Versatile, Portable, and Efficient File System
Profiling

A Dissertation Presented
by
Nikolai Joukov
to
The Graduate School
in Partial fulfillment of the
Requirements

for the Degree of

Doctor of Philosophy
in

Computer Science

Stony Brook University

Technical Report FSL-06-05

December 2006



Copyright by
Nikolai Joukov
2006



Stony Brook University

The Graduate School

Nikolai Joukov

We, the dissertation committee for the above candidatenfoPth.D. degree, hereby
recommend acceptance of this dissertation.

Dr. Erez Zadok, Advisor
Professor, Computer Science Department, Stony Brook Univsity

Dr. Samir Das, Chair of Defense
Professor, Computer Science Department, Stony Brook Univsity

Dr. Scott Stoller
Professor, Computer Science Department, Stony Brook Univsity

Dr. Ethan Miller
Professor, Computer Science Department,
University of California Santa Cruz

This dissertation is accepted by the Graduate School

Dean of the Graduate School



Abstract of the Dissertation

Versatile, Portable, and Efficient File System Profiling
by

Nikolai Joukov

Doctor of Philosophy
in
Computer Science

Stony Brook University
2006

File systems are complex and their behavior depends on nzegr§. Source code,
if available, does not directly help understand the file exygs behavior, as the behavior
depends on actual workloads and external inputs. Runtirofipg is a key technique
for understanding the behavior and mutual-influence of mod®S components. Such
profiling is useful to prove new concepts, debug problemd, @stimize the performance
of existing file systems. Unfortunately, existing profilingethods are lacking in impor-
tant areas: they do not provide much of the necessary infasmabout the file system’s
behavior, they require OS modification and therefore arepoatable, or they exact high
overheads thus perturbing the profiled file system.

We developed a direct, real-time file system profiling methaded on the analysis of
latency distributions. Our method is versatile: a suitaktekload can be used to profile
virtually any OS component. Our method is portable becausean intercept operations
and measure file system behavior from the user level or frasidénthe kernel without
requiring source code. Our method is efficient: it has smadtioeads (less than 4% of the
CPU time). Moreover, if the source code is available, we camitito reduce overheads
even further.

In this dissertation we describe our profiling method, theotly behind it, and the au-
tomation of the profile analysis. We demonstrate the usefdrof our method through
a series of profiles conducted on Linux, FreeBSD, and Windaweduding client/server
scenarios. We discovered and investigated a number oesttag interactions, including
scheduler behavior, multi-modal I/O distributions, andravppusly unknown lock con-
tention, which we fixed. We use our profiling method for pemi@ance analysis of a com-
plex RAID-like fan-out stackable file system called RAIFttihee have developed.
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Chapter 1

Introduction

Profiling is a standard method to investigate and tune theatipa of any complicated soft-
ware component. Even the execution of one single-threadedlevel program is hardly
predictable because of the underlying hardware behavmrekample, branch prediction
and cache behavior can easily change the program executieby an order of magnitude.
Moreover, in a multi-tasking environments, processes @impwith each other for a num-
ber of shared resources such as CPU, memory, shared dataustg) buses, 1/O devices,
etc. In addition, there are a variety of possible externpltrpatterns. Therefore, only
runtime profiling can help understand the actual systembehaven if the source code
is available. At first glance, it seems that observing compsbftware and hardware be-
havior should not be difficult, because these systems arahumade and therefore can be
easily instrumented. However, profiling has several calittang requirements: versatility,
portability, and low overheads.

1.1 Contradicting Profiling Requirements

Versatility. A versatile system profile should contain information abiwat interactions
with all software and hardware components and allow caimeof related information
that was captured at different levels of abstraction. Fangple, a file system operates
on files, whereas a hard-disk driver operates on data blddksvever, the operation and
performance of file systems and drivers depend on their cexnpteractions; contention
on semaphores can change the disk’s I/O patterns, while-syfii'em’s on-disk format can
dramatically change its I/O performance.

Portability. To gather the information about all the different systemrapen aspects at
all the levels of system abstraction, one usually tries strinment the system as much as
possible €.g, DTrace [18] adds tens of thousands of probes to the Solanek. However,
there are two big problems associated with this approach.

1. Direct instrumentation of systems is nmirtable System instrumentation is OS-
version—specific or compiler-version—specific and also oegyend on the hardware
architecture. Therefore, profilers for new OSs are ofteramatlable because existing
profilers have to be ported to each new OS version.

1



2. Itis not possible to instrument everything. For examplee can spend a lot of time
and add many instrumentation hooks into the kernel but tegtevill be uninstru-
mented places in the code. More importantly, however, ibtgpossible to instrument
some of the system components because their source is latd@ade.g, firmware
of hard drives or Windows scheduler).

Low overheads. Low overheads are crucial for profiling because high ovedbezan
significantly change the system’s behavior. However, pertinstrumentationg(g, in-
strumentation of every semaphore) adds overheads on apetriesis€.g, for each taken
semaphore). To minimize overheads, several hardware coemp® provide profiling help.
For example, modern CPUs maintain statistics about thairadjpn [14]. However, only
the OS can correlate this information with higher level mfiation, such as the correspond-
ing process. Therefore, some CPU time overheads are ibéita

As we can see, versatility, portability, and efficiency cadict each other. Versatil-
ity requires collecting more information which requires manstrumentation that in turn
means less portability and higher overheads. Higher pitittaimeans less instrumentation
and less OS-specific and hardware-specific performancenigatiions. Low overheads
require fewer instrumentation points (which decreasesatéity) and more non-portable
optimizations. As a result, existing profiling tools progitimited information, are not
portable (usually even between OS minor versions) and aglddwerheads.

1.2 Our Approach

We developed a gray-box system profiling method. For examyser applications make
requests via system calls and external network requests e@the network interface. The
latency of these requests contains information aboutael@PU time, rescheduling, lock
and semaphore contentions, and I/O delays. Capturingcisrfast and easy. However,
the total latency includes a mix of many latencies conteduiy different execution paths
and is therefore difficult to analyze. Process preemptionplates this problem further.
All existing projects that used latency as a performanceimased some simplistic as-
sumptions applicable for a particular case. Some authasnasd that there is only one
source of latency which can be characterized by the aveedgady value [27, 30, 46, 88].
Others used prior knowledge of the latencies’ sources tgsflathe latencies into several
groups [8, 16, 75]. Past attempts to analyze latencies mererglly just looked for distri-
bution changes to detect anomalies [21]. Our profiling methitows the investigation of
latencies in the general case.

We accumulate the distributions of logarithms of latenboegach OS operation at run-
time, and later process the accumulated results. This alisrto efficiently capture small
amounts of data that embody detailed information about naemects of internal OS be-
havior. Different OS internal activities create differgq@taks on the collected distributions.
The resulting information can be conveniently presentemgnaphical form.

We created user-level profilers for POSIX-compliant OSs leerdel-level profilers for
Linux, FreeBSD, and Windows—to profile system activity fatlvlocal and remote com-



puters. These tools have CPU time overheads below 4%. Wetlissel profilers to inves-
tigate internal file system behavior under Linux and Windousder Linux we discovered
and characterized several semaphore and I/0O contentionscé&code availability allowed
us to verify our conclusions and fix the problems. Under Wimslave observed inter-
nal lock contentions even without access to source code]seediscovered a number of
harmful I/O patterns including those for networked file gyss.

Our method is a general profiling and visualization techaithat can be applied to a
broad range of problems. Nevertheless, it requires skillartalyze collected profiles. In
this dissertation we present several profile analysis nustland their automation. We also
analyze several method-specific problems like processmpten effects, time synchro-
nization on SMP systems and profiles locking on multi-CPUesys.

1.3 OSprof and FSprof

The proposed profiling method can be applied to a wide rangg/stems ranging from
individual hard drives to complex RAID controllers, OSsdatistributed systems. We call
our profiling methoddSprofwhen used to profile OSs (including distributed on&gprof
is a subset of OSprof and is a file system profiling extension.

In this dissertation we concentrated on file system profiforghree reasons: (1) file
system profiles are complex and contain information abowtrs components and in-
teractions. Therefore, file system profiles are a good examaplilemonstrate the power of
OSprof. (2) file systems are a substantial part of the OSs.ekample, Linux 2.6.11.7
supports 53 different file systems, ranging from memory ask-tased ones (Ext2, Ext3,
Reiserfs, XFS, UFS/FFS, and more), to network file systeMsS( SMB/CIFS, NCPFS),
to distributed onesg(g, Coda), and many more specialized oneg{/ pr oc, / dev, de-
bugfs, and more). These file systems total 485,158 linesrapéex code, out of 2,997,507
lines of code in the entire Linux 2.6.11.7 kernel (not congtievice drivers). In addition,
many file systems are developed and maintained outside thexlkdernel [6,11, 55, 81,
102,109, 112]. (3) file systems is the main focus of our resegroup and we used our
profiling method to profile all our new experimental file syate

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Wedles background work in Chap-
ter 2. Chapter 3 describes our profiling method and proviaedyais of its applicability
and limitations. In Chapter 4 we describe FoSgen—our filéesgsource instrumentation
system. Chapter 5 describes our implementation. We ewwafuatsystem in Chapter 6. In
Chapter 7 we present several usage scenarios and analyiesppbseveral real-world file
systems. Moreover, in Chapter 8 we show some examples hofilesystem—level pro-
filer can be used for profiling without buckets. In Chapter 9describe profiling of RAIF
file system during its development. We conclude and destuiioee work in Chapter 10.



Chapter 2

Background

We have described our latency profiling method in severagsjd9, 53, 54, 56]. Next, we
describe related work done by others about kernel code m@fand kernel code instru-
mentation.

2.1 Kernel Code Profiling

Most of the existing kernel profilers concentrate on différ@spects of the CPU execution.
Only a few profilers can profile lock-related behavior on somperating systems. Even
fewer tools can profile the system I/O and no tools can satisfidy correlate 1/0 requests

with the high-level file system requests.

2.1.1 CPU Execution Profiling

The de facto standard of CPU-related code execution prgfisrprogram counter sam-
pling. Unix prof [10] instruments source code at function entry and exit {30iAn instru-
mented binary’s program counter is sampled at fixed timewats. The resulting samples
are used to construct histograms with the number of indadiflunctions invoked and their
average execution times. Program counter (PC) samplingetatively inexpensive way
to capture how much CPU a program fragment uses in multinggavironments where a
task can be rescheduled at any tirggarof [36] additionally records information about the
callers of individual functions, which allows it to constticall graphs. Gprof was success-
fully used for kernel profiling in the 1980s [69]. Howeveretmstrumented kernels had a
20% increase in code size and an execution time overheadtofaf%6. Kernprof [94] uses

a combination of PC sampling and kernel hooks to build prefiled call graphs. Kernprof
interfaces with the Linux scheduler to count the time thaemkl function spent sleeping
(e.g, to perform 1/O) in the profile. Unfortunately, Kernprof ngéiges a patch to both the
kernel and the compiler.

More detailed profiles with granularity as small as a singldecline can be collected
usingtcov[98]. Most modern CPUs contain special hardware countensde by profilers.
The hardware counters allow correlating profiled code ettesuCPU cache states, branch
prediction functionality, and ordinary CPU clock counts 18]. The counter overflow

4



events generate a non-maskable interrupt (NMI). This alsampling even inside device
drivers as implemented i@profile[66]. Overall, such profilers capture only CPU-related
information.

2.1.2 Locks and Memory Profiling

There are a number of profilers for other aspects of OS behatioh as lock con-

tention [15, 74]. They replace the standard lock-relateddidfunctions with instrumented
ones. This instrumentation is costly: Lockmeter adds 20%tesy time overhead. Other
specialized tools can profile memory usage, leaks, and s46@¢

2.1.3 File System and I/O Profiling

Fewer and less developed tools are available to profile fisesy performance, which
is highly dependent on the workload. Disk operations inelugechanical latencies to
position the head. The longest operation is seeking, or ngothe head from one track
to another. Therefore, file systems are designed to avoikks4@@, 86]. Unfortunately,
modern hard drives expose little information about thealsiinternal data placement. The
OS generally assumes that blocks with close logical bloakbers are also physically
close to each other on the disk. Only the disk drive itself selmedule the requests in an
optimal way and only the disk drive has statistical inforrmatbout its internal operations.
The Linux kernel optionally maintains statistics about bheck-device 1/O operations and
makes those available through thpr oc file system, yet little information is reported
about timing.

Network packet sniffers [37] capture traffic useful for arsaé [31]. They are useful
for analyzing protocols. Their problems are similar to th@$ hard disk profilers: both
the client and server often perform additional processirag ts not captured in the trace:
searching caches, allocating objects, reordering reguast more.

2.2 Latency-Based Profiling

The latency of a file system operation contains importardrimftion about its execution.
Latency can be easily collected but cannot be easily andlipeeause it contains a mix
of latencies of different execution paths. Many authorsdusesimple assumption that
there is one dominant latency contributor and that the aeestatency can characterize
it[2,7,27,46]. This simple assumption allowed to profilgezal OS components includ-
ing timer interrupts on an idle system [32]. DeBox and LRPestigate average latency
changes over time and its correlation with other systemrmaters [30,88]. Chen and
others moved one step further and observed changes in ttibuli®on of latency over
time and its correlation with software versions to detectgilole problems in network ser-
vices [21]. Prior knowledge of the underlying 1/0O charaigics and file system layouts
allows categorization of runtime I/O requests based o thtgncy [8, 16, 75, 82].



2.3 File System Operations Interception

The addition of control interception points is a well deyed research area. We will focus
on the four methods most relevant to file systems.

2.3.1 Source Code Instrumentation

The most popular one is direct source code modification,Ussca imposes minimal over-
head and is usually simple. For example, tracking lock autiaas, page faults, or 1/0O
activity usually requires just a few modifications to therarsource code [15, 88]. If,
however, every function requires profiling modificationsen the compiler may conduct
such an instrumentatior (g, thegcc - p facility). This method has a clear drawback:
new code is required not only for every OS and every file sydbeinalso for different
versions of OSs and file systems.

2.3.2 Dynamic Code Instrumentation

Some modern OSs provide hooks that allow dynamic instruatiemt. For example,
DTrace [18] on Solaris as well as Linux Trace Toolkit (LTT)1[] and Linux Security
Modules (LSM) [107] on Linux provide interception points many places. However,
these instrumentation APIs are not portable across OSs@ndtdntercept all file system
operations. For example, LSM do not intercept memory-medpggerations. Dynamic
code instrumentation is possible by inserting jump operatidirectly into the binary [44].
Similarly, debugging registers on modern CPUs can be usegtaument several arbitrary
code addresses at once [24].

2.3.3 Interception from the User-Mode

Some of the file system operations may be intercepted andyekamntirely from the user-
mode. First, system utilities can be substituted with weapgcripts or other binaries.
Second, system libraries can be instrumented directlyoth bases, some of the programs
will not be instrumented either because they are not reglac®ecause they are statically
linked. Moreover, some file system operations cannot begaththis way €.g, popular
memory-mapped operations). FUSE [102] and extermteadace [108] interfaces allow
interception of all file system operations but add significarerheads.

2.3.4 Layered Interception

Stackable file systems are portable across OSs and acrosgdiitans [115]. They can be
mounted over any lower file system, several file systems, lyrasingle directory or file.
However, stackable file systems add overheads for all fileesysperations even if only a
single operation is modified. In addition, stackable fileteys use twice as many Virtual
File System objects, thus reducing the overall size of filtey caches.



Chapter 3
Profiling Method

OSs serve requests from applications whose workloads gtenéifferent request patterns.
The latencies of OS requests consist of both CPU and waistime

latency = tepy + twait (3.1)

CPU time includes normal code execution time as well as the 8pent waiting on spin-

locks:

tepu = Y teec T D Lspinlock
Wait time is the time a process was not running on the CPU cludes synchronous 1/0O
time, time spent waiting on semaphores, and time spentmgaftr other processes or
interrupts that preempted the profiled request midway:

Lwait = Z tI/O + Z tsem + Z Lint + Z tpreempt

toreempt 1S the time the process was waiting because it ran out of fiediding quantum
and was preempted. We will consider preemption in more deeti@ir in Section 3.3. We
begin by discussing the non-preemptive OS case.

Every pattern of requests corresponds to a set of possibluérn pathss. For exam-
ple, a system call that updates a semaphore-protectedtdattuse can have two paths:

1. if the semaphore is availablei{ency, = t.p.,), Or

2. if it has to wait on the semaphor{encys = tcpu, + tsem)-

In turn, eacht; is a function with its own distribution. We can generalizattithe
latency, of pathss € S consists of the sum of latencies of its components:

latencys = th (3.2)
J

wherej is the component, such as I/O of a particular type, prograet@txon-path time,
or one of the spinlocks or semaphores.

To find allt; € T, itis necessary to solve the system of linear Equationsvéhich is
usually impossible becaugld’|| > ||.S|| (there are usually fewer paths than time compo-
nents). Non-linealogarithmic filteringis a common technique used in physics and eco-
nomics to select only the major sum contributors [68]. Wedus¢ency filtering to select
the most important latency contributars,, and filter out the other latency componedits
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log(latency) = log(tmae + 0) = 10g(tmaz) (3.3)

For example, folog,, even ifé is equal tof,,.,., the result will only change by 1. Most
non-trivial workloads can have multiple paths for the sarmperation €.g, some requests
may wait on a semaphore and some may not). To observe mythes at the same time
we store logarithms of latencies into buckets. Thus, a hukk®ntains the number of
requests whose latency satisfies:

b= [log,1(latency)| = |r x logs(latency)] (3.4)
Plugging in Equation 3.3 we get:

b |r xlogs(tmaz)]

A profile’s bucket density is proportional to the resolutionNe usually used = 1. How-
ever,r = 2, for example, would double the profile resolution (bucketsity). Increasing
the resolution adds only a slight overhead to CPU time. Hawetwincreases the memory
consumption by times because higher resolution profiles have more buckets.

Figure 3.1 shows an actual profile of the Windows@Reat eThr ead function called
by two processes concurrently. The bottom X axis shows tleeage buckets’ latency in
seconds. The top X axis shows the bucket number (logarithlatefcy in CPU cycles).
The Y axis shows the number of operations whose latencyifallsa given bucket. Note
that both axes are logarithmic.

Let us consider the profile shown in Figure 3.1 in more de&®. captured this profile
entirely from the user level. In addition to this profile weptared another profile with
only a single process calling the sa@eeat eThr ead function; we observed that in that
case there was only one (leftmost) peak. Therefore, we caoluwde that there is some
contention between processes inside of@Gheat eThr ead function. In addition, we can
derive the information about (1) the CPU times necessargtopiete aCr eat eThr ead
request with no contention (average latency in the leftrpesk) and (2) the portion of the
Cr eat eThr ead code that is executed while a semaphore or a lock is acquirexigge
latency in the leftmost peak times half the ratio of elememthe rightmost and leftmost
buckets).

