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Abstract

Developing kernel-level file systems is a difficult task thatrequires
a significant time investment. For experimental file systems, it is
desirable to develop a prototype before investing the time required
to develop a kernel-level file system. We have built aptrace moni-
toring infrastructure for file system development. Becauseour sys-
tem runs entirely in user-space, debugging is made easier and it is
possible to leverage existing tested user-level libraries. Because our
monitor intercepts all OS entry points (system calls and signals) it
is able to provide more functionality than other prototyping tech-
niques, which are limited by the VFS interface (FUSE) or network
protocols (user-level NFS servers). We have developed several ex-
ample file systems using our framework, including a pass-through
layered file system, a layered encryption file system, and a user-
level ISO9660 file system. We analyzed the complexity of our code
using cyclomatic complexity and other metrics. We show savings
for a pass-through file system of 53% compared to existing user-
level pass-through file systems and a factor of 4.7 reductionfor
an in-kernel pass-through file system. Our performance evaluation
demonstrates that our infrastructure has an acceptable overhead of
18.4% for a pass-through file system.
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1 Introduction

File system prototyping is difficult: developers currentlyhave to
struggle with a massive body of complex kernel-level code totest
their ideas. Attempts have been made to address this issue, but most
of them lack the added flexibility and expressiveness that kernel
developers often require (e.g., being able to modify how theVFS
caches inodes). This forces some developers to resort to prototyp-
ing in the kernel, and to cope with weaker debugging tools, lengthy
reboot cycles, and the inability to capitalize on existing user level
libraries.

We created a user-level file system development environmentusing
a ptrace [9] monitor: a program that usesptrace to manage re-
sources shared between multiple processes. Our development envi-
ronment is more powerful and convenient for developers thanexist-
ing user-level frameworks. We call our monitorGoanna(after the
Australian genus of monitor lizards). Theptrace process-tracing
facility, commonly used by debuggers, allows us to intercept OS
entry points (i.e., system calls, signals, and more) and insert cus-
tomized code before, after, or as a replacement for the kernel-level
implementations—all without the process’s knowledge. Theunder-
lying OS kernel handles all process management, memory manage-
ment, the networking, and other core OS facilities. We have fol-
lowed the Unix tradition of using a single name-space, so that new
file systems and existing file systems can co-exist. System calls des-
tined for paths that Goanna does not handle are simply passedon
to the underlying kernel. Thus, developers can focus only ontheir
specific extension code. Moreover, because developers are writing
user-space code, a plethora of libraries and debugging tools that do
not work in the kernel are available.

Goanna’sptrace monitor framework significantly improves the
experience which kernel developers have by providing the follow-
ing three advantages:

Rapid development

There are many user-level libraries that perform useful tasks for file
systems (e.g., the Berkeley DB provides transactional B-trees and
hash tables [20]). In user space, developers also have a widevariety
of good debugging techniques at their disposal. A good prototyping
framework should leverage these technologies as much as possible.
Unfortunately, user-level libraries are not suitable for the kernel,
and debugging the kernel is difficult. Some kernel debuggersare
available, but they are cumbersome to use, and they tend to change
timing conditions enough to make it more difficult to debug com-
plex problems; for these reasons, many developers often choose to
insert print statements instead. These problems, combinedwith the
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raw complexity of most commonly used OS kernels, introduce de-
bugging difficulties that almost never occur in user space. Because
aptrace monitor runs entirely in user-space, it can link with exist-
ing user-space libraries and interoperate with user-leveldebugging
tools.

Powerful prototypes

A prototyping framework should allow developers to change signif-
icant aspects of the system. Other file system frameworks such as
FUSE [22] or NFS toolkits [15] that address rapid development, fall
short here. For example, FUSE can only intercept VFS operations
and is unaware of system calls likefork. Many research ideas for
which a prototyping framework would be useful can not affordto be
limited to a predetermined VFS interface. For example, if special
properties inherited accross processes are required, instrumentation
of fork would be crucial. Aptrace monitor addresses this issue
by intercepting more of a process’s entry points (i.e., all of the sig-
nals and system calls). Thus, for traced processes, a monitor is able
to provide most of the kernel’s functionality.

Modularity

A prototyping framework should allow developers to write code
only for those systems they wish to change, without modifying
other systems. An OS kernel is a large piece of software, withmany
interacting components. For example, the Linux virtual filesystem
(VFS) has more than 48,000 lines of code, but if it is changed in
any significant way, then the developer must update dozens offile
systems, the memory management system, and more. Not only is
there a large amount of code, but the code is also very complex.
Frameworks that enable kernel development in user space (such as
UML [3]) also suffer from this lack of modularity. In a monitor, the
developer begins with a clean slate. Goanna has only 6,429 lines of
code, and consequently it is simpler to understand and, if necessary,
rewrite any of its components. Also, we designed Goanna suchthat
prototyping a file system is rather easy by including a simplefile-
system switch that operates at the system call level.

The major objection to using a user-level monitor rather than kernel
development for prototyping is that to get better performance, one
must reimplement the system after the prototyping stage to deploy
it. This is often true, but we feel that mitigating the opportunity cost
associated with prototyping a new file system is worth the amount
of work that may be lost when transitioning to a deployable sys-
tem. There are also many file systems where performance is not
critical. For example, an SSH file system performs many network
and cryptographic operations, which would dominate any perfor-
mance degradation caused by running it in user-level. Moreover,
the amount of work to be redone should be small. Most of the
design and algorithms should translate easily to the kernel. Except-
ing references to user-level libraries or modifications to the monitor
itself, the code can also be reused. Finally, when one considers
that most systems (especially in research) never make it past the
prototype phase, it becomes evident that a more efficient means of
prototyping file systems is desirable.

User-level monitors are also useful beyond prototyping. For exam-
ple, browsing the contents of an ISO 9660 CD-ROM image would
normally be done by creating a loopback device and mounting it.
However, it is unsafe to allow non-root users to mount arbitrary
devices; so users cannot easily browse these images. Goannapro-
vides a solution: users can virtually mount any ISO image they
like by running any program (e.g., a shell) through Goanna (which

does not require root privileges). This improves the system’s secu-
rity, because the user does not require any root privileges to browse
the image. Also, using aptrace monitor to allow new kernel-like
functionality to be offloaded to user space increases reliability of
the kernel code base.

When we compared the lines of code, number of tokens, number of
identifiers, and the McCabe complexity of file systems developed
with our framework vs. those developed with FUSE, user-level NFS
servers, or the kernel, we found our file systems were less complex.

The rest of this paper is organized as follows. In Sections 2,3, and 4
we discuss the current state of the art in file system prototyping, an
overview of Goanna’s design, and three example file systems devel-
oped in Goanna, respectively. In Section 5 we evaluate Goanna’s
complexity and performance. Sections 6 discusses related work,
and we conclude in Section 7.

2 Background

To evaluate prototyping frameworks, we developed a taxonomy that
includes the three criteria from Section 1 (rapid prototyping, power-
ful prototypes, and modularity) with design transferability, compat-
ibility, and performance. We used these six dimensions to evaluate
six common prototyping frameworks: the kernel itself, UserMode
Linux (UML) [3], FUSE [22], a user-level NFS server toolkit [15],
anLD PRELOAD library, a modified C library [13], and ourptrace
monitor.

