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Abstract

Developing kernel-level file systems is a difficult task treuires

a significant time investment. For experimental file systeinis
desirable to develop a prototype before investing the tiegiired
to develop a kernel-level file system. We have bujit aace moni-
toring infrastructure for file system development. Becamsesys-
tem runs entirely in user-space, debugging is made easikit &
possible to leverage existing tested user-level libraBesause our
monitor intercepts all OS entry points (system calls andalig) it

is able to provide more functionality than other prototypitech-
nigues, which are limited by the VFS interface (FUSE) or ratw
protocols (user-level NFS servers). We have developedaesr-
ample file systems using our framework, including a passtitin
layered file system, a layered encryption file system, andea us
level ISO9660 file system. We analyzed the complexity of aaec
using cyclomatic complexity and other metrics. We show rsgwi
for a pass-through file system of 53% compared to existing- use
level pass-through file systems and a factor of 4.7 redudion
an in-kernel pass-through file system. Our performanceuatiain
demonstrates that our infrastructure has an acceptabteeae of
18.4% for a pass-through file system.
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1 Introduction

File system prototyping is difficult: developers currentigve to
struggle with a massive body of complex kernel-level codeetd

their ideas. Attempts have been made to address this isgumost

of them lack the added flexibility and expressiveness thatete
developers often require (e.g., being able to modify how\R&

caches inodes). This forces some developers to resort totppe

ing in the kernel, and to cope with weaker debugging tootsytiey

reboot cycles, and the inability to capitalize on existirsgulevel

libraries.

We created a user-level file system development environosng
aptrace [9] monitor. a program that usg# r ace to manage re-
sources shared between multiple processes. Our develoemean
ronment is more powerful and convenient for developers thast-
ing user-level frameworks. We call our monitGoanna(after the
Australian genus of monitor lizards). Tipérace process-tracing
facility, commonly used by debuggers, allows us to intetcef
entry points (i.e., system calls, signals, and more) andrirsis-
tomized code before, after, or as a replacement for the kéamel
implementations—all without the process’s knowledge. heer-
lying OS kernel handles all process management, memorygeana
ment, the networking, and other core OS facilities. We hale f
lowed the Unix tradition of using a single name-space, soriba
file systems and existing file systems can co-exist. Systésdzss-
tined for paths that Goanna does not handle are simply passed
to the underlying kernel. Thus, developers can focus onlheir
specific extension code. Moreover, because developersriegv
user-space code, a plethora of libraries and debugging tbat do
not work in the kernel are available.

Goanna’spt race monitor framework significantly improves the
experience which kernel developers have by providing thievie
ing three advantages:

Rapid development

There are many user-level libraries that perform usefldddsr file
systems (e.g., the Berkeley DB provides transactionakBstand
hash tables [20]). In user space, developers also have araiidty
of good debugging techniques at their disposal. A good pypiog
framework should leverage these technologies as much athfms
Unfortunately, user-level libraries are not suitable fbe tkernel,
and debugging the kernel is difficult. Some kernel debuggees
available, but they are cumbersome to use, and they tenchtageh
timing conditions enough to make it more difficult to debugreo
plex problems; for these reasons, many developers ofteosehio
insert print statements instead. These problems, combiitedhe



raw complexity of most commonly used OS kernels, introduee d
bugging difficulties that almost never occur in user spaccdsise
apt race monitor runs entirely in user-space, it can link with exist-
ing user-space libraries and interoperate with user-ldebLigging
tools.

Powerful prototypes

A prototyping framework should allow developers to charigeié-
icant aspects of the system. Other file system frameworls asic
FUSE [22] or NFS toolkits [15] that address rapid developinizd
short here. For example, FUSE can only intercept VFS operstti
and is unaware of system calls liker k. Many research ideas for
which a prototyping framework would be useful can not affartie
limited to a predetermined VFS interface. For example, écsal
properties inherited accross processes are required,inshtation
of fork would be crucial. Aptrace monitor addresses this issue
by intercepting more of a process’s entry points (i.e., the sig-
nals and system calls). Thus, for traced processes, a ménible
to provide most of the kernel’s functionality.

Modularity

A prototyping framework should allow developers to writedeo
only for those systems they wish to change, without modgyin
other systems. An OS kernel is a large piece of software, mihy
interacting components. For example, the Linux virtual $iystem
(VFS) has more than 48,000 lines of code, but if it is changed i
any significant way, then the developer must update dozefike of

does not require root privileges). This improves the sy&esmcu-
rity, because the user does not require any root privilegésdwse
the image. Also, using pt r ace monitor to allow new kernel-like
functionality to be offloaded to user space increases iiétialof
the kernel code base.

When we compared the lines of code, number of tokens, nunfber o
identifiers, and the McCabe complexity of file systems dgwetb
with our framework vs. those developed with FUSE, userlis\ES

servers, or the kernel, we found our file systems were lesplm

The rest of this paper is organized as follows. In Sectioi®s 8nd 4
we discuss the current state of the art in file system protogy@n
overview of Goanna’s design, and three example file systewsd
oped in Goanna, respectively. In Section 5 we evaluate Gdann
complexity and performance. Sections 6 discusses related, w
and we conclude in Section 7.

2 Background

To evaluate prototyping frameworks, we developed a taxgnibrat
includes the three criteria from Section 1 (rapid prototgpipower-
ful prototypes, and modularity) with design transferaiijlcompat-
ibility, and performance. We used these six dimensions auate
six common prototyping frameworks: the kernel itself, Ustrde
Linux (UML) [3], FUSE [22], a user-level NFS server toolkit5],

an LD_PRELOAD library, a modified C library [13], and out r ace

monitor.

systems, the memory management system, and more. Not only isUSer Mode Linux runs the Linux kernel in user space by using
there a large amount of code, but the code is also very complex Ptrace. UMLs primary goal is to provide a mechanism to run

Frameworks that enable kernel development in user spach ésu
UML [3]) also suffer from this lack of modularity. In a monitadhe
developer begins with a clean slate. Goanna has only 6,429 tif
code, and consequently it is simpler to understand andcéseary,
rewrite any of its components. Also, we designed Goanna thath
prototyping a file system is rather easy by including a sinfiie
system switch that operates at the system call level.

The major objection to using a user-level monitor rathentkarnel
development for prototyping is that to get better perforoegrone
must reimplement the system after the prototyping stagepbogt
it. This is often true, but we feel that mitigating the oppmity cost
associated with prototyping a new file system is worth thewarho
of work that may be lost when transitioning to a deployabls-sy

GDB on the kernel. FUSE is a hybrid approach that routes VFS
calls to a user-level daemon so developers can implemeret sygH
tem with the traditional VFS interface in user space. Useel
NFS toolkits allow developers to construct their prototgseNFS
servers that run in user space. T PRELQAD facility allows C
library functions, including system call wrappers, to bewidden.
A modified C library [13] can be used in much the same way as the
LD_PRELQAD option. Table 1 summarizes our qualitative estimates
on how each alternative meets the six criteria. Often, imipigp
one criterion comes at the expense of others; thereforejnybes
framework is suitable for all circumstances.

Rapid development

tem. There are also many file systems where performance is not prototyping framework should enable developers to userex

critical. For example, an SSH file system performs many ngwo
and cryptographic operations, which would dominate anyoper
mance degradation caused by running it in user-level. Maeo
the amount of work to be redone should be small. Most of the
design and algorithms should translate easily to the keEbalept-

ing references to user-level libraries or modificationd®monitor
itself, the code can also be reused. Finally, when one cerssid
that most systems (especially in research) never make itthas
prototype phase, it becomes evident that a more efficienhsefi
prototyping file systems is desirable.

