
HLFSD: Delivering Email to Your $HOME

Erez Zadok, Computer Science Department, Columbia University

Alexander Dupuy, System Management ARTS

ABSTRACT

We consider the problem of enabling users to access their mailbox �les from any host
on our local network, and not only on one designated \home machine". We require a
solution which will not introduce any new single points of failure, force us to modify mail
transfer agents and user agents, or require changes to the operating system kernels. In
other words, minimize the amount of work needed by system-administrators and users.
Our solution is to deliver mail into the users' home directories, which are exported via
NFS[20, 25] to all of the machines on our network. We wrote a small user-level NFS
server implementing a single symbolic link that references the home directory of a user,
either the one who accessed it, or by name, with a fallback reference in case of failures.
This enables electronic mail to be delivered directly into the user's home directory, which
is already accessible from any machine on the network. Although we have used our server
primarily for mail delivery redirection, it can be used to redirect spooled faxes, access to
/tmp, etc.

1 Introduction

Electronic mail has become one of the major applications for many computer networks, and
use of this service is expected to increase over time, as networks proliferate and become faster.
Providing a convenient environment for users to read, compose, and send electronic mail has become
a requirement for systems administrators (SAs).

Widely used methods for handling mail usually require users to be logged into a designated
\home" machine, where their mailbox �les reside. Only on that one machine can they read newly
arrived mail. Since users have to be logged into that system to read their mail, they often �nd
it convenient to run all of their other processes on that system as well, including memory and
CPU-intensive jobs. For example, in our department, we have allocated and con�gured several
multi-processor servers to handle such demanding CPU/memory applications, but these were under-
utilized, in large part due to the inconvenience of not being able to read mail on those machines.
(No home directories were located on these designated CPU-servers, since we did not want NFS
service for users' home directories to have to compete with intensive jobs. At the same time, we
discouraged users from running demanding applications on their home machines.)

Many di�erent solutions have been proposed to allow users to read their mail on any host.
However, all of these solutions fail in one or more of several ways:

� they introduce new single points of failure

� they require using di�erent mail transfer agents (MTAs)[15] or user agents (UAs)

� they do not solve the problem for all cases, i.e. the solution is only partially successful for a
particular environment.

We have designed a simple �lesystem, called the Home-Link File System, to provide the ability
to deliver mail to users' home directories, without modi�cation to mail-related applications. We have



endeavored to make it as stable as possible. Of great importance to us was to make sure the HLFS
daemon, hlfsd, would not hang under any circumstances, and would take the next-best action when
faced with problems. Compared to alternative methods, hlfsd is a stable, more general solution,
and easier to install/use. In fact, in some ways, we have even managed to improve the reliability
and security of mail service.

Our server implements a small �lesystem containing a symbolic link to a subdirectory of the
invoking user's home directory, and named symbolic links to users' mailbox �les. An example, using
pathnames from our environment, is depicted in Figure 1.1

START

"."
Return

NoYes

YesNo

Yes

No

YesNo

Writable?

Return Return

uid == 0?

==

Return
~USER .mailspool//

.mailspool//~USER

home ?NAME

Return

gid == HLFS_GID?

Is

/var/alt_mail/NAME~NAME/.mailspool/

/.mailspool/

Figure 1: Hlfsd resolving the NAME component of /mail/NAME

The hlfsd server �nds out the uid2 of the process that is accessing its mount point, and resolves
the pathname component home as a symbolic link to a subdirectory within the home directory given
by the uid's entry in the password �le. See Table 1. If the gid of the process that attempts to
access a mailbox �le is a special one (called HLFS GID), then the server maps the name of the next
pathname component directly to the user's mailbox (Table 2). This is necessary so that access to
a mailbox �le by users other than the owner can succeed. The server has safety features in case of
failures such as hung �lesystems or home directory �lesystems that are inaccessible or full.

On most of our machines, mail gets delivered to the directory /var/spool/mail.3 Many
programs, including UAs, depend on that path. Hlfsd creates a directory /mail, and mounts itself
on top of that directory. Hlfsd implements the path name component called home, pointing to
a subdirectory of the user's home directory. We have made /var/spool/mail a symbolic link to
/mail/home, so that accessing /var/spool/mail actually causes access to a subdirectory within a
user's home directory.

The rest of this paper is organized as follows. Section 2 discusses in detail the problems
and limitations of other home-mail-delivery methods. Section 3 detail the design of the Home-

1In Figure 1, ~NAME is the home directory of the user whose user-name is NAME; ~USER is the home directory
of the user with user-id uid.

2NFS uses e�ective uids.
3Other directories used for this purpose are /var/mail on SVR4, /usr/mail on other System V-based operating-

systems, and /usr/spool/mail on BSD-based systems.

2



Conditions: uid=ezk, gid6=HLFS GID, and /users/ezk/.mailspool/ is writable.

Resolving
component Pathname left Value if symbolic link

/ var/mail/NAME

var/ mail/NAME

mail@ /mail/home/NAME mail@ ) /mail/home

/ mail/home/NAME

mail/ home/NAME

home@ NAME home@ ) /users/ezk/.mailspool

/ users/ezk/.mailspool/NAME

users/ ezk/.mailspool/NAME

ezk/ .mailspool/NAME

.mailspool/ NAME

NAME

Table 1: Resolving /var/mail/NAME to /users/ezk/.mailspool/NAME

Link File System and Section 4 describes the implementation of hlfsd. Section 5 evaluates our
implementation. Related systems, conclusions, future directions, and alternative uses are described
in Sections 6 and 7.

