
Aspect-Oriented Instrumentation with GCC
Appears in the Proceedings of the First International Conference on

Runtime Verification (RV 2010)

Justin Seyster1, Ketan Dixit1, Xiaowan Huang1, Radu Grosu1,
Klaus Havelund2, Scott A. Smolka1, Scott D. Stoller1, and Erez Zadok1

1 Department of Computer Science, Stony Brook University
2 Jet Propulsion Laboratory, California Institute of Technology

Abstract. We present the InterAspect instrumentation framework
for GCC, a widely used compiler infrastructure. The addition of plug-
in support in the latest release of GCC makes it an attractive platform
for runtime instrumentation, as GCC plug-ins can directly add instru-
mentation by transforming the compiler’s intermediate representation.
Such transformations, however, require expert knowledge of GCC in-
ternals. InterAspect addresses this situation by allowing instrumenta-
tion plug-ins to be developed using the familiar vocabulary of Aspect-
Oriented Programming pointcuts, join points, and advice functions. In-

terAspect also supports powerful customized instrumentation, where
specific information about each join point in a pointcut, as well as results
of static analysis, can be used to customize the inserted instrumentation.
We introduce the InterAspect API and present several examples that
illustrate how it can be applied to useful runtime verification problems.

1 Introduction

GCC is a widely used compiler infrastructure that supports a variety of input
languages, e.g., C, C++, Fortran, Java, and Ada, and over 30 different tar-
get machine architectures. GCC translates each of its front-end languages into
a language-independent intermediate representation, called GIMPLE, which then
gets translated to machine code for one of GCC’s many target architectures.
GCC is a very large software system with over 100 developers contributing over
the years and a steering committee consisting of 13 experts who strive to main-
tain its architectural integrity.

In earlier work [5], we extended GCC to support plug-ins, allowing users to
add their own custom passes to GCC in a modular way without patching and
recompiling the GCC source code. Released in April 2010, GCC 4.5 [14] includes
plug-in support that is largely based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the devel-
opment of practical, widely-applicable program transformation tools, including
program-instrumentation tools for runtime verification. Because plug-ins operate
at the level of GIMPLE, a plug-in is applicable to all of GCC’s front-end languages.
Transformation systems that manipulate machine code may also work for mul-
tiple programming languages, but low-level machine code is harder to analyze
and lacks the detailed type information that is available in GIMPLE.



Implementing instrumentation tools as GCC plug-ins provides significant
benefits but also presents a significant challenge: despite the fact that it is an
intermediate representation, GIMPLE is in fact a low-level language, requiring the
writing of low-level GIMPLE Abstract Syntax Tree (AST) traversal functions in
order to transform one GIMPLE expression into another. Therefore, as GCC is
currently configured, the writing of plug-ins is not for everyone but rather only
for those intimately familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the InterAspect program-instru-
mentation framework, which allows instrumentation plug-ins to be developed
using the familiar vocabulary of Aspect-Oriented Programming (AOP). In-

terAspect is itself implemented using the GCC plug-in API for manipulating
GIMPLE, but it hides the complexity of this API from its users, presenting instead
an aspect-oriented API in which instrumentation is accomplished by defining
pointcuts. A pointcut denotes a set of program points, called join points, where
calls to advice functions can be inserted by a process called weaving.

InterAspect’s API allows users to customize the weaving process by defin-
ing callback functions that get invoked for each join point. Callback functions
have access to specific information about each join point; the callbacks can use
this to customize the inserted instrumentation, and to leverage static-analysis
results for their customization.

In summary, InterAspect offers the following novel combination of features:

– InterAspect builds on top of GCC, a compiler infrastructure having a
large and dedicated following.

– InterAspect exposes an API, which encourages and simplifies open-source
collaboration.

– InterAspect has access to GCC internals, which allows one to exploit static
analysis and meta-programming during the weaving process.

To illustrate the practical utility of the InterAspect framework, we have
developed a number of program-instrumentation plug-ins that use InterAspect

for custom instrumentation. These include a heap visualization plug-in for antic-
ipated use by the JPL Mars Science Laboratory software development team; an
integer range analysis plug-in that finds bugs by tracking the range of values for
each integer variable; and a code coverage plug-in that, given a pointcut and test
suite, measures the percentage of join points in the pointcut that are executed
by the test suite.