User-level monitors are also useful beyond prototyping. éx@m-
ple, browsing the contents of an ISO 9660 CD-ROM image would
normally be done by creating a loopback device and mounting i
However, it is unsafe to allow non-root users to mount aalojtr
devices; so users cannot easily browse these images. Gpamna
vides a solution: users can virtually mount any ISO image the
like by running any program (e.g., a shell) through Goannaictv

libraries and debugging tools to speed up development. €heek
cannot link against user libraries, and is the most difficuldebug.
UML can be debugged in user space, but it cannot link with liser
braries. Similarly, a modified C library would have circuligpen-
dencies if it links against a user library that in turn linkack to the
C library (which almost all user libraries do). ConversdiJSE,
user-level NFS toolkits, abD_PRELOAD approach, and a monitor
framework all use the standard user runtime environmenthep
can easily use user-level libraries and be debugged.

Powerful prototypes

A prototyping framework should impose as few limitationgpas-
sible. In-kernel development is the most powerful protaigp
framework for file system development, because any aspedbieof
system’s behavior can be changed. Some examples requipirtg a
totyping framework more powerful than a VFS interface are:



Rapid Development | Powerful Modularity Design Runtime Performance
Prototypes Transferability Compatibility

In-kernel file system| * K * * * K Kk * K Kk * %k
UML * % * % * * * k * *
FUSE * % * * * * * x b * % * * %
User-level NFS * * * * * % * % * % *
LD_PRELOAD * % % * * * % * * * *x 1p
Modified C library | s % * % * * * *x 1o
pt race monitor * % Kk * * * % Kk * * * % *

Table 1. We evaluated each framework according to our six cteria. Each row represents a framework, and each column repgsents
a criterion. The number of stars within a column can be qualitatively compared, but the number in different columns have o direct
relation to each other.

e Process InheritenceA file system which requires that one  of these approaches are as modular as a monitor framework, be
process inherits vital attributes from another processldvou cause developers must implement all of the protocol's migtho
have to instrumentor k. One such application would be in  The LD_PRELQAD library-based approach is also not as modular as
a file system that supports mandatory locks where children of a monitor framework because developers must implementmigt o

a process can optionally be given permission to access files1/O-related system calls (e.gw i te), but also I/O-related library
locked by their parent. calls likefprintf. The C library is worse than FUSE, the NFS
toolkit, and theLD_PRELQAD library, because the code for most C
libraries is large, and is not designed with interceptintisda the
kernel in mind. Thus as with UML and in-kernel developmehg t
prototype would be tightly integrated with the library.

e Recovery ActiongA file system that allows a process to per-
form system-condoned tasks before it exits would require in
strumentation of thexi t call. One application of this would
be to allow a process to run a system tool that undos its

changes to the file system if the process exits with a non-zero . .
code. Design transferability

e Security TrackingA file system that associates important se-
curity metadata with each process would need to be aware of
fork, exec, andexi t . To ensure that absolutely all exit points
are caught (e.qg., being killed by the Out of Memory or OOM
killer in Linux), a small kernel patch would be required [24]

A prototype’s design and algorithms should be applicabl¢h®
deployed system with minimal changes. The code of a prototyp
developed in the kernel or using UML, need not change for de-
ployment. FUSE is almost as transferable as UML becausést as
developers to design their extensions with an interfacdaito the
kernel’'s VFS. NFS servers are less transferable than FUS&LIse

the NFS protocol is not as close to the VFS as FUSE’s protocol.
The monitor framework is similar to NFS, in that the systerti ca

A ) interface is similar to the VFS interface, but not quite assel as
layer. UML runs in the user-level, and therefore it canndiyfu  FySE's protocol. The.D_PRELOAD and modified C library tech-
control its environment (e.g., its scheduling policies laréted by niques force developers to structure their code in a differeay

those of the host OS). FUSE is even more inflexible than UMLt as i than what the kernel would reguire. which has a non-triviabact
forces the developer to interface with the kernel stridtiptigh the on their design. quire, i

VFS interface, making it impossible to catch process-spavemts,
manipulate caches (e.g., the inode, dentry, and bufferesachnd
more. For example, an access-control layer could chosetd gc-
cess based on the PID. Because FUSE file systems cannogpiterc
process termination, they cannot reliably revoke a présessess
when it exits [24]. A user-level NFS toolkit is limited in ansilar
way to FUSE, though it is limited by the NFS protocol rathearth
the VFS interface. The monitor can intercept all calls mag¢he
process, and theD_PRELOAD and modified C library frameworks
can intercept most calls (but not in-lined assembly).

In order to provide the most general operating system pyptot
ing, the broadest possible interface to the operating systeist
be instrumented, and the system call layer is broader treWES

Runtime compatibility

A prototype should be capable of interfacing correctly veitty pro-
gram. A kernel prototype fully satisfies this criteria. Onesific
application of UML as a runtime environment is running ustad
services while mitigating the risk to the physical hardwigie Us-

ing UML as a runtime environment for more general usage siffe
from the separation between the host and guest kernelscémot
share the same name space or memory, and must use the neswork t
interact. In comparison to UML, FUSE is highly compatiblethwi
applications because the kernel routes all VFS events tBt&E
daemon. The NFS toolkit approach is compatible with program
that are not affected by network anomalies, such as latesyt

is more compatible than other approaches, but not as coohgpati
as FUSE or the kernel itself. The monitor framework has simil
limitations: it cannot run set-UID programs or those tha¢@xe
The pt r ace-based monitor framework is the most modular of all ptrace on other processes, but it is otherwise compatible with all
the options since it is least dependent on limited protoopister- programs and does not require any recompilation of theircmou
faces; it allows developers to override only those systelfs tzey code. TheLD_PRELQAD technique also does not require recompila-
intend to work on; and developers can override these calis-wi  tion of programs, but programs that do not use the C librargrer
out any knowledge of the kernel. The next most modular frame- statically linked cannot be run with the new file system. A imnod
works are FUSE and NFS toolkits, because they prevent devel- fied C library requires relinking of programs so programs thake
opers from crossing clearly defined interfaces. Howeveithae system calls directly cannot be supported.

Modularity

A prototyping framework should limit the amount of code that
velopers must learn and change. This is especially truediomo-
nents that developers are not interested in changing.



Performance

The performance of the deployed system should be as goodsas po
sible. This is obviously true of kernel prototypes, becakseel
code can use in-kernel caches and avoid context switchedaad
copies. FUSE adds the overhead of user-level context segtch
when servicing VFS events, but because FUSE uses the ielkern
caches, the number of data copies is reduced. Overall, FUSE
comes the closest to a kernel-level file system in terms dbper
mance. UML and the monitor both uger ace, which adds context
switches and data copies. Similarly, an NFS toolkit runsr dlie
network subsystem incurring data copies within the netvadack.
TheLD_PRELOAD and C library run in the address space of the pro-
cess, so they do not incur as much overhead for context ssgtch
and data copies as other user-level techniques. Howeegrirtro-
duce additional function calls and must call the kernel tdqren
meaningful work. Moreover, they behave sufficiently diéetly
than the in-kernel VFS, that estimating the potential penémnce
improvements from porting such code to the kernel is morg-dif
cult.