2 Background

This section provides an in-depth discussion of why available methods for delivering mail to
home directories are not as good as the one used by hlfsd.

2.1 Single-Host Mail Spool Directory

The most common method for mail delivery is for mail to be appended to a mailbox �le in a
standard spool directory on the designated \mail home" machine of the user. The greatest advantage
of this method is that it is the default method most vendors provide with their systems, thus very
little (if any) con�guration is required on the SA's part. All they need to set up are mail aliases
directing mail to the host on which the user's mailbox �le is assigned. (Otherwise, mail is delivered
locally, and users �nd mailboxes on many machines.)

As users become more sophisticated, and aided by windowing systems, they �nd themselves
logging in on multiple hosts at once, performing several tasks concurrently. They ask to be able to
read their mail on any host on the network, not just the one designated as their \mail home."

2.2 Centralized Mail Spool Directory

A popular method for providing mail readability from any host is to have all mail delivered
to a mail spool directory on a designated \mail-server" which is exported via NFS to all of the
hosts on the network. Con�guring such a system is relatively easy. On most systems, the bulk of
the work is a one-time addition to one or two con�guration �les in /etc. The �le-server's spool
directory is then hard-mounted across every machine on the local network. In small environments
with only a handful of hosts this can be an acceptable solution. In our department, with a couple of
hundred active hosts and thousands of mail messages processed daily, this was deemed completely
unacceptable, as it introduced several types of problems:

� Scalability and Performance: as more and more machines get added to the network, more
mail tra�c has to go over NFS to and from the mail-server. Users like to run mail-watchers[2, 7]
and read their mail often. The stress on the shared infrastructure increases with every user and

3



host added; loads on the mail server would most certainly be high since all mail delivery goes
through that one machine.4 This leads to lower reliability and performance. To reduce the
number of concurrent connections between clients and the server host, some SAs have resorted
to automounting the mail-spool directory. But this solution only makes things worse: since
users often run mail watchers, and many popular applications such as trn, emacs, csh or ksh
check periodically for new mail, the automounted directory would be e�ectively permanently
mounted. If it gets unmounted automatically by the automounter program[3], it is most likely
to get mounted shortly afterwards, consuming more I/O resources by the constant cycle of
mount and umount calls.

� Reliability: the mail-server host and its network connectivity must be very reliable. Worse,
since the spool directory has to be hard-mounted,5 many processes which access the spool
directory (various shells, login, emacs, etc.) would be hung as long as connectivity to the
mail-server is severed. To improve reliability, SAs may choose to backup the mail-server's spool
partition several times a day. This may make things worse since reading or delivering mail
while backups are in progress may cause backups to be inconsistent; more backups consume
more backup-media resources, and increase the load on the mail-server host.

2.3 Distributed Mail Spool Service

Despite the existence of a few systems that support delivery to users' home directories,6 mail
delivery to home directories hasn't caught on. We believe the main reason is that there are too
many programs that \know" where mailbox �les reside. Besides the obvious (the delivery program
/bin/mail and mail readers like /usr/ucb/Mail, mush, mm, etc.), other programs that know mailbox
location are login, from, almost every shell, xbiff, xmailbox, and even some programs not directly
related to mail, such as emacs and trn. Although some of these programs can be con�gured to look
in di�erent directories with the use of environment variables and other resources, many of them
cannot. The overall porting work is signi�cant.

Other methods that have yet to catch on require the use of a special mail-reading server, such
as IMAP[16] or POP[17]. The main disadvantage of these systems is that UAs need to be modi�ed
to use these services | a long and involved task. That is why they are not popular at this time.
See Section 6.1 for more details.

Several other ideas have been proposed and even used in various environments. None of them
is robust. They are mostly very specialized, in
exible, and do not extend to the general case. Some
of the ideas are plain bad, potentially leading to lost or corrupt mail:

� automounters: using an automounter such as amd[13] to provide a set of symbolic links from
the normal spool directory to user home directories is not su�cient. UAs rename, unlink, and
recreate the mailbox as a regular �le, therefore it must be a real �le, not a symbolic link.
Furthermore, it must reside in a real directory which is writable by the UAs and MTAs. This
method may also require populating /var/spool/mail with symbolic links and making sure
they are updated. Making amd manage that directory directly fails, since many various lock
�les need to be managed as well (see Section 4.6). Also, amd does not provide all of the NFS
operations which are required to write mail such as write, create, remove, and unlink.

� $MAIL: setting this variable to an automounted directory pointing to the user's mail spool
host only solves the problem for those programs which know and use $MAIL. Many programs
don't, therefore this solution is partial and of limited 
exibility. Also, it requires the SAs or
the users to set it themselves | an added level of inconvenience and possible failures.

4Delivery via NFS-mounted �lesystems may require usage of rpc.lockd and rpc.statd to provide distributed �le-
locking, both of which are widely regarded as unstable and unreliable. Furthermore, this will degrade performance,
as local processes as well as remote nfsd processes are kept busy.

5No SA in their right minds would soft-mount read/write partitions | the chances for data loss are too great.
6AIX 1.2's bellmail for the IBM PS/2s[9], /bin/mail on SunOS for the Sun 386i machines, and zmailer[27].

