
9

Improving Storage Systems Using Machine Learning

IBRAHIM UMIT AKGUN, ALI SELMAN AYDIN, ANDREW BURFORD,
MICHAEL MCNEILL, MICHAEL ARKHANGELSKIY, and EREZ ZADOK,
Stony Brook University

Operating systems include many heuristic algorithms designed to improve overall storage performance and
throughput. Because such heuristics cannot work well for all conditions and workloads, system designers
resorted to exposing numerous tunable parameters to users—thus burdening users with continually optimiz-
ing their own storage systems and applications. Storage systems are usually responsible for most latency in
I/O-heavy applications, so even a small latency improvement can be signi!cant. Machine learning (ML) tech-
niques promise to learn patterns, generalize from them, and enable optimal solutions that adapt to changing
workloads. We propose that ML solutions become a !rst-class component in OSs and replace manual heuris-
tics to optimize storage systems dynamically. In this article, we describe our proposed ML architecture, called
KML. We developed a prototype KML architecture and applied it to two case studies: optimizing readahead
and NFS read-size values. Our experiments show that KML consumes less than 4 KB of dynamic kernel
memory, has a CPU overhead smaller than 0.2%, and yet can learn patterns and improve I/O throughput by
as much as 2.3× and 15× for two case studies—even for complex, never-seen-before, concurrently running
mixed workloads on di"erent storage devices.
CCS Concepts: • Software and its engineering → File systems management; • Computing method-
ologies→ Machine learning;
Additional Key Words and Phrases: Operating systems, storage systems, Machine Learning, storage perfor-
mance optimization
ACM Reference format:
Ibrahim Umit Akgun, Ali Selman Aydin, Andrew Burford, Michael McNeill, Michael Arkhangelskiy, and Erez
Zadok. 2023. Improving Storage Systems Using Machine Learning. ACM Trans. Storage 19, 1, Article 9 (Janu-
ary 2023), 30 pages.
https://doi.org/10.1145/3568429

1 INTRODUCTION
Computer hardware, software, storage, and workloads are constantly changing. Storage per-
formance heavily depends on workloads and the precise system con!guration [14, 82]. Storage
systems and OSs include many parameters that can a"ect overall performance [13, 15, 104]. Yet,
users often do not have the time or expertise to tune these parameters. Worse, the storage and OS

This work was made possible in part thanks to Dell-EMC, NetApp, Facebook, and IBM support; a SUNY/IBM Alliance award;
and NSF awards CNS-1729939, CNS-1900706, CCF-1918225, CNS-1951880, CNS-2106263, CNS-2106434, and CNS-2214980.
Authors’ address: I. U. Akgun, A. S. Aydin, A. Burford, M. McNeill, M. Arkhangelskiy, and E. Zadok, Department of
Computer Science, New Computer Science Building, Stony Brook University, Stony Brook, NY 11794-2424; emails:
iakgun@cs.stonybrook.edu, aaydin@cs.stonybrook.edu, aburford@cs.stonybrook.edu, mmcneill@cs.stonybrook.edu,
markhangelsk@cs.stonybrook.edu, ezk@cs.stonybrook.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1553-3077/2023/01-ART9 $15.00
https://doi.org/10.1145/3568429

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://orcid.org/0000-0003-0778-383X
https://orcid.org/0000-0001-6958-6001
https://orcid.org/0000-0002-6794-2428
https://orcid.org/0000-0003-1082-2916
https://orcid.org/0000-0002-9830-1252
https://orcid.org/0000-0001-5248-9184
https://doi.org/10.1145/3568429
mailto:permissions@acm.org
https://doi.org/10.1145/3568429
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568429&domain=pdf&date_stamp=2023-01-19

9:2 I. U. Akgun et al.

communities are fairly conservative and resist making signi!cant changes to systems to prevent
instability or data loss. Thus, many techniques currently used were historically developed with
human intuition after studying a few workloads; but such techniques cannot easily adapt to
ever-changing workloads and system diversities.

For example, readahead values, while tunable, are often !xed and left at their defaults. Correctly
setting them is important and di#cult when workloads change: too little readahead wastes poten-
tial throughput and too much pollutes caches—both hurting performance. Some OSs let users pass
hints (e.g., fadvise, madvise) to help recognize !les that will be used sequentially or randomly,
but these often fail to !nd optimal values for complex, mixed, or changing workloads. We experi-
mented with a variety of modern workloads and many di"erent values of readahead: in our prior
work, we con!rmed that no single readahead value is optimal for all workloads [4]. Another exam-
ple of tunable parameters in the network storage settings is the default read-size (rsize) parameter
in NFS: if set too small or large, performance su"ers.

Machine Learning (ML) techniques can address this complex relationship between workloads
and tunable parameters by observing actual behavior and adapting on-the-$y, and hence may be
more promising than !xed heuristics. ML techniques were recently used to predict index structures
in KV stores [24, 50], for database query optimization [49], improved caching [90], cache eviction
policies [97], I/O scheduling [40], and more.

In this article, we describe our ML approach to improve storage performance by dynamically
adapting to changing I/O workloads. We designed and developed a versatile, low-overhead, light-
weight system called KML, for conducting ML training and prediction for storage systems. KML
de!nes generic ML APIs that can be used for a variety of subsystems; we currently support several
deep neural networks and decision tree models. We designed KML to be embeddable inside an OS
or the critical path of the storage system: KML imposes low CPU and memory overheads. KML
can run synchronously or asynchronously, giving users the ability to trade o" prediction accuracy
vs. overhead.

Developing and tuning ML-based applications can be its own challenge. Therefore, we designed
KML to run identically in user or kernel level. Users can develop and debug ML solutions easily in
the user level, then upload the same model to run identically in the kernel.

We demonstrate KML’s usefulness with two case studies: (i) adapting readahead values dynam-
ically and (ii) setting NFS rsize values automatically. In both cases, we aim to adapt these values
within 1 second under changing and even mixed workloads. Overall, our approach to storage sys-
tems optimization using ML is a continuous observe-and-tune paradigm.

This article makes !ve contributions:
(1) We show that lightweight ML can indeed become a !rst-class citizen inside storage systems

and OSs.
(2) We o"er $exibility through synchronous or asynchronous training and the ability to o%oad

training to the user level.
(3) We introduce the idea of generic ML APIs that can be expanded to support additional and

future ML techniques.
(4) We apply KML to two important optimization problems (readahead and NFS rsize

values)
(5) We evaluate our solutions using multiple, complex, and even mixed workloads, as well as two

di"erent storage devices. We demonstrate throughput improvements up to 2.3× for readhead
and up to 15× for rsize. We show that ML models trained on a few workloads can generalize
and optimize throughput for never-before-seen workloads or devices. And !nally, we show
that KML has small CPU overheads (< 0.2%) and dynamic memory footprint (4 KB), well
worth the overall I/O improvements.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:3

Fig. 1. Two di!erent operational modes that we built to achieve a high e!iciency ML framework for tuning
OS-level storage systems: (a) kernel space training and inference and (b) o!line user space training and
kernel space inference.

Next, Section 2 describes KML’s design. Section 3 describes our two use cases (readahead and
NFS rsize). A detailed evaluation of KML and two use cases are in Section 4. We survey related
work in Section 5 and conclude in Section 6.

2 KML’S ARCHITECTURE
Modern ML libraries are often general purpose, rely on many large third-party libraries (e.g., in
C++ or Python), and designed to process lots of data using massive processing power (e.g., GPU
clusters). Porting such ML systems to an OS kernel would be impractical, because an OS is a highly
constrained and unforgiving environment. Thus, we chose to develop an ML framework from
scratch—designed for low overhead, light weight, and highly tailored to OSs and storage systems
and OS developers.

KML high-level design choices. Figure 1 demonstrates two di"erent operating modes that we
built. KML supports (a) in-kernel training and inference and (b) user space o%ine training and
in-kernel inference. Once a model is built in user space, it can be loaded into the kernel as is.
KML has a highly modular design: the core ML code base is shared by both user and kernel space.
Operation mode (a) is designed for performance and accuracy, especially under high-I/O rates,
because collecting and copying lots of I/O event data out of the kernel imposes high overheads.
Operation mode (b) is designed to simplify ML model development for OS/storage developers.
Users can develop and test an ML model design more easily in user space, testing di"erent features,
ML architectures, and hyper-parameters to reach a stable and accurate model.

2.1 Design Overview
Easy to develop and extend. In Figure 1(b), KML is compiled and linked with an application for

both kernel and user space. u-MLib.a and k-MLib.ko are built using the same KML source code. We
developed a wrapper layer for the KML development API: KML’s core code is uniform across both
user and kernel APIs. This identical abstraction speeds up development, eases debugging, and
facilitates extensibility (see Section 2.3). Nevertheless, we recognize that while we aim to make
ML-based solutions easier to use, developers still require a good understanding of OS and storage
system internals.

Low overhead. To make ML approaches practical for storage systems, they must have low compu-
tational and memory overheads. ML solutions have three phases that consume much memory/CPU
resources: (i) inference (i.e., prediction), (ii) training, and (iii) data processing and normalization.
We support asynchronous training and inference capabilities to reduce interference on the data
path; KML also uses e#cient communications between the data collection and model training and

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:4 I. U. Akgun et al.

inference components, to help scalability and stability of ML-based designs. To reduce the data
collection overheads, developers can facilitate subsampling techniques that are provided in KML.
We detail our design choices to reduce these overheads in Section 2.4.

2.2 Fundamentals of Core ML Library
KML provides primitives for building and extending ML models. This involves building algorithms
for training ML models (e.g., back-propagation, decision-tree induction) and building the mathe-
matical functions needed to implement them. The library design allows for seamless extensibility
of library functionality. Additionally, our ML functionality is easily debugged in user space as it
uses identical code and APIs in kernel space.

Mathematical and matrix operations. Most ML algorithms rely heavily on basic mathematical
functions and matrix algebra. For example, a neural network classi!er uses functions such as ma-
trix multiplication/addition, softmax, and exponentiation. Hence, we implemented kernel versions
of such common ML functions using well-known approximation algorithms.

Layer and loss-function implementations. One can think of a neural network as a composition
of layers and one or more loss functions. Many of these building blocks are used across many dif-
ferent neural network architectures. Layers like a fully connected layer, ReLU [66], or sigmoid are
essential building blocks of many neural networks; loss functions are also fairly common across
many applications. Both layers and loss functions implement two main functionalities, one dur-
ing the inference (forward) phase and another during the back-propagation (training) phase. We
implemented these common components and their forward and back-propagation functionality
from scratch in KML: layer/loss functions, data structures related to the layer/loss, and so on.

Inference and training. When stacked together, the elements of a conventional neural network
can form a DAG. Thus, a neural network inference means traversing the DAG starting from the
initial node(s) (where the inputs are provided), toward the resulting nodes (where the neural net-
work output is produced). KML implements a standard training method used in neural networks—
back-propagation [78]. KML also includes Stochastic Gradient Descent (SGD) which uses the
gradients computed using back-propagation to optimize the neural network weights.

