
Discovery and Hot Replacement

of Replicated Read-Only File Systems,

with Application to Mobile Computing

Erez Zadok and Dan Duchamp

Computer Science Department

Columbia University

ABSTRACT

We describe a mechanism for replacing �les, including open �les, of a read-only �le
system while the �le system remains mounted; the act of replacement is transparent to
the user. Such a \hot replacement" mechanism can improve fault-tolerance, performance,
or both. Our mechanism monitors, from the client side, the latency of operations directed
at each �le system. When latency degrades, the client automatically seeks a replacement
�le system that is equivalent to but hopefully faster than the current �le system. The �les
in the replacement �le system then take the place of those in the current �le system. This
work has particular relevance to mobile computers, which in some cases might move over
a wide area. Wide area movement can be expected to lead to highly variable response
time, and give rise to three sorts of problems: increased latency, increased failures, and
decreased scalability. If a mobile client moves through regions having partial replicas of
common �le systems, then the mobile client can depend on our mechanism to provide
increased fault tolerance and more uniform performance.

1 Introduction

The strongest trend in the computer industry today is the miniaturization of workstations into
portable \notebook" or \palmtop" computers. Wireless network links [3] and new internetworking
technology [8] o�er the possibility that computing sessions could run without interruption even as
computers move, using information services drawn from an infrastructure of (mostly) stationary
servers.

We contend that operation of mobile computers according to such a model will raise problems
that require re-thinking certain issues in �le system design.1 One such issue is how to cope with a
client that moves regularly yet unpredictably over a wide area.

Several problems arise when a client moves a substantial distance away from its current set
of servers. One is worse latency, since �les not cached at the client must be fetched over longer
distances. Another problem is increased probability of loss of connectivity, since gateway failures
often lead to partitions. The �nal problem is decreased overall system \scalability:" more clients
moving more data over more gateways means greater stress on the shared network.

One obvious way to mitigate these problems is to ensure that a �le service client uses \nearby"
servers at all times. A simple motivating example is that if a computer moves from New York to
Boston, then in many cases it is advantageous to switch to using the Boston copies of \common"
�les like those in /usr/ucb. As the client moves, the �le service must be able to provide service
�rst from one server, then from another. This switching mechanism should require no action on the

1Examples of such re-thinking can be found in [25] and [26].

part of administrators (since presumably too many clients will move too often and too quickly for
administrators to track conveniently) and should be invisible to users, so that users need not become
system administrators.

We have designed and implemented just such a �le system | it adaptively discovers and
mounts a \better" copy of a read-only �le system which is fully or partially replicated. We de�ne
a better replica to be one providing better latency. Running our �le service gives a mobile client
some recourse to the disadvantages mentioned above. Our mechanism monitors �le service latencies
and, when response becomes inadequate, performs a dynamic attribute-guided search for a suitable
replacement �le system.

Many useful \system" �le systems | and almost all �le systems that one would expect to
be replicated over a wide area | are typically exported read-only. Examples include common
executables, manual pages, fonts, include �les, etc. Indeed, read-only areas of the �le space are
growing fast, as programs increase the amount of con�guration information, images, and on-line
help facilities.

Although our work is motivated by the perceived needs of mobile computers that might roam
over a wide area and/or frequently cross between public and private networks, our work can be
useful in any environment characterized by highly variable response time and/or high failure rates.

Note that for a client to continue use of a �le system as it moves, there must be underlying
network support that permits the movement of a computer from one network to another without
interruption of its sessions. Several such schemes have been developed [8, 7, 28, 29].

The remainder of this paper is organized as follows. In order to make a self-contained pre-
sentation, Section 2 provides brief explanations of other systems that we use in constructing ours.
Section 3 outlines our design and Section 4 evaluates the work. Lastly, we mention related work in
Section 5 and summarize in Section 6.

2 Background

Our work is implemented in and on SunOS 4.1.2. We have changed the kernel's client-side
NFS implementation, and outside the operating system we have made use of the Amd automounter
and the RLP resource location protocol. Each is explained briey below.

2.1 NFS

Particulars about the NFS protocol and implementation are widely known and published [20,
12, 9, 19]. For the purpose of our presentation, the only uncommon facts that need to be known are:

� Translation of a �le path name to a vnode is done mostly within a single procedure, called
au lookuppn(), that is responsible for detecting and expanding symbolic links and for detect-
ing and crossing mount points.

� The name of the procedure in which an NFS client makes RPCs to a server is rfscall().

We have made substantial alterations to au lookuppn(), and slight alterations to rfscall(),
nfs mount(), nfs unmount() and copen().2 We added two new system calls: one for controlling
and querying the added structures in the kernel, and the other for debugging. Finally, we added
�elds to three major kernel data structures: vnode and vfs structures and the open �le table.

2.2 RLP

We use the RLP resource location protocol [1] when seeking a replacement �le system. RLP is
a general-purpose protocol that allows a site to send broadcast or unicast request messages asking
either of two questions:

2Copen() is the common code for open() and create().

1. Do you (recipient site) provide this service?

2. Do you (recipient site) know of any site that provides this service?

A service is named by the combination of its transport service (e.g., TCP), its well-known port
number as listed in /etc/services, and an arbitrary string that has meaning to the service. Since
we search for an NFS-mountable �le system, our RLP request messages contain information such as
the NFS transport protocol (UDP [16]), port number (2049) and service-speci�c information such
as the name of the root of the �le system.

