
Versatile, Portable, and Efficient File System
Profiling

A Dissertation Presented

by

Nikolai Joukov

to

The Graduate School

in Partial fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

Technical Report FSL-06-05

December 2006

Copyright by
Nikolai Joukov

2006

Stony Brook University

The Graduate School

Nikolai Joukov

We, the dissertation committee for the above candidate for the Ph.D. degree, hereby
recommend acceptance of this dissertation.

Dr. Erez Zadok, Advisor
Professor, Computer Science Department, Stony Brook University

Dr. Samir Das, Chair of Defense
Professor, Computer Science Department, Stony Brook University

Dr. Scott Stoller
Professor, Computer Science Department, Stony Brook University

Dr. Ethan Miller
Professor, Computer Science Department,

University of California Santa Cruz

This dissertation is accepted by the Graduate School

Dean of the Graduate School

ii

Abstract of the Dissertation

Versatile, Portable, and Efficient File System Profiling
by

Nikolai Joukov

Doctor of Philosophy
in

Computer Science

Stony Brook University

2006

File systems are complex and their behavior depends on many factors. Source code,
if available, does not directly help understand the file system’s behavior, as the behavior
depends on actual workloads and external inputs. Runtime profiling is a key technique
for understanding the behavior and mutual-influence of modern OS components. Such
profiling is useful to prove new concepts, debug problems, and optimize the performance
of existing file systems. Unfortunately, existing profilingmethods are lacking in impor-
tant areas: they do not provide much of the necessary information about the file system’s
behavior, they require OS modification and therefore are notportable, or they exact high
overheads thus perturbing the profiled file system.

We developed a direct, real-time file system profiling methodbased on the analysis of
latency distributions. Our method is versatile: a suitableworkload can be used to profile
virtually any OS component. Our method is portable because we can intercept operations
and measure file system behavior from the user level or from inside the kernel without
requiring source code. Our method is efficient: it has small overheads (less than 4% of the
CPU time). Moreover, if the source code is available, we can use it to reduce overheads
even further.

In this dissertation we describe our profiling method, the theory behind it, and the au-
tomation of the profile analysis. We demonstrate the usefulness of our method through
a series of profiles conducted on Linux, FreeBSD, and Windows, including client/server
scenarios. We discovered and investigated a number of interesting interactions, including
scheduler behavior, multi-modal I/O distributions, and a previously unknown lock con-
tention, which we fixed. We use our profiling method for performance analysis of a com-
plex RAID-like fan-out stackable file system called RAIF that we have developed.

iii

Contents

List of Figures vii

List of Tables ix

Acknowledgments x

1 Introduction 1
1.1 Contradicting Profiling Requirements 1
1.2 Our Approach . 2
1.3 OSprof and FSprof . 3
1.4 Thesis Organization .3

2 Background 4
2.1 Kernel Code Profiling . 4

2.1.1 CPU Execution Profiling . 4
2.1.2 Locks and Memory Profiling . 5
2.1.3 File System and I/O Profiling . 5

2.2 Latency-Based Profiling .5
2.3 File System Operations Interception 6

2.3.1 Source Code Instrumentation .6
2.3.2 Dynamic Code Instrumentation 6
2.3.3 Interception from the User-Mode6
2.3.4 Layered Interception . 6

3 Profiling Method 7
3.1 Profile Collection and Analysis 9

3.1.1 Profiles Preprocessing . 9
3.1.2 Prior Knowledge Based Analysis 11
3.1.3 Differential Profile Analysis .. 12
3.1.4 Layered Profiling . 12
3.1.5 Profiles Sampling . 12
3.1.6 Direct Profiles and Values Correlation 14

3.2 Profiles Analysis Automation .. . 14
3.2.1 Individual Profiles Comparison14
3.2.2 Complete Profiles Comparison . 16

iv

3.3 Multi-Process Profiles .. 17
3.3.1 Forcible Preemption Effects .17
3.3.2 Wait Times at High CPU Loads 21

3.4 Multi-CPU Profiles . 26
3.4.1 Time Synchronization . 26
3.4.2 Shared Data Structures . 27
3.4.3 Profile Analysis . 28

3.5 Profiling in Virtual Environments 32
3.6 Method Summary . 35

4 File System Instrumentation (FoSgen) 36
4.1 FiST . 38
4.2 VFS Operation Interception .. . 38
4.3 FiST Support by FoSgen . 41
4.4 FSprof.fist . 43
4.5 FoSgen Steps . 45

5 Implementation 47
5.1 The aggregatestats Library . 47
5.2 POSIX User-Level Profilers .47
5.3 Windows User-level Profilers .. . 48
5.4 Linux and FreeBSD File System Level Profilers 48

5.4.1 FoSgen and FSprof FiST extensions48
5.5 Windows File System Level Profilers 49
5.6 Driver Level Profilers .49
5.7 Profile Analysis Automation .. 50

5.7.1 Individual Profiles Comparison50
5.7.2 Combined Profile Comparison Methods51

5.8 Representing Results .52
5.9 Portability . 53

6 Evaluation 54
6.1 Memory Usage and Caches . 54
6.2 CPU Time Overheads . 55
6.3 Profile Analysis Automation .. 56
6.4 FoSgen . 60

7 Example File System Profiles 61
7.1 Analyzing Disk Seeks . 61
7.2 Analyzing File System Read Patterns 63

7.2.1 Ext2 . 63
7.2.2 NTFS and Ext3 . 65

7.3 Handling Access Time Updates .. 67
7.3.1 NTFS . 67
7.3.2 Reiserfs and Profiles Sampling .67

v

7.3.3 Ext3 . 73
7.4 Analyzing Network File Systems .. . 74
7.5 Influence of Stackable File Systems 77

8 Using FSprof without Buckets 81
8.1 Workload Characterization .. . 81
8.2 Quality of Replaying Analysis .. . 84

9 Case Study: RAIF 86
9.1 Redundant Array of Independent Filesystems 86
9.2 Benchmarking with Postmark .. 89

9.2.1 RAIF0 . 92
9.2.2 RAIF1 . 92
9.2.3 RAIF4 . 92
9.2.4 RAIF5 . 92

9.3 RAIF5 Profiling . 93
9.4 Prior and Related Work . 97

9.4.1 Fan-Out Stackable File Systems97
9.4.2 Block-Level RAID . 97
9.4.3 File-System–Level RAID . 97
9.4.4 Storage Utilization . 98
9.4.5 Load Balancing . 98
9.4.6 RAID Survivability . 98

10 Conclusions 99
10.1 Future Work . 100

Bibliography 101

A FSprof FiST Extension 109

vi

List of Figures

3.1 A profile ofCreateThread operation on Windows XP, concurrently is-
sued by two processes. 8

3.2 Complete profile of Linux 2.4.24 Ext2 under thegrep -r workload. 10
3.3 Tri-modal Profile of the fileread inode operation on a Linux 2.4.24 Ext2. 11
3.4 Our infrastructure allows profiling at the user, file system, driver, and net-

work levels. Possible profiler locations are shown using theshaded boxes. . 13
3.5 Three-dimensional profile of the Ext2lookup operation under the kernel

build workload. 15
3.6 Three-dimensional profile of the Ext2lookup operation under the kernel

build workload. Buckets contain their expected total latency. 15
3.7 Forcible preemption probability as a function of the bucket number. 19
3.8 Profiles of aread operation on a preemptive and non-preemptive kernels. . 20
3.9 Idle loop profiles with high resolution (r = 2). 22
3.10 Profile of two processes that read files with varying amount of CPU activity

between reads. 23
3.11 Profile of an I/O-active process concurrently run with and without another

CPU-only process. 25
3.12 TSC register synchronization on SMP systems. 26
3.13 The probability of two concurrent writes to the same bucket on SMP systems. 29
3.14 Two processes updating the same set of buckets on a dual-CPU Linux system. 29
3.15 clone system call profiles on Linux in UP and SMP modes. 30
3.16 clone system call profiles on FreeBSD in UP and SMP modes. 31
3.17 Idle loop profiles captured in VMware. 34

4.1 The Base0fs stackable file system mounted over Ext2. 37
4.2 FoSgen script operation. .. 37
4.3 Linux Ext2 directory operations and FreeBSD NFS vnode operations. . . . 39
4.4 Windows XP filter driver file system operations. 40
4.5 Original Ext2 directory operations vector (top) and itsFoSgen-transformed

version with the wrapper functions (bottom). 42
4.6 A minimal latency profiling FiST extension for FoSgen. 44
4.7 An original and generatedwritepage operation of the Ext2 file system. . 46

6.1 Postmark configuration that we used for FSprof benchmarking. 55
6.2 Profiled function components. .. . 56
6.3 TOTOPS test results compared with manual profiles analysis. 57

vii

6.4 TOTLAT test results compared with manual profiles analysis. 57
6.5 CHISQUARE test results compared with manual profiles analysis. 58
6.6 EARTHMOVER test results compared with manual profiles analysis. 58
6.7 GROUPOPS test results compared with manual profiles analysis.59
6.8 GROUPLAT test results compared with manual profiles analysis.59

7.1 Thellseek operation under random reads. 62
7.2 Profiles of Linux 2.6.11 Ext2readdir (top) andreadpage (bottom)

operations captured for a single run ofgrep -r on a Linux source tree. . . 63
7.3 Profile of Linux 2.6.11 Ext2 under thegrep -r workload. 64
7.4 Correlation of thereaddir past EOF×1, 024 and the peaks in Figure 7.2. 65
7.5 Profile ofread operations under thegrep -r workload for Ext3 and NTFS. 66
7.6 Effects ofatime updates on NTFS operations. 67
7.7 Profile of Reiserfs 3.6 (default configuration) under thegrep -r workload. . 69
7.8 Profile of Reiserfs 3.6 (withnotail) under thegrep -r workload. 70
7.9 Profile of the Reiserfs 4.0 file system under thegrep -r workload. 71
7.10 Linux 2.4.24 Reiserfs 3.6 (default configuration)write super operation

sampled profile under thegrep -r workload. 72
7.11 Linux 2.4.24 Reiserfs 3.6 (default configuration)read operation sampled

profile under thegrep -r workload. 72
7.12 Linux 2.4.24 Reiserfs 3.6 file-system profiles sampled at 2.5 second intervals. 73
7.13 Effects ofatime updates on Ext3. 73
7.14 A complete profile of thegrep -r workload on the Windows client over CIFS. 75
7.15 Windows CIFS client directory reading operations. 76
7.16 Timelines depicting the messages involved in the handling of a

findfirst request. 76
7.17 The distribution of operation latencies for Base0fs and for Ext2. 78
7.18 The distribution of operation latencies for patched Base0fs and for Ext2. . . 80

8.1 Operation mixes during a compilation as seen by the Ext2 file system. . . . 83
8.2 The difference between tracing and replaying rates. 84
8.3 A comparison of traced and replayed rates. 85

9.1 A possible combination of RAIF fan-out stacking and other file systems
stacked linearly. 87

9.2 Postmark configuration that we used for RAIF benchmarking. 89
9.3 Postmark results for RAID0 and RAIF0 with varying numberof branches. . 90
9.4 Postmark results for RAID1 and RAIF1 with varying numberof branches. . 90
9.5 Postmark results for RAID4 and RAIF4 with varying numberof branches. . 91
9.6 Postmark results for RAID5 and RAIF5 with varying numberof branches. . 91
9.7 The profile of Ext2 mounted over the Linux RAID5 driver with four disks

using the Postmark workload. 94
9.8 The profile of Ext2 mounted under RAIF5 using the Postmarkworkload. . . 95
9.9 The profile of Ext2 using the Adaptec 2120S hardware RAID5controller

with four disks using the Postmark workload. 96

viii

List of Tables

3.1 Total count and total delay of VFS operations of Ext2 forgrep -r. 9

4.1 FSprof components and their portability. 43

6.1 FoSgen instrumentation times and original compilationtimes for several
popular file systems. 60

8.1 Compile benchmarks’ characteristics. 82
8.2 Distribution of the Ext2lookup operations among the three peaks. 82

ix

Acknowledgments
First of all, I would like to thank my advisor, Erez Zadok, forhis guidance and thought-

ful advice. He not only gave direction to my research but alsogave me the freedom to
explore new and sometimes risky projects. Erez is always thebest example for me of how
to budget time, to lead others, and deal with different people. I am very thankful that he
was always able to find time to meet with me when I needed it.

My committee members, Samir Das, Ethan Miller, and Scott Stoller, provided many
valuable comments and asked interesting questions in a friendly way. I am grateful to
Ethan Miller for changing his airplane tickets and coming tomy defense directly after a
long conference in Florida.

Tzi-cker Chiueh supported my research and helped me during my first years at Stony
Brook University. Michael Bender, Klaus Mueller, Alex Mohr, and Steve Skiena provided
valuable comments. Andrea and Remzi Arpaci-Dusseau from the University of Wisconsin-
Madison reviewed early paper drafts and were very supportive of the project. Bill Yurcik
from NCSA helped with the RAIF project presentation.

I would like to thank every member of the File systems and Storage Laboratory for
creating a fruitful environment to work and always being available to help before a paper
deadline, to prepare a talk, and celebrate our success afterwords. Charles P. Wright and
Avishay Traeger are not just the lab mates who shared an aislewith me but also my true
friends who helped me many times. Charles coined the term TMAP and is the person
who can quickly resolve all kinds of issues. Avishay happened to have a spare bottle
of Jägermeister in his fridge every time we had a party. He also spent many sleepless
nights capturing our profiles, benchmarking RAIF, and working on the automated profile
analysis. Sean Callanan is my good friend and neighbour who proofread all the papers
that I have written. Rick Spillane helped me before several deadlines. He is also the
only person after I quit kindergarten who managed to bite me.Rakesh Iyer ported our
profilers to Windows XP while stretching in his chair. AkshatAranya tried the idea of
latency profiling using Tracefs’s aggregate driver. He alsocontributed to the initial Replayfs
prototype. Tim Wong spent months coding and debugging Tracefs and Replayfs. Harry
Papaxenopoulos created secure deletion patches between bouts of self-incrmination. Arun
M. Krishnakumar, Chaitanya Patti, Abhishek Rai, and Sunil Satnur significantly improved
RAIF. Dave Quigley also helped with its porting to 2.6 Linux kernels. Jeff Sipek was
the person who always got excited every time I found bugs in the Linux kernel. Mohan-
Krishna Channa-Reddy, Jay Pradip Dave, Puja Gupta, Aditya Kashyap, Devaki Kulkarni,
Adam David Alan Martin, Kiran-Kumar Muniswamy-Reddy, Yeugeniy Miretskiy, Gopalan
Sivathanu, and Joseph Spadavecchia were among the first people I met at FSL and who
helped me to quickly become a true member of the lab.

I would like to thank my dear Jenya, Misha, and Sasha for theirunderstanding and for
being a continuous source of joy.

Finally, I would like to thank my parents. They were just a phone call away every time
I needed their advice or support.

This work was sponsored by NSF (CAREER EIA-0133589, CCR-0310493, and
HECURA CCF-0621463 awards) and HP/Intel (gifts numbers 87128 and 88415.1).

Chapter 1

Introduction

Profiling is a standard method to investigate and tune the operation of any complicated soft-
ware component. Even the execution of one single-threaded user-level program is hardly
predictable because of the underlying hardware behavior. For example, branch prediction
and cache behavior can easily change the program execution time by an order of magnitude.
Moreover, in a multi-tasking environments, processes compete with each other for a num-
ber of shared resources such as CPU, memory, shared data structures, buses, I/O devices,
etc. In addition, there are a variety of possible external input patterns. Therefore, only
runtime profiling can help understand the actual system behavior even if the source code
is available. At first glance, it seems that observing computer software and hardware be-
havior should not be difficult, because these systems are human-made and therefore can be
easily instrumented. However, profiling has several contradicting requirements: versatility,
portability, and low overheads.

1.1 Contradicting Profiling Requirements

Versatility. A versatile system profile should contain information aboutthe interactions
with all software and hardware components and allow correlation of related information
that was captured at different levels of abstraction. For example, a file system operates
on files, whereas a hard-disk driver operates on data blocks.However, the operation and
performance of file systems and drivers depend on their complex interactions; contention
on semaphores can change the disk’s I/O patterns, while a file-system’s on-disk format can
dramatically change its I/O performance.

Portability. To gather the information about all the different system operation aspects at
all the levels of system abstraction, one usually tries to instrument the system as much as
possible (e.g., DTrace [18] adds tens of thousands of probes to the Solaris kernel). However,
there are two big problems associated with this approach.

1. Direct instrumentation of systems is notportable. System instrumentation is OS-
version–specific or compiler-version–specific and also maydepend on the hardware
architecture. Therefore, profilers for new OSs are often notavailable because existing
profilers have to be ported to each new OS version.

1

2. It is not possible to instrument everything. For example,one can spend a lot of time
and add many instrumentation hooks into the kernel but therestill will be uninstru-
mented places in the code. More importantly, however, it is not possible to instrument
some of the system components because their source is unavailable (e.g., firmware
of hard drives or Windows scheduler).

Low overheads. Low overheads are crucial for profiling because high overheads can
significantly change the system’s behavior. However, per-event instrumentation (e.g., in-
strumentation of every semaphore) adds overheads on a per-event basis (e.g., for each taken
semaphore). To minimize overheads, several hardware components provide profiling help.
For example, modern CPUs maintain statistics about their operation [14]. However, only
the OS can correlate this information with higher level information, such as the correspond-
ing process. Therefore, some CPU time overheads are inevitable.

As we can see, versatility, portability, and efficiency contradict each other. Versatil-
ity requires collecting more information which requires more instrumentation that in turn
means less portability and higher overheads. Higher portability means less instrumentation
and less OS-specific and hardware-specific performance optimizations. Low overheads
require fewer instrumentation points (which decreases versatility) and more non-portable
optimizations. As a result, existing profiling tools provide limited information, are not
portable (usually even between OS minor versions) and add high overheads.

1.2 Our Approach

We developed a gray-box system profiling method. For example, user applications make
requests via system calls and external network requests come via the network interface. The
latency of these requests contains information about related CPU time, rescheduling, lock
and semaphore contentions, and I/O delays. Capturing latency is fast and easy. However,
the total latency includes a mix of many latencies contributed by different execution paths
and is therefore difficult to analyze. Process preemption complicates this problem further.
All existing projects that used latency as a performance metric used some simplistic as-
sumptions applicable for a particular case. Some authors assumed that there is only one
source of latency which can be characterized by the average latency value [27, 30, 46, 88].
Others used prior knowledge of the latencies’ sources to classify the latencies into several
groups [8, 16, 75]. Past attempts to analyze latencies more generally just looked for distri-
bution changes to detect anomalies [21]. Our profiling method allows the investigation of
latencies in the general case.

We accumulate the distributions of logarithms of latenciesfor each OS operation at run-
time, and later process the accumulated results. This allows us to efficiently capture small
amounts of data that embody detailed information about manyaspects of internal OS be-
havior. Different OS internal activities create differentpeaks on the collected distributions.
The resulting information can be conveniently presented ina graphical form.

We created user-level profilers for POSIX-compliant OSs andkernel-level profilers for
Linux, FreeBSD, and Windows—to profile system activity for both local and remote com-

2

puters. These tools have CPU time overheads below 4%. We usedthese profilers to inves-
tigate internal file system behavior under Linux and Windows. Under Linux we discovered
and characterized several semaphore and I/O contentions. Source code availability allowed
us to verify our conclusions and fix the problems. Under Windows we observed inter-
nal lock contentions even without access to source code; we also discovered a number of
harmful I/O patterns including those for networked file systems.

Our method is a general profiling and visualization technique that can be applied to a
broad range of problems. Nevertheless, it requires skills to analyze collected profiles. In
this dissertation we present several profile analysis methods and their automation. We also
analyze several method-specific problems like process preemption effects, time synchro-
nization on SMP systems and profiles locking on multi-CPU systems.

1.3 OSprof and FSprof

The proposed profiling method can be applied to a wide range ofsystems ranging from
individual hard drives to complex RAID controllers, OSs, and distributed systems. We call
our profiling methodOSprofwhen used to profile OSs (including distributed ones).FSprof
is a subset of OSprof and is a file system profiling extension.

In this dissertation we concentrated on file system profilingfor three reasons: (1) file
system profiles are complex and contain information about most OS components and in-
teractions. Therefore, file system profiles are a good example to demonstrate the power of
OSprof. (2) file systems are a substantial part of the OSs. Forexample, Linux 2.6.11.7
supports 53 different file systems, ranging from memory and disk-based ones (Ext2, Ext3,
Reiserfs, XFS, UFS/FFS, and more), to network file systems, (NFS, SMB/CIFS, NCPFS),
to distributed ones (e.g., Coda), and many more specialized ones (e.g., /proc, /dev, de-
bugfs, and more). These file systems total 485,158 lines of complex code, out of 2,997,507
lines of code in the entire Linux 2.6.11.7 kernel (not counting device drivers). In addition,
many file systems are developed and maintained outside the Linux kernel [6, 11, 55, 81,
102, 109, 112]. (3) file systems is the main focus of our research group and we used our
profiling method to profile all our new experimental file systems.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. We describe background work in Chap-
ter 2. Chapter 3 describes our profiling method and provides analysis of its applicability
and limitations. In Chapter 4 we describe FoSgen—our file system source instrumentation
system. Chapter 5 describes our implementation. We evaluate our system in Chapter 6. In
Chapter 7 we present several usage scenarios and analyze profiles of several real-world file
systems. Moreover, in Chapter 8 we show some examples how ourfile-system–level pro-
filer can be used for profiling without buckets. In Chapter 9 wedescribe profiling of RAIF
file system during its development. We conclude and describefuture work in Chapter 10.

3

Chapter 2

Background

We have described our latency profiling method in several papers [49, 53, 54, 56]. Next, we
describe related work done by others about kernel code profiling and kernel code instru-
mentation.

2.1 Kernel Code Profiling

Most of the existing kernel profilers concentrate on different aspects of the CPU execution.
Only a few profilers can profile lock-related behavior on someoperating systems. Even
fewer tools can profile the system I/O and no tools can satisfactorily correlate I/O requests
with the high-level file system requests.

2.1.1 CPU Execution Profiling

The de facto standard of CPU-related code execution profiling is program counter sam-
pling. Unix prof [10] instruments source code at function entry and exit points. An instru-
mented binary’s program counter is sampled at fixed time intervals. The resulting samples
are used to construct histograms with the number of individual functions invoked and their
average execution times. Program counter (PC) sampling is arelatively inexpensive way
to capture how much CPU a program fragment uses in multi-tasking environments where a
task can be rescheduled at any time.Gprof [36] additionally records information about the
callers of individual functions, which allows it to construct call graphs. Gprof was success-
fully used for kernel profiling in the 1980s [69]. However, the instrumented kernels had a
20% increase in code size and an execution time overhead of upto 25%.Kernprof [94] uses
a combination of PC sampling and kernel hooks to build profiles and call graphs. Kernprof
interfaces with the Linux scheduler to count the time that a kernel function spent sleeping
(e.g., to perform I/O) in the profile. Unfortunately, Kernprof requires a patch to both the
kernel and the compiler.

More detailed profiles with granularity as small as a single code line can be collected
usingtcov[98]. Most modern CPUs contain special hardware counters for use by profilers.
The hardware counters allow correlating profiled code execution, CPU cache states, branch
prediction functionality, and ordinary CPU clock counts [5, 14]. The counter overflow

4

events generate a non-maskable interrupt (NMI). This allows sampling even inside device
drivers as implemented inOprofile [66]. Overall, such profilers capture only CPU-related
information.

2.1.2 Locks and Memory Profiling

There are a number of profilers for other aspects of OS behavior such as lock con-
tention [15, 74]. They replace the standard lock-related kernel functions with instrumented
ones. This instrumentation is costly: Lockmeter adds 20% system time overhead. Other
specialized tools can profile memory usage, leaks, and caches [92].

2.1.3 File System and I/O Profiling

Fewer and less developed tools are available to profile file system performance, which
is highly dependent on the workload. Disk operations include mechanical latencies to
position the head. The longest operation is seeking, or moving the head from one track
to another. Therefore, file systems are designed to avoid seeks [70, 86]. Unfortunately,
modern hard drives expose little information about the drive’s internal data placement. The
OS generally assumes that blocks with close logical block numbers are also physically
close to each other on the disk. Only the disk drive itself canschedule the requests in an
optimal way and only the disk drive has statistical information about its internal operations.
The Linux kernel optionally maintains statistics about theblock-device I/O operations and
makes those available through the/proc file system, yet little information is reported
about timing.

Network packet sniffers [37] capture traffic useful for analysis [31]. They are useful
for analyzing protocols. Their problems are similar to those of hard disk profilers: both
the client and server often perform additional processing that is not captured in the trace:
searching caches, allocating objects, reordering requests, and more.

2.2 Latency-Based Profiling

The latency of a file system operation contains important information about its execution.
Latency can be easily collected but cannot be easily analyzed because it contains a mix
of latencies of different execution paths. Many authors used a simple assumption that
there is one dominant latency contributor and that the average latency can characterize
it [2, 7, 27, 46]. This simple assumption allowed to profile several OS components includ-
ing timer interrupts on an idle system [32]. DeBox and LRP investigate average latency
changes over time and its correlation with other system parameters [30, 88]. Chen and
others moved one step further and observed changes in the distribution of latency over
time and its correlation with software versions to detect possible problems in network ser-
vices [21]. Prior knowledge of the underlying I/O characteristics and file system layouts
allows categorization of runtime I/O requests based on their latency [8, 16, 75, 82].