Bucket number: [og,(latency in CPU cycles)O
15 20 25 30

ons

100000 [ 1 ‘ :
10000 F | § | 3
1000 JESRSRRNE M S E

100 E ‘ ‘ , ) ‘ : E

Number of operati

28us
Average bucket latency

Figure 3.1: A profile ofCr eat eThr ead operation on Windows XP, concurrently issued
by two processes. The right peak corresponds to semaphotentmn between the two
processes. Note: both axes are logarithmic (x-axis is bag@fis is base 10).
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3.1 Profile Collection and Analysis

In general, we use the following methods to analyze profiles:

3.1.1 Profiles Preprocessing

A complete profilenay consist of dozens of profiles of individual operations:. €&ample,
a user-mode program usually issues several system calla anthplete profile consists
of several profiles of individual system calls. Thus, Fig@r2 and Table 3.1 show the
latencies for Linux 2.4.24 Ext2 for a run gfrep -r over a Linux source tree. This ex-
ample of a complete profile immediately informs us about therations involved, their
impact, and sometimes, their mutual dependence. For exaimpbkup is invoked only
one less time thanead_i node. The fact that the number of operations in the correspond-
ing peaks is the same, and thaad_i node is slightly faster thath ookup, suggests that
r ead_i node is called by thd ookup operation, which is in fact the case. Ext2’'sad
operation is implemented by calling the general-purposakxigeneri c_fil e_read
function, which then calls theeadpage operation. Therefore, we can infer from Ta-
ble 3.1 that thé ookup, r ead, andr eaddi r operations are responsible for more than
99% of the file system’s latency under the given workload.

If the goal of profiling is performance optimization, then wsually start our analysis
by selecting a subset of profiles that contribute the modtéadtal latency. We designed
automatic procedures to:

e select profiles with operations that contribute the mosttbtal latency. Unless
otherwise specified, figures presented in this dissertatmw profiles with opera-
tions sorted according to their total latency; and

e compare two individual profiles and evaluate their similari

Operation Count Total delay Total delay
(106 CPU Cycles) (ms)
readdir 1,687 7,736.04) 4,550.61
r ead 27,408 7,320.15  4,305.97
| ookup 13,640 3,069.65 1,805.67
read._i node 13,641 2,943.22 1,731.30
r eadpage 43,991 477.75 281.03
sync_page 20,141 108.73 63.96
wite.lnode 12,107 10.57 6.22
open 12,915 1.99 1.17
rel ease 12,915 1.29 0.76
foll owlink 110 0.09 0.05
write_super 1 0.00 0.00

Table 3.1: Total count and total delay of VFS operations oiuxi 2.4.24 Ext2 fogrep -r
workload. 1 sec. = 1.7 billion CPU cycles.



Bucket number: [Dog,(latency in CPU cycles)
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Figure 3.2: Complete profile of Linux 2.4.24 Ext2 under grep -r workload. Operations
are sorted from top to bottom by their total latency.
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Figure 3.3: Tri-modal Profile of the fileead_i node operation on a Linux 2.4.24 Ext2
file system captured for a single rungrep -r on a Linux source tree.

The second technique has two applications. First, it carskd to compare all profiles in
a complete set of profiles and select only these profiles tieat@related. Second, it is
useful to compare two different complete sets of profiles se&ldct only these pairs that
differ substantially; this helps developers narrow dowa et of OS operations where op-
timization efforts may be most beneficial. We have adoptedrs¢ methods from the fields
of statistics and visual analytics [89]. We further desetilvese methods in Section 3.2 and
evaluate them in Section 6.3.

3.1.2 Prior Knowledge Based Analysis

Many OS operations have characteristic times. For exaropleur test machines, a context
switch takes approximately 56, full stroke disk head seek takes approximately 8 ms, full
disk rotation takes approximately 4 ms, the network latepetyveen our test machines is
about 112:s, and the scheduler quantum is about 58 ms. These chas#ctémes can
be easily measured using specially crafted workloads ds {d@, 71]. Therefore, if some
of the profiles have a peak close to these times, then we casthiggize right away that
it is related to that corresponding OS activity. For any t=up these and many other
characteristic times can be measured in advance by pro8imgle workloads that are
known to show peaks corresponding to these times. It is camthad some peaks analyzed
for one workload in one of the OS configurations can be recaghlater on new profiles
captured in other circumstances.

Figure 3.3 shows a magnified profile of thead_i node operation from Figure 3.2.
Here we also show the latency of every bucket using the rigist & his tri-modal distri-
bution is defined by the delays needed to read a file’'s metadfeawill analyze similar
profiles in Section 7.2. However, just knowing the charastiertimes of our hard disk, we
can see that the rightmost peak corresponds to disk headmnemier disk platter rotation
delays.
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3.1.3 Differential Profile Analysis

While analyzing profiles one usually makes a hypothesistédbpaotential reason for a peak
and tries to verify it by capturing a different profile undefferent conditions. For exam-
ple, a lock contention should disappear if the workload isegated by a single process.
The same technique of comparing profiles captured underfraddionditions (including
OS code or configuration changes) can be used if no hypotbasibe made. However,
this usually requires exploring and comparing more setsrofilps. We have designed
procedures to compare two sets of profiles automaticallysahect only those that differ
substantially. Section 3.2 discusses these profile-camgparocedures in more detail.

3.1.4 Layered Profiling

It is usually possible to insert latency-profiling layersiote the OS. Most kernels provide
extension mechanisms that allow for the interception apduca of information about in-
ternal requests. Figure 3.4 shows such an infrastructure.ifiserted layers directly profile
requests that are not coming from the user leged (network requests). Comparison of the
profiles captured at different levels can make the identibceof peaks easier and the mea-
surements more precise. For example, the comparison ofl@sgrand file-system—level
profiles helps isolate VFS behavior from the behavior of Iofile systems. Note that
we do not have to instrument every OS component. For exam@ewyill show later in
this section that we can use file system instrumentation aéil@rthe scheduler or timer
interrupt processing. Unlike specialized profilers, ounfping method does not require
instrumentation mechanisms to be provided by an OS, buteaeflh from them if they are
available.

Layered profiling can be even extended to the granularitysafigle function call. This
way, one can capture profiles for many functions even if thsetions call each other. To
do so, one may instrument function entry and return pointsuaby or, for example, using
thegcc - p facility. Similarly, many file system operations call eadher. For example,
ther eaddi r operation of Linux 2.6 Ext2 calls eadpage operation if the directory
information is not found in the cache. Therefore, file-systéevel profiling can itself be
considered layered profiling.

3.1.5 Profiles Sampling

Our profiler is capable of taking successive snapshots bygusinew set of buckets to
capture latency at predefined intervals of time. In this easare also comparing one set of
profiles against another, as they progress in time. Thexetbe profile is a 4-dimensional
view of profiled operations consisting of:

1. Operation

2. Latency

3. Number of operations with this latency
4. Elapsed time interval

12
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Figure 3.4: Our infrastructure allows profiling at the udee system, driver, and network
levels. Possible profiler locations are shown using the ethhdxes.
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Figure 3.5 shows an example 3D view of theok up operation on Ext2 captured while
compiling a Linux kernel. The axis contains the number of operations that fall within a
given bucket (the: axis) within a given elapsed time interval (thexis). Figure 3.6 shows
the estimated delay for each bucket on thaxis, which is the number of operations in
the b bucket multiplied by the average bucket lategcy2® = 3 - 2°~!. A small number
of invocations in buckets 22—-25 (1 ms—30ms) are respon$ibla large portion of the
operation’s overall delay.

Profile sampling is useful to observe periodic interactionanalyze profiles generated
by non-monotonic workload generators.

3.1.6 Direct Profiles and Values Correlation

If layered profiling is used, it is possible to correlate peak the profiles directly with the
internal OS state. In particular, we first capture our stashéitency profiles. Next, we sort
OS requests based on the peak they belong to according torteasured latency. We then
store logarithmic profiles of internal OS parameters in saggprofiles for separate peaks.
In many cases this allows us to correlate the values of iat€d$ variables directly with
the different peaks and thus helps explain them.

We will illustrate all of the above profile analysis methodsSection 7.

3.2 Profiles Analysis Automation

A complete profile of file system activitye(g, as shown in Figure 3.2) may consist of
dozens of profiles of individual operations. While analggthese profiles we noticed that
it is easy for people to spot interesting and unusual pattdfowever, we also noticed that
there are certain operations which can be automated. For@eait is often useful to select
operations that contribute the most to the total latencyeuadyiven workload. Moreover,
it is often desirable to compare two sets of profiles and salemaller subset of operations
with substantially different latency distributions. Fotanple, a profile of one version of
a file system or one type of workload may be compared with alprofia different file
system or the same file system under a different workloadh Bbthese operations can
be performed automatically, leaving a much smaller and Enget of profiles for manual
analysis. We have designed a set of tests to compare profieg their latencies, the
counts of operations, and standard statistical indeparedtasts to compare profiles and
calculate their statistical significance.

3.2.1 Individual Profiles Comparison

There are several methods of comparing histograms wheyebamé with the same index
are matched. Some examples are the chi-squared test, thewski form distance [100],
histogram intersection, and the Kullback-Leibler/Jeffiévergence [65]. The drawback of
these algorithms is that their results do not take factoch s distance into account be-
cause they report the differences between individual kattser than looking at the overall
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picture. For example, consider a histogram with items onlipucket 1. In a latency pro-
file, shifting the contents of that bucket to the right by telckets would be much different
than shifting by one (especially since the scale is loganit. These algorithms, however,
would view both cases as simply removing some items from é&utkand adding some
items to another bucket, so they would report the same diffee for both. We imple-

mented the chi-square test as a representative of thisaladgorithms because it is “the
accepted test for differences between binned distribsti{88].

Cross-bin comparison methods compare each bin in one héstotp every bin in the
other histogram. These methods include the quadratic;fomatch, and Kolmogorov-
Smirnov distances [20]. Ideally, the algorithm we choosauldacompare bins of one
histogram with only the relevant bins in the other. Thesedligms do not make such
a distinction, and the extra comparisons result in highefglssitives. We did not test the
Kolmogorov-Smirnov distance because it applies only tdicolus distributions.

The Earth Mover’s Distance (EMD) algorithm is a goodnes$itdest commonly used
in data visualization [89]. The idea is to view one histograsna mass of earth, and the
other as holes in the ground; the histograms are normalz#éuss we have exactly enough
earth to fill the hole. The EMD value is the least amount of woeleded to fill the holes
with earth, where a unit of work is moving one unit by one binhisTalgorithm does
not suffer from the problems associated with the bin-bydnd the cross-bin comparison
methods, and is specifically designed for visualization.w&sshow in Section 6.3, EMD
indeed outperformed the other algorithms.

3.2.2 Complete Profiles Comparison

We tried to combine some of the above techniques to autornatprofiles-selection pro-
cess even further. We developed an automated profiles anadyd which performs the
following steps:

1. sorts individual profiles of a complete profile accordiagheir total latencies;
2. compares two profiles and calculates their degree of aiityij and

3. performs these steps on two complete sets of profiles toratically select a small
set of profiles for manual analysis.

The third step operates in three phases. First, it ignorgspaofile pairs that have
very similar total latencies, or where the total latency amer of operations is very
small, when compared to the rest of the profiles (this thriesieconfigurable). This
step alone greatly reduces the number of profiles a persotdwaed to analyze. In the
second phase, our tool examines the changes between bidentify individual peaks,
and reports differences in the number of peaks and theititota Third, we use one of
several methods to rate the difference between the profilesse included bin-by-bin and
cross-bin comparison techniques, and the Earth Mover&bie algorithm [89]. We also
used two simple comparison methods: the normalized diffeg®f total operations and of
total latency.

We will describe the implementation of these and other atligiors for profiles compar-
ison in Section 5.7 and we evaluate them in Section 6.3.
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3.3 Multi-Process Profiles

Capturing latency is simple and fast. However, early coaéHmg tools rejected latency

as a performance metric, because in multitasking OSs a @mogan be rescheduled at
an arbitrary point in time, perturbing the results. We shosvehthat rescheduling can
reveal information about internal OS components such aSE¢ scheduler, 1/0 scheduler,
hardware interrupts, and periodic OS processes. Also we sbaditions in which these

components can be profiled or their influence ignored. All ghefiles presented in this

section were captured in user level (except the Linux pakrigdre 3.8).

3.3.1 Forcible Preemption Effects

Execution in the kernel is different from execution in useace. Requests executed in the
kernel usually perform limited amounts of CPU activity. Sokernels €.g, Linux 2.4 and
FreeBSD 5.2) are non-preemptive and therefore a procebg ikerrnel cannot be resched-
uled, unless it voluntarily yields (gives up) the CPU—foaexple, during an I/O operation
or while waiting on a semaphore. Let us consider a fully prete kernel where a pro-
cess can be rescheduled at any point in time.r,dteb’s bucket content without preemp-
tion enabled andn, be the content of the same bucket with preemption enablezhri@)

> ny, =Y my = N, whereN is the total number of profiled requests. A process can be
preempted during the profiled time interval only duringtts, component. Let) be the
guantum of time that a process is allowed to run by the scleedhdfore it is preempted.
A process is never forcibly preempted if it explicitly yislthe CPU before running for the
duration of@. This is the case in most of the practical scenarios thatwevidO or waiting

on semaphores.€., yielding the CPU). Let” be the probability that a process yields dur-
ing a request. For exampl®, = 0.01 if the lock contention on an involved semaphore is
1% or if data is not found in the file system cache 1 out of 10@&nThe probability that

Q
a process does not yield the CPU duripgycles is(1 — Y)(tperwd), wheret,c,i.q IS the av-
erage sum of user and system CPU times between requestsinij ducycles, the process
does not yield the CPU, then it will be preempted during thiest with probabllltylud

and otherwise it will be preempted in the user level. Tharfthe total probablllty that a
process is forcibly preempted while being profiled is:

Q

Pr(fp) = x (1= V) Teriod) (3.5)

tpemod

The expected value of preempted requests\fauch Bernoulli trials isV x Pr(fp).
We estimate that we can ignore the preemption effecié i Pr(fp) < 1. Differential
analysis of Equation 3.5 shows that the function rapidlylides if ¢,.,..a < QY (we
assume-in(1 —Y) = Y for Y < 0.5). For example, the typical CPU times we observed
are in the range o#®> — 2!* CPU cycles. The longest CPU time spent in the kernel that
we observed wag!® CPU cycles. (It was the time of th@r eat eThr ead function under
Windows XP while creating a child process.) This is consistéth the earlier observation
that file system operations tend to be aro@httCPU cycles long [76]. The value @
on modern OSs is usually on the order23f. Plugging in our typical case numbers for

17



times and 1% yield ratef{ = 0.01,¢,,, = 2= = 24 Q = 226) we get a small forced
preemption probability10~°. In the case of the unusually sl@ eat e Thr ead function,
most of the function code is semaphore-protected and theeiston rate is 10%. Plugging
in these numbersy{ = 0.1,¢.,, = tPTd = 218 @ = 2%) into Equation 3.5, we get a
forced preemption probability df.7 x 10~%. The forced preemption probability declines
very rapidly for smallet,..,,; and higher yield rates. For example, it is as lowi as**? if
tepu = tPTd = 219 even forY = 0.01. As illustrated in Figure 3.7Pr(fp) declines less
rapidly fort e iod > QY (tperiod — tepu = 2%° case). This happens, for example, if the CPU
time spent between profiled requests is large.

Let us now consider a process that never yields the CPU=(0). The probability

for such a process to be preempted during the profiled tirrmviatis%. Therefore, the

value in the original bucket, is decreased by, x %. These preempted requests show
up in the bucket correspondingtQ,;; + t.pu + (P — 1) x @, whereP is the total number
of processes running.

Figure 3.8 shows the profiles of two processes reading zeteslnf data from a file
under the Linux 2.6.11 and Windows XP kernels. (Note thatukiprofile is captured
by the file system profiler so that we could profile the smallkseia the buckets 7—-18.
The Windows profile is captured in the user level becauset®-tmad-requests cannot be
profiled by the Windows file-system-level profiler.) Sincedlbprocesses generate no disk
requests, they are preempted after they run for the durafitte scheduler intervd). The

average latency value in buckeis % = 32, Therefore,
39b 39k
my = Np — nbz— + Z nk2— (36)
Q keK (b) Q
where

K(b)={k:0<kb= Uog(;Zk +(P-1)Q)]}

is the set of buckets such that the corresponding requdststfathe k™ bucket if not
preempted and th&” bucket if preempted. Thus, the sum adds up all the values &bm
the buckets: that go to thé bucket if the corresponding request execution is preempted
In particular,%2’f + (P — 1)Q is the average latency value for a preempted request whose
latency without preemption corresponds to budketP — 1)@ is the added latency if each
process is allowed to run for a scheduling quantum of tignd he result is calculated with
the +33% precision because the bucket contents can be 33% diffex@mtdur expected
bucket’s latency mean value. Using the numbers from thexprafile shown in Figure 3.8
when captured without preemption, we estimate 888t 33% (260-516) requests should
be preempted and be moved to fi€" bucket. We cannot turn off preemption in Windows,
therefore we use the data from the preemptive profile, ignpifie peak in the6!” bucket
(that corresponds t@). We estimate that, 290 + 33% (15,114-30,457) requests should
appear in th@6™ bucket. The experimental profile with preemption as showFigure 3.8
confirmed our conclusions: ti6" bucket contained 278 requests for the Linux profile and
2,337 requests for the Windows profile. Note that in order asure these numbers we
had to generat&V = 2 x 108 requests, which is many orders of magnitude higher than
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necessary to observe the preemption effects.
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we used in all other profiles. This is because with smaNerthe expected number of
preempted requests is much smaller than 1.

Let T, be the total CPU time spent during the run. (The Sum of thé system and
user times.) We call a workloa@PU-intensivef 7,,, > NQY andyield-intensiveif
T < NQY. All the values involved in this equation can be derived frtma profile.
Note that we assume that the OS is a gray box but the requestsager (a user-level
program) is not; we assume that its user time component camelbsured using a tool like
t i me on Linux. Our analysis suggests that preemption effectdbbeacompletely ignored
if the profiled portion of the CPU time and the total number o profiled requests are
small. In practice, this is usually the case. Even duringlongest experiment (Linux
kernel compilation),NV was below10°. If the number of profiled requests or the profiled
CPU times are large, then one needs to estimate the impacteahption effects and either
issue a smaller number of requests or analyze and possitdyedghe preemption effects.

On the other hand, one needs to genefate> Pr(fb) requests (usually0® or more)
to measure the preemption effects like we did in Figure 3.8teNhat it is possible only
for the CPU-intensive case because in the yield-intensige @r(fp) is astronomically
small and it is not feasible to run the corresponding numbaequests. Profiles that
contain a large number of requests show information abautftequency events such as
hardware interrupts or background kernel threads everegdtbackground events perform
a minimal amount of activity. For example, on the Linux p@#hown in Figure 3.8, the
total duration of the profiling process divided by the numbkelements in bucket 13 is
equal to 4 ms. This suggests that this peak corresponds tortbeinterrupt processing.
Higher resolution profiles may help analyze these peaks.