4



� /bin/mail: using a di�erent mail delivery agent could be the solution. One such example
is hdmail[6]. However, hdmail still requires modifying all UAs, the MTA's con�guration,
installing new daemons, and changing login scripts. This makes the system less upgradable
or compatible with others, and adds one more complicated system for SAs to deal with. It
is not a complete solution because it still requires each user have their $MAIL variable setup
correctly, and that every program use this variable.

2.3.1 Why Deliver Into the Home Directory?

There are several major reasons why SAs might want to deliver mail directly into the users'
home directories:

� Location: many mail readers need to move mail from the spool directory to the user's home
directory. It speeds up this operation if the two are on the same �lesystem. If for some reason
the user's home directory is inaccessible, it isn't that useful to be able to read mail, since
there is no place to move it to.7 In some cases, trying to move mail to a non-existent or hung
�lesystem may result in mail loss.

� Distribution: having all mail spool directories spread among the many more �lesystems
minimizes the chances that complete environments will grind to a halt when a single server
is down. It does increase the chance that there will be someone who is not able to read their
mail when a machine is down, but that is usually preferred to having no one be able to read
their mail because a centralized mail server is down. The problem of losing some mail due
to the (presumably) higher chances that a user's machine is down is minimized in HLFS as
described in Sections 4.3 and 4.4.

� Security: delivering mail to users' home directories has another advantage | enhanced se-
curity and privacy. Since a shared system mail spool directory has to be world-readable and
searchable,8 any user can see whether other users have mail, when they last received new mail,
or when they last read their mail. Programs such as finger display this information, which
some consider an infringement of privacy. While it is possible to disable this feature of finger
so that remote users cannot see a mailbox �le's status, this doesn't prevent local users from
getting the information. Furthermore, there are more programs which make use of this infor-
mation. In shared environments, disabling such programs has to be done on a system-wide
basis, but with mail delivered to users' home directories, users less concerned with privacy
who do want to let others know when they last received or read mail can easily do so using
�le protection bits. Lastly, on systems that do not export their NFS �lesystem with anon=0,
superusers are less likely to snoop around others' mail, as they become \nobodies" across NFS.

In summary, delivering mail to home directories provides users the functionality sought, and
also avoids most of the problems discussed in Section 2.2.

3 Design

We named our �le system the Home-Link File System, because that's all it does | provide
symbolic links to �les and directories in a user's home directory. The soft link has a �xed name, but
unlike regular soft links, what it points to is \dynamic" depending on who accesses the symbolic
link. The ideas that this �lesystem represents are not limited just to handling electronic mail |
that is only one application of this �lesystem. See Sections 7.1 and 7.2 for other ideas.

Our key goals in designing HLFS were:

7This assumes that they can login to a di�erent host. Some systems, such as HP-UX, do not allow login if they
cannot chdir to the user's home directory.

8System V has the mail spool directory only group writable but that makes it more di�cult to install other UAs
or MTAs.

5



1. To provide every user with the ability to read mail from any host.

2. To ensure that all MTAs and UAs in use, as well as any other utilities which depend on the
standard mail spool directory, face no problems from the change in the underlying �lesystem.

3. To minimize the possibility of mail being lost or bouncing back to the sender.

4. To provide more privacy for users' mail �les.

Since most sites provide access to users' home directories from any host, it made sense to store
incoming mail there as well. That way, as long as users could log into a host and access their home
directories via NFS, their mail would be accessible as well. This solved the �rst problem. Also, since
users must login in order to read their mail, causing their home directories to be automounted, no
extra mounts are required in order to begin reading mail.

The second problem was solved by making sure that the �nal access of the mail spool directory
remains a \real" directory (not a read-only pseudo-�lesystem provided by an automounter). All
UAs access the spool directory for reading and writing the user's mail �le and create lock �les
there.9 That means that /var/spool/mail needs to be readable, writable, and searchable for UAs
and MTAs so that lock �les can be written and removed. See also Section 4.6. For the purpose of
writing the mail and lock �les, a subdirectory inside the user's home directory is su�cient, since
it is already owned by that user. Ensuring that users cannot access other users' �les can easily be
achieved by protecting this subdirectory.

In order not to change the behavior of programs like comsat[21, 23], from or finger, which
are designed to read any user's mail, we implemented a special check for a designated group. If
the e�ective gid of the process is the designated group, we assume that such a special program is
executing, and hlfsd arranges to do the lookup not only of the real spool directory, but of the
mailbox itself. See Table 2. Note that this method only supports read access without locking;

Conditions: gid=HLFS GID for any uid.

Resolving
component Pathname left Value if symbolic link

/ var/mail/NAME

var/ mail/NAME

mail@ /mail/home/NAME mail@ ) /mail/home

/ mail/home/NAME

mail/ home/NAME

home@ NAME home@ ) .

./ NAME

NAME@ NAME@ ) ~NAME/.mailspool/NAME

~NAME/ .mailspool/NAME

.mailspool/ NAME

NAME

Table 2: Specially resolving /var/mail/NAME to ~NAME/.mailspool/NAME

however, this is su�cient for all programs that need to access other users' mailboxes. All that is
required is to set these programs to be setgid to the designated group.

