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Abstract of the Dissertation

GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance,
Energy, and Endurance

by

Zhichao Li

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

There are trade-offs among performance, energy, and deviceendurance for storage systems.
These trade-offs become more complex in storage system comprising different storage technolo-
gies. Designs optimized for one dimension or workload oftensuffer in another. Therefore, it is
important to study the trade-offs so as to be able to adapt thesystem to workloads. As differ-
ent types of drives have different traits, tiering hybrid drives are studied more closely. However,
previous tiering hybrids are often designed for high throughput, efficient energy consumption, or
improving endurance—leaving empirical study on the trade-offs being unexplored. Past endurance
studies also lack a concrete model and metric to help study the trade-offs. Lastly, previous designs
are often based on inflexible policies that cannot adapt easily to changing conditions.

We designed and developedGreenDM, a versatile tiering hybrid drive that combines Flash-
based SSDs with traditional HDDs; we present our endurance model to study the aforementioned
trade-offs. GreenDM presents a block interface and requires no modifications to existing appli-
cation software. GreenDM migrates hot data to the faster SSDand cold data to the slower HDD.
GreenDM offers tunable parameters useful in adapting the system to many workloads. We have de-
signed, developed, and carefully evaluated GreenDM with a variety of workloads using commodity
SSD and HDD drives. We demonstrated the importance of versatility to be able to adapt to various
workloads.

Our thesis is that one must study the trade-offs among performance, energy, and endurance,
especially in the ever more popular tiered storage systems,to enable adaptation to workloads.
Our system is versatile so that it can adapt to different workloads to achieve certain trade-offs by
adjusting the important system parameters. We also provideseveral interesting observations along
the cost dimension. We developed a cost model for GreenDM andevaluated it under realistic
cost metrics. Future storage system designs have to consider multiple optimizations dimensions:
performance, energy, endurance, and dollar cost.

ii



We close with several interesting long-term future research. First, it will be interesting to pro-
vide automated control knobs for users to trade-off performance, energy efficiency, and endurance.
Second, one could extend the two-tier system to three tiers and explore more tiering policies. Third,
it would be useful to add security as an additional dimensionto further explore these trade-offs.
Forth, one could experiment with different storage devicesand policies in the future, and help
build more efficient storage systems to achieve high performance at minimum cost. Fifth and last,
it would be interesting to provide control support at the CPUlevel as well to further justify the
trade-offs among performance, energy, and endurance.
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Chapter 1

Introduction

The total amount of electronic data stored world-wide is rising exponentially. By 2020, that figure is
expected to reach 35 Zetta Bytes [41]. It challenges how fastthe storage systems can be to store and
fetch the data. Studies show that power consumption in the ITinfrastructure is critical [22,71,77],
up to 40% power consumption of which comes from storage [118]. Therefore, power consumption
has become an important factor influencing storage systems design [5, 79, 91, 119, 122, 132, 139,
153]. Modern computer components such as CPU, RAM, and disk drives tend to have multiple
power states with different operational modes [29,50,79].Among them, traditional magnetic HDDs
achieve the worstpower-proportionality[10], which states that systems should consume power
proportional to the amount of work performed. Moreover, as failures in storage systems become
a serious concern [7, 21, 32, 54, 63, 90, 102, 114, 148], the endurance of storage devices matters as
well.

Different storage devices differ in speed, capacity, cost,endurance, and power consumption [104].
There are trade-offs among these dimensions in storage systems combining different types of de-
vices. Designs optimized for one dimension or workload often suffer in other dimensions and
workloads. Moreover, in prior work, we analyzed the energy and performance profiles of server
workloads, such as Web servers, email servers, database servers, and file compression [72,79,119].
We discovered large deviations for both performance and energy consumption—as much as 10
times—suggesting that there are significant opportunitiesto save energy and improve performance.
Therefore, it is important to study the trade-offs among these dimensions, and develop highly ver-
satile solution to enable adaptation to different workloads.

With the advent of Flash-based Solid State Drives (SSDs) that are more power and performance
efficient than HDDs, many considered SSDs as the front tier storage cache (e.g., EMC’s FAST [73],
VMware’s vFlash [133], IBM’s Tiering system [4], etc). While it is beneficial to explore SSDs as
cache, there is a trend in industry to come up with hybrid drive exploring SSDs as the primary
storage to achieve better trade-offs among performance, cost, and capacity. Examples are: (1)
Apple’s Fusion Drive [141]; (2) Microsoft’s Ready Drive [100]; (3) Western Digital’s Solid State
Hybrid Drive (SSHD) [138]; (4) Nimble’s CASL [94]; (5) Tintri’s VMstore [134]; and (6) Dell
even sells a Compellent Flash Array [30] that combine two types of SSDs together—Single-Level
Cell (SLC) and Multi-Level Cell (MLC)—to achieve the above trade-offs.

Many such approaches often aimed for high performance [23, 49, 68, 123, 129, 147], efficient
energy consumption [49, 147], or improved endurance [68, 147]. Therefore, study on the trade-
offs among performance, energy, and endurance is largely unexplored. Studying the trade-offs can
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help understand the relationship among performance, energy, and endurance, and can also help
build storage systems that can adapt to different workloadsand dimensions. Moreover, current
endurance studies are missing a concrete endurance model and metric to help explore the above
trade-offs. In addition, past studies often had designs with fixed or inflexible policies that made
it difficult to adapt to different workloads. Moreover, manyprevious approaches usually rely on
simulations and refer to manufacturer’s energy and performance specifications for benchmarks,
instead of using empirical, real-world experiments.

We designed and implemented a Linux Device Mapper [140] (DM)target namedGreenDM, and
came up with a concrete endurance model and metric to study the trade-offs. GreenDM receives
data requests from the tiering hybrid virtual device, and then transparently redirects the resulting
requests to the underlying block devices. The DM framework offers additional benefits: it can be
used with any target device (e.g., replication, multi-path, encryption, redundancy, and snapshots).
The DM framework is also highly scalable: one can easily configure the virtual device to use
multiple physical devices transparently.

GreenDM separates hot data from cold data based on their access patterns: hot data is stored
on the SSD and cold data is stored on the HDD. When cold data becomes hot, GreenDM migrates
it from the HDD to the SSD; conversely, when hot data becomes cold or more space is needed for
hotter data, GreenDM migrates colder data from the SSD to theHDD.

By utilizing the SSD for hot data before using the HDD, GreenDM improves performance
and reduces energy use—as SSDs are typically faster and consume less energy than HDDs. To
improve concurrency, GreenDM decouples the migrations between the SSD and the HDD. By
keeping mostly cold data on the HDD, GreenDM can spin down theHDD at times and help reduce
whole-system energy consumption. By counting the number ofphysical SSD reads and writes [84,
97] and the HDD start-stop cycles [47], GreenDM tracks vitalparameters that impact the endurance
of the underlying storage devices.

To enable adaptation to different workloads, GreenDM supports several versatile configuration
parameters to determine the migration thresholds between the SSD and the HDD. These parameters
can be tuned in accordance with the workloads.

We have evaluated GreenDM with several workloads. We experimented with several config-
urable GreenDM parameters, analyzed the results, and demonstrated their impact on the trade-offs
among performance, energy, and endurance. We also showed the importance of matching configu-
ration parameters to specific workloads to tune the above trade-offs. In the FIU online trace work-
load, for example, we showed that various GreenDM configurations achieved a higher throughput
(58–142%) than Mylinear (a simple hybrid without any additional data management), but con-
sumed more power (4–8%) and further reduced the SSD’s endurance by 11–15% . A larger extent
size (ES) lead to higher throughput and larger energy savings, but reduced the SSD’s endurance
further.

Our thesis is that one must study the trade-offs among performance, energy, and endurance,
especially in the ever more popular tiered storage systems,to enable adaptation to workloads and
dimensions since there is no one-to-all solution. Our system is versatile so that it can adapt to
different workloads to achieve certain trade-offs by adjusting the important system parameters. We
also provide several interesting observations along the cost dimension. We developed a cost model
for GreenDM and evaluated it under realistic cost metrics. Future storage system designs have to
consider multiple optimizations dimensions: performance, energy, endurance, and dollar cost.

We further bring up several interesting long-term future research directions. First, it will be
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interesting to provide automated control knobs for the userto trade-off performance, energy ef-
ficiency, and endurance. Second, one could extend the two-tier system to three tiers and explore
more tiering policies. Third, it would be useful to add security as a forth dimension to further
explore the trade-offs. Forth, GreenDM is transparent and flexible so that we can easily experi-
ment with different storage devices and policies in the future, and help build more efficient storage
systems ready for the emerging trend and trade-offs of various storage devices — Flash, Phase
Change Memories (PCMs), and Shingled Magnetic Recording (SMR) drives to achieve the high
performance efficiency with the minimum cost. Last but not least, it would be interesting to pro-
vide control support at the CPU level as well to further justify the trade-offs among performance,
energy, and endurance.

The rest of the thesis is organized as follows: Chapter 2 shares some of the background knowl-
edge that can help the reader better understand the rest of the thesis. Chapter 3 shows the lessons
we learned along the way toward this thesis. Chapter 4 presents the work on power consumption
in enterprise-scale backup storage systems. Chapter 5 presents the work on the energy consump-
tion and performance of systems software. Chapter 6 introduces the work on a versatile hybrid
drive for the trade-offs evaluation among performance, energy, and endurance. Chapter 7 presents
interesting observations regarding the associated cost dimension of GreenDM. Chapter 8 presents
follow-up work on our caching system based on the current hardware and software setup. Chapter 9
presents follow-up work on evaluating both the tiering and caching systems with a different capac-
ity ratio of SSD over total. Chapter 10 lists several future work that go beyond this dissertation.
Chapter 11 concludes this thesis.
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Chapter 2

Background

In this chapter, we share some background knowledge on: (1) the trade-offs among performance,
energy, power, and endurance in storage systems; (2) the justification of choosing tiering over
caching; and (3) the endurance study. The knowledge is helpful to better illustrate the work in the
thesis.

2.1 Trade-Offs

Trade-offs are everywhere in systems. There are trade-offsamong performance, energy, power,
endurance, cost, and capacity in storage systems. We show some examples to help illustrate the
topics.

In terms of the trade-offs between performance and capacity, let us take the personal computer
for example. Suppose the budget to buy a personal computer isfixed. If one wants to have high I/O
throughput, then the SSD is a good option. However, the storage capacity is going to be smaller
compared with buying an HDD. The reason is that SSD is more expensive per gigabyte.

In terms of the trade-offs between performance and power, one interesting example is DVFS [156].
In a CPU-bound system, if the CPU frequency is higher, the CPUperformance will be higher. A
better CPU performance can largely lead to higher storage throughput. However, since the CPU is
now running at a faster frequency, it consumes more power than when it runs at a lower frequency.

In terms of the trade-offs between the energy saving and the endurance concern [47], let us
take the HDD for example. Spinning down the HDD reduces the energy consumption, but it can
wear-out the HDD more since the HDD can only endure a limited number of start-stop cycles.

In terms of the trade-offs between endurance and performance, let us take ECC for example.
Once a bit corrupts, the lost data can be corrected by Error-correcting Code. It makes the system
more durable. However, it takes time to check the ECC and to resolve the bit error. Therefore, the
overall performance of storage systems may be decreased accordingly.

Therefore, data management techniques have to consider possible trade-offs to fully explore the
multi-dimensions of storage systems.
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Figure 2.1: Tiering v.s. Caching hybrid justification.Suppose we are to build 1TB drive. The
normalized capacity cost of devices are based on Freitas’s study [104]. Lower purchase cost over
capacity is better. The x-axis is the total capacity over SSDcapacity ratio. The “Cost/Capacity”
y-axis is for the absolute caching and tiering results. The “Diff” y-axis is for the difference results
of caching minus tiering.

2.2 Tiering v.s. Caching Hybrid Justification

Hybrid drive storage systems can be either based on caching or tiering. Their ideas are very similar:
frequently accessed data goes to faster device and less frequently accessed data goes to slower
device. A tiering-based hybrid has the benefit of building a larger device capacity as there are no
duplicate data copies across the devices. In the thesis, we choose tiering over caching because
tiering can achieve much better trade-offs among throughput, capacity, and purchase cost when the
device capacities in different tiers are similar and when the total device capacity is not too large.

To further illustrate that, we came up with a hybrid justification as shown in Figure 2.1. As we
can see from the figure, the tiering-based architecture achieves better purchase cost over capacity
metrics compared with caching based approach. The lower thetotal capacity over SSD capacity
ratio is, the larger the purchase cost over capacity difference is. More specifically, when the SSD
capacity is half the total capacity, tiering based architecture reduces the purchase cost over capacity
by as much as 51.2 dollars per TB (i.e., 5%). Since our device capacities in different tiers are not
largely different, tiering based architecture is a better option for us.

In fact, the research scope of tiering v.s. caching systems could go beyond our above discus-
sion. To provide even more interesting results, we present the design and implementation of our
caching system, together with the evaluation results in Chapter 8. For the sake of this dissertation,
we provide the hybrid justification in this section to illustrate why we choose a versatile tiering
hybrid system over a caching system under our experiment setup to study the trade-offs among
performance, energy, and endurance.
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2.3 Endurance Study

We learned about the endurance topic in storage systems through the survey of many published
papers (i.e., up to 40). We summarize them below. Note that our work is focusing on device
(hardware) endurance, instead of data reliability that depends not only on the hardware endurance,
but also depends on software techniques (e.g., data copy anderasure coding).

2.3.1 Summary

Endurance is one fundamental issue of the IT infrastructure. There are several types of system
failures: software failures, hardware failures, network failures, failures due to operator error, and
failures due to environmental problems (e.g., power outages [21]). Failure happens in almost any
subcomponent of the computing and storage systems, and usually happens more often than what
the hardware manufacturer specified. For example, there arefailures in processors [26, 113, 116],
memory and drives [7, 21, 32, 45, 54, 61, 63, 66, 82, 90, 102, 114, 115, 117, 125, 148], and even the
physical interconnects and protocol stacks [63].

The endurance issue will become even more significant when the system scales. When the
system scales, the system becomes more complex and more vulnerable to failures. Therefore, it is
interesting to gain more knowledge on the endurance issue.

2.3.2 Hardware Failure Factors

One of the main reasons for the hardware failures is the agingeffect. Once the device is getting
old, it is more likely that an failure will happen.

For CPUs, temperature is one factor that greatly influences the chip lifetime [26]. Therefore,
CPU power management techniques is explored to control the CPU operating temperature to in-
crease the chip’s lifetime. For DRAMs, the utilization, instead of the temperature, affects the
DRAM errors more [117]. Thus, ECC is used to correct the soft errors, and hardware replacement
is adopted once there are hard errors. For HDDs, several factors affect their lifetime, including sec-
tor error, reallocation count, off-line reallocation count, the count of suspected “on-probation” bad
sectors, number of power up-down cycles, vibration, etc [102]. ECC and recovery techniques are
generally utilized to cope with the errors. For Flash-basedSSDs, they suffer from the endurance
problem because Flash device requires one block erasure operation before the block can be written.
There are different levels of failure modes [66,84,97]. In failure mode I, the ECC can successfully
correct the device bit errors. It happens when the device is not erased beyond the specified maxi-
mum value. In failure mode II, the bit errors rate goes beyondthe ECC’s correction capability, but
the device is still within the retention period. This can happen when the device is erased beyond the
specified maximum value. In failure mode III, even the devicegoes beyond the retention period.
In our thesis, we examine the SSD endurance to be within failure mode I. There are three levels
of techniques explored to overcome the chip endurance issues. At the circuit board level, solutions
such as ECC have been widely implemented. At the system or whole product level, additional en-
durance features are being incorporated, including wear-leveling, DRAM cache regimes and RAID
scrubbing techniques. At the data center level, there are hardware and software utilities to allow
Flash to function reliably with remote data replicas.
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Studies [113, 115] also show that the time between failures at a individual node, as well as at
an entire system, is fit well by a gamma [142] or Weibull [143] distribution with decreasing hazard
rate, instead of previously assumed exponential distribution. Moreover, mean repair times vary
widely across systems, ranging from 1 hour to more than one day, depending on the size of the
system.

2.3.3 Models

Endurance and reliability models of different computer components are worth exploring for several
reasons. First, it can take a long time to observe device failures. Therefore, with such models,
researchers can estimate the devices’ health status. Second, the models can be further used to eval-
uate the trade-offs between performance and cost efficiency. There are many such models being
explored. For example, several models [54, 90, 125] regarding the disk endurance have been dis-
cussed over the years. They look into the disk Self-Monitoring, Analysis and Reporting Technology
(S.M.A.R.T.), and explore with either Bayesian based approach, or machine learning based algo-
rithm, or combination of Bayesian and Markov models. The issue is that the estimation accuracy
is not very high. There is also one work [45] arguing that MTTDL is not a good reliability metric
for storage system reliability, and proposing a new metric called NOrmalized Magnitude of Data
Loss (NOMDL) to better evaluate the storage system reliability. Netapp recently released an online
tool [106] to calculate the reliability of RAID6. Regardingthe SSD endurance model, study on
SSD endurance normally refers to the amount of data that can be written to an SSD during its life-
time [74]. There is one study [131] exploring hardware-specific endurance model for SSD. While
it is useful in some cases, it requires hardware parameters (e.g., voltage, density, etc.) to estimate
the endurance through simulation, and can be inconvenient for user-level endurance estimation in
reality.

Although it is true that the models can be useful, it is also true that the model validation is
a difficult process. On one hand, it takes a long time to actually verify the devices’ status. On
the other hand, there can be other factors that affect the device endurance, other than the factors
explored in the models. Therefore, research exploring suchmodels needs to be expanded and
examined carefully.
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Chapter 3

Lessons Learned

We now provide a brief overview of our past work that led us to the topics introduced in Chapter 1.
Having them all together, we touched the surface of the essence about power, performance, energy,
and endurance, and eventually came up with the work to study the trade-offs among performance,
energy, and endurance of hybrid drive storage system. Understanding these past efforts can also
help understand the evaluation analysis in Chapters 6, 7, 8,and 9.

3.1 Elements of Past Study

3.1.1 Power: Power Consumption in Enterprise-Scale BackupStorage Sys-
tems

Power consumption has become an important factor in modern storage system design. Power
efficiency is particularly beneficial in disk-based backup systems that store mostly cold data, have
significant idle periods, and must compete with the operational costs of tape-based backup. There
are no prior published studies on power consumption in thesesystems, leaving researchers and
practitioners to rely on existing assumptions. In this workwe present the first analysis of power
consumption in real-world, enterprise, disk-based backupstorage systems. We uncovered several
important observations, including some that challenge conventional wisdom. We discuss their
impact on future power-efficient designs. We present the details of this study in Chapter 4.

3.1.2 Energy and Performance: On the Energy Consumption andPerfor-
mance of Systems Software

Models of energy consumption and performance are necessaryto understand and identify system
behavior, prior to designing advanced controls that can balance out performance and energy use.
This work considers the energy consumption and performanceof servers running a relatively simple
file-compression workload. We found that standard techniques for system identification do not
produce acceptable models of energy consumption and performance, due to the intricate interplay
between the discrete nature of software and the continuous nature of energy and performance. This
motivated us to perform a detailed empirical study of the energy consumption and performance
of this system with varying compression algorithms and compression levels, file types, persistent
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storage media, CPU DVFS levels, and disk I/O schedulers. Ourresults identify and illustrate
factors that complicate the system’s energy consumption and performance, including nonlinearity,
instability, and multi-dimensionality. Our results provide a basis for future work on modeling
energy consumption and performance to support principled design of controllable energy-aware
systems. We present the details of this study in Chapter 5.

3.2 Put Together

3.2.1 GreenDM: A Versatile Tiering Hybrid Drive for the Trad e-Off Evalu-
ation of Performance, Energy, and Endurance

Putting all the lessons we learned together–not only the background knowledge but also the previ-
ous work, we now present our core thesis work.

There are trade-offs among performance, energy, and deviceendurance for storage systems.
Designs optimized for one dimension or workload often suffer in another. Therefore, it is important
to study the trade-offs and adapt the system to workloads. Asdifferent types of drives have different
traits, hybrid drives are studied more closely. However, previous hybrids are often designed for high
throughput, efficient energy consumption, or improving endurance—leaving empirical study on the
trade-offs being unexplored. Past endurance studies also lack a concrete model and metric to help
study the trade-offs. Lastly, previous designs are often based on inflexible policies that cannot adapt
easily to changing conditions.

We buildGreenDM, a versatile hybrid drive that combines Flash-based SSDs with traditional
HDDs, and present our endurance model, to study the above trade-offs. GreenDM presents a block
interface and requires no modifications to existing software. GreenDM migrates hot data to the
faster SSD and cold data to the slower HDD. GreenDM offers tunable parameters to adapt the
system to many workloads. We have designed, developed, and carefully evaluated GreenDM with
a variety of workloads using commodity SSD and HDD drives. Wedemonstrated the importance
of versatility to adapt to various workloads. We present thedetails of this study in Chapter 6.

3.2.2 Cost Evaluation

Modern storage systems are becoming more complex, especially in combining different storage
technologies with vastly different behaviors. Performance or throughput alone is not enough to
characterize storage systems: energy efficiency, durability, and more are becoming equally impor-
tant. We posit that one must evaluate storage systems from a dollar cost perspective as well as
performance. We also believe that the cost should consider the workloads in use over the expected
lifetime of the storage systems. We designed and developed aversatile hybrid storage system under
Linux that combines HDD and SSD. Our system includes many tunable parameters to be able to
trade-off performance, energy use, and durability. We built a cost model and evaluated our system
under a variety of workloads and parameters, to illustrate the importance of cost evaluations of
storage systems. We provide the details of this study in Chapter 7.

9



3.2.3 Caching Follow-Up

Our environment setup is not optimal for a caching system, but for a tiering system, since caching
is often deployed in fairly large storage systems. However,we chose to develop and evaluate such
a caching system as well–and compare it with the tiering under the same hardware and software
setup—so we can provide fair evaluations of both techniquesunder identical conditions.

Tiering and caching based hybrid approaches share several design traits with each other (e.g.,
similar data management policies). But, they are not the same approaches. There are existing
studies [24,52] exploring the pros and cons of the tiering and caching based approaches. However,
there is no current work that builds the two realistic systems with similar strategies, and empirically
evaluates the two systems from the cost perspective under the same environment, when SSDs are
deployed. We present the details of this study in Chapter 8.

3.2.4 Capacity Ratio Follow-Up

The capacity ratio of SSD over total capacity matters for ourhybrid drive in terms of throughput,
energy and power, device endurance reduction, and dollar cost. Initially, we explored using1/4
as the capacity ratio of SSD over total capacity. We then alsoexplored1/8 as the capacity ratio
of SSD over total capacity. We reran all experiments and analyzed the results. We present these
results in Chapter 9.

3.3 Conclusion

We discussed important lessons learned from past studies inSection 3 and showed how we came up
with the trade-offs study, the cost study, the caching follow-up work, and the capacity ratio impact
work. Next, we are going to explore the details of the power consumption study in enterprise-scale
backup storage systems in Chapter 4.
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Chapter 4

Power Consumption in Enterprise-Scale
Backup Storage Systems

Power has become an important design consideration for modern storage systems as data centers
now account for close to 1.5% of the world’s total energy consumption [71], with studies showing
that up to 40% of that power comes from storage [118]. Power consumption is particularly impor-
tant for disk-based backup systems because: (1) they contain large amounts of data, often storing
several copies of data in higher storage tiers; (2) most of the data is cold, as backups are generally
only accessed when there is a failure in a higher storage tier; (3) backup workloads are periodic,
often leaving long idle periods that lend themselves to low power modes [135, 152]; and (4) they
must compete with the operational costs of low power, tape-based backup systems.

Even though there has been a significant amount of work to improve power consumption in
backup or archival storage systems [24,101,122], as well asin primary storage systems [5,139,153],
there are no previously published studies of how these systems consume power in the real world.
As a result, power management in backup storage systems is often based on assumptions and
commonly held beliefs that may not hold true in practice. Forexample, prior power calcula-
tions have assumed that the only power needed for a drive is quoted in the vendor’s specification
sheet [24,122,144]. However, an infrastructure, including HBAs, enclosures, and fans, is required
to support these drives; these draw a non-trivial amount of power, which grows proportionally with
the number of drives in the system.