2.3 Amd

Amd [15] is a widely-used automounter daemon. Its most common use is to demand-mount �le
systems and later unmount them after a period of disuse; however, Amd has many other capabilities.

Amd operates by mimicking an NFS server. An Amd process is identi�ed to the kernel as
the \NFS server" for a particular mount point. The only NFS calls for which Amd provides an
implementation are those that perform name binding: lookup, readdir, and readlink. Since a �le
must have its name resolved before it can be used, Amd is assured of receiving control during the
�rst use of any �le below an Amd mount point. Amd checks whether the �le system mapped to
that mount point is currently mounted; if not, Amd mounts it, makes a symbolic link to the mount
point, and returns to the kernel. If the �le system is already mounted, Amd returns immediately.

An example, taken from our environment, of Amd's operation is the following. Suppose /u

is designated as the directory in which all user �le systems live; Amd services this directory. At
startup time, Amd is instructed that the mount point is /n. If any of the three name binding
operations mentioned above occurs for any �le below /u, then Amd is invoked. Amd consults its
maps, which indicate that /u/foo is available on server bar. This �le system is then mounted locally
at /n/bar/u/foo and /u/foo is made a symbolic link to /n/bar/u/foo. (Placing the server name
in the name of the mount point is purely a con�guration decision, and is not essential.)

Our work is not dependent on Amd; we use it for convenience. Amd typically controls the
(un)mounting of all �le systems on the client machines on which it runs, and there is no advantage
to our work in circumventing it and performing our own (un)mounts.

2.3.1 How Our Work Goes Beyond Amd

Amd does not already possess the capabilities we need, nor is our work a simple extension to
Amd. Our work adds at least three major capabilities:

1. Amd keeps a description of where to �nd to-be-mounted �le systems in \mount-maps." These
maps are written by administrators and are static in the sense that Amd has no ability for
automated, adaptive, unplanned discovery and selection of a replacement �le system.

2. Because it is only a user-level automount daemon, Amd has limited means to monitor the
response of rfscall() or any other kernel routine.
Many systems provide a tool, like nfsstat, that returns timing information gathered by the
kernel. However, nfsstat is inadequate because it is not as accurate as our measurements, and
provides weighted average response time rather than measured response time. Our method
additionally is less sensitive to outliers measures both short-term and long-term performance.

3. Our mechanism provides for transparently switching open �les from one �le system to its
replacement.

3 Design

The key issues we see in this work are:

1. Is a switching mechanism really needed? Why not use the same �le systems no matter where
you are?

2. When and how to switch from one replica to another.

3. How to ensure that the new �le system is an acceptable replacement for the old one.

4. How to ensure consistency if updates are applied across di�erent replicas.

5. Fault tolerance: how to protect a client from server unavailability.

6. Security: NFS is designed for a local \workgroup" environment in which the space of user IDs
is centrally controlled.

These issues are addressed below.

3.1 Demonstrating the Need

We contend that adaptive client-server matchups are desirable because running �le system
operations over many network hops is bad for performance in three ways: increased latency, increased
failures, and decreased scalability. It is hard to ascertain exact failure rates and load on shared
resources without undertaking a full-scale network study; however, we were able to gather some key
data to support our claim. We performed a simple study to measure how latency increases with
distance.

First, we used the traceroute program3 to gather <hop-count, latency> data points measured
between a host at Columbia and several other hosts around the campus, city, region, and continent.
Latencies were measured by a Columbia host, which is a Sun-4/75 equipped with a microsecond
resolution clock. The cost of entering the kernel and reading the clock is negligible, and so the
measurements are accurate to a small fraction of a millisecond.

Next, we mounted NFS �le systems that are exported Internet-wide by certain hosts. We
measured the time needed to copy 1MB from these hosts using a 1KB block size. A typical result
is plotted in Figure 1. Latency jumps by almost two orders of magnitude at the tenth hop, which
represents the �rst host outside Columbia.

• • •

•

•

••

•

•

NFS transfer times (1MB) from Columbia U. to hosts on the internet

Number of hops (from traceroute)

T
ra

ns
fe

r
T

im
e

(s
ec

)

5 10 15

0
10

0
20

0
30

0
40

0

Figure 1: NFS Read Latency vs. Network Hop Count

3Written by Van Jacobson and widely available by anonymous ftp.

3.2 When to Switch

We have modi�ed the kernel so that rfscall() measures the latency of every NFS lookup

and maintains a per-�lesystem data structure storing a number of recently measured latencies.

We chose to time the lookup operation rather than any other operation or mixture of operations
for two reasons. The �rst is that lookup is the most frequently invoked NFS operation. We felt other
calls would not generate enough data points to accurately characterize latency. The second reason
is that lookup exhibits the least performance variability of the common NFS operations. Limiting
variability of measured server latencies is important in our work, since we want to distinguish
transient changes in server performance from long-term changes.

(At the outset of our work, we measured variances in the latency of the most common NFS
operations and discovered huge swings, shown in Figure 2, even in an extended LAN environment
that has been engineered to be uniform and not to have obvious bottlenecks. The measured standard
deviations were 1027 msec for all NFS operations, 2547 msec for read, and 596 msec for lookup.)