2.3 KML’s Modular Design
We now elaborate on KML’s operation modes: (i) in-kernel training and inference (see Figure 1(a))
and (ii) user space training and in-kernel inference (see Figure 1(b)).

Training in kernel space. We use the readahead use case to describe how KML works in kernel
training and inference mode. Figure 2 shows KML’s framework (k-MLib.ko), a KML application
(readahead.ko), and target storage components (Block device and Memory Management subsys-
tems). The yellow background denotes KML-related components. The blue background depicts
the target storage components, which are speci!c to the readahead case. The green line represents
execution and data$ow. Numbered boxes refer to transitions happening between the components.

As we mentioned in Section 1, we designed our use cases based on a continuous observe-and-
tune principle. In its !rst stage, the readahead module observes and collects data. Since our target
component is the memory management (e.g., page cache) system, the readahead module starts
collecting data from this component (Figure 2, !). The readahead module then extracts features
and transfers them to the KML framework to be normalized (Figure 2, "). After the data processing
and normalization stage is done, if the readahead module is operating in training mode, it trains
on the normalized data, and the execution $ow ends here. However, if the readahead module is

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:5

Fig. 2. KML kernel space training and inferencing architecture.

operating in inference mode, it feeds the normalized data to the readahead neural network model
and tunes the target components based on the model’s prediction (Figure 2, #).

How a KML application optimizes a target component depends on the problem and its solution.
Here, the readahead module updates readahead sizes on a per-!le basis (Figure 2, $) or a per-device
basis (Figure 2, %). When the readahead module is inferencing, execution $ow forms a closed circuit.
After the readahead module changes readahead sizes, OS memory state changes; thereafter, new
inputs go to the readahead neural network model, leading to updated predictions. Therefore, ML
is particularly suitable to solve problems that require an ongoing cycle of observing and tuning.

In the ML ecosystem, data collection is a crucial part. One reason we o"er kernel training is
to train on data collected with a high sampling rate. Tracing OSs and storage systems with high
accuracy and sampling rates is challenging [5]. Nevertheless, tracing tools like LTTng [63] can
bring overhead down to as little as 5%. Additionally, traces may still be inaccurate due to data loss.
LTTng collects trace data in shared user/kernel lockless circular bu"ers; under heavy sampling
loads, some trace events can be dropped if LTTng’s user-level processing threads do not consume
the samples fast enough. However, operating in kernel space gives KML more control over thread
scheduling to reduce loss of sampled events. Since our use cases may require high sampling rates
for I/O events, placing data processing and normalization in user space would lose too much valu-
able data than in the kernel. Still, we believe a user-kernel co-operated design may be bene!cial
in some cases (part of our future work).

Training in user space. Building ML solutions is an iterative process. To !nd the essential features
and build accurate models, we need to run multiple data analyses, train, then test an ML model
with di"erent architectures and hyper-parameters. To speed up model development and debugging,
KML o"ers o%ine user-space training and kernel inferencing mode (see Figure 1(b)). As KML’s
user- and kernel-space libraries use the same APIs and code base, models trained in user space can
be loaded into the kernel as is.

Figure 3 shows how the readahead model works in operation mode. Components highlighted in
yellow represent KML-speci!c implementations. The red arrows denote the o%ine data collection
and training paths.

We started by collecting training data using in-kernel tracing of the target storage compo-
nents [5]. Next was feature extraction; this is where user-space training was useful, because we
could run various analyses, test di"erent features, and implement many data-normalization tech-
niques without re-running I/O experiments. After we !nalized the feature selection, we trained
and tested the readahead ML model in user space, varying several hyper-parameters; we used

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:6 I. U. Akgun et al.

Fig. 3. KML user-space training and kernel-space inference architecture.

Table 1. KML API Examples

Tune [59] to optimize our hyper-parameters. When the readahead ML model was ready for real-
time testing, the only remaining step was to save the trained model to a KML-speci!c !le and
load it into the readahead kernel module. KML APIs facilitate all the functionality necessary for
building, training, saving, and deploying ML models in-kernel.

To ensure identical kernel and user APIs, we use wrappers to abstract external functionality.
KML’s development API provides 30 functions that fall into !ve categories: (i) memory manage-
ment, (ii) threading, (iii) logging, (iv) atomic operations, and (v) !le operations. For example, we
have a simple wrapper called kml_malloc that calls malloc in user level and kmalloc in kernel space.
For brevity, full API details and prototypes are omitted, but are included as part of our released
code (see Section 2.6); Table 1 presents a few examples of the KML API.

2.4 Computational and Memory Overheads
OSs and storage systems are susceptible to performance degradation and increased latency if com-
putational and memory resources are not carefully managed. Therefore, we designed KML with
e#cient CPU and memory usage in mind. There is often a positive correlation between the com-
putational and memory footprint of an ML model and its training and inference accuracy. Hence,
KML is highly con!gurable, letting users trade o" overheads vs. prediction accuracy to best suit
the problem at hand.

Reducing computational overheads. Matrix manipulation is a computationally intensive ML
building block that relies on !oating-point (FP) operations. OSs often disable the !oating-point
unit (FPU) in the kernel to reduce context-switching overheads. To address this, we considered
three approaches: (1) quantization, (2) !xed-point representations, and (3) temporarily enabling
the FPU unit in kernel space. Quantization provides compact representation, allows developers
to compute matrix manipulation operations, and does not require an FPU [21, 25, 37, 40, 79].
Quantization can help reduce computational and memory overheads, but it reduces accuracy [43].
Fixed-point representation computes FP operations using integer registers. Since all FP operations
are emulated, integration of !xed-point representation is fairly easy and even faster in certain
cases [19, 60]. However, !xed-point representation works within !xed ranges which can result in

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:7

numerical instability [53]. Since both accuracy and stability are vital KML design goals, we chose
a third alternative: KML temporarily enables the FPU in the Linux kernel using kernel_fpu_begin
and kernel_fpu_end. To avoid context-switch overheads, we minimize the number of code blocks
that use FPs and keep these blocks small.

Reducing memory overheads. Three factors a"ect KML’s dynamic memory consumption: (1) ML
model-speci!c data, (2) KML’s internal memory allocations at training and inference, and (3) data
collection for both training and inference. ML model-speci!c data and KML’s internal memory
usage depends on the number of layers, layer sizes, and layer types. KML uses dynamic memory
allocation for all internal usage purposes (e.g., layer gradients); this helps reduce interference and
memory pressure. KML gathers input data in a lock-free circular bu"er; then, an asynchronous
training thread trains on gathered data. When collecting data with a high sampling rate, the size
of the lock-free circular bu"er is important to the ML model’s performance and accuracy. Users
need to con!gure the size of the circular bu"er to account for the data sampling rate such that
the asynchronous training thread can catch up with processing. If the size of the circular bu"er
is miscon!gured, KML may lose useful training data, which can reduce the resulting ML model’s
accuracy.

Operating under resource-constrained conditions. KML exposes a memory allocation and reserva-
tion API for ML internals. The primary motivation behind KML’s memory reservation capabilities
is to ensure predictable performance and accuracy, even under memory pressure. This allows KML
to operate without worry of memory allocation lagging or failing, which would hurt performance
and accuracy.

Data processing and asynchronous training. To make ML solutions generalizable, data normal-
ization is often utilized. KML supports data normalization functionalities such as moving average,
standard deviation, and Z-score calculation. However, data normalization often requires heavy FP
computation. Thus, KML supports o%oading training, inference, and data normalization to a sep-
arate asynchronous thread—away from the data path itself. This thread communicates with other
KML components (e.g., data collection) using a lock-free circular bu"er. By default, we let Linux
schedule this kthread as needed; KML also supports pinning the kthread to a CPU core, to ensure
it gets higher scheduling priority when high sampling rates are required.

Subsampling is another viable solution to reduce data collection overheads, which KML sup-
ports. However, subsampling can reduce prediction accuracy, so care is needed to select a suitable
sampling rate. In Section 4.3, we evaluate the impact of subsampling windows on overheads, pre-
diction accuracy, and overall I/O performance.

2.5 Stability and Explainability
Both the training and inference phases for ML solutions can be computationally intensive. Except
for model initialization and saving models to !les, KML APIs involve no other I/Os. KML’s impact
on the stability of storage performance is limited to memory-allocation latency and concurrency.
Memory allocations in both user and kernel space can use locking mechanisms, which could incur
unexpected latencies. To minimize these problems, KML allocates memory only in the asynchro-
nous training thread. KML uses a lock-free circular bu"er for data communication and reserves
512 bytes of additional memory to further ensure stability under memory-pressure conditions.
Lastly, we applied standard k-fold cross-validation techniques to ensure the stability of our ML
solutions.

ML solutions can su"er from unexpected behavior and are harder to explain. Conversely, tra-
ditional heuristics have well-de!ned behaviors often expressed as closed-form formulas. An ML

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:8 I. U. Akgun et al.

algorithm may behave erratically when used in new, unforeseen settings, which could hurt sys-
tem performance where ML is deployed. This type of issue is di#cult to troubleshoot due to the
long-standing explainability problems that a"ect ML models [3]. KML currently supports two ML
models: neural networks and decision trees. Decision-tree predictions are more explainable be-
cause they are represented as a tree of successive if-then statements, bisecting the range of the
features considered. Deep neural networks, however, are more challenging to explain and verify.
Nevertheless, recent work focuses on explainability in ML [3, 44, 74, 80]. While we plan to improve
KML model stability using feedback-based control algorithms in the future, we currently focus on
demonstrating that ML can tune storage system parameters better than existing heuristics.

2.6 Implementation
KML contains 12,213 lines of C/C++ code (LoC). KML’s core ML part has 5,539 LoC, which can
be compiled in both user and kernel space. Our readahead neural network model code is nearly
1K LoC long: 486 LoC for collecting data, initializing the model, creating an inference thread, and
changing block-level and !le-level readahead sizes; and another 351 LoC for model de!nition,
data processing, and normalization. Our NFS neural network model also includes nearly 1K LoC:
435 LoC for data collection, model initialization, and running inference to predict workload type;
and 338 LoC for creating the model and manipulating data.

All of our code has been released on GitHub (https://github.com/sbu-fsl/kernel-ml), which includes
examples, sample data, models, and full API documentation (all 30 methods).

3 USE CASES
We now detail our two use cases: (1) readahead neural network and decision-tree models and
(2) NFS neural network model. We describe the following for each: (i) problem de!nition, (ii) data
collection for training, (iii) data preprocessing and feature extraction, and (iv) building the ML
model.

3.1 Use Case: Readahead
Problem de!nition. Readahead is a technique to prefetch an additional amount of storage data

into the OS caches in anticipation of its use in the near term. Determining how much to read ahead
has always been challenging: too little readahead necessitates more disk reads later and too much
readahead pollutes caches with useless data—both hurt performance. The readahead value is a
typical example of a storage system parameter: while tunable, it is often !xed and left at its default.
Some OSs let users pass hints via fadvise and madvise to help the OS recognize !les that will be
used purely sequentially or randomly, but these often fail to !nd optimal values for varied, mixed,
or changing workloads. Next, we detail our readahead neural network design (following Figure 3).
Our goal is to predict optimal readahead sizes while running under dynamic I/O workloads.