User Mode Linux runs the Linux kernel in user space by using
ptrace. UML’s primary goal is to provide a mechanism to run
GDB on the kernel. FUSE is a hybrid approach that routes VFS
calls to a user-level daemon so developers can implement a file sys-
tem with the traditional VFS interface in user space. User-level
NFS toolkits allow developers to construct their prototypeas NFS
servers that run in user space. TheLD PRELOAD facility allows C
library functions, including system call wrappers, to be overridden.
A modified C library [13] can be used in much the same way as the
LD PRELOAD option. Table 1 summarizes our qualitative estimates
on how each alternative meets the six criteria. Often, improving
one criterion comes at the expense of others; therefore, no single
framework is suitable for all circumstances.

Rapid development

A prototyping framework should enable developers to use external
libraries and debugging tools to speed up development. The kernel
cannot link against user libraries, and is the most difficultto debug.
UML can be debugged in user space, but it cannot link with userli-
braries. Similarly, a modified C library would have circulardepen-
dencies if it links against a user library that in turn links back to the
C library (which almost all user libraries do). Conversely,FUSE,
user-level NFS toolkits, anLD PRELOAD approach, and a monitor
framework all use the standard user runtime environment, sothey
can easily use user-level libraries and be debugged.

Powerful prototypes

A prototyping framework should impose as few limitations aspos-
sible. In-kernel development is the most powerful prototyping
framework for file system development, because any aspect ofthe
system’s behavior can be changed. Some examples requiring apro-
totyping framework more powerful than a VFS interface are:
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Rapid Development Powerful
Prototypes

Modularity Design
Transferability

Runtime
Compatibility

Performance

In-kernel file system ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

UML ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

FUSE ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1/2 ⋆ ⋆ ⋆ ⋆ ⋆

User-level NFS ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

LD PRELOAD ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1/2
Modified C library ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1/2
ptrace monitor ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Table 1. We evaluated each framework according to our six criteria. Each row represents a framework, and each column represents
a criterion. The number of stars within a column can be qualitatively compared, but the number in different columns have no direct
relation to each other.

• Process Inheritence: A file system which requires that one
process inherits vital attributes from another process would
have to instrumentfork. One such application would be in
a file system that supports mandatory locks where children of
a process can optionally be given permission to access files
locked by their parent.

• Recovery Actions: A file system that allows a process to per-
form system-condoned tasks before it exits would require in-
strumentation of theexit call. One application of this would
be to allow a process to run a system tool that undos its
changes to the file system if the process exits with a non-zero
code.

• Security Tracking: A file system that associates important se-
curity metadata with each process would need to be aware of
fork, exec, andexit. To ensure that absolutely all exit points
are caught (e.g., being killed by the Out of Memory or OOM
killer in Linux), a small kernel patch would be required [24].

In order to provide the most general operating system prototyp-
ing, the broadest possible interface to the operating system must
be instrumented, and the system call layer is broader than the VFS
layer. UML runs in the user-level, and therefore it cannot fully
control its environment (e.g., its scheduling policies arelimited by
those of the host OS). FUSE is even more inflexible than UML as it
forces the developer to interface with the kernel strictly through the
VFS interface, making it impossible to catch process-spawnevents,
manipulate caches (e.g., the inode, dentry, and buffer caches), and
more. For example, an access-control layer could chose to grant ac-
cess based on the PID. Because FUSE file systems cannot intercept
process termination, they cannot reliably revoke a process’s access
when it exits [24]. A user-level NFS toolkit is limited in a similar
way to FUSE, though it is limited by the NFS protocol rather than
the VFS interface. The monitor can intercept all calls made by the
process, and theLD PRELOAD and modified C library frameworks
can intercept most calls (but not in-lined assembly).

Modularity

A prototyping framework should limit the amount of code thatde-
velopers must learn and change. This is especially true for compo-
nents that developers are not interested in changing.

The ptrace-based monitor framework is the most modular of all
the options since it is least dependent on limited protocolsor inter-
faces; it allows developers to override only those system calls they
intend to work on; and developers can override these calls with-
out any knowledge of the kernel. The next most modular frame-
works are FUSE and NFS toolkits, because they prevent devel-
opers from crossing clearly defined interfaces. However, neither

of these approaches are as modular as a monitor framework, be-
cause developers must implement all of the protocol’s methods.
TheLD PRELOAD library-based approach is also not as modular as
a monitor framework because developers must implement not only
I/O-related system calls (e.g.,write), but also I/O-related library
calls like fprintf. The C library is worse than FUSE, the NFS
toolkit, and theLD PRELOAD library, because the code for most C
libraries is large, and is not designed with intercepting calls to the
kernel in mind. Thus as with UML and in-kernel development, the
prototype would be tightly integrated with the library.

Design transferability

A prototype’s design and algorithms should be applicable tothe
deployed system with minimal changes. The code of a prototype
developed in the kernel or using UML, need not change for de-
ployment. FUSE is almost as transferable as UML because it asks
developers to design their extensions with an interface similar to the
kernel’s VFS. NFS servers are less transferable than FUSE because
the NFS protocol is not as close to the VFS as FUSE’s protocol.
The monitor framework is similar to NFS, in that the system call
interface is similar to the VFS interface, but not quite as close as
FUSE’s protocol. TheLD PRELOAD and modified C library tech-
niques force developers to structure their code in a different way
than what the kernel would require, which has a non-trivial impact
on their design.

Runtime compatibility

A prototype should be capable of interfacing correctly withany pro-
gram. A kernel prototype fully satisfies this criteria. One specific
application of UML as a runtime environment is running untrusted
services while mitigating the risk to the physical hardware[3]. Us-
ing UML as a runtime environment for more general usage suffers
from the separation between the host and guest kernels: theycannot
share the same name space or memory, and must use the network to
interact. In comparison to UML, FUSE is highly compatible with
applications because the kernel routes all VFS events to theFUSE
daemon. The NFS toolkit approach is compatible with programs
that are not affected by network anomalies, such as latency;so it
is more compatible than other approaches, but not as compatible
as FUSE or the kernel itself. The monitor framework has similar
limitations: it cannot run set-UID programs or those that execute
ptrace on other processes, but it is otherwise compatible with all
programs and does not require any recompilation of their source
code. TheLD PRELOAD technique also does not require recompila-
tion of programs, but programs that do not use the C library orare
statically linked cannot be run with the new file system. A modi-
fied C library requires relinking of programs so programs that make
system calls directly cannot be supported.
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Performance

The performance of the deployed system should be as good as pos-
sible. This is obviously true of kernel prototypes, becausekernel
code can use in-kernel caches and avoid context switches anddata
copies. FUSE adds the overhead of user-level context switches
when servicing VFS events, but because FUSE uses the in-kernel
caches, the number of data copies is reduced. Overall, FUSE
comes the closest to a kernel-level file system in terms of perfor-
mance. UML and the monitor both useptrace, which adds context
switches and data copies. Similarly, an NFS toolkit runs over the
network subsystem incurring data copies within the networkstack.
TheLD PRELOAD and C library run in the address space of the pro-
cess, so they do not incur as much overhead for context switches
and data copies as other user-level techniques. However, they intro-
duce additional function calls and must call the kernel to perform
meaningful work. Moreover, they behave sufficiently differently
than the in-kernel VFS, that estimating the potential performance
improvements from porting such code to the kernel is more diffi-
cult.