Round-trip times for all NFS operations (less than 100ms)

Start time of operation (seconds)

T
im

e
(m

S
ec

)

0 1000 2000 3000 4000

0
40

10
0

Round-trip times for NFS READ operations (less than 100ms)

Start time of operation (seconds)

T
im

e
(m

S
ec

)

0 1000 2000 3000 4000

0
40

10
0

Round-trip times for NFS LOOKUP operations (less than 100ms)

Start time of operation (seconds)

T
im

e
(m

S
ec

)

0 1000 2000 3000 4000

0
40

10
0

Figure 2: Variability and Latency of NFS operations

After addition of each newly measured lookup operation, the median latency is computed
over the last 30 and 300 calls. We compute medians because medians are relatively insensitive to
outliers. We take a data point no more than once per second, so during busy times these sampling
intervals correspond to 30 seconds and 5 minutes, respectively. This policy provides insurance against
anomalies like ping-pong switching between a pair of �le systems: a �le system can be replaced no
more frequently than every 5 minutes.

The signal to switch is when, at any moment, the short-term median latency exceeds the long-
term median latency by a factor of 2. Looking for a factor of two di�erence between short-term
and long-term medians is our attempt to detect a change in performance which is substantial and
\sudden," yet not transient. The length of the short-term and long-term medians as well as the ratio

used to signal a switch are heuristics chosen after experimentation in our environment. All these
parameters can be changed from user level through a debugging system call that we have added.

3.3 Locating a Replacement

When a switch is triggered, rfscall() starts a non-blocking RPC out to our user-level process
that performs replacement, nfsmgrd.4 The call names the guilty �le server, the root of the �le system
being sought, the kernel architecture, and any mount options a�ecting the �le system. Nfsmgrd uses
these pieces of information to compose and broadcast an RLP request. The �le system name keys
the search, while the server name is a �lter: the search must not return the same �le server that is
already in use.

The RLP message is received by the nfsmgrd at other sites on the same broadcast subnet. To
formulate a proper response, an nfsmgrd must have a view of mountable �le systems stored at its
site and also mounted �le systems that it is using | either type could be what is being searched
for. Both pieces of information are trivially accessible through /etc/fstab, /etc/exports, and
/etc/mtab.

The nfsmgrd at the site that originated the search uses the �rst response it gets; we suppose
that the speed with which a server responds to the RLP request gives a hint about its future
performance. (The Sun Automounter [2] makes the same assumption about replicated �le servers.)
If a read-only replacement �le system is available, nfsmgrd instructs Amd to mount it and terminates
the out-of-kernel RPC, telling the kernel the names of the replacement server and �le system. The
ow of control is depicted in Figure 3.

AMD

NFSMGRD

Switching Host

Server 1

Server n

RLPD

1: RPC
 out

5,6: Mount
 Syscall

4: Mount
 Replacement 7: Response

8: RPC
 Return

2: RLP
 Request

2: RLP
 Request

3: RLP Response

KERNEL

RLPD

Figure 3: Flow of Control During a Switch

4Non-blocking operation is provided by a special kernel implementation of Sun RPC.

3.4 Using the Replacement

Once a replacement �le system has been located and mounted, all future attempts to open �les
on the replaced �le system will be routed to the replacement whenever they can be. Also, in all cases
for which it is possible, open �les on the replaced �le system will be switched to their equivalents
on the replacement. We describe these two cases in Sections 3.4.2 and 3.4.3, respectively.

3.4.1 Relevant Changes to Kernel Data Structures

In order to accommodate �le system replacement, we have added some �elds to three important
kernel data structures: struct vfs, which describes mounted �le systems; struct vnode, which
describes open �les; and struct file, which describes �le descriptors.

The �elds added to struct vfs, excluding debugging �elds, are:

� The �eld vfs replaces is valid in the vfs structure of the replacement �le system; it points
to the vfs structure of the �le system being replaced.

� The �eld vfs replaced by is valid in the replaced �le system's vfs struct; it points to the vfs
structure of the replacement �le system.
When a replacement �le system is mounted, our altered version of nfs mount() sets the re-
placed and replacement �le systems pointing to each other.

� The �eld vfs nfsmgr flags is valid for any NFS �le system. One ag indicates whether the
�le system is managed by nfsmgrd; another indicates whether a �le system switch is in progress.

� The �eld vfs median info contains almost all of the pertinent information about the perfor-
mance of the �le system, including the 300 most recent nfs lookup() response times.

� The �eld vfs dft is the Duplicate File Table (DFT). This per-�lesystem table lists which �les
in the replacement �le system have been compared to the corresponding �le on the original
�le system mounted by Amd. Only equivalent �les can be accessed on the replacement �le
system. The mechanism for making comparisons is described in Section 3.4.2.
The size of the DFT is �xed (but changeable) so that new entries inserted will automatically
purge old ones. This is a simple method to maintain \freshness" of entries.
The DFT is a hash table whose entries contain a �le pathname relative to the mount point, a
pointer to the vfs structure of the replacement �le system, and an extra pointer for threading
the entries in insertion order. This data structure permits fast lookups keyed by pathname
and quick purging of older entries.

The only �eld added to struct vnode is v last used, which contains the last time that
rfscall()made a remote call on behalf of this vnode. This information is used in \hot replacement,"
as described in Section 3.4.3.

The only �eld added to struct file is f path, which contains the relative pathname from
the mount point to the �le for which the descriptor was opened. Di�erent entries may have di�erent
pathnames for the same �le if several hard links point to the �le.

3.4.2 After Replacement: Handling New Opens

When Amd mounts a �le system it makes a symlink from the desired location of the �le system
to the mount point. For example, /u/foo would be a symlink pointing to the real mount point of
/n/bar/u/foo; by our local convention, this would indicate that server bar exports /u/foo. Users
and application programs know only the name /u/foo.