To better observe background OS activity we ran a specigkiovad: we ran one and
two processes in a busy loop. Such workloads measure thmeyabé our profiler only and,
sometimes, the latency of periodic OS processes. Figursi®@s the profiles of 1 and 2
processes that run in a busy loop. The top profile was captuithdour default resolution
(r = 1) and the bottom one with double resolution 2 in Equation 3.4). As we can
see, the higher resolution allowed us to resolve peaks that W0 close to each other. For
example, we can see that a wide peak in buckets 15-17 of th@radife actually consists
of two smaller peaks.

3.3.2 Wait Times at High CPU Loads

We normally assume that the wait tintg {;;) is defined by particular events such as I1/0 or a
wait on a semaphore. However, if the CPU is still busy aftet th;; time, servicing another
process, then the request’s latency will be longer than tiggnal latency of Equation 3.1.
Such a profile will still be correct because it will contairfamation about the affected
twait- HOwever, it will be harder to analyze—it will be shifted tioet right; because the
buckets are logarithmic, multiple peaks can become indjsishable. Fortunately, this
can happen only if the sum of the CPU times of all other praeeexceeds the profiled

twait- The average CPU time between requests that haye > 0 is fjpv‘;‘ Therefore, if

twait > fvf;‘ then there is no influence of other processes ort the time of the profiled

process.
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Figure 3.9: Profiles of 1 and 2 processes running in a busy doapmeasuring profiler's
latency captured with our default resolution € 1, top) and double resolution (= 2,
bottom).
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Figure 3.10: Profile of two processes that read files on séphead drives using direct 1/0
under Windows XP with varying amount of CPU activity betweeads 26, 218, 22!, 222,
223 and2?* CPU cycles).

23



Figure 3.10 shows a set of profiles captured under WindowsTX®. processes were
randomly reading large files using direct 1/O on separata lthives and performed a
different amount of CPU activity between reads. We usedctiv® to eliminate reada-
head effects and therefore simplify the profile analysistetHthe total number of requests
N = 20,000. The six profiles are captured at average CPU times betwenres&s%
equal to216, 218 221 922 923 and224, As we can see, the profile is affected only,if.;;
is less than%. Otherwise, an extra peak appears on the profile that cammisdo%
time. We can see on the profiles in Figure 3.10 how this extak fiiest splits off from the
peak in thel6'” bucket and later (as we increase the CPU time between reaads)ttie
peak in the buckets 19-23.

This effect can be used to analyze workloads with overlagppigaks. Thus, it is pos-
sible to distinguish peaks withouttg,;; component from the peaks that havg,g; com-
ponent by varying the user-level CPU time. Algg,;; peaks can be moved to the right to
avoid overlapping peaks. (In that case the peak latencyldhi@ucalculated according to
its original position.)

Influence of processes without wait times. The influence of CPU-only processes on
processes with the wait times can be discarded or easilyzethl Modern schedulers auto-
matically decrease process priority if it consumes CPUeyalithout making I/O requests,
and therefore such processes are unlikely to significaffthctathe profiles of I/O-active
processes. Figure 3.11 shows the profiles of a Linux pro¢tedswas sequentially reading
a large file with and without a background CPU-intensive psscrunning concurrently.
We can see that the 1/0O-intensive process is barely affdngetie CPU-intensive one. In
particular, out of 10,000 I/O requests, only 3 were reschetiunder Linux and 33 under
Windows. The formed peaks (buckets 24—26) have a well-d&foeation that corresponds
to(P—1) x Q.

Interestingly, the Windows and the Linux schedulers exhilifferent behavior: the
Linux scheduler penalized the CPU-only process by deargats () so that we see a peak
in buckets 24-25 instead of 25-26.
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Figure 3.11: Profile of an I/O-active process that sequiytieads data using direct 1/O,
run alone and concurrently with another CPU-only proces$3 Eunning on Linux 2.6.11
(top) and NTFS running on Windows XP (bottom).
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3.4 Multi-CPU Profiles

Profiles captured on multi-CPU systems contain informattiat is even harder to capture
using existing tools. For example, multi-CPU profiles im#unformation about spinlocks.
In general, latency profiling on multi-CPU systems is simitaprofiling on the uniproces-

sor (UP) systems. However, there are several issues thateegpecial attention.

3.4.1 Time Synchronization

We use CPU counters to measure latency. However, CPU ceuwmetifferent CPUs have
different values. Therefore, the measured latency may beldq the true latency with
addition of the CPU clock counters difference if a proceseescheduled and put on a
different CPU while being profiled. (In that case we caloaldie latency as the difference
of clock counters on different CPUs.) As in the case of fdecfireemption, rescheduling
outside of the profiling interval does not affect our profilésodern schedulers attempt to
schedule the same process on the same CPU it was running beéfpossible, to avoid
purging CPU caches. However, there is a more significanbreagy we can ignore this
problem.

We use logarithmic filtering of latency. Therefore, accaglio Equation 3.3 we can
ignore the difference between CPU counteifs < t,,... Also, a process or a thread mea-
sures latency on different CPUs only if the process or thegtiiis rescheduled. Therefore,
tmaz = tscheduling- EVEN for modern CPUS, ,cquing 1S typically at least several dozens
of microseconds long. However, many CPUs initialize thick counters to zero at their
initialization time and are synchronized with nanoseceseie precision. Also, some OSs
(e.g, Linux) synchronize clock counters on multiple CPUs withewvfmicrosecond preci-
sion. Figure 3.12 shows a special profile generated by twogsses on the FreeBSD and
Linux SMP systems with two 2.8 GHz Pentium IV CPUs: one of thecpsses was con-
stantly reading the Pentium clock counter register (TSl storing the result in a shared
variable; the second process was also reading TSC regiateylating its difference with
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Figure 3.12: The difference in TSC register values between@PUs under FreeBSD and
Linux. (Both CPUs were running at 2.8 GHz.)
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the shared variable and updating the corresponding butketsystem was otherwise idle
and the two processes were running on different CPUs. As wsea, in case of FreeBSD,
the TSC registers are synchronized wifins precision. FreeBSD does not attempt to syn-
chronize the clock counters. Linux, on the contrary, attesnpsynchronize these counters
with at leastdus precision Zus difference from the average value for all CPUs). Unfortu-
nately, Linux does it unconditionally and, as we can seegufa 3.12 (bottom), it actually
makes the CPU synchronization worse. Fortunately, in baies) < t..nequiing @and we
can ignore the problem due to the logarithmic filtering.

Now let us consider the case when the CPU counters are natlired at the CPU
initialization time and the OS does not do the synchroniragither. First, it is trivial
to synchronize the counters with microsecond-scale pectisefore performing profiling.
Second, clock counters are usually 64-bit wide. Therefibréhey are left with random
values at the CPU initialization time and no synchronizatgperformed, with high prob-
ability their difference will be on the order of billions ofcles. In that case, a small fraction
of profiled events will show up in the most significant (rightst) bucket on the profiles.
(In our implementation, we store events with latencies eighan2?® cycles in the bucket
that corresponds t2*° cycles.) Therefore, even in case of no CPU synchronizatioean
easily identify and discard errors caused by the CPU clocktar difference.

3.4.2 Shared Data Structures

Multiple threads and sometimes multiple processes shateupdate the same array of
buckets in memory. Therefore, it seems that we need to grttecshared data structure
with either a spinlock, a semaphore, or at least perform duakdates atomicallye(g,
using thdock instruction prefix on Pentium CPUSs). This is due to two reason

1. Several processes running on different CPUs may readathe bucket value, incre-
ment it, and all write the same new value back, thus losingesohthe increments.

2. Some write operations are not atomic on some CPUs. For @eranmvrites to the
same non-memory—aligned 64-bit—wide variables by diffe@PUs may result in
the situation that part of the variable is updated accortiingne write and another
part is updated according to the other CPU’s write.

However, all atomic operations are especially bad for CPthea in multi-CPU environ-

ments and can significantly influence performance. Thuslaer €PUs, atomic operations
locked the whole memory bus for all CPUs. Modern CPUs onlgpume cache line from
all CPUs except the current one. For us this means that if ereiment buckets atomically,
we will purge many if not all buckets from the CPU caches ofoditler CPUs upon every
bucket update. Fortunately, because of the statistical@at the latency profiling, we can
perform all bucket updates non-atomically as follows:

1. The probability of the occurrence of the first problem diesx above can be esti-
mated using the classical birthday paradox problem whetd@rthtiay” is the event
that two CPUs update the same bucket and the “yea?ﬁii “days long”. typdate
is the time necessary to update the bucket (a memorypwrmel)tb@cket is the aver-
age time between requests that result in writing togamebucket. Thus, a coarse
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approximation of the probability that two processes corenity update the same
bucket is:

2
Ncpu tupdate

1—e 2 " toucker (3.7)
whereN,,, is the number of CPUs. This probability is illustrated in tig 3.13 for
2,4,8,16, 32,64, 128, and 256 CPUs,..: is at least 200 CPU cycles long due to
our profiler overhead itself, where&gs .. is only several cycles long. Therefore, for
a dual CPU system, the probability of two concurrent buclketates is< 1% even
if our profiler does not measure any real latency and runs imsg oop. Figure 3.14
shows such a profile captured on a dual Pentium IV machineimgritnux. Two
threads where updating the same set of buckets in a busy @apof 10,000,000
total updates there are 95,116 total lost updates (0.952%6). For real workloads,
thucker 1S Much bigger. For exampleé,,.... ~ 2% CPU cycles under thgrep -r
workload. Therefore, the probability of two concurrent 88 to the same bucket
under a grep-like multi-threaded workloadisl% even on a system with 256 CPUs.
It is important to note here that lost updates are much lesisginie for the buckets
located on the right side of the profiles—buckets we care &i@umost.

2. In general, the solution to the non-atomic—writes problis CPU architecture-
specific. However, aligned 32-bit—-wide writes are atomicrmast CPUs. We
found 32-bit—wide buckets to be sufficient for all the expents that we ran.
If that is not enough, aligned 64-bit—wide writes are alsondat on some CPUs
(including Pentiums). The most important observation, &asy, is that we always
increment buckets by one. Therefore, even if two parts obtieket can be updated
inconsistently the probability of such event is very low.

One more possible complication may be a race condition iptbéles are still updated
while reading out the accumulated profiles. To address weseither read-out the accu-
mulated profiles after the profiling is over, or the profilimgné is substantially long. In the
latter case, we can consider the read-out time small.

Given all the above, we do not use atomic operations at ang tiaring profiling.
This allowed us to decrease the CPU-time overheads sewaed tind avoid CPU cache
purging on multi-CPU systems. However, one has to be camfudystems with a large
number of CPUs. On these systems each thread may be assigepdrate set of buckets
to avoid any lost bucket updates. This increases memonheges but eliminates all the
aforementioned problems completely.

3.4.3 Profile Analysis

While profiling and analyzing collected profiles, it is nesay to understand that there is
less contention for CPUs between different processes oti-@BIU systems. For example,
forcible preemption and the wait time changes describe@ai&n 3.3 almost never happen
if there are only two processes that run on two CPUs.

Figures 3.15 and 3.16 show profiles captured on dual-CPUxLémd FreeBSD sys-
tems for 1, 2, and 4 concurrent processes that caltthene system call. (One may also
compare these profiles with the profile shown in Figure 3.h)the FreeBSD case, the
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Figure 3.13: The probability of two concurrent writes to game bucket, estimated using
Equation 3.7, for systems with 2, 4, 8, 16, 32, 64, 128, and@38s.t;,..; IS at least 200
CPU cycles long.
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Figure 3.14: Two processes updating the same set of buaketdaop on a dual-CPU
Linux system. The two CPUs were running at a frequency of 248.GBuckets 10 and
above correspond to the background interrupt processing.
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Figure 3.16:cl one system call concurrently called by 1, 2, and 4 threads onykteem
running FreeBSD 6.0 in uniprocessor (UP) mode (top) and SMBerfbottom). The two
CPUs were running at 2.8 GHz.
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profiles captured even with a single thread differ subssdigtior FreeBSD compiled with

SMP support enabled and disabled. This is because OSs Hfwremtilocking approaches
in uni-CPU and multi-CPU configurations and even the CPU tioee is different due to

the differences in the functions involved. For examplepne on SMP-enabled FreeBSD
takes twice as long even if there is no process contention.

3.5 Profiling in Virtual Environments

Conceptually, OS profiling inside of Virtual Machines (VMsnot different from ordinary
profiling. However, it is important to understand that thest@nderlying) OS and the VM
itself affect the guest OS’s behavior. Even if there is omyg @irtual machine running on
the host, its guest OS’s I/0 requests will be serviced by that bperating system, which
will affect their timing. In addition, the host OS will affethe caches of the shared CPU.
Therefore, the benchmarking and profiling results colledte VMs do not necessarily
represent the OS behavior running on a system directly. rOtMs running on the same
system exacerbate the problem even more.

Nevertheless, there are two situations when profiling itugirmachines is necessary:

1. Itis not always possible or safe to benchmark or profile ceehmachine directly.

2. VM developers and developers of systems intended to ran Ioelow virtual envi-
ronments naturally benchmark and profile systems runningrinal environments.

These situations have contradicting requirements. In teedase, it is necessary to mini-
mize the influence of virtualization on the guest OS. In thebse case, it is necessary to
profile the interactions between the virtual machines a$ agetheir interactions with the
host OS. Therefore, we use two different approaches to me#se latencies:

1. We use the guest OS’s (apparent) time: for example, in Vi\{EB] we use the same
CPU clock counter read instruction that we normally usesHfiows us to minimize
the influence of other VMs and the host OS on the profiled systénfortunately,
this does not provide I/O isolation and depends on the quafithe clock counter
virtualization.

2. We use the host OS’s (wall clock) time, for example by dyew
monitor.control.virtualrdtsc = false

in VMware’s configuration file [103]. This allows us to captuall the mutual inter-
actions between the host OS and the VMs.

Profiling in virtual environments is complicated by the fHtat the complexity of the
profiled systems increases more than two times. In particuigual machines add an
extra layer between the host operating system and the gpesitong system(s). Thanks
to layered profiling it is possible to profile at the guest andthOSs concurrently. This
allows us to simplify the profile analysis by attributing fil® changes and peaks to the
appropriate profiled layers.
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Figure 3.17 shows user-mode profiles of the idle loop wortlganerated by one pro-
cess and captured with four different configurations:

A. This profile was captured on the host OS running withoutdriyal machines. Note
that this profile is different from the profile shown in Figu3e8 on page 20. This
is because the workload was generated by only one procesbesradise the host
hardware and OS were different.

B. This workload was executed and the profile was captureti®hast OS. An idle vir-
tual machine was running on the background. We can see thguist OS influences
the host operation even if the guest OS was mostly idle. Hewdlre benchmark’s
elapsed time increased by merely 2%.

C. This profile was captured in the virtual machine using thesg OS’s (apparent) time.
We can clearly see three examples of how VMware poorly erasldie TSC CPU
register. First, most of the time, the measured latencyesponded to the* bucket
instead of the originad”@. We measured the TSC synchronization error between the
host CPUs and it corresponded to the sdfiebucket. Therefore, we suspect that
the peak in thé' bucket appears due to the fact that VMware uses different<CPU
to read the TSC counter during its emulation. Second, thes yiebk in buckets
13-21 is yet another significant artifact of the VMware TSCQuétion. Third, the
TSC register virtualization is costly and increases thenmig time of the whole
benchmark by 16 times.

D. We again captured the profile in VMware but this time we ukedt TSC register
to measure the latencies. The profile closely resemblesdbepnofile (configura-
tion A). The differences in the buckets 10-21 are due to thgédo interrupts pro-
cessing in VMware. The TSC register emulation in VMware i$ just inaccurate
but also adds significant overheads. In particular, in comdiion D the benchmark’s
elapsed time was indistinguishable from the elapsed timbeoame benchmark in
configuration A.

We can conclude that virtual machines profiling is impleraéioh-dependent. Never-
theless, our profiling method is suitable even for such syste
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Figure 3.17: Idle loop profiles captured on the host runninge (A), on the host running
with one idle VMware on the background (B), running in VMwasgtured using the guest
OS’ (apparent) time (C), and running in VMware captured gdinst OS’s time (D). The
host was a dual 2.8 GHz SMP system. We used VMware Workstattoh.2. Both the
host and the guest OSs were running Linux 2.6.17.
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3.6 Method Summary

Our profiling method reveals useful information about masgescts of internal OS behav-
ior. In general, profilers can be used to investigate knowfop@ance problems that are
seen in benchmarks or during normal use, or to search folebetitks actively. We have
used our profiler successfully in both ways.

When searching for potential performance issues, we fobata custom workload is
useful to generate a profile that highlights an interestielgdvior. In general, we start with
useful but simple workloads and devise more specific, fatuswkloads as the need arises.
The workload selection is a repetitive-refinement visulan process, but we found that
a small number of profiles tended to be enough to reveal higédyul information.

We derived several formulas that allowed us to estimate fileets of preemption. We
showed that for typical workloads (moderate CPU use andlsmatber of system calls)
preemption effects are negligible. Conversely, a diffedass of workloads (lots of CPU
time and a large number of system calls) can expose preemefiects. This is useful
to derive the characteristics of internal OS component$ siscthe CPU scheduler, 1/0
scheduler, and background interrupts and processes. &taimation cannot be easily
collected using other methods. While creating the work$pamhe should keep in mind
that workloads generated by many active processes can igv€RU loads and split the
latency peaks associated with the wait time. We have dematedtthat for SMP systems,
time synchronization is not a problem and expensive loclsnmpt necessary.

We do not require source code access, which enables us toragdax profiling.
The resulting profiles show which process or operation cagsatention with another
operation. For example, the profiles do not show which paldiclock or semaphore is
causing a slow-down, because that information is specifecarticular OS and therefore
conflicts with our portability goal. However, as we show ircéen 7, the information we
get is sufficient to find out which particular semaphore oklcproblematic if the source
code is available.

Because our method can be used entirely outside of the kermieles not exact any
overall overheads on the kernel; therefore, this resultmimmal changes to the internal
OS'’s behavior. Moreover, the small CPU-time overheads mwbsewhen profiling inside
the kernel are added only on a per-request basis withounhgdahy overhead for each
internal event being profiled(g, taking a semaphore).
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Chapter 4

File System Instrumentation (FoSgen)

Looking at Figure 3.4 on page 13, one can notice that it isiptesso use standard and
portable API interfaces to intercept at the system call agtvarking layers. However, it
is also desirable to measure the latency inside of the OSieabiod below file systems.
Manual instrumentation of the drivers below file systemssgaally not difficult because
there are only a few operation vectors. Unfortunately, nahimstrumentation of file sys-
temsis difficult because the number of VFS operations is large. Afge systems may
significantly change from one version of the OS to anotheis Trrakes it necessary to redo
the manual instrumentation work for every new OS release.

Incremental addition of code to file systems is a desiraldéufe not only for profil-
ing but also for adding many other standard and custom festiar existing file systems.
Examples of such other features include tracing [6], cosgion [115], encryption [112],
secure data deletion [57], data integrity checking [598 arany others.

