blocks; each �le has a unique key.

To check data freshness, Kurma broadcasts block version
numbers among all gateways. This is feasible in Kurma be-
cause each region has only one gateway and the total number
of gateways is small. Kurma incorporates a block’s version
number into its cloud object key; so updating blocks does
not overwrite existing cloud objects but creates new objects
instead; Kurma garbage-collects old blocks lazily [11]. When
a Kurma gateway reads a block during an inconsistency win-
dow of an eventually-consistent cloud, the gateway, instead
of reading stale data, may �nd the new block missing and
then fetch it from other clouds. Kurma ensures that each
version of a block has a unique cloud object key: when a
�le is truncated, Kurma does not discard the version num-
bers of truncated blocks until the �le is completely removed;
when the truncated blocks are added back later, their version
numbers are incremented from the existing values instead of
starting at zero. Kurma uses block_creators to di�eren-
tiate the same version of a block created simultaneously by

multiple gateways. Block versions also help prevent replay
attack: since each block version generates a unique cloud
object key (see Figure 4), attackers could not tell whether
two objects are two versions of the same block.
Kurma guarantees that a client always reads fresh data

that contains all updates made by clients in the same region.
However, Kurma cannot guarantee that a client always sees
all updates made by clients in other regions. This is because
network partitions may disrupt the replication of version
numbers among gateways. This is a trade-o� Kurma makes
between availability and partition tolerance [10].

Each Kurma gateway has a master key pair, which is used
for asymmetric encryption (RSA) and consists of a public key
(PuK) and a private key (PrK). The public keys are exchanged
manually among geo-distributed gateways by security per-
sonnel. This is feasible because one geographic o�ce has
only one Kurma gateway, and key exchange is only needed
when opening a new o�ce in a new location. This key dis-
tribution scheme does not need any trusted third parties.
Knowing all the public keys makes it easy for gateways to au-
thenticate each other, and allows Kurma to securely replicate
metadata among gateways. When creating a �le, the creator
gateway randomly generates a 128-bit symmetric encryption
�le key (FK) and uses it to encrypt the �le’s data blocks. Then,
for each Kurma gateway with which the creator is sharing
the �le (i.e., an accessor), the creator encrypts the FK using
the accessor’s public key (PuK) using RSA, and then gener-
ates a hGatewayID, EFKi pair where EFK is the encrypted
FK. All the hGatewayID, EFKi pairs are stored in the �le’s
metadata (i.e., keymap in Figure 3). When opening a �le, an
accessor gateway �rst �nds its hGatewayID, EFKi pair in the
keymap, and then recovers FK by decrypting the EFK using
its private key (PrK). During encryption, Kurma uses the con-
catenation of the block o�set and version as the initialization
vector (IV); this avoids the security �aws of reusing IVs [18].

2.6 Multiple Clouds
By storing data redundantly on multiple clouds, Kurma can
achieve high availability and tolerate cloud failures. Kurma
supports three redundancy types: (1) replication, (2) erasure
coding, and (3) secret sharing. They represent di�erent trade-
o�s among reliability, security, space and computational
overhead. (1) To tolerate the failure of f clouds, we need to
replicate data over f +1 clouds. A write operation �nishes
only when we have successfully placed a replica in each of
the f +1 clouds. A read operation, however, �nishes as soon
as one valid replica is read. The storage overhead and write
ampli�cation are both (f +1)⇥. The read ampli�cation is zero
in the best case (no failure), but (f +1)⇥ in the worst case (f
failures). (2) Using erasure coding to tolerate the failure of
f clouds while at least k clouds are available, Kurma breaks

4

each block into k parts, transforms them into k+ f parts us-
ing an erasure code, and then stores each part in one cloud. In
the best case, a read operation has to read from k clouds but
each read size is 1

k of the original block size. In the worst case,
it has to read from k+ f clouds. The storage overhead and
write ampli�cation are both f +k

k ⇥. Unlike replication, era-
sure coding requires extra computation. Speci�cally, Kurma
uses Reed-Solomon [44] from the Jerasure library [43]. (3) A
secret sharing algorithm has three parameters: (n,k,r), where
n > k > r . It transforms a secret of k symbols into n shares
(where n > k) such that the secret can be recovered from
any k shares but it cannot be recovered even partially from
any r shares. A secret sharing algorithm simultaneously pro-
vides fault tolerance and con�dentiality. It is more secure
than erasure coding by preventing r (or fewer) conspiring
clouds from getting any secret from the cloud objects. The
storage overhead and read/write ampli�cation of secret shar-
ing are the same as erasure coding. Kurma’s secret sharing
algorithms include AONT-RS [46] and CAONT-RS [35].

Kurma always encrypts data blocks before adding redun-
dancy. A �le’s redundancy type and parameters are deter-
mined by con�guration upon creation; and then stored in its
metadata (i.e., redundancy and cloud_ids in Figure 3).

2.7 File Sharing Across Gateways
To share �les across geo-distributed gateways, Kurma main-
tains a uni�ed �le-system namespace by replicating and
replaying metadata changes across gateways. Since �le shar-
ing is “rarely concurrent” [31], Kurma replicates metadata
changes asynchronously, without waiting for replies. This
asynchrony makes metadata operations fast; it also keeps a
gateway available to local clients when the network connect-
ing gateways is partitioned. In other words, Kurma trades
o� consistency for performance, availability, and partition
tolerance [10]. This degree of trade-o� is acceptable because
the relaxed consistency is still the same as provided by tra-
ditional NFS servers. That is, NFS clients in a local region
follow the close-to-open consistency model [32]: when a
client opens a �le, the client sees all changes made by other
clients in the same region who closed the �le before the
open. The client, however, may not see changes from remote
gateways until the changes propagate to the local region.
Kurma uses Hedwig [54] to replicate metadata in an “all-

to-all broadcast” manner [4]. For instance, after a gateway
performs a write operation, it broadcasts the incremented
version numbers to all other gateways. This broadcasting
is feasible because Kurma was designed for a small num-
ber of gateways. Hedwig is a pub-sub system optimized for
communication across data-centers, and it protects its com-
munication using SSL. Using pub-sub services to replicate
data is common in geo-distributed systems; Facebook uses
a pub-sub system called Wormhole [48] to replicate data.