The information that bar exports a proper version of /u/foo is placed in Amd's mount-maps
by system administrators who presumably ensure that the �le system bar:/u/foo is a good version
of whatever /u/foo should be. Therefore, we regard the information in the client's Amd mount-
maps as authoritative, and consider any �le system that the client might mount and place at /u/foo

as a correct and complete copy of the �le system. We call this �le system the master copy, and use
it for comparison against the replacement �le systems that our mechanism locates and mounts.

The new open algorithm is shown in Figure 4. After a replacement has been mounted, whenever
name resolution must be performed for any �le on the replaced �le system, the �le system's DFT is
�rst searched for the relative pathname. If the DFT indicates that the replacement �le system has
an equivalent copy of the �le, then that �le is used.

open() {

examine vfs_replaced_by field to see if there is a replacement file system;

if (no replacement file system) {

continue name resolution;

return;

}

if (DFT entry doesn't exist) {

create and begin DFT entry;

call out to perform file comparison;

finish DFT entry;

}

if (files equivalent) {

get vfs of replacement from vfs_replaces field;

continue name resolution on replacement file system;

} else

continue name resolution on master copy;

}

Figure 4: New Open Algorithm

If the DFT contains an entry for the pathname, then the �le on the replacement �le system
has already been compared to its counterpart on the master copy. A �eld in the DFT tells if the
comparison was successful or not. If not, then the rest of the pathname has to be resolved on the
master copy. If the comparison was successful, then the �le on the replacement �le system is used;
in that case, name resolution continues at the root of the replacement �le system.

If the DFT contains no entry for the pathname, then it is unknown whether the �le on the
replacement �le system is equivalent to the corresponding �le on the master copy.

To test equivalence, au lookuppn() calls out of the kernel to nfsmgrd, passing it the two host
names, the name of the �le system, and the relative pathname to be compared. A partial DFT entry
is constructed, and a ag in it is turned on to indicate that there is a comparison in progress and
that no other process should initiate the same comparison.5

Nfsmgrd then applies, at user level, whatever tests might be appropriate to determine whether
the two �les are equivalent. This ow of control is depicted in Figure 5. Presently, we are performing
�le checksum comparison: nfsmgrd calls a checksumd daemon on each of the �le servers, requesting
the checksum of the �le being compared. Checksumd, which we have written for this work, computes
MD4 [18] �le checksums on demand and then stores them for later use; checksums can also be pre-
computed and stored.

Nfsmgrd collects the two checksums, compares them, and responds to the kernel, telling
au lookuppn() which pathname to use, always indicating the �le on the replacement �le system if
possible. Au lookuppn() completes the construction of the DFT entry, unlocks it, and marks which

5This avoids the need to lock the call out to nfsmgrd.

NFSMGRD

Server 1
1: RPC
 out

KERNEL

CHECKSUMD

Server 2

CHECKSUMD

Switched Host

2: Checksum
 Request

2: Checksum
 Request

3: Checksum
 Reply

3: Checksum
 Reply

4: RPC
 Return

Figure 5: Flow of Control During File Comparison

vfs is the proper one to use whenever the same pathname is resolved again.

In this fashion, all new pathname resolutions are re-directed to the replacement �le system
whenever possible.

Note that the master copy could be unmounted (e.g., Amd by default unmounts a �le system
after a few minutes of inactivity), and this would not a�ect our mechanism. The next use of a �le
in that �le system would cause some master copy to be automounted, before any of our code is
encountered.

3.4.3 After Replacement: Handling Files Already Open

When a �le system is replaced, it is possible that some �les will be open on the replaced �le
system at the moment when the replacement is mounted. Were the processes with these open �les to
continue to use the replaced �le system, several negative consequences might ensue. First, since the
replacement is presumed to provide faster response, the processes using �les open on the replaced �le
systems experience worse service. Second, since the total number of mounted �le systems grows as
replacements happen, the probability rises that some �le system eventually becomes unavailable and
causes processes to block. Further, the incremental e�ect of each successive �le system replacement
operation is reduced somewhat, since �les that are open long-term do not bene�t from replacement.
Finally, kernel data structures grow larger as the number of mounted �le systems climbs. Motivated
by these reasons, we decided to switch open �les from the replaced �le system to the replacement
�le system whenever the �le on the replacement �le system is equivalent to that on the master copy.

Although this idea might at �rst seem preposterous, it is not, since we restrict ourselves to read-
only �le systems. We assume that �les on read-only �le systems6 change very infrequently and/or
are updated with care to guard against inconsistent reads.7 Whether operating conditions uphold
this assumption or not, the problem of a �le being updated8 while being read exists independently
of our work, and our work does not increase the danger.

6That is, they are exported as read-only to some hosts, although they might be exported as read-write to others.
7An example of \careful update" is provided by the SUP utility [22].
8That is, updated by a host to which the �le system is exported read-write.

We allow for a replacement �le system to be itself replaced. This raises the possibility of
creating a \chain" of replacement �le systems. Switching vnodes from the old �le system to its
replacement limits this chain to length two (the master copy and the current replacement) in steady
state.

The \hot replacement" code scans through the global open �le table, keying on entries by vfs.
Once an entry is found that uses the �le system being replaced, a secondary scan locates all other
entries using the same vnode. In a single entry into the kernel (i.e., \atomically"), all �le descriptors
pointing to that vnode are switched, thereby avoiding complex questions of locking and reference
counting.