Stackable file systems can incrementally add functionéditgxisting and even future
file systems [115]. Figure 4.1 showsBaseOfsstackable file system that passes through
all the file system operations from thértual File Systen{VFS) to the lower file system.
Unfortunately, stackable file systems add overheads tolalkfistem operations. Direct
file system source code instrumentation produces file systleat run more efficiently,
because only the necessary operations are instrumentede@ndmpiler has the flexibility
to optimize the code. Unfortunately, such instrumentateaquires manual work for every
file system and every OS version. We decided to combine thefieof both approaches.

We have designed an automatic file-system instrumentayisters we calledcoSgen
It automatically instruments a subset of file system openatdirectly in the source code.
If a file system’s source code is unavailable, then FoSgennsarument the BaseOfs file
system. BaseOfs can then be mounted over a file system whase $ode is not available,
adding a small overhead but also providing the new functityna

FoSgen was designed with two assumptions in mind: (1) At & hegel of abstrac-
tion, all file systems under different OSs perform similaemiions and deal with the
same abstract objects: superblock, files, directories,liakd; (2) Figure 4.2 shows that
FoSgen processes both the target file system and the newsextdritten in the FiST
language [115]). Based on the information contained in bBtiSgen generates a new
instrumented file system. The first assumption allows us gigaefile system extensions
at a high level of abstraction and the second assumptiowslls to adapt these abstract
decisions to a particular file system.
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Figure 4.2: FoSgen script operation.
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4.1 FIST

The FiST language was designed with similar assumption®&gén [115]. Not surpris-
ingly, we decided to use the FiST language to describe fileesygxtensions. FiST files
have a structure similar to the structure of the YACC file fatrfd5]. Every FiST file con-
sists of three sections separated wit¥Béline. The first section contains code and macros
added to a generated header file. The middle section des@jimrations that require in-
strumentation. The last section describes routines foparage generated source file. FiST
is a C-based language. Because popular OSs are written msGliows direct insertion
of C code from FiST files into the appropriate locations of $§stem code.

FoSgen can instrument individual file system operationsiaselt code at their begin-
ning, before they return, or even replacing the originaleeodhe syntax to specify the
instrumentation target is the following:

Yop: nanme: where {
/* instrunmentation code goes here */

}

wherenarne is the operation name such asl i nk or one of the special namesi |

to instrument all operations,ni t to instrument file system module initialization, and
exi t to instrument file system module resource deallocatigimer e can be one of the
following: precal | , postcal | , andcal | to add instrumentation at the beginning, at
the method return, and instead of method, respectively.

4.2 VFES Operation Interception

The source code instrumentation process itself is relgtisenple and is based on the
assumption that the file system’s VFS operations are defingdnvwixed operation vec-
tors. In particular, every VFS operation is a member of onesaferal data structures
(e.g,struct inode_operations). These data structures contain a list of operations
and their associated functions. For example, Figure 4.@/sliloe definition of Ext2’s file
operations for directories (top) and FreeBSD NFS vnodeatijmers (bottom). The instru-
mentation script scans every file from the file system souireetbry for operation vectors,
and stores the function names it discovers in a buffer. Nbgtscript scans the file system
source files for the functions found during the previous phas

The Microsoft Windows VFS is based on message passing. finerenost (and often
all) file system operations are processed by a single fumcks we can see on the top of
Figure 4.4, such a function is assigned to members dffjeor Funct i on array and can
be found by FoSgen. In turn, the function that is assignethédvhj or Funct i on ar-
ray assigns an operation completion function by callm§etCompletionRouting-oSgen
needs to discover both of these functions in order to medbkerkatency of requests. This
is possible but it is more complicated than instrumentingulxiand FreeBSD file systems.
In addition, many Windows file system operations, cafledt |/ O, are defined similar
to Linux and FreeBSD operations. For example, the bottorhgddfigure 4.4 shows the
declarations of Fast I/O operations for a Windows XP filtevelrfile system [72].
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struct file_operations ext2 dir_operations = {

.1l seek = generic_file_ Il seek,
.read = generic_read dir,
.readdir = ext2_readdir,
.ioctl = ext2 ioctl,
.fsync = ext2 sync _file,

3

struct vop_vector nfs_vnodeops = {
.vop_default = &def aul t _vnodeops,
.vVop_access = nfs_access,
.vop_advl ock = nfs_advl ock,
.vop_cl ose = nfs cl ose,
.Vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs getattr,

. vop_get pages
. VOop_put pages
.vop_i nactive

nfs_get pages,
nf s_put pages,
nfs_inactive,

.vop_| ease = VOP_NULL
.vop_link = nfs_Iink,
.vop_Il ookup = nfs_| ookup,
.vop_nkdir = nfs nkdir,
.vop_nknod = nfs_nknod,
.vop_open = nfs_open,
.vop_print = nfs_print,
.vop_read = nfs read,
.vop_readdir = nfs readdir,
.vop_readlink = nfs_readl i nk,
.vop_reclaim= nfs_recl aim
.vop_renove = nfs_renove
.vop_renanme = nfs_renane,
.vop_rndir = nfs rndir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symink = nfs_sym i nk,
.Vop_wWwite = nfs wite,

¥

Figure 4.3: Linux Ext2 directory operations (top) and Fr&EBNFS vnode operations (bot-
tom). The Linux kernel exports trgeeneri c fil el | seek andgeneri c.read. dir
functions for use by multiple file systems.
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for( i =0; i <= |RP_MJ_MAXI MUM FUNCTI ON; i++ ) {

Dri ver Obj ect->Maj or Function[i] = Fil enonDi spat ch;

}

FAST_| O_DI SPATCH Fast | OHook = {
si zeof (FAST_| O DI SPATCH) ,
Fi | enonFast | oChecki f Possi bl e,
Fi | enonFast | oRead,
Fi | enonFastl oWi te,
Fi | enonFast | oQuer yBasi cl nf o,
Fi | enonFast | oQuer ySt andar dl nf o,
Fi | enonFast | oLock,
Fi | enonFast | oUnl ockSi ngl e,
Fi | enonFast | oUnl ockAl |,
Fi | enonFast | oUnl ockAl | ByKey,
Fi | enonFast | oDevi ceContr ol ,
Fi | enonFast | oAcqui reFil e,
Fi | enonFast | oRel easeFi | e,
Fi | enonFast | oDet achDevi ce,
Fi | enonFast | oQuer yNet wor kOpenl nf o,
Fi | enonFast | oAcqui r eFor ModW i t e,
Fi | enonFast | oMl Read,
Fi | enonFast | oMll ReadConpl et e,
Fi | enonFast | oPrepareMll Wite,
Fi | enonFast | oMdl Wit eConpl et e,
Fi | enonFast | oReadConpr essed,
Fi | enonFast | oWi t eConpr essed,
Fi | enonFast | oMll ReadConpl et eConpr essed,
Fi | enonFast | oMdl Wi t eConpl et eConpr essed,
Fi | enonFast | oQuer yOpen,
Fi | enonFast | oRel easeFor ModW i t e,
Fi | enonFast | oAcqui r eFor CcFl ush,
Fi | enonFast | oRel easeFor CcFl ush

b

Figure 4.4: Declaration of normal file system operationp)YtndFast
(bottom) for a Windows XP filter driver file system.
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Often, file systems use generic functions exported by th@dker For example,
Ext2 uses thegeneric.read. dir kernel function for itsread operation and
genericfilell seek function for its| | seek operation as shown in Figure 4.3.
FoSgen cannot directly instrument external functions.réfoge, FoSgen creates wrapper
functions directly in the file system source files. FoSgeeritsswrapper functions directly
before the corresponding operation declaratiang,(as shown in Figure 4.3) and changes
the operation declaration itself to refer to the wrapperctfion instead of the original
one. For example, Figure 4.5 shows how FoSgen transformerigmal Ext2 directory
operations vector shown in Figure 4.3 (top) in order to mstent itsr ead and| | seek
functions. (In this example, wrapper functions are notriumsiented.) We use wrapper
functions, not inline functions or macros, so that our fimetthas an address for the
operations vector to use. Our wrapper functions are latstrumented and are called
instead of the original external functions.

By looking at the example shown in Figure 4.5, one can sed-thagjen needs informa-
tion about the function types, and the number and types driigments, in order to create
the wrapper functions. That information is available frame Linux header files. Fortu-
nately, file system operation methods are part of the VFS ARl not change much from
one Linux kernel version to another. Therefore, we adoptexidolutions. First, FoSgen
can extract all the necessary information from the kernablee files if they are available.
Second, it has a built-in copy of such information for the eetnOS versions.

4.3 FiST Support by FoSgen

FoSgen and the FiST language were designed with cross-Ofatifnitity in mind. Un-
fortunately, OSs are complex and the creation of a compl€d&-independent language
to describe OS components is a difficult task. Therefore géaSs a compromise solution
between complete OS-independence and implementatiorisitppFoSgen supports ba-
sic file system abstractions such agrede FoSgen converts abstract vnode objects used
in the FiST input file into objects used by target OSs and seferfile properties via a
unified vnode object. For example, FoSgen understands teag gnode under Linux is
represented by several objects: a file, a dentry, and an ifdues, FoSgen uses the dentry
object to access the file name, and the inode object to adoeddd size. At the same
time, developers do not need to know about it and can assushéhibse are the abstract
vnode properties. Also, FoSgen supports common OS vasanid functions. For exam-
ple, itconverts i st Mal | oc,fi st Pri nt f,and several other functions into appropriate
OS-specific functions. Similarly, FoSgen convdrist Last Er r , %pi d, and some other
variables to their appropriate representations on thetad®. This functionality is enough
to create many portable file system extensions entirelyai-BT language. However, OSs
have more variables, functions, and abstractions than avalde to support. Therefore, we
adopted the following model for large extensions: (1) welenpent our extension as much
as possible using the FiST language, and (2) we implemenplesrand OS-specific func-
tionality in the form of separate OS-specific kernel modulésually, the FiIST component
describes file system instrumentation details. If we seletbkaepeatedly implement some
functionality as a separate module, we then extend FiST afd&n to support it.
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struct file_operations ext2 dir_operations = {

.1l seek = generic_file_ Il seek,
.read = generic_read dir,
.readdir = ext2_readdir,

.ioctl = ext2 ioctl,

.fsync = ext2 sync _file,

}

| off _t fosgen_generic_file_llseek(
struct file *fosgen_fparam O,
| off t fosgen_fparam1,
int fosgen_fparam 2)

{
return generic_file_|lseek(
f osgen_f param 0,
f osgen_f param 1,
f osgen_f param 2);
}

ssize_t fosgen_generic_read_dir(
struct file *fosgen_fparam O,
char _ user *fosgen_fparam1,
size_t fosgen_fparam 2,
| off _t *fosgen_fparam 3)

{
return generic_read _dir/(
f osgen_f param O,
f osgen_f param 1,
f osgen_f param 2,
f osgen_f param 3);
}
struct file_operations ext2 dir_operations = {
.1l seek = fosgen_generic _file_llseek,
.read = fosgen _generic_read dir,
.readdir = ext2_readdir,
.ioctl = ext2 ioctl,
.fsync = ext2 sync _file,

¥

Figure 4.5: Original Ext2 directory operations vector (f@gmd its FoSgen-transformed
version with the wrapper functions (bottom).
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4.4 FSprof.fist

We call our file-system—level profiler FSprof. As shown in [Ea#.1, FSprof consists of
three components:

1. file system hooks to intercept file system operations;

2. theaggr egat e_st at s library to measure latency and increase the corresponding
bucket values; and

3. a user interface (usually an entry in ther oc file system) to read accumulated
latency distributions by the users.

Component CPU-architecture portability | OS portability
File system operations hooks yes yes
aggr egat e_st at s library no yes
user interface yes no

Table 4.1: FSprof components and their portability.

The aggr egat e_st at s library includes architecture-dependent code to read the
CPU cycle counter. Nevertheless, the architecture-degpgrabde usually consists of just
a single CPU instruction. User interface implementationssally OS-specific. We have
created three types of FSprof extensions with differentgimlity:

e Figure 4.6 shows a minimal FiST file system extension necgssameasure the
latency of all file system operations. It inserts functiohsced measure the latency at
the beginning and at the end of all file system operations.filihetions themselves
(f sprof pre andf spr of post) are implemented in a separate module. This
FSprof extension is portable across all FoSgen-supporgsd O

e An extension common to all systems of the same CPU archiee@Lg, ia64) con-
sists of file system operation hooks and #igggr egat e _st at s library. It relies on
an external module for user interface functions.

e A complete FiST extension for Linux systems running on i386 @64 architectures
that requires no extra modules is presented in Appendix éaritmeasure the latency
of file system operations and output the results via theoc interface.
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A

fsprof.fist: collect |latency distributions
for all file system operations

Copyright (c) 2006 Ni kol ai Joukov and Erez Zadok
Copyright (c) 2006 Stony Brook University
/

¥ %k X X ¥ * X

unsi gned | ong | ong fsprof pre(int op);
voi d fsprof_post(int op, unsigned long long init_cycle);

%

debug off;
license "GPL";

9%
Yop: all:precall {

unsigned long long fsprof _init_cycle =
fsprof _pre(fistOP_%op);

Y%op: al | : postcal | {
fsprof _post(fistOP_%op, fsprof _init_cycle);

RL%

Figure 4.6: A minimal latency profiling FiST extension forgen.
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4.5 FoSgen Steps

Figure 4.7 shows an original and the generatedt epage operation code for the Ext2
file system. We can see that FoSgen created a temporary feartabtore and report the
internal return value. Let us consider the steps perfornygedsgen during its run.

1.
2.

First, FoSgen parses the input FiST file.

It replaces simple OS-independent FiST constructiorth wie appropriate OS-
specific functions or variables. For example, it repladesst Pri ntf with
pri nt k if the target OS is Linux.

FoSgen scans the file system source files for operatioamicns €.g, as shown in
Figure 4.3).

FoSgen looks for an implementation of the methods thatiregnstrumentation.

It adds wrapper functions for the methods that requirgrunsentation but cannot be
found in the file system source files (as shown in Figure 4.5).

FoSgen adds the appropriate code at the beginning, atntheoe instead of the
original methods, according to the FiST file specification.tiis step FoSgen also
performs method-specific code transformations. For examptreates temporary
variables likef i st _| ocal _var in Figure 4.7 and replaceédop with the appro-
priate operation name. Also, it binds method-specific \@es with the appropri-
ate method parameters.(, it maps the vnode of the file to be unlinked with the
unl i nk method’s parameters).

FoSgen creatdsi st . h files according to the first section of the FiST extension.
Also, FoSgen creategdef i ne declarations for every operation that was instru-
mented and an array of strings with names of these operatidfter that, FoSgen
includesf i st . h from all the file system source files.

Finally, FoSgen generated ast . c file with the appropriate code from the FiST
extension and adds the generatédt . ¢ to theMakefi | e.

The FoSgen design allows file system developers to con¢erttretheir new concepts
or features instead of the implementation for every filesysand OS. Even better, if some
OS property changes, developers may not even need to mbeifyiST extension.
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static int ext2_witepage(struct page *page,
struct writeback _control *wbc)

{
return bl ock_wite_ full_page(page,
ext 2_get bl ock,
wbc) ;
}

static int ext2 witepage(struct page *page,
struct writeback control *wbc)

{
unsigned long long fsprof init _cycle =
fsprof _pre(fistOP_witepage);
{
int fist local _var = block wite full page(page,
ext 2_get bl ock,
wbc) ;
fsprof _post(fistOP_witepage, fsprof init_cycle);
return fist |ocal var;
}
}

Figure 4.7: An original (top) and an FSprof-instrumenteadt{dm)w i t epage operation
of the Linux Ext2 file system.
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Chapter 5

Implementation

We designed a fast and portalalggr egat e_st at s library that sorts and stores latency
statistics in logarithmic buckets. Using that library, weated user-level, file-system-level,
and driver-level profilers for Linux, FreeBSD, and Windows,shown in Figure 3.4.
Instrumenting Linux and FreeBSD allowed us to capture tpmfiles with low over-

heads and verify some of the results by examining the sowae. dnstrumenting Windows
XP allowed us to observe its internal behavior, which is nbeowise possible without ac-
cess to the source code. We chose source code instrumartetimiques for the Linux
and FreeBSD profilers for performance and portability reas&Ve chose plug-in or binary
rewriting instrumentation for the Windows profilers becassurce code is not available.

5.1 The aggregatestats Library

This C library provides routines to allocate and free statisbuffers, store request start
times in context variables, calculate request latencied,store them in the appropriate
buckets. We use the CPU cycle counter (TSC on x86) to measnesktecause it has
a resolution of tens of nanoseconds, and querying it usesgiesinstruction. The TSC
register is 64-bit wide and it only overflows once after cangf%* CPU cycles#*? seconds
or more than hundred years for a CPU running at 4 GHz).

5.2 POSIX User-Level Profilers

We designed our user-level profiling mechanisms with pdtglin mind. We directly in-
strumented the source code of several programs used toagertest workloads in such a
way that system calls are replaced with macros that wrapybes call with the appro-
priate profiling code. This way, the same programs can bempded for other POSIX-
compliant OSs and immediately used for profiling. The ca#dcprofiles are printed to
the standard output upon the program’s exit. Alternativelg can modify the libraries
to intercept the calls at runtime, letting us profile progsafor which source code is not
available.
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5.3 Windows User-level Profilers

To profile Windows under workloads generated by arbitrarg-npen-sourced programs,
we created a runtime system-call profiler. In Windows, systalls are implemented in
a system-provided dynamic link library (DLL) calldcer nel 32. dI | . Our system call
profiler is implemented as a DLL and uses the Detours libré4y {o insert instrumentation
functions for each system call of interest. Detours canringew instrumentation into
arbitrary Win32 functions even during program executidnmiplements this by rewriting
the target function images. To exercize a workload, we rurogram that executes the test
application and injects the system call profiler DLL into test program’s address space.
On initialization, the profiler inserts instrumentatioméions for the appropriate Windows
system call. The Detours library implements the instruragonh by creating arampoline
function that invokes the actual system call being profildefach instrumented function.
The profiler's instrumentation functions call the corresgimg trampoline function and
capture the timing information.

5.4 Linux and FreeBSD File System Level Profilers

On Linux and FreeBSD source code is available for most fildesys. Therefore, we
decided to instrument file systems by directly instrumemtireir source code. This allowed
us to profile without perturbing the original file system cgde@n. If the source code is not
available, we can instrument and use stackable file systétfs.[ Manual file system
instrumentation is inconvenient because (1) the numbexisfieg file systems is large, (2)
each file system can support dozens of operations, and (3)impertantly, file systems
can significantly change from one version of OS to another.

Before we started working on FoSgen, we created a simpléirstrgot that usesed
to add profiling code to Linux file systems. The script opesainilarly to FoSgen as
described in Section 4: it looks for particular patternshivitfile-system code. Despite its
simplicity (the script consists of 1&led expressions), the script successfully instrumented
all the file systems we tried it on: Ext2 and Ext3 [19], Reis&6 and 4.0 [84], NFS [78],
NTFS [90], and BaseOfs [115]—under both Linux kernel vemsi@.4.24 and 2.6.11.