Across gateways, Kurma provides FIFO consistency [36]: it
preserves the order of operations in a single gateway, but not
across gateways. This is because Hedwig delivers messages
from a particular region in the same order to all subscribers
globally, but it may interleave messages from di�erent re-
gions [56]. Kurma synchronizes dependent operations when
replaying messages. For example, Kurma ensures that a pre-
ceding directory-creation operation is �nished before replay-
ing an operation that creates a �le in that directory.
Con�icts may happen during the asynchronous replica-

tion; Kurma adds extra information inside Hedwig messages
to detect and resolve con�icts. For example, each �le-creation
message contains not only the parent directory and the �le
name, but also the ObjectID of the locally created �le. If a
remote gateway happens to create a �le with the same name
simultaneously, Kurma can di�erentiate the two �les using
their ObjectIDs.

Resolving con�icts can be complex and even requires hu-
man intervention [28, 47]. Fortunately, the majority of con-
�icts can be resolved automatically [45]. Kurma contains
default resolvers for three common types of con�icts: (1) con-
tent con�icts when two or more gateways write to the same
�le block simultaneously, (2) name con�icts when two or
more gateways create objects with the same name in one di-
rectory, and (3) existence con�icts when one gateway deletes
or moves a �le-system object (e.g., delete a directory) while
another gateway’s operations depend on the object (e.g., cre-
ate a �le in that directory). Our separate technical report [11]
provides further details on Kurma’s con�ict resolution.

2.8 Persistent Caching
Each Kurma NFS Server has a persistent cache so that hot
data can be read in the low-latency on-premises network
instead of from remote clouds. The cache stores plaintext
instead of ciphertext so that reading from the cache does not
need decryption; this is safe because on-premises machines
are trusted in our threat model. The cache is a write-back
cache that can hide the high latency of writing to clouds.
The cache is stored on persistent storage because stable NFS
�����s require dirty data to be �ushed to persistent stor-
age [49] before replying. The cache also maintains additional
metadata in stable storage so that dirty data can be recov-
ered after crashes; the metadata includes a list of dirty �les
and the dirty extents of each �le. For each cached �le, the
cache maintains a local sparse �le of the same size. Insertions
(evictions) of �le blocks are performed by writing (punching
holes) to the sparse �les at the corresponding locations. Dirty
cache items are not replicated intra- or inter-gateway.

To maintain NFS’s close-to-open cache semantics, Kurma
revalidates a �le’s persistent cache content when processing
an NFS open request on the �le. As discussed in §2.4, Kurma
stores a �le attribute that is the timestamp of the last change

5

made by any other remote gateway (i.e., remote_ctime).
The cache compares its locally-saved remote_ctimewith
the latest remote_ctime: if they match, it means that no
other gateway has changed the �le, and the content is still
valid; otherwise, the content is invalidated.

To allow �exible trade-o� between consistency and la-
tency, Kurma’s cache uses a parameter called write-back wait
time (WBWT) to control whether the write-back should be
performed synchronously or asynchronously upon �le close.
WhenWBWT is set to zero, write-back is performed right
away and the close request is blocked until the write-back �n-
ishes. WhenWBWT is greater than zero, Kurma �rst replies
to the close request, and then waitsWBWT seconds before
starting to write-back dirty cache data to the clouds.

3 IMPLEMENTATION
We have implemented a Kurma prototype that includes all
features described in the design, except for the partition of
volumes among multiple NFS servers. We have tested our
prototype thoroughly using unit tests and ensured that it
passed all applicablexfstests [63] cases.We implemented
the Kurma NFS server in 15,800 lines of C/C++ code, and the
Gateway server in 22,700 lines of Java code (excluding code
auto-generated by Thrift). We have open-sourced all of our
code at https://github.com/sbu-fsl/kurma.
We implemented Kurma’s NFS Servers (see Figure 2) on

top of NFS-Ganesha [14, 42], a user-space NFS server. NFS-
Ganesha can export �les from many backends to NFS clients
through its File System Abstraction Layer (FSAL). FSAL is
similar to Linux’s Virtual File System (VFS) and is also stack-
able [23, 64]. We implemented the Gateway Module as an
FSAL_KURMA layer, and the CacheModule as anFSAL_PCACHE
layer that is stacked on top of FSAL_KURMA.FSAL_PCACHE
always tries to serve NFS requests from the local cache; it
only redirects I/Os to the underlying FSAL_KURMA in case
of cache miss or write back. FSAL_PCACHE groups adjacent
small I/Os to form large I/Os so that slow cloud accesses are
amortized. FSAL_PCACHE uses the LRU algorithm to evict
blocks and ensures that evicted dirty blocks were written
back �rst. FSAL_KURMA requests �le-system operations to
Gateway Servers using RPCs implemented in Thrift [55].
We implemented the Gateway Servers in Java. The File-

System Module is a Thrift RPC server that communicates
with Kurma’s NFS Servers; it is implemented using Thrift’s
Java RPC library. The Metadata Module uses the ZooKeeper
client API to store metadata; it also uses Curator [53], a
ZooKeeper utility library. Before being stored into ZooKeeper,
metadata is compressed using Thrift’s compressing data se-
rialization library (TCompactProtocol). The Metadata
Module uses the Hedwig client API to subscribe to remote
metadata changes and to publish local changes. The secret

channels connecting Kurma gateways are SSL socket con-
nections. The Security Module uses Java 8’s standard cryp-
tographic library. The Cloud Module includes cloud drivers
for Amazon S3, Azure Blob Store, Google Cloud Storage, and
Rackspace Cloud Files; it also includes a redundancy layer for
replication, erasure coding, and secret sharing. We adapted
the cloud drivers code from Hybris [15, 16]. Our erasure cod-
ing uses the Jerasure library [43] and its JNI wrapper [58].
Our secret sharing library is based on C++ code from CD-
Store [34]; we implemented JNI wrapper for it.