Hot replacement requires knowing pathnames. Thanks to our changes, the vfs structure records
the pathname it is mounted on and identi�es the replacement �le system; also, the relative pathname
of the �le is stored in the �le table entry. This information is extracted, combined with the host
names, and passed out to nfsmgrd to perform comparison, as described above. If the comparison
is successful, the pathname on the replacement �le system is looked up, yielding a vnode on the
replacement �le system. This vnode simply replaces the previous vnode in all entries in the open
�le table. This results in a switch the next time a process uses an open �le descriptor.

Hot replacement is enabled by the statelessness of NFS and by the vfs/vnode interfaces within
the kernel. Since the replaced server keeps no state about the client, and since the open �le table
knows only a pointer to a vnode, switching this pointer in every �le table entry su�ces to do hot
replacement.

An interesting issue is at which time to perform the hot replacement of vnodes. Since each �le
requires a comparison to determine equivalence, switching vnodes of all the open �les of a given �le
system could be a lengthy process. The four options we considered are:

1. Switch as soon as a replacement �le system is mounted (the early approach).

2. Switch only if/when an RPC for that vnode hangs (the late approach).

3. Switch if/when the vnode is next used (the \on-demand" approach).

4. Switch whenever a daemon instructs it to (the \exible" approach).

The decision to switch earlier or later is a�ected by the tradeo� that early switching more quickly
switches �les to the faster �le system and improves fault tolerance by reducing the number of �le
systems in use, but possibly wastes e�ort. Vnode switching is a waste in all cases when a vnode
exists that will not be used again. Early switching also has the disadvantage of placing the entire
delay of switching onto the single �le reference that is unlucky enough to be the next one.

We chose the \exible" approach of having a daemon make a system call into the kernel which
then sweeps through the open �le table and replaces some of the vnodes which can be replaced.
We made this choice for three reasons. First, we lacked data indicating how long a vnode lingers
after its �nal use. Second, we suspected that such data, if obtained, would not conclusively decide
the question in favor of an early or late approach. Third, the daemon solution a�ords much more
exibility, including the possibility of more \intelligent" decisions such as making the switch during
an idle period.

We emphasize that the system call into the kernel switches \some" of the vnodes, since it may
be preferable to bound the delay imposed on the system by one of these calls. Two such bounding
policies that we have investigated are, �rst, switching only N vnodes per call, and, second, switching
only vnodes that have been accessed in the past M time units. Assuming that �le access is bursty
(a contention supported by statistics [14]), the latter policy reduces the amount of time wasted
switching vnodes that will never be used again. We are currently using this policy of switching only
recently used vnodes; this policy makes use of the v last used �eld that we added to the vnode
structure.

3.5 Security

The NFS security model is the simple uid/gid borrowed from UNIX, and is appropriate only in
a \workgroup" situation where there is a central administrative authority. Transporting a portable
computer from one NFS user ID domain to another presents a security threat, since processes
assigned user ID X in one domain can access exported �les owned by user ID X in the second
domain.

Accordingly, we have altered rfscall() so that every call to a replacement �le system has its
user ID and group ID both mapped to \nobody" (i.e., value -2). Therefore, only world-readable �les
on replacement �le systems can be accessed.

3.6 Code Size

Counting blank lines, comments, and debugging support, we have written close to 11,000 lines
of C. More than half is for user-level utilities: 1200 lines for the RLP library and daemon, 3200 for
nfsmgrd, 700 lines for checksumd, and 1200 lines for a control utility (called nfsmgr ctl). New kernel
code totals 4000 lines, of which 800 are changes to SunOS, mostly in the NFS module. The remaining
3200 lines comprise the four modules we have added: 880 lines to deal with storing and computing
medians; 780 lines are the \core NFS management" code, which performs �le system switching,
pathname storage and replacement, and out-of-kernel RPC; 540 lines to manage the DFT; and 1000
lines to support the nfsmgr ctl system call.

The nfsmgr ctl system call allows query and control over almost all data structures and
parameters of the added facility. We chose a system call over a kmem program for security. This
facility was used heavily during debugging; however, it is meant also for system administrators and
other interested users who would like to change these \magic" variables to values more suitable for
their circumstances.

4 Evaluation

This system is implemented and is receiving use on a limited number of machines.

The goal of this work is to improve overall �le system performance | under certain circum-
stances, at least | and to improve it enough to justify the extra complexity. For this method to
really work, it must have:

1. Low overhead latency measurement between switches.

2. A quick switch.

3. Low overhead access to the replacement after a switch.

4. No anomalies or instabilities, like ping-pong switching.

5. No process hangs due to server failures.

6. No security or administrative complications.

We have carried out several measurements aimed at evaluating how well our mechanism meets these
goals.

The overhead between switches is that of performance monitoring. The added cost of timing
every rfscall() we found too small to measure. The cost of computing medians could be signif-
icant, since we retain 300 values. But we implemented a fast incremental median algorithm that
requires just a negligible fraction of the time in nfs lookup(). The kernel data structures are not
so negligible: retaining 300 latency measurements costs about 2KB per �le system. The reason
for the expansion is the extra pointers that must be maintained to make the incremental median
algorithm work. The extra �elds in the struct vfs, struct vnode, struct file are small, with
the exception of the DFT, which is large. The current size of each (per-�lesystem) DFT is 60 slots
which occupy a total of 1KB-2KB on average.