The rest of the paper is structured as follows. Section 2 provides an overview
of GCC and the InterAspect framework architecture. Section 3 introduces the
InterAspect API. Section 4 presents the three applications: heap visualization,
integer range analysis, and code coverage. Section 5 summarizes related work,
and Section 6 concludes the paper.

2 Overview of GCC and the InterAspect Architecture

As Fig. 1 illustrates, GCC translates all of its front-end languages into the GIMPLE

intermediate representation for analysis and optimization. Each transformation

2



Java Parser

C Parser

C++ Parser
GIMPLE

Pass

GIMPLE

Pass

GIMPLE

Pass
Java Code

C Code

C++ Code GIMPLE

Plug-in

Pass

RTL

Passes
RTL Assembly

Front-end Middle-end Back-end

Plug-in

Pass

Fig. 1. A simplified view of the GCC compilation process.

on GIMPLE code is split into its own pass. These passes, some of which may be plug-

ins, make up GCC’s middle-end. Moreover, a plug-in pass may be InterAspect-
based, enabling the plug-in to add instrumentation directly into the GIMPLE code.
The final middle-end passes lower the optimized and instrumented GIMPLE to the
Register Transfer Language (RTL), which the back-end translates to assembly.

GIMPLE is a C-like three-address (3A) code. Complex expressions (possibly
with side effects) are broken into simple 3A statements by introducing new, tem-
porary variables. Similarly, complex control statements are broken into simple
3A (conditional) gotos by introducing new labels. Type information is preserved
for every operand in each GIMPLE statement.

Fig. 2 shows a C program and its corresponding GIMPLE code, which preserves
source-level information such as data types and procedure calls. Although not
shown in the example, GIMPLE types also include pointers and structures.

int main() { 1. int main {
int a, b, c; 2. int a, b, c;

a = 5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a = 5;

c = b + foo(a, b); => 5. b = a + 10;
if (a > b + c) 6. T1 = foo(a, b);

c = b++ / a + (b * a); 7. c = b + T1;

bar(a, b, c); } 8. T2 = b + c;
9. if (a <= T2) goto fi;

10. T3 = b / a;
11. T4 = b * a;
12. c = T3 + T4;

13. b = b + 1;
14. fi: bar (a, b, c); }

Fig. 2. Sample C program and corresponding GIMPLE representation.

A disadvantage of working purely at the GIMPLE level is that some language-
specific constructs are not visible in GIMPLE code. For example, targeting a specific
kind of loop as a pointcut is not currently possible because all loops look the
same in GIMPLE. InterAspect can be extended with language-specific pointcuts,
whose implementation would examine the AST.

InterAspect architecture. InterAspect works by inserting a pass that first
traverses the GIMPLE code to identify program points that are join points in a
specified pointcut. For each such join point, it then calls a user-provided weaving

3



Front-end

Middle-end

Back-end

GCC

Compiled

Binary

InterAspect

Framework

Weave

Module

Specification

Compiler

Source FileAOP Spec

Plug-in

Weaving Instructions

Advice

Fig. 3. Architecture of the InterAspect instrumentation framework for GCC.

callback function, which can insert calls to advice functions. Advice functions
can be written in any language that will link with the target program, and they
can access or modify the target program’s state, including its global variables.
Advice that needs to maintain additional state can declare static variables and
global variables.

Unlike traditional AOP systems which implement a special AOP language to
define pointcuts, InterAspect provides a C API for this purpose. We believe
that this approach is well suited to open collaboration. Extending InterAspect

with new features, such as new kinds of pointcuts, does not require agreement
on new language syntax or modification to parser code. Most of the time, col-
laborators will only need to add new API functions.

As Fig. 3 illustrates, InterAspect can further serve as the instrumenta-
tion back-end for a traditional AOP specification language. The specification
compiler’s job is to split an AOP specification into pointcut definitions, as-
sociated weaving instructions, and advice code. The first two are sent to an
InterAspect-based weave module for evaluation during the instrumentation
plug-in pass, whereas the advice code is sent to GCC for compilation.