It is clear that no single solution is the answer to all prgpatg
needs, because each prototype could have different reognts.
However, gt r ace-based monitor is best suited for circumstances
where significant OS changes are required, yet rapid dexedap
and modularity are desired. Though all the user-level aggites
try to support rapid development, they make trade-offs wedken
the power of their prototypes or their modularity—whereas t
monitor framework provides these criteria while not oveségrific-
ing design transferability, compatibility, or performand-or exam-
ple, FUSE and NFS toolkits trade prototyping power for imac
modularity by strongly enforcing the VFS interface or thed\sro-
tocol, respectively. On the other hand, UML forces the depet
to contend with a large body of kernel code in exchange for emo
flexible framework. Thé.D_PRELOAD approach is competitive with
a monitor, but it is not as modular and it sacrifices more imgeof
transferability and compatibility.

3 Design

Ourpt r ace-based monitor name@oanna(after the genus of Aus-
tralian monitor lizards) intercepts and modifies a proesys-
tem calls and signals [9]. From the perspective of the appba,
Goanna is equivalent to the OS, so no application modifinatare
required. As shown in Figure 1, Goanna runs at user-levelileso
system prototypes do not need to execute within the kerrmaiké)
anLD_PRELOAD or C library, a single instance of Goanna can handle
multiple processes, so it is simpler to share data, cacinelspther
resources.

The major disadvantage of tipg race approach is that perfor-
mance may suffer for system-call-intensive programs, ag ican-
text switches are required for each system call. The coitedf
performance is often not as important as rapid developnmana f
prototype, so this is an acceptable trade off, especiatlyilsys-
tems with superseding bottlenecks (e.g., the network).

In the remainder of this section, we describe the design einGa.
In Sections 3.1, 3.2, 3.3, and 3.4 we explain Goanna’s systm
interception, structure, process handling, and path uéisol. Ad-
dress space issues are discussed in Section 3.5. In Se&013s7,
and 3.8 we describe ommap design, file system switch, and per-
formance enhancements.

int 0x80

—ret, ] Process 1 ]
TS Process 2 ]
% Process N ]

KERNEL

wait

Goanna Monitor

ptrace

\ External Libraries \

Figure 1. At system call entry, the kernel signals Goanna via
thewai t system call. Goanna manipulates the monitored pro-
cesses’ state usingt r ace primitives. Libraries execute within
Goanna’s address space and use standard system calls.

3.1 Process Tracing Primitives

Goanna begins by forking a new child. The child issues
PTRACE_TRACEME to request interception, and then the child exe-
cutes the to-be-traced executable. From this point onwaoénna

is notified via thenai t system call whenever the child needs atten-
tion.

Many debuggers like GDB uge r ace, so its primitives are similar
to those provided by a debugger. Goanna allows the childegsoc
to fork another child and so on. Each child will be monitored b
Goanna. The monitor can use three primitives to control Keee-
tion of the child process:

e PTRACE_SYSCALL continues execution until the next entry or
exit from a system call. The child is stopped before entering
or after leaving the kernel, and the parent is notified eank ti

e PTRACE_CONT, analogous taont i nue in GDB, continues ex-
ecution until the child receives a signal.

e PTRACE_SI NGLESTEP, analogous taexti in GDB, continues
until the next instruction.

When the child is in the stopped state, a monitor can use
four primitives to observe and manipulate the child pro-
cess:PTRACE_GETREGS, PTRACE_SETREGS, PTRACE_PEEKDATA, and
PTRACE_POKEDATA.

PTRACE_GETREGS retrieves the values of the process’s registers. On
the Intel 80x86 architecture, the p register contains the program
counter, theeax register indicates what system call the process
wants to execute, and the remaining general-purpose eegjisbn-
tain the system call's arguments. Goanna'’s implementasidied

to the 80x86 architecture, because it references thessteeg)i but
itis simple to add support for other architectures becalsappli-
cation binary interface, or ABI is similar on all Linux platfims. In

our reference prototype, only 411 out of 6,429 lines of cagferr
ence 80x86-specific registers.

A monitor can manipulate registers with tHERACE_SETREGS
primitive. Before a system call, the call to execute can enged
by settingeax, and the arguments can be changed by updating the
corresponding registers. After a system call is executeslréturn
value can be set by updating the valueeak. At any pointin time,
the execution flow of the program can be changed by modifying



ei p. This is required when a single system call must be imple-
mented in terms of several other system calls that have touéxe
in the user process’s address space.

Finally, there are two primitives to examine and update a
word in the child process’s memory:PTRACE_PEEKDATA and
PTRACE_PCKEDATA. These primitives are used when the system call
takes pointer arguments (e.g., file names are passed agsstaind
stat fills in a user-supplied buffer).

(1) int 0x80

0 > (2 wait

D (3) QEII‘egSV N
8 — | (4)setregs LL
2 qc)  Gpoke 8_
X S |- >
o QD | (© syscal >
E ¥ (Mywait 8
n - (8) setregs - 9
- (10) iret < () syscall o

Figure 2. pt r ace primitives used to handle ar ead system call.
Arrows indicate control transfer. Double arrows indicate that
the function was called and returned immediately.

Figure 2 shows an example of how Goanna handiezad system
call, destined for a file stored in a prototype file system, ehdif
of a user process. There are ten steps involved in this call:

1. The user process issues a system call by storing the call's

number ineax and invoking the system call trdjx80.

2. Thewai t system call in the monitor returns the user process’s

PID.

3. Goanna issues RTRACE_GETREGS call to retrieve the value
of eax. Based oreax and the call’s arguments, Goanna can
determine how to treat the call. This is useful for cases wher

3.2 Monitor Structure

In Goanna, execution begins by forking a child process toetra
After the fork, the child executes the program to be mondor&ll

of the process’s descendants are also monitored, and eatkh mo
tored process is assigned a state. The two most common atetes
INUserand INCALL, which indicate that the process is executing
user-level code or that it is executing a system call, resgay. To
service requests, Goanna calls #aét system call. When a pro-
cess requires attention, usually because it is enteringiting a
system call, the kernel returns its ID as the result ofwhiet call
(wai t also returns when a signal is delivered or a process exits).

After returning fromwai t, Goanna retrieves the current process’s
state and performs an appropriate action. There are clyrgat
states (includingNUseRrRand INCALL ). Most of the states indicate
that the user process is in the midst of a specific call, (elgne,
exec, chdi r, ordup), and allow Goanna to remember what it was
doing before it called wait. One of the most important stigdsi-
FORCERET, which indicates that the return value of the presently
executing system call should be overridden by a given valins

is useful if the prototype file system needs to pass backsstatu
formation. In the example in Section 3.1, the return valuehef
read is determined in step 5, but is not yet returned. When the
return value is determined in step 5, Goanna sets the stdte-to
FORCERET. After step 7, Goanna looks up the state and because
its state is set toNFORCERET, it can determine that it must return a
value; Goanna then sets the valueax to the proper return value.
Two other states of note areEROCALL, which indicates that the
current system call should be repeated, am$ROREREGS which
indicates that the process’s registers should be set to ohigi-

nal values. RDOCALL allows us to insert a new system call into
the stream (e.g., to create shared memory regions in thepuser
cess’s address space), andROREREGSIs used when we need to
change system call arguments (e.g., when rewriting file same

3.3 Process Control Blocks

Goanna maintains each process’s state in a prigeteess con-
trol block (PCB). This allows Goanna to map file descriptors to

developers want to intercept only a subset of calls that are open files for a particular process, record the current wayldi-

relevant to their file system.