Our implementation includes �ve optimizations: (1) Gen-
erating a �le’s keymap needs to encrypt the �le’s key using
slow RSA for each gateway (see §2.5). To hide the high la-
tency of RSA encryptions, Kurma uses a separate thread to
pre-compute a pool of keymaps, so that Kurma can quickly
take one keymap out of the pool when creating a �le. (2) To
reduce the metadata size written to ZooKeeper, Kurma stores
a �le’s keymap in a child znode (a ZooKeeper data node)
under the �le’s znode. For large �les, Kurma also splits
their block versions and creators into multiple child znodes
so that a write only updates one or two small znodes of
block versions. (3) Kurma metadata operations are expensive
because one ZooKeeper update requires many network hops
among the distributed ZooKeeper nodes. Furthermore, a �le-
system operation may incur multiple ZooKeeper changes.
For example, creating a �le requires one creation of the �le’s
znode, one creation of its keymap znode, and one update
of its parent directory’s znode. To amortize ZooKeeper’s
high latency, we batch multiple ZooKeeper changes into a
single ZooKeeper transaction [25]. This almost doubled the
speed of metadata operations. (4) Latencies of clouds vary
signi�cantly over time. To achieve the best performance,
Kurma sorts cloud providers by their latencies every N sec-
onds (N is a con�gurable parameter) and uses the K fastest
clouds as backends whereK depends on operations (e.g., 1 for
reads). (5) To reduce the frequency of accessing the Metadata
Servers, Kurma’s Gateway Servers cache clean metadata in
memory using Guava’s LoadingCache [26]. The cached
metadata includes attributes of hot �le-system objects, block
versions of opened �les, and hot directory entries.

4 EVALUATION
We evaluated Kurma’s security and performance. We also
compared Kurma to a traditional NFS server.

4.1 Testbed Setup
Our testbed consists of two identical Dell PowerEdge R710
machines, each with a six-core Intel Xeon X5650 CPU, 64GB
of RAM, and an Intel 10GbE NIC. Each machine runs Linux
KVM [29] to host a set of identical VMs that represent a
cluster of Kurma servers in one gateway. Each VM has two
CPU cores and 4GB of RAM. Each VM runs Fedora 25 with

6

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

16KB 64KB 256KB 1MB 4MB

L
at

en
cy

 (
m

s,
 l

o
g

2
)

Cloud Object Size

AWS
Azure

Google
Rackspace

(a) Read

64

256

1024

4096

16384

65536

262144

1048576

16KB 64KB 256KB 1MB 4MB

L
at

en
cy

 (
m

s,
 l

o
g

2
)

Cloud Object Size

AWS
Azure

Google
Rackspace

(b) Write

Figure 5: Latency of reading and writing cloud objects. The �ve ticks of each boxplot represent (from bottom to
top): theminimum, 25th percentile, median, 75th percentile, and themaximum. Note: both axes are in lo�2 scales.

a Linux 4.8.10 kernel. To emulate WAN connections among
gateways, we injected a network latency of 100ms using
netem between the two sets of VMs; we chose 100ms be-
cause it is the average latency we measured between the
US east and west coasts. We measured a network latency of
0.6ms between each pair of servers in the same gateway.
For each gateway, we set three VMs as three Metadata

Servers (see Figure 2) running ZooKeeper 3.4.9 and Hedwig
4.3.0. Each gateway also has a Kurma NFS Server and a Gate-
way Server; the two servers communicate using Thrift RPC
0.12.3. The Kurma NFS Server runs NFS-Ganesha 2.3 with
our FSAL_PCACHE and FSAL_KURMA modules; FSAL_-
PCACHE uses an Intel DC S3700 200GB SSD for its persistent
cache. The Gateway Server runs on Java 8. Each gateway has
another VM running as an NFSv4.1 client. For comparison,
we set up a traditional NFS server on a VM. The traditional
NFS server runs NFS-Ganesha with its vanilla FSAL_VFS
module. FSAL_VFS exports to the client an Ext4 �le sys-
tem, stored on a directly-attached Intel DC S3700 200GB SSD.
The traditional NFS server does not communicate with other
VMs other than the client.

4.2 Security Tests
We tested and veri�ed that Kurma can reliably detect secu-
rity errors and return valid data available in other healthy
clouds. To test availability, we manually deleted blocks of a
�le from one of the clouds, and then tried to read the �le from
an NFS client. We observed that Kurma �rst failed to read
data from the tampered cloud, but then retried the read from
other clouds, and �nally returned the correct �le contents.
For integrity tests, we injected four types of integrity er-

rors by (1) changing one byte of a cloud object, (2) swapping
two blocks of the same version at di�erent o�sets of a �le,
(3) swapping two blocks of the same version and o�set of
two �les, and (4) replaying a newer version of a block with
an old version. Kurma detected all four types of errors during
authentication. It logged information in a local �le on the

secure gateway for forensic analysis; this information in-
cluded the block o�set and version, the cloud object key, the
erroneous cloud, and a timestamp. Kurma also successfully
returned the correct content by fetching valid blocks from
other untampered clouds. We also tested that Kurma could
detect and resolve the three types of con�icting changes
made in multiple gateways (see §2.7).