5

2.3 File System Operations Interception

The addition of control interception points is a well developed research area. We will focus
on the four methods most relevant to file systems.

2.3.1 Source Code Instrumentation

The most popular one is direct source code modification, because it imposes minimal over-
head and is usually simple. For example, tracking lock contentions, page faults, or I/O
activity usually requires just a few modifications to the kernel source code [15, 88]. If,
however, every function requires profiling modifications, then the compiler may conduct
such an instrumentation (e.g., thegcc -p facility). This method has a clear drawback:
new code is required not only for every OS and every file systembut also for different
versions of OSs and file systems.

2.3.2 Dynamic Code Instrumentation

Some modern OSs provide hooks that allow dynamic instrumentation. For example,
DTrace [18] on Solaris as well as Linux Trace Toolkit (LTT) [113] and Linux Security
Modules (LSM) [107] on Linux provide interception points inmany places. However,
these instrumentation APIs are not portable across OSs and do not intercept all file system
operations. For example, LSM do not intercept memory-mapped operations. Dynamic
code instrumentation is possible by inserting jump operations directly into the binary [44].
Similarly, debugging registers on modern CPUs can be used toinstrument several arbitrary
code addresses at once [24].

2.3.3 Interception from the User-Mode

Some of the file system operations may be intercepted and changed entirely from the user-
mode. First, system utilities can be substituted with wrapper scripts or other binaries.
Second, system libraries can be instrumented directly. In both cases, some of the programs
will not be instrumented either because they are not replaced or because they are statically
linked. Moreover, some file system operations cannot be changed this way (e.g., popular
memory-mapped operations). FUSE [102] and extendedptrace [108] interfaces allow
interception of all file system operations but add significant overheads.

2.3.4 Layered Interception

Stackable file systems are portable across OSs and across filesystems [115]. They can be
mounted over any lower file system, several file systems, or only a single directory or file.
However, stackable file systems add overheads for all file system operations even if only a
single operation is modified. In addition, stackable file systems use twice as many Virtual
File System objects, thus reducing the overall size of file system caches.

6

Chapter 3

Profiling Method

OSs serve requests from applications whose workloads generate different request patterns.
The latencies of OS requests consist of both CPU and wait times:

latency = tcpu + twait (3.1)

CPU time includes normal code execution time as well as the time spent waiting on spin-
locks:

tcpu =
∑

texec +
∑

tspinlock

Wait time is the time a process was not running on the CPU. It includes synchronous I/O
time, time spent waiting on semaphores, and time spent waiting for other processes or
interrupts that preempted the profiled request midway:

twait =
∑

tI/O +
∑

tsem +
∑

tint +
∑

tpreempt

tpreempt is the time the process was waiting because it ran out of its scheduling quantum
and was preempted. We will consider preemption in more detail later in Section 3.3. We
begin by discussing the non-preemptive OS case.

Every pattern of requests corresponds to a set of possible execution pathsS. For exam-
ple, a system call that updates a semaphore-protected data structure can have two paths:

1. if the semaphore is available (latency1 = tcpu1
), or

2. if it has to wait on the semaphore (latency2 = tcpu2
+ tsem).

In turn, eachtj is a function with its own distribution. We can generalize that the
latencys of pathss ∈ S consists of the sum of latencies of its components:

latencys =
∑

j

ts,j (3.2)

wherej is the component, such as I/O of a particular type, program execution-path time,
or one of the spinlocks or semaphores.

To find all tj ∈ T , it is necessary to solve the system of linear Equations 3.2,which is
usually impossible because‖T‖ ≥ ‖S‖ (there are usually fewer paths than time compo-
nents). Non-linearlogarithmic filtering is a common technique used in physics and eco-
nomics to select only the major sum contributors [68]. We used latency filtering to select
the most important latency contributorstmax and filter out the other latency componentsδ:

7

log(latency) = log(tmax + δ) ≈ log(tmax) (3.3)

For example, forlog2, even ifδ is equal totmax, the result will only change by 1. Most
non-trivial workloads can have multiple paths for the same operation (e.g., some requests
may wait on a semaphore and some may not). To observe multiplepaths at the same time
we store logarithms of latencies into buckets. Thus, a bucket b contains the number of
requests whose latency satisfies:

b = ⌊log
2

1
r
(latency)⌋ = ⌊r × log2(latency)⌋ (3.4)

Plugging in Equation 3.3 we get:

b ≈ ⌊r × log2(tmax)⌋

A profile’s bucket density is proportional to the resolutionr. We usually usedr = 1. How-
ever,r = 2, for example, would double the profile resolution (bucket density). Increasing
the resolution adds only a slight overhead to CPU time. However, it increases the memory
consumption byr times because higher resolution profiles have more buckets.

Figure 3.1 shows an actual profile of the Windows XPCreateThread function called
by two processes concurrently. The bottom X axis shows the average buckets’ latency in
seconds. The top X axis shows the bucket number (logarithm oflatency in CPU cycles).
The Y axis shows the number of operations whose latency fallsinto a given bucket. Note
that both axes are logarithmic.

Let us consider the profile shown in Figure 3.1 in more detail.We captured this profile
entirely from the user level. In addition to this profile we captured another profile with
only a single process calling the sameCreateThread function; we observed that in that
case there was only one (leftmost) peak. Therefore, we can conclude that there is some
contention between processes inside of theCreateThread function. In addition, we can
derive the information about (1) the CPU times necessary to complete aCreateThread
request with no contention (average latency in the leftmostpeak) and (2) the portion of the
CreateThread code that is executed while a semaphore or a lock is acquired (average
latency in the leftmost peak times half the ratio of elementsin the rightmost and leftmost
buckets).

 1

 10

 100

 1000

 10000

 100000 CreateThread

5 10 15 20 25 30
Bucket number:  log2(latency in CPU cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

Figure 3.1: A profile ofCreateThread operation on Windows XP, concurrently issued
by two processes. The right peak corresponds to semaphore contention between the two
processes. Note: both axes are logarithmic (x-axis is base 2, y-axis is base 10).

8

3.1 Profile Collection and Analysis

In general, we use the following methods to analyze profiles:

3.1.1 Profiles Preprocessing

A complete profilemay consist of dozens of profiles of individual operations. For example,
a user-mode program usually issues several system calls anda complete profile consists
of several profiles of individual system calls. Thus, Figure3.2 and Table 3.1 show the
latencies for Linux 2.4.24 Ext2 for a run ofgrep -r over a Linux source tree. This ex-
ample of a complete profile immediately informs us about the operations involved, their
impact, and sometimes, their mutual dependence. For example,lookup is invoked only
one less time thanread inode. The fact that the number of operations in the correspond-
ing peaks is the same, and thatread inode is slightly faster thanlookup, suggests that
read inode is called by thelookup operation, which is in fact the case. Ext2’sread
operation is implemented by calling the general-purpose Linux generic file read
function, which then calls thereadpage operation. Therefore, we can infer from Ta-
ble 3.1 that thelookup, read, andreaddir operations are responsible for more than
99% of the file system’s latency under the given workload.

If the goal of profiling is performance optimization, then weusually start our analysis
by selecting a subset of profiles that contribute the most to the total latency. We designed
automatic procedures to:

• select profiles with operations that contribute the most to the total latency. Unless
otherwise specified, figures presented in this dissertationshow profiles with opera-
tions sorted according to their total latency; and

• compare two individual profiles and evaluate their similarity.

Operation Count Total delay Total delay
(106 CPU Cycles) (ms)

readdir 1,687 7,736.04 4,550.61
read 27,408 7,320.15 4,305.97
lookup 13,640 3,069.65 1,805.67
read inode 13,641 2,943.22 1,731.30
readpage 43,991 477.75 281.03
sync page 20,141 108.73 63.96
write inode 12,107 10.57 6.22
open 12,915 1.99 1.17
release 12,915 1.29 0.76
follow link 110 0.09 0.05
write super 1 0.00 0.00

Table 3.1: Total count and total delay of VFS operations of Linux 2.4.24 Ext2 forgrep -r
workload. 1 sec. = 1.7 billion CPU cycles.

9

 1
 10

 100
 1000

 10000 write_super

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 follow_link

 1
 10

 100
 1000

 10000 release

 1
 10

 100
 1000

 10000 open

 1
 10

 100
 1000

 10000 write_inode

 1
 10

 100
 1000

 10000 sync_page

 1
 10

 100
 1000

 10000 readpage

 1
 10

 100
 1000

 10000 read_inode

 1
 10

 100
 1000

 10000 lookup

 1
 10

 100
 1000

 10000 read

 1
 10

 100
 1000

 10000 readdir

5 10 15 20 25 30
Bucket number:  log2(latency in CPU cycles)

Figure 3.2: Complete profile of Linux 2.4.24 Ext2 under thegrep -r workload. Operations
are sorted from top to bottom by their total latency.

10

 1

 10

 100

 1000

 10000

 2e-05

 0.0002

 0.002

 0.02

 0.2

 2read_inode

5 10 15 20 25
Bucket number:  log2(latency in CPU cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

T
ot

al
 d

el
ay

 (
se

c)

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

Number of operations
Total delay (sec)

Figure 3.3: Tri-modal Profile of the fileread inode operation on a Linux 2.4.24 Ext2
file system captured for a single run ofgrep -r on a Linux source tree.

The second technique has two applications. First, it can be used to compare all profiles in
a complete set of profiles and select only these profiles that are correlated. Second, it is
useful to compare two different complete sets of profiles andselect only these pairs that
differ substantially; this helps developers narrow down the set of OS operations where op-
timization efforts may be most beneficial. We have adopted several methods from the fields
of statistics and visual analytics [89]. We further describe these methods in Section 3.2 and
evaluate them in Section 6.3.

3.1.2 Prior Knowledge Based Analysis

Many OS operations have characteristic times. For example,on our test machines, a context
switch takes approximately 56µs, full stroke disk head seek takes approximately 8 ms, full
disk rotation takes approximately 4 ms, the network latencybetween our test machines is
about 112µs, and the scheduler quantum is about 58 ms. These characteristic times can
be easily measured using specially crafted workloads or tools [12, 71]. Therefore, if some
of the profiles have a peak close to these times, then we can hypothesize right away that
it is related to that corresponding OS activity. For any testsetup these and many other
characteristic times can be measured in advance by profilingsimple workloads that are
known to show peaks corresponding to these times. It is common that some peaks analyzed
for one workload in one of the OS configurations can be recognized later on new profiles
captured in other circumstances.

Figure 3.3 shows a magnified profile of theread inode operation from Figure 3.2.
Here we also show the latency of every bucket using the right axis. This tri-modal distri-
bution is defined by the delays needed to read a file’s metadata. We will analyze similar
profiles in Section 7.2. However, just knowing the characteristic times of our hard disk, we
can see that the rightmost peak corresponds to disk head movement or disk platter rotation
delays.

11

3.1.3 Differential Profile Analysis

While analyzing profiles one usually makes a hypothesis about a potential reason for a peak
and tries to verify it by capturing a different profile under different conditions. For exam-
ple, a lock contention should disappear if the workload is generated by a single process.
The same technique of comparing profiles captured under modified conditions (including
OS code or configuration changes) can be used if no hypothesiscan be made. However,
this usually requires exploring and comparing more sets of profiles. We have designed
procedures to compare two sets of profiles automatically andselect only those that differ
substantially. Section 3.2 discusses these profile-comparing procedures in more detail.

3.1.4 Layered Profiling

It is usually possible to insert latency-profiling layers inside the OS. Most kernels provide
extension mechanisms that allow for the interception and capture of information about in-
ternal requests. Figure 3.4 shows such an infrastructure. The inserted layers directly profile
requests that are not coming from the user level (e.g., network requests). Comparison of the
profiles captured at different levels can make the identification of peaks easier and the mea-
surements more precise. For example, the comparison of user-level and file-system–level
profiles helps isolate VFS behavior from the behavior of lower file systems. Note that
we do not have to instrument every OS component. For example,we will show later in
this section that we can use file system instrumentation to profile the scheduler or timer
interrupt processing. Unlike specialized profilers, our profiling method does not require
instrumentation mechanisms to be provided by an OS, but can benefit from them if they are
available.

Layered profiling can be even extended to the granularity of asingle function call. This
way, one can capture profiles for many functions even if thesefunctions call each other. To
do so, one may instrument function entry and return points manually or, for example, using
thegcc -p facility. Similarly, many file system operations call each other. For example,
the readdir operation of Linux 2.6 Ext2 callsreadpage operation if the directory
information is not found in the cache. Therefore, file-system–level profiling can itself be
considered layered profiling.

3.1.5 Profiles Sampling

Our profiler is capable of taking successive snapshots by using a new set of buckets to
capture latency at predefined intervals of time. In this casewe are also comparing one set of
profiles against another, as they progress in time. Therefore, the profile is a 4-dimensional
view of profiled operations consisting of:

1. Operation

2. Latency

3. Number of operations with this latency

4. Elapsed time interval

12

Ext2 NFS
read()

FS profiler FS profiler

NIC driverSCSI driver

NFSD

Virtual File System (VFS)

read()

sys_read()

Lower file system

User Level Profiler

read()

User Process

ext2_read()

Driver Profiler Driver Profiler

U
se

r
K

e
rn

e
l

LAN Profiler

DISK LAN

Figure 3.4: Our infrastructure allows profiling at the user,file system, driver, and network
levels. Possible profiler locations are shown using the shaded boxes.

13

Figure 3.5 shows an example 3D view of thelookup operation on Ext2 captured while
compiling a Linux kernel. Thez axis contains the number of operations that fall within a
given bucket (thex axis) within a given elapsed time interval (they axis). Figure 3.6 shows
the estimated delay for each bucket on thez axis, which is the number of operations in
thebth bucket multiplied by the average bucket latency3

2
· 2b = 3 · 2b−1. A small number

of invocations in buckets 22–25 (1 ms–30 ms) are responsiblefor a large portion of the
operation’s overall delay.

Profile sampling is useful to observe periodic interactionsor analyze profiles generated
by non-monotonic workload generators.

3.1.6 Direct Profiles and Values Correlation

If layered profiling is used, it is possible to correlate peaks on the profiles directly with the
internal OS state. In particular, we first capture our standard latency profiles. Next, we sort
OS requests based on the peak they belong to according to their measured latency. We then
store logarithmic profiles of internal OS parameters in separate profiles for separate peaks.
In many cases this allows us to correlate the values of internal OS variables directly with
the different peaks and thus helps explain them.

We will illustrate all of the above profile analysis methods in Section 7.

3.2 Profiles Analysis Automation

A complete profile of file system activity (e.g., as shown in Figure 3.2) may consist of
dozens of profiles of individual operations. While analyzing these profiles we noticed that
it is easy for people to spot interesting and unusual patterns. However, we also noticed that
there are certain operations which can be automated. For example, it is often useful to select
operations that contribute the most to the total latency under a given workload. Moreover,
it is often desirable to compare two sets of profiles and select a smaller subset of operations
with substantially different latency distributions. For example, a profile of one version of
a file system or one type of workload may be compared with a profile of a different file
system or the same file system under a different workload. Both of these operations can
be performed automatically, leaving a much smaller and simpler set of profiles for manual
analysis. We have designed a set of tests to compare profiles using their latencies, the
counts of operations, and standard statistical independence tests to compare profiles and
calculate their statistical significance.

3.2.1 Individual Profiles Comparison

There are several methods of comparing histograms where only bins with the same index
are matched. Some examples are the chi-squared test, the Minkowski form distance [100],
histogram intersection, and the Kullback-Leibler/Jeffrey divergence [65]. The drawback of
these algorithms is that their results do not take factors such as distance into account be-
cause they report the differences between individual bins rather than looking at the overall

14

 0

 100

 200

 300

 400

 500

 600

 5

 10

 15

 20

 25

 30
 0

 50
 100

 150
 200

 250
 300

 350
 400

 0.1

 1

 10

 100

 1000

N
um

be
r

of
 o

pe
ra

tio
ns

Bucket number:  log
2 (latency in CPU cycles)

Elapsed tim
e (sec)

z

y

x

Figure 3.5: Three-dimensional profile of the Ext2lookup operation under the kernel build
workload.

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05

 5

 10

 15

 20

 25

 30
 0

 50
 100

 150
 200

 250
 300

 350
 400

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

T
ot

al
 d

el
ay

 (
se

c)

Bucket number:  log
2 (latency in CPU cycles)

Elapsed tim
e (sec)

z

y

x

Figure 3.6: Three-dimensional profile of the Ext2lookup operation under the kernel build
workload. Buckets contain their expected total latency.

15

picture. For example, consider a histogram with items only in bucket 1. In a latency pro-
file, shifting the contents of that bucket to the right by ten buckets would be much different
than shifting by one (especially since the scale is logarithmic). These algorithms, however,
would view both cases as simply removing some items from bucket 1, and adding some
items to another bucket, so they would report the same difference for both. We imple-
mented the chi-square test as a representative of this classof algorithms because it is “the
accepted test for differences between binned distributions” [83].

Cross-bin comparison methods compare each bin in one histogram to every bin in the
other histogram. These methods include the quadratic-form, match, and Kolmogorov-
Smirnov distances [20]. Ideally, the algorithm we choose would compare bins of one
histogram with only the relevant bins in the other. These algorithms do not make such
a distinction, and the extra comparisons result in high false positives. We did not test the
Kolmogorov-Smirnov distance because it applies only to continuous distributions.

The Earth Mover’s Distance (EMD) algorithm is a goodness-of-fit test commonly used
in data visualization [89]. The idea is to view one histogramas a mass of earth, and the
other as holes in the ground; the histograms are normalized so that we have exactly enough
earth to fill the hole. The EMD value is the least amount of workneeded to fill the holes
with earth, where a unit of work is moving one unit by one bin. This algorithm does
not suffer from the problems associated with the bin-by-binand the cross-bin comparison
methods, and is specifically designed for visualization. Aswe show in Section 6.3, EMD
indeed outperformed the other algorithms.

3.2.2 Complete Profiles Comparison

We tried to combine some of the above techniques to automate the profiles-selection pro-
cess even further. We developed an automated profiles analysis tool which performs the
following steps:

1. sorts individual profiles of a complete profile according to their total latencies;

2. compares two profiles and calculates their degree of similarity; and

3. performs these steps on two complete sets of profiles to automatically select a small
set of profiles for manual analysis.

The third step operates in three phases. First, it ignores any profile pairs that have
very similar total latencies, or where the total latency or number of operations is very
small, when compared to the rest of the profiles (this threshold is configurable). This
step alone greatly reduces the number of profiles a person would need to analyze. In the
second phase, our tool examines the changes between bins to identify individual peaks,
and reports differences in the number of peaks and their locations. Third, we use one of
several methods to rate the difference between the profiles.These included bin-by-bin and
cross-bin comparison techniques, and the Earth Mover’s Distance algorithm [89]. We also
used two simple comparison methods: the normalized difference of total operations and of
total latency.

We will describe the implementation of these and other algorithms for profiles compar-
ison in Section 5.7 and we evaluate them in Section 6.3.

16

3.3 Multi-Process Profiles

Capturing latency is simple and fast. However, early code-profiling tools rejected latency
as a performance metric, because in multitasking OSs a program can be rescheduled at
an arbitrary point in time, perturbing the results. We show here that rescheduling can
reveal information about internal OS components such as theCPU scheduler, I/O scheduler,
hardware interrupts, and periodic OS processes. Also we show conditions in which these
components can be profiled or their influence ignored. All theprofiles presented in this
section were captured in user level (except the Linux part ofFigure 3.8).

3.3.1 Forcible Preemption Effects

Execution in the kernel is different from execution in user space. Requests executed in the
kernel usually perform limited amounts of CPU activity. Some kernels (e.g., Linux 2.4 and
FreeBSD 5.2) are non-preemptive and therefore a process in the kernel cannot be resched-
uled, unless it voluntarily yields (gives up) the CPU—for example, during an I/O operation
or while waiting on a semaphore. Let us consider a fully preemptive kernel where a pro-
cess can be rescheduled at any point in time. Letnb beb’s bucket content without preemp-
tion enabled andmb be the content of the same bucket with preemption enabled. Clearly,∑

nb =
∑

mb = N , whereN is the total number of profiled requests. A process can be
preempted during the profiled time interval only during itstcpu component. LetQ be the
quantum of time that a process is allowed to run by the scheduler before it is preempted.
A process is never forcibly preempted if it explicitly yields the CPU before running for the
duration ofQ. This is the case in most of the practical scenarios that involve I/O or waiting
on semaphores (i.e., yielding the CPU). LetY be the probability that a process yields dur-
ing a request. For example,Y = 0.01 if the lock contention on an involved semaphore is
1% or if data is not found in the file system cache 1 out of 100 times. The probability that

a process does not yield the CPU duringQ cycles is(1−Y)
(Q

tperiod
)
, wheretperiod is the av-

erage sum of user and system CPU times between requests. If during Q cycles, the process
does not yield the CPU, then it will be preempted during the request with probability tcpu

tperiod

and otherwise it will be preempted in the user level. Therefore, the total probability that a
process is forcibly preempted while being profiled is:

Pr(fp) =
tcpu

tperiod

× (1 − Y)
(Q

tperiod
)

(3.5)

The expected value of preempted requests forN such Bernoulli trials isN × Pr(fp).
We estimate that we can ignore the preemption effects ifN × Pr(fp) < 1. Differential
analysis of Equation 3.5 shows that the function rapidly declines if tperiod ≪ QY (we
assume−ln(1 − Y) ≈ Y for Y < 0.5). For example, the typical CPU times we observed
are in the range of25 − 214 CPU cycles. The longest CPU time spent in the kernel that
we observed was218 CPU cycles. (It was the time of theCreateThread function under
Windows XP while creating a child process.) This is consistent with the earlier observation
that file system operations tend to be around215 CPU cycles long [76]. The value ofQ
on modern OSs is usually on the order of226. Plugging in our typical case numbers for

17

times and 1% yield rate (Y = 0.01, tcpu =
tperiod

2
= 214, Q = 226) we get a small forced

preemption probability:10−9. In the case of the unusually slowCreateThread function,
most of the function code is semaphore-protected and the contention rate is 10%. Plugging
in these numbers (Y = 0.1, tcpu =

tperiod

2
= 218, Q = 226) into Equation 3.5, we get a

forced preemption probability of0.7 × 10−6. The forced preemption probability declines
very rapidly for smallertperiod and higher yield rates. For example, it is as low as10−280 if
tcpu =

tperiod

2
= 210 even forY = 0.01. As illustrated in Figure 3.7,Pr(fp) declines less

rapidly for tperiod ≫ QY (tperiod − tcpu = 225 case). This happens, for example, if the CPU
time spent between profiled requests is large.

Let us now consider a process that never yields the CPU (Y = 0). The probability
for such a process to be preempted during the profiled time interval is tcpu

Q
. Therefore, the

value in the original bucketnb is decreased bynb × tcpu

Q
. These preempted requests show

up in the bucket corresponding totwait + tcpu + (P − 1) × Q, whereP is the total number
of processes running.

Figure 3.8 shows the profiles of two processes reading zero bytes of data from a file
under the Linux 2.6.11 and Windows XP kernels. (Note that Linux profile is captured
by the file system profiler so that we could profile the small peaks in the buckets 7–18.
The Windows profile is captured in the user level because 0-byte read-requests cannot be
profiled by the Windows file-system-level profiler.) Since both processes generate no disk
requests, they are preempted after they run for the durationof the scheduler intervalQ. The
average latency value in bucketb is 2b+2b+1

2
= 3

2
2b. Therefore,

mb = nb − nb

3
2
2b

Q
+

∑

k∈K(b)

nk

3
2
2k

Q
(3.6)

where

K(b) = {k : 0 < k, b = ⌊log(
3

2
2k + (P − 1)Q)⌋}

is the set of buckets such that the corresponding requests fall into the kth bucket if not
preempted and thebth bucket if preempted. Thus, the sum adds up all the values fromall
the bucketsk that go to thebth bucket if the corresponding request execution is preempted.
In particular,3

2
2k + (P − 1)Q is the average latency value for a preempted request whose

latency without preemption corresponds to bucketk. (P − 1)Q is the added latency if each
process is allowed to run for a scheduling quantum of timeQ. The result is calculated with
the±33% precision because the bucket contents can be 33% different from our expected
bucket’s latency mean value. Using the numbers from the Linux profile shown in Figure 3.8
when captured without preemption, we estimate that388±33% (260–516) requests should
be preempted and be moved to the26th bucket. We cannot turn off preemption in Windows,
therefore we use the data from the preemptive profile, ignoring the peak in the26th bucket
(that corresponds toQ). We estimate that2, 290 ± 33% (15,114–30,457) requests should
appear in the26th bucket. The experimental profile with preemption as shown inFigure 3.8
confirmed our conclusions: the26th bucket contained 278 requests for the Linux profile and
2,337 requests for the Windows profile. Note that in order to measure these numbers we
had to generateN = 2 × 108 requests, which is many orders of magnitude higher than

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F
or

ci
bl

e
pr

ee
m

pt
io

n
pr

ob
ab

ili
ty

Bucket number (log2 (tcpu [CPU Cycles]))

215

220

225

 1e-20

 1e-15

 1e-10

 1e-05

 1

 5 10 15 20 25 30

F
or

ci
bl

e
pr

ee
m

pt
io

n
pr

ob
ab

ili
ty

Bucket number (log2 (tcpu [CPU Cycles]))

215

220

225

Figure 3.7: Forcible preemption probability as a function of the bucket number, fortperiod−
tcpu equal to215, 220, and225 (Y = 0.5, Q = 226). Linear Y scale (top) and logarithmic
scale (bottom). Lines fortperiod − tcpu equal to215 and225 are indistinguishable on the top
figure.