4. If this call is to be intercepted, then Goanna changeseye r
isters to prevent the kernel from handling the call. To tfylli
the kernel call, Goanna setax to —1; the kernel consequently
ignores the call because no handler is associated with —1.

5. Goanna executes the prototype®sad operation, and uses
PTRACE_POKEDATA to write the returned data into the user

process’s address space (we describe an optimization in Sec

tion 3.5).

6. Goanna instructs the kernel to continue execution urgieind
of the call and callswai t . In this case the call returns imme-
diately without performing any service, becauwse was set
to—1in step 4.

7. The kernel skips the call, and returns freai t .

8. Goanna uses tHRFRACE_SETREGS primitive to store the return
value of the previously executed readeiax

9. Goanna uses tHERACE_SYSCALL primitive to allow the user
process to continue executing.

10. The kernel issues amet instruction to return control to the

rectory, track mount points, and store other process-peuketa-
data. Goanna’s PCB is independent of the OS PCB, and contains
the process ID to use as a search key, a copy of the procegs’s re
isters, the current state of the process (endsdRCERET), and all
state-specific information (e.qg., the return value to bespd$ack

to the application). Encapsulating all of this informatiara single
structure allows Goanna to handle concurrent processes.

Goanna needs to map file descriptors to files in order to iafgrc
system calls that identify files by their file descriptorg(ef. st at ).
As such, like an OS PCB, Goanna’s PCB contains an open-file ta-
ble and stores the present working directory (PWD). The den
table is a simple array with a slot for each possible file dpsar:

If a given file descriptor is connected to a file that is to bedheah
by the prototype file system, then its slot contains a poitdea
structure describing the file; otherwise it is emptil(L). If a sys-
tem call uses a file descriptor as an argument, it is lookedh dipd
open-file table. If the file descriptor’s slot is empty, thbe system
call proceeds with no further intervention. Otherwise, Guauses
information stored in the structure describing the file toqaed ac-
cording to the intended semantics of the prototype file sygeeg.,

user process. The user process reads the return value froman encrypting file system may encrypt the data before writing

eax, and it is as if the system call was serviced by the kernel.

disk on a write call).



An interesting problem witlopen is that a monitor cannot arbi-
trarily assign file descriptors to the user-level procesgapse the
kernel would not know that a given file descriptor is in use h&o-
dle this situation, Goanna ussisadow descriptorsWhen opening
a file in a prototype system, Goanna changes the path namé to “
before letting the system call proceed. The resulting filcdptor
(in the child process) is used as a place holder, and no syt
are issued against it. The kernel does not assign the meguwlé-
scriptor to any other file, so Goanna can correctly identify talls
that it handles. For efficiency, Goanna reuses this file dascr
with dup on subsequertdpen calls.

3.4 Mount Subsystem

To determine which instance of a file system is being opemtad

an intercepted system call, Goanna maintains a mount tathiis.
mount table associates pathnames with different opesatieators

and instance-specific data (e.g., the device to read and froin).

On startup, Goanna reads a configuration file that provides afl
paths to manage, and for each path, the mount type and data (th
configuration file is essentially equivalent/tet c/ f st ab). When
Goanna intercepts a system call that references one of pagiss,
Goanna passes it to the appropriate routine.

Pathnames passed to system calls can be rather complesy Hith
relative path names, then they depend on the process’sxtoAtey
path can use the ‘" operator to move one level up the directory
tree. We store paths as stacks, with the root path represastan
empty stack, and a path such/assr/ | ocal / bi n is represented by
a stack containingsr, | ocal , andbi n. If a path is managed by
Goanna, then itis a child of one of the mount-table entriessdieed

in the configuration file. To rapidly determine if one path ishéld

of another, the path structure also contains a depth andythléor
each path component.

Each PCB contains a path stack for the PWD. Wherhdi r or
fchdir system call is issued, the new PWD is stored as a candi-
date. If the system call is successful, then the candidaterhes

the PWD. The mount table also uses a path stack to identify the

path for each mount.

To resolve a path that is passed to a system call, first theepssc
PWD is copied to a new stack. If the path begins with & then

the stack is emptied. Each subsequent component is pushed on
the stack. If the component is “,” then an element is popped
off (unless the stack is already empty). After converting $tring
pathname into a path stack, Goanna searches the mount ¢able f
any mount that contains this path. The path structure isropéid

for this purpose: if the path has a lower depth than the mdhat

it cannot be a child; and the length is stored with each corapbn

so the component names need to be compared only if they have

equal length. If one is found, then the path components #iter
root of the mount are extracted; for example, if the pathuisr/

| ocal /src/linux and the mount is rooted ausr/| ocal , then
src/linux is extracted. Any mount-specific data associated with
the file name is passed to the file system (e.g., the devicstitied

on). If the path name is not contained in a mount, then Goanna

allows the system call to go through unchanged.

3.5 Address Spaces

There are two distinct address spaces involved in execatimgn-

ptrace primitives to access the user process’s address space are
rather limited—they can examine or change only one word at a
time (PTRACE_PEEKDATA in Section 3.1). Thankfully, Linux pro-
vides a more flexible interface through thpr oc file system. A
process with permission ft r ace another process may read from
the traced process’s memory using tipeoc/ pi d/ nemfile, where

pi d is the PID of the traced process. This allows the trans-
fer of up to a page (1,024 words on the 80x86) in a single sys-
tem call. Linux also has support for writing tgr oc/ pi d/ mem

but it is disabled by default. For our prototype, we enabled
a writable / proc/ pi d/ mem to allow bi-directional bulk trans-
fers. If the/proc/ pi d/ meminterface is not available for read-
ing or writing, then Goanna falls back #TRACE_PEEKDATA and
PTRACE_POKEDATA. Allowing regions of the child’s address space
to be memory-mapped into a monitor, thus providing a zemyco
transfer method, would be more efficient.

Another issue is that all system call arguments need to beeinger
process’s address space. For example, the first argumepends

a pointer to a string. If a monitor needs to update these sathen

it must manipulate the child’s address space. It is not avssi-

ble to manipulate the file name in place, because the new fifena
may be longer than the existing file name, and the memory ssgme
may be read only. To address this issue, previgusace moni-

tors have modified either the stack, or the first writable segmin
Goanna, we establish a System-V shared-memory region batwe
each user process and Goanna. When the first system call is is-
sued with an argument that needs to be updated, Goannascreate
a shared memory region. Next, Goanna inserts a shared-rgemor
attach operation into the child’s system-call stream. Ad foint,
Goanna writes the new file name into its own address space, and
updates the child’s registers to point to the shared memoipe
child’s address space. After the call, the child’s origiredisters

are restored. Subsequent arguments can be rewritten byysimp
dating the local region and the child’s registers. This apph has

the advantage of requiring no data copies. Also the chikistiag
memory is not modified, therefore the child’s memory needheot
restored after the call.

3.6 Memory-Mapped Operations

Many applications (e.g., linkers) take advantage of memory
mapped operations, which allow access to the file systenughro
an efficient memory-like interface. Therefore, supportimgp is
essential to providing good compatibility and design tfarabil-

ity. Goanna provides support for memory-mapped operatinns
intercepting themap system call and angl GSEGV signals that are
delivered to a monitored process.

Upon intercepting ammap system call destined for one of its file
systems, Goanna behaves much like an OS kernel: it esteblish
empty region and services page faults for that region. Taterthe
empty region, Goanna converts the processip system call to an
anonymous region that the process is not allowed to read it wr
to. Goanna also records the address of the memory-mappied reg
and its backing file in the process’s PCB.