3 The InterAspect API

This section describes the functions in the InterAspect API, most of which
fall naturally into one of two categories: (1) functions for creating and filtering
pointcuts, and (2) functions for examining and instrumenting join points. Note
that users of our framework can write plug-ins solely with calls to these API
functions; it is not necessary to include any GCC header files or manipulate any
GCC data structures directly.

Creating and filtering pointcuts. The first step for adding instrumentation
in InterAspect is to create a pointcut using a match function. Our current

4



implementation supports the four match functions given in Table 1, allowing one
to create four kinds of pointcuts.

struct aop pointcut *aop match function entry();

Creates pointcut denoting every function entry point.

struct aop pointcut *aop match function exit();

Creates pointcut denoting every function return point.

struct aop pointcut *aop match function call();

Creates pointcut denoting every function call.

struct aop pointcut *aop match assignment by type(struct aop type *type);

Creates pointcut denoting every assignment to a variable or memory location that matches a type.

Table 1. Match functions for creating pointcuts.

Using a function entry or exit pointcut makes it possible to add instrumen-
tation that runs with every execution of a function. These pointcuts provide a
natural way to put instrumentation at the beginning and end of a function the
way one would with before-execution and an after-returning advices in a tradi-
tional AOP language. A call pointcut can instead target calls to a function. Call
pointcuts can instrument calls to library functions without recompiling them. For
example, in Section 4.1, a call pointcut is used to intercept all calls to malloc.

The assignment pointcut is useful for monitoring changes to program values.
For example, we use it in Section 4.1 to track pointer values so that we can
construct the heap graph. We plan to add several new pointcut types, including
pointcuts for conditionals and loops. These new pointcuts will make it possible
to trace the complete path of execution as a program runs, which is potentially
useful for coverage analysis, profiling, and symbolic execution.

After creating a match function, a plug-in can refine it using filter functions.
Filter functions add additional constraints to a pointcut, removing join points
that do not satisfy those constraints. For example, it is possible to filter a call
pointcut to include only calls that return a specific type or only calls to a certain
function. Table 2 summarizes filter functions for call pointcuts.

void aop filter call pc by name(struct aop pointcut *pc, const char *name);

Filter function calls with a given name.

void aop filter call pc by param type(struct aop pointcut *pc, int n, struct aop type *type);

Filter function calls that have an n
th parameter that matches a type.

void aop filter call pc by return type(struct aop pointcut *pc, struct aop type *type);

Filter function calls with a matching return type.

Table 2. Filter functions for refining function-call pointcuts.

Instrumenting join points. InterAspect plug-ins iterate over the join
points of a pointcut by providing an iterator callback to the join function, shown
in Table 3. InterAspect then calls the iterator callback for each join point so
that it can instrument the join point with a call to an advice function.

Callback functions use capture functions to examine values associated with a
join point. Capture functions expose two kinds of values: static values that are
known at compile time and runtime values that will not be known until program

5



void aop join on(struct aop pointcut *pc, join callback callback, void *callback param);

Supply callback function with any data structure as callback param.

Table 3. Join function for iterating over a pointcut.

execution time. Static values, such as the name of the variable assigned by an
assignment statement, are directly readable in the callback itself. The callback
cannot access runtime values, such as the values assigned by an assignment state-
ment, but it can pass them as parameters to advice functions, so that they are
available to instrumentation code at runtime. These runtime values are repre-
sented in the callback function as special aop dynval objects. Capture functions
are specific to the kinds of join points they operate on. Tables 4 and 5 summarize
the capture functions for function-call join points and assignment join points,
respectively.

const char *aop capture function name(aop joinpoint *jp);

Captures the name of the function called in the given join point.

struct aop dynval *aop capture param(aop joinpoint *jp, int n);

Captures the value of the n
th parameter passed in the given function join point.

struct aop dynval *aop capture return value(aop joinpoint *jp);

Captures the value returned by the function in a given call join point.