In this chapter, we present the first study of power consumption in real-world, large-scale, en-
terprise, disk-based backup storage systems. We measured systems representing several different
generations of production hardware using various backup workloads and power management tech-
niques. Some of our key observations include considerable power consumption variations across
seemingly similar platforms, disk enclosures that requiremore power than the drives they house,
and the need for many disks to be in a low-power mode before significant power can be saved. We
discuss the impact of our observations and hope they can aid both the storage industry and research
communities in future development of power management technologies.

The remainder of the chapter is structured as follows. Section 4.1 discusses related power
management and analysis work. Section 4.2 describes the systems measured and our experimental
setup. Section 4.3 presents the results of our analysis and adiscussion of our key observations. We
then conclude in Section 4.4.
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4.1 Related Work

Empirical power consumption studies have guided the designof many systems outside of stor-
age. Mobile phones and laptop power designs, which are both sensitive to battery lifetime, were
influenced by several studies [19, 81, 108, 110]. In data centers, studies have focused on measur-
ing CPU [89, 109], OS [12, 13, 46], and infrastructure power consumption [9] to give an overview
of where power is going and the impact various techniques have, such as dynamic voltage and
frequency scaling (DVFS). Recently, Sehgal et al. [119] measured how various file system config-
urations impact power consumption.

Existing storage system power management has largely focused on managing disk power con-
sumption. Much of this existing work assumes that as storagesystems scale their capacity—
particularly backup and archival systems—the number of disks will increase to the point where
disks are the dominant power consumers. As a result, most solutions try to keep as many drives
powered-off as possible, spun-down, or spun at a lower RPM. For example, archival systems like
MAID [24] and Pergamum [122] use data placement, scrubbing,and recovery techniques that en-
able many of the drives in the system to be in a low-power mode.Similarly, PARAID [139] allows
transitioning between several different RAID layouts to trade-off energy, performance, and relia-
bility. Hibernator [153] allows drives in a RAID array to operate at various RPMs, reducing power
consumption while limiting the impact to performance. Write Off-Loading [91] redirects writes
from low-power disks to available storage elsewhere, allowing disks to stay in a low-power mode
longer.

Our goal is to provide power consumption measurements from real-world, enterprise-scale
backup systems, to help guide designs of power-managed storage systems.

4.2 Methodology

We measured several real-world, enterprise-class backup storage systems. Each used a Network-
Attached-Storage (NAS) architecture with a storage controller connected to multiple, external disk
drive enclosures. Figure 4.1 shows the basic system architecture. Each storage controller exports to
file-based interfaces to clients, such as NFS and CIFS—and backup-based interfaces, such as VTL
and those of backup software (e.g., Symantec’s OST [96]). Each storage controller performs inline
data deduplication; typically these systems contain more CPUs and memory than other storage
systems to perform chunking and to maintain a chunk index.

Client 2

.

.

Backup Streams

Client 1

.

Client N

Backup Controller Disk Enclosure
Storage

Figure 4.1: Backup system architecture
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DD880 DD670 DD860 DD990
Ship Year 2009 2010 2011 2012
Intel CPU X7350 E5504 E5504 E7-4870
# CPUs 2 1 2 4
RAM 64GB 16GB 72GB 256GB

NVRAM 2GB 1GB 1GB 4GB
# Disks 4 7 4 4

# Pow Sup 2 2 2 4
# Fans 8 8 8 8
# NICs 1 1 1 2
# HBAs 3 1 3 4

Table 4.1: Controller hardware summary

Table 4.1 details the four different EMC controllers that wemeasured. Each controller was
shipped or will be shipped in a different year and representshardware upgrades over time. Each
controller, except for DD670, stores all backup data on disks in external enclosures, and the four
disks (three active plus a spare) in the controller store only system and configuration data. DD670
is a low-end, low-cost system that stores both user and system data in its seven disks (six active
plus one spare). Each controller ran the same software version of the DDOS operating system.

Table 4.2 shows the two different enclosures that we measured. Each enclosure can support
various capacity SATA drives. Based on vendor specifications, the drives we used have power usage
of about 6–8W idle, 8–12W active, and less than 1W when spun-down. Controllers communicate
with the enclosures via Serial Attached SCSI (SAS). Large system configurations can support more
than fifty enclosures attached to a single controller, whichcan host more than a petabyte of physical
capacity and tens of petabytes of logical, deduplicated capacity.

ES20 ES30
Ship Year 2006 2011
# Disks 16 15

# SAS Controllers 2 2
# Power Supplies 2 2

# Fans 2 4

Table 4.2: Enclosure hardware summary

Experimental setup We measured controller power consumption using a Fluke 345 Power Qual-
ity Clamp Meter [39], an in-line meter that measures the power draw of a device. The meter
provides readings with an error of±2.5%. We measured enclosure power consumption using a
WattsUP Pro ES [136], another in-line meter, with an accuracy of ±1.5% for measured value plus
a constant error of±0.3 watt-hours. All measurements were done within a data centerenvironment
with room temperature held between70 ◦F and72 ◦F.

We connected the controllers and enclosures to the meters separately, to measure their power.
Thus we present component’s measurement separately, rather than as an entire system (e.g., a
controller attached to several enclosures). The meters we used allowed us to measure only entire
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device power consumption, not individual components (e.g., each CPU or HBA) or data-center
factors (e.g., cooling or network infrastructure). We present all measurements in watts and all
results are an average of several readings with standard deviations less than 5%.

Benchmarks For each controller and enclosure, we measured the power consumption when idle
and when under several backup workloads. Each workload is a standard, reproducible workload
used internally to test system performance and functionality. The workloads consist of two clients
connecting over a 10 GigE network to a controller writing 36 backup streams. Each backup stream
is periodic in nature, where a full backup image is copied to the controller, followed by several
incremental backups, followed by another full backup, and so on. For each workload we ran42
full backup generations. The workloads are designed to mimic those seen in the field for various
backup protocols.

WL-A WL-B WL-C
Protocol NFS OST BOOST

Chunking Server Server Client

Table 4.3: Backup workloads used

We used the three backup protocols shown in Table 4.3. Clients send backup streams over NFS
in WL-A, and over Symantec’s OST in WL-B. In both cases, all deduplication is performed on
the server. WL-C uses, BOOST [28], an EMC backup client that performs stream chunking on
the client side and sends only unique chunks to the server, reducing network and server load. To
measure the power consumption of a fully utilized disk subsystem, we used an internal tool that
saturates each disk.

4.3 Discussion

We present our analysis for a variety of configurations in three parts: isolated controller measure-
ments, isolated enclosure measurements, and whole-systemanalysis using controller and enclosure
measurements.

4.3.1 Controller Measurements

We measured storage controller power consumption under three different scenarios: idle, loaded,
and power managed using processor-specific power-saving states.

Controller idle power A storage controller is considered idle when it is fully powered on, but
is not handling a backup or restore workload. In our experiments, each controller was running
a full, freshly installed, DDOS software stack, which included several small background daemon
processes. However, as no user data was placed on the systems, background jobs such as garbage
collection, were not run. Idle power consumption indicatesthe minimum amount of power a non-
power-managed controller would consume when sitting in thedata center.

It is commonly assumed that disks are the main contributor topower in a storage system. As
shown in Table 4.4, the controllers can also consume a large amount of power. In the case of
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DD880 DD670 DD860 DD990
Idle Power (W) 555 225 261 778

Table 4.4: Idle power consumptions for storage controllers

DD990, the power consumption is almost equal to that of 100 2TB drives [58]. This is signif-
icant because even a controller with no usable disk storage can consume a lot of power. Yet,
the performance of the controller is critical to maintain high deduplication ratios, and necessary
to support petabytes of storage—requiring multiple fast CPUs and lots of RAM. These high idle
power-consumption levels are well known [72]. Although computer component vendors have been
reducing power consumption in newer systems, there is a longway to go to support true power pro-
portionality in computing systems; therefore, current idle controller power levels must be factored
into future designs.

� Observation 1: The idle controller power consumption is still significant.

Table 4.4 shows a large difference in power consumption between controllers. DD990 con-
sumes almost 3.5× more power than DD670. Here, difference is largely due to thedifferent hard-
ware profiles. DD990 is a more powerful, high-end controllerwith significantly more CPU and
memory, whereas DD670 is a low-end model. However, this is not the case for the power differ-
ences between DD880 and DD860. DD880 consumes more than twice the power as DD860, yet
Table 4.1 shows that their hardware profiles are fairly similar. The amount of CPU and memory
plays a major role in power consumption; however, other factors such as the power efficiency of
individual components also contribute. Unfortunately, our measurement methodology prevented
us from identifying the internal components that contribute to this difference. However, part of
this difference can be attributed to DD860 being a newer model with hardware components that
consume less power than older models.

To better compare controller power consumption, we normalized the power consumption num-
bers in Table 4.4 to the maximum usable physical storage capacity. The maximum capacities for
the DD880, DD670, DD860, and DD990 are 192TB, 76TB, 192TB, and 1152TB, respectively.
This gives normalized power consumption values of 2.89W/TBfor DD880, 2.96W/TB for DD670,
1.35W/TB for DD860, and 0.675W/TB for DD990. Although the normalized values are roughly
the same for DD880 and DD670, the watts consumed per raw byte trends down with newer gener-
ation platforms.
� Observation 2: Whereas idle controller power consumption varies between models, normal-
ized watts per byte goes down with newer generations.

Controller under load We measured the power consumption of each controller while running the
aforementioned workloads. Each controller ran the DDFS deduplicating file system [152] and all
required software services. Services such as replication were disabled. The power consumed under
load approximates the power typically seen for controllersin-use in a data center. The workloads
used are performance-qualification tests that are designedto mimic real customer workloads, but
do not guarantee that the controllers are stressed maximally.

Figure 4.2(a) shows the power consumed by DD990 while running the WL-A workload. The
maximum power consumed during the run was 937W, which is 20% higher than the idle power
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Figure 4.2: Power consumption and I/O statistics for WL-A onDD990. There are 5 ES30 enclo-
sures attached to it.

consumption. Since the power only increased 20% when under load, it may be more beneficial to
improve idle consumption before trying to improve active (under load) consumption.

DD880 DD670 DD860 DD990
WL-A 44% 24% 58% 20%
WL-B 58% 29% 61% 36%
WL-C 56% 28% 57% 23%

Table 4.5: Power increase ratios from idle to loaded system

Table 4.5 shows the power increase percents from idle to loaded across controller and workload
combinations. Several combinations have an increase of less than 30%, while others exceed 50%.
Unfortunately, our methodology did not allow us to identifywhich internal components caused the
increase. One noticeable trend is that the increase in poweris mostly due to the controller model
rather than the workload, as DD880 and DD860 always increased more than DD670 and DD990.
� Observation 3: The increase in controller power consumption under load varies much across
models.

I/O statistics from the disk sub-system help explain the increases in controller power consump-
tion. Figure 4.2(b) shows the number of blocks per second read and written to the enclosures
attached to DD990 during WL-A. We see that a higher rate of disk I/O activity generally corre-
sponds to higher power consumption in both the controller and disk enclosures. Whereas I/Os
require the controller to wait on the disk sub-system, they also increase memory copying activity,
communication with the sub-system, and deduplication fingerprint hashing.

16



Power-managed controller Our backup systems perform in-line, chunk-based deduplication,
requiring significant CPU and RAM amounts to compute and manage hashes. As the data path
is highly CPU-intensive, applying DVFS techniques during backup—a common way to manage
CPU power consumption—can degrade performance. Although it is difficult to throttle CPU dur-
ing a backup, the backup processes are usually separated by large idle periods, which provide an
opportunity to exploit DVFS an other power-saving techniques.

Intel has introduced a small set of CPU power-saving states,which represent a range of CPU
states from fully active to mostly powered-off. For example, on the Corei7, C1 uses clock-gating
to reduce processor activity, C3 powers down L2 caches, and C6 shuts off the core’s power supply
entirely [124]. To evaluate the efficacy of the Intel C stateson an idle controller, we measured the
power savings of the deepest C state. Unfortunately, DD990 was the only model that supported the
Intel C states. We used a modified version ofCPUIDLE to place DD990 into the C6 state [75]. In
this state, DD990 saved just 60W, a mere 8% of total controller power consumption. This finding
suggests that DVFS alone is insufficient for saving power in controllers with today’s CPUs and a
great deal of RAM. Moreover, deeper C states incur higher latency penalties and slow controller
performance. We found that the latencies made the controller virtually unusable when in the deepest
C state.
� Observation 4: Placing today’s Intel CPUs into deep C state saves only a small amount of
power and significantly harms controller performance.

4.3.2 Enclosure Measurements

We now analyze the power consumption of two generations of disk enclosures. Similar to Sec-
tion 4.3.1, we analyzed the power consumption of the enclosures when idle, under load, and using
power-saving techniques.

Enclosure idle power An enclosure is idle when it is powered on and has no workload running.
The idle power consumption of an enclosure represents the lowest amount of power a single enclo-
sure and the housed disks consume without power-managementsupport. Figure 4.3 shows that an
idle ES20 consumes 278W. The number of active enclosures in ahigh-capacity system can exceed
50, so the total power consumption of the disk enclosures alone can exceed 13kW.

We found that the enclosures have very different power profiles. The idle ES20 consumes
278W, which is 55% higher than the idle ES30, at 179W. We believe that newer hardware largely
accounts for this difference. For example, it is well known that power supplies are not 100%
efficient. Modern power supplies often place guarantees on efficiency. One standard [1] provides
an 80% efficiency guarantee, which means the efficiency will never go below 80% (e.g., for every
10W drawn from the wall, at least 8W is usable by components attached to the power supply).
The ES30 has newly designed power supplies, temperature-based fan speeds, and a newer internal
controller, which contribute to this difference.
� Observation 5: The idle power consumption varies greatly across enclosures with new ones
being more power efficient.
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Figure 4.3: Disk power down vs. spin down. ES20 and ES30 are specified as in Table 4.2.

Enclosure under load We also measured the power consumption of each enclosure under the
workloads discussed in Section 4.2. We considered an enclosure under load when it was actively
handling an I/O workload.

As shown in Figure 4.2(a), the total power consumption of thefive ES30 enclosures connected
to DD990, processing WL-A, increased by 10% from 900W when idle to about 1kW. Not surpris-
ingly, Figure 4.2(b) shows that an increase in enclosure power correlates with an increase in I/O
traffic. Percentages for the other enclosure and workload combinations ranged from 6–22%.

Our deduplicating file system greatly reduces the amount of I/O traffic seen by the disk sub-
system. As described in Section 4.2, we used an internal toolto measure the power consumption of
a fully utilized disk sub-system. Table 4.6 shows that ES20 consumption grew by 22% from 278W
when idle to 340W. ES30 increased 15% from 179W idle to 205W. Interestingly, these increases
are much smaller than those observed for the controllers under load in Section 4.3.1.
� Observation 6: The consumption of the enclosures increases between 15% and22% under
heavy load.

Power managed enclosure We compared the power consumption of ES20 and ES30 using two
disk power-saving techniques: power-down and spin-down. With spin-down, the disk is powered
on, but the head is parked and the motor is stopped. With power-down, the enclosure’s disk slot is
powered off, cutting off all drive power.

As shown in Figure 4.3, the relative power savings of the ES20and ES30 are quite different. For
ES30, spin-down reduced power consumption by 55% from 179W to 80W. For ES20, the power
dropped by 37% from 278W to 176W. Although the absolute spin-down savings was roughly 100W
for both enclosures, power-down was much more effective forES30 than ES20. Power-down for
ES30 reduced power consumption by 78%, but only 44% for ES20.As mentioned in Section 4.2,
each disk consumes less than 1W when spun-down. However, forboth ES20 and ES30, power-
down saved more than 1W per disk compared to spin-down.

18



ES20 ES30
Idle Power (W) 278 179
Max Power (W) 340 205

Table 4.6: Max power for enclosures ES20 and ES30

� Observation 7: Disk power-down may be more effective than disk spin-down for both ES20
and ES30.

Looking closer at the ES20 power savings, the enclosure actually consumes more power than
the disks it is housing (an improvement opportunity for enclosure manufactures). With all disks
powered down, ES20 consumes 155W, which is more than the 123Wsaved by powering down the
disks (consistent with disk vendor specs).
� Observation 8: Disk enclosures may consume more power than the drives they house. As a
result, effective power management of the storage subsystem may require more than just disk-
based power-management.

We observed that an idle ES30 enclosure consumes 64% of an idle ES20, while a ES30 in
power-down mode consumes only 25% of the power of an ES20 in power-down mode. This sug-
gests that newer hardware’s idle and especially power-managed modes are getting better.

4.3.3 System-Level Measurements

A common metric for evaluating a power management techniqueis the percentage of total sys-
tem power that is saved. We measured the amount of power savings for different controller and
enclosure combinations using spin-down and power-down techniques. We considered system con-
figurations with an idle controller and 32 idle enclosures (which totals 512 disks for ES20 and 480
disks for ES30) and we varied the number of enclosures that have all their disks power managed.
We excluded DD670 because it supports only up to 4 external shelves.

Figure 4.4 shows the percentage of total system power saved as the number of enclosures with
power-managed disks was increased. In Figure 4.4(a) disks were spun down, while in Figure 4.4(b)
disks were powered down. We found that it took a considerablenumber of power-managed disks
to yield a significant system power savings. In the best case with DD860 and ES30, 13 of the 32
enclosures must have their disks spun down to achieve a 20% power savings. In other words, over
40% of the disks must be spun down to save 20% of the total power. In the worse case with DD990
and ES20, 19 of the 32 enclosures must have their disks spun down to achieve a 20% savings. This
scenario required almost 60% of the disks to be spun down to save 20% of the power. Only two of
our six configurations were able to achieve more than 50% savings even when all disks were spun
down. These numbers were improved when power down is used, but a large number of disks was
still needed to achieve significant savings.
� Observation 9: To save a significant amount of power, many drives must be in a low power
mode.

The limited power savings is due in part to the controllers consuming a large amount of power.
As seen in Section 4.3.1, a single controller may consume as much power as 100 disks. Addition-
ally, as shown in Section 4.3.2, disk enclosures can consumemore power than all of the drives they
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house, and the number of enclosures must scale with the number of drives in the system. These
observations indicate that for some systems, even aggressive disk power management may be insuf-
ficient to save enough power and that power must be saved elsewhere in the system (e.g., reducing
controller and enclosure power consumption, new electronics, etc.).

4.4 Conclusions

We presented the first study of power consumption in real-world, large-scale, enterprise, disk-based
backup storage systems. Although we investigated only a handful of systems, we already uncovered
a three interesting observations that may impact the designof future power-efficient backup storage
systems.

(1) We found that components other than disks consume a significant amount of power, even at
large scales. We observed that both storage controllers andenclosures can consume large amounts
of power. For example, DD990 consumes more power than 100 2TBdrives and ES20 consumes
more power than the drives it houses. As a result, future power-efficient designs should look beyond
disks to target controllers and enclosures as well.

(2) We found a large difference between idle and active powerconsumption across models. For
some models, active power consumption is only 20% higher than idle, while it is up to 60% higher
for others. This observation indicates that existing systems are not achieving energy proportional-
ity [3,9,48,128,132], which states that systems should consume power proportional to the amount
of work performed. For some systems, we found a disproportionate amount of power used while
idle. As backups often run on particular schedules, these systems may spend a lot of time idle,
opening up opportunities to further reduce power consumption.

(3) We discovered large power consumption differences between similar hardware. Despite
having similar hardware specifications, we observed that the older DD880 model consumed twice
as much idle power as the newer DD860 model. We also saw that anidle ES20 consumed 55%
more power than an idle ES30. This suggests that the power profile of an existing system can be
improved by retiring old hardware with newer, more efficienthardware. We hope to see continuing
improvements from manufacturers of electronics and computer parts.

We have discussed the power consumption in enterprise-scale backup storage systems. Next,
we explore in details the performance and energy consumption of systems software in Chapter 5.
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Chapter 5

On the Energy Consumption and
Performance of Systems Software

The carbon footprint of the IT industry, though 2% of the world economy, is estimated to be equal
to that of the entire aviation industry [22]. Energy consumption is emerging as a critical issue in
the design of computing systems [15, 33, 51, 60, 64, 91, 154].The goals of energy-aware system
design include saving energy without sacrificing performance, and supporting flexible, dynamic
trade-offs between energy consumption and performance. Accurate models of energy consumption
and performance provide a foundation for the design of energy-aware systems.

A large portion of the energy consumed by IT infrastructure is due to desktop machines and
commercial servers [24]. Moreover, the total amount of electronic data stored world-wide is rising
exponentially. Thus, it is desirable to develop highly scalable solutions that are significantly better
than today’s solutions.

In prior work, we analyzed the energy and performance profiles of server workloads, such as
Web servers, email servers, database servers, and file compression [72, 119]. We discovered large
deviations for both performance and energy consumption—asmuch as 10 times—suggesting that
there are significant opportunities to save energy and improve performance. Our past work con-
sidered those systems only as black-boxes and reported their performance and energy consumption
without a deeper understanding of the exact reasons for those deviations.

Seeking a better understanding of the system internals of these workloads, we tried to iden-
tify their internal behavior, so we could build advanced controllers to better manage both energy
and performance. Unfortunately, our initial attempts to identify these systems using traditional
linear-systems identification techniques resulted in poormodels with low prediction accuracy (un-
der 50%).

In this chapter, we shed considerable light on the complexities underlying systems-software en-
ergy consumption and performance. In particular, we present an in-depth experimental evaluation
of the energy consumption and performance of a relatively simple yet familiar file-compression
workload as a representative workload involving both substantial CPU usage and disk I/O. We
also analyze the effects of several input parameters, including choice of compression algorithm,
compression level, file type, persistent storage media (e.g., SATA, SAS, and SSD), CPU Dynamic
Voltage and Frequency Scaling (DVFS) level, and disk I/O scheduler—all under the Linux operat-
ing system.

Our experimental results show that energy consumption and performance are unexpectedly
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complex and cannot be easily modeled using standard system-identification techniques. We iden-
tify several factors that contribute to this complexity, interms of nonlinearity, instability, and multi-
dimensionality. Our results suggest that hybrid discrete-continuous models [2, 56] may provide a
suitable foundation for modeling and control of energy consumption and performance in energy-
aware systems software.

The rest of the chapter is organized as follows. Section 5.1 considers related work. Section 5.2
provides the requisite background. Section 5.3 provides the motivation for this work. Section 5.4
presents our experimental setup and benchmarks. Section 5.5 contains our experimental results.
We conclude in Section 5.6.

5.1 Related Work

This section places our work in the context of past work.

5.1.1 Energy Efficiency

Many energy-saving techniques have been developed at both the hardware and software levels. For
example, virtualization allows multiple Operating Systems (OSs) to run on one server, sharing most
of the resources, thereby reducing energy consumption. Moreover, there are energy-aware cache re-
placement algorithms [150], energy-aware task and interrupt management techniques [121], online
learning-based power management [31], predictive data grouping and replication [33], and energy-
aware file systems configuration pruning techniques [119]. Some modeling based approaches have
been proposed by Isci, Sarikaya, and others [62, 111]. Some of our own past studies show signifi-
cant energy savings possible in commodity Linux servers running common workloads such as Web,
email, database, compression, etc. [72, 119]. Generally, optimal use of energy-saving techniques
requires accurate models of system energy consumption withrespect to appropriate parameters; the
work described in Chapter 5 is a step towards the developmentof such models.

5.1.2 Energy Consumption of Data Compression

Our prior work, conducted by Kothiyal et al., evaluated energy consumption and performance of
data compression on servers [72] and demonstrated that compression reduces energy consumption
in some situations but not all. A careful application of compression can save energy in some cases
by a factor of 10×, but a careless application of compression can easily wasteenergy and slow
performance by 200×. In contrast to the work described in Chapter 5, our past study did not focus
on accurate modeling of energy consumption and hence did notdiscuss system identification or
analyze the behavioral characteristics of energy consumption and performance that make accurate
modeling difficult.

5.2 Background

In this section, we describe background work in terms of compression algorithms (Section 5.2.1),
I/O schedulers (Section 5.2.2), and power and energy consumption (Section 5.2.3).
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5.2.1 Compression Algorithms

In Linux, there are three main compression utilities:gzip , bzip2 , and lzop , each of which
has compression levels ranging from level 1 to level 9. A higher level tries to achieve a better
compression ratio at the expense of additional CPU cycles.