4.3 Cloud Latency Tests
Kurma’s cloud backends include AWS, Azure, Google, and
Rackspace. Figure 5 (lo�2 scale on both axes) shows the la-
tency of these public clouds when reading and writing ob-
jects with di�erent sizes. Kurma favors a large block size
because larger blocks cost less (both AWS and Azure charge
requests by count instead of size) and reduce the metadata
size. Larger block sizes not only reduce cloud costs, but they
also improve overall read throughputs. When the block size
increased by 256⇥ from 16KB to 4MB, the read latency of
a block increased by only 1.1⇥, 3.1⇥, 1.2⇥ for AWS, Google,
and Rackspace, respectively. However, thanks to the larger
block sizes, the read throughput increased by a lot: 234⇥,
83⇥, and 216⇥ for AWS, Google, and Rackspace, respectively.
However, Azure is an exception where reading a 4MB ob-
ject takes 6.5 seconds and is 43 times slower than reading
a 16KB object. Our measurements of Azure are similar to
those reported in Hybris [16], where Azure took around 2
seconds to read a 1MB object, and around 20 seconds to read
a 10MB object. Large performance variances of cloud storage
in Figure 5 were also observed in other studies [16, 62].

A larger block size also improves write throughputs.When
the block size increases from 16KB to 4MB, the write through-
put increased by 1.9⇥, 76⇥, 82⇥, and 68⇥ for AWS, Azure,
Google, and Rackspace, respectively. Writes are signi�cantly
slower than reads. As shown in Figure 5(b), writing a 4MB
object to AWS takes close to 2 minutes. However, the high
write latency of large objects is acceptable because Kurma’s

7

 0

 1

 2

 3

 4

 5

 6

 7

L
at

en
cy

 (
se

c)

Multi-Cloud Redundancy

1 replica

1.6

2 replicas

1.4

3 replicas

1.7

4 replicas

1.5

Erasure coding

2.2

Secret sharing
2.5

(a) Read

 0

 10

 20

 30

 40

 50

 60

 70

L
at

en
cy

 (
se

c)

Multi-Cloud Redundancy

1.8
4.9 4.6

57.4

20.8 20.8

(b) Write

Figure 6: Latency of reading and writing a 16MB �le
with di�erent redundancy con�gurations over mul-
tiple clouds. The persistent write-back cache is tem-
porarily disabled. The “N replicas” con�guration uses
the �rst N clouds out of the list of Google, Rackspace,
Azure, and AWS (ordered by their performance with
1MB objects). The erasure coding algorithm is Reed-
Solomon with k = 3 and m = 1. The secret sharing
algorithm is CAONS-RS with n=4, k=3, and r =2.

persistent write-back cache can hide the latency from clients.
Therefore, Kurma uses a default block size of 1MB.

Figure 5 also shows that the latencies of di�erent clouds
can di�er by up to 100 times for objects of the same size.
The latency variance is high even for the same cloud. Note
the large error bars and the logarithmic scale of the Y-axis.
Therefore, when reading from only a subset of clouds, order-
ing the clouds by their speeds, and using the fastest ones can
signi�cantly improve performance. Our tests showed that
ordering the clouds by their speeds can cut Kurma’s average
read latency by up to 54%. If not con�gured di�erently, our
Kurma prototype reorders the clouds based on their speeds
every minute, to decide where to send read requests to �rst.

4.4 Multi-Cloud Tests
For high availability, Kurma stores data redundantly over
multiple clouds using replication, erasure coding, and secret
sharing. Figure 6 shows the latency of reading and writing a
16MB �le with di�erent redundancy con�gurations. To exer-
cise the clouds, we temporarily disabled Kurma’s persistent
cache in this test. TheN -replica con�guration uses the �rstN
clouds out of the list of Google, Rackspace, Azure, and AWS.
The list is ordered in decreasing overall performance with
1MB objects (see Figure 5). Figure 6(a) shows that reading a
16MB �le takes around 1.6 seconds for all four replication con-
�gurations. This is because all N -replica con�gurations have
the same data path for reads: fetching 16 ⇥ 1MB blocks from
the single fastest cloud. Note that 1.6 seconds is smaller than
16⇥ the read latency of a single 1MB-large object (around
0.28s as shown in Figure 5). This is because Kurma uses multi-
ple threads to read many blocks in parallel. Both the erasure-
coding and secret-sharing con�gurations need to read from

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

R
ep

li
ca

ti
o

n
 L

at
en

cy
 (

se
c)

Cache Write−Back Wait Time (s)

64K−file

1M−file

16M−file

Figure 7: Latency of replicating �les across gateways
under di�erent write-back wait times (WBWT s).

three clouds, and thus the reading takes longer with these
two con�gurations: 2.2s and 2.5s on average, respectively.
When writing a 16MB �le, the N -replica setup writes a

replica of 16 1MB-large blocks to each of N clouds. The
write latency of N -replica is determined by the slowest one
of the N clouds. AWS is the slowest cloud for writes, so when
AWSwas added as a 4th replica to the 3-replica con�guration,
making it a 4-replica con�guration, the write latency jumped
to 57.4 seconds (Figure 6(b)). Both the erasure-coding and
secret-sharing con�gurations write to four clouds; however,
their write latencies are around one third of the latency of
4-replica. This is because both erasure coding and secret
sharing split a 1MB block into four parts, each around 340KB
large. Kurma also uses multiple threads to write blocks in
parallel, so writing a 16MB-large �le takes less time than
sequentially writing 16 1MB-large objects.

In Figure 6, the 2-replica, erasure-coding, and secret-sharing
con�gurations can all tolerate failure of one cloud. Among
them, the 2-replicas con�guration has the best performance.
However, secret sharing provides extra security—resistance
to cloud collusion—and has read performance comparable
to the 2-replica con�guration. Therefore, we used the secret-
sharing con�guration in the remaining tests. Note that in
general, write latency is less important here because it will
be hidden by the persistent write-back cache.