Table 4. Capture functions for function-call join points.

const char *aop capture lhs name(aop joinpoint *jp);

Captures the name of a variable assigned to in a given assignment join point, or returns NULL if

the join point does not assign to a named variable.

enum aop scope aop capture lhs var scope(aop joinpoint *jp);

Captures the scope of a variable assigned to in a given assignment join point. Variables can have

global, file-local, and function-local scope. If the join point does not assign to a variable, this

function returns AOP MEMORY SCOPE.

struct aop dynval *aop capture lhs addr(aop joinpoint *jp);

Captures the memory address assigned to in a given assignment join point.

struct aop dynval *aop capture assigned value(aop joinpoint *jp);

Captures the assigned value in a given assignment join point.

Table 5. Capture functions for assignment join points.

AOP systems like AspectJ [17] provide Boolean operators, such as and and
or, to refine pointcuts. The InterAspect API could be extended with cor-
responding operations. Even without them, a similar result can be achieved in
InterAspect by including the appropriate logic in the callback. For example, a
plug-in can instrument calls to malloc and calls to free by joining on a pointcut
with all function calls and using the aop capture function name facility to add
advice calls only to malloc and free. Simple cases like this can furthermore be
handled by using regular expressions to match function names, which will be
added to the framework.

After capturing, a callback can add an advice function call before or after the
join point using the insert function of Table 6. The aop insert advice function
takes any number of parameters to be passed to the advice function at run-

6



time, including values captured from the join point and values computed during
instrumentation by the plug-in itself.

Using a callback to iterate over individual join points makes it possible to
customize instrumentation at each instrumentation site. A plug-in can capture
values about the join point to decide which advice function to call, which pa-
rameters to pass to it, or even whether to add advice at all. In Section 4.2, this
feature is exploited to uniquely index named variables during compilation. Cus-
tom instrumentation code in Section 4.3 separately records each instrumented
join point in order to track coverage information.

void aop insert advice(struct aop joinpoint *jp, const char *advice func name,

enum aop insert location location, ...);

Insert an advice call, before or after a join point (depending on the value of location), passing any

number of parameters. A plug-in obtains a join point by iterating over a pointcut with aop join on.

Table 6. Insert function for instrumenting a join point with a call to an advice function.

Function duplication. InterAspect provides a function duplication facility
that makes it possible to toggle instrumentation at the function level. Although
inserting advice at the GIMPLE level creates very efficient instrumentation, users
may still wish to switch between instrumented and uninstrumented code for high-
performance applications. Duplication creates two or more copies of a function
body (which can later be instrumented differently) and redefines the function to
call a special advice function that runs at function entry and decides which copy
of the function body to execute.

When joining on a pointcut for a function with a duplicated body, the caller
specifies which copy the join should apply to. By only adding instrumentation to
one copy of the function body, the plug-in can create a function whose instrumen-
tation can be turned on and off at runtime. Alternatively, a plug-in can create a
function that can toggle between different kinds of instrumentation. Section 4.2
presents an example of using duplication to reduce overhead by sampling.

4 Applications

To demonstrate InterAspect’s flexibility, we present several example applica-
tions of the API. The plug-ins we designed for these examples provide instru-
mentation that is tailored to specific problems (memory visualization, integer
range analysis, code coverage). Though custom-made, the plug-ins themselves
are simple to write, requiring only a small amount of code.

4.1 Heap Visualization

The heap visualizer uses the InterAspect API to expose memory events that
can be used to generate a graphical representation of the heap in real time dur-
ing program execution. Allocated objects are represented by rectangular nodes,

7



pointer variables and fields by oval nodes, and edges show where pointer variables
and fields point.

In order to draw the graph, the heap visualizer needs to intercept object
allocations and deallocations and pointer assignments that change edges in the
graph. Fig. 4 shows a prototype of the visualizer using Graphviz [2], an open-
source graph layout tool, to draw its output. The graph shows three nodes in a
linked list during a bubble-sort operation. Each node is labeled with its size, its
address in memory, and the addresses of its fields. Variables that point to NULL

or to an invalid memory location are drawn with a dashed border. Edges are
labeled with the line number of the assignment that created the edge, as well as
the number of assignments to the source variable that have occurred so far.

struct node*
0x1392010 [16]

struct node*
0x1392030 [16]

struct node*
0x1392050 [16]

.next
0x1392018

.next
0x1392058

sort.c:52
updates:2

.next
0x1392038 sort.c:50

updates:3

list
0x7FFF1675ACD8 sort.c:50

updates:3

*pn
0x7FFF1675ACB0

sort.c:55
updates:5

curr
0x7FFF1675ACA8

sort.c:45
updates:5

next
0x7FFF1675ACA0

sort.c:46
updates:5

Fig. 4. A visualization of the heap during a bubble sort operation on a linked list.