9Note that, in order to allow mail delivery to NFS-mounted mail spool directories, most vendors have modi�ed
the /bin/mail program to set its uid to that of the recipient when delivering mail. If a local delivery agent (LDA) on
a system does not provide this behavior, the MTA must arrange to invoke it with the uid of the recipient | this can
be done by a wrapper C program.

6



The third problem is solved by ensuring that all operations which might hang hlfsd are per-
formed in the background, while still providing service in the parent or child process. Furthermore,
if hlfsd is not running anymore, or if the user's home �lesystem is full, mail gets delivered to an al-
ternate directory (See also Section 4.3). A cron job (running several times a day in our department),
looks at the alternate directory, and attempts to resend messages in it to their rightful owners. All
that is incurred is a delay in mail delivery, which, in most cases, is no longer than the length of time
between consecutive invocations of the lost-mail remailing script.

Having a special mail-spool subdirectory owned and controlled by the user also addresses the
last problem, that of privacy. Users can change the protection bits on their mailbox directory inside
their home directory so that it is readable and searchable only by the owner. Any other program or
user, unless running as the superuser on the same host,10 would not be able to �nd out whether a
user has new mail, how much of it there is, or when it was last read.

4 Implementation of hlfsd

We used a prototype NFS server, and implemented only the operations that were needed.
We generated NFS stubs using rpcgen. The server was developed �rst under SunOS version 4.1.2.
This server was incorporated into the amd source tree, and we used some of amd's sources as utility
functions, since they are well-written to handle a variety of architectures and operating systems.
(See Section 4.7 for source code availability.)

4.1 The \Home-Link" File Service

This subsection includes technical details of the NFS operations and may be skipped. However,
it provides an example of the design and implementation of a small special-purpose NFS server and
may be of use to others.

HLFS is a read-only �lesystem, and as such, all operations that require write access return
the error code NFSERR ROFS (\Read-Only Filesystem"): setattr, write, create, remove, rename,
link, unlink, symlink, mkdir, and rmdir. Trivially implemented were the null, root, and writecache

operations. We decided to have statfs return some value (all zeros in most cases). The read operation
simply returns NFSERR ACCES (\Permission Denied").

The remaining operations are the heart of this �lesystem: readdir, getattr, lookup, and readlink.

Our server must distinguish between the directory and the link, so we assigned them di�erent
integers to serve as �lehandles. Note that these need not be as complicated as the �lehandles usually
generated by NFS. They need only to be unique, and their value is meaningful only to the server.

4.1.1 The readdir Operation

Opening this directory returns the \." and \.." directories, and one symbolic link, home.
Attempting to readdir on the symbolic link results in an NFSERR NOTDIR. Anything else is a
stale �lehandle.

4.1.2 The getattr Operation

Getattr returns r-xr-xr-x for the \." and \.." directories. The link itself, named home by
default, is protected as rwxrwxrwx. It does not matter for the link that it is world-writable. The
modi�cation and creation times for the link and directories are the startup time of the server. If the
e�ective gid of the process is HLFS GID, then some �xed valid attributes are returned. Any other
�lehandle given to hlfsd is considered stale and the NFSERR STALE (\Stale Filehandle") result
code is returned.

10Or as the superuser elsewhere, if the �lesystem is NFS-exported with anon=0.

7



4.1.3 The lookup Operation

Obviously, we only allow looking up in the \." and \.." directories, both of which return the
same values. Trying to lookup \in" the link results in an NFSERR NOTDIR (\Not a Directory")
error code. Any link not known to the server returns an NFSERR NOENT (\No Such Entry")
error, unless the gid of the requesting process is HLFS GID and the name corresponds to a valid
user. In this case the username for that user is used in the returned �lehandle, allowing the readlink
operation to return the correct link. Anything else is a stale �lehandle.

4.1.4 The readlink Operation

This is the most important operation, the central point of this work. We get the uid number
from the credentials sent with the RPC operation. We make sure that Unix Authentication or DES
is used or else we return the NFSERR PERM (\Not Owner") code.

If the gid of the accessing process is not HLFS GID, the value we return for the symbolic
link named home11 is a string representing the home directory of the user whose uid we just found,
concatenated with a �xed component name representing a subdirectory within it. We used a binary
search on the lookup table to quickly get the right pathname. Di�erent home directories for multiple
password database entries with the same uid numbers may return any of the home directories. Only
uid 0 is guaranteed to return \/". See also Section 5.3.

If the symbolic link is named home and the gid is HLFS GID, we return a link to \.", which
causes hlfsd to be used to resolve the next pathname component. This is designed to maintain
functionality of programs such as from. If the symbolic link is not named home and the gid of the
accessing process is HLFS GID, we return a value pointing to the user's mailbox �le in their mail
spool directory. To do this, we extract the username from the �lehandle, which was returned by the
lookup operation. See Table 2.

Trying to readlink on one of the two directories results in an NFSERR ISDIR (\Is a directory")
error. Anything else is a stale �lehandle.

4.2 Execution Flow

At initialization time, hlfsd creates a UDP service, and forks a child. The child builds the uid
lookup table, sets up signal handlers, and interval timers. The signal handlers are meant to reload
the lookup table at expiration time of the interval timer, or when a SIGHUP is sent to the server
(presumably by a superuser). A special cleanup handler is setup for SIGTERM, to ensure the server
terminates cleanly. Then the svc run() routine is invoked.