Our measured overall switch time is approximately 3 sec. This is the time between the request
for a new �le system and when the new �le system is mounted (messages 1-8 in Figure 3). Three
seconds is comparable to the time needed in our facility to mount a �le system whose location is
already encoded in Amd's maps, suggesting that most of the time goes to the mount operation.

The overhead after a switch consists mostly of doing equivalence checks outside the kernel; the
time to access the vfs of the replacement �le system and DFT during au lookuppn() is immeasurably
small. Only a few milliseconds are devoted to calling checksumd: 5-7 msec if the checksum is already
computed. This call to checksumd is done once and need not be done again so long as a record of
equivalence remains in the DFT.

A major issue is how long to cache DFT entries that indicate equivalence. Being stateless,
NFS does not provide any sort of server-to-client cache invalidation information. Not caching at all
ensures that �les on the replacement �le system are always equal to those on the master copy; but of
course this defeats the purpose of using the replacement. We suppose that most publicly-exported
read-only �le systems have their contents changed rarely, and thus one should cache to the maximum
extent. Accordingly, we manage the DFT cache by LRU.

As mentioned above, switching instabilities are all but eliminated by preventing switches more
frequently than every 5 minutes.

4.1 Experience

4.1.1 What is Read-Only

Most of the �les in our facility reside on read-only �le systems. However, sometimes one can
be surprised. For example, GNU Emacs is written to require a world-writable lock directory. In
this directory Emacs writes �les indicating which users have which �les in use. The intent is to
detect and prevent simultaneous modi�cation of a �le by di�erent processes. A side e�ect is that the
\system" directory in which Emacs is housed (at our installation, /usr/local) must be exported
read-write.

Deployment of our �le service spurred us to change Emacs. We wanted /usr/local to be read-
only so that we could mount replacements dynamically. Also, at our facility there are several copies
of /usr/local per subnet, which defeats Emacs' intention of using /usr/local as a universally
shared location. We re-wrote Emacs to write its lock �les in the user's home directory since (1) for
security, our system administrators wish to have as few read-write system areas as possible and, (2)
in our environment by far the likeliest scenario of simultaneous modi�cation is between two sessions
of the same user, rather than between users.

4.1.2 Suitability of Software Base

Kernel. The vfs and vnode interfaces in the kernel greatly simpli�ed our work. The hot
replacement, in particular, proved far easier than we had feared, thanks to the vnode interface.
The special out-of-kernel RPC library also was a major help. Nevertheless, work such as ours makes
painfully obvious the bene�ts of implementing �le service out of the kernel. The length and di�culty
of the edit-compile-debug cycle, and the primitive debugging tools available for the kernel were truly
debilitating.

RLP. RLP was designed in 1983, when the evils of over-broadcasting were not as deeply
appreciated as they are today and when there were few multicast implementations. Accordingly,
RLP is speci�ed as a broadcast protocol. A more up-to-date protocol would use multicast. The
bene�ts would include causing much less waste (i.e., bothering hosts that lack an RLP daemon) and
contacting many more RLP daemons. Not surprisingly, we encountered considerable resistance from
our bridges and routers when trying to propagate an RLP request. A multicast RLP request would
travel considerably farther.

NFS. NFS is ill-suited for \cold replacement" (i.e., new opens on a replacement �le system)

caused by mobility, but is well suited for \hot replacement" because of its statelessness.

NFS' lack of cache consistency callbacks has long been bemoaned, and it a�ects this work
since there is no way to invalidate DFT entries. Since we restrict ourselves to read-only �les, the
danger is assumed to be limited, but is still present. Most newer �le service designs include cache
consistency protocols. However, such protocols are not necessarily a panacea. Too much interaction
between client and server can harm performance, especially if these interactions take place over a
long distance and/or a low bandwidth connection. See [27] for a design that can ensure consistency
with relatively little client-server interaction.

The primary drawback of using NFS for mobile computing is its limited security model. Not
only can a client from one domain access �les in another domain that are made accessible to the
same user ID number, but even a well-meaning client cannot prevent itself from doing so, since there
is no good and easy way to tell when a computer has moved into another uid/gid domain.

5 Related Work

It is a thesis of our work that in order for mobile computing to become the new standard
model of computing, adaptive resource location and management will have to become an automatic
function of distributed services software. The notion of constantly-networked, portable computers
running modern operating systems is relatively new. Accordingly, we know of no work other than
our own (already cited) on the topic of adaptive, dynamic mounting.

The Coda �le system [21] supposes that mobile computing will take place in the form of
\disconnected operation," and describes in [11] a method in which the user speci�es how to \stash"
(read/write) �les before disconnection and then, upon reconnection, have the �le service run an
algorithm to detect version skew. Coda can be taken as a point of contrast to our system, since the
idea of disconnection is antithetical to our philosophy. We believe trends in wireless communication
point to the ability to be connected any time, anywhere. Users may decide not to connect (e.g., for
cost reasons) but will not be forced not to connect (e.g., because the network is unreliable or not
omnipresent). We call this mode of operation elective connectivity.

An obvious alternative to our NFS-based e�ort is to employ a �le system designed for wide-
area and/or multi-domain operation. Such �le systems have the advantages of a cache consistency
protocol and a security model that recognizes the existence of many administrative domains. Large
scale �le systems include AFS [6] and its spino�s, Decorum [10] and IFS (Institutional File System)
[5]. Experiments involving AFS as a \nation-wide" �le service have been going on for years [23].
This e�ort has focused on stitching together distinct administrative domains so as to provide a
single uni�ed naming and protection space. However, some changes are needed to the present
authentication model in order to support the possibility of a mobile client relocating in a new
domain. In particular, if the relocated client will make use of local services, then there should be
some means whereby one authentication agent (i.e., that in the new domain) would accept the word
of another authentication agent (i.e., that in the client's home domain) regarding the identity of the
client.