19

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 Windows_(preemptive)

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 Linux_(preemptive)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 Linux_(non-preemptive)

5 10 15 20 25 30
Bucket number:  log2(latency in CPU cycles)

Figure 3.8: Profile of a read operation that reads zero bytes of data using a Linux 2.6.11
kernel compiled with in-kernel preemption enabled and the same kernel with preemption
disabled and the same on Windows XP. Note the high number of operations (2 × 108)
necessary to observe the preemption effects.

20

we used in all other profiles. This is because with smallerN , the expected number of
preempted requests is much smaller than 1.

Let Tcpu be the total CPU time spent during the run. (The Sum of the total system and
user times.) We call a workloadCPU-intensiveif Tcpu ≫ NQY andyield-intensiveif
Tcpu ≪ NQY . All the values involved in this equation can be derived fromthe profile.
Note that we assume that the OS is a gray box but the requests generator (a user-level
program) is not; we assume that its user time component can bemeasured using a tool like
time on Linux. Our analysis suggests that preemption effects canbe completely ignored
if the profiled portion of the CPU time and the total number of the profiled requests are
small. In practice, this is usually the case. Even during ourlongest experiment (Linux
kernel compilation),N was below105. If the number of profiled requests or the profiled
CPU times are large, then one needs to estimate the impact of preemption effects and either
issue a smaller number of requests or analyze and possibly ignore the preemption effects.

On the other hand, one needs to generateN ≫ Pr(fb) requests (usually108 or more)
to measure the preemption effects like we did in Figure 3.8. Note that it is possible only
for the CPU-intensive case because in the yield-intensive case,Pr(fp) is astronomically
small and it is not feasible to run the corresponding number of requests. Profiles that
contain a large number of requests show information about low-frequency events such as
hardware interrupts or background kernel threads even if these background events perform
a minimal amount of activity. For example, on the Linux profile shown in Figure 3.8, the
total duration of the profiling process divided by the numberof elements in bucket 13 is
equal to 4 ms. This suggests that this peak corresponds to thetimer interrupt processing.
Higher resolution profiles may help analyze these peaks.

To better observe background OS activity we ran a special workload: we ran one and
two processes in a busy loop. Such workloads measure the latency of our profiler only and,
sometimes, the latency of periodic OS processes. Figure 3.9shows the profiles of 1 and 2
processes that run in a busy loop. The top profile was capturedwith our default resolution
(r = 1) and the bottom one with double resolution (r = 2 in Equation 3.4). As we can
see, the higher resolution allowed us to resolve peaks that were too close to each other. For
example, we can see that a wide peak in buckets 15–17 of the topprofile actually consists
of two smaller peaks.

3.3.2 Wait Times at High CPU Loads

We normally assume that the wait time (twait) is defined by particular events such as I/O or a
wait on a semaphore. However, if the CPU is still busy after thetwait time, servicing another
process, then the request’s latency will be longer than the original latency of Equation 3.1.
Such a profile will still be correct because it will contain information about the affected
twait. However, it will be harder to analyze—it will be shifted to the right; because the
buckets are logarithmic, multiple peaks can become indistinguishable. Fortunately, this
can happen only if the sum of the CPU times of all other processes exceeds the profiled
twait. The average CPU time between requests that havetwait > 0 is Tcpu

NY
. Therefore, if

twait ≫
Tcpu

NY
then there is no influence of other processes on thetwait time of the profiled

process.

21

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 2

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 1

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 2,r=2

N
um

be
r

of
 o

pe
ra

tio
ns

22ns 727ns 23µs 744µs 23ms 762ms
Average bucket latency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08 1,r=2

10 15 20 25 30 35 40 45 50 55 60 65

Bucket number:  log21/2(latency in CPU cycles)

Figure 3.9: Profiles of 1 and 2 processes running in a busy loopand measuring profiler’s
latency captured with our default resolution (r = 1, top) and double resolution (r = 2,
bottom).

22

 1
 10

 100
 1000

 10000 224

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 223

 1
 10

 100
 1000

 10000 222

 1
 10

 100
 1000

 10000 221

 1
 10

 100
 1000

 10000 218

 1
 10

 100
 1000

 10000 216

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.10: Profile of two processes that read files on separate hard drives using direct I/O
under Windows XP with varying amount of CPU activity betweenreads (216, 218, 221, 222,
223, and224 CPU cycles).

23

Figure 3.10 shows a set of profiles captured under Windows XP.Two processes were
randomly reading large files using direct I/O on separate hard drives and performed a
different amount of CPU activity between reads. We used direct I/O to eliminate reada-
head effects and therefore simplify the profile analysis. Here, the total number of requests
N = 20, 000. The six profiles are captured at average CPU times between requestsTcpu

NY

equal to216, 218, 221, 222, 223, and224. As we can see, the profile is affected only iftwait

is less thanTcpu

NY
. Otherwise, an extra peak appears on the profile that corresponds toTcpu

NY

time. We can see on the profiles in Figure 3.10 how this extra peak first splits off from the
peak in the16th bucket and later (as we increase the CPU time between reads) from the
peak in the buckets 19–23.

This effect can be used to analyze workloads with overlapping peaks. Thus, it is pos-
sible to distinguish peaks without atwait component from the peaks that have atwait com-
ponent by varying the user-level CPU time. Also,twait peaks can be moved to the right to
avoid overlapping peaks. (In that case the peak latency should be calculated according to
its original position.)

Influence of processes without wait times. The influence of CPU-only processes on
processes with the wait times can be discarded or easily analyzed. Modern schedulers auto-
matically decrease process priority if it consumes CPU cycles without making I/O requests,
and therefore such processes are unlikely to significantly affect the profiles of I/O-active
processes. Figure 3.11 shows the profiles of a Linux process that was sequentially reading
a large file with and without a background CPU-intensive process running concurrently.
We can see that the I/O-intensive process is barely affectedby the CPU-intensive one. In
particular, out of 10,000 I/O requests, only 3 were rescheduled under Linux and 33 under
Windows. The formed peaks (buckets 24–26) have a well-defined location that corresponds
to (P − 1) × Q.

Interestingly, the Windows and the Linux schedulers exhibit different behavior: the
Linux scheduler penalized the CPU-only process by decreasing itsQ so that we see a peak
in buckets 24–25 instead of 25–26.

24

 1
 10

 100
 1000

 10000 Linux_alone

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 Linux_concurrently

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

 1
 10

 100
 1000

 10000 Windows_alone

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 Windows_concurrently

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.11: Profile of an I/O-active process that sequentially reads data using direct I/O,
run alone and concurrently with another CPU-only process. Ext3 running on Linux 2.6.11
(top) and NTFS running on Windows XP (bottom).

25

3.4 Multi-CPU Profiles

Profiles captured on multi-CPU systems contain informationthat is even harder to capture
using existing tools. For example, multi-CPU profiles include information about spinlocks.
In general, latency profiling on multi-CPU systems is similar to profiling on the uniproces-
sor (UP) systems. However, there are several issues that require special attention.

3.4.1 Time Synchronization

We use CPU counters to measure latency. However, CPU counters on different CPUs have
different values. Therefore, the measured latency may be equal to the true latency with
addition of the CPU clock counters difference if a process isrescheduled and put on a
different CPU while being profiled. (In that case we calculate the latency as the difference
of clock counters on different CPUs.) As in the case of forcible preemption, rescheduling
outside of the profiling interval does not affect our profiles. Modern schedulers attempt to
schedule the same process on the same CPU it was running before, if possible, to avoid
purging CPU caches. However, there is a more significant reason why we can ignore this
problem.

We use logarithmic filtering of latency. Therefore, according to Equation 3.3 we can
ignore the difference between CPU countersδ if δ ≪ tmax. Also, a process or a thread mea-
sures latency on different CPUs only if the process or the thread is rescheduled. Therefore,
tmax ≥ tscheduling. Even for modern CPUs,tscheduling is typically at least several dozens
of microseconds long. However, many CPUs initialize their clock counters to zero at their
initialization time and are synchronized with nanoseconds-scale precision. Also, some OSs
(e.g., Linux) synchronize clock counters on multiple CPUs with a few microsecond preci-
sion. Figure 3.12 shows a special profile generated by two processes on the FreeBSD and
Linux SMP systems with two 2.8 GHz Pentium IV CPUs: one of the processes was con-
stantly reading the Pentium clock counter register (TSC) and storing the result in a shared
variable; the second process was also reading TSC register,calculating its difference with

 1

 10

 100

 1000 Linux

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1

 10

 100

 1000 FreeBSD

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.12: The difference in TSC register values between two CPUs under FreeBSD and
Linux. (Both CPUs were running at 2.8 GHz.)

26

the shared variable and updating the corresponding bucket.The system was otherwise idle
and the two processes were running on different CPUs. As we can see, in case of FreeBSD,
the TSC registers are synchronized with17ns precision. FreeBSD does not attempt to syn-
chronize the clock counters. Linux, on the contrary, attempts to synchronize these counters
with at least4µs precision (2µs difference from the average value for all CPUs). Unfortu-
nately, Linux does it unconditionally and, as we can see in Figure 3.12 (bottom), it actually
makes the CPU synchronization worse. Fortunately, in both cases,δ ≪ tscheduling and we
can ignore the problem due to the logarithmic filtering.

Now let us consider the case when the CPU counters are not initialized at the CPU
initialization time and the OS does not do the synchronization either. First, it is trivial
to synchronize the counters with microsecond-scale precision before performing profiling.
Second, clock counters are usually 64-bit wide. Therefore,if they are left with random
values at the CPU initialization time and no synchronization is performed, with high prob-
ability their difference will be on the order of billions of cycles. In that case, a small fraction
of profiled events will show up in the most significant (rightmost) bucket on the profiles.
(In our implementation, we store events with latencies higher than235 cycles in the bucket
that corresponds to235 cycles.) Therefore, even in case of no CPU synchronization we can
easily identify and discard errors caused by the CPU clock counter difference.

3.4.2 Shared Data Structures

Multiple threads and sometimes multiple processes share and update the same array of
buckets in memory. Therefore, it seems that we need to protect this shared data structure
with either a spinlock, a semaphore, or at least perform bucket updates atomically (e.g.,
using thelock instruction prefix on Pentium CPUs). This is due to two reasons:

1. Several processes running on different CPUs may read the same bucket value, incre-
ment it, and all write the same new value back, thus losing some of the increments.

2. Some write operations are not atomic on some CPUs. For example, writes to the
same non-memory–aligned 64-bit–wide variables by different CPUs may result in
the situation that part of the variable is updated accordingto one write and another
part is updated according to the other CPU’s write.

However, all atomic operations are especially bad for CPU caches in multi-CPU environ-
ments and can significantly influence performance. Thus, on older CPUs, atomic operations
locked the whole memory bus for all CPUs. Modern CPUs only purge one cache line from
all CPUs except the current one. For us this means that if we increment buckets atomically,
we will purge many if not all buckets from the CPU caches of allother CPUs upon every
bucket update. Fortunately, because of the statistical nature of the latency profiling, we can
perform all bucket updates non-atomically as follows:

1. The probability of the occurrence of the first problem described above can be esti-
mated using the classical birthday paradox problem where a “birthday” is the event
that two CPUs update the same bucket and the “year” istbucket

tupdate
“days long”. tupdate

is the time necessary to update the bucket (a memory write), and tbucket is the aver-
age time between requests that result in writing to thesamebucket. Thus, a coarse

27

approximation of the probability that two processes concurrently update the same
bucket is:

1 − e
−

N2
cpu

2
×

tupdate

tbucket (3.7)

whereNcpu is the number of CPUs. This probability is illustrated in Figure 3.13 for
2, 4, 8, 16, 32, 64, 128, and 256 CPUs.tbucket is at least 200 CPU cycles long due to
our profiler overhead itself, whereastupdate is only several cycles long. Therefore, for
a dual CPU system, the probability of two concurrent bucket updates is< 1% even
if our profiler does not measure any real latency and runs in a busy loop. Figure 3.14
shows such a profile captured on a dual Pentium IV machine running Linux. Two
threads where updating the same set of buckets in a busy loop.Out of 10,000,000
total updates there are 95,116 total lost updates (0.95%< 1%). For real workloads,
tbucket is much bigger. For example,tbucket ≈ 222 CPU cycles under thegrep -r
workload. Therefore, the probability of two concurrent writes to the same bucket
under a grep-like multi-threaded workload is< 1% even on a system with 256 CPUs.
It is important to note here that lost updates are much less probable for the buckets
located on the right side of the profiles—buckets we care about the most.

2. In general, the solution to the non-atomic–writes problem is CPU architecture-
specific. However, aligned 32-bit–wide writes are atomic onmost CPUs. We
found 32-bit–wide buckets to be sufficient for all the experiments that we ran.
If that is not enough, aligned 64-bit–wide writes are also atomic on some CPUs
(including Pentiums). The most important observation, however, is that we always
increment buckets by one. Therefore, even if two parts of thebucket can be updated
inconsistently the probability of such event is very low.

One more possible complication may be a race condition if theprofiles are still updated
while reading out the accumulated profiles. To address this,we either read-out the accu-
mulated profiles after the profiling is over, or the profiling time is substantially long. In the
latter case, we can consider the read-out time small.

Given all the above, we do not use atomic operations at any time during profiling.
This allowed us to decrease the CPU-time overheads several times and avoid CPU cache
purging on multi-CPU systems. However, one has to be carefulon systems with a large
number of CPUs. On these systems each thread may be assigned aseparate set of buckets
to avoid any lost bucket updates. This increases memory overheads but eliminates all the
aforementioned problems completely.

3.4.3 Profile Analysis

While profiling and analyzing collected profiles, it is necessary to understand that there is
less contention for CPUs between different processes on multi-CPU systems. For example,
forcible preemption and the wait time changes described in Section 3.3 almost never happen
if there are only two processes that run on two CPUs.

Figures 3.15 and 3.16 show profiles captured on dual-CPU Linux and FreeBSD sys-
tems for 1, 2, and 4 concurrent processes that call theclone system call. (One may also
compare these profiles with the profile shown in Figure 3.1.) In the FreeBSD case, the

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

C
on

cu
rr

en
t b

uc
ke

t u
pd

at
e

pr
ob

ab
ili

ty

Bucket number (log2 (tbucket/tupdate))

2
4
8

16
32
64

128
256

Figure 3.13: The probability of two concurrent writes to thesame bucket, estimated using
Equation 3.7, for systems with 2, 4, 8, 16, 32, 64, 128, and 256CPUs.tbucket is at least 200
CPU cycles long.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

Figure 3.14: Two processes updating the same set of buckets in a loop on a dual-CPU
Linux system. The two CPUs were running at a frequency of 2.8 GHz. Buckets 10 and
above correspond to the background interrupt processing.

29

 1
 10

 100
 1000

 10000 1

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1
 10

 100
 1000

 10000 2

 1
 10

 100
 1000

 10000 4

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

 1
 10

 100
 1000

 10000 1

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1
 10

 100
 1000

 10000 2

 1
 10

 100
 1000

 10000 4

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.15:clone system call concurrently called by 1, 2, and 4 threads on the system
running Linux 2.6.11.1 in uniprocessor (UP) mode (top) and SMP mode (bottom). The two
CPUs were running at 2.8 GHz.

30

 1
 10

 100
 1000

 10000 1

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1
 10

 100
 1000

 10000 2

 1
 10

 100
 1000

 10000 4

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

 1
 10

 100
 1000

 10000 1

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1
 10

 100
 1000

 10000 2

 1
 10

 100
 1000

 10000 4

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.16:clone system call concurrently called by 1, 2, and 4 threads on the system
running FreeBSD 6.0 in uniprocessor (UP) mode (top) and SMP mode (bottom). The two
CPUs were running at 2.8 GHz.

31

profiles captured even with a single thread differ substantially for FreeBSD compiled with
SMP support enabled and disabled. This is because OSs have different locking approaches
in uni-CPU and multi-CPU configurations and even the CPU timealone is different due to
the differences in the functions involved. For example,clone on SMP-enabled FreeBSD
takes twice as long even if there is no process contention.

3.5 Profiling in Virtual Environments

Conceptually, OS profiling inside of Virtual Machines (VMs)is not different from ordinary
profiling. However, it is important to understand that the host (underlying) OS and the VM
itself affect the guest OS’s behavior. Even if there is only one virtual machine running on
the host, its guest OS’s I/O requests will be serviced by the host operating system, which
will affect their timing. In addition, the host OS will affect the caches of the shared CPU.
Therefore, the benchmarking and profiling results collected in VMs do not necessarily
represent the OS behavior running on a system directly. Other VMs running on the same
system exacerbate the problem even more.

Nevertheless, there are two situations when profiling in virtual machines is necessary:

1. It is not always possible or safe to benchmark or profile on areal machine directly.

2. VM developers and developers of systems intended to run inor below virtual envi-
ronments naturally benchmark and profile systems running invirtual environments.

These situations have contradicting requirements. In the first case, it is necessary to mini-
mize the influence of virtualization on the guest OS. In the second case, it is necessary to
profile the interactions between the virtual machines as well as their interactions with the
host OS. Therefore, we use two different approaches to measure the latencies:

1. We use the guest OS’s (apparent) time: for example, in VMware [58] we use the same
CPU clock counter read instruction that we normally use. This allows us to minimize
the influence of other VMs and the host OS on the profiled system. Unfortunately,
this does not provide I/O isolation and depends on the quality of the clock counter
virtualization.

2. We use the host OS’s (wall clock) time, for example by specifying

monitor control.virtual rdtsc = false

in VMware’s configuration file [103]. This allows us to capture all the mutual inter-
actions between the host OS and the VMs.

Profiling in virtual environments is complicated by the factthat the complexity of the
profiled systems increases more than two times. In particular, virtual machines add an
extra layer between the host operating system and the guest operating system(s). Thanks
to layered profiling it is possible to profile at the guest and host OSs concurrently. This
allows us to simplify the profile analysis by attributing profile changes and peaks to the
appropriate profiled layers.

32

Figure 3.17 shows user-mode profiles of the idle loop workload generated by one pro-
cess and captured with four different configurations:

A. This profile was captured on the host OS running without anyvirtual machines. Note
that this profile is different from the profile shown in Figure3.8 on page 20. This
is because the workload was generated by only one process andbecause the host
hardware and OS were different.

B. This workload was executed and the profile was captured on the host OS. An idle vir-
tual machine was running on the background. We can see that the guest OS influences
the host operation even if the guest OS was mostly idle. However, the benchmark’s
elapsed time increased by merely 2%.

C. This profile was captured in the virtual machine using the guest OS’s (apparent) time.
We can clearly see three examples of how VMware poorly emulates the TSC CPU
register. First, most of the time, the measured latency corresponded to the9th bucket
instead of the original3rd. We measured the TSC synchronization error between the
host CPUs and it corresponded to the same9th bucket. Therefore, we suspect that
the peak in the9th bucket appears due to the fact that VMware uses different CPUs
to read the TSC counter during its emulation. Second, the wide peak in buckets
13–21 is yet another significant artifact of the VMware TSC emulation. Third, the
TSC register virtualization is costly and increases the running time of the whole
benchmark by 16 times.

D. We again captured the profile in VMware but this time we usedhost TSC register
to measure the latencies. The profile closely resembles the host profile (configura-
tion A). The differences in the buckets 10–21 are due to the longer interrupts pro-
cessing in VMware. The TSC register emulation in VMware is not just inaccurate
but also adds significant overheads. In particular, in configuration D the benchmark’s
elapsed time was indistinguishable from the elapsed time ofthe same benchmark in
configuration A.

We can conclude that virtual machines profiling is implementation-dependent. Never-
theless, our profiling method is suitable even for such systems.

33

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

D

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

C

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

B

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

A

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 3.17: Idle loop profiles captured on the host running alone (A), on the host running
with one idle VMware on the background (B), running in VMwarecaptured using the guest
OS’ (apparent) time (C), and running in VMware captured using host OS’s time (D). The
host was a dual 2.8 GHz SMP system. We used VMware Workstationv.5.5.2. Both the
host and the guest OSs were running Linux 2.6.17.

34

3.6 Method Summary

Our profiling method reveals useful information about many aspects of internal OS behav-
ior. In general, profilers can be used to investigate known performance problems that are
seen in benchmarks or during normal use, or to search for bottlenecks actively. We have
used our profiler successfully in both ways.

When searching for potential performance issues, we found that a custom workload is
useful to generate a profile that highlights an interesting behavior. In general, we start with
useful but simple workloads and devise more specific, focused workloads as the need arises.
The workload selection is a repetitive-refinement visualization process, but we found that
a small number of profiles tended to be enough to reveal highlyuseful information.

We derived several formulas that allowed us to estimate the effects of preemption. We
showed that for typical workloads (moderate CPU use and small number of system calls)
preemption effects are negligible. Conversely, a different class of workloads (lots of CPU
time and a large number of system calls) can expose preemption effects. This is useful
to derive the characteristics of internal OS components such as the CPU scheduler, I/O
scheduler, and background interrupts and processes. Such information cannot be easily
collected using other methods. While creating the workloads, one should keep in mind
that workloads generated by many active processes can have high CPU loads and split the
latency peaks associated with the wait time. We have demonstrated that for SMP systems,
time synchronization is not a problem and expensive lockingis not necessary.

We do not require source code access, which enables us to use gray-box profiling.
The resulting profiles show which process or operation causes contention with another
operation. For example, the profiles do not show which particular lock or semaphore is
causing a slow-down, because that information is specific toa particular OS and therefore
conflicts with our portability goal. However, as we show in Section 7, the information we
get is sufficient to find out which particular semaphore or lock is problematic if the source
code is available.

Because our method can be used entirely outside of the kernel, it does not exact any
overall overheads on the kernel; therefore, this results inminimal changes to the internal
OS’s behavior. Moreover, the small CPU-time overheads observed when profiling inside
the kernel are added only on a per-request basis without adding any overhead for each
internal event being profiled (e.g., taking a semaphore).

35

Chapter 4

File System Instrumentation (FoSgen)

Looking at Figure 3.4 on page 13, one can notice that it is possible to use standard and
portable API interfaces to intercept at the system call and networking layers. However, it
is also desirable to measure the latency inside of the OS: above and below file systems.
Manual instrumentation of the drivers below file systems is usually not difficult because
there are only a few operation vectors. Unfortunately, manual instrumentation of file sys-
temsis difficult because the number of VFS operations is large. Also, file systems may
significantly change from one version of the OS to another. This makes it necessary to redo
the manual instrumentation work for every new OS release.

Incremental addition of code to file systems is a desirable feature not only for profil-
ing but also for adding many other standard and custom features to existing file systems.
Examples of such other features include tracing [6], compression [115], encryption [112],
secure data deletion [57], data integrity checking [59], and many others.

Stackable file systems can incrementally add functionalityto existing and even future
file systems [115]. Figure 4.1 shows aBase0fsstackable file system that passes through
all the file system operations from theVirtual File System(VFS) to the lower file system.
Unfortunately, stackable file systems add overheads to all file system operations. Direct
file system source code instrumentation produces file systems that run more efficiently,
because only the necessary operations are instrumented andthe compiler has the flexibility
to optimize the code. Unfortunately, such instrumentationrequires manual work for every
file system and every OS version. We decided to combine the benefits of both approaches.

We have designed an automatic file-system instrumentation system we calledFoSgen.
It automatically instruments a subset of file system operations directly in the source code.
If a file system’s source code is unavailable, then FoSgen caninstrument the Base0fs file
system. Base0fs can then be mounted over a file system whose source code is not available,
adding a small overhead but also providing the new functionality.

FoSgen was designed with two assumptions in mind: (1) At a high level of abstrac-
tion, all file systems under different OSs perform similar operations and deal with the
same abstract objects: superblock, files, directories, andlinks; (2) Figure 4.2 shows that
FoSgen processes both the target file system and the new extension (written in the FiST
language [115]). Based on the information contained in both, FoSgen generates a new
instrumented file system. The first assumption allows us to design file system extensions
at a high level of abstraction and the second assumption allows us to adapt these abstract
decisions to a particular file system.

36

Ext2

base0fs
ext2_unlink()

User Process

Lower file system

unlink()

vfs_unlink()

base0fs_unlink()

Virtual File System (VFS)

U
se

r
K

e
rn

e
l

Figure 4.1: The Base0fs stackable file system mounted over Ext2.

FoSgen

Original File System

New File System

FiST Extension

Figure 4.2: FoSgen script operation.

37

4.1 FiST

The FiST language was designed with similar assumptions as FoSgen [115]. Not surpris-
ingly, we decided to use the FiST language to describe file system extensions. FiST files
have a structure similar to the structure of the YACC file format [45]. Every FiST file con-
sists of three sections separated with a%% line. The first section contains code and macros
added to a generated header file. The middle section describes operations that require in-
strumentation. The last section describes routines for a separate generated source file. FiST
is a C-based language. Because popular OSs are written in C, this allows direct insertion
of C code from FiST files into the appropriate locations of filesystem code.

FoSgen can instrument individual file system operations andinsert code at their begin-
ning, before they return, or even replacing the original code. The syntax to specify the
instrumentation target is the following:

%op:name:where {
/* instrumentation code goes here */

}

wherename is the operation name such asunlink or one of the special names:all
to instrument all operations,init to instrument file system module initialization, and
exit to instrument file system module resource deallocation.where can be one of the
following: precall, postcall, andcall to add instrumentation at the beginning, at
the method return, and instead of method, respectively.