Gzip [40] is based on theDEFLATE algorithm, which is a combination of LZ77 and Huffman
coding. Bzip2 uses the Burrows-Wheeler transform to convert frequently recurring character se-
quences into strings of identical letters and then applies amove-to-front transform and Huffman
coding [18]. Lzop [95] uses the LZO algorithm instead and produces files a bit larger than Gzip’s
but with a lower CPU use. Forlzop , compression levels 1 to 6 are identical.

5.2.2 I/O Schedulers

I/O scheduling has been studied aggressively [6, 8, 59, 69, 149] especially since the speed of disk
lags far behind the speed of CPU and RAM.

Normally, a disk scheduler tries to maintain a balance between fairness, performance, and la-
tency (or real time guarantees). Fairness guarantees that every process has fair share of the access
to disk on a multi-user system. Performance requires the scheduler to serve requests predictably to
save both time and energy. Latency means that any request must be served within a given time limit.
There are four main I/O schedulers in Linux systems: (1)CFQ (the default), which emphasizes fair-
ness; (2)ANTICIPATORY, which emphasizes performance; (3)DEADLINE, which is designed for
low latency and real time access; and (4)NOOP, which is a simple first-come-first-served scheduler.

5.2.3 Power and Energy Consumption

In this subsection, we introduce the power and energy consumption patterns for both CPU and disk,
since our workload is both CPU-intensive and disk-intensive.

The power consumed in a processor consists of three portions: dynamic powerPdynamic, static
powerPstatic, and short-circuit power [88]. For Complementary Metal Oxide Semiconductor (CM-
OS) chips, dynamic power refers to the energy consumption inswitching transistors, while static
power refers to the flowing leakage current when a transistoris off. Short-circuit power is consumed
only during signal transitions and is insignificant. The dynamic power is calculated as follows:

Pdynamic = C × V 2 × f (5.1)

whereC is the capacitance per cycle,V is the supply voltage andf is the processor clock frequency.
Although dynamic power is the primary source of power dissipation in CMOS chips [88], static

power is becoming an important issue. Static power is computed as follows:

Pstatic = V × Ith + Vbs × (Ijn + Ibn) (5.2)
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whereIth is the sub-threshold leakage current,Vbs is the body bias voltage, andIjn andIbs are the
drain and source to body junction leakage current, respectively.

Processors with Dynamic Voltage and Frequency Scaling (DVFS) are capable of operating at
multiple frequency and voltage levels. Dynamic power is considered to be the dominant portion
of the processor’s energy consumption. As seen from Equation 5.1,Pdynamic depends linearly on
frequency and quadratically on voltage. However, operating at a lower voltage and frequency does
not necessarily result in overall energy savings, as we see later in Section 5.5.3. The main reason is
that when running at a lower frequency, it usually takes longer to accomplish the same work, which
can increase the total energy consumption.

The power consumed by a Hard Disk Drive (HDD) follows the following equation:

Pdisk = Pspin + Phead (5.3)

wherePspin refers to the energy consumed by the spinning platter, andPhead refers to the energy
consumption incurred by the movement of the disk head.

5.3 Motivation

Section 5.3.1 gives some background on system identification. Section 5.3.2 describes the prob-
lems we encountered when we tried to apply system identification techniques to model the energy
consumption of our workload.

5.3.1 System Identification

File Type

Compression Algorithm

CPU Frequency

Performance

Energy

(Compressor)

Plant
Compression Level

Figure 5.1: Plant: Compressor

System identification is the first step of control engineering that uses statistical methods to build
models from observed behavior.

As shown in Figure 5.1, our system has four inputs: compression algorithm, compression level,
file type, and CPU frequency. Our system has two outputs: energy and performance. Applying
off-the-shelf technology for system identification, such as MATLAB’s system identification tool-
box [80] has considerable appeal, since one needs to know only the inputs and outputs. It does not
require a detailed understanding of the system’s behavior.By applying statistical techniques to data
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collected from the target system, system identification attempts to construct a mathematical model
of the relationships between inputs and outputs.

A typical workflow for system identification follows these four steps: (1) Specify the model
in the form of inputs and outputs, and design experiments to collect data; (2) Apply the system
identification algorithm to estimate the values of the coefficients of the model; (3) Verify the accu-
racy of the resulting model by evaluating it against additional measured data; (4) Decide whether
the model is acceptable. If the prediction accuracy is unacceptably low, one or more steps in the
workflow need to be revisited.

In our experiments, we used a traditional linear state-space model of the following form:

x(n + 1) = Ax(n) +Bu(n) +Kw(n) (5.4a)

y(n) = Cx(n) +Du(n) + w(n) (5.4b)

whereu(n) are the inputs,y(n) are the outputs,x(n) the internal states of the plant, andw(n)
is a white Gaussian noise representing uncontrollable inputs and output measurement errors (e.g.,
errors introduced by the default system daemons) at timen. The parameterx(n + 1) denotes the
next internal states of the plant. MatricesA, B, C, D, andK denote the significance or weight that
each element in the input, output, and Gaussian noise have indetermining the next state and output
of the system.

5.3.2 Problems Encountered

Our system is a simple file compressor. System inputsx can be file type (ZERO, TEXT, BINARY ,
or RANDOM), compression level (1 to 9), compression algorithm (GZIP, BZIP2, LZOP, or NONE

for no compression), and CPU frequency/voltage (eight available choices). We considered energy
consumption and performance as the outputsy.

The system inputs and outputs must be quantified in order to apply system identification. En-
ergy is measured in Watt-hours. Performance is measured as the number of files compressed per
second. The CPU frequency is measured in Hertz. However, it is difficult to choose appropriate
numerical values to represent file types, compression levels, and compression algorithms.

The compression level is numerical, but the level number is actually just a label (in other words,
a name); the numerical value has no direct significance otherthan ordering. Similarly, file types
and compression algorithms are naturally identified by discrete, non-numerical labels but must be
represented numerically to apply the system identificationalgorithm. The numbers chosen are
significant, because they must be related to the next states and outputs by Equation 5.4 for system
identification to succeed and should not impose arbitrary quantitative relationships. However, we
have no a-priori way of deciding what values to use.

We tried a simple linear approach using consecutive integers (e.g., 0 forNONE, 1 for GZIP,
2 for BZIP2 and 3 forLZOP), as well as other numbers and ordering. We also tried a non-linear
approach, assigning each compression algorithm a number corresponding to its compression ratio;
but the compression ratio varies with file type and hence is not a fixed value associated solely with
the compression algorithm.
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Figure 5.2: A typical example for poor accuracy. The two inputs are File Type and CPU Frequency.
Compression algorithm is fixed to be gzip along with its default compression level. The two outputs
are energy and performance which are normalized to be zero-mean.

In conclusion, labels are similar to the discrete states of afinite automaton. In our case, they rep-
resent different modes of system behavior; that is, they represent the modes of a hybrid automaton.
Any attempt to give them a numerical meaning is doomed to fail.

We prepared two data sets of the same size to identify the system. One data set is used to
estimate the parameters of the model using least-squares techniques; the other is used to evaluate
the quality of the model fit. Accuracy is the percentage of model fit. We applied the MATLAB’s
system identification tool-box to learn Single-Input-Single-Output (SISO) and other system mod-
els. However, we achieved only limited accuracy, less than 50% in overall. A typical error graph
appears in Figure 5.2.

This was clearly insufficient as a basis to design a controller. In order to better understand the
causes of the problem, and to find ways of splitting the nonlinear behavior into segments that can be
more accurately modeled as linear systems, we decided to study the system’s energy consumption
and performance in more detail.
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5.4 Methodology

This section details our experimental setup and benchmarks.

5.4.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge R710 serverconsisting of one quad-core
Intel R© XeonTM Nehalem CPU with a maximum frequency of 2.395GHz with dynamic frequency
and voltage scaling (DVFS) support: 7 different frequencies at a difference of 133MHz each with-
out the Turbo Mode, and 8 different frequencies at a difference of 1MHZ for the top 2 frequencies
(as Linux reports) and a difference of 133MHZ for the remaining 7 frequencies with the Turbo
Mode on. The machine has 24GB RAM, out of which we used only 2GBto force I/O to take
place. The server has two 146GB Seagate SAS disks with 15,000RPM rotation speed and a 16MB
cache, two 250GB internal Fujitsu SATA disks with 7,200 RPM rotation speed and 16MB cache,
and one 80GB Intel SSD disk model SSDSA2MH080G1C5. We ran allof our benchmarks on all
of these three different kinds of disk drives. The server wasrunning the Linux 2.6.18 kernel with
theacpi cpufreq module installed to enable software control of the CPU frequency.

We connected the server to a WattsUP Pro ES in-line power meter [136], which measures the
energy drawn by a device plugged into the meter’s receptacle. The power meter uses non-volatile
memory to store measurements every second. Its resolution is 0.1 Watt-hours (1 Watt-hour = 3,600
Joules). The accuracy is±1.5% of the measured value plus a constant error of±0.3 Watt-hours. Its
resolution for power measurements is 0.1 Watts. We used thewattsup Linux utility to download
the recorded data from the meter over a USB interface to the test machine.

We conducted 216 combinations of experiments (repeated fivetimes each), and collected a large
data set: 4,810,320 data points in total for a single run. Running one complete set of benchmarks
took about 15 calendar days to complete.

To automate the measurements, we developed a tool called auto-ebench, written in Perl and
Bash, that helped us benchmark the energy and power consumption under different scenarios while
launchingvmstat to record the number of block reads and block writes. We measured the total
number of block reads and writes at the whole-system level; this saved us significant time and
effort.

5.4.2 Benchmarks

The workload for each test is to compress 20 identical files with 20 threads concurrently, and write
the compressed files to disk. Each file is 65MB. Several factors influence energy consumption for
data compression, as we will discuss in Section 5.5.3. In order to fully explore these factors and
their interactions, we conducted experiments for each combination. Specifically, we consider the
following factors: persistent storage media (SAS disk, SATA disk, and SSD disk), I/O scheduler
(anticipatory, CFQ, deadline and NOOP), compression algorithm (gzip, bzip2, and lzop) and com-
pression level (1–9), and file type (text, binary, and random). We ran the above workload for each
combination of these factors. Between each compression level, we inserted some sleeping intervals,
so that each experiment for each compression level started at the same exact time. The elapsed time
for compression plus the sleeping interval was the same and fixed during each compression level,
in order to align the graphs for each compression level. Auto-ebench is responsible for repeatedly
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launching the experiments and recording the results multiple times and under multiple scenarios.
Our experiments follow this pattern unless otherwise noted.

We ran all the tests five times and computed the 95% confidence intervals using the Student-t
distribution. The error bars shown in our graphs are the halfwidths of the 95% confidence intervals.
We used version 1.3.5 ofgzip , version 1.0.3 ofbzip2 , and version v1.02rc1 oflzop .

The I/O scheduler can be set per device and is easy to configure. In order to set the I/O scheduler,
we write the desired scheduler name to/sys/block/ $dev/queue/scheduler and launch
the experiments after that.

We ran the tests on the specified disk drive, formatted with Ext3 file system and mounted using
the default options. To avoid caching effects, we unmountedthe file system after each test iteration
to flush the data in memory to disk. Our measurements include this flushing time.

5.5 Evaluation

In this section, we provide evaluation and deep analysis forthe energy consumption pattern of our
file-compression workload. Sections 5.5.1, 5.5.2, and 5.5.3 focus on non-linearity, instability, and
multi-dimensionality, respectively.

5.5.1 Nonlinearity

For compression algorithms, a higher compression level usually means a better compression ratio
(CR). Table 5.1 shows the CR for all algorithms and levels.

Although it is true that a higher compression level generally commits fewer blocks to disk for
the same workload and hence might save energy due to reduced I/O activity, the overall energy
consumption might not follow the same pattern. One possiblereason is that the CPU may have to
perform a lot more work in order to achieve a better CR, which takes longer time and consumes
more energy. The actual energy consumed under certain workloads is in fact a trade-off between
these factors. Therefore, as we can see from Figure 5.3, which presents measurements forgzip ,
bzip2 , and lzop , the energy consumption is not a linear function of the compression level.
Moreover, it is also not monotonically increasing with the compression level. For example, in
Figure 5.3(b), energy consumption peaks at level 7, then unexpectedly drops at levels 8 and 9.

Comparing the graphs in the left and right columns of Figure 5.3, we also observe that the
energy consumption for the whole system depends heavily on the total elapsed time during the
compression period [27,105].

As we can see from Figure 5.3(a), in the case ofgzip , the energy consumption goes up non-
linearly and then goes down slightly as the compression level increases. Figure 5.3(b) shows that
the elapsed time follows the same trend. In the case ofbzip2 as shown in Figure 5.3(c), the
energy consumption is relatively stable, increasing only slightly across all 9 compression levels,
which suggests that a balance between the CPU energy consumption and disk energy consumption
has been achieved. The elapsed time, shown in Figure 5.3(d),follows the same pattern. With
lzop , as shown in Figure 5.3(e), the energy consumption is the same for the first six identical
compression levels and then increases monotonically but non-linearly. This reflects that for the
last three compression levels, due to the longer elapsed time, the entire system (including the disk
drive, even when it is just spinning, not reading or writing)is consuming more power at higher
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Figure 5.3: An example combined graph for illustrating nonlinearity. Experiments compressing
text files using the highest CPU frequency, SAS disks, and theCFQ I/O scheduler. In 5.3(a), the x
axis denotes the compression level and the y axis denotes Watt-hours (equals to 3,600 Joules). In
5.3(b), the unit for Elapsed Time is seconds. This representation is kept the same for 5.3(c), 5.3(d),
5.3(e), and 5.3(f).

compression levels even though slightly fewer blocks are written to disk. Figure 5.3(f) show that
the elapsed time strictly follows the same pattern.

In summary, it is clear that the energy consumption and elapsed time relate non-linearly and in
some cases non-monotonically with the compression level. Consequently, controlling the system’s
energy usage by adjusting the compression level is complex.
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Tool
File Type

Text Binary Rand
gz-1 3.61 2.14 1.00
gz-2 3.77 2.18 1.00
gz-3 3.90 2.21 1.00
gz-4 4.18 2.26 1.00
gz-5 4.35 2.30 1.00
gz-6 4.43 2.32 1.00
gz-7 4.45 2.33 1.00
gz-8 4.46 2.33 1.00
gz-9 4.46 2.33 1.00
bz-1 4.72 2.38 0.99
bz-2 5.02 2.45 0.99
bz-3 5.18 2.53 0.99
bz-4 5.28 2.57 0.99
bz-5 5.36 2.60 0.99
bz-6 5.40 2.64 0.99
bz-7 5.44 2.65 1.00
bz-8 5.49 2.67 1.00
bz-9 5.50 2.69 1.00

lzo-(1∼6) 2.82 1.77 1.00
lzo-7 3.80 2.15 1.00
lzo-8 3.84 2.16 1.00
lzo-9 3.84 2.17 1.00

Table 5.1: Compression ratios achieved by various compression utilities and levels

5.5.2 Instability

This section examines how the power consumption varies during each run. We found that in some
cases, the power consumption response is unstable and fluctuates significantly, as we can see from
Figures 5.4, 5.6, and 5.7. This should be taken into consideration when designing power-aware
systems.

Our experiments revealed that the cause of those fluctuations lies in the interleavings between
disk reads and writes when the CPU frequency is maintained atthe same level. We discuss this in
more detail below.

For gzip (Figure 5.4(a)), the power consumption response is relatively stable from level 1 to
level 7. However, it becomes unstable in levels 8 and 9. Furthermore, Figure 5.4(b) reveals that the
rate at which blocks are read exhibits the same pattern of stability in levels 1 to 7 and fluctuation at
levels 8 and 9. Looking at Figure 5.4(b) in detail, especially in levels 8 and level 9, it also reveals
more frequent interleavings between block reads and writes. For levels 1 through 4, there are just
small fluctuations in power consumption towards the end of the compression job. A similar pattern
appears in the interleavings between block reads and writesfor levels 1 to 4. Moreover, the stable
response in levels 5, 6, and 7 suggests equally distributed interleavings between the rates of block
reads and writes. We believe that when block reads and writesare interleaved beyond a certain
level, I/O scheduler algorithms (and possibly algorithms inside the disk) begin to break down and
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Figure 5.4: Relationship between the rates of block reads/writes and power consumption of gzip.
The y axis is in units of thousands of reads/writes. The CPU frequency is set to the highest fre-
quency in the above experiments. One can see that there are fluctuations in levels 8 and 9.

their efficiency goes down considerably as a result.
For bzip2 (Figure 5.5(a)), the power consumption response is relatively stable. In Fig-

ure 5.5(b), we can see clearly that the rate of disk block reads is maintained at a stable level, and
the rate at which disk blocks are written is equally distributed throughout the compression period.
This leads the power consumption response to be stable.

For lzop (Figure 5.6(a)), the power consumption response follows a different pattern com-
pared with the previous two scenarios. We can see from Figure5.6(b) that for the first six levels,
the I/O rate is much higher than in the remaining levels. However, the run is shorter in terms of
elapsed time, as we can see from the width of the active intervals, and the interleavings between
the rates of block reads and writes are in some degree not equally distributed across the compres-
sion level, resulting in a few fluctuations towards the end ofeach compression level. For levels 8
and 9, since the interleavings are equally distributed, thepower response is relatively stable. The
fluctuations in level 7 suggest there exists unequally distributed interleavings between the rates of
disk reads and writes.

An even more complicated example appears in Figure 5.7(a). In this scenario, random files
are being compressed and SATA is the persistent storage media. The power response is extremely
unstable in each compression level. The interleavings between the rates of block reads and writes
are ill regulated, as we can see from Figure 5.7(b). This suggests that the harder the file is to
compress (e.g., high entropy), the less predictable the performance and energy consumption are.
There is no simple way to model systems exhibiting such complex and diverse behavior.

We conclude that the power response exhibits instability inmany cases. This contributes to the
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Figure 5.5: Relationship between the rates of block reads/writes and power consumption of bzip2.
The CPU frequency is set to the highest frequency in the aboveexperiments. One can see that the
power response is stable for each compression level.

complexity of the energy usage of the system and makes controlling a serious challenge.

5.5.3 Multi-Dimensionality

In this section, we illustrate the dependence of the energy consumption for our system on sev-
eral factors, such as CPU frequency, compression algorithmand level, file type, persistent storage
media, and disk I/O scheduler.

The compression algorithm is clearly an important factor ofenergy consumption here, as we
have already seen in Figure 5.3. For example,bzip2 takes much longer time to compress than
lzop does. Thus,bzip2 usually takes more energy to compress thanlzop does.

One might expect that a lower CPU frequency will result in lower energy consumption. How-
ever, as we can see from Figures 5.8(a) and 5.8(b), that is notnecessarily true. With lower CPU
frequency, the energy consumption is actually increased for all the compression levels. The reason
is that when the CPU frequency is lower, it takes longer to finish the compression, which generally
results in a higher total energy consumption. We can also seefrom Figure 5.8 that for both the
highest frequency and the lowest frequency, the consumed energy increases as a function of com-
pression level. However, there is also a possibility that when the CPU frequency is lower, the rate
at which the CPU compresses data in the blocks will be closer to the rate at which the disk drive
produces blocks. If this happens, it can save energy at the end, since there is no wasted energy.

The disk I/O scheduler influences the order of disk writes andhence may affect the energy
consumption. Figure 5.9 shows the energy consumption with 4different I/O schedulers. We can
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Figure 5.7: An even more complex example. The CPU frequency is set to the highest frequency in
the above experiments. One can see large fluctuations duringevery compression level.
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Figure 5.8: Energy consumption at the highest and lowest CPUfrequencies
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Figure 5.9: Energy consumption under 4 different I/O schedulers

see that anticipatory and CFQ have largely the same effect, while deadline and NOOP also have
similar effect to each other but different from anticipatory or CFQ. As the unit for the y axis is Watt-
hours, the difference in energy consumption between anticipatory and CFQ is actually significant,
especially for larger workloads.

The file type affects different compression strategies for each compression algorithm and hence
plays a role in energy consumption. The left column of Figure5.10 shows the energy consumption
of the compression workload for different file types. We see that the workload with binary files
consumes more energy than the workload with text files when other parameters are the same; this
makes sense because text files have more common patterns thatcan be compressed (e.g., lower en-
tropy). Also for text and binary files, more energy is consumed with compression level 9 than with
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Figure 5.10: Energy consumption for different File types and disk types

other compression levels. Surprisingly, for random files, level 8 turns out to be the most energy-
consuming one, instead of level 9. We conclude that the file type affects the energy consumption
response in a manner that is not easy to predict, and an approach involving adaptive feedback
control may thus be required.

Different disk types usually have different electronics and firmware, different physical features,
and different storage strategies. This should affect energy consumption. The right column of
Figure 5.10 shows the energy consumption of the compressionworkload for different persistent
storage media. As expected, SAS is generally faster than SATA, so the workload runs faster and
consumes less energy, 2–12% less. SSD is the fastest storagemedia among the three, consuming
the least energy, 3–5% less than SAS and 6–16% less than SATA.This is because an SSD contains
no energy-consuming moving parts (cf. Equation 5.3) and stores data on non-volatile flash memory
chips using a Flash Translation Layer (FTL) that allows the linear device to look like a traditional
disk. These results also show that the workload is not completely CPU bound, even though it is
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CPU intensive.

In summary, we observe that the total energy consumption of computer systems follows a com-
plicated pattern, because the energy consumption for each subsystem contributes to it. This sug-
gests that instead of trying to develop system-level energymodels purely in a bottom-up fashion,
a more practical approach may be to use machine learning methods in the development of such
models to guide the design of energy-aware systems.

5.6 Conclusions

Accurate models of energy consumption and performance are vital for the design and implementa-
tion of energy-efficient systems. Our detailed experimental results show that the behavior of these
quantities is far more complicated than one might expect, even for a relatively simple workload such
as data compression. The complexity is reflected in nonlinearity, instability, and multi-dimensiona-
lity. These factors must be considered in the design of energy-efficient systems.

Although we have measured and analyzed the effects of several factors, there may be other
important factors to consider, depending on the system, such as the workload itself, and even the
server and machine-room temperatures.

We have discussed the energy and performance details of systems software. Next, we explore
the GreenDM’s details in Chapter 6.
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Chapter 6

GreenDM: A Versatile Tiering Hybrid Drive
for the Trade-Off Evaluation of
Performance, Energy, and Endurance

In previous Chapters, we analyzed system performance, energy, and power under various condi-
tions, and we described how the device endurance interfactswith the other dimensions. In this
Chapter, we discuss the details of GreenDM.

The rest of the chapter is organized as follows. Section 6.1 illustrates the design and imple-
mentation details. Section 6.2 presents the evaluation results and discussions. Section 6.3 shows
the related work. Section 6.4 discusses the limitations thefuture direction of our work. Section 6.5
concludes the chapter.

6.1 Design and Implementation

We describe GreenDM’s design and implementation in this section. Section 6.1.1 presents the
design goals. Section 6.1.2 shows the system architecture.Section 6.1.3 details the design. Sec-
tion 6.1.4 describes our power-management techniques. Section 6.1.5 describes the endurance
model used for the trade-off study. Section 6.1.6 presents the implementation details.

6.1.1 Design Goals

The work was motivated by several concerns in storage systems. With the advent of SSDs, there
were more opportunities to tackle these concerns. Specifically, with GreenDM, our design goals
were as follows:

1. Hybrid Drive: we want to build a tiering hybrid drive with efficient data management and
additional power management, where the SSD was used as primary storage, as the benchmark
system.

2. Trade-offs Study: we would like to come up with a per-device endurance metric tohelp
study the trade-offs.
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3. Versatility: we want to have versatile policies so that the system can adapt to different
workloads.

