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Abstract

Developing and maintaining a file system is time-consuming, typically requiring years of effort. Devel-
opers often test compliance with APIs such as POSIX with hand-written regression suites that, alas, examine
only a fraction of a file system’s state space. Conversely, formal model checking can explore vast state
spaces efficiently, increasing confidence in the file system’s implementation. Yet model checking is not
currently part of file system development. Our position is that file systems should be designed a priori to
facilitate model checking. To this end, we introduce MCFS, an architecture for efficient and comprehensive
file-system model checking. MCFS relies on two new APIs that save and restore a file system’s in-memory
and on-disk state. We describe our earlier attempts at model-checking file systems, including unsuccessful
or inefficient ones. Those attempts led us to develop VeriFS, which implements the new APIs. We illustrate
MCFS’s model-checking principles with VeriFS, a FUSE-based file system we were able to quickly develop
with MCFS’s help.



Chapter 1

Introduction and Motivation

File system development is time-consuming, complex, and error-prone, requiring precise logic, standards
compliance (e.g., POSIX), and careful implementation of data structures and concurrency [24, 40, 73]. Yet
even mature file systems suffer repeated bugs. For example, Btrfs [54] was designed 14 years ago yet reported
110 bugs solely in 2020 [35]. Such bugs can cause data corruption or loss and system crashes [36, 40, 55].

For instance, Ext4 [18] encountered data loss upon power off [5], which caused a configuration file from
KTimeTracker (a time tracking application) to be replaced by an empty zero-byte version. As another exam-
ple, Ext4 corrupted a “qcow2” image file [42] that was running a Linux KVM [37] guest when Ext4 enabled
encryption functions [33]. A “qcow2” file is a disk image for providing persistent storage for QEMU [4]
virtual machines, which stands for the second version of the QEMU Copy On Write format. XFS [68], a
well-tested file system created in 1993, had exposed severe bugs that led to kernel panic [32] and metadata
corruption [34]. Likewise, Btrfs [50] suffered from data loss [65], kernel panics [38], and hanging [64] due
to constantly emerging file system bugs.

Moreover, file systems need to incorporate new features and adapt the most recent kernel, which in-
evitably brings in defects and bugs [40]. Therefore, file system development is an everlasting effort. Al-
though file system users could trigger some hidden bugs and report them to developers [5, 32, 38], this
process is cumbersome because developers can only few bugs at a time. The remaining undisclosed bugs
can exist for years, endanger system reliability, and be susceptible to malware. Thus, the bugs should be
detected in advance to prevent users from triggering them, which is ideal for file system development [40].

File system bug detection is an active research topic, which assists developers in identifying bugs and
thereby supporting file system development [40]. Bug-detection techniques for file systems can be grouped
into regression testing, verified or machine-verifiable file systems, model checking, and fuzzing. Generally,
regression testing [44,57,62] only tests fixed known cases of a file system, so it is impractical to cover enough
corner cases that are barely encountered and more likely to hide bugs. Machine-verifiable file systems are
formally and rigorously verified for some aspects (e.g., crash consistency [10–12, 58]). Model-checking
validates if the model of a file system meets the specification. Still, existing model checking work is either
restricted to specific bugs or requires an abstract file system model to perform model checking [71, 72].
Fuzzing is a recent technique to find file system and kernel bugs. However, existing file system fuzzing can
only uncover a limited type of bugs [70] or require external checkers to identify bugs [36], making existing
fuzzing less convenient.

To help address these issues, we leverage model checking to explore bounded file system state thoroughly
and apply behavioral comparisons to recognize potential bugs. Thus, we present MCFS, a model-checking
framework for file systems that: (1) checks every corner case in a bounded state space; (2) does not require an
abstract file system model; (3) retains the original file system behavior; (4) applies to most POSIX-compliant
file systems, whether in-kernel or user-space; and (5) has high performance with the help of fast devices like
memory.
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MCFS compares file systems to each other with concurrent processes that non-deterministically issue
file-system calls; it compares their outcomes (e.g., file content and return values) to find discrepancies.
MCFS can exhaustively execute system-call permutations and thus uncover abnormal behavior.

We implemented MCFS using the Spin model checker [59] and applied it to a number of file systems. Our
position is that thanks to its exhaustive state-space analysis capabilities, model checking should be an integral
part of the file-system development process (alongside traditional hand-written regression suites [44, 57]).
However, file systems need to facilitate model checking. We make the following contributions:

1. We created MCFS to support file system checking that can exhaustively search bounded state spaces.

2. We uncovered two inherent challenges to model-checking: cache incoherency and I/O inefficiencies.
Ultimately we designed state checkpoint/restore APIs to ease integrating file systems with model
checkers.

3. We developed (two versions of) a FUSE file system, VeriFS, that efficiently checkpoints and restores
file-system states using our proposed APIs.

4. We empirically evaluated MCFS’s performance. Our results suggest that MCFS is a viable approach:
one can use it to find behavioral deviations and bugs while developing or maintaining a file system.

The rest of this report is organized as follows. Chapter 2 describes the background knowledge of model
checking and file system bugs. Chapter 3 presents the design goals and architecture of the MCFS model
checking framework. Chapter 4 describes four main challenges we encountered in the process of imple-
menting and executing MCFS. Chapter 5 provides more implementation details regarding MCFS. Chapter 6
illustrates different approaches to track full file system states in MCFS. Chapter 7 describes the evaluation
results of MCFS to model-check file systems and the efficiency of VeriFS. Finally, we conclude our work in
Chapter 9 and discussed the future work for MCFS in Chapter 10.