Normally, the OS handles the page faults through a hardwape t
triggered by the MMU. Goanna handles page faults throughta so
ware trap. Whenever an application accesses an invalid (@ge
ther because it does not have permission or the page doesisi)t e
the OS sends it & GSEGV signal. Before a monitored applica-

itor: the address space of the monitor and the address space otion receives the signal, Goanna examines the signal irgftom

the user process. An important issue for performance isttiet

including the address that faulted. If Goanna finds the axddire



that PCB’s memory-mapped region list, then Goanna readsdte
into the process’s address space. Next, Goanna issugs airect
system call in the context of the application to allow thegess to
read the page. If the address is not found, th&hGBEGV signal is
delivered to the process, usually resulting in a core dump.

When the region that was read into the process’s addresg $pac
written to, a second page fault is generated. Goanna maeks th
page’s state as dirty. It then allows the process to chargedge
(usingnpr ot ect ). Unfortunately, the signal information structure
informs us only that an access violation occurred; it doesimo
form us whether the requested access was a read or write. If we
had this extra piece of information, we could reduce the nemal
traps into the monitor that are required for memory-mappeteg:

On munnmap or nsync, Goanna writes dirty pages to the backing
file. Although Goanna does not currently write dirty pagestimer
circumstances, it would be possible to create a separaadHor
flushing dirty pages (analogous to Linuxdf | ush or FreeBSD’s
vmpageout ).

3.7 File System Switch

Goanna uses a file system switch (a.k.a., a virtual file system
VFS). The VFS is responsible for resolving path names and the
passing the operation down to an appropriate file system.ndae
jor advantage of a VFS is that hard-coded function calls ené&lad,
thus allowing multiple file systems to be easily developecdbréA
over, the VFS provides a convenient boundary between G&anna
core (e.g.ptrace primitives) and a file system. Our experience
developing layered file systems has given us unique insigbt i
VFS design from the perspective of extensibility [26]. VR8s
day either encapsulate quite a bit of functionality withire tVFS
itself, making it difficult to extend, or they include tootlé generic
functionality, making it difficult to develop file systems.

Like a standard VFS, our system uses operations vectorgeotdi
intercepted calls to the appropriate method. Our VFS diffiethat

it has several levels of methods, which may call one anoffiee
highest level of methods correspond to system calls. Toigeov
functionality within the VFS, generic methods can be assifjto
these operations. For example, a file system need only ingiem
onewite.internal method to write data to a file. Theite
andwr i t ev operations can then be handled by gleaeri c_wite
and generi c_witev methods. Those methods in turn call the
write_internal method. Using generic operations for some op-
erations is not new, but our VFS differs in that no functidtyais
actually built into our VFS: it is all delegated to generic thds.
This is important because the generic methods may not bebésiit
for all file systems. For example, a transactional file systeust
start a transaction at the beginningwof t ev and commit it at the
end (so that earlier writes do not affect the file system gdatrites
fail). As thegeneric_writev method does not know about trans-
actions, it is unsuitable for a transactional file systenounarchi-
tecture, a transactional file system can implement its amirn ev
method without being constrained by existing VFS functlina

Our design also allows for efficient implementation of |agkfile
systems. For file systems that simply add functionality tesist-
ing lower-level file system, it is possible to add a new lay&haut
introducing method calls for operations handled by the leleeel
file system. For example, an encryption file system does fiettaf
the f chown operation, so the file-system switch directly calls the
lower-levelf chown operation.

3.8 pt raceEnhancements

The standargt r ace interface requires at least six context switches
for each system call:

1. The traced process traps into the kernel.
. The kernel transfers control to the monitor.
. The monitor transfers control to the kernel.

. After executing the system call, the kernel transferstrobn
back to the monitor so that the return value can be manipu-
lated.

. The monitor transfers control back to the kernel.
. The kernel transfers control to the traced process.
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In reality, more context switches are required as the momitost
retrieve the values of traced process’s registers, isssisycalls
to provide OS-like services, etc.

Clearly, reducing the number of times that the monitor idechl
improves performance. For most calls, Goanna needs to ifeedot
only on entry. If the call is not destined for a monitored ptgpe

file system, Goanna does not need to examine the return value s
the call could execute without further intervention by Gean If

the call is handled by the prototype file system, the retulneva
could be set and the monitor need not be notified. Unfortiypate
these two modes of operations are not possible under thenturr
pt r ace interface.

We created two newpt race operations: PTRACE_.CHECKEMJ and
PTRACE_SYSSKI P. The PTRACE_CHECKEMJ operation is similar to
the PTRACE_SYSEMJ operation that was recently introduced to im-
prove the performance of User Mode Linux [3]. The primitive
PTRACE_SYSEMU allows all of a process’s system calls to be emu-
lated, but it is not suitable for Goanna, because we emuldiea
subset of the system calls. ORIFRACE_CHECKEMJ interface allows
Goanna to determine whether emulation is required aftemaxa
ing the registers (the UML developers agree that our more gen
eral PTRACE_CHECKEMJ interface is an improvement over the ex-
isting PTRACE_SYSEMJ [5]). The corollary toPTRACE_CHECKEMJ is
PTRACE_SYSSKI P. When Goanna does not implement a call, it is-
suesPTRACE_SYSSKI P instead ofPTRACE_SYSCALL to bypass noti-
fication of this system call’s return value and goes direttlythe
start of the next system call. Together, these primitivekiced
traps into Goanna by 30.8% during an OpenSSH compile.

Finally, there are also many non-file-system system cali th
Goanna need not intercept at all (etg.ie or get pi d). To reduce

the number of extraneous calls into the monitor, we addedpan o
tional bitmap of system calls to the task structure. By usimgew

pt r ace primitive, PTRACE_SELECT, Goanna selects precisely the set
of calls that need to be traced. This method reduced the nuafibe
traps to Goanna by an additional 12.8% during an OpenSSH com-
pilation. Overall, these techniques reduced the numberapktto
Goanna by 43.7%.

Our improvements can benefit a wide varietypdf ace monitors.
For example PTRACE_CHECKEMJ grew out of work for User Mode
Linux, but provides a more flexible interface that can be usgd
a monitor that emulates a subset of system calls. Many s$gecuri
oriented monitors need to examine only which system catidar
ing executed and their arguments, but not their return vaker
these types of monitor&TRACE_SYSSKI P would greatly improve
their performance. Thet race program provides support for fil-
tering the set of system calls to display (e.g., file systerocess,



or IPC- related calls), but this filtering is done in userepaBy
using PTRACE_SELECT, st race could have the kernel perform this
filtering more efficiently.

4 Example File Systems

In this section we describe the design and implementatighreg

file systems that we created using Goanna. In Section 4.1 we de
scribe a simple pass-through layer that handles file sysmrmae
tions by passing them down to another directory. This passigh
layer serves as the basis for our AES encryption file system de
scribed in Section 4.2. In Section 4.3 we describe a usetf-180

file system, which allows users to browse CD-ROM images. In
Section 4.4 we briefly describe our transactional file systeited
Amino.

4.1 Pass-Through Layer

We developed a simple pass-through file system layer for ege r
sons. First, it serves as an example for other file systenmsixies.
We developed it in such a way that its operations could beegtus
for other file systems (e.g., the encryption file system deedr
in Section 4.2). Second, it provides a suitable basis foluata
ing Goanna’s overhead (Section 5.2). The pass-throughyBtes
takes a single mount-time argument: the name of the dingdtor
which operations should be redirected.