4.2 VFS Operation Interception

The source code instrumentation process itself is relatively simple and is based on the
assumption that the file system’s VFS operations are defined within fixed operation vec-
tors. In particular, every VFS operation is a member of one ofseveral data structures
(e.g., struct inode operations). These data structures contain a list of operations
and their associated functions. For example, Figure 4.3 shows the definition of Ext2’s file
operations for directories (top) and FreeBSD NFS vnode operations (bottom). The instru-
mentation script scans every file from the file system source directory for operation vectors,
and stores the function names it discovers in a buffer. Next,the script scans the file system
source files for the functions found during the previous phase.

The Microsoft Windows VFS is based on message passing. Therefore, most (and often
all) file system operations are processed by a single function. As we can see on the top of
Figure 4.4, such a function is assigned to members of theMajorFunction array and can
be found by FoSgen. In turn, the function that is assigned to theMajorFunction ar-
ray assigns an operation completion function by callingIoSetCompletionRoutine. FoSgen
needs to discover both of these functions in order to measurethe latency of requests. This
is possible but it is more complicated than instrumenting Linux and FreeBSD file systems.
In addition, many Windows file system operations, calledFast I/O, are defined similar
to Linux and FreeBSD operations. For example, the bottom part of Figure 4.4 shows the
declarations of Fast I/O operations for a Windows XP filter driver file system [72].

38

struct file_operations ext2_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.readdir = ext2_readdir,
.ioctl = ext2_ioctl,
.fsync = ext2_sync_file,

};

struct vop_vector nfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_access = nfs_access,
.vop_advlock = nfs_advlock,
.vop_close = nfs_close,
.vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_getpages = nfs_getpages,
.vop_putpages = nfs_putpages,
.vop_inactive = nfs_inactive,
.vop_lease = VOP_NULL,
.vop_link = nfs_link,
.vop_lookup = nfs_lookup,
.vop_mkdir = nfs_mkdir,
.vop_mknod = nfs_mknod,
.vop_open = nfs_open,
.vop_print = nfs_print,
.vop_read = nfs_read,
.vop_readdir = nfs_readdir,
.vop_readlink = nfs_readlink,
.vop_reclaim = nfs_reclaim,
.vop_remove = nfs_remove,
.vop_rename = nfs_rename,
.vop_rmdir = nfs_rmdir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symlink = nfs_symlink,
.vop_write = nfs_write,

};

Figure 4.3: Linux Ext2 directory operations (top) and FreeBSD NFS vnode operations (bot-
tom). The Linux kernel exports thegeneric file llseek andgeneric read dir
functions for use by multiple file systems.

39

for(i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) {
DriverObject->MajorFunction[i] = FilemonDispatch;

}

FAST_IO_DISPATCH FastIOHook = {
sizeof(FAST_IO_DISPATCH),
FilemonFastIoCheckifPossible,
FilemonFastIoRead,
FilemonFastIoWrite,
FilemonFastIoQueryBasicInfo,
FilemonFastIoQueryStandardInfo,
FilemonFastIoLock,
FilemonFastIoUnlockSingle,
FilemonFastIoUnlockAll,
FilemonFastIoUnlockAllByKey,
FilemonFastIoDeviceControl,
FilemonFastIoAcquireFile,
FilemonFastIoReleaseFile,
FilemonFastIoDetachDevice,
FilemonFastIoQueryNetworkOpenInfo,
FilemonFastIoAcquireForModWrite,
FilemonFastIoMdlRead,
FilemonFastIoMdlReadComplete,
FilemonFastIoPrepareMdlWrite,
FilemonFastIoMdlWriteComplete,
FilemonFastIoReadCompressed,
FilemonFastIoWriteCompressed,
FilemonFastIoMdlReadCompleteCompressed,
FilemonFastIoMdlWriteCompleteCompressed,
FilemonFastIoQueryOpen,
FilemonFastIoReleaseForModWrite,
FilemonFastIoAcquireForCcFlush,
FilemonFastIoReleaseForCcFlush

};

Figure 4.4: Declaration of normal file system operations (top) andFast I/O operations
(bottom) for a Windows XP filter driver file system.

40

Often, file systems use generic functions exported by the kernel. For example,
Ext2 uses thegeneric read dir kernel function for its read operation and
generic file llseek function for its llseek operation as shown in Figure 4.3.
FoSgen cannot directly instrument external functions. Therefore, FoSgen creates wrapper
functions directly in the file system source files. FoSgen inserts wrapper functions directly
before the corresponding operation declarations (e.g., as shown in Figure 4.3) and changes
the operation declaration itself to refer to the wrapper function instead of the original
one. For example, Figure 4.5 shows how FoSgen transforms theoriginal Ext2 directory
operations vector shown in Figure 4.3 (top) in order to instrument itsread andllseek
functions. (In this example, wrapper functions are not instrumented.) We use wrapper
functions, not inline functions or macros, so that our function has an address for the
operations vector to use. Our wrapper functions are later instrumented and are called
instead of the original external functions.

By looking at the example shown in Figure 4.5, one can see thatFoSgen needs informa-
tion about the function types, and the number and types of thearguments, in order to create
the wrapper functions. That information is available from the Linux header files. Fortu-
nately, file system operation methods are part of the VFS API and do not change much from
one Linux kernel version to another. Therefore, we adopted two solutions. First, FoSgen
can extract all the necessary information from the kernel header files if they are available.
Second, it has a built-in copy of such information for the newest OS versions.

4.3 FiST Support by FoSgen

FoSgen and the FiST language were designed with cross-OS compatibility in mind. Un-
fortunately, OSs are complex and the creation of a completely OS-independent language
to describe OS components is a difficult task. Therefore, FoSgen is a compromise solution
between complete OS-independence and implementation simplicity. FoSgen supports ba-
sic file system abstractions such as avnode. FoSgen converts abstract vnode objects used
in the FiST input file into objects used by target OSs and refers to file properties via a
unified vnode object. For example, FoSgen understands that every vnode under Linux is
represented by several objects: a file, a dentry, and an inode. Thus, FoSgen uses the dentry
object to access the file name, and the inode object to access the file size. At the same
time, developers do not need to know about it and can assume that these are the abstract
vnode properties. Also, FoSgen supports common OS variables and functions. For exam-
ple, it convertsfistMalloc,fistPrintf, and several other functions into appropriate
OS-specific functions. Similarly, FoSgen convertsfistLastErr,%pid, and some other
variables to their appropriate representations on the target OS. This functionality is enough
to create many portable file system extensions entirely in the FiST language. However, OSs
have more variables, functions, and abstractions than we are able to support. Therefore, we
adopted the following model for large extensions: (1) we implement our extension as much
as possible using the FiST language, and (2) we implement complex and OS-specific func-
tionality in the form of separate OS-specific kernel modules. Usually, the FiST component
describes file system instrumentation details. If we see that we repeatedly implement some
functionality as a separate module, we then extend FiST and FoSgen to support it.

41

struct file_operations ext2_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.readdir = ext2_readdir,
.ioctl = ext2_ioctl,
.fsync = ext2_sync_file,

};

loff_t fosgen_generic_file_llseek(
struct file *fosgen_fparam_0,
loff_t fosgen_fparam_1,
int fosgen_fparam_2)

{
return generic_file_llseek(

fosgen_fparam_0,
fosgen_fparam_1,
fosgen_fparam_2);

}

ssize_t fosgen_generic_read_dir(
struct file *fosgen_fparam_0,
char __user *fosgen_fparam_1,
size_t fosgen_fparam_2,
loff_t *fosgen_fparam_3)

{
return generic_read_dir(

fosgen_fparam_0,
fosgen_fparam_1,
fosgen_fparam_2,
fosgen_fparam_3);

}

struct file_operations ext2_dir_operations = {
.llseek = fosgen_generic_file_llseek,
.read = fosgen_generic_read_dir,
.readdir = ext2_readdir,
.ioctl = ext2_ioctl,
.fsync = ext2_sync_file,

};

Figure 4.5: Original Ext2 directory operations vector (top) and its FoSgen-transformed
version with the wrapper functions (bottom).

42

4.4 FSprof.fist

We call our file-system–level profiler FSprof. As shown in Table 4.1, FSprof consists of
three components:

1. file system hooks to intercept file system operations;

2. theaggregate stats library to measure latency and increase the corresponding
bucket values; and

3. a user interface (usually an entry in the/proc file system) to read accumulated
latency distributions by the users.

Component CPU-architecture portability OS portability
File system operations hooks yes yes
aggregate stats library no yes
user interface yes no

Table 4.1: FSprof components and their portability.

The aggregate stats library includes architecture-dependent code to read the
CPU cycle counter. Nevertheless, the architecture-dependent code usually consists of just
a single CPU instruction. User interface implementation isusually OS-specific. We have
created three types of FSprof extensions with different portability:

• Figure 4.6 shows a minimal FiST file system extension necessary to measure the
latency of all file system operations. It inserts function calls to measure the latency at
the beginning and at the end of all file system operations. Thefunctions themselves
(fsprof pre andfsprof post) are implemented in a separate module. This
FSprof extension is portable across all FoSgen-supported OSs.

• An extension common to all systems of the same CPU architecture (e.g., ia64) con-
sists of file system operation hooks and theaggregate stats library. It relies on
an external module for user interface functions.

• A complete FiST extension for Linux systems running on i386 and ia64 architectures
that requires no extra modules is presented in Appendix A. Itcan measure the latency
of file system operations and output the results via the/proc interface.

43

%{
/*
* fsprof.fist: collect latency distributions
* for all file system operations
*
* Copyright (c) 2006 Nikolai Joukov and Erez Zadok
* Copyright (c) 2006 Stony Brook University
*/

unsigned long long fsprof_pre(int op);
void fsprof_post(int op, unsigned long long init_cycle);

%}

debug off;
license "GPL";

%%

%op:all:precall {
unsigned long long fsprof_init_cycle =

fsprof_pre(fistOP_%op);
}

%op:all:postcall {
fsprof_post(fistOP_%op, fsprof_init_cycle);

}

%%

Figure 4.6: A minimal latency profiling FiST extension for FoSgen.

44

4.5 FoSgen Steps

Figure 4.7 shows an original and the generatedwritepage operation code for the Ext2
file system. We can see that FoSgen created a temporary variable to store and report the
internal return value. Let us consider the steps performed by FoSgen during its run.

1. First, FoSgen parses the input FiST file.

2. It replaces simple OS-independent FiST constructions with the appropriate OS-
specific functions or variables. For example, it replacesfistPrintf with
printk if the target OS is Linux.

3. FoSgen scans the file system source files for operation declarations (e.g., as shown in
Figure 4.3).

4. FoSgen looks for an implementation of the methods that require instrumentation.

5. It adds wrapper functions for the methods that require instrumentation but cannot be
found in the file system source files (as shown in Figure 4.5).

6. FoSgen adds the appropriate code at the beginning, at the end, or instead of the
original methods, according to the FiST file specification. At this step FoSgen also
performs method-specific code transformations. For example, it creates temporary
variables likefist local var in Figure 4.7 and replaces%op with the appro-
priate operation name. Also, it binds method-specific variables with the appropri-
ate method parameters (e.g., it maps the vnode of the file to be unlinked with the
unlink method’s parameters).

7. FoSgen createsfist.h files according to the first section of the FiST extension.
Also, FoSgen creates#define declarations for every operation that was instru-
mented and an array of strings with names of these operations. After that, FoSgen
includesfist.h from all the file system source files.

8. Finally, FoSgen generates afist.c file with the appropriate code from the FiST
extension and adds the generatedfist.c to theMakefile.

The FoSgen design allows file system developers to concentrate on their new concepts
or features instead of the implementation for every file system and OS. Even better, if some
OS property changes, developers may not even need to modify the FiST extension.

45

static int ext2_writepage(struct page *page,
struct writeback_control *wbc)

{
return block_write_full_page(page,

ext2_get_block,
wbc);

}

static int ext2_writepage(struct page *page,
struct writeback_control *wbc)

{
unsigned long long fsprof_init_cycle =

fsprof_pre(fistOP_writepage);
{

int fist_local_var = block_write_full_page(page,
ext2_get_block,
wbc);

fsprof_post(fistOP_writepage, fsprof_init_cycle);
return fist_local_var;

}
}

Figure 4.7: An original (top) and an FSprof-instrumented (bottom)writepage operation
of the Linux Ext2 file system.

46

Chapter 5

Implementation

We designed a fast and portableaggregate stats library that sorts and stores latency
statistics in logarithmic buckets. Using that library, we created user-level, file-system-level,
and driver-level profilers for Linux, FreeBSD, and Windows,as shown in Figure 3.4.

Instrumenting Linux and FreeBSD allowed us to capture theirprofiles with low over-
heads and verify some of the results by examining the source code. Instrumenting Windows
XP allowed us to observe its internal behavior, which is not otherwise possible without ac-
cess to the source code. We chose source code instrumentation techniques for the Linux
and FreeBSD profilers for performance and portability reasons. We chose plug-in or binary
rewriting instrumentation for the Windows profilers because source code is not available.

5.1 The aggregatestats Library

This C library provides routines to allocate and free statistics buffers, store request start
times in context variables, calculate request latencies, and store them in the appropriate
buckets. We use the CPU cycle counter (TSC on x86) to measure time because it has
a resolution of tens of nanoseconds, and querying it uses a single instruction. The TSC
register is 64-bit wide and it only overflows once after counting264 CPU cycles (232 seconds
or more than hundred years for a CPU running at 4 GHz).

5.2 POSIX User-Level Profilers

We designed our user-level profiling mechanisms with portability in mind. We directly in-
strumented the source code of several programs used to generate test workloads in such a
way that system calls are replaced with macros that wrap the system call with the appro-
priate profiling code. This way, the same programs can be recompiled for other POSIX-
compliant OSs and immediately used for profiling. The collected profiles are printed to
the standard output upon the program’s exit. Alternatively, we can modify the libraries
to intercept the calls at runtime, letting us profile programs for which source code is not
available.

47

5.3 Windows User-level Profilers

To profile Windows under workloads generated by arbitrary non-open-sourced programs,
we created a runtime system-call profiler. In Windows, system calls are implemented in
a system-provided dynamic link library (DLL) calledkernel32.dll. Our system call
profiler is implemented as a DLL and uses the Detours library [44] to insert instrumentation
functions for each system call of interest. Detours can insert new instrumentation into
arbitrary Win32 functions even during program execution. It implements this by rewriting
the target function images. To exercize a workload, we run a program that executes the test
application and injects the system call profiler DLL into thetest program’s address space.
On initialization, the profiler inserts instrumentation functions for the appropriate Windows
system call. The Detours library implements the instrumentation by creating atrampoline
function that invokes the actual system call being profiled for each instrumented function.
The profiler’s instrumentation functions call the corresponding trampoline function and
capture the timing information.

5.4 Linux and FreeBSD File System Level Profilers

On Linux and FreeBSD source code is available for most file systems. Therefore, we
decided to instrument file systems by directly instrumenting their source code. This allowed
us to profile without perturbing the original file system operation. If the source code is not
available, we can instrument and use stackable file systems [115]. Manual file system
instrumentation is inconvenient because (1) the number of existing file systems is large, (2)
each file system can support dozens of operations, and (3) most importantly, file systems
can significantly change from one version of OS to another.

Before we started working on FoSgen, we created a simpler shell script that usessed
to add profiling code to Linux file systems. The script operates similarly to FoSgen as
described in Section 4: it looks for particular patterns within file-system code. Despite its
simplicity (the script consists of 184sed expressions), the script successfully instrumented
all the file systems we tried it on: Ext2 and Ext3 [19], Reiserfs 3.6 and 4.0 [84], NFS [78],
NTFS [90], and Base0fs [115]—under both Linux kernel versions 2.4.24 and 2.6.11.

5.4.1 FoSgen and FSprof FiST extensions

FoSgen is a general file system instrumentation tool. It can add custom file system exten-
sions under Linux and FreeBSD. More importantly, FoSgen canbe extended to support
more OSs in the future. FoSgen is written inPerl [104]. We believe Perl is an appropriate
choice because most of the time the instrumentation processsearches the code for matches
of regular expressions—a task that Perl is especially suitable for. Aside from string match-
ing and replacing, the instrumentation system parses only small portions of the C code. For
example, it determines the types of functions and their arguments. We found that a simple
top-down parser is sufficient for this purpose.

At the time of this writing, FoSgen can instrument Linux 2.4,Linux 2.6, and FreeBSD 5
file systems. It consists of 607 lines of Perl code. We have successfully applied and verified

48

the functionality of several FiST extensions.
FSprof is our collection of FiST file system extensions that profile latency. We have cre-

ated several such extensions with different portability and convenience characteristics. The
smallest FSprof FiST extension is shown in Figure 4.6 on page44. It describes appropriate
function calls to be inserted at the beginning and at the return points of every file system
operation. The function implementations must be provided in a separate OS-specific mod-
ule. This extension is designed with maximum portability inmind—no extension changes
should be necessary even if FoSgen is extended to support some new OSs. The FSprof
extension described in Appendix A contains all the necessary functionality including the
/proc interface implementation. This extension only works on Linux because of the
Linux-specific/proc interface implementation. The FSprof extension with the/proc
interface that we imported from a separate OS-specific module is portable across Linux
and FreeBSD.

5.5 Windows File System Level Profilers

FoSgen can potentially be extended to support the instrumentation of Windows file systems.
However, most Windows file systems’ source code is unavailable or only partially available.
Also, the Windows VFS API does not change a lot between Windows versions and there
are usually only several functions to instrument due to the message-passing architecture
of Windows file systems. Therefore, we decided to implement the Windows kernel mode
profiler as a file system filter driver [72] that stacks on top oflocal or remote file systems.

In Windows, an OS component called theI/O Managerdefines a standard framework
for all drivers that handle I/O. The majority of I/O requeststo file systems are represented by
a structure called theI/O Request Packet(IRP) that are received via entry points provided by
the file system. The type of an I/O request is identified by two IRP fields: MajorFunction
and MinorFunction. In certain cases, such as when accessingcached data, the overhead
associated with creating an IRP dominates the cost of the entire operation, and so Windows
supports an alternative mechanism called Fast I/O. Our file system profiler intercepts all
IRPs and Fast I/O traffic that is destined to local or remote file systems. Before passing
the I/O request to the lower driver, our profiler begins measuring the latency; when the I/O
request is completely processed, it ends the measurement ofthe I/O operation latency.

5.6 Driver Level Profilers

In Linux, file system writes and asynchronous I/O requests return immediately after
scheduling the I/O request. Therefore, their latency contains no direct information about
the associated I/O times. To detect this information, we instrumented a SCSI device driver
by adding four calls to theaggregate stats library. Windows provides a way to
create stackable device drivers, but we did not create one because the file system layer
profiler in Windows already captures latencies of writes andasynchronous requests.

49

5.7 Profile Analysis Automation

We have implemented several scripts that allow us to sort complete profiles by their char-
acteristics. For example, most profiles shown in this dissertation are sorted based on the
total latency of operations. Also, we have implemented several methods to compare pairs
of individual profiles. In addition, we have combined these methods with several simple
heuristics that allowed us to automate complete profiles analysis even more.

5.7.1 Individual Profiles Comparison

Automatic profiles independence tests are useful to select asmall subset of operations for
manual analysis from a large set of all operations. Also, such tests are useful to verify
similarity of two profiles. Let us call the number of operations in thebth bucket of one
profilenb, and the number of operations in the same bucket of the same operation in another
profilemb. Our goodness-of-fit tests return percent differenceD between two profiles:

TOTOPS The degree of difference between the profiles is equal to the normalized differ-
ence of the total number of operations:

D =
|
∑

ni −
∑

mi|∑
ni

× 100

TOTLAT The degree of difference between the profiles is equal to the normalized differ-
ence of the total latency of a given operation:

D =
|
∑ 3

2
2ni −

∑ 3
2
2mi|

∑ 3
2
2ni

× 100 =
|
∑

2ni −
∑

2mi|
∑

2ni
× 100

CHISQUARE There are several methods of comparing histograms where only bins with
the same index are matched. Some examples are the chi-squared test, the Minkowski
form distance [100], histogram intersection, and the Kullback-Leibler/Jeffrey diver-
gence [65]. The drawback of these algorithms is that their results do not match
human perception. For example, if we had a histogram where only bins 1 and 5 were
filled, and the contents were shifted to the right by one bin, we would not consider
the difference to be too great. The bin-by-bin comparison methods, however, would
consider this more different than if the contents of bin 5 were shifted to bin 2, which
is perceptually more different. We have implemented the chi-square test as a repre-
sentative of this class of algorithms because the chi-square test is “the accepted test
for differences between binned distributions” [83]. It is defined for two histograms
as follows:

χ2 =
∑ (ni − mi)

2

ni + mi

The χ value can be mapped to the probability valueP between 0 and 1, where a
small value indicates a significant difference between the distributions. To match the
semantics and scale of the previous two tests, we presentD = (1−P)×100. We uti-
lized the standardStatistics::Distributions Perl library [64] in the implementation.

50

EARTHMOVER The Earth Mover’s Distance (EMD) algorithm is a goodness-of-fit test
commonly used in data visualization [89]. The idea is to viewone histogram as a
mass of earth, and the other as holes in the ground. The EMD is the least amount
of work needed to fill the holes with earth, where a unit of workis moving one
unit by one bin. This algorithm does not suffer from the problems associated with
bin-by-bin and cross-bin comparison methods, and is specifically designed for visu-
alization. Since the number of operations in the profiles arenot necessarily equal, the
histograms were normalized. We implemented the calculation as a greedy algorithm.

5.7.2 Combined Profile Comparison Methods

We have created several profile comparison methods that combine simple techniques that
we use when manually comparing profiles. We first use the totalnumber of operations and
the total latency to determine if the profiles are very similar, very different, or insignificant
in the context of the set of profiles. In these cases, the analysis is done, and the profiles are
either the same or different (they receive a score of 0 or 100). Otherwise, we distinguish
the peaks on the profiles using derivatives. If the number of peaks differs between the
profiles, or their locations are not similar, the profiles areconsidered to be different (score
of 100). As we will see in Section 6.3, these preparation steps alone significantly decrease
the number of incorrectly classified profiles. If after thesepreparation steps the profile
analysis is not over we can perform further comparisons based on the previously described
algorithms (TOTOPS, TOTLAT, CHISQUARE, andEARTHMOVER). This way, we have
implemented the following two methods:

GROUPOPSIf the peaks in the profiles are similar, the score is the normalized difference
of operations for individual peaks.

GROUPLAT This method is same asGROUPOPS, except that we calculate latency dif-
ferences for individual peaks.

We will evaluate different properties of the implemented methods in Section 6.3.

51

5.8 Representing Results

All our profilers output their collected results to the user in the form of plain text. Plaintext
is more convenient than binary data, because it is directly human-readable and powerful
text processing utilities can be used to analyze it. The overhead associated with generating
the plaintext profile is small, because the results are generally small and reading the profile
is a rare operation. We denote profiles with all zeros using the minus character. Shown
below is a sample profiler output, which consists of the operation name, the number of
operation invocations, and the total operation latency, followed by a timeline of buckets
(sampled profile):

OP_WRITE_SUPER 14 213428976
0 2 0 0 0 0 0 0 0 0

-
0 1 0 0 0 0 0 0 0 0

-
0 1 0 0 0 0 0 0 0

-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

OP_LOOKUP ...

User-mode profilers print results directly to thestderr output. Our Linux and
FreeBSD file system and driver profilers output results via their entries in the/proc
interface. Writing to the per-file-system/proc entry resets the profile’s counters.

We wrote several scripts to generate formatted text views and Gnuplot scripts to produce
2D and 3D plots. All the figures representing profiles in this dissertation were automatically
generated. We found the following two data views for a particular VFS-operation especially
useful:

• The total number of invocations with a given latency (e.g., shown in Figure 3.2).

• The number of invocations with a given latency within each elapsed-time interval
(e.g., shown in Figure 3.5).

More views can be obtained from the original 4D profiles (the four dimensions are 1) op-
eration, 2) latency, 3) number of operations with this latency, and 4) elapsed time interval)
by summing up the values in one or more of the dimensions.

During profiling, the total number of operations is updated before entering the profiled
code and the buckets are updated after returning from it. This allows our data-processing
script to check the profile for consistency. In particular, for every operation, results in all
of the buckets are summed and then compared with the total number of operations. This
way, our data-processing script verification can catch manypotential code instrumentation
errors.

52

5.9 Portability

Each of our instrumentation systems consists of three parts: (1) instrumentation hooks; (2)
the aggregate statistics library, which is common to all of our profiling systems; and (3) a
reporting infrastructure to retrieve buckets and counts.

• The aggregate statistics library is 141 lines of C code, and requires no changes for
different platforms.(Shared among all OSs)

• For POSIX user-space applications, our instrumentation and reporting interface used
68 lines.(Works on most OSs).

• For file systems, we wrote an automatic instrumentation script inbash andsed that
can instrument any file system under 2.4 or 2.6. The shell script is 307 lines and
contains 184 distinctsed expressions. We also wrote 221 lines of C code for the
generic-function wrappers.(Linux-specific)

• FoSgen consists of 607 lines of Perl code.(Linux and FreeBSD)

• In the Linux kernel, we used the/proc interface for reporting, which consists of
163 lines.(Linux-specific).

• The instrumentation hooks for our Linux device driver used 10 lines. (Linux-
specific).