Chapter 2

Background

This section presents the background on model checking and file system bugs, including generic model-
checking concepts, the Spin model checker, and types and patterns of file system bugs.

2.1 Model Checking

2.1.1 Model Checking Concepts

Model checking is an automatic method for verifying finite-state concurrent systems. It performs an exhaus-
tive search of a bounded state space to verify whether a system’s model conforms to its specification. The
model-checking process typically consists of three phases [3]: modeling phase, running phase, and analysis
phase.

• The modeling phase generates a model description for the system under testing by a model checker
and formalizes the properties from the system’s specification.

• The running phase checks whether properties from the modeling phase are valid by running the model
checker.

• The analysis phase performs different operations based on the outcome to confirm if the system sat-
isfied the property. The model checking process will check the next property when the property is
satisfied. On the other hand, if the system violates a property, the model-checking process will ana-
lyze this instance and then refine the model, design, or property [14].

The model in model checking incorporates states and transitions between states, which constitutes a
directed state graph [14]. Therefore, to model-check a system, the model checking process needs to conduct
exhaustive state-space exploration in the state graph to verify every property belonging to the system under
consideration. The state-space of a system can grow exponentially and become too large to explore. It causes
the model checker to fail to finish state-space exploration within a certain time and potentially result in an
“out of the memory” condition [3], called the “state explosion” in model checking. In that case, the model
size should be reduced using various techniques [13, 14].

The above demonstrates the generic model checking workflow and concepts. In MCFS, we adopted
the state-space exploration of the model checking to check file system states but did not need to build a
model because the checking process relies on comparing file system behaviors among multiple file system
implementations. Figure 2.1 shows an example of the state graph in MCFS.

In the state graph, a vertex represents a specific file system state that describes various file system prop-
erties, including files, directories, metadata, etc. The starting point of the state space is a clean file system

3



creat mkdir

write

truncate

rmdirunlink

creatmkdir

unlink

truncate

write

mkdir

rmdir

Clean 
File 
system 
State

./test/./test.txt

./test.txt

./test/

./test.txt 
(bytes 
written)

./test/

./test.txt 
(bytes 
written)

Figure 2.1: An example of a file system state graph: vertices denote specific file system states, and edges
indicate state transitions produced by file system operations. This graph is an abstraction for state-space
exploration in model checking.

state obtained from mounting an empty file system. The file system operations (i.e., system calls) lead to the
state transition (i.e., edge in the graph) in the state-space exploration because the file system operation can
potentially change the file system state. In practice, we also employed read-only file system operations that
do not alter a file system state because we apply read-only operations to examine if the file system reaches a
correct state and returns precise data and status.

2.1.2 Spin Model Checker

We require a model checker to drive the checking process for MCFS and identify which state to explore. The
model checker must be efficient and able to traverse file system states thoroughly. We applied the well-known
Spin model checker [25] to the MCFS framework as the model checking driver. Spin is a model checker that
can verify multi-threaded software efficiently and exhaustively [17]. Spin supports the embedded C code
as part of model specifications, which helps Spin integrate with the file system testing because most Linux
file systems are implemented in C code [40]. Spin also works with a high-level description language called
PROMELA to express the system model that Spin can analyze [25].

Spin supports on-the-fly verification, which prevents the need to construct a global state graph in advance.
This feature is handy for file system model checking because the state graph is unpredictably large and
cannot be predefined readily under hundreds of system calls and a vast parametric space [61]. In addition,
Spin supports swarm verification [27, 28] to perform many parallel verification jobs using a multi-core CPU
or distributed remote machines for solving one significant verification problem. Therefore, Spin provides
a feasible method to tackle large state-space exploration in the model checking process, considering that a



modest number of file system operations can increase file system states exponentially.

2.2 File System Bugs

File systems are fundamental components in the operating systems (OSs), which generally have a massive
codebase [40]. Typically, a sophisticated OS can work with diverse file systems to achieve various function-
alities and features [52]. Therefore, file systems not only have different designs and characteristics but also
continuously evolve to incorporate new features and improve performance and reliability [40]. In the process
of file system development, it is inevitable to produce bugs and defects due to the complexity of a file system
and unavoidable human mistakes. Thus, one of the critical tasks of file system development is to detect and
fix emerging file system bugs and defects.

Based on bugs’ effects, file system bugs can be classified into semantic bugs and memory-safety bugs [36].
Usually, semantic bugs are triggered silently and unlikely to make a strong signal such as kernel crash or
panic that indicates a bug. Instead, memory safety bugs are more likely to have serious impact and thus can
be observed more easily. File system bugs can also be classified according to their causes. In this way, file
system bugs can be divided into the following categories that we describe next: concurrency bugs, crash
inconsistency bugs, logic bugs, memory bugs, specification violation bugs, and other types of bugs [36].

Concurrency Bugs. Concurrency bugs in file systems are the bugs that are triggered under multiple
interleaving threads, which come in diversified patterns, including atomicity violations, deadlocks, order
violations, missed unlocks, double unlocks, and wrong locks [40]. Detecting concurrency bugs often requires
multiple interleaving threads to access and test the same memory location [20, 21]. We have not applied
multi-threading in MCFS yet for simplicity, but we believe MCFS can extend to multi-threading as Spin
naturally supports the formal verification of multi-threaded applications [25, 29].