To meet our desired design goals, GreenDM (1) migrates hot data to the primary device (SSD),
and migrates cold data to the secondary device (HDD)—usefulin workloads that exhibit hot/cold
I/O patterns; (2) decouples the logical storage address space from the physical one to allow flexible
data placement; (3) decouples the migrations between the SSD and the HDD to improve concur-
rency between CPU and I/O; (4) optimizes the data managementby serving I/O requests directly
from RAM instead of the SSD whenever possible; (5) throttlesmigrations between the SSD and
the HDD to control the overhead and effectiveness of migrations; (6) uses the lower-power SSD
over the HDD and spins down the HDD when it is idle for a sufficient amount of time; and (7)
is implemented in the Linux DM framework to be scalable. Notethat we do not aim for super
fast performance, or super efficient energy consumption, oroptimized device endurance. Instead,
the techniques we used above just serve the purpose of building a hybrid drive for us to study
quantitatively the trade-offs among performance, energy,and endurance.

To help study the trade-offs among performance, energy, andendurance, GreenDM counts and
utilizes the number of SSD reads and writes and the number of HDD start-stop (spin-up/down)
cycles to estimate the devices’ endurance. SSDs especiallycan wear out quickly and become less
durable [120], and a mechanical disk drive can only be spun down and up for a limited number of
cycles [64].

To achieve the versatility goal, GreenDM supports several controllable parameters so that the
system can be tuned to different workloads.

6.1.2 Architecture

We implemented GreenDM in the Linux DM framework, to benefit from its scalability and flexibil-
ity. Figure 6.1 presents our system’s architecture. We detail GreenDM’s internals in the following
sections. “Linear” is another existing DM target that linearly maps from the virtual storage address
space to the physical one. GreenDM is scalable: it can be easily configured to use multiple drives
with minor code change. However, to better study and understand the fundamental behavior of our
tiering hybrid drive, we used a two-drive setup in this paper: one SSD as the primary drive and one
HDD as the secondary drive.

6.1.3 Data Management

GreenDM tries to keep hot data in the SSD so that the system benefits most from the SSD’s su-
perior performance and efficient energy consumption. To achieve this, GreenDM migrates hotter
data to the SSD, and migrates colder data to the HDD as the working set changes over time. To
guarantee the correctness of moving data around, GreenDM uses a mapping table to keep track of
data movement. Figure 6.2 illustrates GreenDM’s data management. GreenDM divides the Virtual
Block Address (VBA) space and the Logical Block Address (LBA) space intoextentsthat are mul-
tiple of the (4KB) page size for efficient data management. The Extent Size (ES) is a configurable
parameter, but once configured, the size is fixed for the lifetime of the DM instance. Our extents
are atomic units of data migration. GreenDM maintains the mapping information, from the VBA
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Figure 6.1:GreenDM Architecture . The shaded rectangles are DM targets, usually implemented
as loadable kernel modules.

to the LBA, in the mapping table; each table entry maps from one Virtual Extent (VE) to one Log-
ical Extent (LE). Data migration involves migrating LEs between the SSD and the HDD, and then
updating the mapping table accordingly.

Mapping table The mapping table is a core data structure in GreenDM, as shown in Figure 6.2.
It has four fields: LE ID, State, Usage Counter, and Time-stamp of the latest access. The LE ID
identifies one LE. State represents the accessing state of each extent. The usage counter repre-
sents the number of total accesses. The time-stamp records the latest access of one specific extent.
GreenDM populates the mapping table lazily. With a new virtual drive, the table starts empty.
GreenDM creates the mappings in accordance with the workload. Compared to fully initializing
the table with linear mapping, this approach provides more flexibility to data migration, especially
when the workload is light. GreenDM uses a bit in the State field of each table entry to indicate if
the entry is empty or not. GreenDM uses a bitmap to indicate whether the LEs on both drives are
occupied or not. The mapping table and the bitmap together comprise the metadata of GreenDM.
Whenever a new VE is accessed, GreenDM first allocates one free LE and then sets the correspond-
ing mapping entry and the bitmap field properly. To locate a free LE, GreenDM always starts from
the lower LBAs so that it improves the SSD’s utilization. To accelerate this operation, GreenDM
maintains an in-memory only free list for free LEs on the SSD.

Data separation GreenDM separates hot I/Os from cold I/Os based on their access frequencies,
and stores them separately to best utilize the tiering hybrid device. Temporal locality suggests that
once an extent is accessed, it is likely that the extent will be accessed again soon. In our case,
active I/Os are first served through the primary drive (i.e.,SSD) and the mapping is established
accordingly. Inactive I/Os are kept on the secondary drive (i.e., HDD). GreenDM is designed this
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way so that hot I/Os can mainly be served by the fast but smaller SSD, and cold I/Os are held on
the slow but larger HDD drive.

Decoupled mapping GreenDM decouples the VBA space from the LBA space by mappingthe
VBA access to start from the Lowest Numbered LBA (LNL) of the SSD and the HDD drives first.
If the mapping table is initially empty, then the decoupled mapping mechanism would shift the
block access to the LNL in a monotonically decreasing mannerfor random read workload. Note
that the mapping itself does not assume anything, we use random workload just to illustrate its
mapping effect. We developed the theory to explain this behavior.

Suppose the virtual device hasn virtual blocks (VBs) in total. As shown in Figure 6.3, we use
Si to represent the system state when it hasi (0 ≤ i ≤ n) mapped logical blocks (LBs). The system
can only go from stateSi to stateSi+1 (1 ≤ i + 1 ≤ n) or stay at the same state. When it transits,

41



one VB will be mapped to the(i + 1)th LB, which will then be accessed only once. Since the
workload is random, when there is one VB access, it has the same probability to be any one of the
n VBs. Therefore, the probability for the system state to transit fromSi to Si+1 (1 ≤ i+ 1 ≤ n) is
1− i

n
, and the probability for the system state to stay the same isi

n
. This is in fact a Markov Chain

as shown in Figure 6.3.
We useTi (1 ≤ i ≤ n) to represent how long the system stays in stateSi. Here,thpti represents

the average throughput when the system stays in stateSi. We useBs to represent the block I/O
size. For simplicity, we let the I/O size be equal to the extent size. We useEacc(Bi) to represent
the expected access frequency of blocki. In stateSi, each physical block, starting from1 to i, has
the same probability of being accessed. We can then have the following equations:

Eacc(Bi) = 1 +
n

∑

j=i

1

j
×Mj(1 ≤ i ≤ n) (6.1)

Mi =
Ti × thpti

Bs

(1 ≤ i ≤ n) (6.2)

Eacc(Bi) > Eacc(Bi+1)(1 ≤ i+ 1 ≤ n) (6.3)

We can see from Equation 6.3 that the expected access frequency of block i is larger than that
of block i+1. It shows that GreenDM should shift the block access to the LNL in a monotonically
decreasing manner.
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Figure 6.4: LBA Space Access Frequency forLinear andGreenDM. Figures are plotted to scale:
256 extents are merged into one point. The vertical line represents the boundary between the SSD
capacity and the HDD capacity. Since the workload does not cover every single VB, some of VBs
are not accessed. GreenDM observes this because starting from the LNL, every single LB is being
mapped and accessed, while Linear does not.
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The DM Linear is a one-to-one direct mapping. For random readworkloads, the uniformly
distributed access from the VBA space is directly mapped to the LBA space. Thus, the access
pattern on the LBA space should follow a uniform distribution. To verify the correctness of our
analysis, we ran random read experiments with Filebench [35]. We set up a 1GB tiering hybrid
drive with 256MB on the SSD and 768MB on the HDD for both GreenDM and Linear. We ran
experiments for 20 minutes each and collected a block trace usingbtrace . The processed trace,
seen in Figure 6.4, confirm our theory.

Data promotion To speed future accesses, promotions move hot LEs from the HDD to the SSD
as the workload changes over time. To detect hot LEs on the HDD, GreenDM counts the number
of I/O misses for every LE. An I/O is considered missed when the mapped LE resides on the
HDD. A LE is considered hot if the number of I/O misses exceedsthe Promotion Threshold (PT).
GreenDM increases the LE miss count if two adjacent I/O accesses to the LE is within a Time
Window (TW). Otherwise, the miss count starts over from beginning. The PT and the TW are
both configurable parameters. Once GreenDM decides to promote a hot LE, it allocates a free LE
on the SSD and enqueues the job to a promotion queue. GreenDM invokes a worker thread to
keep dequeuing promotion jobs and copy data from source LEs to destination LEs synchronously.
When the mapped LE of one VE is being promoted, accesses to theVE are suspended before being
served; then GreenDM updates the mapping table. GreenDM cancels promotion attempts under
any of the following conditions: (1) the SSD is full, becausepromotion requires free space in the
SSD; (2) the metadata is being flushed to disk, because promotion has to update the metadata; (3)
the Maximum Concurrent Migration Limit (MCML) is reached, because we throttle migration; or
(4) there is concurrent access on the extent that is to be promoted, because the extent is already
being accessed. Thus, instead of accessing the SSD, the HDD is accessed. This may delay HDD’s
spin-down and help maintain SSD’s endurance, but increase access latencies.

Data demotion Demotion moves cold LEs from the SSD to free LEs on the HDD. There are
different ways to perform data demotion. One approach is to evict SSD LEs instantly when pro-
motions are taking place but there are no free extents on the SSD. This approach adapts well to
the workload changes. However, it can prolong the promotionI/O latencies, which is undesirable.
Another alternative is to schedule demotion as a periodic background job. However, this strategy is
detrimental to energy efficiency because it has to wake up theHDD periodically. Instead, GreenDM
schedules demotion in the background when the number of freeLEs on the SSD drops to a config-
urable Low Threshold (LT). Once demotion is launched, it keeps demoting extents until the number
of free LEs on the SSD reaches the configurable High Threshold(HT). The default value of HT is
higher than the LT so that cold LEs are demoted efficiently in batch without constantly disturbing
the HDD. When all LEs are mapped, GreenDM uses a small number of extra reserved extents in
the HDD, as shown in Figure 6.2, to allow the demotion to find free LEs. Otherwise, data migration
stalls if no free LE is found. The demotion thread uses the WSClock algorithm to find cold extents
and updates the mapping table accordingly. GreenDM uses a device-mapper kernel thread called
dm kcopyd , which copies data between disk drives asynchronously.

Migration throttling GreenDM throttles data migrations to improve throughput. The mapping
table has one field to count the number of accesses for each Physical Extent (LE). When the Promo-
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Abbrev. Name Ex. Values
ES Extent Size (in 4K units) 4K, 16K, 64K
PT Promotion Threshold 1, 2, 4, 8

MCML Maximum Concurrent Migration Limit 2, 4, 8, 16, 64
SP Spin Down Policy On, Off
LT Low Threshold of demotion 32, 64
HT High Threshold of demotion 64, 128
TW Time Window length (sec) 30, 60

Table 6.1:GreenDM Parameters and Abbreviations

tion Threshold (PT) of one LE is reached, data promotion is attempted. The PT is configurable: (1)
a larger PT can decrease the number of promotions and reduce the overhead, especially when there
are lots of accesses; and (2) when the benefit of one promotionexceeds the overhead, a larger PT
reduces the potential benefits. Migration is also throttledby the Maximum Concurrent Migration
Limit (MCML). The MCML specifies the maximum concurrent promotions and demotions. The
MCML is tunable: (1) a larger MCML value can promote hot I/Os to the SSD earlier and prepare
free SSD extent slots earlier to benefit future accesses; and(2) a larger MCML value can potentially
choke the system as ongoing migrations can freeze other I/O requests. Demotion tries to maintain
[LT, HT] free extents in the SSD so that promotion can just usethe free extent instead of waiting for
demotion to proceed. Demotion is designed to decouple from promotion to improve interleaving
between CPU and I/O.

Serving directly from RAM To save I/Os, GreenDM serves buffered I/O requests directlyfrom
RAM instead of the SSD in case of a successful promotion. The size of the RAM buffer is equal to
the size of the hot LE. When a hot LE is being promoted, I/Os mapped to it will be pending before
being served. A naı̈ve approach to serve the pending I/Os is to first migrate one LE from the HDD
to the SSD, and then access the SSD again to serve the pending I/O requests one by one. However,
this approach triggers more SSD accesses than needed. Instead, GreenDM first reads the LE data
from the HDD to RAM; then, GreenDM serves pending I/Os directly from RAM, before the LE
data is written to the SSD. GreenDM invokes the DM APIbio endio to indicate that the I/O
request was served. For each pending I/O, this saves one SSD I/O cycle by serving directly from
RAM. This approach can save many SSD I/Os because when a LE is hot, it is likely to be accessed
many times even during the short period of promotion. If there are more I/Os accessing the same
LE while data is being flushed from RAM to SSD, GreenDM suspends these I/Os in the queue and
serves them from the SSD as usual.

Versatility To enable adaptation to different workloads, GreenDM supports several configurable
system parameters: ES, PT, MCML, SP (spin-down policy), LT,HT, and TW. Table 6.1 summarizes
the parameters in more detail. All parameters can be set at the user level. The ES can be set in the
GreenDM configuration file before the tiering hybrid drive starts service. The users can set the
remaining parameters at any time by accessing the corresponding Linuxdebugfs entries.
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6.1.4 Power Management

In addition to the above data-management techniques, our GreenDM manages the power consump-
tion of the system to save energy. First, GreenDM saves energy simply by using the SSD in pref-
erence to the HDD. To further save power, when the secondary disk is idle, GreenDM spins down
the drive [153]. The side effect of this spin-down is two-fold: (1) it takes time for a spun-down
disk to spin back up, and (2) it reduces the HDD endurance if the HDD is spun up and down too
frequently as each (mechanical) HDD has a limited number of start-stop cycles. GreenDM spins
down the disk when it is idle for at least five seconds, configured byhdparm . We chose five sec-
onds because it is the time it takes to spin down the HDD we used. The smaller the time-out latency
is, the more aggressive the HDD spin-down policy is. When there is access on the spun-down disk,
it spins up automatically.

6.1.5 Endurance Model

Limits
SSD 36,500 GB writes
HDD 300,000 spin up/down cycles

Table 6.2: Devices Wear-out Limits.

GreenDM explores the endurance model for both the SSD and theHDD. For the HDD, GreenDM
utilizes the number of start-stop cycles as the major factortowards endurance.

For the Flash-based SSD, it suffers from the endurance problem because Flash device requires
one block erasure operation before the block can be rewritten. An SSD’s endurance depends on
many internal (often proprietary) parameters, some of which are hard or impossible to measure: in-
ternal write-amplification factor, wear-leveling techniques, FTL’s effectiveness, garbage collection
algorithms, reserved space, internal caching, and more. Inthis paper, we do not attempt to measure
these internals. Instead, to help estimate the SSD’s endurance, we used 4KB as the default SSD
page size, counted each page access (read and write) to the SSD, and formalized our endurance
model to study the trade-offs among performance, energy, and endurance.

Moreover, as the real-time endurance relies heavily on the history usage of the devices, GreenDM
utilizes delta endurance metrics for both SSD and HDD to showthe endurance reduction of each
device in any configured experiment. We summarize the endurance models as follows:

Endussd(t) = 1−
writes(t)

Limitssd
(t > 0) (6.4)

Enduhdd(t) = 1−
#startstop(t)

Limithdd
(t > 0) (6.5)

∆Endussd(∆t) =
∆writes

Limitssd
(∆t > 0) (6.6)

∆Enduhdd(∆t) =
∆#startstop

Limithdd
(∆t > 0) (6.7)

0 ≤ Endussd(t), Enduhdd(t) ≤ 1(t > 0) (6.8)
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Endussd(t) andEnduhdd(t) represent the endurance metric of the SSD device and the HDD
device, at timet, respectively.∆Endussd(∆t) and∆Enduhdd(∆t) represent the delta endurance
(i.e., the endurance reduction) of the SSD device and the HDDdevice during the time period∆t,
respectively. The endurance of SSD at timet is represented by1 minus the fraction of writes per-
formed at timet (i.e., writes(t)) and the total writes limit (i.e.,Limitssd). The more writes are
performed, the less durable the SSD is. Note that reads also affect the SSD’s endurance because
erase operation will be incurred once read disturbance correction kicks in [84]. Since this is fairly
recent reported result and there is no quantitative study onthe endurance effects of the read dis-
turbance, in our work, we convert the effect of reads to writes based on several certain ratios (e.g.,
endurance effects caused by reads is calculated byreads/10 andreads/100). The endurance of the
HDD at timet is represented by1 minus the fraction of start-stop cycles performed at timet (i.e.,
#startstop(t)) and the total cycles limit (i.e.,Limithdd). The more the device performs start-stop
actions, the less durable the HDD is, and the closer it is to failing. We show the limits for both SSD
and HDD in table 6.2 based on the vendor data-sheet.

To simplify the understanding and use of our endurance metric, we defineeu as the unit for the
endurance models as shown in Equation 6.8. We define endurance on a scale of one million parts.
The higher the value is, the more durable the device is: a value of 1,000,000 is given to brand new
drive that is unlikely to break under failure mode I, and a value of 0 is given to a drive that is almost
certain to break under failure mode I in the very near term. For example, a reduction of a device’s
endurance by1, 000eu means that the probability of a device’s failure has increased by 1,000

1,000,000
or

0.1%.

6.1.6 Implementation Details

Concurrency control The Linux DM framework supports concurrent block accesses.Since data
migration is performed in the back-end, it is possible that data migration and an incoming I/O
compete for the same extent. GreenDM uses a spin-lock to protect critical resources, and creates
one atomic counter for each extent to ensure that before GreenDM migrates data, all I/O requests
on associated extents are completed. This counter is incremented once per access on the extent, and
is decremented for each I/O request that is finished. If GreenDM observes that the counter of one
specific extent is larger than zero, it drops the data migration attempt. If the incoming I/O happens
to be in the extent that data migration is going to be performed, GreenDM delays the I/O by putting
it into a queue and serve it later.

Metadata management Metadata (e.g., mapping table and bitmap) is critical for a data-migration
based approach. GreenDM stores metadata in RAM for frequentaccesses. In case of a power out-
age, the system may be inconsistent and lose persistent data. Therefore, GreenDM periodically
flushes metadata to the SSD for recovery. GreenDM also replicates metadata on the HDD for
redundancy. In case of failures, GreenDM reads the latest metadata checkpoint from one of the
persistent drives into RAM. We discuss limitations of the in-memory metadata management in
Section 6.4.

Statistics export To better analyze the dynamic mappings of block I/Os, the effectiveness of data
migrations, and the status of the running system, GreenDM exports several kernel-space statistics
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to user space. GreenDM creates a debugfs entry named “stats”to collect statistic information of
the running system (e.g., the SSD hit ratio, the number of promotions and demotions, the system
status, etc). GreenDM creates a debugfs entry named “table”to export the mapping table to user
level. These statistics were helpful during the development and analysis phases.

Development cost We spent 2 years on this project. We developed around 3,500 LoC in kernel
space for GreenDM, and developed fewer than 100 LoC to plug-in statistic code for Linear. We
used Auto-pilot [146] to help benchmarking, but further developed an additional 2,000 LoC in Bash
and Python to assist in benchmarking and analysis. To automate raw data parsing and plotting, we
developed another 2,000 LoC in Bash and Python. To help profiling the performance, we developed
another 1,000 LoC in Python. We also developed around 500 LoCin C++ to replay the traces.

6.2 Evaluation

1. What are the GreenDM performance, energy, power, and endurance results compared with
other baselines under various workloads?

2. What are the trade-offs among performance, energy, power, and endurance?

3. How much do different tunable parameters affect the trade-offs among performance, energy,
and endurance under various workloads?

6.2.1 Experimental Setup

We experimented on two identical LenovoR© ThinkCenter computers. Using lmbench [17], we
verified that the performance difference of the two machineswas within 2%; and that the power
consumption difference was within 1.6%. Each server has 4GBRAM and one IntelR© CoreTM 2
Quad 2.66GHz CPU. We configured the BIOS identically on both machines. As energy consump-
tion is important to our study, we used the default “ondemand” CPUFREQgovernor [156] and the
default “menu”CPUIDLE governor [75]. We kept all CPU cores online by default. Our tiering hy-
brid drive consists of an Intel SSDSA2CW300G3 300GB SSD and aSeagate ST32000641AS 2TB
HDD. We used only the middle portion of the HDD’s LBA space to average out any ZCAV [151]
effects. The OS, using a Linux 3.5.0 kernel, ran on a separateSATA drive. We prepared several
baselines: (1) SSD-only drive; (2) HDD-only drive; and (3) alinear tiering hybrid drive (i.e.,Lin-
ear) that linearly maps from the VBA space to the LBA space. We added a few statistics counting
code to Linear and named itMylinear in our experiments. We set the DMsplit io option so
that I/Os are split based on the Size (ES). We used1/4 as the default ratio for the SSD partition
size out of the total drive size for our hybrid drive. The ratio is just one example for us to study
the trade-offs among performance, energy, and endurance for the hybrid drive, and it also keeps the
SSD size relatively small compared with the workload working set size.

We connected each computer to a WattsUP Pro ES in-line power meter [136], which measures
the energy drawn by a device plugged into the meter’s receptacle. The power meter uses non-
volatile memory to store measurements every second. Its resolution is 0.1 Watt-hours (1 Watt-hour
= 3,600 Joules) for energy measurements. The accuracy is±1.5% of the measured value plus a
constant error of±0.3 Watt-hours. Its resolution for power measurements is 0.1 Watts. We used
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Workload
Drive Reads Writes
Size Total Avg Sz Total Avg Sz

Web-search32GB 1,055,236 16KB 212 8KB
FIU online 8GB 655,526 8KB 4,211,786 4KB

Table 6.3:Trace Workloads Summary

thewattsup Linux utility to download the recorded data from the meter over a USB interface to
the test machine.

6.2.2 Benchmarks
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Figure 6.5:Web-Search Trace Replay Results. We configured ES to 1MB in GreenDM, to help
with sequential prefetching. HDD spin-down was enabled forall.

We evaluated GreenDM carefully with three general purpose workloads: (1) Web-search trace
workload; (2) FIU’s online trace workload; and (3) File-server workload. We used the Web-search
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and FIU online trace workloads from the UMass Trace Repository [130] and the FIU Trace Repos-
itory [36], respectively. We summarized these traces’ parameters in Table 6.3. Note that the drive
sizes are sized to meet the storage requirements of the two workloads, respectively. We used the
File-server workload from Filebench [35].

GreenDM’s effectiveness depends on the amount of data locality the workload exhibits. There-
fore, for the File-server workload, we varied the frequencythat files are accessed using Filebench’s
Gamma distribution [142,145].

In this Chapter, to understand our GreenDM’s behavior underdifferent conditions, we focused
on parameters that tend to have more impact on the trade-offsamong performance, energy, and
endurance of the tiering hybrid drive. Thus, for example, wetuned ES, PT, and MCML values
for different workloads while keeping the default values for other parameters (i.e., TW=60, LT=64,
HT=128). Specifically, we varied: (1) the Promotion Threshold (PT) and the Maximum Concurrent
Migration Limit (MCML) values for the Web-search trace workload; (2) the Extent Size (ES) for
the FIU online trace workload; and (3) the MCML and the Gamma values for the File-server work-
load. To reduce side-effects due to the SSD’s Garbage Collection (GC), we issued theTRIM [85]
command to the SSD before each experiment. The results we show are general to illustrate the
effects of tuning parameters.

We ran all tests a minimum of three times unless otherwise noted. We computed the stan-
dard deviations and presented as error bars in figures. We used Autopilot [146] to automate the
benchmarks.

6.2.3 Web-Search Trace Workload

We replayed the UMass Web-search trace with our own tool in synchronous mode, without intro-
ducing any delay between two consecutive I/O requests. Since the trace is block-level, we disabled
the OS buffer cache in this experiment. To meet the storage requirement (i.e., 32GB), we set up
the tiering hybrids with the first 8GB from the SSD and the remaining 24GB from the middle of
the HDD. Note that the ratio between the SSD and the HDD was notchosen according to the full
capacity of the two devices we used in the experiments, but was rather chosen based on the total
workload’s working set size so that the SSD capacity is kept relatively small compared to the total
workload’s working set size. We scanned the device initially to fill the mapping table such that
it could represent a more realistic situation where the mapping table was not initially empty. We
present the results in Figure 6.5.