NCryptfs [24], and eCryptfs [10]. The data and names in ogF sy
tem are encrypted using a key that is read withpass on startup.

We use a separate scheme for file name encryption and data en-
cryption. For file names, we must to encrypt the parent dirgct
name and a name within that directory. Each parent dirediasy

an associated initialization vector (IV), which means théite with

the same name in two different directories does not encryfe
same text. We chose to use the AES-CBC mode to encrypt file
names. This has the disadvantage of causing the file namegthle

to be rounded up to the nearest cipher block size (16-bytes)it

is more secure: more malleable cipher modes (e.g., CFB af) CT
are inappropriate because they do not permit the reuse &f &or |
different cipher texts. After the file name is encryptedsibiase-

64 encoded so that illegal (i.e/,and “\ 0”) or control characters,
which can disrupt the user’s terminal and confuse utiljtaa® not
written to the file system.

For data we need a scheme that has four properties:

e Two different files with the same plaintext have different ci
pher text.

o Two different regions of the same file that contain the same
plaintext have different cipher text.

e We can rewrite regions of the file with the same IV.
e Random access has a constant penalty.

The pass-through file system implements 21 operations, 17 of The scheme we developed, inspired by Blaze’s OFB/ECB hy-

which are simple wrappers around another system call. dt éés
fines two new operationgncodenane anddecodenane. File sys-
tems built on top of this pass-through layer can overridse¢hap-
erations to manipulate file names. These methods trangbater-u
level file names to the corresponding lower-level names (acel
versa). A representative method of the pass-through fileesyss

unl i nk, which has only three function calls: (1) the argument is
converted to a lower-level name usiagcodenane; (2) the lower-
level name is unlinked; and (3) the lower-level name is freElde
read, wite, andl seek methods are similar to the system-call-
based wrappers, but take internal monitor objects (i.eyrmhand
open file structures) as arguments instead of operatingeafBi
level. This allows the methods to be re-used for many typeysf
tem calls (e.g., theead operation is used for both theead and

r eadv system calls in addition to memory-mapped reads). The last
two methods arepen andcl ose, both of which wrap underlying
system calls and manage monitor state (e.g., the open filgtste).

4.2 AES Encryption Layer

We have developed an AES encryption file system on top of the
pass-through layer described in Section 4.1. This enaydayer
allows users to encrypt the contents of a directory, thepbyent-

ing a breach of confidentiality if the hard disk is stolen.

Encryption scheme

Our file system layer encrypts both file names and file data. -How
ever, to simplify development and administration, we chosgre-
serve the existing structure of files by encrypting each fdpas
rately because users are used to dealing with a traditipoadja-
nized file hierarchy [2,24]. This convenience, however, esrat
the expense of revealing some information about the streiaifi
the files (e.g., how many files exist in a given directory aneirth
size). Several systems have made theses choice, incluéi8daf,

brid [2], is a hybrid of AES-CTR and ECB mode that satisfiedeac
of these properties. This scheme has the advantage ovee'8laz
that there is no need to store precomputed data; it suppditsaa-
ily large files; and we use a distinct random stream for eaeh fil

Extended attributes

For each encrypted file we must store two pieces of informatio
its initialization vector and its actual size, because thesfisize

is rounded up to the nearest cipher block size. In both cases w
use the extended attribute API supported by Ext2, Ext3,dRisis
and many other file systems [8]. Storing the data in the filglfits
would change the file size and expected performance chasice
(because data would no longer be block aligned).

Implementation

The encryption file system overrides a subset of the opersfior

the pass-through file system described in Section 4.1. nibhet
operation initializes the AES encryption and decryptiogskand
locks them in memory so that the OS does not write them to swap.
Theunnount operation zeros out the keys before freeing them. The
encryption layer defines four generic VFS-like operationgen,
read, wite, andl seek. It retrieves the file’s IV via the extended
attribute interface. If the file does not yet have an |V, theewa one

is generated. Theead andwr i t e functions are more complex than
the others because they must correctly handle 1/0 opegatiet
are not aligned on the AES block size, forcing us to use pagddin

The encryption layer implements two internal methods fog th
pass-through file systemencodename and decodenane. The
encodenane method converts a decrypted file name (e.gane/

ri ck/ goanna/ paper.pdf) to an encrypted file name. The
encodenane operation is used foopen, nkdir, and other op-
erations that take a pathname as an argument. Conversely, th



decodenane operation is used for directory-reading operations. It [ Method |

retrieves the |V of the parent, and then decrypts the name.

Finally, the encryption layer implements five system-davel
functions: stat, fstat, truncate, ftruncate, andread. The
stat andfstat functions retrieve the file size using extended at-
tributes. Thetruncate andftruncate functions fill holes that
could be created by sparse files, and align all truncate tipeson
AES block-size boundaries.

4.3 1S09660 File System

CD-ROM images, also known as I1SOs, are formatted according
to the 1SO9660 standard. 1SOs are a convenient way of transfe
ring large collections of files, such as Linux distributipesftware
backups, or even family photos. However, to access the filesi
ISO, users must first mount it using a loop device. Unfortelyat
mounting a file system requires root privileges. It would begble

to create set-UID programs to allow a user to mount ISO images
but even if developed securely, there is always a poterdrabdigs

or misconfigurations that could compromise the securityefdys-
tem.

To address this issue, we developed a user-level file syseem u
ing Goanna, built aroundi bi s09660 from GNU | i bcdi o [18].
Goanna’s user-space nature allowed us to link againstithisry
and leverage its 3,449 lines of already tested code.

Because 1SO9660 file systems are read-only by their natuee, w
needed to implement only nine methods for this file systesant ,
unmount, open, close, read, |seek, fstat, getdents, and
fentl. The most complex method wasad. Forread, much of
the code complexity was caused by a limitation oflthei s09660
library, which only allows 2KB-blocks to be read. To implemte
read efficiently, we wrote more code to avoid extra data cfie
unaligned access.

4.4 Amino File System

The original application of Goanna was toward developingag-
actional file system called Amino [25]. Amino allows user-
level applications to group operations into transactidmet sat-
isfy ACID semantics. Amino is based on the user-level Bakel
Database [20], so user-level development allowed us tolajeve
rapidly. Because Amino must support transaction rollbackRfFS
caches (i.e., the inode, directory-name-lookup, and paghes), it
would require invasive changes to the VFS if developed irkére

nel. This would have required a large investment of time tgirbe
our investigation into transactional file systems, and aitial re-
sults would have been significantly delayed. Moreover, bsgane

of the major facets of our investigation required us to maienges

to the VFS, it would not have been possible to develop Amino as
a FUSE file system or a user-level NFS server. Amino is the most
demanding of all the file systems—it has almost six times agyma
lines of code (6,173) as the encryption file system, reggigach

of the three properties that Goanna’s monitoring infrasttite was
designed for: rapid development, modularity, and powepfoto-

types.