The InterAspect code for the heap visualizer instruments each allocation
(call to malloc) with a call to the heap allocation advice function, and it instru-
ments each pointer assignment with a call to the pointer assign advice function.
These advice functions update the graph. Instrumentation of other allocation
and deallocation functions, such as calloc and free, is handled similarly.

The InterAspect code in Fig. 5 instruments calls to malloc. The function
instrument malloc calls constructs a pointcut for all calls to malloc and then
calls aop join on to iterate over all the calls in the pointcut. Only a short main
function (not shown) is needed to set GCC to invoke instrument malloc calls

during compilation.
The aop match function call function constructs an initial pointcut that in-

cludes every function call. Additional filter functions narrow down the pointcut
to include only calls to malloc. First, aop filter call pc by name filters out calls
to functions that are not named malloc. Then, aop filter pc by param type and
aop filter pc by return type filter out calls to functions that do not match the
standard malloc prototype, which takes an unsigned integer as the first parame-
ter and returns a pointer value. This filtering step is necessary because a program
could define its own function with the name malloc but a different prototype.

For each join point in the pointcut (in this case, a statement that calls
malloc), aop join on calls malloc callback. The two capture calls in the call-

8



static void instrument_malloc_calls()
{

/* Construct a pointcut that matches calls to: void *malloc(unsigned int). */
struct aop_pointcut *pc = aop_match_function_call();

aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_unsigned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_pointer());

/* Visit every statement in the pointcut. */

aop_join_on(pc, malloc_callback, NULL);
}

/* The malloc_callback() function executes once for each call to malloc() in the target
program. It instruments each call it sees with a call to heap_allocation(). */

static void malloc_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *object_size;
struct aop_dynval *object_addr;

/* Capture the size of the allocated object and the address it is allocated to. */
object_size = aop_capture_param(jp, 0);

object_addr = aop_capture_return_value(jp);

/* Add a call to the advice function, passing the size and address as parameters.
(AOP_TERM_ARG is necessary to terminate the list of arguments
because of the way C varargs functions work.) */

aop_insert_advice(jp, "heap_allocation", AOP_INSERT_AFTER,
AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),

AOP_TERM_ARG);
}

Fig. 5. Instrumenting all memory allocation events.

back function return aop dynval objects for the call’s first parameter and re-
turn value: the size of the allocated region and its address, respectively. Recall
from Section 3 that an aop dynval serves as a placeholder during compilation for
a value that will not be known until runtime. Finally, aop insert advice adds
the call to the advice function, passing the two captured values. Note that In-

terAspect chooses types for these values based on how they were filtered. The
filters used here restrict object size to be an unsigned integer and object addr

to be some kind of pointer, so InterAspect assumes that the advice function
heap allocation has the prototype:

void heap_allocation(unsigned long long, void *);

To support this, InterAspect code must generally filter runtime values by type
in order to capture and use them.

The InterAspect code in Fig. 6 tracks pointer assignments, such as

list_node->next = new_node;

The aop match assignment by type function creates a pointcut that matches as-
signments, which is additionally filtered by the type of assignment. For this
application, we are only interested in assignments to pointer variables.

For each assignment join point, assignment callback captures address, the
address assigned to, and pointer, the pointer value that was assigned. In the
above examples, these would be the values of &list node->next and new node,

9



static void instrument_pointer_assignments()
{

/* Construct a pointcut that matches all assignments to a pointer. */
struct aop_pointcut *pc = aop_match_assignment_by_type(aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each pointer assignment.
It instruments each assignment it sees with a call to pointer_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *address;

struct aop_dynval *pointer;

/* Capture the address the pointer is assigned to, as well as the pointer address itself. */
address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AFTER,

AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

}

Fig. 6. Instrumenting all pointer assignments.

respectively. The visualizer uses address to determine the source of a new graph
edge and pointer to determine its destination.