• We used the Detours library [44] for the Windows user-space profiling tool. We
added 457 lines of C code to intercept 112 functions, of which337 lines are repetitive
pre-operation and post-operation hooks.(Windows-specific)

• Our Windows filter driver was based on FileMon [101] and totaled 5,262 lines, of
which 273 were our own C code and 63 of which were string constants. We also
wrote a 229-line user application to retrieve the profile from the kernel.(Windows-
specific)

In sum, our instrumentation system is fairly portable. The aggregate statistics library
runs without changes in several different environments: Unix applications, Windows ap-
plications, and the Linux, FreeBSD, and Windows kernels. POSIX-compliant user-mode
applications are portable across most OSs.Optionalfile system and driver instrumentation
infrastructure is fairly portable and simple. More code is required to implement the profile
reporting infrastructure from the kernel to the user mode. This is partially because we used
a plain text representation of the results. Note that this code is required for any in-kernel
profiler in order to report collected results.

53

Chapter 6

Evaluation

We evaluated the overhead of our Linux 2.6.11 Ext2 file systemprofiler with respect to
memory usage, CPU cache usage, the latency added to each profiled operation, and the
overall execution time. We chose to instrument a file system,instead of a program, be-
cause a file system receives a larger number of requests (due to the VFS calling multiple
operations for some system calls) and it demonstrates higher overheads. Moreover, user-
level profilers primarily add overheads to user time. We conducted all our experiments on a
1.7 GHz Pentium 4 machine with 256KB of cache and 1GB of RAM. Ituses an IDE system
disk, but the benchmarks ran on a dedicated Maxtor Atlas 15,000 RPM 18.4GB Ultra320
SCSI disk with an Adaptec 29160 SCSI controller. We used the Auto-pilot benchmarking
suite [111] to unmount and remount all tested file systems before each benchmark run. We
also ran a program we wrote calledchill that forces the OS to evict unused objects from its
caches by allocating and dirtying as much memory as possible. We ran each test at least
ten times and used the Student-t distribution to compute the 95% confidence intervals for
the mean elapsed, system, user, and wait times. Wait time is the elapsed time less CPU
time and consists mostly of I/O, but process scheduling can also affect it. In each case, the
half-widths of the confidence intervals were less than 5% of the mean.

6.1 Memory Usage and Caches

We evaluated the memory and CPU cache overheads of the file system profiler. The mem-
ory overhead consists of three parts. First, there is some fixed overhead for the aggregation
functions. The initialization functions are seldom used, so the only functions that affect
caches are the instrumentation and sorting functions whichuse 231 bytes. This is below
1% of cache size for all modern CPUs. Second, each VFS operation has code added at its
entry and exit points. For all of the file systems we tested, the code-size overhead was less
than 9KB, which is much smaller than the average memory size of modern computers. The
third memory overhead comes from storing profiling results in memory. A profile occupies
a fixed memory area. Its size depends on the number of implemented file system operations
and is usually less than 4KB.

54

6.2 CPU Time Overheads

To measure the CPU-time overheads, we ran Postmark v1.5 [60]on an unmodified and
on an instrumented Ext2. Postmark simulates the operation of electronic mail servers.
It performs a series of file system operations such as create,delete, append, and read.
As shown in Figure 6.1, we configured Postmark to use the default parameters, but we
increased the defaults to 20,000 files and 200,000 transactions so that the working set is
larger then OS caches and so that I/O requests will reach the disk. This configuration runs
long enough to reach a steady-state and it sufficiently stresses the system.

Overall, the benchmarks showed that wait and user times are not affected by the added
code. The unmodified Ext2 used 18.3 seconds of system time, or16.8% of elapsed time.
The instrumentation code increased system time by 0.73 seconds (4.0%). As seen in Fig-
ure 6.2, there are three additional components added: making function calls, reading the
TSC register, and storing the results in the correct buckets. To understand the details of this
per-operation overheads, we created two additional file systems. The first contains only
empty profiling function bodies, so that the only overhead iscalling the profiling functions.
Here, the system time increase over Ext2 was 0.28 seconds (1.5%). The second file system
read the TSC register, but did not include code to sort the information or store it into buck-
ets. Here, the system time increased by 0.36 seconds over Ext2 (2.0%). Therefore, 1.5% of
system time overheads were due to calling profiling functions, 0.5% were due to reading
the TSC, and 2.0% were due to sorting and storing profile information.

Not all of the overhead is included within the profile results. Only the portion between
the TSC register reads is included in the profile, and therefore it defines the minimum value
possible to record in the buckets. Assuming that an equal fraction of the TSC is read before
and after the operation is counted, the delay between the tworeads is approximately equal
to half of the overhead imposed by the file system that only reads the TSC register. We
computed the average overhead to be 40 cycles per operation.The 40-cycle overhead is
well below most operation latencies, and can influence only the fastest of VFS operations
that perform very little work. For example,sync page is called to write a dirty page to
disk, but it returns immediately if the page is not dirty. In the latter case its latency is at
least 80 cycles long.

set size 512 10240
set number 20000
set seed 42
set transactions 200000
set location /n/test/fsprof
set subdirectories 600
set read 4096
set write 4096
set buffering false
set bias read 5
set bias create 5

Figure 6.1: Postmark configuration that we used for FSprof benchmarking.

55

VFS Entry Point

FSprof_pre Return

Sorting and Storing

Function CallsExt2

FSprof_post Call

FSprof_pre Call

Profiled Code

VFS Operation body

VFS Exit Point

Key:

FSprof_post Return

TSC Read

TSC Read

TSC Read

Full Profiling

Figure 6.2: Profiled function components.

6.3 Profile Analysis Automation

To evaluate our profile analysis automation methods we compared the results of the auto-
matic profile comparison with manual profile comparison. In particular, we analyzed 150
profiles of individual operations from these that we will describe in Chapter 7. We man-
ually classified these profiles into “different” and “same” categories. A false positive (or
a type I error) is an error when two profiles are reported different whereas they are same
according to the manual analysis. A false negative (or a typeII error) is an error when two
profiles are reported same whereas they are different according to the manual analysis. Our
tests return the profile’s difference value. A difference threshold is the value that delimits
decisions of our binary classification based on the test’s return values.

Figures 6.3–6.8 show the dependencies of the number of falsepositives and false nega-
tives on the normalized difference of the two profiles calculated by the six profile compar-
ison methods that we have implemented. As we can see, EMD algorithm had a threshold
region with the smallest error rates of both types. However,both our custom-made methods
GROUPOPS andGROUPLAT have a wide range of difference thresholds where both errors
are below 5%. This means that these methods can produce reliable and stable results for a
wide range of profiles.

56

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.3:TOTOPS test results compared with manual profiles analysis.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.4:TOTLAT test results compared with manual profiles analysis.

57

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.5:CHISQUARE test results compared with manual profiles analysis.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.6:EARTHMOVER test results compared with manual profiles analysis.

58

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.7:GROUPOPS test results compared with manual profiles analysis.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

E
rr

or
 r

at
e

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 6.8:GROUPLAT test results compared with manual profiles analysis.

59

6.4 FoSgen

Finally, we evaluate the efficiency of our FoSgen prototype.Its efficiency is less impor-
tant than the runtime profiling overheads. However, short instrumentation times are more
desirable for file system developers. At first glance it may seem that the process of file
system generation can take a considerable amount of time. Indeed, the generation pro-
cess requires at least two scans of the file system source code. Table 6.1 shows the times
necessary to add (1) secure deletion [57] and (2) FSprof latency profiling extensions to
several popular Linux 2.6.16 and FreeBSD 5.3 file systems andtheir compilation times.
Note that the overheads of compilation times were indistinguishable. As we can see, in
all the cases except Base0fs, the instrumentation times were smaller than the compilation
times of these file systems. This is because Base0fs explicitly implements most existing
file system operations for extensibility reasons. Fortunately, its absolute compilation time
is small compared with other file systems. Also, we can see that FreeBSD instrumentation
is faster than instrumentation of Linux file systems. This isbecause FreeBSD has a simpler
VFS API.

File system OS SecDel addition FSprof addition Compilation
time (seconds) time (seconds) time (seconds)

Ext2 0.3 9.4 14.1
Ext3 0.4 16.8 25.0
vfat 0.2 0.3 2.5
NFS Linux 0.5 20.4 30.2
CIFS 0.6 21.7 28.3
ramfs 0.1 0.6 2.4
Reiserfs 0.6 29.7 33.1
Base0fs 0.3 6.4 5.8
NFS 0.5 7.3 20.2
msdosfs FreeBSD 0.4 3.4 15.3
nullfs 0.1 0.8 6.5

Table 6.1: FoSgen instrumentation times of several Linux 2.6.16 and FreeBSD 5.3 file sys-
tems with secure deletion (SecDel) and latency profiling (FSprof) extensions. The right-
most column shows the original compilation times for these file systems. We performed
the tests with warm file system caches.

60

Chapter 7

Example File System Profiles

In this chapter we describe a few interesting examples that illustrate our method of analyz-
ing file system behavior. We concentrated on profiles of popular disk-based and network
file systems. Such profiles tend to contain a wider spectrum ofevents. We conducted all
experiments on the same hardware setup as described in Section 6. Unless noted otherwise,
we profiled a vanilla Linux 2.6.11 kernel and Windows XP SP2. All profiles presented in
this section are from the file-system level except Figure 7.15.

We ran two workloads to capture the example profiles: agrep -r and arandom-read
on a number of file systems. Thegrep -r workload was generated by thegrep utility
that was recursively reading through all of the files in the Linux 2.6.11 kernel source tree.
We have chosen thegrep -r workload because it is simple but at the same time it triggers
many different file system operations. Therandom-readworkload was generated by two
processes that were randomly reading the same file using direct I/O mode. In particular,
these processes were changing the file pointer position to a random value and reading 512
bytes of data at that position. Of note is that we did not have to use many workloads to
reveal a lot of new and useful information. After capturing just a few profiles, we were able
to spot problematic patterns by simply looking at the profiles of different operations.

7.1 Analyzing Disk Seeks

In Linux, the current file pointer position is stored in thefile data structure, which usually
belongs to a single process. Information such as the file sizeis shared between processes
and is stored in theinode data structure which is unique for any given file. Therefore,
one would expect that a change of the file pointer position would not cause contention be-
tween processes, because only the per-process data structures are updated. The profiles
shown in Figure 7.1 were captured by applying therandom-readworkload. The profile
shows that thellseek operation of one process competes with theread operation of
another process. We see this because thellseek operation profile partially resembles the
read profile and this behavior does not occur with only one processrunning. (On average,
llseek waits for half of the duration that the semaphore is held byread. Therefore, the
correspondingllseek buckets are shifted by one to the left.) This means that a corre-
sponding number ofllseek operations were waiting for theread operation to release

61

 1
 10

 100
 1000

 10000 LLSEEK-PATCHED

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 LLSEEK-UNPATCHED

 1
 10

 100
 1000

 10000 READ

5 10 15 20 25

Bucket number:  log2(latency in CPU cycles) 2 processes
1 process

Figure 7.1: Thellseek operation under random reads.

some lock or a semaphore.
Upon investigation of the source code, we verified that the delays were indeed caused

by thei sem semaphore in the Linux-provided methodgeneric file llseek—a
method which is used by most of the Linux file systems including Ext2 and Ext3. We ob-
served that this contention happens 25% of the time, even with just two processes randomly
reading the same file. We modified the kernel code to resolve this issue as follows. In par-
ticular, we observed that to be consistent with the semantics of other Linux VFS methods,
no semaphore protection is necessary for file objects and it is necessary only for directory
objects. Thellseek profile captured on the modified kernel is shown at the bottom of
Figure 7.1. As we can see, our fix reduced the average time of the llseek from 400
cycles to 120 cycles (a 70% reduction). The improvement is compounded by the fact that
all semaphore and lock-related operations impose high overheads even without contention,
because the semaphore function is called twice and its size is comparable tollseek.
Moreover, semaphore and lock accesses require either locking the whole memory bus or at
least purging the same cache line from all other processors,which can hurt performance on
SMP systems.

We submitted a small patch which fixes this problem and its description to the core
Linux VFS developers, who agreed with our conclusions [47].We ran the same work-
load on a Windows NTFS file system, and found no lock contention. This is because on
Windows, keeping the current file position consistent is left up to user-level applications.

62

7.2 Analyzing File System Read Patterns

We now show how we analyzed various file system I/O patterns under thegrep -rwork-
load. In this workload, we use thegrep utility to search recursively through the Linux
kernel sources for a nonexistent string.

7.2.1 Ext2

Peaks shown in the top profile of Figure 7.2 are common for manyfile system operations
that require hard disk accesses. Here we refer to thereaddir operation peaks by their
order from left to right: first (buckets 6 and 7), second (9–14), third (16 and 17), and fourth
(18–23). A complete profile of Linux 2.6.11 Ext2 under thegrep -r workload is shown
in Figure 7.3. (Notice the differences with a Linux 2.4.24 profile in Figure 3.2 on page 10.)

First peak (buckets 6–7) From the profile of Figure 3.8 we already know that on Linux,
the peak in the6th bucket corresponds to a read of zero bytes of data or any othersimilar
operation that returns right away. Thereaddir function returns directory entries in a
buffer beginning from the current position in the directory. This position is automatically
updated when reading and modifying the directory and can also be set manually. If the cur-
rent position is past the end of the directory,readdir returns immediately (this happens
when a program repeatedly callsreaddir until no more entries are returned). There-
fore, it seems likely that the first peak corresponds to the reads past the end of directory.
One way to verify our hypothesis would be to profile a workloadthat issuesreaddir
calls only after there are no more directory entries to read and then compare the resulting
profiles (differential analysis). However, we can demonstrate our other method of profile
analysis by directly correlating peaks and variables.

To do so, we slightly modified our profiling macros: instead ofstoring the latency
in the buckets we (1) calculated areaddir past EOF value for everyreaddir call
(readdir past EOF = 1 if the file pointer position is greater or equal to the directory

 1
 10

 100
 1000

 10000 READPAGE

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 READDIR

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.2: Profiles of Linux 2.6.11 Ext2readdir (top) andreadpage (bottom) oper-
ations captured for a single run ofgrep -r on a Linux source tree.

63

 1
 10

 100
 1000

 10000 WRITE_SUPER

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 FOLLOW_LINK
 1

 10
 100

 1000
 10000 RELEASE

 1
 10

 100
 1000

 10000 OPEN
 1

 10
 100

 1000
 10000 WRITE_INODE

 1
 10

 100
 1000

 10000 READPAGE
 1

 10
 100

 1000
 10000 PERMISSION

 1
 10

 100
 1000

 10000 ALLOC_INODE
 1

 10
 100

 1000
 10000 WRITEPAGES

 1
 10

 100
 1000

 10000 SYNC_PAGE
 1

 10
 100

 1000
 10000 READDIR

 1
 10

 100
 1000

 10000 READ_INODE
 1

 10
 100

 1000
 10000 LOOKUP

 1
 10

 100
 1000

 10000 READPAGES
 1

 10
 100

 1000
 10000 READ

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.3: Profile of Linux 2.6.11 Ext2 under thegrep -r workload.

64

 1
 10

 100
 1000

 10000 readdir_past_EOF

5 10 15 20 25 30
Bucket number:  log2(readdir_past_EOF x 1,024)N

um
be

r
of

 o
pe

ra
tio

ns

First peak
Other peaks

Figure 7.4: Correlation of thereaddir past EOF ×1, 024 and the peaks in Figure 7.2.

buffer size and is 0 otherwise); (2) if the latency of the current function execution fell within
the range of the first peak, a value of the bucket corresponding to readdir past EOF
×1, 024 was incremented in one profile and in another profile otherwise. The resulting
profiles are shown in Figure 7.4 and prove our hypothesis.

Second peak (buckets 9–14) Thereaddir operation calls thereadpage operation
for pages not found in the cache. Thereadpage profile is a part of the completegrep
-r workload profile and is shown on the bottom in Figure 7.2. During the complete pro-
file preprocessing phase, our automatic profiles analysis tool discovered that the number
of elements in the third and fourth peaks is exactly equal to the number of elements in
thereadpage profile. This immediately suggests that the second peak corresponds to
readdir requests that were satisfied from the cache. Note that the latency ofreadpage
requests is small compared to relatedreaddir requests. That is becausereadpage just
initiates the I/O and does not wait for its completion.

Third peak (buckets 16–17) The third and the fourth peaks of thereaddir operation
correspond to disk I/O requests. The third peak correspondsto the fastest I/O requests
possible. It does not correspond to I/O requests that are still being read from the disk and
thus may require disk rotations or even seeks. This is because the shape of the third peak
is sharp (recall that the Y scale is logarithmic). Partiallyread data requests would have
to wait for partial disk rotations and thus would spread to gradually merge with the fourth
peak. Therefore, the third peak corresponds to I/O requestssatisfied from the disk cache
due to internal disk readahead.

Fourth peak (buckets 18–23) The fourth peak corresponds to requests that may require
seeking with a disk head (track-to-track seek time for our hard drive is 0.3 ms; full stroke
seek time is 8 ms) and waiting for the disk platter to rotate (full disk rotation time is 4 ms).

7.2.2 NTFS and Ext3

It is well known that disk accesses that require disk head seeks take considerably more time
than those that do not; that is why Ext2 and Ext3 use an FFS-like allocation scheme [19].
Inodes in the same directory are stored in the same cylinder group (so they have closer
block numbers).

65

On NTFS, all data and metadata is stored as regular files [96].NTFS has a special file
called amaster file table(MFT), located near the beginning of the partition as a contiguous
disk area (on unfragmented partitions). This file contains information about every file on
the partition. Regular data is stored on the remainder of thepartition. To minimize disk
head seeks, actual file and directory data are put directly into the MFT if the corresponding
data size is smaller than 1.5KB. Figure 7.5 shows theread operation on NTFS running
on Windows and Ext3 running on Linux and the total impact of every bucket. Here, NTFS
uses a normalread operation the first time the file is read and usesFastIO for additional
reads. We combined these two operations in the figure for the purpose of comparing the two
OSs more fairly, and theread operation for NTFS should be understood in this context
for the remainder of the dissertation.

We can see how the on-disk structures for these two file systems affect these bench-
marks. Both graphs have three distinct groups. NTFS is generally divided into the first two
buckets (9–10), the next five (11–15), and the remainder (16–23). Ext3 is generally divided
into the first two buckets (8–9), the next six (10–15), and theremainder (16–22). Based on
the latencies, the first group represents data to be read frommemory, the second group is
when the data is in transit from the disk due to readahead, andthe last group is when the
disk needs to be accessed. Both file systems have a similar number of operations in their
first groups, which is reasonable because we used the same data set for both file systems
and the machines had the same amount of memory. NTFS has more than three times as
many operations in its second group as Ext3 does. From this wecan infer that NTFS has
a more aggressive readahead policy. Finally, Ext3 has 12% more operations in its third
group, but it still has lower latencies than NTFS’s third group. This tells us that although
we go to disk more often on Ext3, the seeks are shorter on average, making the total delays
for going to disk on Ext3 less than NTFS. Going back to Figure 7.1 we can see that disk
head seek times can differ by several orders of magnitude. Therefore, it is sometimes more
important to avoidlong disk head seeks than just any seeks, a fact that is often overlooked
by file-system designers.

 1
 10

 100
 1000

 10000 Ext3

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 NTFS

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.5: Profile ofread operations under thegrep -r workload for Ext3 on Linux and
NTFS on Windows.

66

7.3 Handling Access Time Updates

Access times record when a file was last read. Maintaining them requires disk writes, even
for a read-only workload. This interaction of reads and writes is interesting.

7.3.1 NTFS

NTFS updates a file’satime by writing asynchronously to the file’s attribute, which is
part of the MFT. Theatime is also written to a directory-entry file stored in the same
directory as the file. The writes to the MFT cause long seeks between the data on the disk,
the journal, and the MFT.

The top graph of Figure 7.6 shows the latency distributions for theatime update op-
eration. Because all metadata on NTFS is stored in files, the updates show up as normal
write operations. One can see that thewrite operation spans 9 buckets. Therefore, the
longest write takes 512 times longer than the fastest write that also requires a disk-head
seek. The bottom graph of Figure 7.6 shows theread operation with and withoutatime
updates. Reading has become slower due to seeking between the data being read and the
MFT. Updating theatimes for this workload yielded a 16% average slowdown in elapsed
time. Because of this performance issue, Windows does not keep theatime value current:
NTFS updates it on disk only if the value in memory is at least one hour greater than what
is currently on disk [25]. In addition, there is a registry key that allows users to disable all
atime updates. Fortunately, however,atimes can be read from the local directory entry,
so performance is only affected when they are updated.

7.3.2 Reiserfs and Profiles Sampling

By default, Reiserfs enablestail mergingwhich combines small files and the ends of files
into a single disk block. Figures 7.7–7.9 show the profiles ofthe Reiser 3.6 file system

 1
 10

 100
 1000

 10000 READ

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 WRITE

5 10 15 20 25

Bucket number:  log2(latency in CPU cycles) without atime updates
with atime updates

Figure 7.6: Effects ofatime updates on NTFS operations.

67

in the default configuration, with thenotail option, which disables tail merging, and Reis-
erfs 4.0 respectively.

The first interesting observation we can make is that thewrite super operation on
Reiser 3.6 takes longer than most other operations. The second observation is that there is
a clear correlation between the longestdirty inode, read, andwrite super oper-
ations.

We useprofiles samplingto analyze this behavior further. A sampled profile is similar to
our standard profile, but instead of adding up all of the operations for a given workload, we
divide the profile into fixed-time segments and save each segment separately. We show two
such profiles for thewrite super andread operations on Reiserfs 3.6 on Linux 2.4.24
in Figures 7.10 and 7.11, respectively. The Y axis shows the elapsed time in CPU cycles.
To compare profiles with vastly different maximal values in the buckets, and to allow direct
timeline comparisons, we have also shown the same profiles from a different angle (top
view) on Figure 7.12. The three vertical black stripes on theread profile in that figure
correspond to those peaks already shown in Figure 3.3: cached reads, disk-cached reads,
and reads with a disk-head seek or a platter rotation.

We can see that the long operations are executed every 5 seconds, which suggests that
they are invoked by thebdflush kernel thread to update access time information of the
accessed inodes. On Linux,atime updates are handled by the Linux buffer flushing dae-
mon,bdflush. This daemon writes data out to disk only after a certain amount of time
has passed since the buffer was released; the default is thirty seconds for data and five
seconds for metadata. This means that every five and thirty seconds, file system behavior
may change due to the influence ofbdflush. Updatingatime causes journal writes, so
write super is called to flush the journal. The correlation between several operations is
caused by thewrite super operation, which always takes the Big Kernel Lock (BKL),
a global kernel lock in Linux. The other operations must waitfor thewrite super oper-
ation to finish. This observation is especially important because it shows that Reiserfs 3.6
blocks not only its own operations, but those of other file systems and also many other
kernel functions, for significant periods of time. In Figure7.12, we can see that when the
write super operation is called there are also long-runningread operations since the
rightmost points on both graphs coincide (buckets 25–28). This is because in Reiserfs 3.6,
the whole file system is locked for the duration ofwrite super, and therefore any pro-
cess that attempts to read data has to wait on a semaphore until the write completes. We can
see that this can stop all file-system-related requests for as long as 0.15 seconds (228 CPU
cycles on our 1.7 GHz CPU). Thus, even profiles collected overrelatively long periods of
time can reveal correlations between a test process and a periodic thread running in the
kernel.

The results presented in Figure 7.9 demonstrate that Reiserfs 4.0’s behavior is very
different from that of Reiserfs 3.6. According to the general Linux development trend,
Reiserfs 4.0 never takes the BKL. That is why Reiserfs 4.0 does not use thewrite super
operation—because it is called with the BKL held. This tendsto reduce lock contention
considerably and improves Reiserfs 4.0’s performance overall. However, inode access time
updates are still the longest individual operations in Reiserfs 4.0.

We also noticed that thereaddir operation takes longer on Reiserfs 4.0 than 3.6.
Upon inspection of the Reiserfs 4.0 code, we found out that its readdir operation also

68

 1
 10

 100
 1000

 10000 write_inode

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 release

 1
 10

 100
 1000

 10000 sync_page

 1
 10

 100
 1000

 10000 readdir

 1
 10

 100
 1000

 10000 dirty_inode

 1
 10

 100
 1000

 10000 readpage

 1
 10

 100
 1000

 10000 write_super

 1
 10

 100
 1000

 10000 lookup

 1
 10

 100
 1000

 10000 read

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.7: Profile of Reiserfs 3.6 (default configuration) under thegrep -r workload.

69

 1
 10

 100
 1000

 10000 write_inode

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 release

 1
 10

 100
 1000

 10000 readdir

 1
 10

 100
 1000

 10000 dirty_inode

 1
 10

 100
 1000

 10000 sync_page

 1
 10

 100
 1000

 10000 write_super

 1
 10

 100
 1000

 10000 lookup

 1
 10

 100
 1000

 10000 readpage

 1
 10

 100
 1000

 10000 read

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.8: Profile of Reiserfs 3.6 (withnotail) under thegrep -r workload.

70

 1
 10

 100
 1000

 10000 open

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 permission

 1
 10

 100
 1000

 10000 release

 1
 10

 100
 1000

 10000 alloc_inode

 1
 10

 100
 1000

 10000 sync_inodes

 1
 10

 100
 1000

 10000 readpages

 1
 10

 100
 1000

 10000 sync_page

 1
 10

 100
 1000

 10000 lookup

 1
 10

 100
 1000

 10000 readdir

 1
 10

 100
 1000

 10000 read

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.9: Profile of the Reiserfs 4.0 file system under thegrep -r workload.