Meanwhile the parent waits for the child to initialize. When it does, the parent mounts the
server on the mount point. Of utmost importance is to make sure the attribute cache is turned o�.
If the attribute cache is not turned o�, successive accesses to /mail/home would return previously
computed pathnames pointing to another user's mail, resulting in mail loss or misdelivery. If it is
not possible to turn o� the attribute cache, hlfsd will exit. However, the SA has the option to force
hlfsd to continue running and set the attribute cache to as short an interval as possible (See also
Section 5.3). At this point the parent terminates, leaving the child to run.

When an interval timer goes o� (SIGALRM) or a SIGHUP is sent to the server, the server
forks a child that continues serving, while the parent reloads the lookup table. When the parent is
�nished loading, it sends a SIGKILL to the child process, and resumes serving. When a SIGTERM
is received, the server forks a child that continues serving, while it tries to unmount the �lesystem.
If and when that succeeds, both parent and child exit.

As mail service is very important, we wanted to make hlfsd as robust as possible. We could
have designed it as another amd \�lesystem type", but decided that a separate daemon provides
better reliability and faster service. In general, we try to do as much as possible: we make sure

11The name of the symbolic link is con�gurable.

8



�lesystems are accessible and contain some disk space to have mail delivered there. Where directories
are expected we make sure there are no �les by these names; where symbolic links are expected, we
make sure there are no real �les or directories with the same name. Whenever possible, we create
directories, with proper ownership and permissions. We even check that the mount point for hlfsd
is world readable and executable, since if it isn't, getwd("..") might fail.

4.3 Alternate Mail Spool Directories

Hlfsd tries to ensure that the user's home directory is accessible. Periodically it also tests
that it can be written into (Section 4.5). If for any reason a failure occurs, hlfsd repoints the
symbolic link for that user to an alternate local directory, which is presumably highly available. We
use /var/spool/alt mail in our environment. See Table 3.12

Conditions: Any uid, gid 6=HLFS GID, and ~USER/.mailspool/ is not writable.

Resolving
component Pathname left Value if symbolic link

/ var/mail/NAME

var/ mail/NAME

mail@ /mail/home/NAME mail@ ) /mail/home

/ mail/home/NAME

mail/ home/NAME

home@ NAME home@ ) /var/alt mail

/ var/alt mail/NAME

var/ alt mail/NAME

alt mail/ NAME

NAME

Table 3: Resolving /var/mail/NAME to /var/alt mail/NAME

When hlfsd starts up, and before it mounts itself on top of the mount point, hiding anything
that is underneath, hlfsd creates a �xed symbolic link to the alternate spool directory (if it does
not exist already). This is done so that /var/spool/mail would not be a \dangling" symbolic link,
and points to a real directory at all times, even after hlfsd terminates. When hlfsd runs, it hides
this symbolic link, and provides our \dynamic" symbolic link. This trick at least provides us with
an alternate place to deliver mail when things go wrong, rather than bounce or drop the mail.

A cron job on our systems checks the alternate mail spool directory several times a day. Any
messages found there are resent to their rightful owners. The remailing script can be run as often as
needed. Each invocation of the script deals only with newly lost mail since the previous invocation;
the script locks and renames the lost mailbox �le to a unique name, before parsing and remailing it.

Similar to amd, hlfsd can log debugging and various status information to a designated log
�le or using the syslog[22] facility. The SA may choose to watch these log �les and facilities and
be noti�ed when serious problems occur such as a full �lesystem.

4.4 Avoiding Hangs

As described in Section 4.2, hlfsd forks a child at any point where we suspect that an operation
might hang. If, for example, the home machine of the user is down, and the �lesystem on a client is
hard-mounted, hlfsd will hang until the remote server is back up. Performing these operations in
the background provides added reliability, an idea taken from amd.

12In the conditions for Table 3, ~USER is the home directory of the user with user-id uid.

9



4.5 Disk Space Problems

Hlfsd checks if the user's home directory is full or they exceeded their quota. It attempts to
create and then remove a simple nonzero-length �le in the user's spool directory, with the e�ective
uid set to that of the user. If that fails, it instead returns back the name of the alternate spool
directory as the value of the home symbolic link. Otherwise mail might be dropped or bounce.

Any success or failure state is recorded in hlfsd. It is left there for a speci�ed number of
seconds, after which the entry \times out" and a new actual backgrounded lookup is required.
Otherwise, the cached result is used and no expensive fork is required. This simple caching feature
of hlfsd has greatly improved its performance and reliability. See also Section 5.3.

4.6 Lock Files

An alternative design for hlfsd is to have it mount on top of the mail spool directory directly,
instead of having the mail spool directory be a symbolic link to another link (home) within the HLFS,
which points to a real subdirectory of the user's home. With some modi�cations to the server, we
could have made all of the user's mailbox �les point to the right place, but it su�ered from serious
drawbacks:

� The spool directory would no longer be a regular directory. It would have to be managed by
hlfsd. This would require the implementation of more NFS operations.

� The user's spool �le would not be a regular �le, but a symbolic link to such. Some mail
programs remove that �le, not checking if it's a symbolic link. Therefore the symbolic link
would be removed. We would have had to change the server so that removing the symbolic link
would �rst follow it and remove the �le it was pointing to. The same goes for all operations
which require access to the user's mail spool �le.