It is clear that no single solution is the answer to all prototyping
needs, because each prototype could have different requirements.
However, aptrace-based monitor is best suited for circumstances
where significant OS changes are required, yet rapid development
and modularity are desired. Though all the user-level approaches
try to support rapid development, they make trade-offs thatweaken
the power of their prototypes or their modularity—whereas the
monitor framework provides these criteria while not overlysacrific-
ing design transferability, compatibility, or performance. For exam-
ple, FUSE and NFS toolkits trade prototyping power for improved
modularity by strongly enforcing the VFS interface or the NFS pro-
tocol, respectively. On the other hand, UML forces the developer
to contend with a large body of kernel code in exchange for a more
flexible framework. TheLD PRELOAD approach is competitive with
a monitor, but it is not as modular and it sacrifices more in terms of
transferability and compatibility.

3 Design

Ourptrace-based monitor namedGoanna(after the genus of Aus-
tralian monitor lizards) intercepts and modifies a process’s sys-
tem calls and signals [9]. From the perspective of the application,
Goanna is equivalent to the OS, so no application modifications are
required. As shown in Figure 1, Goanna runs at user-level, sofile
system prototypes do not need to execute within the kernel. Unlike
anLD PRELOAD or C library, a single instance of Goanna can handle
multiple processes, so it is simpler to share data, caches, and other
resources.

The major disadvantage of theptrace approach is that perfor-
mance may suffer for system-call–intensive programs, as more con-
text switches are required for each system call. The criterion of
performance is often not as important as rapid development for a
prototype, so this is an acceptable trade off, especially for file sys-
tems with superseding bottlenecks (e.g., the network).

In the remainder of this section, we describe the design of Goanna.
In Sections 3.1, 3.2, 3.3, and 3.4 we explain Goanna’s system-call
interception, structure, process handling, and path resolution. Ad-
dress space issues are discussed in Section 3.5. In Sections3.6, 3.7,
and 3.8 we describe ourmmap design, file system switch, and per-
formance enhancements.

int 0x80
iret

int 0x80
iret

int 0x80
iret Process N

K
E

R
N

E
L

wait

ptrace

Process 1

Process 2

External Libraries

Goanna Monitor

...

Figure 1. At system call entry, the kernel signals Goanna via
the wait system call. Goanna manipulates the monitored pro-
cesses’ state usingptraceprimitives. Libraries execute within
Goanna’s address space and use standard system calls.

3.1 Process Tracing Primitives

Goanna begins by forking a new child. The child issues
PTRACE TRACEME to request interception, and then the child exe-
cutes the to-be-traced executable. From this point onward,Goanna
is notified via thewait system call whenever the child needs atten-
tion.

Many debuggers like GDB useptrace, so its primitives are similar
to those provided by a debugger. Goanna allows the child process
to fork another child and so on. Each child will be monitored by
Goanna. The monitor can use three primitives to control the execu-
tion of the child process:

• PTRACE SYSCALL continues execution until the next entry or
exit from a system call. The child is stopped before entering
or after leaving the kernel, and the parent is notified each time.

• PTRACE CONT, analogous tocontinue in GDB, continues ex-
ecution until the child receives a signal.

• PTRACE SINGLESTEP, analogous tonexti in GDB, continues
until the next instruction.

When the child is in the stopped state, a monitor can use
four primitives to observe and manipulate the child pro-
cess:PTRACE GETREGS, PTRACE SETREGS, PTRACE PEEKDATA, and
PTRACE POKEDATA.

PTRACE GETREGS retrieves the values of the process’s registers. On
the Intel 80x86 architecture, theeip register contains the program
counter, theeax register indicates what system call the process
wants to execute, and the remaining general-purpose registers con-
tain the system call’s arguments. Goanna’s implementationis tied
to the 80x86 architecture, because it references these registers, but
it is simple to add support for other architectures because the appli-
cation binary interface, or ABI is similar on all Linux platforms. In
our reference prototype, only 411 out of 6,429 lines of code refer-
ence 80x86-specific registers.

A monitor can manipulate registers with thePTRACE SETREGS
primitive. Before a system call, the call to execute can be changed
by settingeax, and the arguments can be changed by updating the
corresponding registers. After a system call is executed, the return
value can be set by updating the value ofeax. At any point in time,
the execution flow of the program can be changed by modifying
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eip. This is required when a single system call must be imple-
mented in terms of several other system calls that have to execute
in the user process’s address space.

Finally, there are two primitives to examine and update a
word in the child process’s memory:PTRACE PEEKDATA and
PTRACE POKEDATA. These primitives are used when the system call
takes pointer arguments (e.g., file names are passed as strings, and
stat fills in a user-supplied buffer).

(10) iret

(1) int 0x80

(9) syscall

(8) setregs

(4) setregs

(3) getregs

(2) wait

K
er

ne
l

U
se

r 
P

ro
ce

ss

(5) poke

(7) wait

(6) syscall
P

ro
to

ty
pe

 F
S

Figure 2. ptraceprimitives used to handle areadsystem call.
Arrows indicate control transfer. Double arrows indicate that
the function was called and returned immediately.

Figure 2 shows an example of how Goanna handles aread system
call, destined for a file stored in a prototype file system, on behalf
of a user process. There are ten steps involved in this call:

1. The user process issues a system call by storing the call’s
number ineax and invoking the system call trap0x80.

2. Thewait system call in the monitor returns the user process’s
PID.

3. Goanna issues aPTRACE GETREGS call to retrieve the value
of eax. Based oneax and the call’s arguments, Goanna can
determine how to treat the call. This is useful for cases where
developers want to intercept only a subset of calls that are
relevant to their file system.

4. If this call is to be intercepted, then Goanna changes the reg-
isters to prevent the kernel from handling the call. To nullify
the kernel call, Goanna setseax to –1; the kernel consequently
ignores the call because no handler is associated with –1.

5. Goanna executes the prototype’sread operation, and uses
PTRACE POKEDATA to write the returned data into the user
process’s address space (we describe an optimization in Sec-
tion 3.5).

6. Goanna instructs the kernel to continue execution until the end
of the call and callswait. In this case the call returns imme-
diately without performing any service, becauseeax was set
to –1 in step 4.

7. The kernel skips the call, and returns fromwait.
8. Goanna uses thePTRACE SETREGS primitive to store the return

value of the previously executed read ineax
9. Goanna uses thePTRACE SYSCALL primitive to allow the user

process to continue executing.
10. The kernel issues aniret instruction to return control to the

user process. The user process reads the return value from
eax, and it is as if the system call was serviced by the kernel.

3.2 Monitor Structure

In Goanna, execution begins by forking a child process to trace.
After the fork, the child executes the program to be monitored. All
of the process’s descendants are also monitored, and each moni-
tored process is assigned a state. The two most common statesare
INUSERand INCALL , which indicate that the process is executing
user-level code or that it is executing a system call, respectively. To
service requests, Goanna calls thewait system call. When a pro-
cess requires attention, usually because it is entering or exiting a
system call, the kernel returns its ID as the result of thewait call
(wait also returns when a signal is delivered or a process exits).