5.4.1 FoSgen and FSprof FiST extensions

FoSgen is a general file system instrumentation tool. It cahcaistom file system exten-
sions under Linux and FreeBSD. More importantly, FoSgen lmarxtended to support
more OSs in the future. FoSgen is writtenHarl [104]. We believe Perl is an appropriate
choice because most of the time the instrumentation preezsshes the code for matches
of regular expressions—a task that Perl is especially Si@t@r. Aside from string match-
ing and replacing, the instrumentation system parses ondl portions of the C code. For
example, it determines the types of functions and theirragnts. We found that a simple
top-down parser is sufficient for this purpose.

At the time of this writing, FoSgen can instrument Linux A.#hux 2.6, and FreeBSD 5
file systems. It consists of 607 lines of Perl code. We haveessfully applied and verified
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the functionality of several FiST extensions.

FSprofis our collection of FiST file system extensions that profieehcy. We have cre-
ated several such extensions with different portabilitg eonvenience characteristics. The
smallest FSprof FiST extension is shown in Figure 4.6 on gdgét describes appropriate
function calls to be inserted at the beginning and at themgtoints of every file system
operation. The function implementations must be providea $eparate OS-specific mod-
ule. This extension is designed with maximum portabilityrimd—no extension changes
should be necessary even if FoSgen is extended to suppoe sem OSs. The FSprof
extension described in Appendix A contains all the necgsarctionality including the
/ pr oc interface implementation. This extension only works onuxrbecause of the
Linux-specific/ pr oc interface implementation. The FSprof extension with thpg oc
interface that we imported from a separate OS-specific neotuportable across Linux
and FreeBSD.

5.5 Windows File System Level Profilers

FoSgen can potentially be extended to support the instrtatien of Windows file systems.
However, most Windows file systems’ source code is unavailatonly partially available.
Also, the Windows VFS API does not change a lot between Wirsdesvsions and there
are usually only several functions to instrument due to tlessage-passing architecture
of Windows file systems. Therefore, we decided to implemieatWwindows kernel mode
profiler as a file system filter driver [72] that stacks on topoafal or remote file systems.
In Windows, an OS component called th® Managerdefines a standard framework
for all drivers that handle 1/0. The majority of I/0O requesidile systems are represented by
a structure called theO Request Pack€IRP) that are received via entry points provided by
the file system. The type of an I/O request is identified by tRP Fields: MajorFunction
and MinorFunction. In certain cases, such as when accesatiied data, the overhead
associated with creating an IRP dominates the cost of theamuteration, and so Windows
supports an alternative mechanism called Fast 1/0. Our ysgées profiler intercepts all
IRPs and Fast I/O traffic that is destined to local or remogedilstems. Before passing
the 1/0 request to the lower driver, our profiler begins meaguthe latency; when the 1/0
request is completely processed, it ends the measuremtre BO operation latency.

5.6 Driver Level Profilers

In Linux, file system writes and asynchronous 1/O requestarmeimmediately after

scheduling the 1/0 request. Therefore, their latency dostao direct information about
the associated I/0 times. To detect this information, weumsented a SCSI device driver
by adding four calls to theggr egat e_st at s library. Windows provides a way to
create stackable device drivers, but we did not create onause the file system layer
profiler in Windows already captures latencies of writes asgihchronous requests.
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5.7 Profile Analysis Automation

We have implemented several scripts that allow us to sorfpbet® profiles by their char-
acteristics. For example, most profiles shown in this diasen are sorted based on the
total latency of operations. Also, we have implemented isgveethods to compare pairs
of individual profiles. In addition, we have combined thesetimods with several simple
heuristics that allowed us to automate complete profilel/aisaeven more.

5.7.1 Individual Profiles Comparison

Automatic profiles independence tests are useful to selsetadl subset of operations for
manual analysis from a large set of all operations. Alsohdests are useful to verify
similarity of two profiles. Let us call the number of operaisoin theb™ bucket of one
profilen,, and the number of operations in the same bucket of the saeratam in another
profile m,,. Our goodness-of-fit tests return percent differehcbetween two profiles:

TOTOPS The degree of difference between the profiles is equal todhmalized differ-
ence of the total number of operations:

X ng =X my
B dony

TOTLAT The degree of difference between the profiles is equal todhmalized differ-
ence of the total latency of a given operation:

39ni _ 39m; omi _ om;
— ‘ Z 2 5 Z 2 % 100 — | Z Z
SEPT SPZ

CHISQUARE There are several methods of comparing histograms wheyebamd with
the same index are matched. Some examples are the chi-ddestiehe Minkowski
form distance [100], histogram intersection, and the KadhsLeibler/Jeffrey diver-
gence [65]. The drawback of these algorithms is that thejults do not match
human perception. For example, if we had a histogram whdgebams 1 and 5 were
filled, and the contents were shifted to the right by one bie,would not consider
the difference to be too great. The bin-by-bin comparisothwds, however, would
consider this more different than if the contents of bin Sev&nifted to bin 2, which
is perceptually more different. We have implemented thescjuare test as a repre-
sentative of this class of algorithms because the chi-gquest is “the accepted test
for differences between binned distributions” [83]. It isfisthed for two histograms
as follows:

D x 100

D x 100

2 (ni —mi)?
> n; + My
The x value can be mapped to the probability valbebetween 0 and 1, where a
small value indicates a significant difference between thstidutions. To match the
semantics and scale of the previous two tests, we préseni1— P) x 100. We uti-
lized the standar&tatistics::Distributions Perl library [64] in the implementation.
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EARTHMOVER The Earth Mover’s Distance (EMD) algorithm is a goodnes$itdest
commonly used in data visualization [89]. The idea is to vave histogram as a
mass of earth, and the other as holes in the ground. The EMizeigeast amount
of work needed to fill the holes with earth, where a unit of wagkmoving one
unit by one bin. This algorithm does not suffer from the pesbs associated with
bin-by-bin and cross-bin comparison methods, and is spatiifidesigned for visu-
alization. Since the number of operations in the profileshatenecessarily equal, the
histograms were normalized. We implemented the calculatsa greedy algorithm.

5.7.2 Combined Profile Comparison Methods

We have created several profile comparison methods thatioersbmple techniques that
we use when manually comparing profiles. We first use the tadber of operations and
the total latency to determine if the profiles are very simiary different, or insignificant
in the context of the set of profiles. In these cases, the aisalydone, and the profiles are
either the same or different (they receive a score of 0 or.1@@herwise, we distinguish
the peaks on the profiles using derivatives. If the numbereakp differs between the
profiles, or their locations are not similar, the profiles eoasidered to be different (score
of 100). As we will see in Section 6.3, these preparationsstdpne significantly decrease
the number of incorrectly classified profiles. If after thggeparation steps the profile
analysis is not over we can perform further comparisonsdasdhe previously described
algorithms TOTOPS, TOTLAT, CH SQUARE, and EARTHMOVER). This way, we have
implemented the following two methods:

GROUPOPSIf the peaks in the profiles are similar, the score is the ntizmad difference
of operations for individual peaks.

GROUPLAT This method is same &8ROUPOPS, except that we calculate latency dif-
ferences for individual peaks.

We will evaluate different properties of the implementedimoels in Section 6.3.
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5.8 Representing Results

All our profilers output their collected results to the ugethe form of plain text. Plaintext
is more convenient than binary data, because it is direatipdn-readable and powerful
text processing utilities can be used to analyze it. Thelmest associated with generating
the plaintext profile is small, because the results are gdigesmall and reading the profile
is a rare operation. We denote profiles with all zeros usimgntiinus character. Shown
below is a sample profiler output, which consists of the djp@maname, the number of
operation invocations, and the total operation latencoviged by a timeline of buckets
(sampled profile):

OP_WRI TE_SUPER 14 213428976
0O00O0O0O0O0O0OOOOOOO0OO0OO0OO0OOOOO200000OCO0OO0OO

0ooo0oo000O0O0OO0OOO0OOOO0OOOOOOO100O0O0OO0COOQO

000O0O0O0O0OOOODO0OO0OO0OO0OO0OO0OODOOOO1O0OOOOOOO
0
1

000O0OOOOOOOOOOOOOO0OO0O9000000OO0OODO
0000O0O0OO0OOOOOOOOOOOOOOO1O0O0O0OOOO
L

User-mode profilers print results directly to tls¢ derr output. Our Linux and
FreeBSD file system and driver profilers output results vigirtlentries in the/ pr oc
interface. Writing to the per-file-systehpr oc entry resets the profile’s counters.

We wrote several scripts to generate formatted text viewl<zamuplot scripts to produce
2D and 3D plots. All the figures representing profiles in thesdrtation were automatically
generated. We found the following two data views for a patéicVFS-operation especially
useful:

e The total number of invocations with a given lateneyy, shown in Figure 3.2).

e The number of invocations with a given latency within eacipskd-time interval
(e.g, shown in Figure 3.5).

More views can be obtained from the original 4D profiles (tberfdimensions are 1) op-
eration, 2) latency, 3) number of operations with this lateand 4) elapsed time interval)
by summing up the values in one or more of the dimensions.

During profiling, the total number of operations is updatefbloe entering the profiled
code and the buckets are updated after returning from its @lhdws our data-processing
script to check the profile for consistency. In particular, évery operation, results in all
of the buckets are summed and then compared with the totabeuaf operations. This
way, our data-processing script verification can catch npaotgntial code instrumentation
errors.
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5.9

Portability

Each of our instrumentation systems consists of three:pdrtsnstrumentation hooks; (2)
the aggregate statistics library, which is common to all af profiling systems; and (3) a
reporting infrastructure to retrieve buckets and counts.

The aggregate statistics library is 141 lines of C code, aggires no changes for
different platforms(Shared among all OSs)

For POSIX user-space applications, our instrumentatigireporting interface used
68 lines.(Works on most OSs)

For file systems, we wrote an automatic instrumentatiopsiribash andsed that
can instrument any file system under 2.4 or 2.6. The shelpsigi307 lines and
contains 184 distincsed expressions. We also wrote 221 lines of C code for the
generic-function wrappergLinux-specific)

FoSgen consists of 607 lines of Perl coflanux and FreeBSD)

In the Linux kernel, we used thiepr oc interface for reporting, which consists of
163 lines.(Linux-specific)

The instrumentation hooks for our Linux device driver usddl lihes. (Linux-
specific)

We used the Detours library [44] for the Windows user-spaa#ilpg tool. We
added 457 lines of C code to intercept 112 functions, of wBRhlines are repetitive
pre-operation and post-operation hoof&indows-specific)

Our Windows filter driver was based on FileMon [101] and tethb,262 lines, of
which 273 were our own C code and 63 of which were string caristaWe also
wrote a 229-line user application to retrieve the profilerrthe kernel.(Windows-
specific)

In sum, our instrumentation system is fairly portable. Thgragate statistics library
runs without changes in several different environmentsix@pplications, Windows ap-
plications, and the Linux, FreeBSD, and Windows kernels SPGcompliant user-mode
applications are portable across most O3gtionalfile system and driver instrumentation
infrastructure is fairly portable and simple. More codedgquired to implement the profile
reporting infrastructure from the kernel to the user modaisTs partially because we used
a plain text representation of the results. Note that thaeds required for any in-kernel
profiler in order to report collected results.
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Chapter 6

Evaluation

We evaluated the overhead of our Linux 2.6.11 Ext2 file sygpeofiler with respect to
memory usage, CPU cache usage, the latency added to eadbdbogferation, and the
overall execution time. We chose to instrument a file systestead of a program, be-
cause a file system receives a larger number of requests ddbe VFS calling multiple
operations for some system calls) and it demonstrates hmlegheads. Moreover, user-
level profilers primarily add overheads to user time. We aonteld all our experiments on a
1.7 GHz Pentium 4 machine with 256KB of cache and 1GB of RAMs#s an IDE system
disk, but the benchmarks ran on a dedicated Maxtor AtlasOIBRRPM 18.4GB Ultra320
SCSI disk with an Adaptec 29160 SCSI controller. We used th®#4ilot benchmarking
suite [111] to unmount and remount all tested file systemarbefach benchmark run. We
also ran a program we wrote calledill that forces the OS to evict unused objects from its
caches by allocating and dirtying as much memory as possWeran each test at least
ten times and used the Studerdistribution to compute the 95% confidence intervals for
the mean elapsed, system, user, and wait times. Wait tiMleeiglapsed time less CPU
time and consists mostly of I/O, but process scheduling temadfect it. In each case, the
half-widths of the confidence intervals were less than 5%hefrhean.

6.1 Memory Usage and Caches

We evaluated the memory and CPU cache overheads of the fiensysofiler. The mem-
ory overhead consists of three parts. First, there is sored fixerhead for the aggregation
functions. The initialization functions are seldom useal tise only functions that affect
caches are the instrumentation and sorting functions whseh231 bytes. This is below
1% of cache size for all modern CPUs. Second, each VFS operagis code added at its
entry and exit points. For all of the file systems we testeel citde-size overhead was less
than 9KB, which is much smaller than the average memory gimedern computers. The
third memory overhead comes from storing profiling resuitsniemory. A profile occupies
a fixed memory area. Its size depends on the number of impleaéle system operations
and is usually less than 4KB.
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6.2 CPU Time Overheads

To measure the CPU-time overheads, we ran Postmark v1.50f6@nh unmodified and
on an instrumented Ext2. Postmark simulates the operafiaiectronic mail servers.
It performs a series of file system operations such as createfe, append, and read.
As shown in Figure 6.1, we configured Postmark to use the degfamameters, but we
increased the defaults to 20,000 files and 200,000 traosectio that the working set is
larger then OS caches and so that I/O requests will reachiske This configuration runs
long enough to reach a steady-state and it sufficientlysgeethe system.

Overall, the benchmarks showed that wait and user timesarafiected by the added
code. The unmodified Ext2 used 18.3 seconds of system tini§.8% of elapsed time.
The instrumentation code increased system time by 0.7hdsdd.0%). As seen in Fig-
ure 6.2, there are three additional components added: mpdikirction calls, reading the
TSC register, and storing the results in the correct bucKetsinderstand the details of this
per-operation overheads, we created two additional fileegys. The first contains only
empty profiling function bodies, so that the only overheazhifing the profiling functions.
Here, the system time increase over Ext2 was 0.28 secoriif#%)1The second file system
read the TSC register, but did not include code to sort thariétion or store it into buck-
ets. Here, the system time increased by 0.36 seconds o\v&(ZERPb6). Therefore, 1.5% of
system time overheads were due to calling profiling funajdh5% were due to reading
the TSC, and 2.0% were due to sorting and storing profile médion.

Not all of the overhead is included within the profile resul@nly the portion between
the TSC register reads is included in the profile, and theegfalefines the minimum value
possible to record in the buckets. Assuming that an equetidraof the TSC is read before
and after the operation is counted, the delay between thedaas is approximately equal
to half of the overhead imposed by the file system that onlgsdghe TSC register. We
computed the average overhead to be 40 cycles per operdtten40-cycle overhead is
well below most operation latencies, and can influence dmyfastest of VFS operations
that perform very little work. For examplsync_page is called to write a dirty page to
disk, but it returns immediately if the page is not dirty. hetlatter case its latency is at
least 80 cycles long.

set size 512 10240

set nunber 20000

set seed 42

set transacti ons 200000
set location /n/test/fsprof
set subdirectories 600
set read 4096

set wite 4096

set buffering fal se

set bias read 5

set bias create 5

Figure 6.1: Postmark configuration that we used for FSprathearking.

55



[ VFS Entry Point ]\\
FSprof_pre Call

Profiled Code TSC Read
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FSprof_pre Return

FSprof_post Call >
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Key: [ Ext2 ] Function Calls | [REJSHREECN : Full Profiling:

Figure 6.2: Profiled function components.

6.3 Profile Analysis Automation

To evaluate our profile analysis automation methods we cosdpthe results of the auto-
matic profile comparison with manual profile comparison. &mtigular, we analyzed 150
profiles of individual operations from these that we will delse in Chapter 7. We man-
ually classified these profiles into “different” and “sameitegories. A false positive (or
a type | error) is an error when two profiles are reported d#ifie whereas they are same
according to the manual analysis. A false negative (or a biypeor) is an error when two
profiles are reported same whereas they are different aicgpralthe manual analysis. Our
tests return the profile’s difference value. A differenceetihold is the value that delimits
decisions of our binary classification based on the testtsmevalues.

Figures 6.3-6.8 show the dependencies of the number ofgalstives and false nega-
tives on the normalized difference of the two profiles cadéed by the six profile compar-
ison methods that we have implemented. As we can see, EMDitalgohad a threshold
region with the smallest error rates of both types. Howeweth our custom-made methods
GROUPOPS andGROUPLAT have a wide range of difference thresholds where both errors
are below 5%. This means that these methods can produckleediad stable results for a
wide range of profiles.
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Figure 6.3:TOTOPS test results compared with manual profiles analysis.
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Figure 6.4:TOTLAT test results compared with manual profiles analysis.
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Figure 6.5:CHI SQUARE test results compared with manual profiles analysis.
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Figure 6.6:EARTHMOVER test results compared with manual profiles analysis.
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Figure 6.7:GROUPOPS test results compared with manual profiles analysis.
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Figure 6.8:GROUPLAT test results compared with manual profiles analysis.
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6.4 FoSgen

Finally, we evaluate the efficiency of our FoSgen prototyfis.efficiency is less impor-
tant than the runtime profiling overheads. However, shatrimentation times are more
desirable for file system developers. At first glance it magnsehat the process of file
system generation can take a considerable amount of tindeeth the generation pro-
cess requires at least two scans of the file system source Gable 6.1 shows the times
necessary to add (1) secure deletion [57] and (2) FSprohdgterofiling extensions to
several popular Linux 2.6.16 and FreeBSD 5.3 file systemstlagid compilation times.
Note that the overheads of compilation times were indistisigable. As we can see, in
all the cases except BaseOfs, the instrumentation times svealler than the compilation
times of these file systems. This is because BaseOfs ekpiitiplements most existing
file system operations for extensibility reasons. Fortelyaits absolute compilation time
is small compared with other file systems. Also, we can sedgrileBSD instrumentation
is faster than instrumentation of Linux file systems. Thisasause FreeBSD has a simpler
VES API.

File system| OS SecDel addition| FSprof addition Compilation

time (seconds)| time (seconds)| time (seconds)
Ext2 0.3 9.4 14.1
Ext3 0.4 16.8 25.0
vfat 0.2 0.3 2.5
NFS Linux 0.5 20.4 30.2
CIFS 0.6 21.7 28.3
ramfs 0.1 0.6 2.4
Reiserfs 0.6 29.7 33.1
BaseOfs 0.3 6.4 5.8
NFS 0.5 7.3 20.2
msdosfs FreeBSD 0.4 3.4 15.3
nullfs 0.1 0.8 6.5

Table 6.1: FoSgen instrumentation times of several Lin6x1®% and FreeBSD 5.3 file sys-
tems with secure deletion (SecDel) and latency profilingofe8 extensions. The right-
most column shows the original compilation times for thekedystems. We performed
the tests with warm file system caches.
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Chapter 7

Example File System Profiles

In this chapter we describe a few interesting examples llatriate our method of analyz-
ing file system behavior. We concentrated on profiles of parpdisk-based and network
file systems. Such profiles tend to contain a wider spectruevehts. We conducted all
experiments on the same hardware setup as described inis6ctUnless noted otherwise,
we profiled a vanilla Linux 2.6.11 kernel and Windows XP SP2.ptofiles presented in
this section are from the file-system level except Figur®.7.1

We ran two workloads to capture the example profilegrep -r and arandom-read
on a number of file systems. Tlyrep -r workload was generated by tlyr ep utility
that was recursively reading through all of the files in theux 2.6.11 kernel source tree.
We have chosen thgrep -r workload because it is simple but at the same time it triggers
many different file system operations. Trendom-readworkload was generated by two
processes that were randomly reading the same file usingt dii€@ mode. In particular,
these processes were changing the file pointer positionaodom value and reading 512
bytes of data at that position. Of note is that we did not havese many workloads to
reveal a lot of new and useful information. After capturingtja few profiles, we were able
to spot problematic patterns by simply looking at the prsfié different operations.