� The worst problem was that di�erent UAs and MTAs use di�erent methods for locking the mail
�le. Some of them create temporary �les named $fUSERg.lock, others use the mktemp library
call to generate unique names. Our method avoids the need to �gure out all the di�erent
methods used in locking mail �les, and usage of temporary �les.

An alternate way to avoid the need for lock �les is to deliver mail one message per �le using a
di�erent system such as with INN[19] and NNTP[10]; however, this would require modi�cations to
all UAs and MTAs.

4.7 Source Code Size, Availability, and Portability

Hlfsd is less than 2500 lines of C code, including comments and white-spaces. However, it
makes use of almost 4000 lines of code from the amd distribution itself.

Hlfsd is available in source form as part of a special distribution of amd. It can be retrieved
via anonymous ftp from ftp.cs.columbia.edu in the directory /pub/amd.

Hlfsd is built as part of the special distribution of amd available from our ftp server. It is
almost as portable as amd is. It is only the lack of access to certain machines that stopped us from
porting hlfsd to the numerous platforms amd runs on. At the writing of this paper, hlfsd has been
successfully ported and running on SunOS 4.1.3, HP-UX 9.0.1, and Solaris 2.2. Those represent the
3 main system types amd runs on and span most Unix 
avors: a BSD-style system, an SVR-BSD
hybrid, and a system very close to SVR4, respectively.

5 Evaluation

This system is implemented and has been in use on a number of machines for more than a year
now. For the �rst nine months hlfsd was in experimental use. We have since deployed it on most
production machines in our department, spanning over a 100 hosts and 3 di�erent architectures.

10



The goal of this work is to expand the accessibility of electronic mail, improve overall reliability
and stability of this vital service, while at the same time maintain the sanity of our SAs (yours truly
included). For this to really work, it must have:

1. Very high availability.

2. Little overhead.

3. Little hassle for users and administrators as the system is being used or installed for the �rst
time.

5.1 Performance

We have carried out some measurements to quantify the above requirements and more. The
tests were performed on a Sun SPARCstation-2 running SunOS 4.1.3.

Accessing a local spool �le via stat normally takes 180 msec without hlfsd. If hlfsd is
running and has the user's entry already cached, it takes 60 msec more to access the �le. This
overhead is attributed to the fact that the kernel has to access a user-level NFS server, making
several context switches.

If the entry is not cached, hlfsd forks a child to perform operations which may cause it to
hang. The overhead of that fork and other checks is an additional 70 msec (or 130 msec over the
regular lookup not using hlfsd). However, this overhead is incurred only once in 5 minutes, because
the result of each check is cached for that long by default.

The above times are somewhat signi�cant, but not by much, considering the use of a user-level
�le-server. (By comparison, in our environment it takes about 0.5 seconds to access a new �lesystem
using amd.) Given the bene�ts of hlfsd, we feel that a minimal access slowdown is a small price to
pay. In practice, over 12 months of usage we have noticed no visible degradation of service.13

The internal data structures (tables and caches) require 50 bytes per user on the system. In
our environment, with 750 users, that translates to about 37KB | rather insigni�cant given that
workstations these days come installed with at least 16-32MB of RAM.

5.1.1 Remailing Lost Mail

The hlfsd distribution contains a perl[26] script called lostaltmail. Remailing a single
message with a body size of 1KB, takes an average of 1.2 seconds (total time). In our department,
resending an average mailbox �le takes about 20 seconds.

Initially we ran the script once a day, but found having to wait up to 24 hours for lost mail
redelivery too long. We then experimented with running lostaltmail once an hour. However, we
found that frequency too fast. The most likely situation in which hlfsd will repoint its symbolic link
to the alternate spool directory is when the user's �lesystem is full. A full �lesystem is a persistent
situation that in most cases takes some time to get �xed, as it requires human intervention. If
the situation that causes hlfsd to use the alternate spool directory is likely to persist, running
the lostaltmail script will consume unnecessary resources, only to redeliver the mail back to the
alternate spool directory. We �nally settled on running lostaltmail between 6 and 12 times a day.
Depending on the amount of lost mail expected, the script could be run more or less often.

5.1.2 Reliability

We have simulated worst-case scenarios by �lling up a user �lesystem and letting hlfsd decide
to redirect mail to the alternate spool directory. At this point we �lled up that �lesystem as well.

13The SAs group felt so convinced that hlfsd was working well, that we were the �rst to use it on our home
machines.

11



Hlfsd kept on pointing to the alternate spool directory during the cached entry interval, but we
observed no mail lost. Instead, the sending side detected that the �lesystem was full, and kept the
message in the remote (private) spool directory. This is the default behavior sendmail[1] provides.

Hlfsd does not introduce any new problems; that is, if a �lesystem is completely full, whatever
behavior your current LDA provides is maintained. Since hlfsd uses both the user's �lesystem and
an alternate spool directory, it actually increases the availability of mail services, by \virtually"
increasing the disk space available for mail spooling.

Once space has been freed in the user's �lesystem, and the cached entry expired, hlfsd pointed
its symbolic link back to the user's home directory. The next time the remailing script ran, all \lost"
mail got resent to its owners.

Since the installation of hlfsd in our production environment, we have seen a few cases of lost
mail being resent, mostly due to full �lesystems. We know of no case where mail was completely
lost.