5 Evaluation

LoC [ Tokens | Identifiers | MC |
Framework Implementation
ptrace 6,429 | 40,121 13,927 ] 1,145
Kernel 48,072 | 255,969 109,081 | 8,152
FUSE 8,481 | 46,051 17,772 1,338
NFS 18,480 | 103,960 42,734 | 2,726
Pass-Through File System
ptrace 732 3,948 1,403 127
Kernel 6,079 | 34,612 14,146 599
FUSE 706 5,010 1,659 149
Cryptographic File System
ptrace 1,131 7,483 2,260 212
Kernel 9,780 | 57,489 23,130 943
FUSE 2,396 | 19,297 7,468 423
NFS 1,556 8,981 3,663 251
ISO9660 File System
ptrace 539 2,700 994 88
Kernel 3,769 | 22,158 8,666 616
FUSE 1,704 11,890 4,315 363

Table 2. We evaluated different types of file systems imple-
mented using different frameworks according to four metrics.
Bold entries are the smallest in their class. (LoC means Lire
of Code; MC means the McCabe cyclomatic complexity).

methods of developing file systems. In Section 5.2 we ewaluat
Goanna’s performance.

5.1 Complexity Evaluation

We used four metrics to compare the amount of developmeuitt eff
different frameworks require to write pass-through, eptign, and
ISO9660 file systems. For each type of system that we evaluate
Table 2 shows the number of lines, tokens, identifiers, aadvib-
Cabe [16] cyclomatic complexity. McCabe’s metric is the tqoe-
cise: it measures the number of linearly independent patisigh

a program. We used the C and C++ Code Counter (CCCC) [14]
to compute the complexity of each function, and then sumrhed t
results.

Framework implementation

Goanna and the FUSE frameworks require a similar amount-of de
velopment effort to implement. We chose the SFS toolkit H&an
example of a user-level NFS server. It is more than twice as-co
plex than either FUSE or Goanna, but it is tightly integratéth a
simple pass-through file system, which we did not remove fitsm
complexity metric. The kernel's VFS system is the largeatrfe-
work by any metric. This is not surprising because it canebf r
on external libraries and includes caching, quota managgrsep-
port for several binary formats, asynchronous 1/0O, and nathgr
tightly integrated facilities. This tight integration nmeathat a ker-
nel developer has to be familiar with a large body of compledec
to develop file systems.

Pass-through layer

Goanna'’s and FUSE’s pass-through file systems have sinoitar ¢
plexity: FUSE is 3% shorter, but has 27% more tokens, 18% more
identifiers, and a 17% higher cyclomatic complexity. Althbwur
pass-through file system is 26 lines longer, it has more fonatity

We evaluated Goanna in two dimensions. In Section 5.1 we ana-than its FUSE counterpart. Our file system transforms narefs®

lyze how complex our file system extensions are comparedigr ot

passing the operation down to the lower-level file systenickvan-



ables us to mount on any lower-level directory (FUSE is ledito
“/™) and build our encryption file system on our pass-through fil
system. When this additional functionality is removed froun file
system, its cyclomatic complexity is reduced to 97 (or 5386 an
FUSE'’s). The SFS toolkit provides a built-in loopback NF8/eg

but the toolkit itself is more complex than Goanna or FUSE and
the corresponding pass-through file system put togetheapfra
pass-through file system for the Linux kernel, has the higbas-
plexity, because it must perform elaborate operations tereace
counts and cached objects, and emulate much of the VFS’s func
tionality.

Encryption file system

We compared Goanna to the in-kernel eCryptfs [10], FUSE'’s
EncFS [7], and the encryption file system from the SFS toolkit
Our file system and the one from the SFS toolkit have similar-co
plexity. This is as expected because both allow a file systsmer|

to extend an existing pass-through layer. Because EncF3levas
veloped in FUSE, where the interface is similar to the VFf&s,
velopers had to implement a less abstract interface, arglttiay
had to implement more routines. EncFS originally had oved0@
lines of code and a McCabe complexity of 1,323. Even when we
removed all code related to configuration, abstract classsder
files used by C++, and specialized caching, we still foundF=hc
to be twice as complex as our file system. eCryptfs suffemnfro
the same problems as Wrapfs (because it is essentially digtbdi
copy). Thus it is twice as complex as the other file systems.

ISO9660 file system

We compared Goanna’s ISO9660 file system to the kernel's@and t
the FUSE-basetlusei so [17]. Goanna’s ISO9660 file system is
539 lines of code with a McCabe complexity of 88. The size and
complexity off usei so was greater: 1,704 lines and a cyclomatic
complexity of 423. This increase is for two reasons: (1) Gean
usesl i bi 509660, wheread usei so does not use any external li-
braries, so it has code for reading 1SO9660 directories, @d
FUSE requires its file systems to handle more VFS objects than
our framework. The kernel implementation is larger thfiagei so.
This is because it cannot use external libraries sudh biss09660

or even system calls, so interfacing with the device it is nted on

is more complicated.

In sum, FUSE and the NFS toolkit fall short in prototyping pow
but they compare favorably with Goanna in terms of rapid g@rot
typing capabilities and modularity. However, when rapidtptyp-

ing, modularity,and powerful prototypes (Section 2) are required,
aptrace-based monitor framework is a better choice than either
FUSE or NFS toolkits.

5.2 Performance Evaluation

Our testbed ran Fedora Core 4 with all updates as of July 1%.20
All experiments were conducted on a dedicated 40GB Maxt&r ID
disk. We compared our pass-through and encryption file syste
to XFS because it is highly scalable [21] and has mature detén
attribute support [8]. We compared our ISO9660 file systeniéo
kernel's over the loop device. To ensure a cold cache, weueted

the file systems between each iteration of a benchmark. Restd,

we computed 95% confidence intervals for the mean elapsed, sy
tem, and user time using the Studeéuistribution. In each case, the
half-widths of the intervals for the elapsed and system simvere
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Figure 3. Postmark: 5,000 files and 20,000 transactions.

STRACE MONTRACE MONPASS XFS512  MONCRYPT

less than 5% of the mean. We also compute wait time, which is
elapsed time less CPU time. Wait time is mostly spent waiting
I/0, but can also be affected by the scheduler. We do not at@lu
Amino in this paper, because it is outside the scope of thiepa
and a thorough evaluation can be found in a separate tethaica
port [25].

Pass-through file system

We used the following four configurations to evaluate ourspas
through file system:

XFs256 XFS with the default 256-byte inodes, which is the basis
for the following three configurations.

STRACE XFS monitored bystrace -cf. This configuration
shows the overhead of thp r ace facilities when used by a
standard tool, but does not modify any system calls or preduc
any output during execution.

MONTRACE XFS monitored by Goanna. This configuration
shows the overhead of r ace and our path-name resolution
infrastructure.

MONPASS Our pass-through file system.

We used Postmark v1.5 [12] to evaluate the performance of our
system. Postmark is an I/O and system-call intensive watklo
that simulates a busy mail server by creating, deletingdineg

and writing to small files. We used the default parameterdrbut
creased the number of files to 5,000 and the number of transact

to 20,000, because the defaults do not exercise the filersysié
ficiently. Figure 3 shows the results of this experimerts256
took 20.0 seconds to execute. It used 9.0 seconds of CPUtime i
the kernel (system time) and 0.5 seconds of user tsmeACEwas
14.1% slower tharxFs256; it consumed 55.4% more system time
and 3.2 times more user time. This increase is caused byiauklit
context switches and examining the application’s regsst®IoN-
TRACEWwas similar toSTRACE it took 13.8% longer thanFs256;

it used 54.1% more system time and 3.5 times more user time.
Goanna used less system time tt&rRACE, because it retrieves
the registers more efficiently. However, it used more useeti
because it performs path name resolutiomoNPASStook 18.3%
longer thanxFs256 and it took 74.6% more system time and 4.8
times more user time. The additional CPU overhead was caused
by the additional data copies and system calls requiredrigcge
requests. Our results show that Goanna is as efficient ama sta
dard tool that usegt r ace, and that file systems can be prototyped
with acceptable overheads even for system call and datasive
workloads like Postmark.