Studying the problem. We experimented with running four di"erent RocksDB [34] benchmarks,
each with 20 di"erent readahead sizes (8–1,024), and attempted to determine the readahead sizes
that yield the best performance (in ops/sec) for each workload. This became our training data,
which can help predict readahead values for other workloads and environments. This investiga-
tion revealed that each workload has a unique behavior and requires a di"erent readahead size
to reach optimal performance. We further investigated the correlations between !le access pat-
terns, RocksDB workload labels, and performance. This helped us determine the information and
features needed to build a good model, as described below.

Data collection. We used LTTng [63] to collect trace data, which we then used for !nding
useful features for the readahead problem. We captured most page cache tracepoints [28] (e.g.,

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://github.com/sbu-fsl/kernel-ml

Improving Storage Systems Using Machine Learning 9:9

Fig. 4. t-SNE visualization of readahead normalized features that are generated from both NVMe-SSD and
SATA-SSD traces. Axes are intentionally omi"ed because the dimensions are generated by t-SNE and do not
represent any specific data.

add_to_page_cache, writeback_dirty_page). We collected and processed over 20 GB of traces by
running multiple 10-minute RocksDB benchmarks on an NVMe-SSD device. Ten minutes was suf-
!cient for RocksDB to reach a steady state. After examining these traces, we selected a set of
candidate features based on our domain expertise. We then picked the features of interest and
decided where to call hook functions which are responsible for gathering necessary information
(e.g., struct page) for inference. Our hook functions provide three important raw values: (1) time
di"erence from the beginning of execution, (2) inode number, and (3) page o"sets of the !les that
were accessed in locations where the hooks were called.

Data preprocessing and normalization. We summarize the input data at 1-second intervals to
ensure we can quickly adapt to changing I/O workloads while ensuring stability under short-term
activity spikes. Based on our domain expertise, and through model experimentation, we selected
the following !ve features for our model: the number of transactions taking place each second,
the calculated cumulative moving mean and the cumulative moving standard deviation of page
o"sets, the mean absolute page o"set di"erences for successive transactions, and the inode number
(to ensure we process only RocksDB !le accesses). Before we fed these features to our readahead
neural network, we applied Z-score normalization to each feature.

Building ML solutions for OS problems requires domain expertise on the target OS module. To
this end, we have investigated what features best !t the readahead problem. For example, our own
intuition led us to select features based on how fast I/O requests can be processed and what type
of access patterns emerge. Similar features have been used for workloads characterization or other
purposes before [9, 77, 81, 84]. During the feature-extraction period for the readahead problem, we
tried various features and reduced them using feature importance analysis [71, 72].

Why we chose ML for this use case. After studying the readahead problem, we wanted to explore
whether ML would be suitable for solving this problem or whether more traditional heuristics
could still work. Therefore, while extracting features from collected traces, we visualized the fea-
tures to investigate what type of patterns and clusters the data has. Figure 4 shows a t-SNE [96]
visualization of normalized features that are generated from both NVMe-SSD and SATA-SSD
traces. t-SNE is a visualization technique that applies dimension reduction and is often used for

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:10 I. U. Akgun et al.

representing high-dimensional data and cluster identi!cation. We can observe that sequential and
random workloads are somewhat separated; alas, data points from the same workload type are dis-
tributed over multiple clusters, overlapping clusters of other types. Worse, random workloads’ clus-
ters overlap with some sequential workloads’ clusters, because RocksDB’s warm-up phases involve
mostly sequential accesses—another source of dynamism. All these !ndings strongly suggest that
workload classi!cation for the readahead problem would be fairly challenging using traditional
heuristics. Hence, we felt motivated to explore ML solutions to solving the readahead problem.

Building neural network model. We modeled the readahead problem as a classi!cation problem
and designed a neural network with three linear layers (with hidden layer sizes of 5 and 15), us-
ing sigmoid non-linearities in between layers, and with a cross-entropy loss method as the loss
function. We used an SGD optimizer [47, 76], and set a learning rate of 0.01 and a momentum of
0.99 after trying di"erent values; all these values are common in the literature [10]. We also used
Tune [59] to optimize the learning rate and momentum. We approached the readahead problem by
modeling it as a regression problem. Due to the large search space for readahead sizes, we could
reach a similar prediction accuracy only with large regression models. Thus, the large regression
model for the readahead problem has higher computational and memory overheads, which con-
$icted with our desire and vision of designing e#cient ML approaches for storage systems. Our
readahead neural network trains on the aforementioned input data and predicts the workload
type. We trained on the following four types of RocksDB workloads on NVMe-SSD because they
provide a diverse combination of random and sequential operations: (i) readrandom, (ii) readseq,
(iii) readrandomwriterandom, and (iv) readreverse. Class frequencies were close, suggesting that
classi!cation accuracy is a good metric to evaluate the performance, with the least frequent class
being 21.4% and the most frequent class being 28.8%.

We tested the neural network’s performance with the aforementioned data via k-fold cross-
validation with k = 10, and found out that it achieved an average accuracy of 95.5%. We also
analyzed the contribution of each feature to the classi!cation performance; we randomized the
order of a feature of interest across samples in the validation dataset, and then calculated the
10-fold validation performance [11]. Using Pearson correlation analysis [71], we found that two
features were highly correlated: the cumulative moving standard deviation and the cumulative
moving mean of page o"sets. Including both would have over-emphasized their importance in
this analysis, so we excluded the cumulative standard deviation of page o"sets. Cross-validation
results were 69.6%, 76.4%, 42.6%, and 89.1% for number of transactions, cumulative moving mean
of page o"sets, mean absolute page o"set di"erences, and current readahead value, respectively.
This shows that mean absolute page o"set di"erences is the most important feature, because ran-
domizing its order reduced the validation results the most (down to 42.6%)—followed by number
of transactions, cumulative moving mean of page o"sets, and !nally the currently used readahead
value.

After obtaining classi!cation predictions, we set the empirically determined optimal readahead
sizes according to the predicted workload type. For example, the optimal readahead value for
readrandom is 16 and for readseq is 640. Experiment details and the optimal readahead values for all
the workloads are included in our code base, released via GitHub. In Section 4.4, we evaluate the
readahead neural network not only on workloads we trained on but also on workloads that were
not included in the training data and workloads running on di"erent devices (NVMe vs. SATA
SSDs).

Figure 4 shows that the same type of workloads for SATA-SSD vs. NVMe-SSD are not placed
in the same clusters all the time. We use neural network input data that is generated only
from an NVMe-SSD to train the readahead neural network; nevertheless, we still get signi!cant

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:11

Fig. 5. A readahead decision tree is built to classify RocksDB workloads running on a NVMe-SSD backed
device. Colors denote workload classes: orange for readrandom workload, green for rw-random, blue for
readseq, and purple for readreverse.

performance improvement even for SATA-SSDs (see Section 4.4). This indicates that our readahead
neural network is indeed learning higher-level abstractions about the workloads, one that tradi-
tional heuristics would struggle with.

Finally, we also experimented with the readahead neural network using TPC-H [94] queries run-
ning on MySQL [69] to show how our readahead neural network behaves on completely di"erent
types of workloads and applications and how generalizable the models are.

Decision-tree models. We also built a decision-tree (DT) model for workload type classi!cation
based on the same features and training data. The readahead DT model contains 59 nodes with
a maximum depth of 9 (see Figure 5). We tested the prediction accuracy of this DT using the
same procedure with the readahead neural network (10-fold cross-validation), and observed that
it results in an average prediction accuracy of only 75.4%. In the readahead DT model, decisions are
made based on features. For example, the decision at the root node is whether the Z-score of the
mean absolute page o"set was less than or equal to −0.349 (represented as X [3] <= −0.349). Even
though the worst case of classifying a particular readahead workload takes nine if-then decisions,
we can observe that the readahead DT model can separate sequential from random workloads in
only two levels of decision making; however, this speed of recognition comes at a signi!cant cost of
accuracy. As mentioned in Section 2.5, KML supports DTs because DT trees are more explainable
than neural networks and run considerably faster. Although the DTs are more explainable, it is
still hard to interpret the readahead DT model. The reason is that the values at each node have
been normalized to avoid over!tting and numerical instability, and such normalization loses the
original values. It is possible that given a normalized input data, we can get the original value and
improve the explainability of the DT path. Nevertheless, even with an improved explainability,
the readahead neural network model proved more accurate. While it would be useful to have
both high predictive power and explainability, faced with a choice between the two, we believe
that prediction accuracy that leads to improved throughput is more valuable to end users than

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:12 I. U. Akgun et al.

explainability. We evaluated the readahead DT using the same procedure as the neural networks
(Section 4.4).

Readahead in per-!le basis. So far, we have shown how we approach the readahead problem
when a single I/O workload is accessing one device. Storage system developers recognize the
challenge of handling mixed storage workloads running on the same system—a common occur-
rence [8]. In that case, readahead values cannot be set at the device level, as that would be subopti-
mal in mixed workloads. Instead, readahead values should be set at a higher abstraction level, on a
per-!le basis. To show our neural network’s versatility, we use the same model to tune readahead
sizes not only on a per-disk basis but also on a per-!le basis. Whereas before we ran inference
every second and set one readahead value for an entire device, here we ran inference every sec-
ond on each open !le and set a readahead value directly in Linux’s struct file. We evaluated
the per-!le basis approach and found that it could predict and improve I/O throughput for mixed
workloads better than both the vanilla and per-disk basis approaches (see Section 4.4).

3.2 Use Case: NFS rsize
Problem de!nition. Networked storage systems such as NFS are popular and heavily used. NFS is

used for storing virtual machine disks [65], hosting NoSQL databases [89], and more. A miscon!g-
uration of NFS can hurt performance. We experimented with di"erent applications using NFS and
found out that one critical NFS con!guration parameter is the rsize—default network read-unit
size. Hence, we focus on predicting an optimal NFS rsize value based on workload characteristics.

Studying the problem. We tested NFS using the same methodology as for readahead. The only dif-
ference here is tuning rsize instead of readahead. We used NFSv4 for all of our tests. The NFSv4 im-
plementation we used supports only seven di"erent rsize values (4K–256K). However, in the NFS
use case, there are additional external factors not present in the readahead problem that can a"ect
I/O performance (e.g., NFS server con!guration, network speed, and number of clients connected
to the same server). We experimented with four di"erent RocksDB benchmarks under di"erent
NFS server con!gurations and network conditions. We con!gured our server with two di"erent
NFS mount point options—one backed by NVMe-SSD and one backed by SATA-SSD. We injected
arti!cial network delays to simulate slower networks. Our experiments revealed that random and
sequential workloads require di"erent rsize values to achieve optimal performance.