71

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 5

 10

 15

 20

 25

 30
 0

 5

 10

 15

 20

 25
 0.1

 1

N
um

be
r

of
 o

pe
ra

tio
ns

Bucket number:  log
2 (latency in CPU cycles)

Elapsed tim
e (sec)

z

y

x

Figure 7.10: Linux 2.4.24 Reiserfs 3.6 (default configuration) write super operation
sampled profile under thegrep -r workload.

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

 5

 10

 15

 20

 25

 30
 0

 5

 10

 15

 20

 25
 0.1

 1

 10

 100

 1000

 10000

N
um

be
r

of
 o

pe
ra

tio
ns

Bucket number:  log
2 (latency in CPU cycles)

Elapsed tim
e (sec)

z

y

x

Figure 7.11: Linux 2.4.24 Reiserfs 3.6 (default configuration) read operation sampled
profile under thegrep -r workload.

72

 0

 5

 10

 15

 20

 25
write_super

E
la

ps
ed

 ti
m

e
(s

ec
)

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 0

 5

 10

 15

 20

 25
read

5 10 15 20 25
Bucket number:  log2(latency in CPU cycles)

> 100 Operations
11-100 Operations

1-10 Operations

Figure 7.12: Linux 2.4.24 Reiserfs 3.6 file-system profiles sampled at 2.5 second intervals.

schedules read-aheads for the inodes of the directory entries being read. This is an opti-
mization which was previously noted by NFSv3 developers—thatreaddir operations are
often followed bystat(2) operations (often the result of users runningls -l); that is
why NFSv3 implements a special protocol message calledREADDIRPLUSwhich combines
directory reading with stat information [17]. Consequently, Reiserfs 4.0 does more work in
readdir, but this initial effort improves subsequentlookup operations. Overall, this is
a good trade-off for this workload: Reiserfs 4.0 used 60.6% less system time and I/O time
than 3.6.

7.3.3 Ext3

Ext3 and most other file systems update theiratime asynchronously, and release the locks
right after initiating the write operation. The two graphs in Figure 7.13 show theread
operation with and withoutatime updates. We can see that the profile for theread oper-

 1
 10

 100
 1000

 10000 Ext3-read

5 10 15 20 25
Bucket number:  log2(latency in CPU cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

without atime updates
with atime updates

Figure 7.13: Effects ofatime updates on Ext3.

73

ation withatime updates enabled on Ext3 is farther to the left than that of NTFS (bottom
graph in Figure 7.6). This is because Ext3 keeps metadata close to its accompanying data,
and so seeks are fairly short. Because of Ext3’s improved locking policies and on-disk
layout, its elapsed time overhead for updating the access times is only 2.8%.

7.4 Analyzing Network File Systems

We connected two identical machines (described in Section 6) with a 100Mbps Ethernet
link and ran ourgrep -r workload on Windows with an NTFS drive shared over CIFS.
Figure 7.14 shows a complete profile of CIFS under thegrep -r workload. We found that
thefindfirst andfindnext operations on the client had peaks that were farther to
the right than any other operation (buckets 26–30 in the top two graphs of Figure 7.15).
These two peaks alone account for 12% of the elapsed time, which was 170 seconds in
total. findfirst searches for file names with a given pattern and returns all matching
file names along with their associated metadata information. It also returns a cookie, which
allows the caller to continue receiving matches by passing it to findnext.

By examining the peaks in other operations on the client and the corresponding requests
on the server, we found that instances of an operation which fall into bucket 18 and higher
(greater than 168µs) involve interaction with the server, whereas buckets to the left of it
were local to the client. All of thefindfirst operations and the two rightmost peaks of
thefindnext operation here go through the server. Since CIFS is a modifiedversion of
the SMB protocol, we tried the samegrep -rworkload with the Windows server and a Linux
client over SMB. The fact that in these cases we did not observe similar peaks, suggests that
the high latencies were attributed to CIFS. Once we determined that the problem was due
to some CIFS client-server interaction, we ran a packet sniffer on the network to investigate
this further.

A timeline for a typicalfindfirst transaction between a Windows client and a Win-
dows server explains the source of the problems, and is shownon the left-hand side of
Figure 7.16. The client begins by sending afindfirst request containing the desired
pattern to search for (e.g., C:\linux-2.6.11*). The server replies with file names
that match this pattern and their associated metadata. Since the reply is too large for one
TCP packet, it is split into three packets (“FIND FIRST reply,” “reply continuation 1,” and
“reply continuation 2”). The acknowledgment (ACK) for “reply continuation 1” is sent im-
mediately, but the ACK for “reply continuation 2” is sent only after approximately 200 ms.
This behavior is adelayed ACK: because TCP can send an ACK in the same packet as other
data, it delays the ACK in the hope that it will soon need to send another packet to the same
destination. Most implementations wait 200 ms for other data to be sent before sending an
ACK on its own. Delaying an ACK is considered to be good behavior, but the Windows
server does not continue to send data until it has received anACK for everything until that
point. This unnecessary synchronous behavior is what causes poor performance for the
findfirst andfindnext operations. After the server receives this ACK, it sends the
client a “transact continuation” SMB packet, indicating that more data is arriving. This is
followed by more pairs of TCP replies and ACKs, with similar delays.

74

 10000

exit

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 10000

EXIT_PROCESS

 10000

GET_CPINFO

 10000

SET_STDHANDLE

 10000

strcmp

 10000

fpreset

 10000

strdup

 10000

GET_STRINGTYPEW

 10000

atexit

 10000

SET_UNHAND

 10000

calloc

 10000

GET_MODULEFNAMEA

 10000

GET_PROCADDRESS

 10000

HEAP_DESTROY

 10000

MBTWC

 10000

isdigit

 10000

WCTMB

 10000

fclose

 10000

strncmp

 10000

LOAD_LIBRARYA

 10000

getenv

 10000

isalnum

 10000

setlocale

 10000

strcat

 10000

strrchr

 10000

malloc

 10000

free

 10000

isatty

 10000

stricmp

 10000

GETLAST_ERROR

 10000

setmode

 10000

strcpy

 10000

memmove

 10000

findclose

 10000

HEAP_REALLOC

 10000

HEAP_ALLOC

 10000

HEAP_FREE

 10000

realloc

 10000

memchr

 10000

GET_FILETYPE

 10000

access

 10000

findnext

 10000

stat

 10000

CLOSE_HANDLE

 10000

close

 10000

fstat

 10000

findfirst

 10000

READ_FILE

 10000

read

 10000

CREATE_FILEA

 10000

open
5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.14: A complete profile of thegrep -r workload on the Windows client over CIFS.

75

 1
 10

 100
 1000

 10000 findnext

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 findfirst

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 7.15: Windows CIFS client operations that sometimestake unusually long time to
complete under thegrep -r workload.

200 m
s

Not to scale.
Time (ms)

Not to scale.
Time (ms)

0
20

23

23

23

224

224

0
19

22

22

23

24

24

Windows
Client Server

Linux
Client Server

WindowsWindows

FIND_NEXT reply (SMB)

transact continuation (SMB)

reply continuation 2 (TCP)

FIND_FIRST reply (SMB)

reply continuation 1 (TCP)

reply continuation 2 (TCP)

FIND_FIRST request (SMB)

reply continuation 1 (TCP)

ACK of continuation 2 (TCP)

ACK of continuation 1 (TCP)

FIND_FIRST reply (SMB)

ACK of continuation 1 (TCP)

FIND_FIRST request (SMB)

FIND_NEXT request (SMB)

ACK of continuation 2 (TCP) +

Figure 7.16: Timelines depicting the messages involved in the handling of afindfirst
request between Windows client and server over CIFS (left) and between a Linux client
and a Windows server over SMB (right). Times are in milliseconds and are representative
of typical latencies (not drawn to scale). Protocols are shown in parentheses.

76

The right-hand side of Figure 7.16 shows a similar timeline for a Linux client interacting
with a Windows server over SMB. The behavior is identical, except that instead of sending
a delayed ACK for “reply continuation 2,” Linux sends afindnext request immediately
that also contains an ACK. This causes the server to return more entries immediately. We
modified a Windows registry key to turn off delayed ACKs, and found that it improved
elapsed time by 20%. This is not a solution to the problem, buta way to approximate
potential performance benefits without waiting on ACKs.

7.5 Influence of Stackable File Systems

We used our method to evaluate the impact of file system stacking on the captured profile.
Figure 7.17 shows the latency distribution of Base0fs, a thin passthrough stackable file
system mounted over Ext2, and a vanilla Ext2 file system, bothevaluated with thegrep -r
workload.

The stacking interface has a relatively small CPU overhead,which affects only the
fastest buckets. Unfortunately, the overheads are different for different VFS operations.
This can be explained by the differences in the way these operations are handled in stack-
able file systems. In particular, some operations are passedthrough with minimal changes,
whereas others require the allocation of VFS objects such asinodes, dentries (directory
entries), or memory pages. As we can see in Figure 7.17, Base0fs’s peaks are generally
shifted to the right of Ext2’s peaks, demonstrating an overall overhead. The overheads of
open andlookup exceed 4K CPU cycles, whereasreaddir has an overhead below 1K
CPU cycles.

VFS objects have different properties on the lower-level and the stackable file systems.
For example, an encryption file system maintains cleartext names and data, but the lower
file system maintains encrypted names and data [115]. Therefore, stackable file systems
create copies of each lower-level object they encounter.

This behavior of stackable file systems adds overheads associated with data copying
and causes distortions in the latencies of their read and write operations. For example,
read page is only invoked by theread operation if the page is not found in the cache.
Therefore, onlyread page operations that require disk accesses are captured and passed
down. Thesync page operation is never invoked because pages associated with Base0fs
inodes are never marked dirty.

Most importantly, duplicate copies of data pages effectively reduce the page cache size
in half. This can result in serious performance overheads when a workload fits into the page
cache but not into less than 50% of the page cache. Unfortunately, in Linux, each page
cache object is linked with the corresponding inode and therefore the double representation
of inodes implies double caching of data pages.

We found a relatively simple solution to the problem, which is not optimal [48] but
allows us to profile the behavior of stackable file systems without the double caching of
data. We use data pages associated with the upper inode for both the lower and upper file
system layers. In particular, the data pages belong to the upper inode but are assigned to
lower-level inodes for the short duration of the lower-level page-based operations. Here is
an example of the modifiedreadpage operation:

77

 1
 10

 100
 1000

 10000 write_super

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 write_inode
 1

 10
 100

 1000
 10000 sync_page

 1
 10

 100
 1000

 10000 revalidate
 1

 10
 100

 1000
 10000 release

 1
 10

 100
 1000

 10000 readpage
 1

 10
 100

 1000
 10000 readlink

 1
 10

 100
 1000

 10000 readdir
 1

 10
 100

 1000
 10000 read_inode

 1
 10

 100
 1000

 10000 read
 1

 10
 100

 1000
 10000 permission

 1
 10

 100
 1000

 10000 open
 1

 10
 100

 1000
 10000 lookup

 1
 10

 100
 1000

 10000 follow_link
 1

 10
 100

 1000
 10000 flush

5 10 15 20 25

Bucket number:  log2(latency in CPU cycles) Wrapfs (Unmodified)
Ext2

Figure 7.17: The distribution of operation latencies for anunmodified Base0fs mounted
over Ext2, and for the Ext2 file system, under agrep -r workload. Profiles are sorted by
operation names.

78

page->mapping = lower_inode->i_mapping;
err = lower_inode->i_mapping->a_ops->readpage(lower_file, page);
page->mapping = upper_inode->i_mapping;

The resulting code allows profiling of page-based operations, and also eliminates data
copying and double caching. We analyzed the Linux kernel functions that directly or in-
directly use inode and cache page connectivity and found that in all these cases, the above
modification works correctly. We tested the resulting stackable file system on a single-CPU
and multi-CPU machines under the compile and Postmark workloads.

As can be seen in Figure 7.18, the no-double-caching patch described above decreases
the system time compared to the original Base0fs, has a cachesize that is the same as Ext2,
and also prevents double caching from influencing the cache-page related operations. In
particular, the profile of the modified file system has virtually no difference from the plain
Ext2 file system for theread, read page, andsync page operations.

Overall, a stackable file system does influence the profile of the lower-level file system,
but it still can be used to profile a subset of VFS operations when the source code is not
available. Even for operations whose latency values are affected by the stackable file sys-
tem, the peaks and overall structure of the profile usually remain the same. Therefore, key
file system and workload characteristics can be collected.

79

 1
 10

 100
 1000

 10000 write_super

N
um

be
r

of
 o

pe
ra

tio
ns

28ns 903ns 28µs 925µs 29ms 947ms
Average bucket latency

 1
 10

 100
 1000

 10000 write_inode
 1

 10
 100

 1000
 10000 sync_page

 1
 10

 100
 1000

 10000 revalidate
 1

 10
 100

 1000
 10000 release

 1
 10

 100
 1000

 10000 readpage
 1

 10
 100

 1000
 10000 readlink

 1
 10

 100
 1000

 10000 readdir
 1

 10
 100

 1000
 10000 read_inode

 1
 10

 100
 1000

 10000 read
 1

 10
 100

 1000
 10000 permission

 1
 10

 100
 1000

 10000 open
 1

 10
 100

 1000
 10000 lookup

 1
 10

 100
 1000

 10000 follow_link
 1

 10
 100

 1000
 10000 flush

5 10 15 20 25

Bucket number:  log2(latency in CPU cycles) Wrapfs (Without Double Caching)
Ext2

Figure 7.18: The distribution of operation latencies for Base0fs without double caching,
mounted over Ext2, and for the Ext2 file system, under agrep -r workload. Profiles are
sorted by operation names.

80

Chapter 8

Using FSprof without Buckets

In Chapter 7 we have considered several examples of file system profiling. However,
FSprof also allows to collect simpler aggregate statisticsabout the file system behavior.
Below we will consider two examples: (1) we will characterize several compilation pro-
cesses by looking at the aggregate number of file system operations and their aggregate
latency; (2) we will use sampling of the number of operation invocations to characterize
the quality of the trace replaying.

8.1 Workload Characterization

Compile benchmarks are often used to evaluate file system behavior [54]. We show that
even seemingly similar mixes of source files generate considerably different VFS operation
mixes. Therefore, results obtained during different compile benchmarks cannot be fairly
compared with each other.

We profiled the build process of three packages commonly usedas compile bench-
marks: (1) SSH 2.1.0, (2) Am-utils 6.1b3, and (3) the Linux 2.4.20 kernel with the default
configuration. Table 8.1 shows the general characteristicsof the packages. The build pro-
cess of these packages consists of a preparation and a compilation phase. The preparation
phase consists of running GNUconfigure scripts for SSH and Am-utils, and running
“make defconfig dep” for the Linux kernel. We analyzed the preparation and com-
pilation phases separately, as well as together (which we call a “whole build”). Before
the preparation and compilation phases, we unmounted the file system in question, purged
the caches using our customchill program, and finally remounted the tested file systems.
For the full build, we performed this cache-purging sequence only before the preparation
phase. This means that the number of invocations of every operation in the case of full build
is the sum of the invocations of the same operation during thepreparation and compilation
stages. However, the full-build delays are not the sum of thepreparation and compilation
delays, because we did not purge the caches between phases for the full build. This way it
was possible to compare the compilation profiles separately. The delays of the compilation
phase, as a part of the build process, can be obtained by subtracting the preparation phase
delays from the full build delays.

Figure 8.1 shows the distribution of the total number of invocations and the total delay

81

of all the Ext2 VFS operations used during the build process of SSH, Am-utils, and the
Linux kernel. Note that each of the three graphs uses different scales for the number of
operations and the total delay.

Figures 8.1(a) and 8.1(b) show that even though the SSH and Am-utils build process
sequence, source-file structure, and total sizes appear to be similar, their operation mixes
are quite different; moreover, the fact that SSH has nearly three times the lines of code
of Am-utils is also not apparent from analyzing the figures. In particular, the preparation
phase dominates in the case of Am-utils whereas the compilation phase dominates the SSH
build. More importantly, an Am-utils build writes more thanit reads, whereas the SSH
build reads more than it writes: the ratio of the number of reads to the number of writes
is 26,458

35,060
= 0.75 for Am-utils and 42,381

33,108
= 1.28 for SSH. This can result in performance

differences for read-oriented or write-oriented file systems.
Not surprisingly, the kernel build process’s profile differs from both SSH and Am-utils.

As can be seen in Figure 8.1(c), both of the kernel build phases are strongly read biased.
Another interesting observation is that the kernel build phase populates the cache with most
of the meta-data and data early on. Figures 3.5 and 3.6 on page15 show the profile of the
lookup operation during the kernel build process, where we see thatthe preparation phase
causes the vast majority oflookups that incur disk I/O.

Table 8.2 shows thelookup operation’s latency peaks for different build processes.
We can see that the Am-utils build process has the least cachemisses. Therefore, it has the
minimal averagelookup operation delay (the only metric measurable by some other ker-
nel profilers such as kernprof [94]). SSH’s averagelookup delay is only slightly higher
because the higher percentage of misses is compensated by the high fraction of disk oper-

Am-utils SSH Linux Kernel
Directories 25 54 608
Files 430 637 11,352
Lines of Code 61,513 170,239 4,490,349
Code Size (Bytes) 1,691,153 5,313,257 126,735,431
Total Size (Bytes) 8,441,856 9,068,544 174,755,840

Table 8.1: Compile benchmarks’ characteristics.

Am-utils SSH Linux Kernel
Fastest peak 1,817 2,848 10,423
Middle peak 9 48 79
Slowest peak 25 32 227
Page cache misses (%) 1.9 2.7 2.9
Average delay 83,022 95,697 186,672

Table 8.2: Distribution of the Ext2lookup operations among the three peaks shown in
Figure 3.5 on page 15 representing a page cache hit (buckets 10–15), a disk buffer cache
hit (buckets 15–19), and a long disk rotation or a head seek (buckets 20 and above). The
page cache miss ratio is calculated as the sum of the operations in the middle and slowest
peaks over the total number of operations.

82

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

both
commit_write

create

delete_inode

follow_link

ioctl

link

llseek

lookup

mkdir

mmap

open

prepare_write

put_inode

read

readdir

read_inode

readpage

release

rename

rmdir

symlink

sync_page

truncate

unlink

write

write_inode

O
peration

Number of operations (x103)

Total delay (106 CPU cycles)

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

com
pilation

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

preparation

N
um

ber of operations
T

otal delay (C
P

U
 cycles)

 15
 30
 45

 100
 200
 300
 400

both

commit_write

create

delete_inode

follow_link

ioctl

llseek

lookup

mkdir

mmap

open

prepare_write

put_inode

read

readdir

read_inode

readpage

release

rename

rmdir

symlink

sync_page

truncate

unlink

write

write_inode

O
peration

Number of operations (x103)

Total delay (106 CPU cycles)

 15
 30
 45

 100
 200
 300
 400

com
pilation

 15
 30
 45

 100
 200
 300
 400

preparation

N
um

ber of operations
T

otal delay (C
P

U
 cycles)

 50
 100
 150
 200

 1000
 2000
 3000
 4000
 5000

both

commit_write

create

delete_inode

follow_link

ioctl

llseek

lookup

mkdir

mmap

open

prepare_write

put_inode

read

readdir

read_inode

readpage

release

rename

symlink

sync_page

truncate

unlink

write

write_inode

O
peration

Number of operations (x103)

Total delay (106 CPU cycles)
 50

 100
 150
 200

 1000
 2000
 3000
 4000
 5000

com
pilation

 50
 100
 150
 200

 1000
 2000
 3000
 4000
 5000

preparation

N
um

ber of operations
T

otal delay (C
P

U
 cycles)

F
ig

u
re

8
.1

:
O

p
eratio

n
m

ixes
d

u
rin

g
a

co
m

p
ilatio

n
as

seen
b

y
t

h
e

E
xt2

file
system

.
F

ro
m

to
p

to
b

o
tto

m
:

(a)
S

S
H

2
.1

.0
,(b

)
A

m
-u

tils
6

.1
b

3
,an

d
(c)

Lin
u

x
2

.4
.2

0
.

N
o

te
th

ateach
p

lo
t

u
ses

a
d

ifferen
tn

o
n

-lo
g

arith
m

ic
scale.

8
3

ations that do not require long disk-head seeks. The Linux kernel build process incurs a
higher proportion of buffer cache misses and at the same timehas a high proportion of the
long disk requests. Therefore, its averagelookup delay is the highest.

We see that not only can we not directly compare different compile benchmarks, but
we can also not extrapolate results based on summary information about the source files
such as the package size, number of lines of code, etc. The order and type of file-system
operations can seriously change the delay of VFS operations, and hence the benchmark’s
CPU and I/O times.

8.2 Quality of Replaying Analysis

Replayfs is a VFS-level file system trace replayer that we developed [55]. We used FoSgen
and FiST latency profiling extension for its evaluation. In particular, we collected sampled
profiles during trace capture and trace replaying directly at the file system level (albeit
we did not use the latency values in the profiles that we collected). We captured profiles to
calculate the timing error of our trace replaying as a function of the elapsed time. Figure 8.2
shows the timing error dependence while replaying the Am-utils package [80] compilation
trace. The corresponding VFS operation invocation rates are shown in Figure 8.3.

 0

 200

 400

 600

 800

 1000

50 100 150 200 250
Time (seconds)

T
im

in
g

er
ro

r
(m

ic
ro

se
co

nd
s)

Figure 8.2: The difference between tracing and replaying rates.

84

 4000
 3000
 2000
 1000

LLSEEK

50 100 150 200 250
Time (seconds)

N
um

be
r

of
 o

pe
ra

tio
ns

 100
 75
 50
 25

READDIR

 40
 30
 20
 10

TRUNCATE

 100
 75
 50
 25

SETATTR

 6000
 4500
 3000
 1500

PERMISSION

 1000
 750
 500
 250

OPEN

 1000
 750
 500
 250

RELEASE

 20
 15
 10
 5

READPAGE

 4000
 3000
 2000
 1000

PREPARE_WRITE

 4000
 3000
 2000
 1000

COMMIT_WRITE

 200
 150
 100
 50

CREATE

 200
 150
 100
 50

LOOKUP

 40
 30
 20
 10

UNLINK

 10.0
 7.5
 5.0
 2.5

SYMLINK

 10.0
 7.5
 5.0
 2.5

MKDIR

 4.0
 3.0
 2.0
 1.0

RMDIR

 20
 15
 10
 5

RENAME

Replayfs
Tracefs

Figure 8.3: A comparison of traced and replayed rates.

85

Chapter 9

Case Study: RAIF

In Chapter 7 we presented several profiling examples of file systems developed earlier.
However, the profiling method that we developed is especially useful for file system devel-
opment. In our laboratory we are constantly developing new file systems and design other
OS components. We found it necessary and most convenient to use latency profiling while
working onall five of the following file systems: Replayfs [55], RAIF [52], UnionFS [109],
secure deletion Ext3 extensions [51, 57], ACIDFS [108], as well as Kefence [50] and some
other unpublished projects we were working on during the past year. In this chapter we
describe a typical example of the latency analysis usage to optimize a file system during its
development phase.

9.1 Redundant Array of Independent Filesystems

Redundant Array of Independent Filesystems (RAIF) is the first RAID-like storage system
designed at the file system level that imposes virtually no restrictions on the underlying
stores and allows per-file storage policy configuration.

For many years, grouping hard disks together to form RAIDs has been considered a key
technique for improving storage survivability and increasing data access bandwidth [77].
However, most of the existing hardware and software RAID implementations require that
the storage devices underneath be of one type. For example, several network stores and a
local hard drive cannot be seamlessly used to create a RAID. RAID configurations are fixed
and are the same for all the files because hardware and software RAIDs operate at the data-
block level, where high level meta-information is not available. This results in inefficient
storage utilization when important data is stored with the same redundancy level as less-
important data. Other common RAID limitations are related to long-term maintenance. For
example, data recovery is slow and may require a restart if interrupted.

There are several implementations of RAID-like file server systems that combine net-
work servers [4, 38], or even combine network and local drives [35]. However, past systems
targeted some particular usage scenario and had a fixed architecture. Inflexibilities intro-
duced at design time often result in sub-optimal resource utilization. RAIF leverages the
RAID design principles at the file system level, and offers better configurability, flexibility
and ease of use in managing data security, survivability, and performance.

86

NFS

VersionFS

iso9660

E
i

TmpFS

NCryptFS

RAIF

AVFS

V

Memory/Swap

C

Ext3

ROM Local Disks

GzipFS

GN

LAN

User Process

Virtual File System (VFS)

rename()

vfs_rename()

raif_rename()

avfs_rename()

K
e

rn
e

l
U

se
r

Figure 9.1: A possible combination of RAIF fan-out stackingand other file systems stacked
linearly. Letters below RAIF denote the branch labels.

87

File system development is as difficult as any OS code development: the kernel is
a complex environment that is unforgiving to mistakes. Developers have always sought
methods to speed up OS code development and techniques that will result in having to write
less code. RAIF is a fan-out RAID-like stackable file system.Stackable file systems are
a useful and well-known technique for adding functionalityto existing file systems [115].
They allow for the incremental addition of features and can be dynamically loaded as ex-
ternal kernel modules. Stackable file systems overlay another lower file system, intercept
file system events and data bound from user processes to the lower file system, and in turn
manipulate the lower file system’s operations and data, and pass the changed ones down to
the lower file system. Developing stackable file systems is easier than developing native
file systems. For example, a basic stackable encryption file system need only intercept data
buffers that come from thewrite system call and encrypt those buffers before passing
them to the lower file system; similarly, buffers are intercepted inread and decrypted
before being returned to user processes. Past stackable filesystems developed by us and
others have assumed a simple one-to-one mapping: the stackable file system was layered
on top of one lower directory on a single file system. A different class of file systems that
use a one-to-many mapping (afan-out) has been previously suggested [39, 87] and was
recently included in the FiST [110, 115] templates.