7.1 Analyzing Disk Seeks

In Linux, the current file pointer position is stored in thiel e data structure, which usually
belongs to a single process. Information such as the fileisigkared between processes
and is stored in thé node data structure which is unique for any given file. Therefore,
one would expect that a change of the file pointer positionlgvaot cause contention be-
tween processes, because only the per-process data steuate updated. The profiles
shown in Figure 7.1 were captured by applying theadom-readworkload. The profile
shows that thé | seek operation of one process competes with tlead operation of
another process. We see this becauseé treeek operation profile partially resembles the
r ead profile and this behavior does not occur with only one processing. (On average,

I I seek waits for half of the duration that the semaphore is held bad. Therefore, the
correspondind | seek buckets are shifted by one to the left.) This means that a€orr
sponding number of | seek operations were waiting for theead operation to release
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Figure 7.1: Thd | seek operation under random reads.

some lock or a semaphore.

Upon investigation of the source code, we verified that tHaydewere indeed caused
by thei _semsemaphore in the Linux-provided methgeéneric_fil el seek—a
method which is used by most of the Linux file systems inclgdixt2 and Ext3. We ob-
served that this contention happens 25% of the time, evdnjust two processes randomly
reading the same file. We modified the kernel code to resolgegfue as follows. In par-
ticular, we observed that to be consistent with the semaofiother Linux VFS methods,
no semaphore protection is necessary for file objects aciecessary only for directory
objects. Thd | seek profile captured on the modified kernel is shown at the bottdbm o
Figure 7.1. As we can see, our fix reduced the average timeedfltseek from 400
cycles to 120 cycles (a 70% reduction). The improvementispmminded by the fact that
all semaphore and lock-related operations impose highheaels even without contention,
because the semaphore function is called twice and its sizemparable td | seek.
Moreover, semaphore and lock accesses require eithenipthe whole memory bus or at
least purging the same cache line from all other procesatish can hurt performance on
SMP systems.

We submitted a small patch which fixes this problem and itemigson to the core
Linux VFS developers, who agreed with our conclusions [4fje ran the same work-
load on a Windows NTFS file system, and found no lock contentibhis is because on
Windows, keeping the current file position consistent isugfto user-level applications.
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7.2 Analyzing File System Read Patterns

We now show how we analyzed various file system 1/O patterdsutmegr ep -r work-
load. In this workload, we use thgr ep utility to search recursively through the Linux
kernel sources for a nonexistent string.

7.2.1 Ext2

Peaks shown in the top profile of Figure 7.2 are common for nidgegystem operations
that require hard disk accesses. Here we refer ta teeddi r operation peaks by their
order from left to right: first (buckets 6 and 7), second (91idird (16 and 17), and fourth
(18-23). A complete profile of Linux 2.6.11 Ext2 under tjreep - r workload is shown

in Figure 7.3. (Notice the differences with a Linux 2.4.24ftle in Figure 3.2 on page 10.)

First peak (buckets 6—7) From the profile of Figure 3.8 we already know that on Linux,
the peak in th&'" bucket corresponds to a read of zero bytes of data or any siimdar
operation that returns right away. Theaddi r function returns directory entries in a
buffer beginning from the current position in the directofhis position is automatically
updated when reading and modifying the directory and camtasset manually. If the cur-
rent position is past the end of the directargaddi r returns immediately (this happens
when a program repeatedly call®addi r until no more entries are returned). There-
fore, it seems likely that the first peak corresponds to tlaelsepast the end of directory.
One way to verify our hypothesis would be to profile a workldhdt issues eaddi r
calls only after there are no more directory entries to readlthen compare the resulting
profiles (differential analysis). However, we can demaatstiour other method of profile
analysis by directly correlating peaks and variables.

To do so, we slightly modified our profiling macros: insteadstdring the latency
in the buckets we (1) calculatedr&addi r _past _ECF value for everyr eaddi r call
(readdi r past EOF = 1 if the file pointer position is greater or equal to the diceg

Bucket number: [Dog,(latency in CPU cycles)
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Figure 7.2: Profiles of Linux 2.6.11 Ext2eaddi r (top) andr eadpage (bottom) oper-
ations captured for a single rungf ep -r on a Linux source tree.
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Figure 7.3: Profile of Linux 2.6.11 Ext2 under tgeep -r workload.
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Figure 7.4: Correlation of theeaddi r _past _EOF x1, 024 and the peaks in Figure 7.2.

buffer size and is 0 otherwise); (2) if the latency of the eatrfunction execution fell within
the range of the first peak, a value of the bucket correspgnidin eaddi r _past _EOF
x 1,024 was incremented in one profile and in another profile othexwiShe resulting
profiles are shown in Figure 7.4 and prove our hypothesis.

Second peak (buckets 9-14) Ther eaddi r operation calls the eadpage operation
for pages not found in the cache. Theadpage profile is a part of the completgr ep

- r workload profile and is shown on the bottom in Figure 7.2. Bgrihe complete pro-
file preprocessing phase, our automatic profiles analysisdiscovered that the number
of elements in the third and fourth peaks is exactly equahtortumber of elements in
ther eadpage profile. This immediately suggests that the second pealegsponds to
r eaddi r requests that were satisfied from the cache. Note that thiedpbfr eadpage
requests is small compared to relatezhddi r requests. That is becauseadpage just
initiates the 1/0 and does not wait for its completion.

Third peak (buckets 16—17) The third and the fourth peaks of theaddi r operation
correspond to disk I/O requests. The third peak corresptmdie fastest 1/0 requests
possible. It does not correspond to I/O requests that dtdsiing read from the disk and
thus may require disk rotations or even seeks. This is becdnesshape of the third peak
is sharp (recall that the Y scale is logarithmic). Partiathad data requests would have
to wait for partial disk rotations and thus would spread tadyrally merge with the fourth
peak. Therefore, the third peak corresponds to 1/0 requeadisfied from the disk cache
due to internal disk readahead.

Fourth peak (buckets 18-23) The fourth peak corresponds to requests that may require
seeking with a disk head (track-to-track seek time for oudltaive is 0.3 ms; full stroke
seek time is 8 ms) and waiting for the disk platter to rotatdl fisk rotation time is 4 ms).

7.2.2 NTFS and Ext3

It is well known that disk accesses that require disk heakissisdxe considerably more time
than those that do not; that is why Ext2 and Ext3 use an FFSalilocation scheme [19].
Inodes in the same directory are stored in the same cylindrmpg(so they have closer
block numbers).
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On NTFS, all data and metadata is stored as regular files [BES has a special file
called amaster file tabl€dMFT), located near the beginning of the partition as a gudus
disk area (on unfragmented partitions). This file contamisrimation about every file on
the partition. Regular data is stored on the remainder optrétion. To minimize disk
head seeks, actual file and directory data are put diredihytive MFT if the corresponding
data size is smaller than 1.5KB. Figure 7.5 showsrtead operation on NTFS running
on Windows and Ext3 running on Linux and the total impact afrg\bucket. Here, NTFS
uses a normalead operation the first time the file is read and ubast | Ofor additional
reads. We combined these two operations in the figure foruhgose of comparing the two
OSs more fairly, and theead operation for NTFS should be understood in this context
for the remainder of the dissertation.

We can see how the on-disk structures for these two file systdfact these bench-
marks. Both graphs have three distinct groups. NTFS is gdlgetivided into the first two
buckets (9-10), the next five (11-15), and the remainderd3p-Ext3 is generally divided
into the first two buckets (8-9), the next six (10-15), andrémeainder (16—22). Based on
the latencies, the first group represents data to be readrfremory, the second group is
when the data is in transit from the disk due to readaheadttentast group is when the
disk needs to be accessed. Both file systems have a similaserwohoperations in their
first groups, which is reasonable because we used the samseatdbr both file systems
and the machines had the same amount of memory. NTFS has naoré¢htree times as
many operations in its second group as Ext3 does. From thisawenfer that NTFS has
a more aggressive readahead policy. Finally, Ext3 has 12% mperations in its third
group, but it still has lower latencies than NTFS’s third gpo This tells us that although
we go to disk more often on Ext3, the seeks are shorter on geenaaking the total delays
for going to disk on Ext3 less than NTFS. Going back to Figufewe can see that disk
head seek times can differ by several orders of magnituderetdre, it is sometimes more
important to avoidong disk head seeks than just any seeks, a fact that is ofterooked
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Figure 7.5: Profile of ead operations under thgrep -r workload for Ext3 on Linux and
NTFS on Windows.
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7.3 Handling Access Time Updates

Access times record when a file was last read. Maintainingyttegjuires disk writes, even
for a read-only workload. This interaction of reads and egiis interesting.

7.3.1 NTFS

NTFS updates a file'at i me by writing asynchronously to the file’s attribute, which is
part of the MFT. Theat i me is also written to a directory-entry file stored in the same
directory as the file. The writes to the MFT cause long seeksdmn the data on the disk,
the journal, and the MFT.

The top graph of Figure 7.6 shows the latency distributiangheat i me update op-
eration. Because all metadata on NTFS is stored in files, pdates show up as normal
wr i t e operations. One can see that tira t e operation spans 9 buckets. Therefore, the
longest write takes 512 times longer than the fastest whit also requires a disk-head
seek. The bottom graph of Figure 7.6 showsrtke@d operation with and withouwt i ne
updates. Reading has become slower due to seeking betweedatthbeing read and the
MFT. Updating theat i mes for this workload yielded a 16% average slowdown in elapsed
time. Because of this performance issue, Windows does mep tkesat i e value current:
NTFS updates it on disk only if the value in memory is at leas bour greater than what
is currently on disk [25]. In addition, there is a registryykbat allows users to disable all
at i me updates. Fortunately, howevat,i nes can be read from the local directory entry,
so performance is only affected when they are updated.

7.3.2 Reiserfs and Profiles Sampling

By default, Reiserfs enablésil mergingwhich combines small files and the ends of files
into a single disk block. Figures 7.7—7.9 show the profileshef Reiser 3.6 file system

Bucket number: (og,(latency in CPU cycles)[ without atime updates - mm—m
with atime updates ——
5 10 15 20 25 3
F T T T T T T B
10000 o A S S——— - WRITE
1000 f E— S T——— S— :

wof _—— )

10000 F —— SRR IR —
10100 [ 1= I .
100 F |

Number of operations

28us 925us
Average bucket latency

Figure 7.6: Effects o&t i me updates on NTFS operations.
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in the default configuration, with theotail option, which disables tail merging, and Reis-
erfs 4.0 respectively.

The first interesting observation we can make is thatwshet e_super operation on
Reiser 3.6 takes longer than most other operations. Thandesduservation is that there is
a clear correlation between the longdstrt y_i node, r ead, andwr i t e_super oper-
ations.

We useprofiles samplingo analyze this behavior further. A sampled profile is simtiba
our standard profile, but instead of adding up all of the ojp@ma for a given workload, we
divide the profile into fixed-time segments and save each segseparately. We show two
such profiles for thew i t e_super andr ead operations on Reiserfs 3.6 on Linux 2.4.24
in Figures 7.10 and 7.11, respectively. The Y axis shows ldygsed time in CPU cycles.
To compare profiles with vastly different maximal valuestia buckets, and to allow direct
timeline comparisons, we have also shown the same profibes & different angle (top
view) on Figure 7.12. The three vertical black stripes onrtead profile in that figure
correspond to those peaks already shown in Figure 3.3: dadlaels, disk-cached reads,
and reads with a disk-head seek or a platter rotation.

We can see that the long operations are executed every 5dseamhich suggests that
they are invoked by thbdf | ush kernel thread to update access time information of the
accessed inodes. On Linwt i me updates are handled by the Linux buffer flushing dae-
mon, bdf | ush. This daemon writes data out to disk only after a certain amhofitime
has passed since the buffer was released; the default ig sigiconds for data and five
seconds for metadata. This means that every five and thicgnsis, file system behavior
may change due to the influencelaff | ush. Updatingat i me causes journal writes, so
wri t e super is called to flush the journal. The correlation between ssva@erations is
caused by thewr i t e_super operation, which always takes the Big Kernel Lock (BKL),
a global kernel lock in Linux. The other operations must i@ithewr i t e_super oper-
ation to finish. This observation is especially importantdiese it shows that Reiserfs 3.6
blocks not only its own operations, but those of other filetsys and also many other
kernel functions, for significant periods of time. In Figufed2, we can see that when the
wri t e_super operation is called there are also long-runniread operations since the
rightmost points on both graphs coincide (buckets 25—-2Bjs iE because in Reiserfs 3.6,
the whole file system is locked for the durationvafi t e_super , and therefore any pro-
cess that attempts to read data has to wait on a semaphdihentrite completes. We can
see that this can stop all file-system-related requestssftoray as 0.15 second®’{ CPU
cycles on our 1.7 GHz CPU). Thus, even profiles collected mslatively long periods of
time can reveal correlations between a test process andi@jeethread running in the
kernel.

The results presented in Figure 7.9 demonstrate that Reiddl’'s behavior is very
different from that of Reiserfs 3.6. According to the gemdmaux development trend,
Reiserfs 4.0 never takes the BKL. That is why Reiserfs 4.@ dotuse ther i t e_super
operation—because it is called with the BKL held. This tetalseduce lock contention
considerably and improves Reiserfs 4.0’s performanceadivétowever, inode access time
updates are still the longest individual operations in Bé$s4.0.

We also noticed that theeaddi r operation takes longer on Reiserfs 4.0 than 3.6.
Upon inspection of the Reiserfs 4.0 code, we found out tlsateaddi r operation also
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Figure 7.7: Profile of Reiserfs 3.6 (default configurationylar thegrep -r workload.
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Figure 7.11: Linux 2.4.24 Reiserfs 3.6 (default configuma}ir ead operation sampled
profile under thegrep -r workload.
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Figure 7.12: Linux 2.4.24 Reiserfs 3.6 file-system profil@spled at 2.5 second intervals.

schedules read-aheads for the inodes of the directoryesrttieing read. This is an opti-
mization which was previously noted by NFSv3 developersatiteaddi r operations are
often followed byst at ( 2) operations (often the result of users runnirg - 1); that is
why NFSv3 implements a special protocol message calleDIRPLUSWhich combines
directory reading with stat information [17]. ConsequgnReiserfs 4.0 does more work in
r eaddi r, but this initial effort improves subsequdnbokup operations. Overall, this is
a good trade-off for this workload: Reiserfs 4.0 used 60.686 Isystem time and I/O time
than 3.6.

7.3.3 Ext3

Ext3 and most other file systems update tlagir me asynchronously, and release the locks
right after initiating the write operation. The two grapimskigure 7.13 show theead
operation with and withoudt i me updates. We can see that the profile foritieead oper-
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Figure 7.13: Effects o&t i me updates on Ext3.
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ation withat i me updates enabled on Ext3 is farther to the left than that of 8lT#ottom
graph in Figure 7.6). This is because Ext3 keeps metadata tboits accompanying data,
and so seeks are fairly short. Because of Ext3’s improvekiingcpolicies and on-disk
layout, its elapsed time overhead for updating the accessstis only 2.8%.

7.4 Analyzing Network File Systems

We connected two identical machines (described in Sectjomith a 100Mbps Ethernet
link and ran ourgrep -r workload on Windows with an NTFS drive shared over CIFS.
Figure 7.14 shows a complete profile of CIFS underghep -r workload. We found that
thefi ndfirst andfi ndnext operations on the client had peaks that were farther to
the right than any other operation (buckets 26—30 in the wapdraphs of Figure 7.15).
These two peaks alone account for 12% of the elapsed timehwias 170 seconds in
total. fi ndfi r st searches for file names with a given pattern and returns athray
file names along with their associated metadata informatia@iso returns a cookie, which
allows the caller to continue receiving matches by pasgitafii ndnext .

By examining the peaks in other operations on the clienthedorresponding requests
on the server, we found that instances of an operation whitinfo bucket 18 and higher
(greater than 168s) involve interaction with the server, whereas buckethtoléft of it
were local to the client. All of théi ndf i r st operations and the two rightmost peaks of
thef i ndnext operation here go through the server. Since CIFS is a modiéesion of
the SMB protocol, we tried the sargeep -rworkload with the Windows server and a Linux
client over SMB. The fact that in these cases we did not olessmilar peaks, suggests that
the high latencies were attributed to CIFS. Once we detexdhihat the problem was due
to some CIFS client-server interaction, we ran a packetesroh the network to investigate
this further.

A timeline for a typicalf i ndf i r st transaction between a Windows client and a Win-
dows server explains the source of the problems, and is stoowthe left-hand side of
Figure 7.16. The client begins by sendindiandf i r st request containing the desired
pattern to search fore(g, C: \I i nux- 2. 6. 11\*). The server replies with file names
that match this pattern and their associated metadatae Siecreply is too large for one
TCP packet, it is splitinto three packet$(“ND_FI RST reply,” “reply continuation 1,” and
“reply continuation 2”). The acknowledgment (ACK) for “rgpzontinuation 1” is sent im-
mediately, but the ACK for “reply continuation 2” is sent grafter approximately 200 ms.
This behavior is @elayed ACKbecause TCP can send an ACK in the same packet as other
data, it delays the ACK in the hope that it will soon need talssmother packet to the same
destination. Most implementations wait 200 ms for otheadatbe sent before sending an
ACK on its own. Delaying an ACK is considered to be good betrawut the Windows
server does not continue to send data until it has receivédChfor everything until that
point. This unnecessary synchronous behavior is what sguser performance for the
findfirst andfi ndnext operations. After the server receives this ACK, it sends the
client a “transact continuation” SMB packet, indicatingtimore data is arriving. This is
followed by more pairs of TCP replies and ACKs, with similaialys.
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Figure 7.14: A complete profile of thgrep -r workload on the Windows client over CIFS.
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The right-hand side of Figure 7.16 shows a similar timeloresfLinux client interacting
with a Windows server over SMB. The behavior is identicatept that instead of sending
a delayed ACK for “reply continuation 2,” Linux send$ andnext request immediately
that also contains an ACK. This causes the server to retune erdries immediately. We
modified a Windows registry key to turn off delayed ACKs, aodrid that it improved
elapsed time by 20%. This is not a solution to the problem,abutay to approximate
potential performance benefits without waiting on ACKSs.