Data collection. We enabled NFS and page-cache–related kernel tracepoints to collect training
data (e.g., nfs4_read, nfs4_readpage_done, vmscan_lru_shrink_inactive, and add_to_page_cache).
Unlike the readahead neural network model, we collected data from tracepoints not only to model
page cache behavior, but also network conditions. Similarly studying these traces, we chose our
feature set and placed our hook functions. Our feature set includes eight features (described
below) which are calculated using the following !ve data points: (i) time di"erence from the
beginning of execution for each tracepoint transaction, (ii) NFS !le handles, (iii) !le o"sets in
NFS requests, (iv) page o"sets of the !les that were accessed, and (v) number of reclaimed pages
during LRU scans.

Data preprocessing and normalization. We applied the same data preprocessing and normaliza-
tion techniques that we used for the readahead neural network. The NFS neural network model
consists of eight features which are computed every second: (1) number of tracepoint transac-
tions, (2) average time di"erence between each nfs4_read and nfs_readpage_done matching pair,
(3) average time di"erence between each consecutive nfs4_read request, (4) average time di"er-
ence between each consecutive nfs4_readpage_done request, (5) mean absolute requested o"set
di"erence between each consecutive nfs4_read request, (6) mean absolute page o"set di"erence

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:13

between each consecutive add_to_page_cache, (7) average number of reclaimed pages, and (8) cur-
rent rsize.

Neural network model. We trained and tested our NFS neural network model using the same
methodology as the readahead problem; for brevity, we detail only the di"erences between the
neural network models. We approached the NFS problem as a workload characterization problem
and constructed our NFS neural network model with four linear layers (with hidden layer sizes
of 25, 10, and 5) with sigmoid activation functions in between. Similar to the readahead neural
network, we used cross entropy as the loss function and SGD as the optimizer. We evaluated the
NFS neural network model and found out that it results in a prediction accuracy of 98.6% (using
10-fold cross-validation).

4 EVALUATION
Our evaluation proceeds as follows: First, we explain our evaluation goals in Section 4.1. We then
describe the testbed design and benchmarks that we used to evaluate the readahead and NFS rsize
neural networks in Section 4.2. In Section 4.3, we provide performance details regarding KML’s
training and inference. Section 4.4 shows how the readahead ML models improve performance.
Finally, in Section 4.5, we present our evaluation of the rsize neural network model for NFS.

4.1 Evaluation Goals
Our primary evaluation goal is to show that using ML techniques inside the OS can be used to
tune parameters dynamically and improve storage systems’ performance.

We start by showing the practicality of using ML in kernel space. We evaluate KML’s sys-
tem overheads in terms of (i) data collection overhead, (ii) training cost, (iii) inference cost, and
(iv) memory usage. Then, we evaluate both readahead and NFS neural network models to show
how they improve the I/O performance and quickly adapt the system in the presence of changing
workloads and conditions. To show that our models can learn abstract workload patterns, we !rst
present the generalization power of our models by testing it on workloads not included in the train-
ing dataset. Next, we present benchmarks on a device type that was not used in the data collection
phase or training. We also built a DT model for the readahead problem to have comparable results
since DTs are more explainable, still popular, and closer in operation to traditional heuristics.

Furthermore, we evaluate KML’s versatility by applying the readahead neural network model on
a per-!le basis. This demonstrates KML’s ability to optimize individual I/Os in a mixed workload.
Lastly, we evaluate our readahead ML models’ behavior when they mispredict and how quickly
they recover.

4.2 Testbed
We ran the benchmarks on two identical Dell R-710 servers, each with two Intel Xeon quad-core
CPUs (2.4 GHz, 8 hyper-threads), 24 GB of RAM, and an Intel 10 GbE NIC. In some experiments,
we intentionally con!gured the system with only 1 GB of memory to force more memory pressure
on the I/O system; but we also show experiments with the full 24 GB of system RAM. We used
the CentOS 7.6 Linux distribution. We developed KML for Linux kernel version 4.19.51, the
long-term support stable kernel; we added our readahead ML models to this kernel and used
it in all experiments. Because HDDs are becoming less popular in servers, especially when I/O
performance is a concern, we focused all of our experiments on SATA and NVMe SSDs. We used
Intel SSDSC2BA200G3 200 GB as our SATA-SSD device and a Samsung MZ1LV960HCJH-000MU
960 GB as our NVMe-SSD device, both formatted with Ext4. These two devices were used
exclusively for RocksDB databases. To avoid interference with the installed CentOS, the two

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:14 I. U. Akgun et al.

servers have a dedicated Seagate ST9146852SS 148 GB SAS boot drive for CentOS, utilities, and
RocksDB benchmark software. We used 10 GbE switches to connect the machines (useful for NFS
experiments). We observed an average RTT time of 0.2 milliseconds.

Benchmarks. We chose RocksDB’s db_bench tool to generate diverse workloads for evaluating
the readahead and NFS rsize neural networks. RocksDB [34] is a popular key-value store and cov-
ers an important segment of realistic storage systems; db_bench is a versatile benchmarking tool
that includes a diverse set of realistic workloads. Workloads can be run individually or in series,
and the working set (database) size can be easily con!gured to generate more I/O pressure on a
system. On the 1 GB RAM systems, we con!gured a RocksDB database of twice the size (2 GB).
Choosing the dataset size to be twice the size of memory is a well known “rule of thumb” con!gu-
ration to create a realistic strorage cache behavoir [91]. The two main reasons why we choose this
con!guration are (1) to ensure that benchmarks can generate enough I/O operations that would
not be merely cached in memory and (2) to reduce the time of executing all benchmarks con-
siderably. Nevertheless, one may consider a system with only 1 GB RAM as not a realistic system
con!guration. Therefore, we also executed all the benchmarks in this article with a 56 GB RocksDB
database running on the same system con!gured with 24 GB RAM. The results are showing similar
improvements and there are no signi!cant performance-trend di"erences (see Section 4.4). Nev-
erthless, because we ran experiments with more RAM and for a longer period of time, we noticed
some interesting !ndings which are explained in Section 4.4.

To demonstrate that our ML models can learn from and optimize for di"erent types of real-world
workloads, we chose the following six popular yet di"erent db_bench workloads: (1) readrandom,
(2) readseq, (3) readrandomwriterandom (alternating random reads and writes), (4) readreverse,
(5) updaterandom (read-modify-write in random o"sets), and (6) mixgraph (a complex mix of se-
quential and random accesses, based on Facebook’s realistic data that follow certain Pareto and
power-law distributions [12]).

We trained our readahead neural network on traces that contain only four of these workloads:
readrandom, readseq, readreverse, readrandomwriterandom—all running only on the NVMe-SSD.
These four tend to be the simpler workloads, because we wanted to see whether KML can train
on simpler workloads yet accurately predict on more complex workloads not trained on. This also
ensures a balanced representation of randomness and sequentiality in the training dataset.

After the training phase completed, we tested our models on all six workloads as well as di"erent
devices. This was done to show that our models not only perform accurate predictions on the
training set samples, but they also generalize to two new and complex workloads (updaterandom
and mixgraph as well as a di"erent device (SATA-SSD))—which were excluded from the training
data. We evaluated mixed workloads by running two concurrent db_bench instances, each on a
separate RocksDB database and using a di"erent workload pro!le, both stored on the same device.
We kept the hardware con!guration the same as before (1 GB RAM) to increase system and page-
cache pressure.

We also experimented with our readahead network model using TPC-H [94] queries running
on MySQL [69], to evaluate how generalizable and e"ective the readahead neural network is to
an entirely di"erent workload. In this article, we do not claim that our readahead neural network
model will work universally to optimize readahead values for all possible workloads. Rather, these
use cases are meant to demonstrate the KML framework’s versatility. With more workloads and
datasets, one can build a wide range of ML models to optimize many storage problems.

4.3 KML’s Overheads
An ML model’s overhead depends on its architecture. Generally, deeper or higher-dimensional
neural networks consume more memory and CPU than, say, DT models. It is vital that an ML
ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:15

Fig. 6. Performance (a), prediction accuracy (b), and CPU overheads (c) in seven di!erent subsampling win-
dow sizes for the per-disk readahead neural network. Upward green arrows denote that higher is be"er.

component, especially one that may run inside the kernel, consume as little CPU and memory as
possible. Next, we evaluate the readahead neural network overheads.

Data gathering overheads. The only inline operations that readahead neural network inserts di-
rectly in the data path are data collection probes. Hence, it is vital for these probes to be optimized.
Figure 6(c) shows how the data collection CPU overheads (percentage) change with subsampling
window sizes. When there is no subsampling in the system (X = 1), the CPU overheads of data
collection probes is as high as 0.18%. Although this is a fairly low overhead considering the mul-
tiplicative I/O bene!ts we report, this overhead can be reduced further by increasing the subsam-
pling window. However, increasing the subsampling windows size can hurt prediction accuracy
and performance improvements, as less data is available to make rapid predictions. See Figure 6(a)
and (b). Figure 6(b) shows that workloads with a lot of randomness in them were the least a"ected,
because randomness is still predicted as random even with fewer samples; yet we can reduce the
already small CPU overheads even more.

The !gure further shows that only sequential workloads are a"ected by subsampling window
changes: generally, as the sampling window widens, prediction accuracy and normalized perfor-
mance worsen. However, we noticed an unexpected behavior for the readseq workload. Increasing
the subsampling window size from 1 to 5 or 10 actually improved both prediction accuracy and per-
formance; this is because readseq keeps the I/O subsystem busy at near maximum bandwidth, and
increasing the subsampling window size reduced short-term noise that resulted in more frequent
mispredictions.

We can also observe that the data collection overheads depend on the workload type. For exam-
ple, readseq workload’s average data sampling frequency per-second is around 30K but its data
collection overhead is still lower than mixgraph workload which has 20K average data sampling

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:16 I. U. Akgun et al.

Fig. 7. Distribution of total data collection overhead (milliseconds) in every second when readseq and
mixgraph workloads are running.

frequency per-second. The reason that data collection overheads change based on the workload
type, is due to the sudden I/O bursts resulting in some cache misses. In Figure 7, we show the his-
tograms of the data collection overheads for the readseq and mixgraph workloads. We can observe
that the mixgraph histogram shows that data collection overheads for all data points are higher than
readseq. In addition, mixgraph’s data collection histogram displays outliers of add_to_page_cache
data collection point: these result due to cache misses caused by sudden I/O bursts.

Inference/training overheads. The readahead neural network performs inference (prediction) and
changes the block-layer readahead value in 21 µs on average (std. dev. < 10%). This action executes
in a separate, asynchronous kernel thread, once in every second. Hence, it has negligible impact
on the overall OS performance. When the readahead neural network runs in per-!le mode, KML
runs inferences an average 135 times a second (i.e., one per open !le): inferencing for all open
!les consumes 1.7 ms on average. We measured that the readahead DT inference takes only 8 µs
(using the same feature vector). The readahead neural network and DT have the same data prepro-
cessing and normalization implementation—the only di"erence between them is in the inference
part. Overall, these overheads are fairly small and acceptable, considering the multiplicative I/O
performance bene!ts they enable.

As discussed in Section 3.1, our readahead neural network prototype o%oads training to the user
level. We measured the time to perform one training iteration in user level at 51 µs on average;
this training iteration includes the forward pass, back-propagation, and weight update stages.