RAIF derives its usefulness from three main features: flexibility of configurations, ac-
cess to high-level information, and easier administration.

1. As a stackable file system RAIF can be mounted over any combination of lower file
systems. For example, it can be mounted over several networkfile systems like NFS
and Samba, AFS distributed file systems [42], and local file systems at the same time;
in one such configuration, fast local branches may be used forparity in a RAID4-like
configuration. If the network mounts are slow, we could explore techniques such as
data recovery from parity even if nothing has failed, because it may be faster to re-
construct the data using parity than to wait for the last datablock to arrive. Stackable
file systems can be mounted on top of each other. Examples of existing stackable file
systems are: an encryption [112], data-integrity verification [59], an antivirus [73],
and a compression file system [114]. These file systems can be mounted over RAIF
as well as below it over only some slow or untrusted branches.Figure 9.1 shows an
example RAIF mount configuration.

2. RAIF operates at the file system level and has access to high-level file system meta-
data that is not available to traditional RAIDs operating atthe block level. This
meta-data information can be used to store files of differenttypes using different
RAID levels, optimizing data placement and readahead algorithms to take into ac-
count varying access patterns for different file types. For example, RAIF can on one
hand stripe large multimedia files across different branches for performance, but use
two parity pages for important financial data files that must be available even in the
face of two failures. Dynamic RAIF-level migration offers additional benefits.

3. Third, administration is easier because files are stored on ordinary unmodified lower-
level file systems. Therefore, the size of these lower file systems can be changed,

88

they can be easily backed up using standard software. The data is easier to recover
in the case of failure because it is stored in a more accessible format.

9.2 Benchmarking with Postmark

We have evaluated RAIF performance on a DELL PowerEdge server with a 2.8GHz CPU
and 2GB of RAM. We used an external disk array consisting of four Maxtor Atlas 15,000
RPM 18.4GB Ultra320 SCSI disks (same as in Section 6). We usedthe Auto-pilot bench-
marking suite [111] to run all of the benchmarks. The lower-level file systems were re-
mounted before every benchmark run to purge the page cache. We ran each test at least
ten times and used the Student-t distribution to compute 95% confidence intervals for the
mean elapsed, system, user, and wait times. Wait time is the elapsed time less CPU time
used and consists mostly of I/O, but process scheduling can also affect it. In each case the
half-widths of the confidence intervals were less than 5% of the mean.

For the remainder of the evaluation, we useRAIFL-B to refer to RAIF levelL with B

branches. We useRAIDL-B to refer to the Linux RAID driver, whereL andB have the
same meaning as in RAIF.

Postmark v1.5 [60] simulates the operation of electronic mail servers. It performs a
series of file appends, reads, creations, and deletions, showing how RAIF might behave
in an I/O-intensive environment. We chose a Postmark configuration to stress the I/O:
it creates 60,000 files, between 512–10K bytes, and performs600,000 transactions. All
operations were selected with equal probability. Note thatthis Postmark configuration is
different from the one described in Section 6 because of the faster CPU that we used here.
Figure 9.2 shows the Postmark configuration file that we used.Every other Postmark’s op-
eration is either acreate or anunlink. Due to VFS restrictions, these RAIF operations
are executed sequentially on lower branches and are CPU-intensive. This makes Postmark
a challenging benchmark for RAIF.

We ran Postmark for 2, 3, and 4 branches under RAID and RAIF levels 0, 1, 4, and 5.

set size 512 10240
set number 60000
set seed 42
set transactions 600000
set location /n/test/raif
set subdirectories 600
set read 4096
set write 4096
set buffering false
set bias read 5
set bias create 5

Figure 9.2: Postmark configuration that we used for RAIF benchmarking.

89

 0

 50

 100

 150

 200

 250

RAIF0-4RAIF0-3RAIF0-2RAID0-4RAID0-3RAID0-2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

181.3 182.1

198.4

215.1
228.7

239.4Wait
User

System

Figure 9.3: Postmark results for RAID0 and RAIF0 with varying number of branches.

 0

 50

 100

 150

 200

 250

RAIF1-4RAIF1-3RAIF1-2RAID1-4RAID1-3RAID1-2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

172.0 173.2 177.6

217.5
226.0 229.6Wait

User
System

Figure 9.4: Postmark results for RAID1 and RAIF1 with varying number of branches.

90

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

RAIF4-4RAIF4-3RAID4-4RAID4-3

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

633.3

704.7

341.2 324.3

Wait
User

System

Figure 9.5: Postmark results for RAID4 and RAIF4 with varying number of branches.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

RAIF5-4RAIF5-3HWRAID5-4HWRAID5-3RAID5-4RAID5-3

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

666.7

711.2

403.3
385.4 369.8

334.0

Wait
User

System

Figure 9.6: Postmark results for RAID5 and RAIF5 with varying number of branches.

91

9.2.1 RAIF0

As we can see from Figure 9.3,RAIF0-2 was 18.6% slower thanRAID0-2, due to a 59.1%
increase in system time and a 32.4% increase in wait time. Theperformance degraded
slightly when more branches were added (overheads of 25.6% and 20.7% for three and
four branches, respectively). This was due to the increasedsystem time associated with
extra branches.

9.2.2 RAIF1

Figure 9.4 shows the benchmarking results for RAID1 and RAIF1. The results for RAIF1
were similar to those for RAIF0, with similar increases to system time overheads as more
branches were added. In this case, the elapsed time overheads were 26.4%, 30.5%, and
29.3% for configurations with 2, 3, and 4 branches, respectively. For RAIF1, we release
cache pages of lower file systems after all write operations.This allowed us to decrease
RAIF1-3 andRAIF1-4 overheads by approximately ten times.

9.2.3 RAIF4

Figure 9.5 shows the benchmarking results for RAID4 and RAIF4. Whereas the system
time of RAIF4 was higher than RAID4, the wait time was significantly lower, resulting in
overall better performance. The system time ofRAIF4-3 was 2.2 times that ofRAID4-3,
but it had 67.6% less wait time, resulting in a 46.1% improvement. Similarly, the system
time of RAIF4-4 was 2.3 times that ofRAID4-4, but the wait time was reduced by 75.8%,
resulting in an overall improvement of 54.0%.

9.2.4 RAIF5

Figure 9.6 shows the benchmarking results for RAID5, a hardware RAID card (HWRAID),
and RAIF5. RAID5 and RAIF5 performance was similar to RAID4 and RAIF4. For
RAIF5-3, system time was 2.1 times that ofRAID5-3, wait time was 63.8% lower, and
there was an overall improvement of 44.5%. The system time ofRAIF5-4 was 2.4 times
that of RAID5-4, the wait time improved by 74.3%, and the elapsed time improved by
53.0%.

We also benchmarked one of the hardware implementations of RAID5, and RAIF5 was
faster than that implementation as well. In particular, we benchmarked the Adaptec 2120S
SCSI RAID card with an Intel 80302 processor and 64MB of RAM. The hardware and
driver-level implementations had similar system time overheads.RAIF5-3 had 28.6% less
wait time thanHWRAID5-3, and was 8.3% faster overall.RAIF5-4 had 41.5% wait time
improvement overHWRAID5-3, and the elapsed time improved by 13.3%.

To understand why RAIF4 and RAIF5 performed so well under thePostmark workload
we collected several latency profiles, which we will describe next.

92

9.3 RAIF5 Profiling

First, we profiled the Ext2 file systems mounted below RAIF to verify that the results are
not caused by possible bugs in RAIF which could be related to non-equal load distribu-
tion. We compared these profiles using our analysis automation script (using theTOTOPS
method). We verified that RAIF distributes requests to lowerbranches equally with only a
5% deviation.

Second, we profiled Ext2 mounted over the Linux RAID5 driver and Ext2 mounted
below RAIF5, as shown in Figures 9.7 and 9.8 respectively. Inboth cases these systems
operated over four disks. In the figures, all operations are sorted based on their total laten-
cies. As we can see, all read-related operations complete quickly from the caches and do
not require waiting for the disk accesses. However,write operation takes a lot of time in
both cases.

Using theTOTLAT method we can see thatwritepages method took the longest
total time for Ext2 mounted over RAID5. Both thewritepages and thewrite inode
operations are called asynchronously by the kernel and bothof them result in block-level
writes. Not surprizingly, both of them are similarly processed by the block-level RAID5
driver. The rightmost peak that we can see in Figure 9.7 on thewritepages profile
(buckets 20–28) and the peak on thewrite inode profile (buckets 22–27) are caused
by the long disk head seeks. In particular, the Linux RAID driver experienced 6,669 long
disk head seeks while writing dirty buffers to the disk. RAIF, on the other hand, waited for
only 1,664 disk head seek operations (buckets 20–26). Also,these seek operations were
much shorter than in the case of the RAID driver. This is because RAIF operates above file
system caches and parity pages are cached as normal data pages. Linux RAID, however,
operates with buffers logically below file system caches. This means that the Linux RAID
driver has to read existing parity pages from the disk for partial-block write operations.

Finally, we profiled Ext2 using the Adaptec 2120S RAID5 controller as shown in Fig-
ure 9.9. In this case, thewritepages operation completes quickly. This is because our
hardware RAID5 controller cached requests using its 64MB-big cache and returned control
back to the main system without waiting for the parity calculation and issuing disk read and
write requests. However, sometimes this cache was not enough and somewrite inode
operations were performed synchronously. In particular, just 60 such requests (buckets
26–29) took about 20 seconds of time.

Overall, we can see that RAIF performs well for write-oriented workloads because
it efficiently caches both data and parity pages using all available memory in the system.
Driver-level RAID, however, only caches data pages and mustread many parity pages from
the disk frequently, incurring long disk head seeks. Entry-level hardware RAID controllers
offload some of the CPU processing and use their memory to cache both data and parity.
However, the on-board CPUs of such cards are relatively slowand their amount of memory
is small. Therefore, we can see that RAIF is a cost effective solution that allows us to utilize
the CPU time and all system memory on-demand and leave it for other tasks when they are
not needed.

93

 10
 1000

 100000 readdir

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 10
 1000

 100000 readpage
 10

 1000
 100000 write_super

 10
 1000

 100000 rmdir
 10

 1000
 100000 sync_page

 10
 1000

 100000 clear_inode
 10

 1000
 100000 mkdir

 10
 1000

 100000 open
 10

 1000
 100000 destroy_inode

 10
 1000

 100000 alloc_inode
 10

 1000
 100000 release

 10
 1000

 100000 permission
 10

 1000
 100000 commit_write

 10
 1000

 100000 truncate
 10

 1000
 100000 unlink

 10
 1000

 100000 read
 10

 1000
 100000 lookup

 10
 1000

 100000 create
 10

 1000
 100000 prepare_write

 10
 1000

 100000 write_inode
 10

 1000
 100000 write

 10
 1000

 100000 writepages
5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 9.7: The profile of Ext2 mounted over the Linux RAID5 driver with four disks using
the Postmark workload.

94

 10
 1000

 100000 setattr

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 10
 1000

 100000 readdir
 10

 1000
 100000 sync_page

 10
 1000

 100000 readpage
 10

 1000
 100000 write_super

 10
 1000

 100000 rmdir
 10

 1000
 100000 write_inode

 10
 1000

 100000 mkdir
 10

 1000
 100000 clear_inode

 10
 1000

 100000 open
 10

 1000
 100000 destroy_inode

 10
 1000

 100000 alloc_inode
 10

 1000
 100000 release

 10
 1000

 100000 commit_write
 10

 1000
 100000 truncate

 10
 1000

 100000 read
 10

 1000
 100000 permission

 10
 1000

 100000 unlink
 10

 1000
 100000 prepare_write

 10
 1000

 100000 lookup
 10

 1000
 100000 create

 10
 1000

 100000 writepages
 10

 1000
 100000 write

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 9.8: The profile of Ext2 mounted under RAIF5 using the Postmark workload.

95

 10
 1000

 100000 readpage

N
um

be
r

of
 o

pe
ra

tio
ns

17ns 548ns 17µs 561µs 17ms 575ms
Average bucket latency

 10
 1000

 100000 sync_page
 10

 1000
 100000 write_super

 10
 1000

 100000 rmdir
 10

 1000
 100000 clear_inode

 10
 1000

 100000 open
 10

 1000
 100000 destroy_inode

 10
 1000

 100000 alloc_inode
 10

 1000
 100000 release

 10
 1000

 100000 mkdir
 10

 1000
 100000 permission

 10
 1000

 100000 commit_write
 10

 1000
 100000 truncate

 10
 1000

 100000 writepages
 10

 1000
 100000 unlink

 10
 1000

 100000 read
 10

 1000
 100000 lookup

 10
 1000

 100000 create
 10

 1000
 100000 prepare_write

 10
 1000

 100000 write
 10

 1000
 100000 write_inode

5 10 15 20 25 30

Bucket number:  log2(latency in CPU cycles)

Figure 9.9: The profile of Ext2 using the Adaptec 2120S hardware RAID5 controller with
four disks using the Postmark workload.

96

9.4 Prior and Related Work

Preliminary description of the RAIF architecture was published in [52]. Since then we
changed the RAIF architecture in may ways. The major changesare related to storing per-
file information, introduction of the policy-based management, and the re-architecture of
the page-cache–related operations to improve performance.

9.4.1 Fan-Out Stackable File Systems

A class of stackable file systems known asfan-outfile systems mount on top of more than
one file system to provide useful functionality [39, 87]. However, so far the most common
application of fan-out has been unification [9, 40, 63, 79, 109]. Unification file systems
present users with a merged view of files stored on several lower branches. RAIF is a
stackable fan-out file system that can mount on top of severalunderlying file systems to
provide RAID-like functionality.

9.4.2 Block-Level RAID

Replication and striping of data (possibly combined with the use of error-correction codes)
has been commonly used for decades. It is a common way to improve data survivabil-
ity and performance on homogeneous [77] and heterogeneous [26] configurations of local
hard drives. Modern block-level virtualization systems [43] rely on Storage Area Network
(SAN) protocols such as iSCSI [3] to support remote block devices. The idea of using dif-
ferent RAID levels for different data access patterns at theblock level was used in several
projects at the driver [35] and hardware [106] levels. However, the lack of higher-level
information forced the developers to make decisions based either on statistical information
or semantics of particular file systems [95]. Exposed RAID (E×RAID [28]) reveals infor-
mation about parallelism and failure isolation boundaries, performance, and failure char-
acteristics to the file systems. Informed Log-structured file system (I.LFS) uses E×RAID
for dynamic load balancing, user control of file replication, and delayed replication of
files. RAIF already operates at the file system level and possesses all the meta informa-
tion it needs to make intelligent storage optimization decisions [28]. Solaris’s ZFS is both
a driver and a file system [99]. Despite having all the necessary information, it supports
storage policies on a storage-pool basis only. This means that whole devices and whole file
systems use the same storage policies. RAIF provides more versatile virtualization on a
per-file basis.

9.4.3 File-System–Level RAID

Higher level storage virtualization systems operate on files [33]. Their clients work as file
systems that send networked requests to the servers [1, 38].Clients find files on servers
using dedicated meta-servers or hash functions [41]. Ceph and Zebra are distributed file
systems that use per-file RAID levels and striping with parity [38, 105]. They have ded-
icated meta servers to locate the data. Ursa Minor’s networking protocol supports spe-
cial properties for storage fault handling [1]. Coda’s client file system is a wrapper over

97

a pseudo-device that directly communicates with a user-mode caching server [62]. The
server replicates data on other similar servers.

File-system–level storage virtualization systems can support per-file storage policies.
However, they still have fixed and inflexible architectures.In contrast, RAIF’s stacking
architecture allows it to utilize the functionality of existing file systems transparently and to
support a variety of configurations without any modifications to file systems’ source code.
Thus, RAIF can use any state-of-the-art and even future file systems. Also, any changes to
the built-in protocols of any fixed storage virtualization system will require significant time
and effort and may break the compatibility between the storage nodes.

9.4.4 Storage Utilization

Storage resizing is handled differently by different storage-virtualization systems. For ex-
ample, ZFS starts by lazily writing new data to newly added disks (which are initially free)
and old disks [99]. Similarly, specially designed hash functions can indirectly cause more
data to be written to the newly added disk [41]. This approachworks only if all old data
eventually gets overwritten, which is not the case in many long-term storage systems. An
alternative approach is to migrate the data in the background [23, 34]. RAIF supports both
lazy and background data migration.

9.4.5 Load Balancing

Media-distribution servers use data striping and replication to distribute the load among
servers [4, 23]. The stripe unit size and the degree of striping have been shown to influence
the performance of these servers [93]. Replication in RAIF uses proportional-share load
balancing using the expected delay as the load metric. This approach is generally advocated
for heterogeneous systems [91]. However, the number of performed I/O operations may be
a better metric when the workload includes a mix of random andsequential operations [67].

Quality of service and fair resource sharing is another concern in shared storage sys-
tems [22, 43].

9.4.6 RAID Survivability

Remote mirroring is a popular storage disaster-recovery solution [61]. In addition to data
replication, distributed RAID systems [97] usem/n redundancy schemes [85] to minimize
the extra storage needs. RAIF can use a number of remote branches to store remote data
copies or parity.

Two popular solutions to the silent data corruption problem[13] are journalling [29]
(e.g., using non-volatile memory) and log-structured writes [28, 99]. RAIF can support
journalling with no major design changes.

98

Chapter 10

Conclusions

We designed a new file system profiling method that is versatile, portable, and efficient.
The method allows the person profiling to consider and analyze the OS and the events be-
ing profiled at a high level of abstraction. In particular, the events can be anything that
contributes to the OS execution latencies. The resulting profiles indicate pathologies and
their dependencies. Access to the source code allows us to investigate these abstract char-
acteristics such as lock or semaphore contentions. However, even without the source code,
most of the problems can be described and studied in detail. In addition to its versatility,
our method also allows profiling with high precision of about40 CPU cycles and negligi-
ble overheads of only about 200 CPU cycles per profiled operation. The collected profiles
are small and do not require the use of locks, which is especially important for SMP sys-
tems. When run with an I/O-intensive workload, we measured elapsed time overhead of
less than 1%.

The developed method is intuitive and allows us to easily spot pathological patterns,
anomalies, or simply differences in behavior—the job that the “computers” behind our eyes
can perform especially well. However, to aid this analysis,we have implemented a set of
special scripts that can select a smaller set of profiles or highlight the desired characteristics.
This way we automate the tasks that computers on our desks areespecially good for.

Our profiles can be captured entirely from the user-level. However, to collect even more
information and to decrease the overheads even further we have captured profiles at the file
system level. We have designed a flexible file system source code instrumentation system
called FoSgen. FoSgen parses extensions written using the FiST language and applies
them to Linux and FreeBSD file systems. FSprof is one such file system extension that can
measure the latencies of all file system operations and collect them in the buckets. We have
also created a stackable profiling file system for Windows filesystems.

We used our method to collect and analyze profiles for task schedulers and several pop-
ular Windows, FreeBSD, and Linux file systems (Ext2, Ext3, Reiserfs, NTFS, NFS, CIFS,
and Base0fs). We discovered, investigated, and explained multi-model latency distributions
within several common file system operations. We also identified pathological performance
problems related to lock contention, network protocol inconsistency, and I/O interference.
We have shown how we used the developed latency profiling method to explain the perfor-
mance of RAIF—a RAID-like file system that we developed.

99

10.1 Future Work

In this section we describe possible future research directions of our profiling method.

• Latency profiling produces small and informative profiles. This feature is especially
suitable for profiling of distributed systems because capture and collection of profiles
generates almost no inter-node traffic. Therefore, we plan to implement a distributed
highly scalable profiling system.

• Captured profiles are small and can be analyzed in a short time. We plan to create a
system for large scale automatic performance problems detection. In particular, we
plan to profile file systems under random workloads and concurrently analyze these
profiles to discover performance problems or implementation bugs.

• In this dissertation we focused on file system profiling. Nevertheless, this profiling
method is applicable to most if not all OS components. We planto apply our method
to more OSs and a variety of their subsystems. We anticipate that higher resolution
profiles will allow us to discover and explain infrequent OS events.

• The generated profiles contain multi-dimensional information. We have used simple
two- and three-dimensional views for its visualization. More advanced scientific
data visualization methods may make the process of visual analysis easier and more
efficient.

• It is hard to profile and analyze systems behavior in virtual machines. OSprof can be
used to capture and correlate events at all the levels: in VMsand on the host OS. We
plan to use OSprof to find performance problems in VMware and Xen.

• In this dissertation we provided several examples of layered profiling. However, lay-
ered profiling can be performed at the granularity of every function. In that case, one
would need a system for selective instrumentation of involved functions to minimize
overheads.

• FoSgen supports Linux and FreeBSD operating systems. As we discussed before, it
can be extended to support Windows. Also, it is clear that it can potentially support
Solaris and other OSs whose VFS is similar to FreeBSD’s or Linux’s.

• We plan to extend FoSgen to support more possible instrumentation extensions. For
example, FoSgen is an ideal solution to add tracing functionality directly to file sys-
tems. This solution would be similar to the Tracefs stackable file system [6] but
would have smaller overheads. Another example is a journalling FiST extension. If
applied by FoSgen, such an extension could add journalling functionality to existing
non-journalling file systems.

• RAIF is a promising new approach to RAID systems development. The addition of
journal support for write operations can significantly increase its reliability. Such a
journal could be stored on another hard drive or a battery-backed RAM.

100

Bibliography

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. Ganger, J. Hendricks, A. J. Klosterman,
M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk,
E. Thereska, M. Wachs, and J. J. Wylie. Ursa Minor: VersatileCluster-based Storage. In
Proceedings of the Fourth USENIX Conference on File and Storage Technologies (FAST
’05), pages 59–72, San Francisco, CA, December 2005. USENIX Association.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, andA. Muthitacharoen. Perfor-
mance debugging for distributed systems of black boxes. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 74–89, Bolton Landing, NY,
October 2003. ACM SIGOPS.

[3] S. Aiken, D. Grunwald, A. R. Pleszkun, and J. Willeke. A Performance Analysis of the iSCSI
Protocol. InProceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’03), pages 123–134. IEEE Computer Society, April 2003.

[4] S. Anastasiadis, K. Sevcik, and M. Stumm. Maximizing Throughput in Replicated Disk
Striping of Variable Bit-Rate Streams. InProceedings of the Annual USENIX Technical
Conference, pages 191–204, Monterey, CA, June 2002.

[5] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S. A. Leung, R. L.
Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.Continuous profiling: Where
have all the cycles gone? InProceedings of the 16th Symposium on Operating Systems
Principles (SOSP ’97), pages 1–14, Saint Malo, France, October 1997. ACM.

[6] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File System to Trace Them All. InPro-
ceedings of the Third USENIX Conference on File and Storage Technologies (FAST 2004),
pages 129–143, San Francisco, CA, March/April 2004. USENIXAssociation.

[7] A. C. Arpaci-Dusseau. Implicit coscheduling: Coordinated scheduling with implicit infor-
mation in distributed system.ACM Transactions on Computer Systems (TOCS), 19(3):283–
331, August 2001.

[8] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and Control in Gray-Box
Systems. InProceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 43–56, Banff, Canada, October 2001. ACM.

[9] AT&T Bell Laboratories.Plan 9 – Programmer’s Manual, March 1995.

[10] Bell Laboratories.prof, January 1979. Unix Programmer’s Manual, Section 1.

[11] P. J. Braam. The Lustre Storage Architecture.www.lustre.org/documentation.
html, October 2002.

[12] A. Brown and M. Seltzer. Operating System Benchmarkingin the Wake of Lmbench: A
Case Study of the Performance of NetBSD on the Intel x86 Architecture. InProceedings
of the 1997 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 214–224. ACM Press, June 1997.

101

[13] N. Brown. Re: raid5 write performance, November 2005.http://www.mail-
archive.com/linux-raid@vger.kernel.org/msg02886.html.

[14] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform
infrastructure for application performance tuning using hardware counters. InProceedings
of the 2000 ACM/IEEE conference on Supercomputing, pages 42–54, 2000.

[15] R. Bryant and J. Hawkes. Lockmeter: Highly-informative instrumentation for spin locks in
the Linux kernel. InProceedings of the 4th Annual Linux Showcase and Conference, pages
271–282, Atlanta, GA, October 2000. USENIX Association.

[16] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Exploiting Gray-
Box Knowledge of Buffer-Cache Contents. InProceedings of the Annual USENIX Technical
Conference, pages 29–44, Monterey, CA, June 2002. USENIX Association.

[17] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Specification. Tech-
nical Report RFC 1813, Network Working Group, June 1995.

[18] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. DynamicInstrumentation of Production
Systems. InProceedings of the Annual USENIX Technical Conference, pages 15–28, 2004.

[19] R. Card, T. Ts’o, and S. Tweedie. Design and implementation of the second extended filesys-
tem. In Proceedings to the First Dutch International Symposium on Linux, Seattle, WA,
December 1994.

[20] Chakravarti, Laha, and Roy.Handbook of Methods of Applied Statistics, Volume I. John
Wiley and Sons, 1967.

[21] M. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and E. Brewer. Path-Based Failure
and Evolution Management. In1st USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI ’04), pages 309–322, San Francisco, CA, March 2004. USENIX
Association.

[22] T. Chiueh, K. Gopalan, A. Neogi, C. Li, S. Sharma, S. Shan, J. Chen, W. Li, N. Joukov,
J. Zhang, F. Hsu, F. Guo, and S. Doong. Sago: A Network Resource Management System for
Real-Time Content Distribution. InProceedings of the International Conference on Parallel
and Distributed Systems (ICPADS’02), pages 557–562, National Central University, Taiwan,
ROC, December 2002.