The function that captures address, aop capture lhs addr, does not require
explicit filtering to restrict the type of the captured value because an address
always has a pointer type.

The value captured by aop capture assigned value and stored in pointer has
a void pointer type because we filtered the pointcut to include only pointer
assignments. As a result, InterAspect assumes that the pointer assign advice
function has the prototype:

void pointer_assign(void *, void *);

4.2 Integer Range Analysis

Integer range analysis is a runtime tool for finding anomalies in program behavior
by tracking the range of values for each integer variable [12]. A range analyzer
can learn normal ranges from training runs over known good inputs. Values that
fall outside of normal ranges in future runs are reported as anomalies, which
can indicate errors. For example, an out-of-range value for a variable used as an
array index may cause an array bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed
updates because of sampling can result in underestimating a variable’s range,
but this trade-off is reasonable in many cases. Sampling can be done randomly
or by using a technique like Software Monitoring with Controlled Overhead [15].

InterAspect provides function-body duplication as a means to add instru-
mentation that can be toggled on and off. Duplicating a function splits its body

10



into two copies. A distributor block at the beginning of the function decides which
copy to run. An InterAspect plug-in can add advice to just one of the copies,
so that the distributor chooses between enabling or disabling instrumentation.

static void instrument_integer_assignments()
{

struct aop_pointcut *pc;

/* Duplicate the function body so there are two copies. */

aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/* Construct a pointcut that matches all assignments to an integer. */
pc = aop_match_assignment_by_type(aop_t_all_signed_integer());

/* Visit every statement in the pointcut. */
aop_join_on_copy(pc, 1, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each integer assignment.
It instruments each assignment it sees with a call to int_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)

{
const char *variable_name;

int variable_index;
struct aop_dynval *value;
enum aop_scope scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {

/* Choose an index number for this variable. */
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, scope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,

AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

}

}

Fig. 7. Instrumenting integer variable updates.

Fig. 7 shows how we use InterAspect to instrument integer variable up-
dates. The call to aop duplicate makes a copy of each function body. The first
argument specifies that there should be two copies of the function body, and the
second specifies the name of a function that the distributor will call to decide
which copy to execute. When the duplicated function runs, the distributor calls
distributor func, which must be a function that returns an integer. The dupli-
cated function bodies are indexed from zero, and the distributor func return
value determines which one the distributor transfers control to.

Using aop join on copy instead of the usual aop join on iterates only over
join points in the specified copy of duplicate code. As a result, only one copy is
instrumented; the other copy remains unmodified.

The callback function itself is similar to the callbacks we used in Section 4.1.
The main difference is the call to get index from name that converts the vari-
able name to an integer index. The get index from name function (not shown for

11



brevity) also takes the variable’s scope so that it can assign different indices to
local variables in different functions. It would be possible to directly pass the
name itself (as a string) to the advice function, but the advice function would
then incur the cost of looking up the variable by its name at runtime. This opti-
mization illustrates the benefits of InterAspect’s callback-based approach to
custom instrumentation.

The aop capture lhs name function returns a string instead of an aop dynval

object because variable names are known at compile time. It is necessary to check
for a NULL return value because not all assignments are to named variables.

To better understand InterAspect’s performance impact, we benchmarked
this plug-in on the compute-intensive bzip2 compression utility using empty ad-
vice. The instrumented bzip2 contains advice calls at every integer variable as-
signment, but the advice functions themselves do nothing, allowing us to measure
the overhead from calling advice functions independently from actual monitor-
ing overhead. With a distributor that maximizes overhead by always choosing
the instrumented function body, we measured 24% runtime overhead. Function
duplication by itself contributes very little to this overhead; when the distribu-
tor always chooses the uninstrumented path, the overhead from instrumentation
was statistically insignificant.

4.3 Code Coverage

A straightforward way to measure code coverage is to choose a pointcut and
measure the percentage of its join points that are executed during testing. In-

terAspect’s ability to iterate over each join point makes it simple to label join
points and then track them at runtime.