The IFS project has also begun to investigate alterations to AFS in support of mobile computers
[4]. Speci�cally, they are investigating cache pre-loading techniques for disconnected operation and
transport protocols that are savvy about the delays caused by \cell hando�" | the time during
which a mobile computer moves from one network to another.

Plan 9's bind command has been designed to make it easy to mount new �le systems. In
particular, �le systems can be mounted \before" or \after" �le systems already mounted at the
same point. The before/after concept replaces the notion of a search path. Plan 9 also supports the
notion of a \union mount" [17]. The Plan 9 bind mechanism is a more elegant alternative to our
double mounting plus comparison. However, a binding mechanism | even an unusually exible one
such as that of Plan 9 | addresses only part of the problem of switching between �le systems. The
harder part of the problem is determining when to switch and what to switch to.

6 Conclusion

We have described the operation, performance, and convenience of a transparent, adaptive
mechanism for �le system discovery and replacement. The adaptiveness of the method lies in the
fact that a �le service client no longer depends solely on a static description of where to �nd various
�le systems, but instead can invoke a resource location protocol to inspect the local area for �le
systems to replace the ones it already has mounted.

Such a mechanism is generally useful, but o�ers particularly important support for mobile
computers which may experience drastic di�erences in response time as a result of their movement.
Reasons for experiencing variable response include: (1) moving beyond the home administrative
domain and so increasing the \network distance" between client and server and (2) moving between
high-bandwidth private networks and low-bandwidth public networks (such movement might occur
even within a small geographic area). While our work does not address how to access replicated
read/write �le systems or how to access one's home directory while on the move, our technique does
bear on the problems of the mobile user. Speci�cally, by using our technique, a mobile user can be
relieved of the choice of either su�ering with poor performance or devoting substantial local storage
to \system" �les.9 Instead, the user could rely on our mechanism to continuously locate copies of
system �les that provide superior latency, while allocating all or most of his/her limited local storage
to caching or stashing read/write �les such as those from the home directory.

Our work is partitioned into three modular pieces: heuristic methods for detecting performance
degradation and triggering a search; a search technique coupled with a method for testing equivalence
versus a master copy; and a method for force-switching open �les from the use of vnodes on one �le
system to vnodes on another (i.e., \hot replacement"). There is little interrelationship among these
techniques, and so our contributions can be viewed as consisting not just of the whole, but also of
the pieces. Accordingly, we see the contributions of our work as:

1. The observation that �le system switching might be needed and useful.

2. The idea of an automatically self-recon�guring �le service, and of basing the recon�guration
on measured performance.

3. Quanti�cation of the heuristics for triggering a search for a replacement �le system.

4. The realization that a \hot replacement" mechanism should not be di�cult to implement in
an NFS/vnodes setting, and the implementation of such a mechanism.

6.1 Future Work

There are several directions for future work in this area.

The major direction is to adapt these ideas to a �le service that supports a more appropriate
security model. One part of an \appropriate" security model is support for cross-domain authenti-
cation such that a party from one domain can relocate to another domain and become authenticated
in that domain. Another part of an appropriate security model should include accounting protocols
allowing third parties to advertise and monitor (i.e., \sell") the use of their exported �le systems.
Within the limited context of NFS, a small step in the right direction would be a mechanism that
allows clients (servers) to recognize servers (clients) from a di�erent domain. The most recent ver-
sion of Kerberos contains improved support for cross-domain authentication, so another step in the
right direction would be to integrate the latest Kerberos with NFS, perhaps as originally sketched
in [24].

Another desirable idea is to convert from using a single method of exact �le comparison (i.e.,
checksumd) to per-user, possibly inexact comparison. For example, object �les produced by gcc

9One might suppose that a \most common subset" of system �les could be designated and loaded, and this is
true. However, specifying such a subset is ever harder as programs depend on more and more �les for con�guration
and auxiliary information. This approach also increases the user's responsibility for system administration, which we
regard as a poor way to design systems.

contain a timestamp in the �rst 16 bytes; two object �les may be equal except for the embedded
timestamps, which can be regarded as an insigni�cant di�erence. Another example is that data
�les may be equal except for gratuitous di�erences in oating-point format (e.g., 1.7 vs. 1.7000
vs. 1.70e01). Source �les may be compared ignoring comments and/or white space. Intelligent
comparison programs like di� or spi� [13] know how to discount certain simple di�erences.

Minor extensions to our work include: converting RLP from a broadcast protocol to a multicast
protocol; and reimplementing in an environment (e.g., multi-server Mach 3.0) that supports out-of-
kernel �le service implementations.

7 Acknowledgements

We thank an anonymous member of the program committee for the suggestion to use �le
checksums. We thank the program committee, especially David Rosenthal and Matt Blaze, for
valuable advice about presentation and emphasis.

This work was supported in part by the New York State Science and Technology Foundation's
Center for Advanced Technology in Computers and Information Systems; by a National Science
Foundation CISE Institutional Infrastructure grant, number CDA-90-24735; and by the Center for
Telecommunications Research, an NSF Engineering Research Center supported by grant number
ECD-88-11111.

8 References

[1] M. Accetta. Resource Location Protocol. RFC 887, IETF Network Working Group, December
1983.