After returning fromwait, Goanna retrieves the current process’s
state and performs an appropriate action. There are currently 19
states (including INUSERand INCALL ). Most of the states indicate
that the user process is in the midst of a specific call, (e.g.,clone,
exec, chdir, or dup), and allow Goanna to remember what it was
doing before it called wait. One of the most important statesis IN-
FORCERET, which indicates that the return value of the presently
executing system call should be overridden by a given value.This
is useful if the prototype file system needs to pass back status in-
formation. In the example in Section 3.1, the return value ofthe
read is determined in step 5, but is not yet returned. When the
return value is determined in step 5, Goanna sets the state toIN-
FORCERET. After step 7, Goanna looks up the state and because
its state is set to INFORCERET, it can determine that it must return a
value; Goanna then sets the value ofeax to the proper return value.
Two other states of note are REDOCALL , which indicates that the
current system call should be repeated, and RESTOREREGS, which
indicates that the process’s registers should be set to their origi-
nal values. REDOCALL allows us to insert a new system call into
the stream (e.g., to create shared memory regions in the userpro-
cess’s address space), and RESTOREREGSis used when we need to
change system call arguments (e.g., when rewriting file names).

3.3 Process Control Blocks

Goanna maintains each process’s state in a privateprocess con-
trol block (PCB). This allows Goanna to map file descriptors to
open files for a particular process, record the current working di-
rectory, track mount points, and store other process-specific meta-
data. Goanna’s PCB is independent of the OS PCB, and contains
the process ID to use as a search key, a copy of the process’s reg-
isters, the current state of the process (e.g, INFORCERET), and all
state-specific information (e.g., the return value to be passed back
to the application). Encapsulating all of this informationin a single
structure allows Goanna to handle concurrent processes.

Goanna needs to map file descriptors to files in order to intercept
system calls that identify files by their file descriptors (e.g.,fstat).
As such, like an OS PCB, Goanna’s PCB contains an open-file ta-
ble and stores the present working directory (PWD). The open-file
table is a simple array with a slot for each possible file descriptor.
If a given file descriptor is connected to a file that is to be handled
by the prototype file system, then its slot contains a pointerto a
structure describing the file; otherwise it is empty (NULL). If a sys-
tem call uses a file descriptor as an argument, it is looked up in the
open-file table. If the file descriptor’s slot is empty, then the system
call proceeds with no further intervention. Otherwise, Goanna uses
information stored in the structure describing the file to proceed ac-
cording to the intended semantics of the prototype file system (e.g.,
an encrypting file system may encrypt the data before writingit to
disk on a write call).
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An interesting problem withopen is that a monitor cannot arbi-
trarily assign file descriptors to the user-level process, because the
kernel would not know that a given file descriptor is in use. Tohan-
dle this situation, Goanna usesshadow descriptors. When opening
a file in a prototype system, Goanna changes the path name to “/”
before letting the system call proceed. The resulting file descriptor
(in the child process) is used as a place holder, and no systemcalls
are issued against it. The kernel does not assign the resulting de-
scriptor to any other file, so Goanna can correctly identify the calls
that it handles. For efficiency, Goanna reuses this file descriptor
with dup on subsequentopen calls.

3.4 Mount Subsystem

To determine which instance of a file system is being operatedon in
an intercepted system call, Goanna maintains a mount table.This
mount table associates pathnames with different operations vectors
and instance-specific data (e.g., the device to read and write from).
On startup, Goanna reads a configuration file that provides a list of
paths to manage, and for each path, the mount type and data (the
configuration file is essentially equivalent to/etc/fstab). When
Goanna intercepts a system call that references one of thesepaths,
Goanna passes it to the appropriate routine.

Pathnames passed to system calls can be rather complex. If they are
relative path names, then they depend on the process’s context. Any
path can use the “..” operator to move one level up the directory
tree. We store paths as stacks, with the root path represented as an
empty stack, and a path such as/usr/local/bin is represented by
a stack containingusr, local, andbin. If a path is managed by
Goanna, then it is a child of one of the mount-table entries described
in the configuration file. To rapidly determine if one path is achild
of another, the path structure also contains a depth and a length for
each path component.

Each PCB contains a path stack for the PWD. When achdir or
fchdir system call is issued, the new PWD is stored as a candi-
date. If the system call is successful, then the candidate becomes
the PWD. The mount table also uses a path stack to identify the
path for each mount.

To resolve a path that is passed to a system call, first the process’s
PWD is copied to a new stack. If the path begins with a “/,” then
the stack is emptied. Each subsequent component is pushed onto
the stack. If the component is “..,” then an element is popped
off (unless the stack is already empty). After converting the string
pathname into a path stack, Goanna searches the mount table for
any mount that contains this path. The path structure is optimized
for this purpose: if the path has a lower depth than the mount,then
it cannot be a child; and the length is stored with each component
so the component names need to be compared only if they have
equal length. If one is found, then the path components afterthe
root of the mount are extracted; for example, if the path is/usr/
local/src/linux and the mount is rooted at/usr/local, then
src/linux is extracted. Any mount-specific data associated with
the file name is passed to the file system (e.g., the device it isstored
on). If the path name is not contained in a mount, then Goanna
allows the system call to go through unchanged.

3.5 Address Spaces

There are two distinct address spaces involved in executinga mon-
itor: the address space of the monitor and the address space of
the user process. An important issue for performance is thatthe

ptrace primitives to access the user process’s address space are
rather limited—they can examine or change only one word at a
time (PTRACE PEEKDATA in Section 3.1). Thankfully, Linux pro-
vides a more flexible interface through the/proc file system. A
process with permission toptrace another process may read from
the traced process’s memory using the/proc/pid/mem file, where
pid is the PID of the traced process. This allows the trans-
fer of up to a page (1,024 words on the 80x86) in a single sys-
tem call. Linux also has support for writing to/proc/pid/mem,
but it is disabled by default. For our prototype, we enabled
a writable /proc/pid/mem to allow bi-directional bulk trans-
fers. If the/proc/pid/mem interface is not available for read-
ing or writing, then Goanna falls back toPTRACE PEEKDATA and
PTRACE POKEDATA. Allowing regions of the child’s address space
to be memory-mapped into a monitor, thus providing a zero-copy
transfer method, would be more efficient.

Another issue is that all system call arguments need to be in the user
process’s address space. For example, the first argument toopen is
a pointer to a string. If a monitor needs to update these values, then
it must manipulate the child’s address space. It is not always possi-
ble to manipulate the file name in place, because the new file name
may be longer than the existing file name, and the memory segment
may be read only. To address this issue, previousptrace moni-
tors have modified either the stack, or the first writable segment. In
Goanna, we establish a System-V shared-memory region between
each user process and Goanna. When the first system call is is-
sued with an argument that needs to be updated, Goanna creates
a shared memory region. Next, Goanna inserts a shared-memory
attach operation into the child’s system-call stream. At this point,
Goanna writes the new file name into its own address space, and
updates the child’s registers to point to the shared memory in the
child’s address space. After the call, the child’s originalregisters
are restored. Subsequent arguments can be rewritten by simply up-
dating the local region and the child’s registers. This approach has
the advantage of requiring no data copies. Also the child’s existing
memory is not modified, therefore the child’s memory need notbe
restored after the call.

3.6 Memory-Mapped Operations

Many applications (e.g., linkers) take advantage of memory-
mapped operations, which allow access to the file system through
an efficient memory-like interface. Therefore, supportingmmap is
essential to providing good compatibility and design transferabil-
ity. Goanna provides support for memory-mapped operationsby
intercepting themmap system call and anySIGSEGV signals that are
delivered to a monitored process.