4.5 Cross-Gateway Replication
Kurma shares �les across geo-distributed gateways by asyn-
chronously replicating �le-system metadata. Figure 7 shows
the replication latency of �les under di�erent write-back
wait times (WBWT s, see §2.8). The timer of a �le’s replica-
tion latency starts ticking after the �le is created, written and
closed in one gateway; the timer keeps ticking and does not
stop until the �le is found, opened, fully read and closed in
another remote gateway. WhenWBWT is zero, dirty data is
synchronously written back to clouds when closing a �le. So
the replication latency does not include the time of writing
to the clouds and thus is small: 2.9s, 3.9s, and 14s for a 64KB,
1MB, and 16MB �les, respectively. WhenWBWT is not zero,

8

 0

 2

 4

 6

 8

 10

 0 30 60 90 120 150 180

T
h

ro
u
g

h
p
u

t
(K

o
p
s/

se
c)

Time (s)

4K reads
16K reads
64K reads

Figure 8: Aggregate throughput of randomly reading
a 1GB �le using 64 threads. The test starts with a cold
cache. The I/O sizes are 4KB, 16KB, and 64KB.

 0

 0.1

 0.2

 0.3

 0.4

64K 256K 1M 4M 16M

L
at

en
cy

 (
se

c)

File Size (log4)

NFS Read
Kurma Read

NFS Write
Kurma Write

Figure 9: Latency of reading and writing �les. The
cache is hot during reads, and itsWBWT is 30 seconds.

dirty data is written back after closing the �le; the replication
latency increases linearly with the wait time. In Figure 7, the
replication latency for larger �les is higher because larger
�les take more time to write to and read from clouds.

4.6 Data Operations
To test Kurma’s performance with large �les, we created
a 1GB �le: this took around 200 seconds writing to clouds.
We then performed random reads on the �le after emptying
Kurma’s persistent cache. Figure 8 shows the results. For all
three I/O sizes (4KB, 16KB, and 64KB), the initial throughput
was merely around 20 ops/sec because all reads needed to
fetch data from clouds over the Internet. The throughput
slowly increased as more data blocks were read and cached.
Once the whole �le was cached, the throughput suddenly
jumped high because reading from the cache was faster than
reading from the clouds by two orders of magnitude. After-
wards, all reads were served from the cache, and the through-
put plateaued. It took around 75 seconds to read the whole
�le regardless of the I/O size; this is because Kurma always
uses the block size (1MB) to read from clouds.

To show Kurma’s performance when its cache is in e�ect,
we compared a Kurma gateway with a hot cache to a tra-
ditional NFS server. Figure 9 shows the latency results of
reading and writing whole �les. For 64KB �les, Kurma’s read
latency is 22% higher and its write latency is 63% higher. This
is because each Kurma metadata operation (e.g., ����, �����,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Create Delete

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Operation

NFS
1.06

0.52

Kurma

0.55

0.28

Figure 10: Throughput
of creating and deleting
empty �les.

 0

 0.5

 1

 1.5

 2

 2.5

NFS Server File Server Mail Server

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)

Filebench Workload

NFS

0.61

2.20

1.61

Kurma

0.55

1.15

0.95

Figure 11: Throughput of
Filebenchworkloads.

and �������) involved multiple servers and took longer to
process. In contrast, the traditional NFS server is simpler and
each operation was processed by only one server. However,
as the �le size increased, Kurma’s latency became close to
that of the traditional NFS. This is because when the �le
data was cached, Kurma did not need to communicate with
the Gateway Server or the Metadata Server; thus its data
operations were as fast as NFS, and they amortized the high
latency of the few metadata operations.

4.7 Metadata Operations
To put the performance of Kurma’s metadata operations into
perspective, we compared Kurma to a traditional NFS using
two metadata-only workloads: creating and deleting empty
�les. Figure 10 shows the results. When processing metadata
operations, Kurma needs to communicate with the Kurma
NFS Server, the Gateway Server, and the Metadata Servers
(see Figure 2). Moreover, a metadata update in ZooKeeper
needs to reach a consensus over all ZooKeeper servers; in our
setupwith three ZooKeeper nodes, it means that at least three
additional network hops. Because of these extra network
hops, Kurma’s throughput is 49% and 46% lower than NFS for
�le creation and deletion, respectively. Kurma’s performance
penalty in �le creation is higher than that in �le deletion.
This is because creating a Kurma �le requires extra computa-
tion to generate and encrypt the per-�le secret key (see §2.5).

4.8 FilebenchWorkloads
Figure 11 shows Kurma’s performance under Filebenchwork-
loads that are more complex than micro-workloads. The
FilebenchNFS-Serverworkload emulates the SPEC SFS bench-
mark [51]. It contains one thread performing four sets of
operations: (1) open, entirely read, and close three �les; (2)
read a �le, create a �le, and delete a �le; (3) append to an
existing �le; and (4) read a �le’s attributes. The File-Server
workload emulates 50 users accessing their home directories
and spawns one thread per user to perform operations sim-
ilar to the NFS-Server workload. The Mail Server workload
mimics the I/Os of a Unix-style email server operating on
a /var/mail directory, saving each message as a �le; it

9

has 16 threads, each doing create-append-sync, read-append-
sync, read, and delete operations on 10,000 16KB �les.

For the Filebench NFS-Server workload, Kurma’s through-
put is around 9% lower than NFS. That is caused by Kurma’s
slow metadata operations which require extra network hops
to process. For example, deleting a �le took only 1ms for the
traditional NFS server, but around 2ms for Kurma. The File-
Server workload has similar operations to the NFS-Server
workload, but contains 50 threads instead of one. Many con-
current metadata updates, such as deleting �les in a common
directory, need to be serialized using locks. This type of seri-
alizations makes Kurma’s metadata operations even slower
because of longer wait time. For example, deleting a �le in the
File-Server workload took around 16ms for the traditional
NFS server, but as long as 188ms for Kurma. Consequently,
Kurma’s throughput is around 48% lower than the tradi-
tional NFS server. The same is true of the multi-threaded
Mail-Server workload, where Kurma throughput is around
41% lower. The high latency of metadata operations is the
result of trading o� performance for security and availability.