The example in Fig. 8 adds instrumentation to track coverage of function en-
try and exit points. To reduce runtime overhead, the choose unique index func-
tion assigns an integer index to each tracked join point, similar to the indexing of
integer variables in Section 4.2. Each index is saved along with its corresponding
source filename and line number by the save index to disk function. The run-
time advice needs to output only the set of covered index numbers; an offline
tool uses that output to compute the percentage of join points covered or to list
the filenames and line numbers of covered join points. For brevity we omit the
actual implementations of choose unique index and save index to disk.

5 Related Work

Aspect-oriented programming was first introduced for Java with AspectJ [10,
17]. There, weaving takes place at the bytecode level. The AspectBench Com-
piler (abc) [3] is a more recent extensible research version of AspectJ that makes
it possible to add new language constructs (see for example [4]). Similarly to
InterAspect, it manipulates a 3A intermediate representation (Jimple) spe-
cialized to Java.

12



static void instrument_function_entry_exit()
{

struct aop_pointcut *entry_pc;
struct aop_pointcut *exit_pc;

/* Construct two pointcuts: one for function entry and one for function exit. */
entry_pc = aop_match_function_entry();

exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

/* The entry_exit_callback function assigns an index to every join

point it sees and saves that index to disk. */
static void entry_exit_callback(struct aop_joinpoint *jp, void *arg)

{
int index, line_number;
const char *filename;

index = choose_unique_index();

filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_BEFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

}

Fig. 8. Instrumenting function entry and exit for code coverage.

Other frameworks for Java, including Javaassist [7] and PROSE [19], offer an
API for instrumenting and modifying code, and hence do not require the use of a
special language. Javaassist is a class library for editing bytecode. A source-level
API can be used to edit class files without knowledge of the bytecode format.
PROSE has similar goals.

AOP for other languages such as C and C++ has had a slower uptake.
AspectC [8] was one of the first AOP systems for C, based on the language
constructs of AspectJ. ACC [18] is a more recent AOP system for C, also based
on the language constructs of AspectJ. It transforms source code and offers its
own internal compiler framework for parsing C. It is a closed system in the sense
that one cannot augment it with new pointcuts or access the internal structure
of a C program in order to perform static analysis.

The XWeaver system [21], with its language AspectX, represents a program
in XML (srcML, to be specific), making it language-independent. It supports
Java and C++ . A user, however, has to be XML-aware. Aspicere [20] is an
aspect language for C based on LLVM bytecode. Its pointcut language is inspired
by logic programming. Adding new pointcuts amounts to defining new logic
predicates. Arachne [9, 11] is a dynamic aspect language for C that uses assembler
manipulation techniques to instrument a running system without pausing it.

AspectC++ [22] is targeted towards C++. It can handle C to some extent,
but this does not seem to be a high priority for its developers. For example, it only
handles ANSI C and not other dialects. AspectC++ operates at the source-code
level and generates C++ code, which can be problematic in contexts where only

13



C code is permitted, such as in certain embedded applications. OpenC++ [6] is
a front-end library for C++ that developers can use to implement various kinds
of translations in order to define new syntax and object behavior. CIL [13] (C
Intermediate Language) is an OCaml [16] API for writing source-code transfor-
mations of its own 3A code representation of C programs. CIL requires a user to
be familiar with the less-often-used yet powerful OCaml language.

Additionally, various low-level but mature tools exist for code analysis and
instrumentation. These include the BCEL [1] bytecode-instrumentation tool for
Java, and Valgrind [23], which works directly with executables and consequently
targets multiple programming languages.

6 Conclusions

We have presented InterAspect, a framework for developing powerful instru-
mentation plug-ins for the GCC suite of production compilers. InterAspect-
based plug-ins instrument programs compiled with GCC by modifying GCC’s
intermediate language, GIMPLE. The InterAspect API simplifies this process by
offering an AOP-based interface. Plug-in developers can easily specify pointcuts
to target specific program join points and then add customized instrumentation
at those join points. We presented several example plug-ins that demonstrate
the framework’s ability to customize runtime instrumentation for specific appli-
cations.