Upon intercepting anmmap system call destined for one of its file
systems, Goanna behaves much like an OS kernel: it establishes an
empty region and services page faults for that region. To create the
empty region, Goanna converts the process’smmap system call to an
anonymous region that the process is not allowed to read or write
to. Goanna also records the address of the memory-mapped region
and its backing file in the process’s PCB.

Normally, the OS handles the page faults through a hardware trap
triggered by the MMU. Goanna handles page faults through a soft-
ware trap. Whenever an application accesses an invalid page(ei-
ther because it does not have permission or the page does not exist),
the OS sends it aSIGSEGV signal. Before a monitored applica-
tion receives the signal, Goanna examines the signal information
including the address that faulted. If Goanna finds the address in
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that PCB’s memory-mapped region list, then Goanna reads thepage
into the process’s address space. Next, Goanna issues anmprotect
system call in the context of the application to allow the process to
read the page. If the address is not found, then aSIGSEGV signal is
delivered to the process, usually resulting in a core dump.

When the region that was read into the process’s address space is
written to, a second page fault is generated. Goanna marks the
page’s state as dirty. It then allows the process to change the page
(usingmprotect). Unfortunately, the signal information structure
informs us only that an access violation occurred; it does not in-
form us whether the requested access was a read or write. If we
had this extra piece of information, we could reduce the number of
traps into the monitor that are required for memory-mapped writes.
On munmap or msync, Goanna writes dirty pages to the backing
file. Although Goanna does not currently write dirty pages inother
circumstances, it would be possible to create a separate thread for
flushing dirty pages (analogous to Linux’spdflush or FreeBSD’s
vm pageout).

3.7 File System Switch

Goanna uses a file system switch (a.k.a., a virtual file systemor
VFS). The VFS is responsible for resolving path names and then
passing the operation down to an appropriate file system. Thema-
jor advantage of a VFS is that hard-coded function calls are avoided,
thus allowing multiple file systems to be easily developed. More-
over, the VFS provides a convenient boundary between Goanna’s
core (e.g.,ptrace primitives) and a file system. Our experience
developing layered file systems has given us unique insight into
VFS design from the perspective of extensibility [26]. VFSsto-
day either encapsulate quite a bit of functionality within the VFS
itself, making it difficult to extend, or they include too little generic
functionality, making it difficult to develop file systems.

Like a standard VFS, our system uses operations vectors to direct
intercepted calls to the appropriate method. Our VFS differs in that
it has several levels of methods, which may call one another.The
highest level of methods correspond to system calls. To provide
functionality within the VFS, generic methods can be assigned to
these operations. For example, a file system need only implement
onewrite internal method to write data to a file. Thewrite
andwritev operations can then be handled by thegeneric write
and generic writev methods. Those methods in turn call the
write internal method. Using generic operations for some op-
erations is not new, but our VFS differs in that no functionality is
actually built into our VFS: it is all delegated to generic methods.
This is important because the generic methods may not be suitable
for all file systems. For example, a transactional file systemmust
start a transaction at the beginning ofwritev and commit it at the
end (so that earlier writes do not affect the file system if later writes
fail). As thegeneric writev method does not know about trans-
actions, it is unsuitable for a transactional file system. Inour archi-
tecture, a transactional file system can implement its ownwritev
method without being constrained by existing VFS functionality.

Our design also allows for efficient implementation of layered file
systems. For file systems that simply add functionality to anexist-
ing lower-level file system, it is possible to add a new layer without
introducing method calls for operations handled by the lower-level
file system. For example, an encryption file system does not affect
the fchown operation, so the file-system switch directly calls the
lower-levelfchown operation.

3.8 ptraceEnhancements

The standardptrace interface requires at least six context switches
for each system call:

1. The traced process traps into the kernel.
2. The kernel transfers control to the monitor.
3. The monitor transfers control to the kernel.
4. After executing the system call, the kernel transfers control

back to the monitor so that the return value can be manipu-
lated.

5. The monitor transfers control back to the kernel.
6. The kernel transfers control to the traced process.

In reality, more context switches are required as the monitor must
retrieve the values of traced process’s registers, issue system calls
to provide OS-like services, etc.

Clearly, reducing the number of times that the monitor is called
improves performance. For most calls, Goanna needs to be notified
only on entry. If the call is not destined for a monitored prototype
file system, Goanna does not need to examine the return value so
the call could execute without further intervention by Goanna. If
the call is handled by the prototype file system, the return value
could be set and the monitor need not be notified. Unfortunately,
these two modes of operations are not possible under the current
ptrace interface.

We created two newptrace operations:PTRACE CHECKEMU and
PTRACE SYSSKIP. The PTRACE CHECKEMU operation is similar to
the PTRACE SYSEMU operation that was recently introduced to im-
prove the performance of User Mode Linux [3]. The primitive
PTRACE SYSEMU allows all of a process’s system calls to be emu-
lated, but it is not suitable for Goanna, because we emulate only a
subset of the system calls. OurPTRACE CHECKEMU interface allows
Goanna to determine whether emulation is required after examin-
ing the registers (the UML developers agree that our more gen-
eral PTRACE CHECKEMU interface is an improvement over the ex-
isting PTRACE SYSEMU [5]). The corollary toPTRACE CHECKEMU is
PTRACE SYSSKIP. When Goanna does not implement a call, it is-
suesPTRACE SYSSKIP instead ofPTRACE SYSCALL to bypass noti-
fication of this system call’s return value and goes directlyto the
start of the next system call. Together, these primitives reduced
traps into Goanna by 30.8% during an OpenSSH compile.

Finally, there are also many non-file-system system calls that
Goanna need not intercept at all (e.g.,time or getpid). To reduce
the number of extraneous calls into the monitor, we added an op-
tional bitmap of system calls to the task structure. By usinga new
ptrace primitive,PTRACE SELECT, Goanna selects precisely the set
of calls that need to be traced. This method reduced the number of
traps to Goanna by an additional 12.8% during an OpenSSH com-
pilation. Overall, these techniques reduced the number of traps to
Goanna by 43.7%.

Our improvements can benefit a wide variety ofptrace monitors.
For example,PTRACE CHECKEMU grew out of work for User Mode
Linux, but provides a more flexible interface that can be usedby
a monitor that emulates a subset of system calls. Many security-
oriented monitors need to examine only which system calls are be-
ing executed and their arguments, but not their return value. For
these types of monitors,PTRACE SYSSKIP would greatly improve
their performance. Thestrace program provides support for fil-
tering the set of system calls to display (e.g., file system, process,
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or IPC- related calls), but this filtering is done in user-space. By
usingPTRACE SELECT, strace could have the kernel perform this
filtering more efficiently.

4 Example File Systems

In this section we describe the design and implementation ofthree
file systems that we created using Goanna. In Section 4.1 we de-
scribe a simple pass-through layer that handles file system opera-
tions by passing them down to another directory. This pass-through
layer serves as the basis for our AES encryption file system de-
scribed in Section 4.2. In Section 4.3 we describe a user-level ISO
file system, which allows users to browse CD-ROM images. In
Section 4.4 we briefly describe our transactional file systemcalled
Amino.

4.1 Pass-Through Layer

We developed a simple pass-through file system layer for two rea-
sons. First, it serves as an example for other file system extensions.
We developed it in such a way that its operations could be reused
for other file systems (e.g., the encryption file system described
in Section 4.2). Second, it provides a suitable basis for evaluat-
ing Goanna’s overhead (Section 5.2). The pass-through file system
takes a single mount-time argument: the name of the directory to
which operations should be redirected.