5 RELATEDWORK
Kurma is related to prior studies of (1) secure distributed
storage systems, and (2) cloud storage gateways.
SFS [39], SiRiUS [22], Plutus [27], and SUNDR [33] are

all cryptographic �le systems that protect �le integrity and
con�dentiality with minimal trust on storage servers. These
systems focused on a single-server architecture instead of a
geo-distributed architecture with multiple cloud back-ends.
Guarantee freshness of �le-system data and metadata is di�-
cult [52]. SiRiUS [22] ensures partial metadata freshness but
not data freshness. SUNDR [33], SPORC [19], and Depot [37]
all guarantee fork consistency and could detect freshness vi-
olations with out-of-band inter-client communication. Most
of the �le systems [17, 20, 52] that guarantee freshness use
Merkle trees [40] or its variants [52] to detect replay attacks.
SCFS [8] provides freshness without using Merkle trees, but
it requires a trusted and centralized metadata service run-
ning on a cloud. Kurma does not need Merkle trees or any
trusted third parties. For clients across geo-distributed gate-
ways, Kurma guarantees that the time window of stale data
is no longer than the duration of the network partition.
Cloud storage gateways give local clients a SAN or NAS

interface to cloud storage. SafeStore [30], BlueSky [60], Hy-
bris [16], and Iris [52] are examples of cloud storage gateway
systems that provide data protection. SafeStore, BlueSky, and
Iris have �le system interfaces on the client side; Hybris pro-
vides a key-value store. However, all of them were designed
for clients in one geographical region with only one gateway.
In contrast, Kurma supports sharing �les among clients in
geo-distributed gateways. Using multiple clouds is an e�ec-
tive way to ensure high availability and business continuity

in case of cloud failures [3]. There were several studies of
multi-cloud systems [1, 16, 24, 30, 62], and they stored data
redundantly on di�erent clouds using either replication or
erasure coding. Using multiple clouds can also enhances se-
curity. Since collusion across multiple clouds is less likely,
dispersing secrets among them ismore secure than storing all
secrets on a single cloud [2, 7, 8, 35]. However, most of these
multi-cloud storage systems [1, 5, 7, 16, 24], provide only
key-value stores, whereas Kurma is a geo-distributed �le sys-
tem. Several client-side cloud stores, including CYRUS [13]
and SCFS [8], also use multiple clouds as beck-ends. These
systems are for personal use when �les can �t in a client’s
local cache—whereas Kurma is designed for enterprise use.

6 CONCLUSIONS
We presented Kurma, a secure geo-distributed multi-cloud
storage gateway system. Kurma keeps �le-system metadata
in trusted gateways, and encrypts data blocks before storing
them in clouds. Kurma embeds a version number and a times-
tamp into each �le block to ensure data freshness. Kurma
tolerates cloud failures by storing data redundantly among
multiple clouds using replication, erasure code, and secret
sharing. Kurma provides NFS close-to-open consistency for
local clients, and FIFO consistency for clients across gate-
ways. Kurma asynchronously replicates metadata among
gateways, detecting and resolving con�icts after they occur.
We implemented and evaluated a Kurma prototype. Thanks
to Kurma’s persistent write-back cache, its performance of
data operations is close to a baseline using a single-node NFS
server. Kurma’s throughput is around 52–91% of the baseline
for general purpose Filebench server workloads. This over-
head is contributed by slower metadata operations. Kurma
sacri�ces some performance for signi�cantly improved se-
curity, availability, and �le sharing across regions.

Limitations and future work. Kurma currently does not
consider the insider problem which is addressed by systems
like RockFS [38]. Kurma uses multiple clouds for high avail-
ability but is not optimized for cost e�ciency. We plan to
amortize the high latency of Kurma’s metadata operations
using NFSv4 compound procedures [12, 50].

ACKNOWLEDGMENTS
We thank the anonymous ACM SYSTOR reviewers for their
valuable comments. We thank Shivanshu Goswami, Praveen
Kumar Morampudi, Harshkumar Patel, Rushabh Shah, and
Mukul Sharma for their help in Kurma implementation. This
work was made possible in part thanks to Microsoft Azure,
Dell-EMC, NetApp, and IBM; NSF awards CNS-1251137,
CNS-1302246, CNS-1305360, CNS-1622832, CNS-1650499,
and CNS-1730726; and ONR award N00014-16-1-2264.

10

REFERENCES
[1] Hussam Abu-Libdeh, Lonnie Princehouse, and HakimWeatherspoon.

2010. RACS: a case for cloud storage diversity. In Proceedings of the
1st ACM symposium on Cloud Computing. ACM, 229–240.

[2] Mohammed A. AlZain, Ben Soh, and Eric Pardede. 2013. A Survey on
Data Security Issues in Cloud Computing: From Single toMulti-Clouds.
Journal of Software 8, 5 (2013), 1068–1078.

[3] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. 2010. A View of Cloud
Computing. Commun. ACM 53, 4 (2010), 50–58.

[4] Peter Bailis and Ali Ghodsi. 2013. Eventual consistency today: Lim-
itations, extensions, and beyond. Commun. ACM 56, 5 (2013), 55–63.

[5] David Bermbach, Markus Klems, Stefan Tai, and Michael Men-
zel. 2011. MetaStorage: A Federated Cloud Storage System to
Manage Consistency-Latency Tradeo�s. In Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing (CLOUD
’11). IEEE Computer Society, Washington, DC, USA, 452–459.
https://doi.org/10.1109/CLOUD.2011.62

[6] David Bermbach and Stefan Tai. 2011. Eventual Consistency: How
Soon is Eventual? An Evaluation of Amazon S3’s Consistency Behavior.
In Proceedings of the 6thWorkshop on Middleware for Service Oriented
Computing (MW4SOC ’11). ACM,NewYork, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/2093185.2093186

[7] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André,
and Paulo Sousa. 2013. DepSky: dependable and secure storage in a
cloud-of-clouds. ACM Transactions on Storage (TOS) 9, 4 (2013), 12.