Crash Consistency Bugs. File system operations mainly modify in-memory state instead of persistent
state for performance consideration. When a crash or power loss happens, crash consistency bugs make file
systems unable to persist data and metadata in the file system correctly. For example, Btrfs has a field in the
inode data structure to check if the inode needs to be persisted to the storage device through fsync. One
crash-consistency bug discovered in 2015 [19] prevents Btrfs from updating this inode field when punching a
file hole. Thus, the fsync call in Btrfs performed no operation when Btrfs crashed, resulting in data loss [45].
Unlike other types of bugs, crash consistency bugs only fail to persist data when a crash occurs [51]. MCFS
can identify crash consistency bugs by simulating crash conditions or using corrupt file system images, which
we leave as future work.

Logic Bugs. Logic bugs are specific to file system implementations because they often originate from
misuse of designs and algorithms, inaccurate assumptions, and incorrect implementations [36,40]. Develop-
ers generally add comprehensive assertions into the code to avoid logic bugs beforehand, but this technique
is rarely enabled and used in real-world file system checkers [36]. MCFS can capture logic bugs with be-
havioral comparison. For example, Ext3 [63] used a wrong algorithm in function find group other() to
find a block group for inode allocation, in which the linear search algorithm does not check all candidate
groups and neglects the groups at the beginning [40]. MCFS can potentially detect this logic bug by running
multiple file systems and performing operations that need to allocate inodes. The file system with this bug
possibly returns an ENOSPC error even if the file system has free inodes, but other file systems with the cor-
rect algorithm can allocate an inode successfully without error returned. MCFS compares return value and
error code for all the file systems under consideration after each file system operation. Therefore, MCFS can
catch this discrepancy and report a potential bug.



Memory Bugs. Because file systems regularly involve memory operations (e.g., initialize, allocate, free,
access memory), the memory bugs are common in file system development and can induce severe issues
like memory leaks, uninitialized reads, out-of-bound accesses, dangling pointers, double frees, and buffer
overflow [36, 40]. The integrity checks in MCFS monitor the return status and file system state after each
operation to test whether memory is correctly handled.

Specification Violation Bugs. Specifications (e.g., POSIX [30]) tell developers how to implement a file
system with specific behavior such as error codes, path resolution, invariants, etc. [53, 55]. Accordingly, file
systems must conform to the specifications for robustness, reliability, and compatibility. Specification vio-
lation bugs expose serious security issues and make file systems more vulnerable to attackers and malware.
MCFS can check for such specification violation bugs without file system knowledge. As an illustration,
if one file system uses an incorrect error code not specified in POSIX, MCFS can capture this discrepancy
by comparing it to a correctly-implemented file system. We assume that most file systems implement a
particular file system operation accurately, so it is rare for both file systems to implement the same function
incorrectly [40].



Chapter 3

MCFS Design

We exploit this efficient search technology to explore file system states exhaustively. The MCFS model-
checking framework is designed to detect discrepant behaviors in file systems; i.e., situations where two file
systems behave differently given the same inputs.

3.1 Design Goals

MCFS has five key design goals: (1) Thorough coverage: It should thoroughly explore the state spaces of
the file systems we check, so that it can uncover as many corner cases as possible. This requires MCFS to
check as many permutations of file system operations as possible, exploring all possible changes that the
given set of operations can make. (2) Eliminate need for an abstract model: Traditional model checking
requires one to define a model for the system under investigation. MCFS can verify file systems without a
model because it directly executes system code to perform state-space exploration. (3) Absence of observer
effects: To ensure accuracy, MCFS should avoid changing the behavior of the investigated file system,
ideally treating it as a black box. If we have to modify it, we must be careful to minimize MCFS’s footprint.
(4) Universality: The model-checking framework should support a wide range of file systems (e.g., in-
kernel, user-level, networked, distributed). (5) High performance: Since a file system’s state space is the
product of many system calls and their parameters, the number of states can be exponential. The model
checker must be able to enumerate new states as fast as possible, exploring large fractions of the state space
within a reasonable amount of time.

3.2 MCFS Architecture

Figure 3.1 depicts the MCFS model checking framework. MCFS’s architecture has four main compo-
nents: randomized test engines, optimized state-space exploration, integrity checks, and abstraction func-
tions. Driven by the Spin model checker [25], randomized test engines nondeterministically issue operation
sequences to each file system under consideration. Spin’s efficient partial-order reduction algorithm [29]
allows MCFS to execute all permutations of the given set of calls and their parameters without duplication.
Its randomized driver processes generate both valid and invalid call sequences. Valid sequences should suc-
ceed on all file systems, while invalid ones (e.g., write() before open()) should produce consistent error
behavior. Invalid sequences are critical because they exercise error paths, where bugs often lurk.

We chose Spin to perform optimized state-space exploration because: (i) it is open-source and actively
maintained; (ii) C code can be embedded in Spin’s model-description language (Promela) to issue system
calls, and c track statements let Spin record C buffers as states [26]; and (iii) Spin can perform parallel
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Figure 3.1: MCFS Model checking framework

model checking using Swarm verification techniques [27], substantially speeding up exploration of large
state spaces.

After each system call, integrity checks verify that all tested file systems have identical states by asserting
equality of return values, error codes, file data, and metadata. If a discrepancy is detected, the integrity
checker reports a potential bug and halts. Spin logs the precise sequence of operations, parameters, and
starting and ending states that led to a problem, simplifying reproducibility. Because file systems have
implementation-specific features [53], not all discrepancies are bugs. We believe though that many of these
non-bug behavior differences are also interesting, since they still affect application behavior [51].