Memory overheads. The readahead neural network allocates 3,916 bytes of dynamic memory
during the model’s initialization phase. While inferencing, KML temporarily allocates 676 bytes
before returning the inference results. This overall memory footprint is negligible in today’s
multi-gigabyte systems. The readahead DT occupies only 2,432 bytes of dynamic memory during
initialization. The DT model does not allocate dynamic memory during inference. Lastly, the
kernel module readhead.ko has a binary memory footprint of 432 KB and the kernel module
nfs.ko is 636 KB, while the KML framework itself (k-Mlib.ko) has a memory footprint of 5.5 MB.

Practicality and scalability. Our vision is that KML could enable a future where traditional
heuristics are gradually replaced with ML-based approaches to improve storage and network I/O

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:17

Fig. 8. Running four back-to-back RocksDB workloads in order from le# to right: readsequential,
readrandom, readreverse, then mixgraph. Here, we started with the default readahead value; therea#er,
the last value set in one workload was the one used in the next run. For each of the four graphs, we show their
Y axes (throughput, di!erent scales). The readahead value is shown as the Y2 axis for the rightmost graph
(d) and is common for all four. Each workload ran 15–50 times in a row, to ensure we ran it long enough to
observe pa"erns of mis/prediction and reach steady state. Periodic spikes that we observed in readrandom
and mixgraph denote the experiments’ starting points because of multiple iterations of benchmarks. Again,
we see KML adapting, picking optimal readahead values, occasionally mis-predicting but quickly recovering,
hence overall throughput was be"er.

performance. In Section 4.4, we demonstrate, for example, that our readahead neural network
model improves I/O performance by as much as 2.3×, but consumes less than 0.2% additional CPU
cycles: we believe this is a fairly acceptable tradeo" for most users. Nevertheless, we tested this
model with 100 concurrent inferences and found that both overheads and I/O improvements have
scaled linearly; hence, KML’s bene!ts still outweigh its overheads.

4.4 Readahead Evaluation
Readahead background. There are two places in the Linux kernel where readahead is de!ned:

the block layer and the !le system level. When a !le is opened, the VFS initializes an open struct
file and copies the readahead value for that !le from the corresponding block layer. Upon a page
fault for that !le, the page-cache layer uses the value stored in the !le to initiate reading-ahead the
desired number of sectors of that !le. However, the readahead value in the !le structure is initial-
ized only once when the !le is opened. So when KML changes the block layer readahead value, the
Linux kernel does not copy the new value to any !le already opened. This means that open !les
may continue to use a sub-optimal readahead value, even if better values are available (e.g., due
to workload changes). That is why we implemented a mechanism that changes the readahead size
for open !les when KML changes the disk-level readahead value. This propagates newer readahead
values to each open !le, improving our adaptability. Conversely, if KML mispredicts the workload
type and changes the readahead size to a sub-optimal value, short-term performance degradation
can happen, which might hurt overall performance.

Back-to-back workloads on NVMe. To show the readahead model’s ability to adapt to changing
workloads, we experimented with running di"erent workloads back to back. We observed how the
readahead model reacted to the workload changes and tuned readahead values. Figure 8 shows four
workloads running back to back with each sub!gure comparing a vanilla run (colored orange) to
our KML-enabled readahead run (colored blue). The readahead value was left at the default value
(i.e., 256) at the start of both vanilla and KML-enabled runs, but when the next workload started,
it used the last readahead value from the previous workload’s run (e.g., the readahead value at
the end of the leftmost sub!gure is the same at the start of the sub!gure immediately to its right).
This experiment evaluates KML’s ability to optimize the readahead values when the I/O workload
may change every few minutes. The X axes indicate the runtime in minutes. The Y axes indicate
throughput in thousands of ops/sec (higher is better), and have di"erent scales for each experiment.
The Y2 axes show the readahead values used or predicted by KML over time in terms of number

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:18 I. U. Akgun et al.

Fig. 9. Readahead neural network performance improvements (×) for RocksDB benchmarks on SATA-SSD
and NVMe-SSD across all six workloads, normalized to vanilla (1.0×).

of sectors (denoted with a green line and using the same scale). Each workload ran 15–50 times in
a row, so it ran long enough to observe mis/predictions patterns. As seen in Figure 8, KML adapts
quickly to changing workloads by tuning the readahead value in about 1 s.

Although we observe some mis/prediction patterns, seen as sudden spikes, overall throughput
still improved across all four runs, averaging 63.25% improvement: 140% improvement for readran-
dom, 2% for readsequential, 109% for mixgraph, and 12% for readreverse. We note that even a small
improvement in throughput can yield signi!cant cumulative energy and economic cost savings
for long-running servers [56].

Read-sequential workloads. Out of the six workloads we ran, Figure 9 shows the one where KML
performed the worst: read-sequential. Reading data sequentially directly from the raw SATA-SSD
is nearly 1,000× faster than the mixgraph workload, and nearly 400× faster with the NVMe-SSD.
Here, there is little opportunity for KML to improve throughput for a sequential workload that
reads at speeds near the maximum throughput of the physical device.

Read-reverse workloads. As we can see from the $uctuating green line (readahead values in
Figure 8) KML mispredicts readreverse as readseq and changes the readahead value to something
sub-optimal. These two workloads both access !les sequentially—one reading forward and one
backward. Interestingly, readseq and readreverse are quite close from a feature representation
perspective, which explains the mispredictions. But since both of these workloads access !les se-
quentially, their optimal readahead values are also quite close to each other. Thus, even when KML
mispredicts readreverse as readseq or vice versa, this had a small overall impact on performance.

Summary of readahead neural network results. We summarize all readahead neural network re-
sults in Figure 9. We observe that the average throughput improvement for NVMe-SSD is ranging
from 0% to 65%. We saw greater improvements in the SATA-SSD case, ranging from 2% to 130%
(2.3×). Lastly, we ran the complex mixgraph workload on NVMe-SSD with the system memory set
to the maximum (i.e., 24 GB) and the database size set to be relatively large, 65 GB (compared to a
2 GB baseline database size). This experiment ran for nearly an hour (48.5 minutes) and resulted
in an average throughput improvement of 38%.

Mixed workloads. Mixed workloads are considered a challenging optimization problem [8]. In
Figure 10, we present a timeline performance comparison using the readahead neural network
model running on a per-disk vs. per-!le basis. The per-!le mode performs better overall because
readahead values are set for each open !le independently. Conversely, in the per-disk mode, a
single readahead value is set at the disk level and hence uniformly on all open !les: a readahead
value good for one workload is likely to be sub-optimal for other open !les. One reason why
the per-disk mode cannot predict workload types correctly is that when di"erent workloads are

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:19

Fig. 10. Mixed workload results on a timeline, comparing the readahead neural network model running on
per-file basis (“a”, le#) vs. per-disk basis (“b”, right).

Fig. 11. Mixed workload results. We ran sequential and random workload combinations on the same NVMe-
SSD device. Each unique combination is tested with the readahead neural network running in per-disk basis
(kml disk) and per-file basis (kml file) and compared against vanilla results. The model running in per-file
basis outperformed both vanilla and per-disk modes.

mixed—even sequential ones or ones with regular patterns—the mix looks more like a purely ran-
dom workload at the disk level.

Figure 11 shows overall mixed workloads performance comparisons. Per-!le mode performed
overall better in every combination of mixed workloads. If we compare only the sequential parts
of the mixed workload combination (orange bars in Figure 11), in per-disk mode, we observe
signi!cant performance degradation. However, in per-!le mode, we can observe performance
improvements for both the sequential and random (blue bars in Figure 11) parts of the mixed
workload combination. The reason why per-disk mode performs better for the random parts
of the mixed workload combinations is for the same reason: mixing workloads looks more
random-like at the disk level. The per-disk readahead ML model predicts these as readrandom or
readrandomwriterandom, which coincidentally !ts this part of the workload, but hurts non-random
workloads. However, the per-!le readahead ML model improves both the sequential and random
part of the mixed workloads. Thanks to KML’s versatile architecture, we adapted the readahead
ML model to two di"erent working modes and improved page cache performance for mixed
workloads; these are considered challenging tests for storage systems.

DT evaluation. In addition to the neural network model, we implemented a DT model for the
readahead problem to compare the two ML approaches on the same problem. We tested the read-
ahead DT the same way. Figure 12 shows that there is a performance improvement for workloads
with a random component. For the readahead DT, we measure average throughput improvement
for random workloads on NVMe-SSD as ranging from 48% to 59%; and in the SATA-SSD case, rang-
ing from 99% to 119% (2.19×). While good, the neural network model yielded greater improvements,
as discussed above.

The DT model, however, degraded performance for sequential workloads. It degraded perfor-
mance for sequential workloads on NVMe-SSD by 15–40%; and in the SATA-SSD case, by 36–73%.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:20 I. U. Akgun et al.

Fig. 12. Readahead decision tree performance improvements (×) for RocksDB benchmarks on SATA-SSD and
NVMe-SSD devices across all six workloads, normalized to vanilla (1.0×).

Fig. 13. Performance timeline graph for tuning with KML decision tree while running readseq workload on
NVMe-SSD.

Fig. 14. Readahead neural network performance improvements (×) for TPC-H queries on SATA-SSD and
NVMe-SSD devices, normalized to vanilla (1.0×).

We investigated this performance degradation. Figure 13 shows the readseq workload running on
a RocksDB instance stored on an NVMe-SSD. Here, the readahead DT predicts the workload cor-
rectly in the !rst 3 minutes, despite some $uctuations. Afterwards, the DT model’s predictions
$uctuate wildly, and at around minute 10 it consistently makes wrong predictions. Overall, this
was somewhat expected for our I/O optimization problem: neural network models, while more
complex to train and use, are more adaptable than DTs [38]. Speci!cally, when the DT model mis-
predicts, and system conditions change (i.e., I/O activity), the DT model continues to mispredict,
and it cannot recover as quickly as the more adaptable neural network model.

TPC-H benchmarks. As we mentioned in Section 4.2, we evaluated our readahead neural network
model—trained on RocksDB workloads—on TPC-H queries running on MySQL database (both
NVMe-SSD and SATA-SSD cases). This intends to show the model’s accuracy limitations when
presented with vastly di"erent workload and application combinations. Figure 14 shows perfor-
mance improvements as much as 39% for most query types. For query 11, however, the readahead

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:21

Fig. 15. Performance improvement comparisons between LEAP [6] and KML for RocksDB benchmarks on
NVMe-SSD (“a”, le#) and SATA-SSD (“b”, right).

neural network failed to characterize the workload correctly and resulted in a 53% performance
reduction. Nevertheless, overall TPC-H performance still improved by 6%. We expect that neu-
ral network models trained on more traditional SQL database workloads would likely yield even
better predictions across most similar databases.