Figures 6.5(a), 6.5(b), and 6.5(c) show that: (1) the SSD-only drive achieves the highest
throughput, the lowest energy consumption, and the highestpower consumption; (2) the HDD-
only drive achieves the lowest throughput, the highest energy consumption, and the lowest power
consumption; (3) tiering hybrids achieve throughput, energy and power consumption in the middle;
and (4) among tiering hybrids, various GreenDM configurations achieve higher throughput, lower
energy consumption, and higher power consumption comparedwith Mylinear since the real-world
Web-search trace exhibits many hot and cold I/O patterns forGreenDM to manage. Figure 6.5(d)
shows that the HDD is rarely spun down for all benchmarks whenthe disk spin-down in enabled.
The reason is that this workload exhibits high randomness and therefore keeps the HDD active most
of the time. Thus, the incurred reduction to the HDD’s endurance can be ignored. Figures 6.5(e)
and 6.5(f) show that: (1) the HDD-only drive does not reduce the SSD’s endurance since there are
no I/O accesses to the SSD; (2) the Mylinear tiering hybrid drive wears out the SSD the slowest
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since part of the I/Os goes to the HDD; (3) the GreenDM tieringhybrid drive wears out the SSD
the fastest since data migration causes lots of SSD reads andwrites; and (4) the SSD-only drive
reduces the SSD endurance in the middle since there is no datamigration at all. As tiering hybrids
can better trade-off performance, capacity, and cost, we focus our study on the trade-offs for tiering
hybrid drives.

Higher throughputs lead to larger energy savings, as shown in Figures 6.5(a) and 6.5(b). The
reason is that it takes less time to finish the same amount of work when the throughput is higher
and the system-level average power consumption between GreenDM and Mylinear is close (see
Figure 6.5(c)).

There are trade-offs between performance and power consumption. As shown in Figures 6.5(a)
and 6.5(c), GreenDM achieves higher throughput (198–325%)than Mylinear, but consumes slightly
more power (5%) since the faster SSD I/Os indirectly keep theCPU and RAM busier, and shift the
bottleneck a bit towards the CPU. This keeps the system more active during the run, and shows
the trade-off relationship between performance and power consumption for this workload. Note
that the SSD-only based system consumes a little bit higher power (1%) than GreenDM because it
makes the CPU and RAM even busier.

There are trade-offs between performance and the SSD endurance. As shown in Figures 6.5(a),
6.5(e), and 6.5(f), GreenDM achieves higher performance than Mylinear, but reduces the SSD’s
endurance more. When the ratio of read-to-write effect is1/10, the reduction goes from 32× to
70× more. When the ratio of read-to-write effect is1/100, the reduction goes from 186× to 516×
more. The reason is two-fold: (1) GreenDM performs many datamigrations to separate hot and
cold data; and (2) Web-search workload has many more reads than writes and reads are not as
effective as writes in reducing the SSD’s endurance [84]. Note that MCML values become less
effective when the PT value becomes larger since a larger PT value leads to smaller promotions.

Different GreenDM tunable parameters have different effects on performance, energy, and de-
vice endurance. As shown in Figures 6.5(a), 6.5(b), 6.5(d),6.5(e), and 6.5(f), different MCML
and PT values affects the performance, energy, and endurance in different ways. For example,
when the PT and MCML values are 1 and 64, respectively, GreenDM improves throughput by
198%, saves energy by 64%, and reduces the SSD’s endurance by70× and 516× more when the
ratio of read-to-write effect is1/10 and1/100, respectively. However, when the PT and MCML
values are 4 and 16, respectively, GreenDM improves throughput by 325%, saves energy by 75%,
and reduces the SSD’s endurance by 44× and 295× more when the ratio of read-to-write effect
is 1/10 and1/100, respectively. The reason is that different GreenDM parameters yield different
benefits and (CPU and I/O) overhead. Medium PT and MCML valuestend to achieve the best
balance of benefits vs. overhead (see Figure 6.5(a)) for thisworkload: (1) a too large PT value can
reduce the migration benefits and a too small PT value can increase the migration overhead for this
workload; (2) when the PT value is small, large MCML values can consume more CPU and I/O
resources on the system; and (3) when the PT value is large, large MCML values can promote hot
I/Os to the SSD faster. However, when the PT value is larger, it incurs less reduction to the SSD’s
endurance (see Figures 6.5(e) and 6.5(f)). In sum, there is no single best configuration for this
workload. Therefore, to achieve different trade-off goals, the MCML and PT values have to be
chosen carefully.
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Figure 6.6:Online Trace Replay Results. As example, we set MCML to 16 and PT to 1. Disk
spin-down was enabled for all.

6.2.4 FIU Online Trace Workload

We replayed the FIU online trace using our own tool as mentioned in Section 6.2.3. We disabled the
OS buffer cache as the trace is a block-level one. To meet the storage requirement (i.e., 8GB), we
set up the tiering hybrids with the first 2GB from the SSD and the remaining 6GB from the middle
of the HDD. We scanned the device initially to fill the mappingtable. We present the results in
Figure 6.6.

Figures 6.6(a), 6.6(b), and 6.6(c) show that: (1) the SSD-only drive achieves the highest
throughput, the lowest energy consumption, and a medium power consumption; (2) the HDD-
only drive achieves the lowest throughput, the highest energy consumption, and the lowest power
consumption; (3) tiering hybrids achieve throughput and energy consumption in the middle; and (4)
among tiering hybrids, various GreenDM configurations achieve higher throughput, lower energy
consumption, and higher power consumption compared with Mylinear, due to GreenDM’s efficient
data management. Figure 6.6(d) shows that GreenDM spins down the HDD to some degree when
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the ES varies. Otherwise, the HDD is rarely spun down for other benchmarks. Since only a few
start-stop cycles are caused, the reduction to the HDD’s endurance can be ignored. Keeping the
HDD idle could save some power, but since the SSD indirectly helps the CPU stay busier and the
spin down/up process consumes more power, the GreenDM system-level power consumption is
thus slightly higher than all others. Figures 6.6(e) and 6.6(f) show that: (1) the HDD-only drive
does not reduce the SSD’s endurance; (2) the SSD-only drive wears out the SSD to a moderate
degree compared with tiering hybrids; and (3) GreenDM configurations wears out the SSD faster
than Mylinear. Next we discuss the trade-offs for tiering hybrid drives.

Higher throughputs lead to lower energy consumption, as shown in Figures 6.6(a) and 6.6(b).
The reason is similar to what we have explained in Section 6.2.3.

There are trade-offs between performance and power consumption. As shown in Figure 6.6(c),
GreenDM achieves higher throughput (58–142%) than Mylinear. However, it consumes more
system-level power on average than Mylinear does, ranging from 4–8%, due to the aforementioned
reasons.

There are trade-offs between performance and the SSD endurance. As shown in Figures 6.6(a),
6.6(e), and 6.6(f), GreenDM achieves higher throughput than Mylinear does, but it reduces the
SSD’s endurance by 14–19% more and by 11–15% more when the ratio of read-to-write effect is
1/10 and1/100, respectively, as we explained in Section 6.2.3.

Different GreenDM Extent Sizes (ES) have different effectson GreenDM’s performance, en-
ergy consumption, and device endurance. As shown in Figures6.6(a), 6.6(b), 6.5(d), 6.6(e), and
6.6(f), different ES values lead to different results. For example, when the ES is 4KB, GreenDM
improves throughput by 58%, saves energy by 33%, and reducesthe SSD’s endurance by 14%
and 11% more when the ratio of read-to-write effect is1/10 and1/100, respectively. However,
when the ES is 64KB, GreenDM improves throughput by 142%, saves energy by 55%, and reduces
the SSD’s endurance by 19% and 15% more when the ratio of read-to-write effect is1/10 and
1/100, respectively. The larger the ES is, the more effective the sequential pre-fetching algorithm
is. Therefore, it leads to higher throughput and larger energy savings. However, larger ES causes
more reduction to the SSD’s endurance. It suggests the ES hasto be chosen carefully for the system
to achieve the best trade-offs because there is no single optimal configuration.

6.2.5 File-Server Workload

We ran the File-server workload with a Gamma distribution inFilebench [35]. We varied the
Gamma value to show different results. The smaller the Gammavalue is, the higher the data
locality is since smaller Gamma values lead to narrower file accesses: that is, a certain subset of
data items (i.e., Logical Blocks) would be referenced more than others. We configured the usable
RAM size to be 1GB to ensure that the workload would generate many low-level I/Os. To meet
the storage requirement (i.e., 8GB), we set up the tiering hybrids with the first 2GB from the SSD
and the remaining 6GB from the middle of the HDD. We report theresults in Figure 6.7. Note that
since the OS buffer cache is enabled, to better estimate the SSD endurance change, we assume all
I/Os for SSD-only benchmark go to the low-level device.

Figures 6.7(a), 6.7(b), and 6.7(c) show that: (1) the SSD-only drive achieves the highest
throughput, the lowest energy consumption, and the highestpower consumption; (2) the HDD-
only drive achieves the lowest throughput, the highest energy consumption, and medium power
consumption; (3) tiering hybrids achieve throughput, energy and power consumption in the middle
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Figure 6.7:Fileserver Workload Results. We configured the ES to be 128KB in GreenDM. It is
equal to the average I/O size to avoid the migration waste andI/O split overhead. The PT value was
fixed at 1, as example. Disk spin-down was enabled for all.

in general; and (4) among tiering hybrids, various GreenDM configurations achieve higher through-
put, lower energy consumption, and higher power consumption compared with Mylinear through
efficient data management. Note that in Figure 6.7(a), thereare larger throughput variations when
the gamma parameter is 1. The reason is that when the data locality is high, the OS buffer cache can
kick in and make the overall throughput vary wildly, resulting in a bi-modal distribution [65, 126].
We have rerun this experiments ten times more, plotted a histogram, and verified that there were
two throughput modes: one from the RAM buffer cache and a second from the low-level tiering hy-
brid drive. Figure 6.7(d) shows that the HDD is spun down around 10% of the time when Gamma
is small. The reason is that when the Logical Blocks (LBs) aremore narrowly localized, GreenDM
has a larger chance to spin down the HDD. Note that, although GreenDM shows the HDD being
spun down, it incurs only a small number of HDD start-stop cycles that can be ignored towards the
HDD’s endurance reduction. Figures 6.7(e) and 6.7(f) show that: (1) the HDD-only drive does not
reduce the SSD’s endurance; (2) the SSD-only drive wears outthe SSD to a moderate degree com-
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pared with tiering hybrids; (3) GreenDM configurations wearout the SSD faster than Mylinear;
and (4) larger Gamma value also tends to wear out the SSD faster. Next we discuss the trade-offs
on tiering hybrid drives.

Higher throughput leads to larger energy savings. We can seefrom Figures 6.7(a) and 6.7(b)
that when the throughput is higher, the corresponding energy savings are larger under any condition.
The main reasons are that: (1) it takes less time to finish the same amount of work when the
throughput is higher; and (2) the system-level average power consumption between GreenDM and
Mylinear is close (see Figure 6.7(c)).

There are trade-offs between performance and power consumption in GreenDM. As shown in
Figures 6.7(a) and 6.7(c), GreenDM achieves higher throughput (50–267%) compared to Mylinear,
but consumes 3% more power. The reason is that because the SSD’s I/Os are faster than the HDD,
the bottleneck is shifted further to the CPU and RAM, making the whole system more active and
consuming more power, even though the HDD is spun down in somedegree.

There are trade-offs between performance and SSD endurance. As shown in Figures 6.7(e) and
6.7(f), GreenDM achieves higher throughput than Mylinear does, but it wears out the SSD faster
from 4× to 8×, because of the same reason as we explained in Section 6.2.3.Moreover, a larger
Gamma value can wear out the SSD faster. The reason is that when the Gamma parameter is larger,
I/Os are distributed over a wider range of LBs. Hence, there are more promotions and demotions,
which eventually increases the SSD read and write counts andreduces the SSD’s endurance.

Different GreenDM tunable parameters have different effects on performance, energy, and de-
vice endurance. As shown in Figures 6.7(a), 6.7(b), 6.7(d),6.7(e), and 6.7(f), different MCML
values under different data locality affect the performance, energy, and endurance in different ways.
For example, when the Gamma and MCML values are 1 and 64, respectively, GreenDM improves
throughput by 267%, saves energy by 50%, and reduces the SSD’s endurance by 4× more. How-
ever, when the Gamma and MCML values are 16 and 4, respectively, GreenDM improves through-
put by 93%, saves energy by 71%, and reduces the SSD’s endurance by 7× more. The reason
is that different GreenDM parameters create different benefits and (CPU and I/O) overhead under
different data locality: (1) when the Gamma value is small, larger MCML values can promote hot
data to the SSD faster; and (2) when the Gamma value is large, smaller MCML values incurs less
CPU and I/O overhead. However, different configurations with different Gamma values wear out
the SSD to a different degree. Therefore, to meet different requirements, tunable parameters have
to be chosen carefully.

6.2.6 Summary

In this section, we summarize the best configuration for eachof workloads under the current setup.
Future storage system designs can potentially refer to the conclusion here.

1. For the read-intensive Web-search workload, medium PT and MCML values lead to the best
throughput for GreenDM due to the net effect of migration benefit over overhead. In terms of
SSD endurance reduction, the PT value is the dominant factorsince it affects the SSD access
to a large degree. A smaller PT value wears out the SSD faster since it incurs more SSD
accesses.

2. For the write-intensive Online workload, a larger ES value leads to higher throughput for
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GreenDM since it introduces more efficient prefetching. However, a larger ES value wears
out the SSD faster since it incurs more SSD accesses.

3. For the read- and write- intensive fileserver workload, the Gamma value is the dominant
factor for GreenDM’s throughput and SSD endurance reduction since data locality matters
significantly for GreenDM to work. When Gamma is small, a large MCML value achieves
better throughput and wears out the SSD slower since GreenDMmigrates hot I/Os earlier
for both GreenDM and the OS buffer cache. When Gamma is large,a small MCML value
achieves better throughput and wears out the SSD slower since it incurs less overhead for
GreenDM and the OS buffer cache.

4. For all workloads, since the system (e.g., CPU and RAM) becomes busier due to GreenDM’s
data management, the system consumes slightly more power than the Mylinear baseline does.

5. For all workloads, since the system power consumption is not largely different, a larger
throughput leads to smaller energy consumption when the total amount of workload is fixed.

6.3 Related Work

Our work is different from past ones in three ways: (1) we useda tiering hybrid drive; (2) we
developed an endurance metric and studied the trade-offs among performance, energy, and device
endurance in a tiering hybrid drive empirically; and (3) we offered a versatile solution to enable the
system parameters to be tuned for specific workloads.

There are many existing systems exploring SSD as a cache [4,11,37,53,70,73,83,92–94,103,
112, 129, 133], where SSDs are used to cache data. Only some [23, 49, 68, 123, 129, 147] have
explored using SSDs as primary storage to better trade-off throughput, capacity, and cost. There
are also several tiering hybrid drives in industry: Apple’sFusion Drive [141], Microsoft’s Ready
Drive [100], Western Digital’s Solid State Hybrid Drive (SSHD) [138], Tintri’s VMstore [134], and
Dell’s Compellent Flash Array [30]. However, most of their internal designs and source code are
not publicly available. GreenDM is a tiering hybrid drive, whose source code and internal designs
are scheduled to be released under the GPL for the entire community to utilize.

Many performance, energy, and endurance relevant studies are simulated: FlashTier [112],
SieveStore [103], BEST [53], HybridStore [68], Pearl [147], GreenHDFS [67], PDC [101], NVCach-
e [14], and FAWN [5]. While simulation can help provide earlyuseful results, we believe that
empirical experiments are more realistic. GreenDM performs real-world experiments to study the
trade-offs among performance, energy, and endurance of a tiering hybrid drive.

For the SSD endurance metric, past studies normally refer tothe number of erasure cycles
that can be performed on an SSD during its lifetime [74], and do not provide a concrete model
and metric to help study the SSD’s endurance. One study [131]explores a hardware-specific SSD
endurance model. While it is useful in some cases, it requires hardware parameters (e.g., voltage,
density, etc.) to estimate the endurance through simulation, and can be inconvenient for user-level
endurance estimation in reality. GreenDM goes further by developing an endurance model and
metric to help study the trade-offs among performance, energy, and endurance in a versatile hybrid
drive.
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Many storage systems use SSDs as the front tier, but they aim for high performance, efficient
energy consumption, or improved endurance. Thus, they often do not closely study the trade-offs
among performance, energy, and endurance. Moreover, many studies do not offer flexible policies
to enable adaptation to different workloads. HybridStore [68] consolidates SSDs and HDDs for a
cost-efficient storage system while meeting the performance and lifetime requirements. It is based
on simulation, and does not study the trade-offs among performance, energy, and endurance of the
tiering hybrid drive. EDT [49] dynamically migrates a fixed-size extent among different tiers to
satisfy performance requirements and reduce power consumption. BTIER [129] uses a fast storage
medium for caching and migrates aged data to a lower tier overtime for high performance. Its
migration policies are somewhat configurable, but it does not consider the power consumption
and the endurance of the tiered storage. Pearl [147] tries tobalance the performance, energy, and
reliability of disk arrays by migration. It relies on simulations alone and does not empirically study
the trade-offs in details. Hystor [23] and Aggregate [123] use SSDs as the front tier primary storage
for high performance only. GreenHDFS [67] explores how to divide servers in a data-center into
different zones to save power while maintaining performance. PDC [101] discusses how to migrate
data center workloads to fewer disks so that others can be putinto lower-power states to save
energy. NVCache [14] utilizes NVRAM for the I/O subsystem for lower power consumption.
GreenFS [64] allows hard disks to be kept off most of time to minimize the disk-drive-related
power consumption. MAID [24] uses data placement, scrubbing, and recovery techniques to put
many of the drives in the system into a low-power mode to save energy. Pergamum [122] adds
NVRAM at each storage node to allow inter-disk data verification while the disk is powered off
to save power in a distributed system. PARAID [139] allows adaptive transitions between several
different RAID layouts to trade off energy, performance, and reliability. FAWN [5] uses “wimpy”
nodes with power-efficient CPUs and I/O capabilities to savepower while achieving performance
and scalability in a distributed system.

GreenDM is different from the above approaches. It exploresin depth the trade-offs among
performance, energy, and device endurance in a hybrid driveand comes with a versatile approach
so that important system parameters can be investigated andtraded off to be best tuned for specific
workloads.

6.4 Limitations

While GreenDM estimates the endurance metric by counting the SSD reads and writes and the start-
stop (spin-up/down) cycles of the HDD, the endurance metriccan be improved. A finer-grained
counting in terms of the internal SSD erasure cycles and the FTL’s behavior could help build a
more accurate endurance estimation for the SSD.

GreenDM provides coarse-grained control (i.e., tunable parameters) to trade-off performance,
energy, and device endurance under different workloads. Wedo not offer fine-grained control (e.g,
QoS). To reach that goal, we first have to formally study the relationship between performance, en-
ergy, device endurance, and various controllable system parameters. We believe machine-learning-
based approaches (e.g., hill-climbing [76] and control theory [78, 155]) could help explore such
relationships.

GreenDM currently flushes dirty data periodically. It can bedangerous. To provide transaction
support, it requires a journaling mechanism for tiering hybrid storage systems.
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We currently build the virtual device from two drives only: an SSD and an HDD. We could
potentially scale the current setup to multiple drives and more types (e.g., SAS, Shingled, PCM,
and NAS) and develop more generalized techniques.

6.5 Conclusion

We designed, built, and evaluated the versatile tiring hybrid drive to study the trade-offs among
performance, energy, and endurance. We presented interesting results for various trade-offs ob-
served. For the FIU online trace workload, GreenDM achievedhigher throughput (58–142%) than
Mylinear, but consumed more power (4–8%) and further reduced the SSD’s endurance by 11–15%
when the ratio of read-to-write effect is1/100. We demonstrated the importance of matching tun-
able parameters to different workloads to better trade-offperformance, energy, and endurance. For
the FIU online trace workload, a larger extent size (ES) leadto higher throughput and larger energy
savings, but also further reduced the SSD’s endurance.

Next, we discuss the cost evaluation results for GreenDM. Itcan help justify the performance
gained.
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Chapter 7

Cost Evaluation

Storage systems are getting more complex with solid-state technologies rapidly taking hold, shin-
gled devices available, and hybrids thereof being proposedand commercialized [94, 133, 134]. As
the amount of digital data grows rapidly, virtualization and cloud technologies highlight the need
to consolidate storage and save on the longer-term costs of data storage. Complex workloads play
a key role in how storage systems behave. The interplay of hardware, software, and workloads can
have significant impact on throughout, energy consumption,and device durability. We propose to
evaluate modern storage systems from a monetary cost perspective that includes many dimensions
as well as traditional performance [42]. We assume that server-class storage systems should be uti-
lized at high yields, due to consolidation and virtualization. We further propose that monetary costs
should be evaluated over the expected lifetime of the storage system, typically years, and consider
device wear-out and replacement [107].

Several studies integrate SSDs into storage systems, and some consider the original purchase
cost or short-term energy use, but neglect to consider the long term impact on device wear-out [49,
52,68,92,103,123]. Some simulated the results instead of conducting empirical studies [68,103].

In this chapter, we propose a general cost model to study the cost dimension of storage systems.
Our cost model considers not only the initial purchase cost,but also the total cost of ownership over
time. Our cost model includes several factors for the total cost of ownership: (1) energy cost; (2)
power cost; (3) device endurance cost; and (4) service cost.We also scale the experiments to
observe long-term effects.

We conducted extensive experiments using many workloads and configurations—including
single-drives and hybrids. We observed that for some workloads, an SSD-only solution incurs
the highest overall costs in the short term but much lower costs in the long run. We also observed
that hybrids incurs medium initial purchase investments, but can incur long-term costs of varying
degrees depending on the workloads. That is why we believe that future storage systems must be
evaluated across dimensions of lifetime cost, performance, as well as workloads.

We discuss the cost model in Section 7.1. We provide one working example based on the cost
model in Section 7.2. We present the associated cost evaluation results of GreenDM under several
workloads in Section 7.3. Our results contain several interesting observations. We discuss related
work on cost dimension of storage systems in Section 7.4. We discuss the limitations of our current
cost model in Section 7.5. We conclude the cost evaluation chapter in Section 7.6.
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7.1 Cost Model

This section details our work in building a cost model to further justify the performance trade-offs
explored. It can potentially provide valuable hints to the future design of storage systems.

A cost metric is important to justify storage systems’ expenditures [49, 98, 122]. With the
advent of Flash-based SSD that is more expensive, the cost dimension of storage systems with SSD
deployed is becoming more interesting to explore. Generally, the cost in dollars comes from the
upfront purchase and the total cost of ownership (TCO [47,127]). More specifically, the cost model
combines several factors below.

1. The upfront capacity purchase.

2. The recurring energy and power cost.

3. The device replacement cost.

4. The service cost (e.g., rack space, man power, etc).

We also use a time factor to predict the long-run cost. To explain the model better, we summa-
rize the calculation formula as follows:

1 ≤ i ≤ n (n : the number of devices) (7.1)

1 ≤ T imeFactor (integer, default = 1) (7.2)

Cost = Purchase+ TCO (7.3)

Purchase =

n
∑

i=1

Costdevi (7.4)

Costdevi = Normalized Pricedevi × Capacitydevi (7.5)

TCO = T imeFactor × (Costenergy + Costpower + Costendurance) + Costservice (7.6)

Costenergy = LookupLIPA(Amountenergy) (7.7)

Costpower = LookupLIPA(Amountpower) (7.8)

Costendurance =
n

∑

i=1

Costendui
(7.9)

Costendui
= Costdevi ×

devi wearout

Limiti
(7.10)

devi wearout =

{

writes if devi = SSD

#startstop if devi = HDD
(7.11)

Limiti =

{

Limitwrites if devi = SSD

Limitcycles if devi = HDD
(7.12)

Costservice = fixed estimation (7.13)

Equation 7.1 names a variable (i.e.,i) for each of the devices. Equation 7.2 specifies the time
factor range for future projection. Equation 7.3 shows thatthe total cost (i.e.,Cost) depends on
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the upfront purchase cost (i.e.,Purchase) and the Total Cost of Ownership (TCO) (i.e.,TCO).
Equations 7.4 and 7.5 show that the upfront purchase dependson normalized price of each device
(i.e., Normalized Pricedevi) and the capacity of each device (i.e.,Capacitydevi). Note that the
normalized price of each device can change over time. In our thesis, we present the results based
on the prices the Intel SSD and Seagate HDD we purchased in 2012.