Finally, abstraction functions convert concrete states into abstract ones. In MCFS, each concrete state
contains all the information needed to describe the file systems, including file data and metadata. MCFS uses
the abstract state to determine whether a state was previously visited. If MCFS reaches a state that is logically
equivalent to a previous one, it will backtrack corresponding concrete states to restore the file systems to their
earlier versions. The abstraction functions hash the important data in the concrete states (including file paths,
data, and relevant metadata) to distinguish logically unique states but omit noisy attributes such as atime
timestamps and the physical locations of data blocks. Hashing the entire on-disk state would fail because of
those less interesting attributes.

Designing abstraction functions requires domain knowledge. We wrote the functions to conform to the
POSIX specification, so they are generic and applicable to most POSIX-compliant file systems.



Chapter 4

Challenges

We now describe challenges we encountered while developing MCFS, and our attempts to work around
them.

4.1 Access to In-Memory States

MCFS must save and restore all information related to the tested file systems, including their persistent (on-
disk) and dynamic (in-memory) states. Spin could use the underlying block device to track persistent states,
but there is no simple way to access in-memory states—in kernel or user space—because they are not part
of Spin itself.

In-kernel file systems. Many file systems (e.g., Ext4 [18], XFS [57]) run in the Linux kernel, with states in
the kernel address space. In theory, one could use /dev/kmem to save and restore those states, but in reality
they are so intertwined with other kernel data structures that doing so is impractical.

User-space file systems. Tracking kernel file systems is hard, so we turned to file systems built on lib-
FUSE [60] (e.g., fuse-ext2 [1]). Such file systems, however, are separate processes, so Spin cannot directly
track their internal state. We tried several alternatives. First, we modified malloc to allocate memory from
a shared-memory pool accessible to Spin, so that it could be saved and restored. This failed because impor-
tant state was stored in static (non-heap) variables outside the shared-memory segment, leading to incorrect
pointers and crashes. We concluded that it was impractical to modify file-system code to avoid these static
variables.

4.2 Cache Incoherency

We next explored a compromise in which Spin tracked only the persistent (on-disk) state. Doing so allowed
MCFS to run without crashing, but our experiments encountered corrupted file systems. A typical symptom
was directory entries with corrupted or zeroed inodes, caused by Spin backtracking and restoring a persistent
state. Since we were not restoring in-memory state to match, cached information in the kernel was no longer
consistent with the disk content. For example, the dcache might contain a recently created directory, but
the restored state might reflect a time before its creation.

We tried to resolve the inconsistency by calling fsync after each operation, and by mounting the file
system with the sync option. Neither approach was effective: although they guaranteed that the caches were
flushed to persistent storage, they did not implement the opposite operation—loading any Spin-initiated
change in the persistent storage back into the in-memory caches.

9



Finally, we compromised again: we unmounted and remounted the file system between each pair of oper-
ations. An unmount is the only way to fully guarantee that no state remains in kernel memory. [Re]mounting
always loads the latest state from disk, ensuring that the caches are coherent between each Spin state explo-
ration. This compromise caused two problems: (1) it considerably slowed state exploration (see Section 7)
and (2) it prevented us from identifying file-system bugs caused by incorrect in-memory states. These prob-
lems led us to consider adding support for file system state checkpointing and restoring (see Section 6).

4.3 State Explosion

Algorithm 1: Abstraction Functions
Input : Path to the file system mount point path
Output: 128-bit MD5 Hash

1 files← list ([])
2 md5ctx← md5 init ()
// Recursively walk the mount-point directory

3 foreach file in recursively traverse dir (path) do
4 files.append (file)

5 sort (files) // Sort files by pathnames

6 foreach file in files do
7 fd← open (file.path)
8 content← read (fd) // Read all file content

9 md5 update (md5ctx, content)
10 close (fd)
11 attrs← stat (file)

// Get important metadata

12 attrs’← important attributes (attrs)
13 md5 update (attrs’)
14 md5 update (file.path)

15 return get md5 hash (md5ctx)

We use Spin’s c track statement to declare memory buffers used by the C code. During state explo-
ration, Spin detects an already-visited state by comparing these buffers against all previously visited states.
This causes state explosion because any change in a buffer is considered a new state, yet some changes, such
as access-time updates, are rarely relevant to bugs. Consequently, Spin could not fully explore file systems
with even moderate parameter spaces. Fortunately, Spin’s c track allows one to define abstract states used
for matching, and concrete states used only in state restoration. We thus introduced an abstract state that
contained an MD5 hash of file paths, data, and important metadata (e.g., mode, size, nlink, UID, and GID)
for all files and directories.

Algorithm 1 shows the procedure to obtain an abstract state of a file system. We first identify all files and
directories in the file system by traversing from the mount point. We then sort them by their pathnames so
that they appear in a consistent order. We then read each file’s contents and call stat to obtain its metadata.
The important attributes function extracts only the important metadata mentioned above. Finally, we
calculate the MD5 hash for the files’ content, important metadata, and pathnames.

We then marked persistent states as concrete, and instructed Spin to track only the hashes that distinguish
different abstract states. Doing so not only prevented visiting duplicate states, it also greatly reduced the
amount of memory needed to track states, increasing Spin’s exploration capacity.



4.4 False Positives

MCFS performs integrity checks that assert state equality of the file systems under investigation. In case of
any discrepancy, MCFS terminates and reports a bug, logging the operations it executed and their parame-
ters. We found, however, that MCFS sometimes terminated on discrepancies that were not bugs. We took
measures to prevent these false positives and describe several such cases below.