[2] B. Callaghan and T. Lyon. The Automounter. In Proc. 1989 Winter USENIX Conf., pages
43{51, January 1989.

[3] D. C. Cox. A Radio System Proposal for Widespread Low-power Tetherless Communication.
IEEE Trans. Communications, 39(2):324{335, February 1991.

[4] P. Honeyman. Taking a LITTLE WORK Along. CITI Report 91-5, Univ. of Michigan, August
1991.

[5] J. Howe. Intermediate File Servers in a Distributed File System Environment. CITI Report
92-4, Univ. of Michigan, June 1992.

[6] J. H. Howard et al. Scale and Performance in a Distributed File System. ACM Trans. Computer
Systems, 6(1):51{81, February 1988.

[7] J. Ioannidis et al. Protocols for Supporting Mobile IP Hosts Draft RFC, IETF Mobile Hosts
Working Group, June 1992.

[8] J. Ioannidis, D. Duchamp and G. Q. Maguire Jr. IP-based Protocols for Mobile Internetworking.
In Proc. SIGCOMM '91, pages 235{245. ACM, September 1991.

[9] C. Juszczak. Improving the Performance and Correctness of an NFS Server. In Proc. 1989
Winter USENIX Conf., pages 53{63, January 1989.

[10] M. L. Kazar et al. Decorum File System Architectural Overview. In Proc. 1990 Summer
USENIX Conf., pages 151{163, June 1990.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM
Trans. Computer Systems, 10(1):3{25, February 1992.

[12] S. R. Kleiman. Vnodes: An Architecture for Multiple File System Types in Sun Unix. In Proc.
1986 Summer USENIX Conf., pages 238{247, June 1986.

[13] D. Nachbar. Spi� { A Program for Making Controlled Approximate Comparisons of Files. In
Proc. 1986 Summer USENIX Conf., pages 238{247, June 1986.

[14] J. Ousterhout et al. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In Proc. Tenth
ACM Symp. on Operating System Principles, pages 15{24, December 1985.

[15] J. Pendry and N. Williams. Amd - The 4.4 BSD Automounter. Imperial College of Science,
Technology, and Medicine, London, 5.3 alpha edition, March 1991.

[16] J. Postel. User Datagram Protocol. RFC 768, IETF Network Working Group, August 1980.

[17] D. Presotto et al. Plan 9, A Distributed System. In Proc. Spring 1991 EurOpen Conf., pages
43{50, May 1991.

[18] R. Rivest. The MD4 Message-Digest Algorithm. RFC 1186, IETF Network Working Group,
April 1992.

[19] D. S. H. Rosenthal. Evolving the Vnode Interface. In Proc. 1990 Summer USENIX Conf.,
pages 107{117, June 1990.

[20] R. Sandberg et al. Design and Implementation of the Sun Network Filesystem. In Proc. 1985
Summer USENIX Conf., pages 119{130, June 1985.

[21] M. Satyanarayanan et al. Coda: A Highly Available File System for a Distributed Workstation
Environment. IEEE Trans. Computers, 39(4):447{459, April 1990.

[22] S. Shafer and M. R. Thompson. The SUP Software Upgrade Protocol. Unpublished notes
available by ftp from mach.cs.cmu.edu:/mach3/doc/unpublished/sup/sup.doc

[23] A. Z. Spector and M. L. Kazar. Uniting File Systems. UNIX Review, 7(3):61{71, March 1989.

[24] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An Authentication Service for Open
Network Systems. In Proc. 1988 Winter USENIX Conf., pages 191{202, February, 1988.

[25] C. Tait and D. Duchamp. Detection and Exploitation of File Working Sets. In Proc. Eleventh
Intl. Conf. on Distributed Computing Systems, pages 2{9. IEEE, May 1991.

[26] C. Tait and D. Duchamp. Service Interface and Replica Consistency Algorithm for Mobile File
System Clients. In Proc. First Intl. Conf. on Parallel and Distributed Information Systems,
pages 190{197. IEEE, December 1991.

[27] C. Tait and D. Duchamp. An E�cient Variable Consistency Replicated File Service. In File
Systems Workshop, pages 111{126. USENIX, May 1992.

[28] F. Teraoka, Y. Yokote, and M. Tokoro. A network Architecture Providing Host Migration
Transparency. In Proc. SIGCOMM '91, pages 209{220. ACM, September 1991.

[29] H. Wada et al. Mobile Computing Environment Based on Internet Packet Forwarding. In Proc.
1993 Winter USENIX Conf., pages 503{517, January 1993.

9 Author Information

Erez Zadok is an MS candidate and full-time Sta� Associate in the Computer Science De-
partment at Columbia University. This paper is a condensation of his Master's thesis. His primary
interests include operating systems, �le systems, and ways to ease system administration tasks. In
May 1991, he received his B.S. in Computer Science from Columbia's School of Engineering and
Applied Science. Erez came to the United States six years ago and has lived in New York \sin"
City ever since. In his rare free time Erez is an amateur photographer, science �ction devotee, and
rock-n-roll fan.

Mailing address: 500 West 120th street, Columbia University, New York, NY 10027. Email
address: ezk@cs.columbia.edu.

Dan Duchamp is an Assistant Professor of Computer Science at Columbia University. His
current research interest is the various issues in mobile computing. For his initial e�orts in this area,
he was recently named an O�ce of Naval Research Young Investigator.

Mailing address: 500 West 120th street, Columbia University, New York, NY 10027. Email
address: djd@cs.columbia.edu.