As future work, we plan to add pointcuts for all control flow constructs,
thereby allowing instrumentation to trace a program run’s exact path of exe-
cution. We also plan to investigate API support for pointcuts that depend on
dynamic information, such as AspectJ’s cflow, by introducing filters that are
evaluated at run-time. Dynamic pointcuts can already be implemented in In-

terAspect with advice functions that maintain and use appropriate state, but
API support would eliminate the need to write those advice functions.

Acknowledgements We thank the anonymous reviewers for their valuable com-
ments. Part of the research described herein was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. Research supported in part
by AFOSR Grant FA9550-09-1-0481, NSF Grants CCF-0926190, CCF-0613913,
and CNS-0831298, and ONR Grants N00014-07-1-0928 and N00014-09-1-0651.

References

1. BCEL. http://jakarta.apache.org/bcel.
2. AT&T Research Labs. Graphviz, 2009. http://www.graphviz.org.
3. Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J.,

Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J.

abc: An extensible AspectJ compiler. In Proceedings of the Fourth International
Conference on Aspect-Oriented Software Development (2005), ACM Press.

14



4. Bodden, E., and Havelund, K. Racer: Effective race detection using AspectJ.
In International Symposium on Software Testing and Analysis, Seattle, WA (2008),
ACM, pp. 155–165.

5. Callanan, S., Dean, D. J., and Zadok, E. Extending GCC with modular
GIMPLE optimizations. In Proceedings of the 2007 GCC Developers’ Summit
(Ottawa, Canada, July 2007).

6. Chiba, S. A metaobject protocol for C++. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (October
1995), pp. 285–299.

7. Chiba, S. Load-time structural reflection in Java. In Proceedings of the 14th
European Conference on Object-Oriented Programming, LNCS (2000), vol. 1850,
Springer Verlag, pp. 313–336.

8. Coady, Y., Kiczales, G., Feeley, M., and Smolyn, G. Using AspectC to
improve the modularity of path-specific customization in operating system code. In
Proceedings of the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (2001), pp. 88–98.

9. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Ségura-

Devillechaise, M., and Südholt, M. An expressive aspect language for system
applications with Arachne. In Proceedings of the 4th international conference on
Aspect-oriented software development (2005), ACM Press.

10. AspectJ. http://www.eclipse.org/aspectj.
11. Arachne. http://www.emn.fr/x-info/arachne.
12. Fei, L., and Midkiff, S. P. Artemis: Practical runtime monitoring of applica-

tions for errors. Tech. Rep. TR-ECE-05-02, Electrical and Computer Engineering,
Purdue University, 2005. docs.lib.purdue.edu/ecetr/4/.

13. G. C. Necula and S. McPeak and S. P. Rahul and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C programs. In
Proceedings of the 11th International Conference on Compiler Construction (Lon-
don, England, 2002), Springer-Verlag, pp. 213–228.

14. GCC 4.5 release series changes, new features, and fixes. http://gcc.gnu.org/

gcc-4.5/changes.html.
15. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S. A.,

Stoller, S. D., and Zadok, E. Software monitoring with controllable overhead.
International Journal on Software Tools for Technology Transfer (STTT) (2010).
Accepted for publication.

16. Objective Caml. http://caml.inria.fr/index.en.html.
17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Gris-

wold, W. G. An overview of AspectJ. In Proceedings of the 15th European
Conference on Object-Oriented Programming (2001), LNCS, Vol. 2072, pp. 327–
355.

18. ACC. http://research.msrg.utoronto.ca/ACC.
19. Nicoara, A., Alonso, G., and Roscoe, T. Controlled, systematic, and efficient

code replacement for running Java programs. In Proceedings of the ACM EuroSys
Conference (Glasgow, Scotland, UK, April 2008).

20. Aspicere. http://sailhome.cs.queensu.ca/~bram/aspicere.
21. Rohlik, O., Pasetti, A., Cechticky, V., and Birrer, I. Implementing adapt-

ability in embedded software through aspect oriented programming. IEEE Mecha-
tronics & Robotics (2004), 85–90.

22. Spinczyk, O., and Lohmann, D. The design and implementation of AspectC++.
Know.-Based Syst. 20, 7 (2007), 636–651.

23. Valgrind. http://valgrind.org.

15