Prices ($ per KWh/KW)
under 7KW under 145KW over 145KW

Energy Power Energy Power Energy Power
offpeak 0.0863 0 0.0191 0 0.0218 0

peak 0.1052 0 0.0340 48.78 0.0446 28.76
intermediate 0.0863 0 0.0317 5.94 0.0356 8.13

Table 7.1: LIPA energy and power prices for commercial use asof May 2013.

Equation 7.6 shows that the TCO depends on the energy cost (i.e.,Costenergy), the power cost
(i.e.,Costpower), the endurance cost (i.e.,Costendurance), and the service cost (i.e.,Costservice). We
also use a time factor (i.e.,T imeFactor) to predict future costs associated with the energy, power,
and endurance in a longer run (i.e., run the same workload multiple times). Equations 7.7 and 7.8
show that we can get the energy and power cost by looking up theprice table (i.e.,LookupLIPA)
provided by the local electricity authority (i.e., Long Island Power Authority), as shown in Ta-
ble 7.1. Note that we currently assume: (1) the energy is distributed by3/8, 1/4, and3/8 in
accordance with offpeak, peak, and intermediate; (2) the power in offpeak, peak, and intermedi-
ate is the average power. The energy and power measurement isbased on the whole system. We
used a simplified method to estimate the energy and power cost. Equation 7.9 show that we can
get the total endurance cost by summarizing each device’s endurance cost (i.e.,Costendui

). Equa-
tion 7.10 shows that we can get each device’s endurance cost by multiplying the wear out degree
(i.e., devi wearout

Limiti
) of each device type by the device’s cost (i.e.,Costdevi). Note that if the device is

worn out a certain degree, we then need to save money accordingly to buy a new device. Note that
the wear-out degree and the endurance limit of each device may be different.

Limits
SSD 36,500 GB writes
HDD 300,000 spin up/down cycles

Table 7.2: Devices wear-out limits.

Equations 7.11 and 7.12 show that the Flash-based SSD endurance depends more on the writes
wear out (i.e.,writes). Note that reads also affect SSD’s endurance. In our work, we convert
the effect of reads to writes based on a certain ratio (i.e., writes caused by reads is calculated as
reads/10). They also show that for HDD, the number of HDD start-stop cycles (i.e.,#startstop)
is one major factor. Other factors include vibration, sector errors, and so on [102]. We use the
number of HDD start-stop cycles for simplicity. Table 7.2 present the detailed limits from the
hardware manufacture. Equation 7.13 shows that we can further use fixed estimation as the service
cost (Costservice) for the hardware setup. To better understand the model as wedescribed above,
we come up with a working example in the following section.
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7.2 Working Example

This Section illustrates how the above cost model works using some example numbers.
Suppose, we have a tiering hybrid drive of 32GB capacity in total. The tiering hybrid drive is

composed of one Flash-based SSD and one HDD: 8GB from the SSD and 24GB from the HDD.
The total capacity of the SSD device is 300GB and the cost for the device is $529. The total
capacity of the HDD device is 2TB and the cost of the device is $200. The normalized prices for
the SSD and HDD are $1.76 per GB and $0.1 per GB, respectively.The Flash-based SSD can
endure a total amount of 36,500GB writes, and the HDD can endure a total amount of 300,000
start-stop cycles. The tiering hybrid drive is installed inone rack server machine that occupies
some space that costs $100 one time in total. The server runs some benchmark (e.g., fileserver
workload), which consumes energy and power. Suppose the server finishes running 100GB amount
of fileserver workload, and consumes a total amount of 8kWh energy and a average power of 100W.
Suppose running the workload causes 365GB worth of writes tothe SSD and 10 start-stop cycles
to the HDD.

Now, what would be the associated cost according to the abovemodel?
The total cost of purchase would be $16.48: $14.08 ($1.76 × 8) comes from the SSD device

cost and $2.4 ($0.1 × 24) comes from the HDD device cost. Since the average power is less than
7KW, the energy cost would be $0.6419 ($0.0863× 3 + $0.1052× 2 + $0.0863 × 3). The power
cost would be $0 ($0×0.1). The endurance cost for SSD would be $5.29 ($529×365/36500). The
endurance cost of the HDD would be $0.01 ($200× 10/200000). Since the service fee is $100 and
the time factor is 1, the total cost of running the 100GB fileserver workload would be $122.4219
($16.48 + 1 × ($0.6419 + $0 + $5.29 + $0.01) + $100). If the time factor becomes 100, then the
total cost would change to be $710.67 ($16.48 + 100× ($0.6419 + $0 + $5.29 + $0.01) + $100).

Next, we evaluate the associated costs under several workloads in the following sections.

7.3 Cost Results

In this Section, we present the associated cost results for GreenDM under various workloads as we
discussed in Chapter 6.

7.3.1 Web-Search Trace Workload

We present the results of Web-search trace workload in Figure 7.1. As we can see from Fig-
ures 7.1(a), 7.1(b), 7.1(c), 7.1(d), 7.1(e), and 7.1(f), when the time factor is 1, the SSD-only
drive based system has the highest associated cost, the HDD-only drive based system has the lowest
associated cost, and tiering hybrids based systems have medium associated costs. However, as the
time factor increases, the associated cost of the HDD-only drive based system stays the least, the
associated cost of the SSD-only drive and Mylinear tiering hybrid drive based system increases in
the middle, and the associated cost of GreenDM tiering hybrid drive based system increases the
most. Among tiering hybrids, GreenDM incurs more cost than Mylinear does. The larger the time
factor is, the larger the difference is. When the time factoris 1, the difference is only $1. How-
ever, when the time factor is 1,000, the difference is maximally $354, and when the time factor is
100,000, the difference is maximally $35,300. The main reason is that GreenDM comes with many
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Figure 7.1: Web-Search workload results. We scale the time factor to show various results.
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more data migrations that reduces the SSD’s endurance more.Note that for Web-search workload,
when the time factor is 100,000, it translates to 2.1 years onaverage (min and max are 0.2 and 7.7
years, respectively) for all types of benchmarks—a reasonable timeframe for long-time storage.

We can also see from the above figures that different GreenDM MCML and PT values lead to
different associated costs. The difference varies when thetime factor varies. For example, when the
time factor is 1, the difference is almost zero; when the timefactor is 10, the difference varies from
$0 to $2; when the time factor is 100, the difference varies from $0 to $20; when the time factor is
1,000, the difference varies from $1 to $193; when the time factor is 10,000, the difference varies
from $1,600 to $3,500; and when the time factor is 100,000, the difference varies from $16,100
to $35,300. The main reason is that different GreenDM MCML and PT combinations affect the
trade-offs of performance, energy, and endurance in different ways as we have already discussed in
Chapter 6.

For this workload, a larger PT value tends to incur less cost in the long run since a larger PT
causes less number of data migrations. When PT is 1, a smallerMCML value tends to incur less
cost in the long run since a smaller MCML value in this case causes less frequent data migration.
Therefore, system parameters have to be chosen carefully tojustify the gained performance.

7.3.2 FIU Online Trace Workload

We present the results of FIU online trace workload in Figure7.2. As we can see from Fig-
ures 7.2(a), 7.2(b), 7.2(c), 7.2(d), 7.2(e), and 7.2(f), when the time factor is 1, the SSD-only
drive based system incurs the highest cost, the HDD-only drive based system incurs the least cost,
tiering hybrids based systems incur cost in the middle. However, as the time factor increases, the
incurred cost of the HDD-only drive based system increases the least and becomes the smallest
one, the incurred cost of the SSD-only drive based system increases greatly and becomes one of
the largest ones, and the incurred costs of tiering based systems increase in large degrees as well.
Among the tiering hybrids, GreenDM causes more cost than Mylinear does. The larger the time
factor is, the larger the difference is. When the time factoris 1, the difference is $0. However, when
the time factor is 1,000, the difference is maximally $42, and when the time factor is 100,000, the
difference is maximally $4,200. The reason is similar to what we mentioned above. Note that for
FIU online workload, when the time factor is 100,000, it translates to 3.3 years on average for all
types of benchmarks (min and max are 0.7 and 9.8 years, respectively).

We can also see from the above figures that different GreenDM ES values incur different costs.
The difference varies as the time factor varies. For example, when the time factor is 1 and 10,
the difference is zero; when the time factor is 100, the difference varies from zero to $1; when
the time factor is 1,000, the difference varies from $6 to $12; when the time factor is 10,000, the
difference varies from $0 to $100; and when the time factor is100,000, the difference varies from
$600 to $1,200. The main reason is that different GreenDM ES values also affect the trade-offs of
performance, energy, and endurance in different ways as we have discussed in Chapter 6.

For this workload, a smaller ES seems to incur less cost in thelong run since smaller ES leads to
smaller SSD accesses. Therefore, the ES parameter has to be chosen carefully to justify the gained
performance.
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Figure 7.2: Online trace workload results. We scale the timefactor to show various results.
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Figure 7.3: Fileserver workload results. We scale the time factor to show various results.
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7.3.3 File-Server Workload

We present the results of file-server workload in Figure 7.3.As we can see from Figures 7.3(a),
7.3(b), 7.3(c), 7.3(d), 7.3(e), and 7.3(f), when the time factor is 1 and 10, the SSD-only drive
based system tends to incur the highest cost, the HDD-only drive based system tends to incur the
lowest cost, and tiering hybrid drive based systems tend to incur costs in the middle. However, as
the time factor increases further, the incurred cost of the HDD-only drive increases the least, the
incurred costs of GreenDM based systems increase the most, and the SSD-only drive and Mylinear
drive based systems increase in the middle. Among the tiering hybrids, GreenDM causes more
cost than Mylinear does. The larger the time factor is, the larger the difference is. When the time
factor is 1, the difference is virtually zero, however, whenthe time factor is 1,000, the difference
is maximally $510, and when the time factor is 100,000, the difference is maximally $41,000. The
number of data migrations in GreenDM is the main reason. Notethat, for fileserver workloads,
when the time factor is 100,000, it translates to 1 year on average for all types of benchmarks (min
and max are 0.2 and 2.4 years, respectively).

Different GreenDM MCML values under different Gamma valuescan incur different costs. The
difference varies as the time factor vary. When the time factor is 1, the difference is virtually $0.
When the time factor is 10, the difference is within $1. When the time factor is 100, the difference
varies from $1 to $5. When the time factor is 1,000, the difference varies from $5 to $53 . When the
time factor is 10,000, the difference varies from $100 to $500. When the time factor is 100,000, the
difference varies from $500 to $5,300. The reason lies in thefact that different GreenDM MCML
values under different Gamma values affect the trade-offs of performance, energy, and endurance
in different ways as we discussed in Chapter 6.

For this workload, a large MCML value of 64 under smaller Gamma values tend to incur the
least cost in the long run since: (1) a smaller Gamma value causes less number of data migrations;
and (2) when Gamma value is small, a large MCML of 64 enables more I/Os to be served from OS
page buffer. Therefore, system parameters have to be chosencarefully to better justify the gained
performance.

7.3.4 Summary

We summarize the interesting observations across all workloads regarding the associated cost as-
pect of GreenDM as follows:

1. For the read-intensive Web-search workload, a larger PT value incurs less cost in the long
run; for the write-intensive FIU online trace, a smaller ES value incurs less cost in the long
run; for the file-server workload that has a different read/write ratio, a large MCML value
when the Gamma value is small incurs the least cost in the longrun.

2. The HDD-only drive based system has the least initial capital investment, and incurs the least
cost in dollars in the long run. Note that the HDD-only drive based system has the lowest
performance as well.

3. The SSD-only drive based system has the largest initial capital investment, and can incur low
and high long-term costs for read-intensive and write-intensive workloads, respectively. Note
that the SSD-only drive based system has the highest performance as well.
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4. Tiering based hybrid systems have medium initial capitalinvestment, and can incur costs in
different degrees in the long run. Note that the tiering hybrids based system has a medium
throughput as well.

5. Depending on the data management policy, the associated costs of different tiering hybrids
can vary a lot in the long run: GreenDM triggers more cost thanMylinear does; however,
GreenDM achieves better performance than Mylinear does.

6. Different GreenDM configurations lead to a certain degreeof difference in cost, which in-
creases as the time factor increases. The difference also largely depends on the workloads.

7.4 Related Work

Gartner reported that the total cost of ownership is 5–10× that of the initial purchase cost for stor-
age systems [42]. However, the study is old (1999) and does not consider modern deployment using
SSDs. More recently, Gartner performed additional long-term cost studies for desktops [43] and
notebooks [44]; however, these studies are only for the computers (i.e., hardware and software pur-
chase and update), not dedicated for storage systems, and they do not consider device replacement
cost.

There are several related studies on the cost dimension of storage systems with SSD deployed.
Some of them are using simulation [68,103], instead of performing realistic experiments. Some [49,
92] do not consider the SSD endurance cost in their total costcalculation. The cost dimension of
storage systems with SSD deployed is discussed a lot in industry as well [38,123], however, detailed
cost model that considers the total cost of ownership is not publicly available.

Our work is different in several aspects: (1) we collect realistic energy and power numbers
from experiments; (2) we calculate the SSD endurance cost aswell; (3) we scale the experiments
to observe long-term effects; and (4) We developed and discussed a cost model containing the total
cost of ownership.

7.5 Limitations

Modeling the cost dimension of storage systems is not an easytask. There is certainly limitations
regarding our current cost model. Specifically, we are not considering the following cost aspects
yet: (1) computer resource cost; (2) air conditioning cost;(3) labor power cost; and (4) varying
service cost. We are also simplifying several conditions tomake the cost model easy to understand:
(1) the hardware setup in a real data center may be more complex than our setup in the experiments;
(2) the service cost may not be fixed; and (3) the workloads in areal data center may be more
complex than the workloads we used in the experiments. Therefore, our cost model approach is
more like a best-effort approach. However, our work could potentially help build more accurate
cost models to better justify the performance gained in storage systems.
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7.6 Conclusion

We have presented our cost model to show several interestingresults. The results further prove
that the trade-offs among performance, energy, and device endurance play a role in the aspect of
economics. Future storage system designs have to consider multiple optimizations: performance,
energy, endurance, and cost.
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Chapter 8

Caching Follow-Up

Tiering and caching based hybrid approaches share several design traits with each other (e.g., sim-
ilar data management policies). But, they are not the same approaches. There are existing stud-
ies [24, 52] exploring the pros and cons of the tiering and caching based approaches. However,
there is no current work that builds the two realistic systems with similar strategies, and empiri-
cally evaluates the two systems from the cost perspective under the same environment, when SSDs
are deployed.

Our environment setup is not the best case for a caching system, but for a tiering system.
However, we choose to delve into such a caching system, in comparison with the tiering under the
same hardware and similar software setup, to provide more interesting observations. We observed
that for some workloads, using the SSD as a cache had lower costs than when the SSD was used as
primary hot-data storage; but other workloads completely reversed this trend.

We discuss the design and implementation of the caching system in Section 8.1. We evaluate
the caching system in Section 8.2. We discuss related work ontiering and caching in Section 8.3.
We explain the limitations of the caching system in Section 8.4. We conclude the caching follow-up
work in Section 8.5.

8.1 Design and Implementation

Our caching system is largely based on the tiering system as we previously discussed in Section 6.1.
Understanding how the tiering system works helps a lot in thediscussion because the two are very
similar to each other. For better illustration, we present the architecture of our caching system in
Figure 8.1, and show the data management strategies in Figure 8.2. To distinguish the caching
system from the tiering system, we explain the differences between the two systems below.

Capacity In the caching system, since the SSD is not counted toward thetotal capacity, the HDD
capacity needs to be expanded to yield the same amount of total capacity as the tiering system has.
When the SSD capacity is not largely different than the totalcapacity, a tiering system can have
better purchase cost per GB than the caching system does.

Management Unit The caching system uses a cache entry table and the tiering system uses a
mapping table. Unlike the tiering mapping table that maps from the whole virtual layer to the
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Figure 8.1:Caching Architecture. The shaded rectangles are DM targets, usually implemented
as loadable kernel modules.

physical layer, the cache entry table maintains mapping information only from the cache device to
the lower-level device. It contains not only the four fields in the mapping table of the tiering system
(i.e., extent ID, state, usage counter, and time-stamp of the latest access), but also a dirty flag to
indicate whether a cached extent is updated or not.

Data Movement The two systems use the same method to move data around. We name the hot
data moving processpromotionandpre-fetchin the tiering system and caching system, respectively.
We name the cold data moving process in the two systemsdemotionandeviction, respectively. The
caching system does not need to reserve extra extents in the HDD for eviction to succeed, as it is
guaranteed to map an extent from the SSD to the HDD.

Read/Write Policy In a tiering system, since the SSD is used as primary storage,reads and writes
access the data from the current location either on the SSD orHDD according to the mapping table.
Cold data migrates to the HDD and hot data eventually migrates to the SSD using kernel threads. In
a caching system, reads and writes access data from the SSD ifthe data is still there, else from the
HDD. If it is an SSD write hit or if there is a write to any of the I/Os that are served from RAM, the
system stores information of the pending write-back I/O in aqueue, and an asynchronous write-
back kernel thread wakes up to flush dirty writes from the SSD to the HDD. To control the rate
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of the write-back process, our caching system removes duplicated, queued write-back I/Os and
caps the maximum queue size. The queue is not blocking the whole system because the queue is
around1/3 full under pressure. The current policy can help illustratethe negative effects of the
caching write-back policy compared with the tiering systemthat requires no write-back at all. The
implementation detail of the caching’s write policy is based on the eviction process for easy data
management. I/O access can be slow down during write-back activity.

Other than the differences as we explained above, the two systems are virtually identical in
terms of design and implementation.

8.2 Evaluation

Our caching system is evaluated under the exactly same setupas we do for the tiering system, as
discussed in Section 6.2. Therefore, we do not duplicate thesetup description in this evaluation
section for the caching system. The front tier device sizes (i.e., SSD size used in the experiments)
are the same as well to produce comparable results.

We then discuss the results of the caching system under the same workloads: (1) Web-Search
trace workload; (2) FIU’s online trace workload; and (3) Filebench file-server workload. The cost
results are based on the same cost model as we discussed in Chapter 7.1. For clarity, we use
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abbreviations in the results below: (1) MCML means Maximum Concurrent Migration Limit; (2)
PT means Pre-fetching Threshold (similar to Promotion Threshold); and (3) ES means Extent Size.

8.2.1 Web-Search Trace Workload
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Figure 8.3:Web-Search Trace Replay Results (part 1).

We present the Web-search trace workload results of the caching system in Figures 8.3 and 8.4.
The parameter configurations for the caching system is the same as the tiering system has for the
Web-search trace workload.

As shown in Figures 8.3(a), 8.3(b), 8.3(c), 8.3(e), and 8.3(f), We can observe similar trade-
offs among performance, energy, power, and endurance as we discussed for our tiering system in
Section 6.2.3. In Figures 8.4(a), 8.4(b), 8.4(c), 8.4(d), 8.4(e), and 8.4(f), we can observe similar
trend for the total cost of the system as we discussed for our tiering system in Section 7.3.1.

We then compare the caching system against the tiering system in more details. For this Web-
search trace workload, the caching system achieves slightly higher throughput (i.e., 4–9%) than the
tiering system does when the Pre-fetching Threshold (PT) is4 and 16; and achieves very similar
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Figure 8.4:Web-Search Trace Replay Results (part 2).
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throughput than the tiering system does when PT is 64, as we can see in Figure 8.3(a). For the
purpose of explanation, the Web-search trace workload has much more reads than writes, as shown
in Table 6.3. That means the overhead of the write back is not going to be significant since there
are only a few writes. Moreover, as the primary storage (i.e., SSD) in the tiering system contains
either cold or hot data before hand, this can incur additional overhead to the overall throughput.
However, the caching device in the caching system only contains hot data. That means the overall
throughput of the caching system may be higher than that of the tiering system in some degree if
the primary storage initially contains cold data in the tiering system.

The caching system also consumes very similar energy as the tiering system does when the PT
is 1 and 16. When the PT is 4, the caching system consumes slightly less energy (i.e., 7–10%) than
the tiering system does, as shown in Figure 8.3(b). The main reason is that the energy consumption
is coupled with the throughput since the total amount of workload is the same.

The caching system consumes similar power as the tiering system does, as shown in Fig-
ure 8.3(c). The caching system also rarely spins down the HDD, as shown in Figure 8.3(d).

Besides, the caching system also incurs less SSD endurance reduction (i.e., 8–20%) than that of
the tiering system when the ratio of read-to-write effect is1/10, as seen in Figure 8.3(e). The reason
is due to the aggregated primary SSD I/Os in the tiering system. The caching system wears out the
SSD faster (i.e., 8–19%) than the tiering system does when the ratio of read-to-write effect is1/100,
as we can see in Figure 8.3(f). The reason is two-fold: (1) this Web-search is read-dominated; and
(2) reads are not as effective as the writes to reduce the SSD endurance.

Moreover, the caching system causes less total dollar cost in the long run (i.e., 8–20%) than
the tiering system does, as shown in Figure 8.4(f). Note thatfor Web-search workload, when the
time factor is 100,000, it translates to 2.1 years on average(min and max are 0.2 and 7.7 years,
respectively) for all types of benchmarks, a reasonable time frame for long-term storage. The
reason for the above difference is that the caching system wears out the SSD slower when the ratio
of read-to-write effect is1/10, and the current cost results are based on the assumption that the
ratio of read-to-write effect is1/10.

8.2.2 Online Trace Workload

We present the FIU online trace workload results of the caching system in Figures 8.5 and 8.6. The
parameter configurations for the caching system is the same as the tiering system has for the online
trace workload.

As shown in Figures 8.5(a), 8.5(b), 8.5(c), 8.5(e), and 8.5(f), We can observe similar trade-
offs among performance, energy, power, and endurance as we discussed for our tiering system in
Section 6.2.4. In Figures 8.6(a), 8.6(b), 8.6(c), 8.6(d), 8.6(e), and 8.6(f), we can observe similar
trend for the total cost of the system as we discussed for our tiering system in Section 7.3.2.

We then compare the caching system against the tiering system in more details. For this FIU
online trace workload, the caching system achieves less throughput (i.e., 58–82%) than the tiering
system does when the ES varies, as we can see in Figure 8.5(a).For the purpose of explanation,
the online trace workload has lots of writes, as shown in Table 6.3. That means the overhead of the
write back can be a bottleneck when it comes to throughput.

The caching system also consumes more energy (i.e., 2–6×) than the tiering system does, as
shown in Figure 8.5(b). The reason is that the total energy consumption is coupled with the through-
put and the total amount of workload is the same.
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Figure 8.5:Online Trace Replay Results (part 1).
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Figure 8.6:Online Trace Replay Results (part 2).
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The caching system consumes similar power as the tiering system does, as seen in Figure 8.5(c).
The only big difference is that for the caching system, when the ES is 4K, the caching system
consumes much higher power than other conditions. The reason is that when the ES is 4K, there
are much more write-back I/Os that cause the system (i.e., CPU, RAM, and I/O system) to be even
more active. The caching system also rarely spins down the HDD, as shown in Figure 8.3(d).

Besides, the caching system also incurs more SSD endurance reduction (i.e., 1–23% and 2–5%)
than the tiering system does when the ratio of read-to-writeeffect is1/10 and1/100, respectively,
as seen in Figure 8.5(e) and Figure 8.5(f), respectively. The main reason is that the caching system
has more write-back I/Os than the aggregated primary SSD I/Os in the tiering system. Therefore,
the caching system can wear out the SSD faster than the tiering system does.

Moreover, the caching system causes more total dollar cost in the long run (i.e., 5–23%) than
the tiering system does, as shown in Figure 8.6(f). Note thatfor FIU online workload, when the
time factor is 100,000, it translates to 3.3 years on averagefor all types of benchmarks (min and
max are 0.7 and 9.8 years, respectively). The reason for the above difference is that the caching
system wears out the SSD faster as we explained above, and theSSD endurance reduction counts
more toward the total cost of ownership.

8.2.3 File-server Workload

We present the file-server workload results of the caching system in Figures 8.7 and 8.8. The
parameter configurations for the caching system is the same as the tiering system has for the file-
server workload.