[8] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin,
and P. Verissimo. 2014. SCFS: A Shared Cloud-backed File System. In
USENIX ATC 14. USENIX, 169–180.

[9] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop
Apache Project 53 (2008).

[10] Eric A. Brewer. 2000. Towards Robust Distributed Systems (Abstract).
In Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Distributed Computing (PODC ’00). ACM, New York, NY, USA, 7–.
https://doi.org/10.1145/343477.343502

[11] M. Chen. 2017. Kurma: E�cient and Secure Multi-Cloud Storage Gate-
ways for Network-Attached Storage. Ph.D. Dissertation. Computer Sci-
ence Department, Stony Brook University. Technical Report FSL-17-01.

[12] Ming Chen, Dean Hildebrand, Henry Nelson, Jasmit Saluja, Ashok
Subramony, andErezZadok. 2017. vNFS:MaximizingNFSPerformance
with Compounds and Vectorized I/O. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST). USENIXAssociation,
Santa Clara, CA, 301–314.

[13] Jae Yoon Chung, Carlee Joe-Wong, Sangtae Ha, JamesWon-Ki Hong,
and Mung Chiang. 2015. CYRUS: Towards Client-de�ned Cloud
Storage. In Proceedings of the Tenth European Conference on Computer
Systems (EuroSys ’15). ACM, New York, NY, USA, Article 17, 16 pages.
https://doi.org/10.1145/2741948.2741951

[14] Philippe Deniel, Thomas Leibovici, and Jacques-Charles Lafoucrière.
2007. GANESHA, a multi-usage with large cache NFSv4 server. In
Linux Symposium. 113.

[15] Dan Dobre, Paolo Viotti, and Marko Vukolić. 2014. Hybris:
robust and strongly consistent hybrid cloud storage. (2014).
https://github.com/pviotti/hybris.

[16] Dan Dobre, Paolo Viotti, and Marko Vukolić. 2014. Hybris: Robust
Hybrid Cloud Storage. In Proceedings of the ACM Symposium on Cloud
Computing. ACM, 1–14.

[17] J. R. Douceur and J. Howell. 2006. EnsemBlue: Integrating Distributed
Storage and Consumer Electronics. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI 2006). ACM
SIGOPS, Seattle, WA, 321–334.

[18] M. Dworkin. 2007. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. National Institute
of Standards and Technology (NIST).

[19] Ariel J Feldman, William P Zeller, Michael J Freedman, and EdwardW
Felten. 2010. SPORC: Group Collaboration using Untrusted Cloud
Resources. InOSDI. 337–350.

[20] K. Fu, M. F. Kaashoek, and D. Mazières. 2000. Fast and Secure
Distributed Read-Only File System. In Proceedings of the 4th Usenix
Symposium on Operating System Design and Implementation (OSDI ’00).
USENIX Association, San Diego, CA, 181–196.

[21] S. Ghemawat, H. Gobio�, and S. T. Leung. 2003. TheGoogle File System.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03). ACM SIGOPS, Bolton Landing, NY, 29–43.

[22] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. 2003. SiRiUS:
Securing Remote Untrusted Storage. In Proceedings of the Tenth
Network and Distributed System Security (NDSS) Symposium. Internet
Society (ISOC), San Diego, CA, 131–145.

[23] J. S. Heidemann and G. J. Popek. 1994. File System Development
with Stackable Layers. ACM Transactions on Computer Systems 12, 1
(February 1994), 58–89.

[24] Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, and Yang Tang.
2012. NCCloud: Applying Network Coding for the Storage Repair in a
Cloud-of-Clouds. In Proceedings of the Tenth USENIX Conference on File
and Storage Technologies (FAST ’12). USENIXAssociation, San Jose, CA.

[25] P. Hunt, M. Konar, J. Mahadev, F. Junqueira, and B. Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIXATC’10).

[26] Google. Inc. 2017. Guava: Google Core Libraries for Java 6+. (2017).
https://github.com/google/guava.

[27] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu.
2003. Plutus: Scalable Secure File Sharing on Untrusted Storage. In
Proceedings of the USENIX Conference on File and Storage Technologies
(FAST). USENIX Association, San Francisco, CA, 29–42.

[28] J. J. Kistler and M. Satyanarayanan. 1991. Disconnected Operation
in the Coda File System. In Proceedings of 13th ACM Symposium on
Operating Systems Principles. ACM Press, Asilomar Conference Center,
Paci�c Grove, CA, 213–225.

[29] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. 2007. kvm:
the Linux Virtual Machine Monitor. In Proceedings of the 2007 Ottawa
Linux Symposium (OLS 2007), Vol. 1. Ottawa, Canada, 225–230.

[30] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. 2007. SafeStore:
a durable and practical storage system. In USENIX Annual Technical
Conference. 129–142.

[31] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. 2008. Mea-
surement and analysis of large-scale network �le system workloads.
In Proceedings of the Annual USENIX Technical Conference. USENIX
Association, Boston, MA, 213–226.

[32] Chuck Lever. 2001. Close-To-Open Cache Consistency in the Linux
NFS Client. (2001). http://goo.gl/o9i0MM.

[33] J. Li, M. Krohn, D. Mazières, and D. Shasha. 2004. Secure Untrusted
Data Repository (SUNDR). In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI). ACM SIGOPS,
San Francisco, CA, 121–136.

[34] M. Li, C. Qin, and P. Lee. 2016. Convergent Dispersal Deduplication
Datastore. (2016). https://github.com/chintran27/CDStore.