Directory-size reporting and ordering. In Ext4, directory sizes are a multiple of the block size; other file
systems report sizes based on the number of active entries. Thus, directories on two different file systems
might have the same contents but different sizes; we thus ignore directory sizes. Similarly, file systems return
directory entries in different orders, so we sort the output of getdents before comparing them.

Special folders. Some file systems create special folders: For example, Ext4 has a lost+found folder
to save lost and damaged files, while XFS does not. This caused namespace discrepancies between file
systems. We added an exception list of special files and directories; MCFS ignores anything on this list
when comparing abstract states.

Differing data capacity. Although we tested all file systems on block devices of the same size, they ex-
posed different usable data capacities. This is a problem when the file systems are nearly full: calling write
can succeed on one file system and fail on another, reporting a false bug. We thus equalize free space among
file systems being checked: when MCFS starts, it queries all file systems and records the smallest free space
as SL; then on each file system with free space Sn, it creates a dummy file and writes Sn−SL bytes of zeros.

None of these workarounds introduce false negatives, because they are all dealing with unstandardized
behavior. For example, an application should not expect sorted output from getdents, so if a given file
system suddenly stops sorting, that is not a bug. (However, if the change introduces other misbehavior, we
will detect the consequences.)



Chapter 5

MCFS Prototype Implementation

Figure 5.1 shows how MCFS’s prototype handles different types of file systems. The file system syscall
engine, written in Promela with embedded C code, consists of a multi-entry do ... od nondeterministic
loop; each entry contains code to issue file-system operations, perform integrity checks, and record logs.
Using Spin, MCFS nondeterministically selects an operation and its parameters, then executes it on all tested
file systems. MCFS mmaps the file systems’ backend storage devices into Spin’s address space so it can track
their states.

To prevent cache-coherency problems, MCFS unmounts and remounts kernel file systems (e.g., Ext4 and
JFFS2) before and after each operation (see Section 4.2). However, syscalls such as write that depend on
kernel state (e.g., open file descriptors) cannot be used in isolation. We thus developed meta-operations com-
prising small sequences of syscalls that avoid tracking kernel state: create file creates and then closes a
file; write file opens, writes some data to, and closes a file. Other operations that can execute alone are
run directly by MCFS, e.g., truncate and mkdir. Each operation’s parameters are selected nondetermin-
istically from a pre-defined (bounded) parameter pool. Because we limited our exploration space to fixed
syscalls and parameters, the entire exploration—while large—is guaranteed to be bounded.

For FUSE-based file systems (e.g., fuse-ext2), the syscall is issued to the OS. FUSE’s normal behavior
results in several user/kernel messages being passed, coordinated via /dev/fuse (see fuse-ext2 in Fig-
ure 5.1).

To avoid being slowed by I/Os, we used RAM block devices as backend storage for block-based file
systems (e.g., Ext4 and XFS). Linux’s RAM block device driver (brd) requires all RAM disks to be the
same size; we slightly modified it (renamed brd2), to allow different-sized RAM disks for file systems with
different minimum-size requirements.

Some file systems must be mounted using special devices. For example, JFFS2 [67] requires an MTD
character device [66] instead of a regular block device. MCFS sets up JFFS2 differently: it (1) loads the
mtdram kernel module, which creates a virtual MTD device in RAM, and then (2) loads the mtdblock

module to provide a block interface for the virtual MTD device. This approach allows Spin to mmap the
MTD storage via the block device.

12
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and character-device-based.



Chapter 6

Tracking File-System States

Unmounting and remounting a file system after each operation solved cache-incoherency problems but
slowed the model checking and deviated from a normal use case. Due to its backtracking search process, Spin
saves and restores all information related to the tested file systems. Therefore, we must track all file-system
states, including persistent and in-memory ones. We investigated three approaches: (1) process snapshotting
and (2) VM snapshotting, which culminated in our (3) MCFS-enabled VeriFS.

Process snapshotting. User-space file systems run as independent processes. To keep their in-memory
states coherent with their persistent states, we can snapshot them using existing tools. We explored a pop-
ular snapshotting tool called CRIU [15] and tried integrating it with MCFS. Unfortunately, CRIU refused
to checkpoint processes that have opened or mapped any character or block device (with a few unhelpful
exceptions). Since FUSE-based file systems use the character device /dev/fuse to communicate with the
kernel, CRIU could not checkpoint them. However, CRIU was able to snapshot the user-space NFS server
Ganesha [49]; we are investigating model-checking Ganesha with CRIU.

Virtual-machine snapshotting. Hypervisors can snapshot and restore an entire VM, including full file-
system states enclosed therein. However, VM-level snapshotting is fairly slow and heavyweight. For ex-
ample, LightVM claims that it takes 30ms to checkpoint a trivial unikernel VM and 20ms to restore it [41].
This may be fast enough for cloud platforms but is too slow for MCFS; LightVM’s latency limited our
model-checking rate to only 20–30 operations/s.

VeriFS. It is difficult for MCFS to track the in-memory state of file systems (see Section 4.1). But if
a file system itself could checkpoint and restore its state, MCFS could use that facility to easily perform
state capture and restoration, avoiding cache incoherency. To demonstrate this idea, we developed a RAM-
based FUSE file system, VeriFS. Figure 6.1 shows the architecture of VeriFS. Apart from standard POSIX
operations such as open, write, and close, VeriFS provides checkpoint and restore APIs via ioctls:
ioctl CHECKPOINT and ioctl RESTORE.