Encryption file system

To evaluate our encryption file system, we used the configurat
MONCRYPT, in which our AES encryption file system was layered
over XFS formatted with 512-byte inodes; we call this configu

developed with Goanna is not possible to develop with Ufo.

The Janus framework uses tperace interface to sandbox un-
trusted applications [6]. Janus monitors file-system artd/om-
related system call invocations, and applies configurabliips

tion xFs512. The increased inode size allows extended attributes to allow or deny system call execution. Tper ace interface has

(EASs) to be stored directly in the inode block, thus impraviBA
performance. When no EAs are usg@s512 is 44.1% slower than
XFS256.

Figure 3 shows the resultsMONCRYPTS elapsed time overhead
was 106.2% ovexFs256. This overhead is caused by three fac-
tors: (1) encryption increases the amount of user time byctofa
of 31, (2) extended attributes must be written, and (3) ma& d
must be read and written to ensure proper cipher block sige-al

since been used for several other security monitors. Fanpie
model-carrying code verifies that an application’s seqaeafcsys-
tem calls fits within a model [19].

Several other systems intercept system calls to providefoeer
tionality, but do not uset race to do so. SLIC [4] is an OS ex-
tensibility system that allows kernel-level extensionsuser-level
servers to register handlers for system calls, signals,otimel OS
entry points. SLIC has been used to patch security holesyginc

ment. These overheads are similar to what we have observed fo files, and provide a restricted execution environment. Alsaz

Postmark running on CFS in the past, which runs in user-lend|
provides the same type of encryption (123-223%) [23, 24].elh
MONCRYPTcompared toxFs512, the elapsed time overhead is re-
duced to 43.1%.

ISO9660 file system

SLIC extension servers are quite similar to pheace interface, but
have two key disadvantages: (1) they must be trusted, ar8L(2)

uses self-modifying code for interception. Interpositiagents
provide higher-level abstractions for system call intptan [11].

Jones stresses that interposition agents allow portableleel ex-
tensions to existing system abstractions (i.e., pathnadescrip-
tors, files, users, etc.) that would normally need to be dpe in
the kernel.

To evaluate the read-only 1ISO9660 file systems, we did not run

Postmark because it modifies files and directories. Inste&d,

wrote a program to read all of the files from Fedora Core 4 (j386 i
Disc 1. There are a total of 628 files, which consume 650MB. We 7 Conclusions

used two new configurations:

LooPISO The kernel's ISOFS over a loop-back device.
MONISO Our ISO9660 file system.

TheLooprisoconfiguration ran for 11.2 seconds. Of this time, 2.1
seconds were spent in the kernel, 0.03 seconds were spexnitt-exe
ing in user-space, and 9.1 seconds were spent waiting oTHO.

MONISO configuration ran for 23.6 seconds, or 110.0%

We built aptrace-based framework to enable rapid prototyping
of file systems. Our user-level approach allows file systeatgar
types to leverage existing and time-tested user-levehties, and
use the powerful debugging facilities available in usercepaBe-
causept race allows us to intercept all system calls and signals,
Goanna can override most OS functionality, enabling mor&-po
erful prototypes than are possible with FUSE or user-levESN

longer than SETvers. Our approach is also highly modular: it can haridtary

Loopisa The major cause of this increase was an increase in CPU CallS, can rely on existing OS system calls, and developees not

time. System time increased to 12.84 seconds (a six-foldase),

be concerned with the large body of existing kernel code; déwe

and user time increased to 4.9 seconds. The user time isymainl Sign of a file system developed wighr ace can be readily adapted

the amount of time spent within the monitor. Clearly, theseai
performance overhead for using a monitoring framework, thet
rapid development and convenience of not requiring a kemeesl-
ification can offset this performance impact. Additionallye are
considering using zero-copy methods to improve perforragoc
data-intensive workloads such as this one (see Section 7).

6 Related Work

The Ufo Global File system uses an interposition technidonéar
to Goanna’s [1]. Ufo provides transparent access to remete\fia
FTP or HTTP. Ufo’'s monitor uses the Solafipr oc file system.
Ufo operates only on system calls suctogsn, cl ose, andst at .

to the kernel, as it operates at the traditional boundany&en user-
space and the kernel. This level of abstraction also prevideigh
degree of compatibility with user-level applications. (nerfor-
mance evaluation demonstrates that user-level file systampro-
vide acceptable performance for prototypes. We have peate
to implement more file system functionality than existingugons
can. Goanna allows developers to modify all file system caills
cludingread, wite, and even memory-mapped reads and writes.
Goanna’s VFS infrastructure is also an improvement ovestig
VFSs in that it allows the file system to extend the OS, begipni
within the system call interface.

We developed three example file systems using Goanna. First,
we developed a simple, yet extensible, pass-through fileesys

When an access to a remote file is detected, the file is transpar Second, we built a highly secure encryption layer using thesp

ently fetched, and the system call is changed to open thédops.
Creating a copy is suitable for small files, but is not appiatpr
for large files, those which are accessed randomly, or filasate
shared. Ufo does not implement other calls suchezsl, write,
getdents, orstat internally. Once the file is copied locally, Ufo
relies on the existing file system’s methods. Moreover, lyimg
on the existing OS to provide most file and directory operetjo
Ufo severely limits the types of file systems that can be dgped.
For example, Goanna’s encryption file system must overredel,
and therefore could not be developed on Ufo. The existindnott

through file system as a basis. Third, we developed a uset-lev
ISO9660 file system. We showed that file systems developdd wit
our framework have comparable complexity to ones develogtd
FUSE and user-level NFS toolkits, but Goanna has a highaedeg
of power (see Section 4.4). We also show that each of thesefra
works have less complexity than the kernel.

To allow other developers to benefit from our approach, weshav
released Goanna, the example file systems, and benchmarks de
scribed in this paper. They can be downloaded frawv. f sl . cs.

also use the OS caches, which means that the BDB file system wesunysb. edu.
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7.1 Future Work

Currently, to use a Goanna file system, a process must bedtart
through the monitor. We plan to create a simple framework tha
will allow processes to request an extension, or for useedtach

an extension to an existing user-level process (e.g., lokinkj on

its window as in thecki | | interface). A third option would be to
run all of a user’s processes through Goanna, and dynaminabrt
extensions based on the system call stream. For example, avhe
ZIP archive is opened, it could be made to appear as a digector

This mode would be convenient because users would not need to

predefine a mount table in the Goanna configuration file.

The second aspect of our future work is to improve performreanc
We plan to further improve thpt r ace interface. To reduce both
the number of context switches and data copies between the ke
nel and Goanna we will: (1) use a shared-memory segment to ma-[11]
nipulate the user process’s registers so that data copksam
text switches are reduced; (2) map regions from the useepex
address space into Goanna'’s; and (3), where appropriabelldou
severalpt r ace operations into a single system call to reduce con-
text switches (e.g., waiting for notification could be cormda with
retrieving registers). We may also port performance-dmessub-
sets of Goanna to the kernel (e.g., path name resolution bnd fi
table lookups). Finally, Goanna's implementation is cotiyesin-

gle threaded (though many monitors can run concurrenthg pl&n

to make Goanna multi-threaded to improve performance when a

single monitor handles many processes.
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