Comparison with LEAP. Data prefetching and caching is a well-studied problem with many
heuristics developed to optimize I/O transactions. We compared our readahead neural network
with a recent data-prefetching heuristic, LEAP [6]. We evaluated both LEAP and our readahead
neural-network model with the same setup that we used to evaluate KML with RocksDB work-
loads running on NVMe-SSD and SATA-SSD. We have integrated LEAP to work with a local page
cache. LEAP integration took only 243 LoC and was mostly a straightforward data-aggregation
code. Our readahead neural network achieves 16% better average throughput improvements than
LEAP, when workloads are executed on NVMe-SSD. When running workloads on SATA-SSD, the
readahead neural network model’s average performance gain is 22% better than LEAP.

Figure 15 shows these results. We highlight two main takeaways. First, LEAP causes a signif-
icant performance reduction for readseq workloads (−24% for NVMe-SSD and −36% for SATA-
SSD). Conversely, our readahead neural network either improves the I/O performance across all
the RocksDB workloads or keeps the performance close to the same as running without the opti-
mization. It is important that any optimization technique that helps one workload would not hurt
another.

Second, there is only one workload where LEAP’s performance was better than our readahead
neural network’s performance: readreverse. The main reason why LEAP outperformed us in the
readreverse workload is that LEAP is directly in charge of choosing pages that will be stored in
memory. Conversely, our readahead neural network tunes only readahead value in the block layer.
Thus, LEAP can fetch pages in descending order while our readahead neural network relies on the
readahead subsystem—which generally cannot handle reading “ahead” in reverse order.

Large memory experiments. To test our readahead neural network model’s abilities on signi!-
cantly di"erent hardware setup, we experimented with a 56 GB RocksDB database running on
24 GB RAM con!guration. This represents a more realistic storage server scenario. Overall, we
observed that performance improvement trends have not changed. However, the larger memory
experiments took a signi!cantly longer time which exposed numerical instabilities in our normal-
ization phase. We originally used floats to compute normalization statistics. Over the course of
longer-running experiments, we lost precision in numerical statistics. We !xed this problem sim-
ply by switching to double $oats. We measured that switching to doubles did not add any extra
computational overheads thanks to modern CPUs’ advanced $oating-point units.

In addition, we also adjusted our weighted-moving average. This adjustment was needed be-
cause the large RAM size a"ected the number of transactions per second which is one of our key

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:22 I. U. Akgun et al.

features. Since this setup used a larger RAM, we can keep fetching and updating KV pairs with-
out writing them back for a longer period of time in the beginning of benchmarking. As a result,
we can perform more transactions per second. This type of signi!cant changes in hardware or
software setup can a"ect the features and their extraction process (e.g., moving averages). Such
signi!cant changes in features can cause mispredictions which leads to performance degradation.

We !xed this by adjusting the weighted moving average. We initially considered the runtime
input data to contribute to the moving average equally as training data (e.g., a uniform moving
average). Then, we tuned the moving average weight to 10%, meaning that we only take one-tenth
each new sample into the moving average. This ensures that sudden spikes in activity do not
disturb the moving average too much—keeping its change smoother. We reached this !nal value
by testing di"erent weights using binary search. In the future, we plan to integrate a feedback
control mechanism to adapt the moving average weight automatically in case of drastic changes
in hardware or software conditions. After the change, we tested the readahead neural network
model with di"erent storage devices, memory sizes, workloads, mixed workloads, and applications;
it consistently performed signi!cantly better than baseline and LEAP.

By running experiments with larger memory and database sizes, we also experimented with
how KML behaves over long-term executions. Since these experiments took many hours and even
days, we could evaluate the readahead neural network behavior under di"erent phases of the page
cache. In Figure 16, we show a mixgraph workload running on the large memory and database
setup. We see three phases separated by double vertical dashed lines.

First, the startup phase took around 9 minutes to !ll up the entire page cache while the readahead
neural network was in inference mode and optimizing the readahead size for the storage device.
We observe that the startup phase for running the mixgraph workload without a readahead neural
network took around 1 minute due to poor use of the page cache with a sub-optimal readahead
size and resulted in a stable-looking, but sub-optimal throughput.

In the second phase, stabilization starts after !lling the entire page cache and beginning to
trigger some page reclamation processes. In this stabilization phase, we observed staircase-like
throughput reductions, which are correlated with spikes in write-back dirty page requests (see in
Figure 16).

Third, a re-stabilization phase starts with sudden spike in the write-back activity of reclaimed
pages. This frees a large number of pages: we can observe a sudden spike in page faults which are
related to mmaped !les. This page-fault spike also indicates that a lot of new pages loaded into mem-
ory. Overall, this improves performance with newly loaded data in the page cache being accessed.

Finally, We can notice that all these phase changes create variation in read latency for the
mixgraph workload (see Figure 16(d)). Even though all these variations and sudden spikes occur in
the I/O subsystem, our readahead neural network successfully predicted the workload and tuned
the readahead size.

4.5 NFS Evaluation
Figure 17 shows the NFS rsize neural network performance improvements using the same eval-
uation techniques of readahead. Throughout these experiments, we ran multiple iterations of the
same workloads. Since rsize is a mount point parameter for NFS, our NFS neural network can
tune rsize values only in the beginning of the iteration. (We plan to !x the Linux kernel to permit
rsize to change dynamically.) Hence, in sequential workloads, if the NFS neural network makes
even one misprediction, it will a"ect the entire iteration, leading to performance degradation. Nev-
ertheless, in random workload cases, we still measured around 15× performance improvement; in
separate experiments (not shown for brevity), performance improvements for random workloads
reached up to 20×. This demonstrates the signi!cant potential of KML.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:23

Fig. 16. Throughput analysis for running mixgraph on 24 GB memory with a 56 GB RocksDB database. In
(a) we show the throughput timeline and improvements for mixgraph running with KML. We can see three
phases of mixgraph’s execution, demarcated by double vertical dashed lines: (1) startup, (2) stabilize and
gradually decline, and (3) restabilize. We explain these phases and why throughput changes by showing
page-reclamation numbers (b), triggering writeback operations for dirty pages (c), and the number of page
faults taking place due to file operations from the OS’s perspective. In (d), we show the number of read
operations and their standard deviation operations from RocksDB’s perspective.

5 RELATED WORK
ML in systems and storage. In follow-up work to Mittos [39], a custom neural network was

built that makes inferences inside the OS’s I/O scheduler queue. The neural network decides syn-
chronously whether to submit requests to the device using binary classi!cation [40]. There are
notable di"erences between that system and our KML. That system was trained o%ine using

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

9:24 I. U. Akgun et al.

Fig. 17. Performance improvements (×) for RocksDB benchmarks on SATA-SSD and NVMe-SSD devices
across all six workloads running on NFS, normalized to vanilla (1.0×).

TensorFlow and exclusively trained in user space. Additionally, each of their two layers were cus-
tom built. Conversely, KML provides a more $exible architecture. KML training, retraining, nor-
malization, repeated inference—all are possible and accomplished with ease in any combination
of online, o%ine, synchronous, or asynchronous settings. Lastly, KML easily supports an arbitrary
number of generalizable neural network layers; our experiments demonstrate more expressive
classi!cation abilities on a more diverse set of devices.

Laga et al. [52] improved readahead performance in the Linux Kernel with Markov chain models,
netting a 50% I/O performance improvement in TPC-H [94] queries on SATA-SSDs. In contrast, our
experiments ran on a wider selection of storage media (NVMe-SSD and SATA-SSD) and workloads.
In TPC-H, we show improvements up to 39% despite TPC-H being a completely new workload for
our readahead model. Moreover, our results illustrate that our readahead model can improve I/O
throughput by as much as 2.4×—all while keeping memory consumption under 4 KB, in compari-
son to Laga et al.’s much larger 94 MB Markov chain model.

Parameter tuning for storage and operating systems has been a challenge and researchers ap-
proached this problem using control theory [86] and data distribution analysis for storage clus-
ters [2]. Some research has attempted to apply ML techniques to OS task scheduling [19, 68], with
small reported performance improvements (0.1–6%). Nevertheless, it is becoming increasingly pop-
ular to apply ML techniques to storage and OS problems including tuning SSD con!gurations [55],
memory allocation [64], TCP congestion [32], building smart NICs [85], predicting index structures
in key-value stores [24, 50], o%ine black-box storage parameter optimization [16], recon!gurable
kernel datapaths [73], local and distributed caching [90, 97], database query optimization [49], and
cloud resource management [23, 26, 27, 88].

ML libraries for resource-constraint systems. A myriad of ML libraries exist—some general pur-
pose and others more specialized. Popular general-purpose ML libraries include Tensor$ow [1],
PyTorch [70], and CNTK [22]. Conversely, libraries like ELL [33], Tensor$ow Lite [92], SOD [87],
Dlib [30], and Tiny Training Engine [61] specialize to run on resource-constrained or on-device en-
vironments, KML di"erentiates itself by targeting OS-level applications and is designed for OS and
storage systems speci!cally. Inside the OS, resources are highly constrained, prediction accuracy
is vital, and even small data-path overheads are unacceptable.

Adapting readahead and prefetching. Readahead and prefetching methods are both well-studied
problems [29, 51, 83, 84] and see use in distributed systems [18, 20, 31, 54, 57, 58, 67, 93]. Many have
attempted to build statistical models to optimize and tune systems [35, 83, 84]. However, the main
limitation of statistical models is their inability to adapt to novel new workloads and devices. We
have shown that our model can adapt to never-before-seen workloads and devices. Another way
to improve a readahead system is to predict individual I/O requests and !le accesses by observing
workload patterns [7, 29, 42, 51, 95, 98, 101, 103]. Predicting !le accesses using handcrafted algo-
rithms is a reasonable !rst approach. However, such manual labor simply cannot keep up with

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

Improving Storage Systems Using Machine Learning 9:25

the diversity and complexity of ever-changing modern workloads. Conversely, as long as we have
training data, ML models can adapt, retrained as needed, and optimize much faster. Simulations
are also viable solutions for readahead and prefetching problems [17, 36, 75, 102, 106]. However,
simulations are computationally expensive and are limited to the datasets that the models are
trained and tested with. Additionally, the models produced in simulations are not designed for
resource-constrained environments, making it non-trivial to migrate such models to the kernel. It
is possible to use a user-space library to intercept !le accesses [100] or to require application-level
changes [105]. In contrast, KML requires no application changes and is capable of intercepting
mmap-based !le accesses.

Finally, while techniques exist to improve NFS performance, we are unaware of automated ones
that use ML [45].

6 CONCLUSION
Operating systems and storage systems have to support many ever-changing workloads and de-
vices. To provide the best performance, we have to con!gure storage system knobs based on work-
loads’ needs and device characteristics. Unfortunately, current heuristics cannot adapt to work-
load changes quickly enough and require constant development e"orts to support new devices.
We propose KML to solve these problems—an ML framework inside the OS that adapts quickly to
optimize storage performance. KML enables !ner granularity optimizations for individual !les in
even mixed workloads—a challenging problem. Our preliminary results show that, for a readahead
problem, we can boost I/O throughput by up to 2.3× without imposing signi!cant CPU/memory
overheads. For the NFS rsize problem, the improvement was up to 15×. These I/O throughput
improvements far outweigh the small memory and CPU consumption of KML.