7.5 Influence of Stackable File Systems

We used our method to evaluate the impact of file system stgaki the captured profile.
Figure 7.17 shows the latency distribution of BaseOfs, a passthrough stackable file
system mounted over Ext2, and a vanilla Ext2 file system, baetihuated with thgrep -r
workload.

The stacking interface has a relatively small CPU overh&ddch affects only the
fastest buckets. Unfortunately, the overheads are difteier different VFS operations.
This can be explained by the differences in the way theseatipaes are handled in stack-
able file systems. In particular, some operations are pdaksedigh with minimal changes,
whereas others require the allocation of VFS objects sudhaes, dentries (directory
entries), or memory pages. As we can see in Figure 7.17, Besg@@aks are generally
shifted to the right of Ext2's peaks, demonstrating an dvergerhead. The overheads of
open andl ookup exceed 4K CPU cycles, whereasaddi r has an overhead below 1K
CPU cycles.

VFS objects have different properties on the lower-level tre stackable file systems.
For example, an encryption file system maintains cleartartes and data, but the lower
file system maintains encrypted names and data [115]. Tdrere$tackable file systems
create copies of each lower-level object they encounter.

This behavior of stackable file systems adds overheadsiasstaevith data copying
and causes distortions in the latencies of their read antéwperations. For example,
r ead_page is only invoked by the ead operation if the page is not found in the cache.
Therefore, only ead_page operations that require disk accesses are captured anedpass
down. Thesync_page operation is never invoked because pages associated wst#OBa
inodes are never marked dirty.

Most importantly, duplicate copies of data pages effettiveduce the page cache size
in half. This can result in serious performance overheadsveworkload fits into the page
cache but not into less than 50% of the page cache. Unfoglynat Linux, each page
cache object is linked with the corresponding inode ancefioee the double representation
of inodes implies double caching of data pages.

We found a relatively simple solution to the problem, whishniot optimal [48] but
allows us to profile the behavior of stackable file system$eut the double caching of
data. We use data pages associated with the upper inodetfothgolower and upper file
system layers. In particular, the data pages belong to tperipode but are assigned to
lower-level inodes for the short duration of the lower-lepage-based operations. Here is
an example of the modifiedeadpage operation:
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Figure 7.17: The distribution of operation latencies foritammodified BaseOfs mounted
over Ext2, and for the Ext2 file system, undegrep -r workload. Profiles are sorted by
operation names.
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page- >nappi hg = | ower _i node->i _nappi ng;
err = | ower _i node->i _mappi ng->a_ops- >r eadpage(l ower _file, page);
page- >nmappi hg = upper _i node->i _nappi ng;

The resulting code allows profiling of page-based operatiand also eliminates data
copying and double caching. We analyzed the Linux kernettions that directly or in-
directly use inode and cache page connectivity and fourtdrtel these cases, the above
modification works correctly. We tested the resulting stdutk file system on a single-CPU
and multi-CPU machines under the compile and Postmark wadsd.

As can be seen in Figure 7.18, the no-double-caching pasidrided above decreases
the system time compared to the original BaseOfs, has a cahthat is the same as Ext2,
and also prevents double caching from influencing the cpege- related operations. In
particular, the profile of the modified file system has virtyialo difference from the plain
Ext2 file system for the ead, r ead_page, andsync_page operations.

Overall, a stackable file system does influence the profilaefdwer-level file system,
but it still can be used to profile a subset of VFS operationsmtie source code is not
available. Even for operations whose latency values aeet&t by the stackable file sys-
tem, the peaks and overall structure of the profile usualtyaiae the same. Therefore, key
file system and workload characteristics can be collected.
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Figure 7.18: The distribution of operation latencies foisBafs without double caching,
mounted over Ext2, and for the Ext2 file system, undgrep -r workload. Profiles are
sorted by operation names.
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Chapter 8

Using FSprof without Buckets

In Chapter 7 we have considered several examples of file myptefiling. However,
FSprof also allows to collect simpler aggregate statistiosut the file system behavior.
Below we will consider two examples: (1) we will characterigeveral compilation pro-
cesses by looking at the aggregate number of file system topesaand their aggregate
latency; (2) we will use sampling of the number of operatiovocations to characterize
the quality of the trace replaying.

8.1 Workload Characterization

Compile benchmarks are often used to evaluate file systemvim{54]. We show that
even seemingly similar mixes of source files generate censidy different VFS operation
mixes. Therefore, results obtained during different cdempenchmarks cannot be fairly
compared with each other.

We profiled the build process of three packages commonly asecompile bench-
marks: (1) SSH 2.1.0, (2) Am-utils 6.1b3, and (3) the Linu&.20 kernel with the default
configuration. Table 8.1 shows the general characterisfitise packages. The build pro-
cess of these packages consists of a preparation and a etiopphase. The preparation
phase consists of running GN&bnf i gur e scripts for SSH and Am-utils, and running
“make defconfig dep”forthe Linux kernel. We analyzed the preparation and com-
pilation phases separately, as well as together (which Weacavhole build”). Before
the preparation and compilation phases, we unmounted éhgyfitem in question, purged
the caches using our custarhill program, and finally remounted the tested file systems.
For the full build, we performed this cache-purging seqeeocly before the preparation
phase. This means that the number of invocations of evematipe in the case of full build
is the sum of the invocations of the same operation duringtiparation and compilation
stages. However, the full-build delays are not the sum ofptleparation and compilation
delays, because we did not purge the caches between phat#ies fiall build. This way it
was possible to compare the compilation profiles separalély delays of the compilation
phase, as a part of the build process, can be obtained byastibt the preparation phase
delays from the full build delays.

Figure 8.1 shows the distribution of the total number of rations and the total delay
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of all the Ext2 VFS operations used during the build procdsSSH, Am-utils, and the
Linux kernel. Note that each of the three graphs uses difteseales for the number of
operations and the total delay.

Figures 8.1(a) and 8.1(b) show that even though the SSH anditAsrbuild process
sequence, source-file structure, and total sizes appear sonblar, their operation mixes
are quite different; moreover, the fact that SSH has neéniget times the lines of code
of Am-utils is also not apparent from analyzing the figures particular, the preparation
phase dominates in the case of Am-utils whereas the congpilphase dominates the SSH
build. More importantly, an Am-utils build writes more thanreads, whereas the SSH
build reads more than it writes: the ratio of the number oflseto the number of writes
is %500 = 0.75 for Am-utils and 33755 = 1.28 for SSH. This can result in performance
differences for read-oriented or write-oriented file sysse

Not surprisingly, the kernel build process’s profile difdrom both SSH and Am-utils.
As can be seen in Figure 8.1(c), both of the kernel build phase strongly read biased.
Another interesting observation is that the kernel buildggpopulates the cache with most
of the meta-data and data early on. Figures 3.5 and 3.6 onlfagleow the profile of the
| ookup operation during the kernel build process, where we sedhkgireparation phase
causes the vast majority bbokups that incur disk 1/0O.

Table 8.2 shows thkookup operation’s latency peaks for different build processes.
We can see that the Am-utils build process has the least caises. Therefore, it has the
minimal averagé ookup operation delay (the only metric measurable by some other ke
nel profilers such as kernprof [94]). SSH’s averagmokup delay is only slightly higher
because the higher percentage of misses is compensateed bigthfraction of disk oper-

Am-utils SSH | Linux Kernel
Directories 25 54 608
Files 430 637 11,352
Lines of Code 61,513, 170,239 4,490,349
Code Size (Bytes) 1,691,153| 5,313,257 126,735,431
Total Size (Bytes)| 8,441,856| 9,068,544 174,755,840

Table 8.1: Compile benchmarks’ characteristics.

Am-utils SSH | Linux Kernel
Fastest peak 1,817 2,848 10,423
Middle peak 9 48 79
Slowest peak 25 32 227
Page cache misses (%) 1.9 2.7 2.9
Average delay 83,022 95,697 186,672

Table 8.2: Distribution of the ExtRookup operations among the three peaks shown in
Figure 3.5 on page 15 representing a page cache hit (bucBeisd), a disk buffer cache
hit (buckets 15-19), and a long disk rotation or a head seagk@is 20 and above). The
page cache miss ratio is calculated as the sum of the opesatidhe middle and slowest
peaks over the total number of operations.
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ations that do not require long disk-head seeks. The Linumeteouild process incurs a
higher proportion of buffer cache misses and at the samehase high proportion of the
long disk requests. Therefore, its averagmkup delay is the highest.

We see that not only can we not directly compare differentmiterbenchmarks, but
we can also not extrapolate results based on summary infammabout the source files
such as the package size, number of lines of code, etc. Tlee andl type of file-system
operations can seriously change the delay of VFS operatamtshence the benchmark’s
CPU and I/O times.

8.2 Quality of Replaying Analysis

Replayfs is a VFS-level file system trace replayer that westiged [55]. We used FoSgen
and FiST latency profiling extension for its evaluation. Artpcular, we collected sampled
profiles during trace capture and trace replaying directlyha file system level (albeit
we did not use the latency values in the profiles that we calt§c We captured profiles to
calculate the timing error of our trace replaying as a fumchf the elapsed time. Figure 8.2
shows the timing error dependence while replaying the Aits-paickage [80] compilation
trace. The corresponding VFS operation invocation rateshown in Figure 8.3.
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Figure 8.2: The difference between tracing and replayimgsta
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Figure 8.3: A comparison of traced and replayed rates.
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Chapter 9
Case Study: RAIF

In Chapter 7 we presented several profiling examples of fitesys developed earlier.
However, the profiling method that we developed is espguiaéful for file system devel-
opment. In our laboratory we are constantly developing nensfistems and design other
OS components. We found it necessary and most conveniesetiatency profiling while
working onall five of the following file systems: Replayfs [55], RAIF [52]nidbnFS [109],
secure deletion Ext3 extensions [51, 57], ACIDFS [108], el as Kefence [50] and some
other unpublished projects we were working on during the paar. In this chapter we
describe a typical example of the latency analysis usagpttmize a file system during its
development phase.

9.1 Redundant Array of Independent Filesystems

Redundant Array of Independent Filesystems (RAIF) is tls RAID-like storage system
designed at the file system level that imposes virtually rstrictions on the underlying
stores and allows per-file storage policy configuration.

For many years, grouping hard disks together to form RAIDsHeen considered a key
technique for improving storage survivability and incriegsdata access bandwidth [77].
However, most of the existing hardware and software RAIDIlengentations require that
the storage devices underneath be of one type. For exanepkras network stores and a
local hard drive cannot be seamlessly used to create a RANID Ronfigurations are fixed
and are the same for all the files because hardware and sefRfdDs operate at the data-
block level, where high level meta-information is not aghlke. This results in inefficient
storage utilization when important data is stored with tame redundancy level as less-
important data. Other common RAID limitations are rela@tbhg-term maintenance. For
example, data recovery is slow and may require a restantafrinpted.

There are several implementations of RAID-like file serwstems that combine net-
work servers [4, 38], or even combine network and local drj35]. However, past systems
targeted some particular usage scenario and had a fixedeatthie. Inflexibilities intro-
duced at design time often result in sub-optimal resourtization. RAIF leverages the
RAID design principles at the file system level, and offergdreconfigurability, flexibility
and ease of use in managing data security, survivabilitypemformance.
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File system development is as difficult as any OS code dewatopr the kernel is
a complex environment that is unforgiving to mistakes. Depers have always sought
methods to speed up OS code development and techniqueslthasuit in having to write
less code. RAIF is a fan-out RAID-like stackable file systeéBtackable file systems are
a useful and well-known technique for adding functionalyexisting file systems [115].
They allow for the incremental addition of features and cardipnamically loaded as ex-
ternal kernel modules. Stackable file systems overlay anddkver file system, intercept
file system events and data bound from user processes tontkefite system, and in turn
manipulate the lower file system’s operations and data, asd fhe changed ones down to
the lower file system. Developing stackable file systems séeedhan developing native
file systems. For example, a basic stackable encryptionyfiitem need only intercept data
buffers that come from ther i t e system call and encrypt those buffers before passing
them to the lower file system; similarly, buffers are intgreal inr ead and decrypted
before being returned to user processes. Past stackabsydtiems developed by us and
others have assumed a simple one-to-one mapping: the btadka system was layered
on top of one lower directory on a single file system. A diffgrelass of file systems that
use a one-to-many mapping f@n-oud has been previously suggested [39, 87] and was
recently included in the FiST [110, 115] templates.

RAIF derives its usefulness from three main features: fiérlof configurations, ac-
cess to high-level information, and easier administration

1. As a stackable file system RAIF can be mounted over any aaatibn of lower file
systems. For example, it can be mounted over several nefi®dystems like NFS
and Samba, AFS distributed file systems [42], and local fiktesyis at the same time;
in one such configuration, fast local branches may be usqubfitly in a RAID4-like
configuration. If the network mounts are slow, we could erplechniques such as
data recovery from parity even if nothing has failed, beeatisnay be faster to re-
construct the data using parity than to wait for the last t&teak to arrive. Stackable
file systems can be mounted on top of each other. Examplesstingxstackable file
systems are: an encryption [112], data-integrity verif@a{59], an antivirus [73],
and a compression file system [114]. These file systems carobated over RAIF
as well as below it over only some slow or untrusted brancheagire 9.1 shows an
example RAIF mount configuration.

2. RAIF operates at the file system level and has access tddwghfile system meta-
data that is not available to traditional RAIDs operatingta block level. This
meta-data information can be used to store files of diffetgpés using different
RAID levels, optimizing data placement and readahead #lgos to take into ac-
count varying access patterns for different file types. Kaneple, RAIF can on one
hand stripe large multimedia files across different brasdbeperformance, but use
two parity pages for important financial data files that mwesttsailable even in the
face of two failures. Dynamic RAIF-level migration offerdditional benefits.

3. Third, administration is easier because files are stonemt@inary unmodified lower-
level file systems. Therefore, the size of these lower fildesys can be changed,
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they can be easily backed up using standard software. Theslaasier to recover
in the case of failure because it is stored in a more accestibhat.

9.2 Benchmarking with Postmark

We have evaluated RAIF performance on a DELL PowerEdge seiitie a 2.8GHz CPU
and 2GB of RAM. We used an external disk array consisting of fdaxtor Atlas 15,000
RPM 18.4GB Ultra320 SCSI disks (same as in Section 6). We teeduto-pilot bench-
marking suite [111] to run all of the benchmarks. The lowarel file systems were re-
mounted before every benchmark run to purge the page cackeai\keach test at least
ten times and used the Studerdistribution to compute 95% confidence intervals for the
mean elapsed, system, user, and wait times. Wait time islépsed time less CPU time
used and consists mostly of 1/0O, but process schedulinglsaraffect it. In each case the
half-widths of the confidence intervals were less than 5%hefrhean.

For the remainder of the evaluation, we ws&F L-B to refer to RAIF levelL with B
branches. We usrAID L-B to refer to the Linux RAID driver, wherd, and B have the
same meaning as in RAIF.

Postmark v1.5 [60] simulates the operation of electronid servers. It performs a
series of file appends, reads, creations, and deletionsjisfpdnow RAIF might behave
in an I/O-intensive environment. We chose a Postmark cordtgn to stress the 1/O:
it creates 60,000 files, between 512—10K bytes, and perfé60000 transactions. All
operations were selected with equal probability. Note that Postmark configuration is
different from the one described in Section 6 because ofakef CPU that we used here.
Figure 9.2 shows the Postmark configuration file that we uSedry other Postmark’s op-
eration is either &r eat e or anunl i nk. Due to VFS restrictions, these RAIF operations
are executed sequentially on lower branches and are CRdsine. This makes Postmark
a challenging benchmark for RAIF.

We ran Postmark for 2, 3, and 4 branches under RAID and RAIEI$eY, 1, 4, and 5.

set size 512 10240

set nunber 60000

set seed 42

set transacti ons 600000
set location /n/test/raif
set subdirectories 600
set read 4096

set wite 4096

set buffering fal se

set bias read 5

set bias create 5

Figure 9.2: Postmark configuration that we used for RAIF bemarking.
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9.2.1 RAIFO

As we can see from Figure 9.8A1F0-2 was 18.6% slower thawalD0-2, due to a 59.1%
increase in system time and a 32.4% increase in wait time. pEnf®rmance degraded
slightly when more branches were added (overheads of 25r6%®8@.7% for three and
four branches, respectively). This was due to the increagstem time associated with
extra branches.

9.2.2 RAIF1

Figure 9.4 shows the benchmarking results for RAID1 and RAIFhe results for RAIF1
were similar to those for RAIFO, with similar increases tat®n time overheads as more
branches were added. In this case, the elapsed time overhead 26.4%, 30.5%, and
29.3% for configurations with 2, 3, and 4 branches, respelgtii-or RAIF1, we release
cache pages of lower file systems after all write operatidrigs allowed us to decrease
RAIF1-3 andrAIF1-4 overheads by approximately ten times.

9.2.3 RAIF4

Figure 9.5 shows the benchmarking results for RAID4 and RAI®/hereas the system
time of RAIF4 was higher than RAID4, the wait time was sigrafidy lower, resulting in
overall better performance. The system timerafiF4-3 was 2.2 times that ¢fAID4-3,
but it had 67.6% less wait time, resulting in a 46.1% improgatn Similarly, the system
time of RAIF4-4 was 2.3 times that ;fAID4-4, but the wait time was reduced by 75.8%,
resulting in an overall improvement of 54.0%.

9.2.4 RAIF5

Figure 9.6 shows the benchmarking results for RAID5, a haréviRAID card AWRAID),
and RAIF5. RAID5 and RAIF5 performance was similar to RAIDAdaRAIF4. For
RAIF5-3, system time was 2.1 times that ®AID5-3, wait time was 63.8% lower, and
there was an overall improvement of 44.5%. The system tinreaof5-4 was 2.4 times
that of RAID5-4, the wait time improved by 74.3%, and the elapsed timerawgd by
53.0%.

We also benchmarked one of the hardware implementation&AR and RAIF5 was
faster than that implementation as well. In particular, wadhmarked the Adaptec 2120S
SCSI RAID card with an Intel 80302 processor and 64MB of RAMeThardware and
driver-level implementations had similar system time te&ds.RAIF5-3 had 28.6% less
wait time thanHWRAID5-3, and was 8.3% faster overalkaiF5-4 had 41.5% wait time
improvement oveHWRAID5-3, and the elapsed time improved by 13.3%.

To understand why RAIF4 and RAIF5 performed so well undeiRRbstmark workload
we collected several latency profiles, which we will desenitext.
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9.3 RAIF5 Profiling

First, we profiled the Ext2 file systems mounted below RAIF ¢afy that the results are
not caused by possible bugs in RAIF which could be relatedoteequal load distribu-
tion. We compared these profiles using our analysis automatript (using th& OTOPS
method). We verified that RAIF distributes requests to lolr@anches equally with only a
5% deviation.

Second, we profiled Ext2 mounted over the Linux RAID5 drived &xt2 mounted
below RAIF5, as shown in Figures 9.7 and 9.8 respectivelybdii cases these systems
operated over four disks. In the figures, all operations arted based on their total laten-
cies. As we can see, all read-related operations complet&lgdrom the caches and do
not require waiting for the disk accesses. Howewel, t e operation takes a lot of time in
both cases.