5.2 Installation

Since hlfsd was written by SAs for other SAs, we have provided it with several command-line
options to use at startup time, enabling hlfsd to be tailored for a particular environment. Needless
to say, a man page is provided, as well as complete source code. Furthermore, we included a few
scripts written in sh and perl which we use in our environment to re/start hlfsd, test for possible
con�guration anomalies, and resend \lost" mail.

The most signi�cant work that SAs need to do is identify programs that need to access mailbox
�les of other users, and \setgid" them to HLFS GID. In our environment we had to do that for
comsat, from, finger and a few others. Our environment uses the rdist[5] automatic software
distribution program, and thus these changes were required only in one place | the top of our
rdist tree.

5.3 Problems

There are a few problems, some of which cannot be easily resolved:

� Some programs need to be setgid to the special HLFS GID group. There is no easy way to
locate them other than knowing ahead of time what they do. Note that if the programs are
not setgid, the only consequence is that these programs are unable to �nd mailboxes. However,
with other methods, if $MAIL is not used, mail is not delivered.

� It is possible that the status of a home directory access will change during the time that hlfsd
caches this information. Picking a smaller cache expiration time can alleviate this problem,
but it increases the resources taken by hlfsd and slows down access to mail. It is left for the
individual SAs to change this default value.

� Any logins with the same uid and a di�erent home directory may have mail delivered or read
from any of their home directory pathnames. Hlfsd stores pathnames in an internal hash table
keyed by the uid; therefore, it is unde�ned which pathname is returned in the case of multiple
users with the same uid and di�erent home directories. We provide a script which checks for
this situation and warns the SAs.

� On systems that cannot turn o� the NFS attribute cache, the kernel might return the same
symbolic link name for two di�erent users who access the spool directory consecutively, possibly
resulting in mail getting delivered to the wrong mailbox! On these systems, hlfsd will not
run unless started with a special option. In that case it will set the attribute cache value to
the shortest possible interval, but it may not be su�cient.

12



6 Related Work

The idea of dynamic or variable pathname components is not new. HP-UX does this with
context-dependent �les[8], and Mach with the \@SYS" variables[4]. Both of these implementations
support replacement of pathname components by kernel variables. Apollo's DOMAIN/OS supported
a more sophisticated system where arbitrary user environment variables could be referenced in
pathnames[11, 12]. On the issue of having a user's home �les and mailbox �le reside in one location,
Plan 9's attach operator can be used to unify several �le servers into one user name space[14].

What is new about our idea is that we do not require any change to any part of the �lesystem
implementation in the kernel. All that is required are RPC and NFS, making the system much more
widely applicable.

Though at �rst it may appear that amd can do what hlfsd does, it can't. Amd cannot return
di�erent pathnames as a value of a symbolic link depending on who accessed it. See also Section 2.3
for more details on various ways in which amd cannot help the way hlfsd can.

6.1 Mail-reading Servers

The future of mail reading and sending may be similar to that used by the NNTP protocol used
for managing NetNews[10, 19]. That is, a special-purpose server which provides network connections
for reading and writing mail remotely.

Several such programs exist, most notably IMAP[16] and POP[17]. However, use of these
servers is limited at this time because most MTAs and UAs have not been converted to use them, or
they require special environments (the Andrew Message Delivery System[18] requires AFS). Porting
those applications for most popular environments is not going to be an easy task. Nevertheless,
the bene�ts of such services over that of hlfsd would include faster and more reliable service, plus
greatly expanded functionality (possibly providing threads information for threaded mail readers).

7 Conclusion

We have described the bene�ts of delivering mail to users' home directories, the traditional
ways to do that and why we think they are inadequate, and the design, implementation, performance,
and convenience of our alternative.

The main contribution of our work is the idea mail can be reliably delivered to user's home
directories for easy access with very little overhead, user hassle, or the need for extensive intervention
on the part of SAs.

A working prototype version of hlfsd was written in one weekend. However, the ideas repre-
sented in the work span several years of experience in network programming (especially RPC), NFS,
amd, and mail systems.

7.1 Future Work

It would be possible to integrate some of hlfsd's functionality into amd, by providing special
keywords like $fhomeg, $fuserg and $fgroupg for use in amd's maps.

We plan on making sure hlfsd is as portable as amd is, and improving its performance as much
as possible. An RPC interface for querying hlfsd's status is needed as well.

7.2 Alternative Uses

Hlfsd's primary use is that of a mail-spool redirector. However, it can be used to perform
other tasks. All it takes are the right command-line options:

� Hlfsd can manage the /var/tmp directory. Thus every user who uses /var/tmpwould actually
be using a subdirectory within their own home directory, rather than taking from system-wide

13



resources.

� Other types of user-speci�c �les which get spooled to a particular host, such as Secret Mail[24]
or electronic faxes can also be redirected for spooling into home directories.

8 Acknowledgments

Special thanks go to Daniel Duchamp for his invaluable comments on the paper, to James Tanis
who wrote the remailing script and provided useful feedback, and to all members of the technical sta�
who helped in stress-testing hlfsd. We also thank many members of the amd-workers@acl.lanl.gov
mailing list for providing valuable discussion on the subject.

This work was supported in part by a National Science Foundation CISE Institutional Infras-
tructure grant, number CDA-90-24735.

As hlfsd uses parts of the amd distribution, it is distributed under the same restrictions and
licenses that amd is.