The pass-through file system implements 21 operations, 17 of
which are simple wrappers around another system call. It also de-
fines two new operations:encodename anddecodename. File sys-
tems built on top of this pass-through layer can override these op-
erations to manipulate file names. These methods translate upper-
level file names to the corresponding lower-level names (andvice
versa). A representative method of the pass-through file system is
unlink, which has only three function calls: (1) the argument is
converted to a lower-level name usingencodename; (2) the lower-
level name is unlinked; and (3) the lower-level name is freed. The
read, write, andlseek methods are similar to the system-call-
based wrappers, but take internal monitor objects (i.e., mount and
open file structures) as arguments instead of operating at the ABI
level. This allows the methods to be re-used for many types ofsys-
tem calls (e.g., theread operation is used for both theread and
readv system calls in addition to memory-mapped reads). The last
two methods areopen andclose, both of which wrap underlying
system calls and manage monitor state (e.g., the open file structure).

4.2 AES Encryption Layer

We have developed an AES encryption file system on top of the
pass-through layer described in Section 4.1. This encryption layer
allows users to encrypt the contents of a directory, therebyprevent-
ing a breach of confidentiality if the hard disk is stolen.

Encryption scheme

Our file system layer encrypts both file names and file data. How-
ever, to simplify development and administration, we choseto pre-
serve the existing structure of files by encrypting each file sepa-
rately because users are used to dealing with a traditionally orga-
nized file hierarchy [2, 24]. This convenience, however, comes at
the expense of revealing some information about the structure of
the files (e.g., how many files exist in a given directory and their
size). Several systems have made theses choice, including CFS [2],

NCryptfs [24], and eCryptfs [10]. The data and names in our sys-
tem are encrypted using a key that is read withgetpass on startup.

We use a separate scheme for file name encryption and data en-
cryption. For file names, we must to encrypt the parent directory
name and a name within that directory. Each parent directoryhas
an associated initialization vector (IV), which means thata file with
the same name in two different directories does not encrypt to the
same text. We chose to use the AES-CBC mode to encrypt file
names. This has the disadvantage of causing the file name’s length
to be rounded up to the nearest cipher block size (16-bytes),but it
is more secure: more malleable cipher modes (e.g., CFB and CTR)
are inappropriate because they do not permit the reuse of an IV for
different cipher texts. After the file name is encrypted, it is base-
64 encoded so that illegal (i.e., “/” and “\0”) or control characters,
which can disrupt the user’s terminal and confuse utilities, are not
written to the file system.

For data we need a scheme that has four properties:

• Two different files with the same plaintext have different ci-
pher text.

• Two different regions of the same file that contain the same
plaintext have different cipher text.

• We can rewrite regions of the file with the same IV.

• Random access has a constant penalty.

The scheme we developed, inspired by Blaze’s OFB/ECB hy-
brid [2], is a hybrid of AES-CTR and ECB mode that satisfies each
of these properties. This scheme has the advantage over Blaze’s
that there is no need to store precomputed data; it supports arbitrar-
ily large files; and we use a distinct random stream for each file.

Extended attributes

For each encrypted file we must store two pieces of information:
its initialization vector and its actual size, because the file’s size
is rounded up to the nearest cipher block size. In both cases we
use the extended attribute API supported by Ext2, Ext3, Reiserfs,
and many other file systems [8]. Storing the data in the file itself
would change the file size and expected performance characteristics
(because data would no longer be block aligned).

Implementation

The encryption file system overrides a subset of the operations for
the pass-through file system described in Section 4.1. Themount
operation initializes the AES encryption and decryption keys and
locks them in memory so that the OS does not write them to swap.
Theunmount operation zeros out the keys before freeing them. The
encryption layer defines four generic VFS-like operations:open,
read, write, andlseek. It retrieves the file’s IV via the extended
attribute interface. If the file does not yet have an IV, then anew one
is generated. Theread andwrite functions are more complex than
the others because they must correctly handle I/O operations that
are not aligned on the AES block size, forcing us to use padding.

The encryption layer implements two internal methods for the
pass-through file system:encodename and decodename. The
encodename method converts a decrypted file name (e.g.,/home/
rick/goanna/paper.pdf) to an encrypted file name. The
encodename operation is used foropen, mkdir, and other op-
erations that take a pathname as an argument. Conversely, the
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decodename operation is used for directory-reading operations. It
retrieves the IV of the parent, and then decrypts the name.

Finally, the encryption layer implements five system-call-level
functions: stat, fstat, truncate, ftruncate, andread. The
stat andfstat functions retrieve the file size using extended at-
tributes. Thetruncate and ftruncate functions fill holes that
could be created by sparse files, and align all truncate operations on
AES block-size boundaries.

4.3 ISO9660 File System

CD-ROM images, also known as ISOs, are formatted according
to the ISO9660 standard. ISOs are a convenient way of transfer-
ring large collections of files, such as Linux distributions, software
backups, or even family photos. However, to access the files in an
ISO, users must first mount it using a loop device. Unfortunately,
mounting a file system requires root privileges. It would be possible
to create set-UID programs to allow a user to mount ISO images,
but even if developed securely, there is always a potential for bugs
or misconfigurations that could compromise the security of the sys-
tem.

To address this issue, we developed a user-level file system us-
ing Goanna, built aroundlibiso9660 from GNU libcdio [18].
Goanna’s user-space nature allowed us to link against this library
and leverage its 3,449 lines of already tested code.

Because ISO9660 file systems are read-only by their nature, we
needed to implement only nine methods for this file system:mount,
unmount, open, close, read, lseek, fstat, getdents, and
fcntl. The most complex method wasread. For read, much of
the code complexity was caused by a limitation of thelibiso9660
library, which only allows 2KB-blocks to be read. To implement
read efficiently, we wrote more code to avoid extra data copies for
unaligned access.

4.4 Amino File System

The original application of Goanna was toward developing a trans-
actional file system called Amino [25]. Amino allows user-
level applications to group operations into transactions that sat-
isfy ACID semantics. Amino is based on the user-level Berkeley
Database [20], so user-level development allowed us to develop it
rapidly. Because Amino must support transaction rollback for VFS
caches (i.e., the inode, directory-name-lookup, and page caches), it
would require invasive changes to the VFS if developed in theker-
nel. This would have required a large investment of time to begin
our investigation into transactional file systems, and our initial re-
sults would have been significantly delayed. Moreover, because one
of the major facets of our investigation required us to make changes
to the VFS, it would not have been possible to develop Amino as
a FUSE file system or a user-level NFS server. Amino is the most
demanding of all the file systems—it has almost six times as many
lines of code (6,173) as the encryption file system, requiring each
of the three properties that Goanna’s monitoring infrastructure was
designed for: rapid development, modularity, and powerfulproto-
types.