When MCFS calls ioctl CHECKPOINT with a 64-bit key, VeriFS locks itself, copies inode and file data
into a snapshot pool under that key, and releases the lock.

Similarly, ioctl RESTORE causes VeriFS to query the snapshot pool for the given key. If it is found,
VeriFS locks the file system, restores its full state, notifies the kernel to invalidate caches, unlocks the file
system, and discards the snapshot.

VeriFS is intended to demonstrate the idea of having file systems themselves support model checking by
providing checkpoint and restore APIs. Therefore, the initial version, VeriFS1, was fairly simple. It used
a fixed-length inode array with a contiguous memory buffer attached to each inode as the file data. It had
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ioctl RESTORE API. The interaction between VeriFS, libFUSE, and OS kernel.

only a limited set of file system operations and lacked support for access(), rename(), symbolic and hard
links, and extended attributes. It also did not limit the amount of data that could be stored.

We ran MCFS with Ext4 and VeriFS1 for over 5 days; MCFS executed over 159 million syscalls without
any errors, behavioral discrepancies, or file system corruption. To demonstrate how MCFS supports file
system development, we next developed VeriFS2 to add missing features. During development, we used
MCFS to model-check VeriFS1 against VeriFS2 to find and fix bugs in VeriFS2. MCFS helped us find
several bugs in VeriFS2, which we discuss further in Section 7.

In sum, model checking a file system can involve exploring a vast number of states. If state exploration
takes too long (e.g., is I/O-bound), then the entire model-checking process becomes impractical. Our position
is that speedy and thorough file system model-checking requires the checkpoint/restore API we propose.



Chapter 7

Evaluation

We experimented with an MCFS prototype and a number of file systems running on a VM with 16 cores,
64GB RAM, and 128GB of swap space allocated on a local hypervisor SSD. We present preliminary perfor-
mance results and discuss how MCFS helped our file system development.

7.1 Performance and Memory Demands

We ran MCFS and recorded key performance metrics for the following file system combinations: Ext2
vs. Ext4, Ext4 vs. XFS, Ext4 vs. JFFS2, and VeriFS1 vs. VeriFS2. We used 256KB RAM block devices
for both Ext2 and Ext4, and 16MB for XFS, which allows a larger minimum file-system size. VeriFS is an
in-memory file system and does not need a block device.

File System Operation Rate (ops/s, log)

Ext2 vs. Ext4 (HDD)

Ext2 vs. Ext4 (SSD)

Ext4 vs. XFS

Ext4 vs. JFFS2

Ext2 vs. Ext4 (RAM)

VeriFS1 vs. VeriFS2

1 5 10 50 100 500 1000

Figure 7.1: Speed comparison for different experiments. Unless specified in parentheses, all experiments
were run on RAM disks or entirely in memory.

Figure 7.1 shows model-checking speeds observed in our experiments. Checking Ext4 vs. XFS on RAM
disks was over 11× slower than Ext2 vs. Ext4 because MCFS consumed 105GB of swap space for the former,
so swap time dominated. Checking Ext2 vs. Ext4 on HDD was 20× slower than on RAM disks; using SSD
was still 18× slower. This illustrates the advantage of using RAM as backend storage. Checking VeriFS1
vs. VeriFS2 was 5.8× faster than Ext2 vs. Ext4 for two reasons: (i) MCFS used the checkpoint/restore APIs
(see Section 6) and thus did not have to unmount and remount the VeriFS file systems; (ii) VeriFS runs
entirely in-memory, so MCFS did not access block devices to checkpoint and restore persistent states.
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Figure 7.2 shows the speed of model checking and the memory consumption over time. Figure 7.2(a)
shows an experiment that compared operations on Ext2 against those same operations performed on Ext4;
Figure 7.2(b) shows experiments on Ext4 vs. XFS. We used 256KiB RAM block devices for both Ext2 and
Ext4, and 16MiB for XFS, which imposes a larger minimum file system size.

When checking Ext2 vs. Ext4, MCFS consumed 5.5GB of physical memory (pmem size) and its vir-
tual memory (vmem size) size was 6.5GB. When checking Ext4 vs. XFS, MCFS used 66GB of physical
and 171GB of virtual memory; because this larger memory footprint exceeded physical RAM, MCFS used
105GB of swap space. The average model-checking speed for Ext2 vs. Ext4 was 231 operations per second
(ops/s); for Ext4 vs. XFS it was 20 ops/s. Checking Ext4 vs. XFS was more than 10× slower than Ext2
vs. Ext4 because the time spent on swap I/O dominated the former experiment.

Note that by default MCFS remounts and unmounts the file systems before and after each operation. To
evaluate the impact of that approach, we also measured its performance without the inter-operation remounts;
in that case the average speed for Ext2 vs. Ext4 was 38% higher (316 ops/s), and that for Ext4 vs. XFS was
70% higher (34 ops/s).

We also tried MCFS with (1) VeriFS alone and (2) VeriFS vs. Ext4. MCFS does not need to unmount and
remount VeriFS between every operation because it takes advantage of VeriFS’s ioctl APIs to checkpoint
and restore states, but it must still do so when checking Ext4. The average speed of checking VeriFS alone
was 713 ops/s, and that of checking VeriFS vs. Ext4 was 390 ops/s. Clearly, the added un/mounting steps
slow the model checking rate considerably.