[23] C. Chou, L. Golubchik, and J. C. S. Lui. Striping doesn’tscale: How to achieve scalability
for continuous media servers with replication. InInternational Conference on Distributed
Computing Systems, pages 64–71, Taipei, Taiwan, April 2000.

[24] W. Cohen. Gaining insight into the Linux kernel with Kprobes.RedHat Magazine, March
2005.

[25] Microsoft Corporation. Microsoft Windows XP Professional Resource Kit Docu-
mentation: Optimizing NTFS Performance.www.microsoft.com/resources/
documentation/Windows/XP/all/reskit/en%2Dus/.

[26] T. Cortes and J. Labarta. Extending Heterogeneity to RAID level 5. InProceedings of the
Annual USENIX Technical Conference, Boston, MA, June 2001. USENIX Association.

[27] E. Cota-Robles and J. Held. A Comparison of Windows Driver Model Latency Performance
on Windows NT and Windows 98. InProceedings of the Third Symposium on Operating Sys-
tems Design and Implementation (OSDI 1999), pages 159–172, New Orleans, LA, February
1999. ACM SIGOPS.

[28] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging the information
gap in storage protocol stacks. InProceedings of the Annual USENIX Technical Conference,
pages 177–190, Monterey, CA, June 2002. USENIX Association.

102

[29] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Journal-guided Resyn-
chronization for Software RAID. InProceedings of the Fourth USENIX Conference on File
and Storage Technologies (FAST ’05), pages 87–100, San Francisco, CA, December 2005.
USENIX Association.

[30] P. Druschel and G. Banga. Lazy Receiver Processing (LRP): A Network Subsystem Archi-
tecture for Server Systems. InProceedings of the Second Symposium on Operating Systems
Design and Implementation (OSDI 1996), pages 261–275, Seattle, WA, October 1996.

[31] D. Ellard and M. Seltzer. New NFS Tracing Tools and Techniques for System Analysis. In
Proceedings of the Annual USENIX Conference on Large Installation Systems Administra-
tion, San Diego, CA, October 2003. USENIX Association.

[32] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using Latency to Evaluate Interactive System
Performance. InProceedings of the Second Symposium on Operating Systems Design and
Implementation (OSDI 1996), pages 185–199, Seattle, WA, October 1996.

[33] G. A. Gibson, D. F. Nagle, W. Courtright II, N. Lanza, P. Mazaitis, M. Unangst, and J. Ze-
lenka. NASD Scalable Storage Systems. InProceedings of the 1999 USENIX Extreme Linux
Workshop, Monterey, CA, June 1999.

[34] T. Gibson.Long-term Unix File System Activity and the Efficacy of Automatic File Migration.
PhD thesis, Department of Computer Science, University of Maryland Baltimore County,
May 1998.

[35] K. Gopinath, N. Muppalaneni, N. Suresh Kumar, and P. Risbood. A 3-tier RAID stor-
age system with RAID1, RAID5, and compressed RAID5 for Linux. In Proceedings of
the FREENIX Track at the 2000 USENIX Annual Technical Conference, pages 21–34, San
Diego, CA, June 2000. USENIX Association.

[36] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution profiler. In
Proceedings of the 1982 SIGPLAN symposium on Compiler construction, pages 120–126,
June 1982.

[37] LBNL Network Research Group. The TCPDump/Libpcap site. www.tcpdump.org,
February 2003.

[38] J. Hartman and J. Ousterhout. The Zebra Striped NetworkFile System. InProceedings of the
14th Symposium on Operating Systems Principles, pages 29–43, Asheville, NC, December
1993. ACM.

[39] J. S. Heidemann and G. J. Popek. File system developmentwith stackable layers.ACM
Transactions on Computer Systems, 12(1):58–89, February 1994.

[40] D. Hendricks. A Filesystem For Software Development. In Proceedings of the USENIX
Summer Conference, pages 333–340, Anaheim, CA, June 1990.

[41] R. J. Honicky and E. Miller. Replication Under ScalableHashing: A Family of Algorithms
for Scalable Decentralized Data Distribution. InProceedings of the 18th International Par-
allel and Distributed Processing Symposium (IPDPS 2004), April 2004.

[42] J. H. Howard. An Overview of the Andrew File System. InProceedings of the Winter
USENIX Technical Conference, February 1988.

[43] L. Huang, G. Peng, and T. Chiueh. Multi-dimensional Storage Virtualization. InProceedings
of the 2004 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 14–24. ACM Press, June 2004.

[44] G. Hunt and D. Brubacher. Detours: Binary Interceptionof Win32 Functions. InProceed-
ings of the 3rd USENIX Windows NT Symposium, July 1999.

103

[45] S. C. Johnson. Yacc – Yet Another Compiler-Compiler. Technical Report CS-TR-32, Bell
Laboratories, Murray Hill, NJ, July 1975.

[46] M. Jones and J. Regehr. The Problems You’re Having May not Be the Problems You Think
You’re Having: Results from a Latency Study of Windows NT. InProceedings of the 1999
Workshop on Hot Topics in Operating Systems (HotOS VII), pages 96–102, Rio Rico, AZ,
March 1999.

[47] N. Joukov. [PATCH-2.6] isem contention in 2.6.10 genericfile llseek, Febru-
ary 2005.http://www.mail-archive.com/linux-fsdevel@vger.kernel.
org/msg01628.html.

[48] N. Joukov. Re: [RFC] Support for stackable file systems on top of nfs,
November 2005. http://marc.theaimsgroup.com/?l=linux-fsdevel&m=
113193082115222.

[49] N. Joukov, R. Iyer, A. Traeger, C. P. Wright, and E. Zadok. Versatile, Portable, and Effi-
cient OS Profiling via Latency Analysis. InProceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), Brighton, UK, October 2005. ACM Press. Poster
presentation,http://doi.acm.org/10.1145/1095810.1118607.

[50] N. Joukov, A. Kashyap, G. Sivathanu, and E. Zadok. Kefence: An electric fence for kernel
buffers. InProceedings of the First ACM Workshop on Storage Security and Survivability
(StorageSS 2005), pages 37–43, FairFax, VA, November 2005. ACM. (Won best short
paper award).

[51] N. Joukov, H. Papaxenopoulos, and E. Zadok. Secure deletion myths, issues, and solutions.
In Proceedings of the Second ACM Workshop on Storage Security and Survivability (Stor-
ageSS 2006), pages 61–66, Alexandria, VA, October 2006. ACM.

[52] N. Joukov, A. Rai, and E. Zadok. Increasing distributedstorage survivability with a stackable
raid-like file system. InProceedings of the 2005 IEEE/ACM Workshop on Cluster Security,
in conjunction with the Fifth IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2005), pages 82–89, Cardiff, UK, May 2005. IEEE. (Won best
paper award).

[53] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Operating System Profiling via
Latency Analysis. InProceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 89–102, Seattle, WA, November 2006. ACM SIGOPS.

[54] N. Joukov, A. Traeger, C. P. Wright, and E. Zadok. Benchmarking File System Benchmarks.
Technical Report FSL-05-04, Computer Science Department,Stony Brook University, De-
cember 2005.www.fsl.cs.sunysb.edu/docs/fsbench/fsbench.pdf.

[55] N. Joukov, T. Wong, and E. Zadok. Accurate and efficient replaying of file system traces.
In Proceedings of the Fourth USENIX Conference on File and Storage Technologies (FAST
’05), pages 337–350, San Francisco, CA, December 2005. USENIX Association.

[56] N. Joukov, C. P. Wright, and E. Zadok. FSprof: An In-Kernel File System Operations
Profiler. Technical Report FSL-04-06, Computer Science Department, Stony Brook Univer-
sity, November 2004.www.fsl.cs.sunysb.edu/docs/aggregate_stats-tr/
aggregate_stats.pdf.

[57] N. Joukov and E. Zadok. Adding Secure Deletion to Your Favorite File System. InPro-
ceedings of the third international IEEE Security In Storage Workshop (SISW 2005), pages
63–70, San Francisco, CA, December 2005. IEEE Computer Society.

[58] A. S. Kale. Vmware: Virtual machines software.www.vmware.com, 2001.

104

[59] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel Integrity Checker
and Intrusion Detection File System. InProceedings of the 18th USENIX Large Installation
System Administration Conference (LISA 2004), pages 69–79, Atlanta, GA, November 2004.
USENIX Association.

[60] J. Katcher. PostMark: A New Filesystem Benchmark. Technical Report TR3022, Network
Appliance, 1997.www.netapp.com/tech_library/3022.html.

[61] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for disasters. InPro-
ceedings of the Third USENIX Conference on File and Storage Technologies (FAST 2004),
pages 59–72, San Francisco, CA, March/April 2004.

[62] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In
Proceedings of 13th ACM Symposium on Operating Systems Principles, pages 213–225,
Asilomar Conference Center, Pacific Grove, CA, October 1991. ACM Press.

[63] D. G. Korn and E. Krell. A New Dimension for the Unix File System. Software-Practice
and Experience, 20(S1):19–34, June 1990.

[64] M. Kospach.Statistics::Distributions - Perl module for calculating critical values and upper
probabilities of common statistical distributions, December 2003.

[65] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22(1):79–86, March 1951.

[66] J. Levon and P. Elie. Oprofile: A system profiler for linux. http://oprofile.
sourceforge.net, September 2004.

[67] Ixora Pty Ltd. Disk load balancing.www.ixora.com.au/tips/tuning/disk_
load.htm.

[68] R. N. Mantegna and H. E. Stanley.An Introduction to Econophysics: Correlations and
Complexity in Finance. Cambridge University Press, 2000.

[69] M. K. McKusick. Using gprof to tune the 4.2BSD kernel.http://docs.freebsd.
org/44doc/papers/kerntune.html, May 1984.

[70] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[71] L. McVoy and C. Staelin. lmbench: Portable tools for performance analysis. InProceedings
of the USENIX 1996 Annual Technical Conference, pages 279–295, January 1996.

[72] Microsoft Corporation. File System Filter Manager: Filter Driver Development Guide.
www.microsoft.com/whdc/driver/filterdrv/default.mspx, September
2004.

[73] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: AnOn-Access Anti-Virus File
System. InProceedings of the 13th USENIX Security Symposium (Security 2004), pages
73–88, San Diego, CA, August 2004. USENIX Association.

[74] A. Morton. sleepometer.www.kernel.org/pub/linux/kernel/people/akpm/
patches/2.5/2.5.74/2.5.74-mm1/broken-out/sleepometer.patch,
July 2003.

[75] J. Nugent, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Controlling Your PLACE in the
File System with Gray-box Techniques. InProceedings of the Annual USENIX Technical
Conference, pages 311–323, San Antonio, TX, June 2003. USENIX Association.

[76] J. Ousterhout. Why aren’t operating systems getting faster as fast as hardware? InProceed-
ings of the Summer USENIX Technical Conference, pages 247–256, Anaheim, CA, Summer
1990. USENIX.

105

[77] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the ACM SIGMOD, pages 109–116, June 1988.

[78] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS version 3
design and implementation. InProceedings of the Summer USENIX Technical Conference,
pages 137–152, Boston, MA, June 1994.

[79] J. S. Pendry and M. K. McKusick. Union mounts in 4.4BSD-Lite. In Proceedings of the
USENIX Technical Conference on UNIX and Advanced ComputingSystems, pages 25–33,
New Orleans, LA, December 1995. USENIX Association.

[80] J. S. Pendry, N. Williams, and E. Zadok.Am-utils User Manual, 6.1b3 edition, July 2003.
www.am-utils.org.

[81] Z. N. J. Peterson and R. C. Burns. Ext3cow: The design, Implementation, and Analysis of
Metadat for a Time-Shifting File System. Technical Report HSSL-2003-03, Computer Sci-
ence Department, The Johns Hopkins University, 2003.http://hssl.cs.jhu.edu/
papers/peterson-ext3cow03.pdf.

[82] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dussea. Analysis and Evolution
of Journaling File Systems. InProceedings of the Annual USENIX Technical Conference,
Anaheim, CA, May 2005.

[83] W. H. Press, S. A. Teukolskey, W. T. Vetterling, and B. P.Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, 2002.

[84] H. Reiser. ReiserFS.www.namesys.com/, October 2004.

[85] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The
OceanStore Prototype. InProceedings of the Second USENIX Conference on File and Stor-
age Technologies (FAST ’03), pages 1–14, San Francisco, CA, March 2003. USENIX Asso-
ciation.

[86] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. InProceedings of 13th ACM Symposium on Operating Systems Principles,
pages 1–15, Asilomar Conference Center, Pacific Grove, CA, October 1991. Association for
Computing Machinery SIGOPS.

[87] D. S. H. Rosenthal. Evolving the Vnode interface. InProceedings of the Summer USENIX
Technical Conference, pages 107–118, Anaheim, CA, June 1990. USENIX Association.

[88] Y. Ruan and V. Pai. Making the “Box” Transparent: SystemCall Performance as a First-class
Result. InProceedings of the Annual USENIX Technical Conference, pages 1–14, Boston,
MA, June 2004. USENIX Association.

[89] Y. Rubner, C. Tomasi, and L. J. Guibas. A Metric for Distributions with Applications to
Image Databases. InProceedings of the Sixth International Conference on Computer Vision,
pages 59–66, Bombay, India, January 1998.

[90] M. Russinovich. Inside Win2K NTFS, Part 1.www.winnetmag.com/Articles/
ArticleID/15719/pg/2/2.html, November 2000.

[91] B. Schnor, S. Petri, R. Oleyniczak, and H. Langendorfer. Scheduling of parallel applications
on heterogeneous workstation clusters. InProceedings of PDCS’96, the ISCA 9th Interna-
tional Conference on Parallel and Distributed Computing Systems, pages 330–337, Dijon,
France, September 1996.

[92] J. Seward, N. Nethercote, and J. Fitzhardinge. Valgrind. http://valgrind.kde.org,
August 2004.

106

[93] P. Shenoy and H. M. Vin. Efficient striping techniques for variable bit rate continuous media
file servers. Technical Report UM-CS-1998-053, Universityof Massachusetts at Amherst,
1998.

[94] Silicon Graphics, Inc. Kernprof (Kernel Profiling). http://oss.sgi.com/
projects/kernprof, 2003.

[95] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improv-
ing Storage System Availability with D-GRAID. InProceedings of the Third USENIX Con-
ference on File and Storage Technologies (FAST 2004), pages 15–30, San Francisco, CA,
March/April 2004. USENIX Association.

[96] D. A. Solomon and M. E. Russinovich.Inside Microsoft Windows 2000, chapter 12: File
Systems, pages 683–778. Microsoft Press, Redmond, WA, 2000.

[97] M. Stonebreaker and G. A. Schloss. Distributed raid—a new multiple copy algorithm. In
Proceedings of the 6th International Conference on Data Engineering (ICDE’90), pages
430–437, February 1990.

[98] Sun Microsystems.Analyzing Program Performance With Sun Workshop, February 1999.
http://docs.sun.com/db/doc/805-4947.

[99] Sun Microsystems, Inc. Solaris ZFS file storage solution. Solaris 10 Data Sheets, 2004.
www.sun.com/software/solaris/ds/zfs.jsp.

[100] M. J. Swain and D. H. Ballard. Color indexing.International Journal of Computer Vision,
7(1):11–32, 1991.

[101] Sysinternals.com. Filemon.www.sysinternals.com/ntw2k/source/filemon.
shtml, 2004.

[102] M. Szeredi. Filesystem in Userspace.http://fuse.sourceforge.net, February
2005.

[103] VMware. Timekeeping in vmware virtual machines.www.vmware.com/pdf/vmware_
timekeeping.pdf.

[104] L. Wall, H. Stenn, and R. Manfredi. dist-3.0. Technical report, Comprehensive Perl
Archive Network (CPAN), 1997. ftp.funet.fi/pub/languages/perl/CPAN/
authors/id/RAM.

[105] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn.Ceph: A Scalable, High-
Performance Distributed File System. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages 307–320, Seattle, WA, November
2006. ACM SIGOPS.

[106] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. TheHP AutoRAID Hierarchical Storage
System.ACM Transactions on Computer Systems, 14(1):108–136, February 1996.

[107] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. KroahHartman. Linux Security Mod-
ules: General Security Support for the Linux Kernel. InProceedings of the 11th USENIX
Security Symposium, San Francisco, CA, August 2002.

[108] C. P. Wright.Extending ACID Semantics to the File System via ptrace. PhD thesis, Computer
Science Department, Stony Brook University, May 2006. Technical Report FSL-06-04.

[109] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley, E. Zadok, and M. N. Zubair.
Versatility and unix semantics in namespace unification.ACM Transactions on Storage
(TOS), 2(1):1–32, February 2006.

107

[110] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, E. Zadok, and M. N. Zubair. Versatility
and Unix Semantics in a Fan-Out Unification File System. Technical Report FSL-04-01b,
Computer Science Department, Stony Brook University, October 2004. www.fsl.cs.
sunysb.edu/docs/unionfs-tr/unionfs.pdf.

[111] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, andE. Zadok. Auto-pilot: A Platform
for System Software Benchmarking. InProceedings of the Annual USENIX Technical Con-
ference, FREENIX Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[112] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient Cryptographic
File System. InProceedings of the Annual USENIX Technical Conference, pages 197–210,
San Antonio, TX, June 2003. USENIX Association.

[113] K. Yaghmour and M. R. Dagenais. Measuring and characterizing system behavior using
kernel-level event logging. InProceedings of the 2000 USENIX Annual Technical Confer-
ence, June 2000.

[114] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast Indexing: Support for size-
changing algorithms in stackable file systems. InProceedings of the Annual USENIX Tech-
nical Conference, pages 289–304, Boston, MA, June 2001. USENIX Association.

[115] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems. InProc. of the An-
nual USENIX Technical Conference, pages 55–70, San Diego, CA, June 2000. USENIX
Association.

108

Appendix A

FSprof FiST Extension

FiST extension below includes all the functionality necessary to collect and output collected
latency distribution statistics. Because it also includesthe/proc interface it is good for
Linux only. As we described in Section 3, an OS-independent extension requires a separate
module for the/proc interface.

%{
/*
* fsprof.fist: collect latency distributions
*
* Copyright (c) 2006 Nikolai Joukov and Erez Zadok
* Copyright (c) 2006 Stony Brook University
*/

int fsprof_init(void);
void fsprof_exit(void);
unsigned long long fsprof_pre(int op);
void fsprof_post(int op, unsigned long long init_cycle);

%}

debug off;
license "GPL";

%%

%op:all:precall {
unsigned long long fsprof_init_cycle =
fsprof_pre(fistOP_%op);

}

%op:all:postcall {
fsprof_post(fistOP_%op, fsprof_init_cycle);

}

109

%op:init:precall {
int fsprof_err = fsprof_init();
if (fsprof_err)
return fsprof_err;

}

%op:init:postcall {
if (fistLastErr())
fsprof_exit();

}

%op:exit:postcall {
fsprof_exit();

}

%%
/*
* fsprof.fist: collect latency distributions
* Copyright (c) 2006 Nikolai Joukov and Erez Zadok
* Copyright (c) 2006 SUNY at Stony Brook
*/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/proc_fs.h>
#include <asm/uaccess.h>

#define FSPROF_MAX_DIGIT 32
#define FSPROF_MAX_TIME 0

/* this is our per-file system structure */
struct fsprof_statistics {
unsigned long opcounts[fistOP_MAX];
unsigned long long init_cycle;
unsigned long long read_cycle;
unsigned long long tot_cycles[fistOP_MAX];
struct proc_dir_entry *fsprof_proc_root;
unsigned long distribution[fistOP_MAX] \
[FSPROF_MAX_TIME + 1][FSPROF_MAX_DIGIT + 1];

};

/* For now just use a static variable. */
static struct fsprof_statistics* this = NULL;

110

/* macros to read the TSC register */
#ifdef __ia64__
#define RDTSC(qp) \
do { \
unsigned long result; \
__asm__ __volatile__(\
"mov %0=ar.itc" : "=r" (result) :: "memory"); \

qp = result; \
} while (0);

#else
#define RDTSC(qp) \
do { \
unsigned long lowPart, highPart; \
__asm__ __volatile__(\
"rdtsc" : "=a" (lowPart), "=d" (highPart)); \

qp = (((unsigned long long) highPart) << 32) | \
lowPart; \

} while (0);
#endif

/* function to reset statistics */
static void fsprof_stat_reset(void)
{
memset(this, 0, sizeof(struct fsprof_statistics));
RDTSC(this->init_cycle);

}

#define ADD_TO_BUFFER(str) \
do { \
char* tmp; \
len = strlen((str)); \
if (*ppos < total + len) { \
if (count < done + len) { \
len = count - done; \

} \
if (total < *ppos) { \
len -= *ppos - total;\
tmp = (str) + *ppos - total; \

} else {\
tmp = (str); \

} \
if (copy_to_user(buf, tmp, len)) { \
done = -EFAULT; \
goto out; \

} \
buf+= len; \
done+= len; \

111

if (count == done) \
goto out; \

} \
total+= len; \

} while(0);

/*
* /proc interface read operation.
* Dumps collected statistics in the plain text form
* (e.g., ’cat /proc/fsprof’).
*/

static ssize_t fsprof_proc_read(struct file *file,
char *buf,
size_t count,
loff_t *ppos)

{
char localbuf[1024];
int len, done = 0, total = 0;

unsigned int i, ii, iii, last_tick;

if (!this->read_cycle)
RDTSC(this->read_cycle);

last_tick = (unsigned int)((this->read_cycle -
this->init_cycle) >> 32);

if (last_tick > FSPROF_MAX_TIME)
last_tick = FSPROF_MAX_TIME;

for (i = 0; i < fistOP_MAX; i++) {
if (this->opcounts[i] > 0) {
sprintf(localbuf, "OP_%s %lu %llu\n",

fistOPnames[i],
this->opcounts[i],
this->tot_cycles[i]);

ADD_TO_BUFFER(localbuf);
for (ii = 0; ii < last_tick + 1; ii++) {
len = 0;
for (iii = 0; iii < FSPROF_MAX_DIGIT + 1; iii++) {
if (this->distribution[i][ii][iii] != 0)

len++;
}
if (len) {
for (iii = 0; iii < FSPROF_MAX_DIGIT + 1; iii++) {

sprintf(localbuf, " %lu",
this->distribution[i][ii][iii]);

ADD_TO_BUFFER(localbuf);

112

}
ADD_TO_BUFFER("\n");

} else {
ADD_TO_BUFFER("-\n");

}
}

}
}
this->read_cycle = 0;

out:
if (done > 0)
*ppos += done;

return done;
}

/*
* /proc interface write operation.
* Any write resets statistics
* (e.g., ’echo 1 > /proc/fsprof’).
*/

static ssize_t fsprof_proc_write(struct file *file,
const char *buf,
size_t count,
loff_t *ppos) {

fsprof_stat_reset();
return count;

}

struct file_operations fsprof_file_operations = {
read: fsprof_proc_read,
write: fsprof_proc_write

};

#define PROC_NAME "fsprof"

/* Creates a /proc entry for user-mode access to statistics. */
static int fsprof_proc_create(void)
{
struct proc_dir_entry *proc_de;
int err = 0;

proc_de = create_proc_entry(PROC_NAME, 0, NULL);
if (!proc_de) {
printk(KERN_ERR "Adding proc entry failed\n");
goto out;

}
proc_de->owner = THIS_MODULE;

113

proc_de->data = (void *)this;
proc_de->proc_fops = &fsprof_file_operations;

out:
return err;

}

/* Removes the proc entry. */
static void fsprof_proc_destroy(void)
{
remove_proc_entry(PROC_NAME, NULL);

}

/*
* Allocates memory and creates /proc entry for statistics.
* No on-demand allocation to reduce run-time overheads.
*/

int fsprof_init(void)
{
int err = 0;

if (this)
goto out;

err = -ENOMEM;

if (sizeof(struct fsprof_statistics) > PAGE_SIZE)
this = vmalloc(sizeof(struct fsprof_statistics));

else
this = kmalloc(sizeof(struct fsprof_statistics),

GFP_KERNEL);

if (!this)
goto out;

fsprof_stat_reset();

err = fsprof_proc_create();

out:
return err;

}

/* Remove /proc entry and free kernel memory at the end. */
void fsprof_exit(void)
{
fsprof_proc_destroy();

114

if (this) {
if (sizeof(struct fsprof_statistics) > PAGE_SIZE)
vfree(this);

else
kfree(this);

this = NULL;
}

}

/* Returns TSC register value and increments per-op counter. */
unsigned long long fsprof_pre(int op)
{
unsigned long long ullic;
this->opcounts[(op)]++;
RDTSC(ullic);
return ullic;

}

/*
* Calculates latency, its log, and increments
* the corresponding bucket.
*/

void fsprof_post(int op, unsigned long long ullic)
{
unsigned long long l;
unsigned long long ll_delay;
unsigned int i, ii, iii, i_delay;

RDTSC(l);
ll_delay = (l - ullic);
this->tot_cycles[(op)] += ll_delay;

iii = 1;
i_delay = (unsigned int)(ll_delay >> 5);
for (i = 0; i < FSPROF_MAX_DIGIT; i++) {
if (i_delay < iii)
break;

iii <<= 1;
}

/* time unit for sampled profiles */
ii = (int)((l - this->init_cycle) >> 32);
if (ii > FSPROF_MAX_TIME)
ii = FSPROF_MAX_TIME;

this->distribution[(op)][ii][i]++;
}

115