As shown in Figures 8.7(a), 8.7(b), 8.7(c), 8.7(e), and 8.7(f), We can observe similar trade-
offs among performance, energy, power, and endurance as we discussed for our tiering system in
Section 6.2.5. In Figures 8.8(a), 8.8(b), 8.8(c), 8.8(d), 8.8(e), and 8.8(f), we can observe similar
trend for the total cost of the system as we discussed for our tiering system in Section 7.3.3.

We then compare the caching system against the tiering system in more details. For this
Filebench file-server workload, the caching system achieves less throughput (i.e., 14–71%) than
the tiering system does when the system parameters (i.e., MCML, PT, and Gamma) vary, as we
can see in Figure 8.7(a). For the purpose of explanation, thefile-server workload has lots of I/Os:
both reads and writes. There are more reads than writes, but the difference is not that significant,
according to Filebench. That means the overhead of the writeback is going to play some role in
making the throughput lower.

The caching system also consumes more energy (i.e., up to 57%) than the tiering system does,
as shown in Figure 8.7(b). The reason is similar with what we have explained in Section 8.2.1.

The caching system consumes similar power as the tiering system does, as shown in Fig-
ure 8.7(c). The caching system spins down the HDD even less than the tiering system does, as
shown in Figure 8.7(d) and since the caching system uses the HDD more aggressively than the
tiering system.

Moreover, the caching system wears out the SSD slower (i.e.,27–60% and 28–60%) than the
tiering system does when the ratio of read-to-write is1/10 and 1/100, respectively, as seen in
Figure 8.7(e) and Figure 8.7(f), respectively. The main reason is that the tiering system’s aggregated
primary SSD I/Os become a bigger factor toward the SSD endurance reduction. Therefore, the
caching system wears out the SSD slower than the tiering system does.
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Figure 8.7:Fileserver Workload Results (part 1).
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Figure 8.8:Fileserver Workload Results (part 2).
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Moreover, the caching system causes less total dollar cost in the long run (i.e., 27–55%) than the
tiering system does, as shown in Figure 8.8(f). Note that forthe fileserver workloads, when the time
factor is 100,000, it translates to 1 year on average for all types of benchmarks (min and max are 0.2
and 2.4 years, respectively). The main reason for the above difference is that the caching system
incurs less SSD endurance reduction as we explained above, and the SSD endurance reduction
counts more toward the total cost of ownership.

8.2.4 Summary

We summarize the caching follow-up results in comparison with the tiering system below.

1. For the read-intensive Web-search workload, caching achieves similar throughput, energy
and power consumption, and short-term dollar cost with the tiering system since the two
systems are similar. Moreover, caching wears out the SSD slower and has lower long-term
dollar cost than tiering due to the aggregated primary SSD I/Os in the tiering system.

2. For the write-intensive Online workload, caching achieves less throughput than tiering does
due to the negative effect of the write-back policy in the caching system. Moreover, caching
causes higher energy and power consumption, wears out the SSD faster, and causes higher
long-term cost than tiering does due to the same write-back negative effect in the caching
system. Besides, caching causes similar short-term cost than tiering does since the hybrid
drive setup is relatively small.

3. For the read- and write-intensive file-server workload, caching achieves less throughput than
tiering does due to the write-back negative effect in the caching system. Moreover, caching
also wears out the SSD slower and incurs less long-term cost because the tiering system has
more aggregated primary SSD I/Os. Moreover, caching causeshigher energy consumption
than tiering, and similar power consumption and short-termcost with tiering.

4. Caching and tiering are very similar except that: (1) caching only maintains mapping infor-
mation from the cache device to the lower-level device whiletiering has to maintain mapping
from the whole virtual device to the actual physical devices; (2) caching has to further sup-
port a write policy in case of a write hit in the cache device while tiering does not need to;
and (3) tiering can achieve better initial purchase cost over capacity than caching does since
the hot device is used as the primary storage.

8.3 Related Work

There are several related work on the comparison between caching and tiering systems. MAID [24]
briefly discusses the pros and cons of caching and migration based policies for massive storage
systems. With the advent of Phase Change Memories (PCMs), there is one work [52] that evaluates
PCMs for enterprise storage systems by case studies of caching and tiering approaches. However,
there is no direct comparison study performed for the caching and tiering approaches from the
perspective of total cost of ownership.

Our work is different from the above work in several aspects:(1) we build two realistic systems
(i.e., tiering and caching) with similar strategies and environment to evaluate the pros and cons of
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the caching and tiering based storage systems; and (2) we look into the total cost of ownership for
the two systems with SSD deployed to provide even more interesting observations.

8.4 Limitations

Caching system and tiering system share several design traits. Our caching system is largely based
on the tiering system. Other than the limitations we discussed in Section 6.4, there is also another
limitation. Our experiment setup is a better environment for our tiering system, not for a caching
system. Caching system is normally deployed in large storage systems where the caching tier
is comparably small compared with the lower-level storage (e.g., 1 PB). We stick to the current
environment because our comparison study will only make sense when the hardware and software
setup is the same between the two systems. It would be interesting and challenging to further
discuss the caching system in a large storage system.

8.5 Conclusion

Caching system and tiering system are two types of hybrid storage systems. They share several de-
sign traits and are normally deployed in different contexts: caching system is normally explored in
very large storage systems with relatively small caching size, and tiering system is normally utilized
in relatively small storage system, where the capacity of the high-level tier storage is comparable
with the lower-level storage.

To provide comparable results for the two hybrid systems, wedesigned, implemented, and eval-
uated the two systems in similar environment. However, we still observed interesting results. The
results, collected under our current environment where tiering system can achieve better purchase
cost over capacity, provide several interesting observations. First of all, tiering system generally
achieves better performance than caching system since the write policy of the caching system in-
curs more overhead to the system and the tiering system tendsto aggregate hot data more efficiently
than the caching system. Secondly, the caching system can wear out the SSD faster or slower than
the tiering system depending on two factors: (1) the SSD in caching system is not used as primary
storage so that there is no primary SSD I/Os; and (2) there area certain amount of write back I/Os
in the caching system. Last but not least, caching system incurs more or less total cost (i.e., pur-
chase cost plus total cost of ownership) than tiering systems in the long run depending on the SSD
endurance reduction each system causes.
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Chapter 9

Capacity Ratio Follow-Up

The capacity ratio of the SSD as a fraction over the total capacity matters for both the tiering and
caching systems in terms of throughput, energy and power, device endurance reduction, and dollar
cost. Previously, in Chapters 6, 7, and 8, we used1/4 as the capacity ratio of SSD over total.
Here, we report results from trying1/8 as the SSD’s capacity ratio over total capacity. We reran all
experiments and report our results and analysis here.

In this Chapter, we present our evaluation results in Section 9.1, and summarize the capacity
ratio discussion in Section 9.2.

9.1 Evaluation

We reran all the experiments under the same hardware and software configurations, other than with
a new1/8 capacity ratio of the SSD over total capacity. We present anddiscuss those results in this
Section. To avoid duplicated description and discussion, we focus more on representative results
(i.e., throughput, SSD endurance reduction, and cost).

9.1.1 Web-Search Trace Workload

We present the results of Web-search workload in Figure 9.1.
In terms of throughput for the Web-search workload, as we cansee from Figures 8.3(a) and

9.1(a), when the SSD capacity ratio varies from1/4 to 1/8, the throughputs for both caching and
tiering goes down, ranging from 48% to 81%. The main reason for the throughput degradation
is due to the increased number of data movements between the SSD and the HDD for both the
two systems and a reduced SSD hit ratio when the available SSDcapacity is reduced in half. We
can also see that when the SSD capacity decreases, the throughput of Mylinear increases by 19%
because of fewer SSD hits.

In terms of SSD endurance reduction, as we can see from Figures 8.3(e) and 9.1(b), when
the SSD capacity ratio varies from1/4 to 1/8, it wears out the SSD faster for both caching and
tiering systems, from 26% to 3×. The reason is that the smaller SSD capacity causes more data
movements between the SSD and the HDD for both tiering and caching systems. The smaller the
PT value is, the more the data movements are incurred becausePT tends to be the dominating factor
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Figure 9.1:Web-Search Trace Replay Results. We configured ES to 1MB in GreenDM, to help
with sequential prefetching. HDD spin-down was enabled forall configurations. The new capacity
ratio of SSD over total is1/8.

of SSD’s endurance reduction. We can also see that when the SSD capacity decreases, it wears out
the SSD 58% slower for Mylinear because of reduced SSD accesses.

In terms of cost, as we can see from Figures 8.4(a) and 9.1(c),and Figures 8.4(f) and 9.1(d),
when the SSD capacity ratio varies from1/4 to 1/8, it incurs similar short-term cost for both
the caching and tiering systems, but incurs more long-term cost for both systems, from 27% to
3×. The reason for the similar short-term cost is due to the factthat when the capacity ratio
varies, it only causes little variation in the capacity cost, energy and power costs, and the SSD
replacement cost, when the time-factor is 1. The reason for the different long-term cost is because
of the additional number of data movements between the SSD and the HDD. We can also see
that when the SSD capacity ratio decreases, it incurs 30% less long-term cost for Mylinear due to
reduced SSD accesses.

9.1.2 Online Trace Workload

We present the results of Online workload in Figure 9.2.
For throughput, as we can see from Figures 8.5(a) and 9.2(a),when the SSD capacity ra-

tio varies from1/4 to 1/8, the throughput for the tiering system goes down, from 21% to39%;
throughput for the caching system increases from 7% to 18% when the ES is 4K and 16K, respec-
tively, and decreases by 4% when the ES is 64K. The reason for the tiering system throughput
degradation is due to the increased data movements between the SSD and the HDD when the SSD
capacity is smaller. The reason for the caching system throughput increase when the ES is small is
because: (1) the caching system is bottlenecked by the write-back I/Os since this is a write-intensive
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Figure 9.2:Online Trace Replay Results. As example, we set MCML to 16 and PT to 1. Disk
spin-down was enabled for all configurations. The new capacity ratio of SSD over total is1/8.

workload; and (2) the smaller SSD capacity reduces the number of write-back I/Os. The reason for
the small caching system throughput degradation is due to the fact that when the ES is larger, data
movements between the SSD and the HDD causes more overhead. We can also see that when the
SSD capacity decreases, the throughput of Mylinear increases by 32% due to the aforementioned
reason.

For SSD endurance reduction, as we can see from Figures 8.5(e) and 9.2(b), when the SSD
capacity ratio varies from1/4 to 1/8, the SSD endurance reduction for both tiering and caching
stays roughly the same. The reason is actually due to the net effect of the following factors: (1)
smaller SSD capacity leads to more data movements, which wears out the SSD faster; and (2)
smaller SSD capacity leads to fewer SSD hits, which wears outthe SSD slower. We can also see
that when the SSD capacity reduces, it wears out the SSD 8% slower for Mylinear due to reduced
SSD accesses.

For cost, as we can see from Figures 8.6(a) and 9.2(c), and Figures 8.6(f) and 9.2(d), when
the SSD capacity ratio varies from1/4 to 1/8, it incurs similar short-term and long-term costs for
both tiering and caching systems. The reason for the similarshort-term cost when the SSD capacity
ratio reduces is due to the aforementioned reason. The reason for the similar long-term cost when
the SSD capacity ratio reduces is due to the fact the SSD endurance reduction stays similar when
the SSD capacity ratio varies. We can also see that when the SSD capacity decreases, it causes 8%
less long-term cost for Mylinear because of reduced SSD accesses.
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Figure 9.3:Fileserver Workload Results. We configured the ES to be 128KB in GreenDM. It is
equal to the average I/O size to avoid the migration waste andI/O split overhead. The PT value was
fixed at 1, as example. Disk spin-down was enabled for all. Thenew capacity ratio of SSD over
total is1/8.

9.1.3 File-server Workload

We present the results of File-server workload in Figure 9.3. Note that the OS buffer cache is
enabled for this workload.

In terms of throughput, as shown in Figures 8.7(a) and 9.3(a), when the SSD capacity ratio
varies from1/4 to 1/8, the throughputs for both tiering and caching systems generally reduces,
from 35% to 57%. The main reason is due to the reduced SSD hits and increased data movements
between the SSD and the HDD when the available SSD capacity becomes smaller. We can also
see that when the SSD capacity decreases, the throughput of Mylinear increases from 4% to 30%
instead of decreasing. We believe that the OS buffer cache isused to different degrees here, which
causes this difference.

In terms of SSD endurance reduction, as shown in Figures 8.7(e) and 9.3(b), when the SSD
capacity ratio varies from1/4 to 1/8, it generally wears out the SSD slower for both tiering and
caching, from 7% to 25%. The main reason is because there are fewer SSD hits and it is generally
a bigger factor than the increased data movements. We can also see that for Mylinear, when the
SSD capacity reduces, it wears out the SSD slower, from 19% to47%, because of fewer SSD hits
since the SSD capacity becomes smaller.

In terms of cost, as shown in Figures 8.8(a) and 9.3(c), and Figures 8.8(f) and 9.3(d), when
the SSD capacity ratio varies from1/4 to 1/8, it incurs similar short-term cost for both tiering and
caching systems due to the aforementioned reason. It also generally incurs less long-term cost for
both tiering and caching systems, from 7% to 25%. The reason is due to the fact that, when the SSD
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capacity reduces, it wears out the SSD slower. There are cases where the long-term cost increases
instead, and that is because the smaller SSD capacity causesa higher energy consumption which
eventually increases the long-term cost. We can also see that when the SSD capacity is smaller, it
incurs less long-term cost for Mylinear, from 19% to 44%, dueto the net effect of reduced SSD
access cost and increased energy cost.

9.2 Summary

We summarize the new SSD capacity ratio results in comparison with the previous old SSD capacity
ratio below.

1. For the read-intensive Web-search trace workload, the smaller SSD capacity leads to de-
creased throughputs, wears out the SSD faster, and leads to increased long-term costs for
both tiering and caching systems. This is due to the decreased SSD usage to a small degree,
but primarily due to a larger increase in data movements. It also leads to decreased through-
put, wears out the SSD slower, and incurs lower long-term cost for Mylinear due to decreased
SSD hit.

2. For the write-intensive Online trace workload, the smaller SSD capacity causes different
throughput effects in tiering and caching systems. For tiering, the throughput decreases—
while for caching, the throughput generally increases. This is because for this workload,
the caching system is bottlenecked by the write-back I/Os while the tiering system is bottle-
necked by the SSD hit rate and the data movement. The smaller SSD capacity also leads to
similar SSD wear out rates and long-term cost for both tiering and caching systems. This
is due to the net effect of the reduced SSD hit and the increased data movement. It also
leads to decreased throughput, wears out the SSD slower, andincurs lower long-term cost for
Mylinear due to reduced SSD hit.

3. For the read- and write- intensive File-server workload,the smaller SSD capacity generally
leads to decreased throughputs, reduced SSD wear out, and lower long-term costs for both
tiering and caching systems. This is due to the decreased SSDhit to a large degree and
increased data movements to a smaller degree. It also leads to increased throughput for
Mylinear due to the OS buffer cache effects, wears out the SSDslower, and incurs lower
long-term cost for Mylinear due to reduced SSD accesses.

4. For all workloads, the smaller SSD capacity leads to similar short-term costs for all hybrid
systems. This is due to the fact that a smaller SSD capacity causes little variation for capacity
cost, energy and power costs, and SSD replacement cost.
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Chapter 10

Future

There are also several interesting longer-term related research topics that are interesting to explore
in the future. this dissertation. Some of the promising post-defense future work are as follows:

1. Automate the choosing of controllable parameters.

2. Research and develop a three-tier and thenN-tier storage system.

3. Support security as a fourth dimension.

4. Support New Storage Devices.

5. Provide Control Support at the CPU Level.

We further discuss the future work in more details below.

10.1 Automation of the Control Knobs

This section discusses the most interesting and challenging topic on automating the selection and
setting of the controllable knobs. Tackling the mentioned issue here can help achieve user perceived
importance among performance, energy efficiency, and endurance of the tiering hybrid drive stor-
age system under various workloads.

Our tiered hybrid drive storage system provides several controllable knobs that can help cer-
tain workloads. The work will be made even more useful by coming up with a method to auto-
mate the choosing of the control knobs so that users do not need to specify the control parameters
on their own. For example, we may provide options for the users to decide which dimensions,
among performance, cost, and endurance, are more important—including weights applied to each
dimension—so that internal system parameters can be selected automatically to meet the require-
ments.

We will try to explore such automation strategy in the futureto make the work more useful.
More specifically, an ad-hoc algorithm-based approach may be explored to guide the design of
automation. For example, depending on the trade-offs we observe, we may develop a simple user-
level “governor” that can potentially use one of several techniques to decide how many cores to
keep on/off and what the GreenDM parameters should be: Hill climbing [57], Markov chains [87],
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Machine learning [86], Fast Fourier transform [34], Wavelet [137], and Control theory [155]). This
is going to be a challenging research topic to explore as well.

10.2 Three-Tier andN -Tier Storage Systems

This section discusses another interesting post-defense topic on extending the previous two-tier
hybrid drive storage system to include the network tier as well. Based on the three-tier system, one
may further investigate and develop anN-tier storage system. The research work on this topic can
potentially have more interesting results and provide valuable observations to future hybrid storage
system for years to come.

DRAM

PCM v.s. SSD

Network

Capacity

HDD v.s. SMR

Speed

Figure 10.1: Storage pyramid

Our current system design, implementation, benchmarking,and analysis are based on a two-tier
hybrid drive storage system. The interesting observationsand results can be made even more useful
by extending the two-tier hybrid drive storage system to a three-tier storage system, as shown in
Figure 10.1. At the network tier, the space can be more plentiful (e.g., NAS and cloud storage), but
network bandwidth becomes the bottleneck. It is also costlyto flush data from a local to a remote
site. Therefore, there are more important trade-offs to explore in terms of performance, cost, and
endurance in the whole systems. Moreover, one can potentially further expand the two-tier storage
system to beN-Tier (N > 3) to research more topics. Note that once the storage system has more
tiers, it will become more complex to implement and analyze.

Moreover, each tier is flexible. It can be implemented in different layers and through differ-
ent interfaces. For example, each tier is applicable eitherwith block interface [129] or file inter-

88



face [64]. There are options both in kernel space [129] and inuser space [67]. They have different
trade-offs in deployment effort and versatility, however.

We will sure have much more policies in each tier to explore inthe future, and there are several
interesting questions to explore as well:

1. Should each tier be based on caching or tiering or even a mixof the two, and what are the
trade-offs?

2. Which layer should each tier be implemented in? By which interface? What are the trade-
offs?

3. How many controllable parameters would the three-tier orN-tier storage system have and
how complex would the system become?

10.3 Security as a Fourth Additional Dimension

This section discusses considering security as a forth dimension of a hybrid storage system other
than just considering the performance, energy efficiency, and endurance. This research topic can
potentially open the door of a vast amount of future researchtopics.

Security is another important aspect of the storage system design. There are certainly trade-
offs among the performance, energy, endurance, and security of a hybrid storage system. For
example, to guarantee security, a hybrid storage system mayadd extra code to check the user’s
authentication and authorization, and to ensure data integrity and privacy. This can add an extra
amount of overhead to the performance of the system, and can generate trade-off effects to the
energy efficiency and endurance dimension of the whole system as well.

Exploring security as a fourth dimension would be an advanced and interesting topic to study in
the future. Once security is in the list, users would have even more choices to explore. In particular,
the users may consider which dimension among the four, is more important (and how much) under
their particular deployment scenarios. For example, for performance-oriented application, the user
can prioritize the control switch for performance, and for security-oriented applications, the user
can prioritize the control switch for security.

An even more interesting topic would be having upper and lower caps on the security levels
to control in a finer granularity. For example, a person may not be willing to reduce the security
beyond a certain point, therefore, the system should be remain within its the caps.

10.4 Support New Storage Devices

This section details interesting future work on exploring new storage devices toward building cost-
effective I/O services of storage systems. This topic can help discover more trade-offs of the new
and yet less understood storage devices in terms of performance, energy efficiency, and endurance.

Hybrid system designs are becoming more popular in today’s storage systems to provide cost-
aware I/O services. Modern storage devices are emerging andevolving rapidly. They differ in
speed, capacity, cost, endurance, power consumption, and more.

New storage devices provide more flexibilities to the layoutof each tier in a hybrid storage
system. For example, flash-based SSDs are fast but more expensive (compared to HDDs). Many
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Device Performance Price Capacity Endurance Power
Tape * * **** ***** *
HDD ** *** *** **** ***
SMR ** ** **** **** ***
SSD **** **** *** ** *
PCM **** ***** * **** *
DRAM ***** ***** ** **** *
Other SCMs N/A N/A N/A N/A N/A

Table 10.1: Summary of storage devices. We use numbers of “*”to indicate the degree. For
example, “*” means very low or very small; “**” means low or small; “***” means medium,
“****” means high or large; and “*****” means very high or very large.

studies show that SSDs can be utilized either as a caching tier or a persistent tier for a more ef-
ficient storage system design [11, 37, 103, 112, 129]. However, SSDs suffer from endurance and
unpredictable garbage collections.

Emerging PCMs [25] are even faster, more durable, and are byte addressable; but PCMs have
much smaller capacity per dollar. The trade-off between placing PCMs and SSDs is an interesting
question to explore.

To a lower tier, Shingled Magnetic Recording (SMR) [20] disks are emerging to further lower
down the cost of HDDs. SMR disks require more sophisticated drive controllers or file systems to
make them work: they offer more space than HDDs, but require writing data sequentially for effi-
ciency, which requires an SSD-like FTL and garbage-collection support. Shingling is a technique
that is applicable to other future magnetic recording devices (e.g., BPR [16] and HAMR [55]). For
this future work, we can use the SMR prototypes we have through a unique collaboration with
industry.

We provide a summary table for new-old storage devices in Table 10.1. One thing worth men-
tioning is that the prices of the various storage devices canvary depending on the technology,
market, and economics. It makes our work more useful in the future.

However, there is no one-to-all solution combining these devices to build hybrid drive storage
systems. Placing different storage devices in different tiers, together with different policies (e.g.,
data movement throttling, I/O management, meta-data management), will produce vary different
results and trace-offs in terms of performance, energy, andendurance of the hybrid drive storage
system. We would be targeting SSDs, PCMs, and SMRs toward providing cost-effective I/O ser-
vices of hybrid storage systems.

Specifically, it would be interesting to answer the following two questions:

1. What if we utilize the PCM instead of the SSD as the front tier?

2. What if we utilize the SMR instead of the HDD as the back-endtier?

10.5 Provide Control Support at the CPU Level

This section further details future work on providing control support at the CPU level as well.
Depending on the observed results, our analysis can help build more intelligent hybrid drive stor-
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age systems. How to automate the controllable parameters issomething we discussed earlier in
Section 10.1.

We have another project, named “CPUIDLE”, that aims to let a user control the low-power
states of individual CPU cores [99]. Therefore, we can extend the reach of our storage system to
provide controls not only at the block level, but also at the CPU and core level. Therefore, there
will have more controllable parameters to explore in terms of tackling the trade-offs between the
CPU performance and the power consumption.

It would be interesting to merge the CPUIDLE kernel module with our GreenDM module,
and perform more experiments (e.g., turning CPU cores on/off in accordance with workloads) and
do more analysis toward the trade-offs among performance, energy, and endurance of the whole
systems. Depending on the observed results, our analysis can help build more intelligent hybrid
drive storage systems, considering the performance, energy efficiency, and endurance of the entire
systems.
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Chapter 11

Conclusion

There are trade-offs among performance, energy, and deviceendurance for storage systems. De-
signs optimized for one dimension or workload often suffer in another. Therefore, it is important to
study the trade-offs so as to be able to adapt the system to workloads. As different types of drives
have different traits, hybrid drives are studied more closely. However, previous hybrids are of-
ten designed for high throughput, efficient energy consumption, or improving endurance—leaving
empirical study on the trade-offs being unexplored. Past endurance studies also lack a concrete
model and metric to help study the trade-offs. Lastly, previous designs are often based on inflexible
policies that cannot adapt easily to changing conditions.

Our previous study has looked at the power consumption issuein enterprise-scale backup stor-
age systems in Chapter 4 to gain us more domain knowledge on power and energy in the field.
Besides, our previous study in Chapter 5 on the trade-offs between performance and energy has
given us the understanding of variations for both the performance and energy with varying soft-
ware and hardware conditions. We presented GreenDM in Chapter 6 as a versatile tiering hybrid
drive to study empirically the trade-offs among performance, energy, and endurance. We also
provided several interesting observations regarding the associated cost dimension of GreenDM in
Chapter 7. We further presented the follow-up work on our caching system based on the same
hardware and similar software setup in Chapter 8. We also presented additional work on evaluating
both the tiering and caching systems with a different capacity ratio of SSD over total in Chapter 9.