Future work. We plan on using KML to tune knobs for other OS subsystems, e.g., packet and I/O
schedulers, and networking. We are adding ML techniques to KML, such as reinforcement learn-
ing [46], which can be a better !t for solving certain OS problems. To support more advanced ML
approaches (e.g., Recurrent Neural Networks (RNNs) [99]) and Long Short-Term Memory
(LSTM) [41]), we are extending KML to support arbitrary computation DAGs. We also plan to
integrate user-kernel co-operated design into KML. Finally, loading an unveri!ed ML model into
a running kernel opens up new attack surfaces. We are exploring known techniques to digitally
sign and certify loadable models [48, 62].

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je"rey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geo"rey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 2016). 265–283.

[2] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James Hendricks, Andrew J.
Klosterman, Michael P. Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,
John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. 2005. Ursa minor: Versatile cluster-based storage.
In Proceedings of the FAST ’05 Conference on File and Storage Technologies, 2005. USENIX.

[3] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geo"rey E. Hinton. 2020. Neural additive
models: Interpretable machine learning with neural nets. arXiv:2004.13912. arxiv.org.

[4] Ibrahim ‘Umit’ Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez Zadok. 2021. A machine learning
framework to improve storage system performance. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage
(HotStorage’21). ACM, Virtual. https://doi.org/10.1145/3465332.3470875

[5] Ibrahim Umit Akgun, Geo" Kuenning, and Erez Zadok. 2020. Re-animator: Versatile high-!delity storage-system
tracing and replaying. In Proceedings of the 13th ACM International Systems and Storage Conference (SYSTOR’20).
ACM .

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://doi.org/10.1145/3465332.3470875

9:26 I. U. Akgun et al.

[6] Hasan Al Maruf and Mosharaf Chowdhury. 2020. E"ectively prefetching remote memory with leap. In 2020 USENIX
Annual Technical Conference (USENIX ATC’20). 843–857.

[7] Ahmed Amer, Darrell D. E. Long, J.-F. Pâris, and Randal C. Burns. 2002. File access prediction with adjustable accuracy.
In Conference Proceedings of the IEEE International Performance, Computing, and Communications Conference (Cat. No.
02CH37326). IEEE, 131–140.

[8] George Amvrosiadis, Ali R. Butt, Vasily Tarasov, Erez Zadok, Ming Zhao, Irfan Ahmad, Remzi H. Arpaci-Dusseau,
Feng Chen, Yiran Chen, Yong Chen, Yue Cheng, Vijay Chidambaram, Dilma Da Silva, Angela Demke-Brown, Peter
Desnoyers, Jason Flinn, Xubin He, Song Jiang, Geo" Kuenning, Min Li, Carlos Maltzahn, Ethan L. Miller, Kathryn
Mohror, Raju Rangaswami, Narasimha Reddy, David Rosenthal, Ali Saman Tosun, Nisha Talagala, Peter Varman,
Sudharshan Vazhkudai, Avani Waldani, Xiaodong Zhang, Yiying Zhang, and Mai Zheng. 2019. Data Storage Re-
search Vision 2025: Report on NSF Visioning Workshop Held May 30–June 1, 2018. Technical Report. National Science
Foundation. https://dl.acm.org/citation.cfm?id=3316807.

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’12). ACM, New York, NY, 53–64. https://doi.org/10.
1145/2254756.2254766

[10] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of deep architectures. In Neural Net-
works: Tricks of the Trade. Springer, 437–478.

[11] Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5–32.
[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characterizing, modeling, and benchmarking

RocksDB key-value workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST’20).
209–223.

[13] Zhen Cao, Geo" Kuenning, and Erez Zadok. 2020. Carver: Finding important parameters for storage system tuning.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST’20). USENIX Association.

[14] Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok. 2017. On the performance variation in mod-
ern storage stacks. In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). USENIX
Association, 329–343.

[15] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. Towards better understanding of black-box auto-
tuning: A comparative analysis for storage systems. In Proceedings of the Annual USENIX Technical Conference.
USENIX Association. Dataset at http://download.!lesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz.

[16] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. Towards better understanding of black-box auto-
tuning: A comparative analysis for storage systems. In USENIX Annual Technical Conference (ATC’18). 893–907.

[17] Chandranil Chakraborttii and Heiner Litz. 2020. Learning I/O access patterns to improve prefetching in SSDs.
ICML-PKDD (2020).

[18] Hui Chen, Enqiang Zhou, Jie Liu, and Zhicheng Zhang. 2019. An RNN based mechanism for !le prefetching. In
2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES’19). IEEE, 13–16.

[19] Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2020. Machine learning for load
balancing in the Linux kernel. In Proceedings of the 11th ACM SIGOPS Asia-Paci!c Workshop on Systems (APSys’20).
Association for Computing Machinery. https://doi.org/10.1145/3409963.3410492

[20] Giovanni Cherubini, Yusik Kim, Mark Lantz, and Vinodh Venkatesan. 2017. Data prefetching for large tiered storage
systems. In 2017 IEEE International Conference on Data Mining (ICDM’17). 823–828. https://doi.org/10.1109/ICDM.
2017.99

[21] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash Gopalakrishnan, Zhuo Wang, and
Pierce Chuang. 2019. Accurate and e#cient 2-bit quantized neural networks. In Proceedings of the 2nd SysML
Conference.

[22] CNTK 2020. CNTK. (Sept. 2020). https://github.com/microsoft/CNTK.
[23] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. 2017. Re-

source central: Understanding and predicting workloads for improved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating Systems Principles. 153–167.

[24] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. 2020. From WiscKey to Bourbon: A learned index for log-structured merge trees. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’20). USENIX Association. https://www.usenix.
org/conference/osdi20/presentation/dai.

[25] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R. Aberger, Kunle Olukotun, and
Christopher Ré. 2018. High-accuracy low-precision training. arXiv:1803.03383. arxiv.org.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://dl.acm.org/citation.cfm?id=3316807
https://doi.org/10.1145/2254756.2254766
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
https://doi.org/10.1145/3409963.3410492
https://doi.org/10.1109/ICDM.2017.99
https://github.com/microsoft/CNTK
https://www.usenix.org/conference/osdi20/presentation/dai

Improving Storage Systems Using Machine Learning 9:27

[26] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters.
ACM SIGPLAN Notices 48, 4 (2013), 77–88.

[27] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-e#cient and QoS-aware cluster management.
ACM SIGPLAN Notices 49, 4 (2014), 127–144.

[28] Mathieu Desnoyers. 2016. Using the Linux Kernel Tracepoints. (2016). https://www.kernel.org/doc/Documentation/
trace/tracepoints.txt.

[29] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang. 2007. DiskSeen: Exploiting disk layout and
access history to enhance I/O prefetch. In USENIX Annual Technical Conference. 261–274.

[30] Dlib 2020. dlib C++ Library. (Sept. 2020). http://dlib.net/.
[31] Bo Dong, Xiao Zhong, Qinghua Zheng, Lirong Jian, Jian Liu, Jie Qiu, and Ying Li. 2010. Correlation based !le prefetch-

ing approach for hadoop. In 2010 IEEE 2nd International Conference on Cloud Computing Technology and Science. IEEE,
41–48.

[32] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. 2018. PCC
Vivace: Online-learning congestion control. In 15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’18). 343–356.

[33] ELL 2020. Embedded Learning Library (ELL). (Jan. 2020). https://microsoft.github.io/ELL/.
[34] Facebook. 2019. RocksDB. (Sept. 2019). https://rocksdb.org/.
[35] Cory Fox, Dragan Lojpur, and An-I Andy Wang. 2008. Quantifying temporal and spatial localities in storage work-

loads and transformations by data path components. In 2008 IEEE International Symposium on Modeling, Analysis
and Simulation of Computers and Telecommunication Systems. IEEE, 1–10.

[36] Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan Shih. 2020. DeepPrefetcher: A deep learn-
ing framework for data prefetching in $ash storage devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39, 11 (2020), 3311–3322.

[37] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep learning with limited
numerical precision. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 1737–1746.

[38] Lawrence O. Hall, Xiaomei Liu, Kevin W. Bowyer, and Robert Ban!eld. 2003. Why are neural networks sometimes
much more accurate than decision trees: An analysis on a bio-informatics problem. In SMC’03 Conference Proceedings.
2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance
(Cat. No. 03CH37483), Vol. 3. IEEE, 2851–2856.

[39] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo, Andrew A.
Chien, and Haryadi S. Gunawi. 2017. MittOS: Supporting millisecond tail tolerance with fast rejecting SLO-aware
OS interface. In Proceedings of the 26th Symposium on Operating Systems Principles. 168–183.

[40] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg, Henry Ho"mann, and Haryadi S. Gunawi. 2020. Lin-
nOS: Predictability on unpredictable $ash storage. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20). USENIX Association. https://www.usenix.org/conference/osdi20/presentation/hao.

[41] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–
1780.

[42] Haiyan Hu, Yi Liu, and Depei Qian. 2010. I/o feature-based !le prefetching for multi-applications. In 2010 9th Inter-
national Conference on Grid and Cloud Computing. IEEE, 213–217.

[43] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural net-
works: Training neural networks with low precision weights and activations. The Journal of Machine Learning Re-
search 18, 1 (2017), 6869–6898.

[44] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava. 2020. How can I explain
this to you? An empirical study of deep neural network explanation methods. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (NIPS’20), Curran Associates Inc., Red Hook, NY, 12.

[45] Chet Juszczak. 1994. Improving the write performance of an NFS server. In Proceedings of the USENIX Winter
1994 Technical Conference (WTEC’94). USENIX Association, San Francisco, CA, 1. http://dl.acm.org/citation.cfm?id=
1267074.1267094.

[46] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Reinforcement learning: A survey. Journal
of Arti!cial Intelligence Research (1996), 237–285.

[47] Jack Kiefer and Jacob Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. The Annals
of Mathematical Statistics 23, 3 (1952), 462–466.

[48] Doowon Kim, Bum Jun Kwon, Kristián Kozák, Christopher Gates, and Tudor Dumitras. 2018. The broken shield:
Measuring revocation e"ectiveness in the windows code-signing PKI. In 27th USENIX Security Symposium (USENIX
Security’18). 851–868.

[49] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi
Mao, and Vikram Nathan. 2019. SageDB: A learned database system. In 9th Biennial Conference on Innovative Data
Systems Research (CIDR’19).

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://dlib.net/
https://microsoft.github.io/ELL/
https://rocksdb.org/
https://www.usenix.org/conference/osdi20/presentation/hao
http://dl.acm.org/citation.cfm?id=1267074.1267094

9:28 I. U. Akgun et al.

[50] Tim Kraska, Alex Beutel, Ed H. Chi, Je"rey Dean, and Neoklis Polyzotis. 2018. The case for learned index structures.
In Proceedings of the 2018 International Conference on Management of Data. ACM, 489–504.

[51] Thomas M. Kroeger and Darrell D. E. Long. 2001. Design and implementation of a predictive !le prefetching algo-
rithm. In USENIX Annual Technical Conference. 105–118.