9 References

[1] E. Allman. SENDMAIL { An Internetwork Mail Router. In UNIX System Manager's Manual.

University of California, Berkeley, 1986.

[2] F. C. Baran. MW: Mail-Watch. An unpublished manual page, Academic Systems Group,
Columbia University Center for Computing Activities, 1987.

[3] B. Callaghan and T. Lyon. The Automounter. In Proc. 1989 Winter USENIX Conf., pp. 43{51,
January 1989.

[4] M. N. Condict. Con�guring and Building Mach 3.0. OSF Research Institute, Grenoble, France.
Unpublished notes available via ftp from mach.cs.cmu.edu:doc/notes/kernel build.doc.

[5] M. A. Cooper. Overhauling Rdist for the '90s. Large Installation System Administrators Work-

shop Proceedings, pp. 1-8, USENIX, Long Beach, CA, October 19-June 23, 1992.

[6] A. J. Findlay. The Home-Directory Mail System. In EUUG News, Autumn 1988.

[7] J. Fulton. MIT X Consortium. X11R5 Reference Manual Pages, Section 1: \xbi�(1)", 1988.

[8] Hewlett-Packard Company. HP-UX Release 9.0 Reference Manual, Section 4: \cdf(4)", August
1992.

[9] IBM Corp. AIX Commands Reference, Volume 1, \bellmail(1)", pp. 1-84|1-87, December 1989.

[10] B. Kantor and P. Lapsley. Network News Transfer Protocol. RFC 977, February 1986; 27 p.

[11] P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D.L. Nelson, and B. L. Stumpf. The
Architecture of an Integrated Local Network. In IEEE Journal on Selected Areas in Communi-

cations, SAC-1(5), pp. 842-856, November 1983.

[12] P. H. Levine. The Apollo DOMAIN Distributed File System. In NATO ASI Series: Theory and

Practice of Distributed Operating Systems, Y. Paker, J-P. Banatre, M. Bozyi�git, pp. 241-260,
editors, Springer-Verlag, 1987.

[13] J. S. Pendry and N. Williams. Amd - The 4.4 BSD Automounter. Imperial College of Science
Technology and Medicine, London. March 1991.

[14] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from Bell Labs. In Proceedings of

the Summer 1990 UKUUG Conf., London, July, 1990, pp. 1-9.

[15] J. B. Postel. Simple Mail Transfer Protocol. RFC 821, August 1982; 68 p.

14



[16] J. Rice. Interactive Mail Access Protocol. RFC 1203, February 1991; 49 p.

[17] M. Rose. Post O�ce Protocol. RFC 1225, May 1991; 16 p.

[18] J. Roseneberg, C. F. Everhart, and N. S. Borenstein. An Overview of the Andrew Message

System. In Proceedings of the ACM SIGCOMM '87 Workshop, Stowe, Vermont, August 11-13,
1987, pp. 99-108.

[19] R. Salz. InterNetNews: Usenet transport for Internet sites. In Proc. 1992 Summer USENIX

Conf., pages 93{98, June 1992.

[20] R. Sandberg et al. Design and Implementation of the Sun Network Filesystem. In Proc. 1985

Summer Usenix Conf., pages 119-130, June 1985.

[21] Sun Microsystems, Inc. SunOS Reference Manual, Volume I, Section 1: \bi�(1)", September 9,
1987.

[22] Sun Microsystems, Inc. SunOS Reference Manual, Volume II, Section 3: \syslog(3)", September
9, 1987.

[23] Sun Microsystems, Inc. SunOS Reference Manual, Volume I, Section 1: \comsat(8c)", and
\in.comsat(8c)", September 9, 1987.

[24] Sun Microsystems, Inc. SunOS Reference Manual, Volume I, Section 1: \xsend(1)", \xget(1)",
and \enroll(1)", September 9, 1987.

[25] Sun Microsystems, Inc. NFS: Network File System Protocol speci�cation. RFC 1094, 1989
March; 27 p.

[26] L. Wall and R. L. Schwartz. Programming Perl. O'Reilly & Associates, Inc., Sebastopol, CA
(1991).

[27] R. S. Zachariassen. ZMOG: The ZMailer Operations Guide. Available via ftp as part of the
ZMailer distribution from ftp.uu.net:/networking/mail/zmailer.

10 Author Information

Erez Zadok is an MS candidate and full-time Sta� Associate in the Computer Science De-
partment at Columbia University. His primary interests include operating systems, �le systems, and
ways to ease system administration tasks. In May 1991, he received his B.S. in Computer Science
from Columbia's School of Engineering and Applied Science. Erez came to the United States six
years ago and has lived in New York \Sin" City ever since. In his rare free time Erez is an amateur
photographer, science �ction devotee, and rock-n-roll fan.

Mailing address: 500 West 120th Street, Columbia University, New York, NY 10027. Email
address: ezk@cs.columbia.edu.

Alexander Dupuy has been a Senior Research Sta� Associate for the Distributed Computing
and Communications Lab in the Computer Science Department at Columbia University for the last
7 years. He has recently taken a position at System Management ARTS, a small startup company
developing network and systems management technology. A native born and bred New Yorker, he
insists that working in the suburbs is not the �rst step towards living there.

Mailing address: System Management ARTS, 199 Main Street, Suite 900, White Plains, NY
10601. Email address: dupuy@smarts.com.

15