MCFS keeps an in-memory copy of every concrete state that has a unique corresponding abstract state;
this explains why the experiment with Ext4 vs. XFS used more memory than the one with Ext4 vs. Ext2:
XFS’s concrete state alone was 16MiB, compared to 256–512KiB for Ext2/Ext4.

Figure 7.3 shows MCFS’s speed when checking VeriFS1 over two weeks. MCFS maintained a rate of
around 1,500 ops/s in the first 3 days; this rate then dropped drastically and swap usage spiked because
Spin was resizing its hash table of visited states. After rebounding, MCFS’s speed gradually decreased
over time because the checkpointed states could not fit in memory and it began to consume swap space. Its
speed increased again between days 13 and 14 because the RAM hit rate was high (states needed by MCFS
happened to be in memory and did not need to be swapped in and out).

Note that by default MCFS remounts and unmounts the file systems before and after each operation. To
evaluate the impact of that approach, we also measured MCFS’s performance without the inter-operation
remounts. The average speed for Ext2 vs. Ext4 (in RAM disks) was 316 ops/s, 38% faster than that when
remounts and unmounts were used; and for Ext4 vs. XFS it was 34 ops/s, which is 70% faster.
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7.2 Assisting File System Development

While developing VeriFS1, we model-checked it vs. Ext4. MCFS found two bugs that we easily fixed, thanks
to precise reports of operations and arguments. The first occurred after over 9K operations when test files
on VeriFS and Ext4 had different content. The bug arose when truncate failed to clear newly allocated
space when expanding a file. The second bug was detected after about 12K operations; MCFS created a test
directory in Ext4 but VeriFS failed, claiming that the directory existed—but in fact it did not. This was due to
cache incoherency between the kernel and VeriFS’s in-memory state. When VeriFS rolled back to an earlier
state, the kernel’s inode and dentry caches did not keep up. The fix was to call FUSE’s cache-invalidation
APIs (fuse lowlevel notify inval entry and fuse lowlevel notify inval inode).

We then developed VeriFS2 (see Section 6) and used MCFS to assist development by model-checking it
vs. VeriFS1. MCFS found two more bugs during this phase. The first occurred after over 900K operations,
when the test files in VeriFS1 and VeriFS2 had different data. VeriFS2 had failed to zero out the file’s buffer
if write created a hole in the file. The second bug was detected after over 1.2M operations: the test file in
VeriFS2 was shorter than that in VeriFS1. The reason was that the write method in VeriFS2 updated the file
size only when the file was expanded beyond its buffer capacity, rather than whenever the file was appended
to.



Chapter 8

Related Work

8.1 Regression Test Suites

Regression tools and suites (e.g., fsck [62], xfstests [57] and ltp [44]) are useful in development and mainte-
nance, but test only known defects and are unlikely to cover all corner cases. Even though these regression
suites can incorporate new test cases, they cannot achieve systematic file system testing because of their
hand-written nature [36]. Thus, there is no guarantee that regression suites would cover adequate test cases
of a file system. Nevertheless, our MCFS framework can be a complementary tool to work with regression
suites to cover sufficient state space and facilitate file system development.

8.2 Verified or Machine-Checkable File Systems

Prior work has demonstrated the benefits of building a machine-verifiable file system from scratch [2, 9–12,
31, 58, 74], but this approach does not apply to existing file systems. For instance, FSCQ [11, 12] applies
extended Hoare logic to write the crash-safe specification. Then, based on the specification, developers can
implement a new file system to meet this specification to avoid crash-consistency bugs.

Yggdrasil [58] is a toolkit for writing file systems with automated push-button verification and bug
detection using a novel definition of correctness, called crash refinement. Yggdrasil first formulates file
system verification as a satisfiability modulo theories (SMT) problem and then fully automates the proof
process by solving the SMT problem via Z3 [16], a state-of-the-art SMT solver, relieving programmers from
the proof burden.

DFSCQ [10] introduces metadata-prefix specification to specify the properties of fsync and fdatasync,
which describes the possible states after a crash. The DFSCQ specification helps developers verify the crash
safety of their applications related to file system synchronization and avoid application-level bugs. The ad-
vantage of DFSCQ is the high performance compared to other existing machine-checked file systems [11,58].

SFSCQ [31] provides machine-checked security proof of confidentiality and utilizes data non-interference
to capture discretionary access control. Consequently, SFSCQ can preclude confidentiality bugs in the file
systems by implementing the confidentiality specification. In SFSCQ, the confidentiality specification is
obtained from the file system code via the idea of sealed blocks.

However, this methodology runs into two significant problems. First, the specification of machine-
checkable file systems can only be used to verify a particular dimension of a file system (e.g., crash consis-
tency [10,11,58]). Therefore, large parts of the file system are still unverified and thereby may contain bugs.
Second, machine-checkable file systems are practical only when developing a new file system from scratch.
It is unrealistic to adapt the specification to existing file systems such as Ext4 [18] and XFS [68] and detect
real-world file system bugs, limiting the usage to support file system development. Worse, even formally
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verified, the FSCQ file system still exposed crash-consistency bugs [36], which shows that even verified file
systems are not ever bug-free.

8.3 Model Checking and Verification

File-system model checkers have verified test cases [6, 45, 71, 72] and located corner-case bugs, but are
strictly focused on crash consistency.

FiSC [72] combines the CMC model checker [46–48] and a file system test driver to continually generate
new file system states by executing systematic state transitions (i.e., file system operations). In addition, FiSC
exploits a permutation checker and fsck to check for failures during the model-checking process recursively.
As the enhancement of FiSC, eXplode [71] performs implementation-level model checking, which does not
require intrusive changes to the file systems and Linux kernel. However, both FiSC and eXplode tend only
to detect crash consistency bugs.