[52] Arezki Laga, Jalil Boukhobza, M. Koskas, and Frank Singho". 2016. Lynx: A learning Linux prefetching mechanism
for SSD performance model. In 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA’16). 1–6.

[53] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2017. Deep convolutional neural network inference with $oating-
point weights and !xed-point activations. (2017). arXiv:1703.03073. arxiv.org.

[54] Sangmin Lee, Soon J. Hyun, Hong-Yeon Kim, and Young-Kyun Kim. 2018. APS: Adaptable prefetching scheme to dif-
ferent running environments for concurrent read streams in distributed !le systems. The Journal of Supercomputing
74, 6 (2018), 2870–2902.

[55] Daixuan Li and Jian Huang. 2021. A learning-based approach towards automated tuning of SSD con!gurations.
arXiv:2110.08685. arxiv.org.

[56] Z. Li, A. Mukker, and E. Zadok. 2014. On the importance of evaluating storage systems’ $Costs. In Proceedings of the
6th USENIX Conference on Hot Topics in Storage and File Systems (HotStorage’14).

[57] Shuang Liang, Song Jiang, and Xiaodong Zhang. 2007. STEP: Sequentiality and thrashing detection based prefetching
to improve performance of networked storage servers. In 27th International Conference on Distributed Computing
Systems (ICDCS’07). IEEE, 64–64.

[58] Jianwei Liao, Francois Trahay, Guoqiang Xiao, Li Li, and Yutaka Ishikawa. 2015. Performing initiative data prefetch-
ing in distributed !le systems for cloud computing. IEEE Transactions on Cloud Computing 5, 3 (2015), 550–562.

[59] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica. 2018. Tune: A research
platform for distributed model selection and training. arXiv:1807.05118. arxiv.org.

[60] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. 2016. Fixed point quantization of deep convolutional
networks. In International Conference on Machine Learning. 2849–2858.

[61] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. 2022. On-device training under
256 KB memory. arXiv:2206.15472. arxiv.org.

[62] Linux. 2021. Linux Kernel Module Signing Facility. (Jan. 2021). https://www.kernel.org/doc/html/v4.19/admin-guide/
module-signing.html?highlight=signing.

[63] LTTng. 2019. LTTng: An Open Source Tracing framework for Linux. (April 2019). https://lttng.org.
[64] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, and Colin

Ra"el. 2020. Learning-based memory allocation for C++ server workloads. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’20). 541–556.

[65] Paul Manning. 2009. Best Practices for running VMware vSphere on Network Attached Storage. (2009).
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-nfs-bestpractices-
white-paper-en.pdf.

[66] Vinod Nair and Geo"rey E. Hinton. 2010. Recti!ed linear units improve restricted Boltzmann machines. In Proceed-
ings of the 27th International Conference on Machine Learning (ICML’10). 807–814.

[67] Anusha Nalajala, T. Ragunathan, Sri Harsha Tavidisetty Rajendra, Nagamlla Venkata Sai Nikhith, and Rathnamma
Gopisetty. 2019. Improving performance of distributed !le system through frequent block access pattern-based
prefetching algorithm. In 2019 10th International Conference on Computing, Communication and Networking Tech-
nologies (ICCCNT’19). IEEE, 1–7.

[68] Atul Negi and P. Kishore Kumar. 2005. Applying machine learning techniques to improve Linux process scheduling.
In TENCON 2005-2005 IEEE Region 10 Conference. IEEE, 1–6.

[69] Oracle Corporation. 2020. MySQL. (May 2020). http://www.mysql.com.
[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems (NeurIPS’19). 8024–8035.

[71] Karl Pearson. 1895. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of
London 58, 347-352 (1895), 240–242.

[72] Karl Pearson. 1901. LIII. On lines and planes of closest !t to systems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2, 11 (1901), 559–572.

[73] Yiming Qiu, Hongyi Liu, Thomas Anderson, Yingyan Lin, and Ang Chen. 2021. Toward recon!gurable kernel data-
paths with learned optimizations. In Proceedings of the Workshop on Hot Topics in Operating Systems. 175–182.

[74] Gabriëlle Ras, Marcel van Gerven, and Pim Haselager. 2018. Explanation methods in deep learning: Users, values,
concerns and challenges. In Explainable and Interpretable Models in Computer Vision and Machine Learning. Springer,
19–36.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://www.kernel.org/doc/html/v4.19/admin-guide/module-signing.html?highlight=signing
https://lttng.org
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-nfs-bestpractices-white-paper-en.pdf
http://www.mysql.com

Improving Storage Systems Using Machine Learning 9:29

[75] Natarajan Ravichandran and Jehan-François Pâris. 2005. Making Early Predictions of File Accesses. Ph.D. Dissertation.
University of Houston.

[76] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. The Annals of Mathematical Statistics
(1951), 400–407.

[77] Chris Ruemmler and John Wilkes. 1994. An introduction to disk drive modeling. Computer 27, 3 (1994), 17–28.
[78] David E. Rumelhart, Geo"rey E. Hinton, and Ronald J. Williams. 1986. Learning representations by back-propagating

errors. Nature 323, 6088 (1986), 533–536.
[79] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. 2017. Understanding and optimizing

asynchronous low-precision stochastic gradient descent. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA’17). 561–574.

[80] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J. Anders, and Klaus-Robert Müller. 2021.
Toward interpretable machine learning: Transparent deep neural networks and beyond. ArXiv abs/2003.07631 (2021).
arxiv.org.

[81] Jiri Schindler, Sandip Shete, and Keith A. Smith. 2011. Improving throughput for small disk requests with proximal
{I/O}. In 9th USENIX Conference on File and Storage Technologies (FAST’11).

[82] Priya Sehgal, Vasily Tarasov, and Erez Zadok. 2010. Evaluating performance and energy in !le system server work-
loads. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’10). 253–266.

[83] Elizabeth Shriver, Arif Merchant, and John Wilkes. 1998. An analytic behavior model for disk drives with readahead
caches and request reordering. In SIGMETRICS.

[84] Elizabeth A. M. Shriver, Christopher Small, and Keith A. Smith. 1999. Why does !le system prefetching work?. In
USENIX Annual Technical Conference, General Track. 71–84.

[85] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Hamed Haddadi, Gianni Antichi, and
Roberto Bifulco. 2020. Running neural networks on the NIC. arXiv:2009.02353. arxiv.org.

[86] Filippo Sironi, Davide B. Bartolini, Simone Campanoni, Fabio Cancare, Henry Ho"mann, Donatella Sciuto, and
Marco D. Santambrogio. 2012. Metronome: Operating system level performance management via self-adaptive com-
puting. In Proceedings of the 49th Annual Design Automation Conference. 856–865.

[87] SOD 2020. SOD—An Embedded, Modern Computer Vision and Machine Learning Library. (Sept. 2020). https://sod.
pixlab.io/.

[88] Gagan Somashekar and Anshul Gandhi. 2021. Towards optimal con!guration of microservices. In Proceedings of the
1st Workshop on Machine Learning and Systems. 7–14.

[89] Kalyanasundaram Somasundaram. 2020. The Impact of Slow NFS on Data Systems. (June 2020). https://engineering.
linkedin.com/blog/2020/the-impact-of-slow-nfs-on-data-systems.

[90] Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth Kolla, and Manish Parashar. 2018. Stacker: An
autonomic data movement engine for extreme-scale data staging-based in-situ work$ows. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 920–930.

[91] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo Seltzer. 2011. Benchmarking !le system benchmarking:
It *IS* rocket science. In Proceedings of HotOS XIII: The 13th USENIX Workshop on Hot Topics in Operating Systems.

[92] TensorFlow Lite 2020. TensorFlow Lite. (Jan. 2020). https://www.tensor$ow.org/lite.
[93] Nancy Tran and Daniel A. Reed. 2004. Automatic ARIMA time series modeling for adaptive I/O prefetching. IEEE

Transactions on Parallel and Distributed Systems 15, 4 (2004), 362–377.
[94] Transaction Processing Performance Council. 1999. TPC Benchmark H (Decision Support). (1999). www.tpc.org/

tpch.
[95] Ahsen J. Uppal, Ron C. Chiang, and H. Howie Huang. 2012. Flashy prefetch’12 ng for high-performance $ash drives.

In 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1–12.
[96] Laurens van der Maaten and Geo"rey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning

Research 9, 86 (2008), 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html.
[97] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,

and Giri Narasimhan. 2018. Driving cache replacement with ML-based LeCaR. In Proceedings of the 10th USENIX
Workshop on Hot Topics in Storage (HotStorage’18). USENIX.

[98] Gary A. S. Whittle, J.-F. Pâris, Ahmed Amer, Darrell D. E. Long, and Randal Burns. 2003. Using multiple predictors
to improve the accuracy of !le access predictions. In Proceedings of the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST’03). IEEE, 230–240.

[99] Wikipedia. 2022. Recurrent neural network. https://en.wikipedia.org/wiki/Recurrent_neural_network.
[100] Jiwoong Won, Oseok Kwon, Junhee Ryu, Dongeun Lee, and Kyungtae Kang. 2018. iFetcher: User-level prefetching

framework with !le-system event monitoring for Linux. IEEE Access 6 (2018), 46213–46226.
[101] Fengguang Wu, Hongsheng Xi, and Chenfeng Xu. 2008. On the design of a new Linux readahead framework. Oper-

ating Systems Review 42 (2008), 75–84.

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

https://sod.pixlab.io/
https://engineering.linkedin.com/blog/2020/the-impact-of-slow-nfs-on-data-systems
https://www.tensorflow.org/lite
www.tpc.org/tpch
http://jmlr.org/papers/v9/vandermaaten08a.html
https://en.wikipedia.org/wiki/Recurrent_neural_network

9:30 I. U. Akgun et al.

[102] Chenfeng Xu, Hongsheng Xi, and Fengguang Wu. 2011. Evaluation and optimization of kernel !le readaheads based
on Markov decision models. Computer Journal 54, 11 (2011), 1741–1755.

[103] Xiaofei Xu, Zhigang Cai, Jianwei Liao, and Yutaka Ishiakwa. 2020. Frequent access pattern-based prefetching inside
of solid-state drives. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE’20). IEEE, 720–725.

[104] Gala Yadgar, MOSHE Gabel, Shehbaz Ja"er, and Bianca Schroeder. 2021. SSD-based workload characteristics and
their performance implications. ACM Transactions on Storage (TOS) 17, 1 (2021), 1–26.

[105] Chuan-Kai Yang, Tulika Mitra, and Tzi-cker Chiueh. 2002. A decoupled architecture for application-speci!c !le
prefetching. In Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference, Chris G. Demetriou
(Ed.). USENIX, 157–170.

[106] Shengan Zheng, Hong Mei, Linpeng Huang, Yanyan Shen, and Yanmin Zhu. 2017. Adaptive prefetching for acceler-
ating read and write in NVM-based !le systems. In 2017 IEEE International Conference on Computer Design (ICCD’17).
IEEE, 49–56.

Received 1 June 2022; revised 1 June 2022; accepted 13 September 2022

ACM Transactions on Storage, Vol. 19, No. 1, Article 9. Publication date: January 2023.