5 Evaluation

We evaluated Goanna in two dimensions. In Section 5.1 we ana-
lyze how complex our file system extensions are compared to other

Method LoC Tokens Identifiers MC

Framework Implementation
ptrace 6,429 40,121 13,927 1,145
Kernel 48,072 255,969 109,081 8,152
FUSE 8,481 46,051 17,772 1,338
NFS 18,480 103,960 42,734 2,726

Pass-Through File System
ptrace 732 3,948 1,403 127
Kernel 6,079 34,612 14,146 599
FUSE 706 5,010 1,659 149

Cryptographic File System
ptrace 1,131 7,483 2,260 212
Kernel 9,780 57,489 23,130 943
FUSE 2,396 19,297 7,468 423
NFS 1,556 8,981 3,663 251

ISO9660 File System
ptrace 539 2,700 994 88
Kernel 3,769 22,158 8,666 616
FUSE 1,704 11,890 4,315 363

Table 2. We evaluated different types of file systems imple-
mented using different frameworks according to four metrics.
Bold entries are the smallest in their class. (LoC means Lines
of Code; MC means the McCabe cyclomatic complexity).

methods of developing file systems. In Section 5.2 we evaluate
Goanna’s performance.

5.1 Complexity Evaluation

We used four metrics to compare the amount of development effort
different frameworks require to write pass-through, encryption, and
ISO9660 file systems. For each type of system that we evaluated,
Table 2 shows the number of lines, tokens, identifiers, and the Mc-
Cabe [16] cyclomatic complexity. McCabe’s metric is the most pre-
cise: it measures the number of linearly independent paths through
a program. We used the C and C++ Code Counter (CCCC) [14]
to compute the complexity of each function, and then summed the
results.

Framework implementation

Goanna and the FUSE frameworks require a similar amount of de-
velopment effort to implement. We chose the SFS toolkit [15]as an
example of a user-level NFS server. It is more than twice as com-
plex than either FUSE or Goanna, but it is tightly integratedwith a
simple pass-through file system, which we did not remove fromits
complexity metric. The kernel’s VFS system is the largest frame-
work by any metric. This is not surprising because it cannot rely
on external libraries and includes caching, quota management, sup-
port for several binary formats, asynchronous I/O, and manyother
tightly integrated facilities. This tight integration means that a ker-
nel developer has to be familiar with a large body of complex code
to develop file systems.

Pass-through layer

Goanna’s and FUSE’s pass-through file systems have similar com-
plexity: FUSE is 3% shorter, but has 27% more tokens, 18% more
identifiers, and a 17% higher cyclomatic complexity. Although our
pass-through file system is 26 lines longer, it has more functionality
than its FUSE counterpart. Our file system transforms names before
passing the operation down to the lower-level file system, which en-
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ables us to mount on any lower-level directory (FUSE is limited to
“/”) and build our encryption file system on our pass-through file
system. When this additional functionality is removed fromour file
system, its cyclomatic complexity is reduced to 97 (or 53% less than
FUSE’s). The SFS toolkit provides a built-in loopback NFS server,
but the toolkit itself is more complex than Goanna or FUSE and
the corresponding pass-through file system put together. Wrapfs, a
pass-through file system for the Linux kernel, has the highest com-
plexity, because it must perform elaborate operations on reference
counts and cached objects, and emulate much of the VFS’s func-
tionality.

Encryption file system

We compared Goanna to the in-kernel eCryptfs [10], FUSE’s
EncFS [7], and the encryption file system from the SFS toolkit.
Our file system and the one from the SFS toolkit have similar com-
plexity. This is as expected because both allow a file system layer
to extend an existing pass-through layer. Because EncFS wasde-
veloped in FUSE, where the interface is similar to the VFS’s,de-
velopers had to implement a less abstract interface, and thus they
had to implement more routines. EncFS originally had over 14,000
lines of code and a McCabe complexity of 1,323. Even when we
removed all code related to configuration, abstract classes, header
files used by C++, and specialized caching, we still found EncFS
to be twice as complex as our file system. eCryptfs suffers from
the same problems as Wrapfs (because it is essentially a modified
copy). Thus it is twice as complex as the other file systems.

ISO9660 file system

We compared Goanna’s ISO9660 file system to the kernel’s and to
the FUSE-basedfuseiso [17]. Goanna’s ISO9660 file system is
539 lines of code with a McCabe complexity of 88. The size and
complexity offuseiso was greater: 1,704 lines and a cyclomatic
complexity of 423. This increase is for two reasons: (1) Goanna
useslibiso9660, whereasfuseiso does not use any external li-
braries, so it has code for reading ISO9660 directories, and(2)
FUSE requires its file systems to handle more VFS objects than
our framework. The kernel implementation is larger thanfuseiso.
This is because it cannot use external libraries such aslibiso9660
or even system calls, so interfacing with the device it is mounted on
is more complicated.

In sum, FUSE and the NFS toolkit fall short in prototyping power,
but they compare favorably with Goanna in terms of rapid proto-
typing capabilities and modularity. However, when rapid prototyp-
ing, modularity,and powerful prototypes (Section 2) are required,
a ptrace-based monitor framework is a better choice than either
FUSE or NFS toolkits.

5.2 Performance Evaluation

Our testbed ran Fedora Core 4 with all updates as of July 19, 2005.
All experiments were conducted on a dedicated 40GB Maxtor IDE
disk. We compared our pass-through and encryption file systems
to XFS because it is highly scalable [21] and has mature extended
attribute support [8]. We compared our ISO9660 file system tothe
kernel’s over the loop device. To ensure a cold cache, we remounted
the file systems between each iteration of a benchmark. For all tests,
we computed 95% confidence intervals for the mean elapsed, sys-
tem, and user time using the Student-t distribution. In each case, the
half-widths of the intervals for the elapsed and system times were
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Figure 3. Postmark: 5,000 files and 20,000 transactions.

less than 5% of the mean. We also compute wait time, which is
elapsed time less CPU time. Wait time is mostly spent waitingon
I/O, but can also be affected by the scheduler. We do not evaluate
Amino in this paper, because it is outside the scope of this paper,
and a thorough evaluation can be found in a separate technical re-
port [25].

Pass-through file system

We used the following four configurations to evaluate our pass-
through file system:

XFS256 XFS with the default 256-byte inodes, which is the basis
for the following three configurations.

STRACE XFS monitored bystrace -cf. This configuration
shows the overhead of theptrace facilities when used by a
standard tool, but does not modify any system calls or produce
any output during execution.

MONTRACE XFS monitored by Goanna. This configuration
shows the overhead ofptrace and our path-name resolution
infrastructure.

MONPASS Our pass-through file system.

We used Postmark v1.5 [12] to evaluate the performance of our
system. Postmark is an I/O and system-call intensive workload
that simulates a busy mail server by creating, deleting, reading,
and writing to small files. We used the default parameters butin-
creased the number of files to 5,000 and the number of transactions
to 20,000, because the defaults do not exercise the file system suf-
ficiently. Figure 3 shows the results of this experiment.XFS256
took 20.0 seconds to execute. It used 9.0 seconds of CPU time in
the kernel (system time) and 0.5 seconds of user time.STRACEwas
14.1% slower thanXFS256; it consumed 55.4% more system time
and 3.2 times more user time. This increase is caused by additional
context switches and examining the application’s registers. MON-
TRACE was similar toSTRACE: it took 13.8% longer thanXFS256;
it used 54.1% more system time and 3.5 times more user time.
Goanna used less system time thanSTRACE, because it retrieves
the registers more efficiently. However, it used more user time,
because it performs path name resolution.MONPASS took 18.3%
longer thanXFS256 and it took 74.6% more system time and 4.8
times more user time. The additional CPU overhead was caused
by the additional data copies and system calls required to service
requests. Our results show that Goanna is as efficient as a stan-
dard tool that usesptrace, and that file systems can be prototyped
with acceptable overheads even for system call and data-intensive
workloads like Postmark.
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Encryption file system

To evaluate our encryption file system, we used the configuration
MONCRYPT, in which our AES encryption file system was layered
over XFS formatted with 512-byte inodes; we call this configura-
tion XFS512. The increased inode size allows extended attributes
(EAs) to be stored directly in the inode block, thus improving EA
performance. When no EAs are used,XFS512 is 44.1% slower than
XFS256.