[35] Mingqiang Li, ChuanQin, and Patrick P. C. Lee. 2015. CDStore: Toward
Reliable, Secure, and Cost-e�cient Cloud Storage via Convergent Dis-
persal. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’15). USENIX Association, Berkeley,
CA, USA, 111–124. http://dl.acm.org/citation.cfm?id=2813767.2813776

11

[36] R. J. Lipton and J. S. Sandberg. 1988. PRAM: A scalable shared memory.
Technical Report TR-180-88. Princeton University, Princeton, NY.

[37] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo
Alvisi, Mike Dahlin, and Michael Wal�sh. 2011. Depot: Cloud Storage
with Minimal Trust. ACM Trans. Comput. Syst. 29, 4 (December 2011),
12:1–12:38.

[38] David R. Matos, Miguel L. Pardal, Georg Carle, and Miguel Correia.
2018. RockFS: Cloud-backed File System Resilience to Client-
Side Attacks. In Proceedings of the 19th International Middleware
Conference (Middleware ’18). ACM, New York, NY, USA, 107–119.
https://doi.org/10.1145/3274808.3274817

[39] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. 1999.
Separating key management from �le system security. In Proceedings
of the 17th ACM Symposium on Operating Systems Principles. ACM,
Charleston, SC, 124–139.

[40] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional
Encryption Function. InA Conference on the Theory and Applications
of Cryptographic Techniques on Advances in Cryptology (CRYPTO’87).
Springer-Verlag, London, UK, 369–378.

[41] D. L. Mills. 1989. Internet Time Synchronization: the Network Time
Protocol. Technical Report RFC 1129. NetworkWorking Group.

[42] NFS-Ganesha 2016. NFS-Ganesha. (2016). http://nfs-ganesha.github.
io/.

[43] James S Plank, Scott Simmerman, and Catherine D Schuman. 2008.
Jerasure: A library in C/C++ facilitating erasure coding for storage
applications-Version 1.2. (2008). http://git-scm.com.

[44] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over
certain �nite �elds. Journal of the society for industrial and applied
mathematics 8, 2 (1960), 300–304.

[45] Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald
Popek. 1994. Resolving File Con�icts in the Ficus File System. In
Proceedings of the Summer USENIX Conference. 183–195.

[46] Jason K. Resch and James S. Plank. 2011. AONT-RS: Blending
Security and Performance in Dispersed Storage Systems. In
Proceedings of the 9th USENIX Conference on File and Stroage Tech-
nologies (FAST’11). USENIX Association, Berkeley, CA, USA, 14–14.
http://dl.acm.org/citation.cfm?id=1960475.1960489

[47] M.Satyanarayanan, J. J.Kistler,P.Kumar,M.E.Okasaki,E.H.Siegel, and
D.C.Steere. 1990. Coda:AHighlyAvailableFileSystemforaDistributed
Workstation Environment. IEEE Trans. Comput. 39 (1990), 447–459.

[48] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies,
Abhishek Choudhary, Laurent Demailly, Thomas Fersch, Liat Atsmon
Guz, Andrzej Kotulski, Sachin Kulkarni, Sanjeev Kumar, Harry Li,
Jun Li, Evgeniy Makeev, Kowshik Prakasam, Robbert Van Renesse,
Sabyasachi Roy, Pratyush Seth, Yee Jiun Song, Benjamin Wester,
Kaushik Veeraraghavan, and Peter Xie. 2015. Wormhole: Reliable
Pub-Sub to Support Geo-replicated Internet Services. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 351–366.

[49] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. 2003. NFS Version 4 Protocol. RFC 3530. Network
Working Group.

[50] S. Shepler, M. Eisler, and D. Noveck. 2010. NFS Version 4 Minor Version
1 Protocol. RFC 5661. NetworkWorking Group.

[51] SPEC. 2001. SPEC SFS97_R1 V3.0. (September 2001).
www.spec.org/sfs97r1.

[52] Emil Stefanov,Marten vanDijk, Ari Juels, andAlinaOprea. 2012. Iris: A
scalable cloud �le systemwith e�cient integrity checks. In Proceedings
of the 28th Annual Computer Security Applications Conference. ACM,
229–238.

[53] The Apache Software Foundation. 2018. Apache Curator. (2018).
https://curator.apache.org.

[54] The Apache Software Foundation. 2018. Apache Hedwig. (2018).
https://bookkeeper.apache.org/docs/master/hedwigDocs.html.

[55] The Apache Software Foundation. 2018. Apache Thrift. (2018).
https://thrift.apache.org.

[56] The Apache Software Foundation. 2018. Hedwig Design. (2018).
https://bookkeeper.apache.org/docs/r4.3.0/hedwigUser.html.

[57] Joseph Tsidulko. 2017. The 10 Biggest Cloud Outages of 2017 (So
Far). (2017). http://www.crn.com/slide-shows/cloud/300089786/
the-10-biggest-cloud-outages-of-2017-so-far.htm.

[58] Jos van der Til. 2014. Jerasure library that adds Java Native Interface
(JNI) wrappers. (2014). https://github.com/jvandertil/Jerasure.

[59] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (jan
2009), 40. https://doi.org/10.1145/1435417.1435432

[60] Michael Vrable, Stefan Savage, and Geo�rey M Voelker. 2012. BlueSky:
a cloud-backed �le system for the enterprise.. In FAST. 19.

[61] HakimWeatherspoon and John D Kubiatowicz. 2002. Erasure coding
vs. replication: A quantitative comparison. In International Workshop
on Peer-to-Peer Systems. Springer, 328–337.

[62] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett,
and Harsha V. Madhyastha. 2013. SPANStore: Cost-e�ective
Geo-replicated Storage Spanning Multiple Cloud Services. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 292–308.
https://doi.org/10.1145/2517349.2522730

[63] SGI XFS. 2016. xfstests. (2016). http://xfs.org/index.php/Getting_the_
latest_source_code.

[64] E. Zadok and J. Nieh. 2000. FiST: A Language for Stackable File Systems.
In Proceedings of the Annual USENIX Technical Conference. USENIX
Association, San Diego, CA, 55–70.

12