Using theTOTLAT method we can see that i t epages method took the longest
total time for Ext2 mounted over RAIDS. Both the i t epages andthem i t e_i node
operations are called asynchronously by the kernel and difattrem result in block-level
writes. Not surprizingly, both of them are similarly proses by the block-level RAID5
driver. The rightmost peak that we can see in Figure 9.7 onathiet epages profile
(buckets 20-28) and the peak on thei t e_i node profile (buckets 22—-27) are caused
by the long disk head seeks. In particular, the Linux RAIDséeriexperienced 6,669 long
disk head seeks while writing dirty buffers to the disk. RA®R the other hand, waited for
only 1,664 disk head seek operations (buckets 20-26). Atsse seek operations were
much shorter than in the case of the RAID driver. This is beedRAIF operates above file
system caches and parity pages are cached as normal data hagex RAID, however,
operates with buffers logically below file system cachedsineans that the Linux RAID
driver has to read existing parity pages from the disk fotiphblock write operations.

Finally, we profiled Ext2 using the Adaptec 2120S RAID5 cohlér as shown in Fig-
ure 9.9. In this case, thar i t epages operation completes quickly. This is because our
hardware RAIDS5 controller cached requests using its 64NtBehche and returned control
back to the main system without waiting for the parity cadtign and issuing disk read and
write requests. However, sometimes this cache was not énagjsomew i t e_i node
operations were performed synchronously. In particulast O such requests (buckets
26—29) took about 20 seconds of time.

Overall, we can see that RAIF performs well for write-oriethtworkloads because
it efficiently caches both data and parity pages using allav@ memory in the system.
Driver-level RAID, however, only caches data pages and maast many parity pages from
the disk frequently, incurring long disk head seeks. Etggel hardware RAID controllers
offload some of the CPU processing and use their memory toedacth data and parity.
However, the on-board CPUs of such cards are relatively almdvtheir amount of memory
is small. Therefore, we can see that RAIF is a cost effecougi®n that allows us to utilize
the CPU time and all system memory on-demand and leave itler tasks when they are
not needed.
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9.4 Prior and Related Work

Preliminary description of the RAIF architecture was psbéd in [52]. Since then we
changed the RAIF architecture in may ways. The major chaageeelated to storing per-
file information, introduction of the policy-based manage and the re-architecture of
the page-cache—related operations to improve performance

9.4.1 Fan-Out Stackable File Systems

A class of stackable file systems knownfas-outfile systems mount on top of more than
one file system to provide useful functionality [39, 87]. Hoxer, so far the most common
application of fan-out has been unification [9, 40, 63, 79])10Unification file systems
present users with a merged view of files stored on severardwanches. RAIF is a
stackable fan-out file system that can mount on top of sewerdérlying file systems to
provide RAID-like functionality.

9.4.2 Block-Level RAID

Replication and striping of data (possibly combined with tise of error-correction codes)
has been commonly used for decades. It is a common way to vamtata survivabil-
ity and performance on homogeneous [77] and heterogen@6lisgnfigurations of local
hard drives. Modern block-level virtualization system3][#ely on Storage Area Network
(SAN) protocols such as iISCSI [3] to support remote blockicks: The idea of using dif-
ferent RAID levels for different data access patterns atibek level was used in several
projects at the driver [35] and hardware [106] levels. Hogrevhe lack of higher-level
information forced the developers to make decisions baskedren statistical information
or semantics of particular file systems [95]. Exposed RAIDRRAID [28]) reveals infor-
mation about parallelism and failure isolation boundarpgformance, and failure char-
acteristics to the file systems. Informed Log-structuresigiystem (I.LFS) uses>ERAID
for dynamic load balancing, user control of file replicati@nd delayed replication of
files. RAIF already operates at the file system level and gsgseall the meta informa-
tion it needs to make intelligent storage optimization dexis [28]. Solaris’s ZFS is both
a driver and a file system [99]. Despite having all the neagssdormation, it supports
storage policies on a storage-pool basis only. This meaiswole devices and whole file
systems use the same storage policies. RAIF provides maosatile virtualization on a
per-file basis.

9.4.3 File-System—Level RAID

Higher level storage virtualization systems operate os {83]. Their clients work as file
systems that send networked requests to the servers [13®@nts find files on servers
using dedicated meta-servers or hash functions [41]. CedhZabra are distributed file
systems that use per-file RAID levels and striping with paj@8, 105]. They have ded-
icated meta servers to locate the data. Ursa Minor's netwgrkgrotocol supports spe-
cial properties for storage fault handling [1]. Coda’s ntidile system is a wrapper over
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a pseudo-device that directly communicates with a userenwaathing server [62]. The
server replicates data on other similar servers.

File-system—level storage virtualization systems carpetpper-file storage policies.
However, they still have fixed and inflexible architecturés.contrast, RAIF’s stacking
architecture allows it to utilize the functionality of ekiigg file systems transparently and to
support a variety of configurations without any modificatida file systems’ source code.
Thus, RAIF can use any state-of-the-art and even futureyigeems. Also, any changes to
the built-in protocols of any fixed storage virtualizatiorsgem will require significant time
and effort and may break the compatibility between the giraodes.

9.4.4 Storage Utilization

Storage resizing is handled differently by different sggravirtualization systems. For ex-
ample, ZFS starts by lazily writing new data to newly addesksliiwhich are initially free)
and old disks [99]. Similarly, specially designed hash fiores can indirectly cause more
data to be written to the newly added disk [41]. This approaorks only if all old data
eventually gets overwritten, which is not the case in mamgiterm storage systems. An
alternative approach is to migrate the data in the backgt¢2®, 34]. RAIF supports both
lazy and background data migration.

9.4.5 Load Balancing

Media-distribution servers use data striping and replcato distribute the load among
servers [4, 23]. The stripe unit size and the degree of sipave been shown to influence
the performance of these servers [93]. Replication in RAdEsuproportional-share load
balancing using the expected delay as the load metric. Pipioach is generally advocated
for heterogeneous systems [91]. However, the number obpeadd 1/0 operations may be
a better metric when the workload includes a mix of randomsagiential operations [67].

Quality of service and fair resource sharing is another eamin shared storage sys-
tems [22,43].

9.4.6 RAID Survivability

Remote mirroring is a popular storage disaster-recovelytism [61]. In addition to data
replication, distributed RAID systems [97] usén redundancy schemes [85] to minimize
the extra storage needs. RAIF can use a number of remoteHaste store remote data
copies or parity.

Two popular solutions to the silent data corruption probl@3j are journalling [29]
(e.g, using non-volatile memory) and log-structured writes,[28. RAIF can support
journalling with no major design changes.
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Chapter 10

Conclusions

We designed a new file system profiling method that is veesgtibrtable, and efficient.
The method allows the person profiling to consider and awedllye OS and the events be-
ing profiled at a high level of abstraction. In particulare tevents can be anything that
contributes to the OS execution latencies. The resultinglps indicate pathologies and
their dependencies. Access to the source code allows usdstigate these abstract char-
acteristics such as lock or semaphore contentions. Howewven without the source code,
most of the problems can be described and studied in detadddiition to its versatility,
our method also allows profiling with high precision of abd(GtCPU cycles and negligi-
ble overheads of only about 200 CPU cycles per profiled ojperal he collected profiles
are small and do not require the use of locks, which is esheamaportant for SMP sys-
tems. When run with an I/O-intensive workload, we measutefdsed time overhead of
less than 1%.

The developed method is intuitive and allows us to easilyt ppthological patterns,
anomalies, or simply differences in behavior—the job that‘tcomputers” behind our eyes
can perform especially well. However, to aid this analygie,have implemented a set of
special scripts that can select a smaller set of profilesgitligiht the desired characteristics.
This way we automate the tasks that computers on our deskspeeially good for.

Our profiles can be captured entirely from the user-leveleler, to collect even more
information and to decrease the overheads even further weedaptured profiles at the file
system level. We have designed a flexible file system soume icstrumentation system
called FoSgen. FoSgen parses extensions written usingi8ie lehguage and applies
them to Linux and FreeBSD file systems. FSprof is one suchyfgtesn extension that can
measure the latencies of all file system operations andatdem in the buckets. We have
also created a stackable profiling file system for Windowssfjigtems.

We used our method to collect and analyze profiles for tas&dudlers and several pop-
ular Windows, FreeBSD, and Linux file systems (Ext2, Ext3sBes, NTFS, NFS, CIFS,
and BaseOfs). We discovered, investigated, and explaingittmodel latency distributions
within several common file system operations. We also ifiedtpathological performance
problems related to lock contention, network protocol imgistency, and 1/O interference.
We have shown how we used the developed latency profilingaddthexplain the perfor-
mance of RAIF—a RAID-like file system that we developed.
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10.1 Future Work

In this section we describe possible future research dimesiof our profiling method.

e Latency profiling produces small and informative profilefisiteature is especially
suitable for profiling of distributed systems because aapdimd collection of profiles
generates almost no inter-node traffic. Therefore, we mamplement a distributed

highly scalable profiling system.

e Captured profiles are small and can be analyzed in a short tiMeeolan to create a
system for large scale automatic performance problemstiete In particular, we
plan to profile file systems under random workloads and caoeotly analyze these

profiles to discover performance problems or implementeliags.

¢ In this dissertation we focused on file system profiling. Nthaess, this profiling
method is applicable to most if not all OS components. We fdapply our method
to more OSs and a variety of their subsystems. We anticipatehigher resolution

profiles will allow us to discover and explain infrequent O&ets.

e The generated profiles contain multi-dimensional infoioratWe have used simple
two- and three-dimensional views for its visualization. f@l@dvanced scientific
data visualization methods may make the process of vis@adysis easier and more

efficient.

e Itis hard to profile and analyze systems behavior in virtuathmnes. OSprof can be
used to capture and correlate events at all the levels: in &dison the host OS. We

plan to use OSprof to find performance problems in VMware aed.X

¢ In this dissertation we provided several examples of laygrefiling. However, lay-
ered profiling can be performed at the granularity of evencfion. In that case, one
would need a system for selective instrumentation of ingdlfunctions to minimize

overheads.

e FoSgen supports Linux and FreeBSD operating systems. Asseassed before, it
can be extended to support Windows. Also, it is clear thaarit gotentially support

Solaris and other OSs whose VFS is similar to FreeBSD’s oux’m

e We plan to extend FoSgen to support more possible instruatientextensions. For
example, FoSgen is an ideal solution to add tracing funatityndirectly to file sys-
tems. This solution would be similar to the Tracefs stackdid system [6] but
would have smaller overheads. Another example is a jounggfiST extension. If
applied by FoSgen, such an extension could add journallingtionality to existing

non-journalling file systems.

e RAIF is a promising new approach to RAID systems developméhé addition of
journal support for write operations can significantly iease its reliability. Such a

journal could be stored on another hard drive or a battegkéad RAM.
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Appendix A
FSprof FIST Extension

FiST extension below includes all the functionality neeggso collect and output collected
latency distribution statistics. Because it also incluthes pr oc interface it is good for
Linux only. As we described in Section 3, an OS-independetetiesion requires a separate
module for the pr oc interface.

%
/
fsprof.fist: collect latency distributions

Copyright (c) 2006 Ni kol ai Joukov and Erez Zadok
Copyright (c) 2006 Stony Brook University
/

* ok ok k * %

int fsprof _init(void);

voi d fsprof _exit(void);

unsigned I ong long fsprof _pre(int op);

voi d fsprof _post(int op, unsigned long long init_cycle);

%

debug of f;
| i cense "GPL";

9o

Yop: all :precal | {
unsi gned long long fsprof_init_cycle =
fsprof _pre(fistOP_%op);
}

Y%op: al | : postcal |l {
fsprof _post(fistOP_%op, fsprof _init_cycle);
}
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Yop:init:precall {
int fsprof_err = fsprof _init();
if (fsprof_err)
return fsprof _err

}

Yop:init:postcall {
if (fistLastErr())
fsprof _exit();
}

%op: exit:postcall {
fsprof _exit();
}

9
/*
* fsprof.fist: collect latency distributions
*  Copyright (c) 2006 Ni kol ai Joukov and Erez Zadok
*  Copyright (c) 2006 SUNY at Stony Brook
*/

#i ncl ude <Iinux/config.h>
#1 ncl ude <l i nux/ nodul e. h>
#i ncl ude <linux/fs.h>

#i ncl ude <l inux/sl ab. h>

#i ncl ude <l inux/vnall oc. h>
#i ncl ude <linux/proc_fs.h>
#1 ncl ude <asm uaccess. h>

#define FSPROF_MAX DIG T 32
#def i ne FSPROF_MAX_TI ME 0

/* this is our per-file systemstructure */
struct fsprof _statistics {

unsi gned | ong opcount s[fi st OP_MAX];

unsigned long long init_cycle;

unsi gned I ong | ong read_cycl e;

unsigned long long tot _cycl es[fist OP_MAX];

struct proc_dir_entry *fsprof_proc_root;

unsi gned | ong distribution[fistOP_MAX] \

[ FSPROF_MAX_TIME + 1] [FSPROF_MAX_ DIG T + 1];

3

/* For now just use a static variable. */
static struct fsprof_statistics* this = NULL;
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/* macros to read the TSC register */
#ifdef __ia64__
#defi ne RDTSC(qgp) \

do { \
unsigned long result; \
_asm_ __volatile__(\
"mov %®=ar.itc" : "=r" (result) :: "menory"); \
gp = result; \
} while (0);
#el se
#defi ne RDTSC(qgp) \
do { \
unsigned long | owPart, highPart; \
_asm__ __volatile__(\
"rdtsc" : "=a" (lowPart), "=d" (highPart)); \
gp = (((unsigned long long) highPart) << 32) | \
l owPart; \
} while (0);
#endi f

/[* function to reset statistics */

static void fsprof_stat_reset(void)

{
menset (this, 0, sizeof(struct fsprof_statistics));
RDTSC(t hi s->init_cycle);

}

#defi ne ADD_TO BUFFER(str) \
do { \
char* tnmp; \
len = strlen((str)); \
if (*ppos < total + len) { \
if (count < done + len) { \
| en = count - done; \
P\
if (total < *ppos) { \
len -= *ppos - total;\
tmp = (str) + *ppos - total; \
} else {\
tmp = (str); \
P\
if (copy_to_user(buf, tnp, len)) { \
done = - EFAULT; \
goto out; \
P\
buf += | en; \
done+= len; \
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if (count == done) \
goto out; \

P\
total += len; \
} while(0);

/*

* [proc interface read operation.

* Dunps collected statistics in the plain text form
* (e.g., 'cat /proc/fsprof’).

*/
static ssize t fsprof _proc _read(struct file *file,
char *buf,
size_t count,
| of f _t *ppos)
{
char | ocal buf[1024];
int len, done = 0, total = O;
unsigned int i, ii, iii, last_tick;

if (!this->read_cycle)
RDTSC(t hi s->read_cycl e);

last _tick = (unsigned int)((this->read _cycle -
this->init_cycle) >> 32);
if (last_tick > FSPROF_MAX Tl ME)
l ast _tick = FSPROF_MAX_TI MVE;

for (i =0; i < fistOP_MAX, i++) {
if (this->opcounts[i] > 0) {
sprintf(local buf, "OP_% %u %I u\n",
fistOPnanmes[i],
t hi s->opcounts[i],
this->tot_cycles[i]);
ADD TO BUFFER(I ocal buf);

for (ii =0; ii <last_tick + 1; ii++) {
len = 0;
for (iii =0; iii < FSPROF_MAX DIGT + 1; iii++) {
if (this->distribution[i][ii]J[iii] !'= 0Q)
| en++;
}
if (len) {
for (iii =0; ii1 < FSPROF MAX DIAT + 1; iii++) {
sprintf(local buf, " %u",

this->distribution[i][ii][iii]);
ADD _TO BUFFER( I ocal buf);
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}
ADD_TO BUFFER("\n"):

} else {
ADD_TO BUFFER("-\n");
}
}
}
}
this->read_cycle = 0;
out :
if (done > 0)

*ppos += done;
return done;

}

/*
* /proc interface wite operation.
* Any wite resets statistics
* (e.g., 'echo 1 > /proc/fsprof’).
*/
static ssize t fsprof _proc_wite(struct file *file,
const char *buf,
size t count,
| off _t *ppos) {
fsprof _stat _reset();
return count;

}

struct file_operations fsprof file_operations = {
read: fsprof _proc_read,
wite: fsprof _proc_wite

H
#defi ne PROC_NAME "fsprof"

/[* Creates a /proc entry for user-node access to statistics.
static int fsprof_proc_create(void)
{

struct proc_dir_entry *proc_de;

int err = 0;

proc_de = create_proc_entry(PROC_NAME, 0, NULL);
if (!proc_de) {
pri nt k( KERN_ERR "Addi ng proc entry failed\n");
goto out;

}
proc_de->owner = TH S_MODULE
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proc_de->data = (void *)this;

proc_de->proc_fops = & sprof _fil e_operations;
out :

return err;

}

/* Renoves the proc entry. */
static void fsprof proc_destroy(void)

{
remove_proc_entry( PROC NAME, NULL);

}

/*

* Al ocates nenory and creates /proc entry for statistics.
* No on-demand allocation to reduce run-time over heads.
*/

int fsprof _init(void)

{

int err = 0;

if (this)
goto out;

err = - ENOVEM

if (sizeof(struct fsprof statistics) > PAGE S| ZE)
this = vmal |l oc(sizeof (struct fsprof _statistics));
el se
this = kmal | oc(si zeof (struct fsprof_statistics),
GFP_KERNEL) ;

if ('this)
goto out;

fsprof _stat _reset();
err = fsprof _proc_create();

out :
return err;

}

/* Renpve /proc entry and free kernel nenory at the end. */
voi d fsprof _exit(void)

{
fsprof _proc_destroy();
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if (this) {
if (sizeof(struct fsprof_statistics) > PAGE_SI ZE)
viree(this);

el se
kfree(this);
this = NULL;

}
}

/* Returns TSC regi ster value and increnments per-op counter

unsi gned I ong | ong fsprof _pre(int op)
{

unsigned long long ullic;

t hi s->opcount s[ (op) ] ++

RDTSC(ul l'ic);

return ullic;

}

/*
* Calculates latency, its log, and increnents
* the correspondi ng bucket .

*/
voi d fsprof_post(int op, unsigned long long ullic)
{
unsigned long long |;
unsigned long long Il _del ay;
unsigned int i, ii, iii, i_delay;
RDTSC( | ) ;
[l _delay = (I - ullic);
this->tot_cycles[(op)] += |1 _del ay;
o= 1;

i _delay = (unsigned int)(ll _delay >> 5);
for (i =0; I < FSPROF_MAX DIAT,; i++) {
if (i_delay <iii)
br eak;
il <<= 1;

}

/* time unit for sampled profiles */
it = (int)((l - this->init_cycle) >> 32);
if (i1 > FSPROF_MAX_TI ME)

i = FSPROF_MAX_TI ME
this->distribution[(op)][ii][i]++;
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