Figure 3 shows the results.MONCRYPT’s elapsed time overhead
was 106.2% overXFS256. This overhead is caused by three fac-
tors: (1) encryption increases the amount of user time by a factor
of 31, (2) extended attributes must be written, and (3) more data
must be read and written to ensure proper cipher block size align-
ment. These overheads are similar to what we have observed for
Postmark running on CFS in the past, which runs in user-leveland
provides the same type of encryption (123–223%) [23, 24]. When
MONCRYPTcompared toXFS512, the elapsed time overhead is re-
duced to 43.1%.

ISO9660 file system

To evaluate the read-only ISO9660 file systems, we did not run
Postmark because it modifies files and directories. Instead,we
wrote a program to read all of the files from Fedora Core 4 (i386)
Disc 1. There are a total of 628 files, which consume 650MB. We
used two new configurations:

LOOPISO The kernel’s ISOFS over a loop-back device.
MONISO Our ISO9660 file system.

TheLOOPISOconfiguration ran for 11.2 seconds. Of this time, 2.1
seconds were spent in the kernel, 0.03 seconds were spent execut-
ing in user-space, and 9.1 seconds were spent waiting on I/O.The
MONISO configuration ran for 23.6 seconds, or 110.0% longer than
LOOPISO. The major cause of this increase was an increase in CPU
time. System time increased to 12.84 seconds (a six-fold increase),
and user time increased to 4.9 seconds. The user time is mainly
the amount of time spent within the monitor. Clearly, there is a
performance overhead for using a monitoring framework, butthe
rapid development and convenience of not requiring a kernelmod-
ification can offset this performance impact. Additionally, we are
considering using zero-copy methods to improve performance for
data-intensive workloads such as this one (see Section 7).

6 Related Work

The Ufo Global File system uses an interposition technique similar
to Goanna’s [1]. Ufo provides transparent access to remote files via
FTP or HTTP. Ufo’s monitor uses the Solaris/proc file system.
Ufo operates only on system calls such asopen, close, andstat.
When an access to a remote file is detected, the file is transpar-
ently fetched, and the system call is changed to open the local copy.
Creating a copy is suitable for small files, but is not appropriate
for large files, those which are accessed randomly, or files that are
shared. Ufo does not implement other calls such asread, write,
getdents, or stat internally. Once the file is copied locally, Ufo
relies on the existing file system’s methods. Moreover, by relying
on the existing OS to provide most file and directory operations,
Ufo severely limits the types of file systems that can be developed.
For example, Goanna’s encryption file system must overrideread,
and therefore could not be developed on Ufo. The existing methods
also use the OS caches, which means that the BDB file system we

developed with Goanna is not possible to develop with Ufo.

The Janus framework uses theptrace interface to sandbox un-
trusted applications [6]. Janus monitors file-system and network-
related system call invocations, and applies configurable policies
to allow or deny system call execution. Theptrace interface has
since been used for several other security monitors. For example,
model-carrying code verifies that an application’s sequence of sys-
tem calls fits within a model [19].

Several other systems intercept system calls to provide newfunc-
tionality, but do not useptrace to do so. SLIC [4] is an OS ex-
tensibility system that allows kernel-level extensions oruser-level
servers to register handlers for system calls, signals, andother OS
entry points. SLIC has been used to patch security holes, encrypt
files, and provide a restricted execution environment. User-level
SLIC extension servers are quite similar to theptrace interface, but
have two key disadvantages: (1) they must be trusted, and (2)SLIC
uses self-modifying code for interception. Interpositionagents
provide higher-level abstractions for system call interception [11].
Jones stresses that interposition agents allow portable user-level ex-
tensions to existing system abstractions (i.e., pathnames, descrip-
tors, files, users, etc.) that would normally need to be developed in
the kernel.

7 Conclusions

We built a ptrace-based framework to enable rapid prototyping
of file systems. Our user-level approach allows file system proto-
types to leverage existing and time-tested user-level libraries, and
use the powerful debugging facilities available in user space. Be-
causeptrace allows us to intercept all system calls and signals,
Goanna can override most OS functionality, enabling more pow-
erful prototypes than are possible with FUSE or user-level NFS
servers. Our approach is also highly modular: it can handle library
calls, can rely on existing OS system calls, and developers need not
be concerned with the large body of existing kernel code; Thede-
sign of a file system developed withptrace can be readily adapted
to the kernel, as it operates at the traditional boundary between user-
space and the kernel. This level of abstraction also provides a high
degree of compatibility with user-level applications. Ourperfor-
mance evaluation demonstrates that user-level file systemscan pro-
vide acceptable performance for prototypes. We have usedptrace
to implement more file system functionality than existing solutions
can. Goanna allows developers to modify all file system calls, in-
cludingread, write, and even memory-mapped reads and writes.
Goanna’s VFS infrastructure is also an improvement over existing
VFSs in that it allows the file system to extend the OS, beginning
within the system call interface.

We developed three example file systems using Goanna. First,
we developed a simple, yet extensible, pass-through file system.
Second, we built a highly secure encryption layer using the pass-
through file system as a basis. Third, we developed a user-level
ISO9660 file system. We showed that file systems developed with
our framework have comparable complexity to ones developedwith
FUSE and user-level NFS toolkits, but Goanna has a higher degree
of power (see Section 4.4). We also show that each of these frame-
works have less complexity than the kernel.

To allow other developers to benefit from our approach, we have
released Goanna, the example file systems, and benchmarks de-
scribed in this paper. They can be downloaded fromwww.fsl.cs.
sunysb.edu.
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7.1 Future Work

Currently, to use a Goanna file system, a process must be started
through the monitor. We plan to create a simple framework that
will allow processes to request an extension, or for users toattach
an extension to an existing user-level process (e.g., by clicking on
its window as in thexkill interface). A third option would be to
run all of a user’s processes through Goanna, and dynamically insert
extensions based on the system call stream. For example, when a
ZIP archive is opened, it could be made to appear as a directory.
This mode would be convenient because users would not need to
predefine a mount table in the Goanna configuration file.

The second aspect of our future work is to improve performance.
We plan to further improve theptrace interface. To reduce both
the number of context switches and data copies between the ker-
nel and Goanna we will: (1) use a shared-memory segment to ma-
nipulate the user process’s registers so that data copies and con-
text switches are reduced; (2) map regions from the user process’s
address space into Goanna’s; and (3), where appropriate, bundle
severalptrace operations into a single system call to reduce con-
text switches (e.g., waiting for notification could be combined with
retrieving registers). We may also port performance-sensitive sub-
sets of Goanna to the kernel (e.g., path name resolution and file-
table lookups). Finally, Goanna’s implementation is currently sin-
gle threaded (though many monitors can run concurrently). We plan
to make Goanna multi-threaded to improve performance when a
single monitor handles many processes.
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