JUXTA [43] automatically infers high-level semantics directly from file system source code by static
analysis and exploits cross-checking to detect semantic bugs for multiple file systems in the Linux kernel.
JUXTA can detect semantic bugs in existing file systems. However, the design of JUXTA requires sub-
stantial file system knowledge and expertise, not to mention different file systems have broadly contrasting
semantics. Hence, JUXTA has to compromise on common file system semantics, which restricts the test
coverage.

B3 [45], as a black-box crash testing tool, generates bounded workloads on corrupt file system images
to simulate the crash circumstance and directly uses read and write system calls to acquire the file system
state. Meantime, the same workloads are run on a clean file system images as an oracle to compare to the
state on the corrupt image. Furthermore, B3 uses an automated checker to test whether file system operations
upon crash exhibit aberrant behaviors and then correspondingly report a bug. However, B3 is designed to
detect only crash-consistency bugs and cannot expose file system bugs that do not involve the crash state.
Also, B3 has no guarantee to explore adequate state space of a file system.

Another approach is to build an abstract model and check whether a file system adheres to it [23, 39, 43,
52, 53]. Constructing a formally verifiable model, however, requires considerable domain knowledge and
human effort. It is also impractical to build formal models for large and intricate file systems. Worse, the
formal model requires updating when the file system’s code changes. CMC [46–48] inserts file system code
directly into the model checker, for substantial speed advantages, but requires extensive changes to the very
code being verified, making the results less trustworthy [71].

Likewise, symbolic-execution tools [7, 8] cannot guarantee thorough coverage because they focus on
particular issues (e.g., corrupt input [8]); they also require a behavioral model of each file system call [7].

8.4 Fuzzing

Fuzzing can find real-world bugs [22, 36, 56, 69, 70], but either is limited to specific types of bugs (e.g.,
memory safety for Janus [70]), or needs human effort to create checkers [36].

kAFL [56] supports feedback-driven fuzzing for operating system kernels assisted by Intel’s Processor
Trace (PT) technology that can obtain complete trace information of the OS under testing. The trace infor-
mation provides coverage for ring-0 execution of OS code and gives feedback to kAFL for maximizing code
coverage with only a little overhead. Still, kAFL tracks only strong indications like OS crashes and cannot
detect hidden bugs triggered quietly. For example, Ext4 exposed a bug [36, 53] that returns EISDIR when
calls unlink for a directory without proper permission. Based on the POSIX specification, the expected
error code should be EPERM instead of EISDIR. However, this bug does not lead to apparent consequences
such as kernel crash or panic. Thus, is is difficult for kAFL to identify this kind of bug.



JANUS [70], a feedback-driven fuzzer, explores the two-dimensional input space of a file system (i.e.,
metadata in the file system image and image-directed system calls). The image mutation in JANUS operates
only on metadata because the file system image is too large to mutate. The metadata constitutes barely 1% of
the image size but comprises essential file system attributes and structures. The input system calls in JANUS
are not randomly created. Instead, JANUS deduces the runtime status of every file object on the image after
generating complete system calls. Therefore, this runtime status contributes context-aware file operations
to the syscall fuzzer, which avoids runtime errors and gains high code coverage. Despite the impressive
results, JANUS cannot detect silent semantic bugs because it relies on kernel crashes or panics to capture
and recognize bugs.

Previous fuzzing frameworks failed to detect various types of file system bugs. As an extensible fuzzing
framework, Hydra [36] was proposed to integrate multiple bug detectors to allow Hydra to discover more
kinds of bugs. The Hydra framework provides mutated syscalls and file system images as fuzzing input. Hy-
dra can combine existing bug checkers for file systems, including crash consistency, semantic, and memory
bug checkers. However, the Hydra framework only supplies input for the fuzzing process. As a result, the
file system developers have to implement the checkers by themselves, which is inconvenient and limits the
usage of Hydra.



Chapter 9

Conclusions

We have proposed MCFS, a new model-checking framework for file system development that exhaustively
explores a file system’s (bounded) state space, without requiring manual modeling or significant changes
to the kernel or the file system itself. We developed VeriFS (v1 and v2), prototypes that demonstrate state
checkpointing and restoration functionality via ioctls. These functions let MCFS track VeriFS’s full state
while avoiding cache incoherency. MCFS found real bugs while we were developing VeriFS. Because both
versions of VeriFS are simple and fast to model-check, they serve as a useful baseline against which we can
compare other file systems.

We discussed the challenges we encountered when implementing MCFS, convincing ourselves of the
need for file-system-level support to allow MCFS to work correctly and efficiently. Finally, while MCFS is
designed to check file systems, its underlying approach is applicable to other system software.

We are exploring methods to track code coverage while model-checking. We will also use Spin’s swarm
verification [27, 28] to explore larger state spaces in parallel.
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Chapter 10

Future Work

We plan to add checkpoint/restore API support to Linux kernel file systems (e.g., Ext4) to eliminate the need
for the current mount/remount workaround. We are implementing the checkpoint/restore API at the Linux
VFS level, which we hope will apply to many Linux kernel file systems. We are also working on APIs that
will checkpoint file system states to help us resume the model-checking process if an interruption occurs
(e.g., due to a kernel crash). We also plan to run more than two file systems concurrently with MCFS and
use a majority-voting approach to recognize incorrect file-system behavior.
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