To conclude with several interesting future research topics (see Chapter 10). First, it will be
interesting to provide automated control knobs for the userto trade-off performance, energy ef-
ficiency, and endurance. Second, one could extend the two-tier system to three tiers and explore
more tiering policies. Third, it would be useful to add security as a forth dimension to further
explore the trade-offs. Forth, one could experiment with different storage devices and policies in
the future, and help build more efficient storage systems to achieve the high performance with the
minimum cost. Last but not least, it would be interesting to provide control support at the CPU
level as well to further justify the trade-offs among performance, energy, and endurance.

92



Bibliography

[1] 80 PLUS Certified Power Supplies and Manufacturers.www.plugloadsolutions.com/

80PlusPowerSupplies.aspx .

[2] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.

[3] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, andK. Schwan. Robust and
Flexible Power-Proportional Storage. InProceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, 2010.

[4] Taneja Group Technology Analysts. The state of the core —engineering the enterprise
storage infrastructure with the ibm ds8000. Technical report, IBM, 2010.

[5] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. InProceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP ’2009). ACM SIGOPS, October 2009.

[6] J. Axboe. CFQ IO Scheduler, 2007.http://mirror.linux.org.au/pub/linux.

conf.au/2007/video/talks/123.ogg .

[7] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.Arpaci-dusseau, and R. H.
Arpaci-dusseau. An Analysis of Data Corruption in the Storage Stack. InProceedings of
the Sixth USENIX Conference on File and Storage Technologies (FAST ’08), San Jose, CA,
February 2008. USENIX Association.

[8] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for deadline-
tsp and vehicle routing with time-windows. InProceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 166–174. ACM, 2004.

[9] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. Computer,
40:33–37, December 2007.

[10] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An Introduction to the Design
of Warehouse-Scale Machines.Synthesis Lectures on Computer Architecture, 4(1):1–108,
2009.

[11] Bcache.http://bcache.evilpiepirate.org/ .

[12] F. Bellosa. The benefits of event: driven energy accounting in power-sensitive systems. In
Proceedings of the 9th workshop on ACM SIGOPS European workshop, pages 37–42, 2000.

93



[13] W.L. Bircher and L.K. John. Complete System Power Estimation: A Trickle-Down Ap-
proach Based on Performance Events. InProceedings of the 2007 IEEE International Sym-
posium on Performance Analysis of Systems and Software, pages 158–168, 2007.

[14] T. Bisson, S. A. Brandt, and D. D.E. Long. A Hybrid Disk-Aware Spin-Down Algorithm
with I/O Subsystem Support. InIn Proceedings of the 26th IEEE International Performance,
Computing and Communications Conference, 2007.

[15] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, and L. C. Mcdowell. The case for Power
Management in Web Servers, 2002.www.research.ibm.com/people/l/lefurgy/

Publications/pac2002.pdf .

[16] Patterned Media.http://en.wikipedia.org/wiki/Patterned_media .

[17] A. Brown and M. Seltzer. Operating System Benchmarkingin the Wake of Lmbench: A
Case Study of the Performance of NetBSD on the Intel x86 Architecture. InProceedings
of the 1997 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 214–224. ACM Press, June 1997.

[18] Bzip2 Wikipedia Documentation.http://en.wikipedia.org/wiki/Bzip2 .

[19] A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smartphone. InProceed-
ings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Boston,
MA, USA, 2010.

[20] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. B. Indirection systems for
shingled-recording disk drives. InProceedings of the International IEEE Symposium on
Mass Storage Systems and Technologies (MSST), Incline Village, Nevada, May 2010. IEEE.

[21] CFDR - the computer failure data repository.cfdr.usenix.org .

[22] J. Chang, J. Meza, P. Ranganathan, C. Bash, and A. Shah. Green Server Design: Beyond
Operational Energy to Sustainability. InProceedings of the 2010 International Conference
on Power Aware Computing and Systems, HotPower’10, 2010.

[23] F. Chen, D. A. Koufaty, and X. Zhang. Hystor: Making the Best Use of Solid State Drives
in High Performance Storage Systems. InProceedings of the International Conference on
Supercomputing, pages 22–32, 2011.

[24] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks for Storage Archives. In
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–11, 2002.

[25] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better i/o through byte-addressable, persistent memory. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP
’09, pages 133–146, New York, NY, USA, 2009. ACM.

94



[26] A. Coskun, R. Strong, D. Tullsen, and T. S. Rosing. Evaluating the impact of job scheduling
and power management on processor lifetime for chip multiprocessors. InProceedings of the
2009 ACM SIGMETRICS Conference on Measurement and Modelingof Computer Systems,
2009.

[27] D. C. Montgomery.Engineering Statistics. Wiley, 3 edition, 2004.

[28] Data Domain Boost Software, EMC Corporation, 2012.www.datadomain.com/

products/dd-boost.html .

[29] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Scheduler-Based DRAM Energy Management. InProceedings of the 39th annual Design
Automation Conference, pages 697–702, New York, USA, 2002.

[30] Dell Compellent Flash Optimized Solutions.http://www.dell.com/us/business/p/

dell-compellent-flash-optimized/pd? ˜ ck=anav .

[31] G. Dhiman and T. Rosing. System-level Power Managementusing Online Learning.IEEE
Transaction on Computer-Aided Design of Integrated Circuits Systems, 28(5):676–689,
2009.

[32] J. G. Elerath. Server Class Disk Drives: How Reliable Are They. InIEEE Reliability and
Maintainability Symposium, pages 151–156, 2004.

[33] D. Essary and A. Amer. Predictive Data Grouping: Defining the Bounds of Energy and
Latency Reduction through Predictive Data Grouping and Replication. ACM Transactions
on Storage (TOS), 4(1):1–23, May 2008.

[34] Fast Fourier Transform. http://en.wikipedia.org/wiki/Fast_Fourier_

transform .

[35] Filebench.http://filebench.sf.net .

[36] Fiu srcmap trace repository.http://iotta.snia.org/traces/414 .

[37] Flashcache.https://github.com/facebook/flashcache/ .

[38] David Floyer. Enterprise Flash Drive Cost and Technology Projections, 2009.http:

//wikibon.org/wiki/v/Enterprise_Flash_Drive_Cost_an d_Technology_

Projections .

[39] Fluke 345 Power Quality Clamp Meter.www.fluke.com/fluke/caen/products/

categorypqttop.htm .

[40] J. L. Gailly. GNU Zip.www.gnu.org/software/gzip/gzip.html , 2000.

[41] J. Gantz and D. Reinsel. The digital universe decade - are you ready? www.emc.com/

digital_universe , May 2010.

95



[42] Gartner, Inc. Server Storage and RAID Worldwide. Technical report, Gartner
Group/Dataquest, 1999.www.gartner.com .

[43] Gartner, Inc. Desktop Total Cost of Ownership: 2013 Update. Technical report, Gartner
Group/Dataquest, 2013.www.gartner.com .

[44] Gartner, Inc. Notebook Total Cost of Ownership: 2013 Update. Technical report, Gartner
Group/Dataquest, 2013.www.gartner.com .

[45] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean Time to Meaningless: MTTDL, Markov
models, and Storage System Reliability. InHotStorage ’10: Proceedings of the 2nd USENIX
Workshop on Hot Topics in Storage, 2010.

[46] D. Grunwald, C. B. Morrey III, P. Levis, M. Neufeld, and K. I. Farkas. Policies for dynamic
clock scheduling. InProceedings of the 4th Symposium on Operating System Design&
Implementation, San Diego, CA, 2000.

[47] B. Guenter, N. Jain, and C. Williams. Managing Cost, Performance, and Reliability Trade-
offs for Energy-Aware Server Provisioning. InINFOCOM 2011. 30th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, pages 1332–1340, 2011.

[48] J. Guerra, W. Belluomini, J. Glider, K. Gupta, and H. Pucha. Energy Proportionality for
Storage: Impact and Feasibility.ACM SIGOPS Operating Systems Review, pages 35 – 39,
2010.

[49] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami. Cost Effective Storage
Using Extent Based Dynamic Tiering. InUSENIX FAST, 2011.

[50] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.Franke. DRPM: Dynamic Speed
Control for Power Management in Server Class Disks. InProceedings of the 30th Interna-
tional Symposium on Computer Architecture, pages 169–179, San Diego, Californai, USA,
2003.

[51] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.Franke. DRPM: Dynamic Speed
Control for Power Management in Server Class Disks. InProceedings of the 30th Annual
International Symposium on Computer Architecture, pages 169–181, 2003.

[52] H. Kim and S. Seshadri and C. L. Dickey and L. Chiu. Evaluating Phase Change Memory for
Enterprise Storage Systems: A Study of Caching and Tiering Approaches. InProceedings
of the 12th USENIX Conference on File and Storage Technologies, pages 33–45, Berkeley,
CA, 2014. USENIX.

[53] H. Shim and J. Kim and S. Maeng. BEST: Best-effort EnergySaving Techniques for NAND
Flash-based Hybrid Storage.IEEE Trans. Consumer Electronics, pages 841–848, 2012.

[54] G. Hamerly and C. Elkan. Bayesian Approaches to FailurePrediction for Disk Drives. InIn
Proceedings of the Eighteenth International Conference onMachine Learning, pages 202–
209. Morgan Kaufmann, 2001.

96



[55] Heat-Assisted Magnetic Recording. http://en.wikipedia.org/wiki/

Heat-assisted_magnetic_recording .

[56] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: The next generation. InIEEE Real-
Time Systems Symposium, pages 56–65, 1995.

[57] Hill Climbing. https://en.wikipedia.org/wiki/Hill_climbing .

[58] Hitachi Deskstar 7K2000.www.hitachigst.com/deskstar-7k2000 .

[59] M. Hofri. Disk Scheduling: FCFS vs. SSTF revisited.Communication of the ACM, 23(11),
November 1980.

[60] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data Replication in Free Disk Space for
Improving Disk Performance and Energy Consumption. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 263–276, Brighton, UK,
October 2005. ACM Press.

[61] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. CosmicRays Don’t Strike Twice: Under-
standing the Nature of DRAM Errors and the Implications for System Design. InASPLOS
XVII Proceedings of the Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 111–122. ACM, 2012.

[62] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and prediction on
real systems with application to dynamic power management.In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
2006.

[63] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are disks the dominant contributor for storage
failures? a comprehensive study of storage subsystem failure characteristics. InProceedings
of the Sixth USENIX Conference on File and Storage Technologies (FAST ’08), pages 111–
125, San Jose, CA, February 2008. USENIX Association.

[64] N. Joukov and J. Sipek. GreenFS: Making Enterprise Computers Greener by Protecting
Them Better. InProceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (EuroSys 2008), Glasgow, Scotland, April 2008. ACM.

[65] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Operating System Profiling via
Latency Analysis. InProceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 89–102, Seattle, WA, November 2006. ACM SIGOPS.

[66] Asim Kadav, Mahesh Balakrishnan, Vijayan Prabhakaran, and Dahlia Malkhi. Differential
raid: Rethinking raid for ssd reliability. InHotStorage ’09: Proceedings of the 1st Workshop
on Hot Topics in Storage. ACM, 2009.

[67] R. T. Kaushik and M. Bhandarkar. GreenHDFS: Towards An Energy-Conserving, Storage-
Efficient, Hybrid Hadoop Compute Cluster. InProceedings of the 2010 International Con-
ference on Power Aware Computing and Systems, HotPower’10, 2010.

97



[68] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam. HybridStore: A
Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs. InIEEE
MASCOTS, 2011.

[69] R. King. Disk Arm Movement Anticipation of Future Requests. ACM Transactions on
Computer Systems, 8(3):214–229, 1990.

[70] I. Koltsidas and S. D. Viglas. Flashing up the Storage Layer. Proceedings of the VLDB
Endowment, 1:514–525, 2008.

[71] J. G. Koomey. Growth in Data Center Electricity Use 2005to 2010. Technical report,
Standord University, 2011.www.koomey.com .

[72] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energyand Performance Evaluation of
Lossless File Data Compression on Server Systems. InProceedings of the Second ACM
Israeli Experimental Systems Conference (SYSTOR ’09), Haifa, Israel, May 2009. ACM.

[73] B. Laliberte. Automate and optimize a tiered storage environment fast. Technical report,
EMC, 2009.

[74] S. Lee, T. Kim, K. Kim, and J. Kim. Lifetime Management ofFlash-Based SSDs Using
Recovery-Aware Dynamic Throttling. InProceedings of the Tenth USENIX Conference on
File and Storage Technologies (FAST ’12), San Jose, CA, February 2012. USENIX Associ-
ation.

[75] S. Li and A. Belay. cpuidle — Do nothing, efficiently... In Proceedings of the Linux Sympo-
sium, volume 2, Ottawa, Ontario, Canada, 2007.

[76] Z. Li, A. Desai, C. Bhatt, and E. Zadok. vATM: vSphere Adaptive Task Management. In
In Proceedings of the Seventh International Workshop on Feedback Computing (FC’12),
September 2012.

[77] Z. Li, K. M. Greenan, A. W. Leung, and E. Zadok. Power Consumption in Enterprise-Scale
Backup Storage Systems. InProceedings of the Tenth USENIX Conference on File and
Storage Technologies (FAST ’12), San Jose, CA, February 2012. USENIX Association.

[78] Z. Li, R. Grosu, K. Muppalla, S. A. Smolka, S. D. Stoller,and E. Zadok. Model discovery
for energy-aware computing systems: An experimental evaluation. InProceedings of the 1st
Workshop on Energy Consumption and Reliability of Storage Systems (ERSS’11), Orlando,
FL, July 2011.

[79] Z. Li, R. Grosu, P. Sehgal, S. A. Smolka, S. D. Stoller, and E. Zadok. On the Energy
Consumption and Performance of Systems Software. InProceedings of the 4th Israeli Ex-
perimental Systems Conference (ACM SYSTOR ’11), Haifa, Israel, May/June 2011. ACM.

[80] L. Ljung. System Identification (2nd ed.): Theory for the User. Prentice Hall, 1999.

[81] J. R. Lorch. A Complete Picture of the Energy Consumption of a Portable Computer. Mas-
ter’s thesis, University of California at Berkeley, 1995.http://research.microsoft.

com/users/lorch/papers/masters.ps .

98



[82] Y. Lu, J. Shu, and W. Zheng. Extending the Lifetime of Flash-based Storage through Re-
ducing Write Amplification from File Systems. InIn Proceedings of the 11th USENIX
Symposium on File and Storage Technologies (FAST ’13), 2013.

[83] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang. hStorage-DB: Heterogeneity-Aware
Data Management to Exploit the Full Capability of Hybrid Storage Systems.Proceedings of
the VLDB Endowment, pages 1076–1087, 2012.

[84] M. Jung and M. Kandemir. Revisiting Widely Held SSD Expectations and Rethinking
System-Level Implications. InProceedings of the ACM SIGMETRICS/International Con-
ference on Measurement and Modeling of Computer Systems, SIGMETRICS ’13, pages
203–216, New York, NY, USA, 2013. ACM.

[85] M. Wei and L M. Grupp and F. E. Spada and S. Swanson. Reliably Erasing Data from Flash-
Based Solid State Drives. InProceedings of the 9th USENIX Conference on File and Stroage
Technologies, FAST ’11, Berkeley, CA, USA, 2011. USENIX Association.

[86] Machine Learning.http://en.wikipedia.org/wiki/Machine_learning .

[87] Markov Chain.http://en.wikipedia.org/wiki/Markov_chain .

[88] S. M Martin, K. Flautner, T. N. Mudge, and D. Blaauw. Combined dynamic voltage scaling
and adaptive body biasing for lower power microprocessors under dynamic workloads. In
Proceedings of the 2002 IEEE/ACM International Conferenceon Computer-Aided Design,
pages 721–725, 2002.

[89] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Critical power
slope: understanding the runtime effects of frequency scaling. In Proceedings of the 16th
International Conference on Supercomputing (ICS ’02), pages 35–44, 2002.

[90] J. F. Murray, G. F. Hughes, and D. Schuurmans. Machine Learning Methods for Predicting
Failures in Hard Drives: A Multiple-Instance Application.Journal of Machine Learning
research, page 816, 2005.

[91] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical Power Manage-
ment for Enterprise Storage. InProceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST 2008), 2008.

[92] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron. Migrating server
storage to ssds: analysis of tradeoffs. InEuroSys ’09: Proceedings of the 4th ACM European
conference on Computer systems, pages 145–158, New York, NY, USA, 2009. ACM.

[93] NetApp Flash Pool. http://www.netapp.com/us/products/platform-os/

flashpool.aspx .

[94] Nimble’s Hybrid Storage Architecture. www.nimblestorage.com/products/

architecture.php .

[95] M.F.X.J. Oberhumer. lzop data compression utility.www.lzop.org/ .

99



[96] Symantec OpenStorage, Symantec Corporation, 2012.www.symantec.com/theme.jsp?

themeid=openstorage .

[97] P. Desnoyers. What Systems Researchers Need to Know about NAND Flash. InHotStorage
’13: Proceedings of the 5th USENIX Workshop on Hot Topics in Storage, 2013.

[98] B. Palanisamy, A. Singh, L. Liu, and B. Langston. Cura: ACost-Optimized Model for
MapReduce in a Cloud. InProc. of 27th IEEE International Parallel and Distributed Pro-
cessing Symposium, 2013.

[99] M. Palmur, Z. Li, and E. Zadok. Cpuidle from user space. Technical Report FSL-13-05,
Computer Science Department, Stony Brook University, December 2013.

[100] R. Panabaker. Hybrid Hard Disk and Ready-Drive Technology: Improving Performance
and Power for Windows Vista Mobile PCs, 2006.http://www.microsoft.com/whdc/

winhec/pres06.mspx .

[101] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for Disk Array-Based
Servers. InProceedings of the 18th International Conference on Supercomputing (ICS
2004), pages 68–78, 2004.

[102] E. Pinheiro, W. Weber, and L. A. Barroso. Failure trends in a large disk drive population. In
Proceedings of the Fifth USENIX Conference on File and Storage Technologies (FAST ’07),
pages 17–28, San Jose, CA, February 2007. USENIX Association.

[103] T. Pritchett and M. Thottethodi. SieveStore: A Highly-Selective, Ensemble-level Disk Cache
for Cost-Performance. InProceedings of the 37th Annual International Symposium on Com-
puter Architecture, ISCA ’10, 2010.

[104] R. Freitas. Storage Class Memory: Technology, Systems and Applications. InProceedings
of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD
’09, pages 985–986, 2009.

[105] R. Jain.The Art of Computer System Performance Analysis. Wiley, 1991.

[106] RAID 6 Equation Calculator.http://raideqn.netapp.com/ .

[107] David S. H. Rosenthal, Daniel C. Rosenthal, Ethan L. Miller, Ian F. Adams, Mark W. Storer,
and Erez Zadok. The economics of long-term digital storage.In The Memory of the World in
the Digital age: Digitization and Preservation. United Nations Educational, Scientific and
Cultural Organization (UNESCO), September 2012.

[108] A. Sagahyroon. Power Consumption Breakdown on a Modern Laptop. InProceedings of the
2004 Workshop on Power-Aware Computer Systems, pages 165–180, Portland, OR, 2004.

[109] A. Sagahyroon. Analysis of dynamic power management on multi-core processors. In
Proceedings of the International Symposium on Circuits andSystems, pages 1721–1724,
2006.

100



[110] A. Sagahyroon. Power Consumption in Handheld Computers. In Proceedings of the IEEE
Asia Pacific Conference on Circuits and Systems, pages 1721–1724, Singapore, 2006.

[111] R. Sarikaya, C. Isci, and A. Buyuktosunoglu. Runtime workload behavior prediction using
statistical metric modeling with application to dynamic power management. InIn IEEE
International Symposium on Workload Characterization, 2010.

[112] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: a Lightweight, Consistent and Durable
Storage Cache. InProceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 267–280, 2012.

[113] B. Schroeder and G. A.Gibson. A Large-Scale Study of Failures in High-Performance Com-
puting Systems. InProceedings of the International Conference on DependableSystems and
Networks, DSN ’06, pages 249–258. IEEE Computer Society, 2006.

[114] B. Schroeder, S. Damouras, and P. Gill. UnderstandingLatent Sector Errors and How to
Protect against Them. InFAST’10: Proceedings of the 8th USENIX Conference on File and
Storage Technologies. ACM, 2010.

[115] B. Schroeder and G. A. Gibson. Disk failures in the realworld: What does an mttf of
1,000,000 hours mean to you? InProceedings of the Fifth USENIX Conference on File
and Storage Technologies (FAST ’07), pages 1–16, San Jose, CA, February 2007. USENIX
Association.

[116] B. Schroeder and G. A. Gibson. Understanding Failuresin Petascale Computers. InPro-
ceedings of the Scientific Discovery through Advanced Computing, SciDAC’07, 2007.

[117] B. Schroeder, E. Pinheiro, and W. Weber. DRAM Errors inthe Wild: a Large-Scale Field
Study. InProceedings of the Eleventh International Joint Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’09, pages 193–204. ACM, 2009.

[118] G. Schulz. Storage Industry Trends and IT Infrastructure Resource Management (IRM),
2007.www.storageio.com/DownloadItems/CMG/MSP_CMG_May03_2 007.pdf .

[119] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Ferformance and Energy in File System
Server Workloads. InProceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST), pages 253–266, San Jose, CA, February 2010. USENIX Association.

[120] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber. Extending SSD Life-
times with Disk-Based Write Caches. InFAST’10: Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies, Berkeley, CA, USA, February 2010. USENIX
Association.

[121] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, and D. Sarma. Energy-aware task and interrupt
management in linux. InOttawa Linux Symposium, July 2008.

[122] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti. Pergamum: Replacing Tape
with Energy Efficient, Reliable, Disk-based Archival Storage. InProceedings of the Sixth
USENIX Conference on File and Storage Technologies (FAST ’08), San Jose, CA, February
2008. USENIX Association.

101



[123] J. D. Strunk. Hybrid Aggregates: Combining SSDs and HDDs in a Single Storage Pool.
SIGOPS Oper. Syst. Rev., pages 50–56, 2012.

[124] E. L. Sueur and G. Heiser. Slow Down or Sleep, That Is TheQuestion. InProceedings of
the 2011 USENIX Annual Technical Conference, Portland, Oregon, USA, 2011.

[125] Y. Tan and X. Gu. On Predictability of System Anomaliesin Real World. InProceedings of
the 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS ’10, pages 133–140. IEEE Computer Society,
2010.

[126] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking File System Benchmark-
ing: It *IS* Rocket Science. InProceedings of HotOS XIII:The 13th USENIX Workshop on
Hot Topics in Operating Systems, Napa, CA, May 2011.

[127] Total Cost of Ownership. http://en.wikipedia.org/wiki/Total_cost_of_

ownership .

[128] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: a Power-proportional, Distributed
Storage System. InProceedings of EuroSys 2011, 2011.

[129] A Tiered Block Device.http://sourceforge.net/projects/tier/ .

[130] UMass trace repository.http://traces.cs.umass.edu .

[131] V. Mohan and T. Siddiqua and S. Gurumurthi and M. R. Stan. How I Learned to Stop
Worrying and Love Flash Endurance. InProceedings of the 2nd USENIX Conference on
Hot Topics in Storage and File Systems, HotStorage’10, 2010.

[132] A. Verma, R. Koller, L. Useche, and R. Rangaswami. SRCMap: Energy Proportional Storage
Using Dynamic Consolidation. InProceedings of the 8th USENIX Conference on File and
Storage Technologies, FAST’10, 2010.

[133] Virtual Flash Tech Preview. http://blogs.vmware.com/vsphere/2012/12/

virtual-flash-vflash-tech-preview.html .

[134] Tintri VMStore. www.tintri.com/resources/videos/

introduction-to-tintri/ .

[135] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu.
Characteristics of Backup Workloads in Production Systems. In Proceedings of the Tenth
USENIX Conference on File and Storage Technologies (FAST ’12), San Jose, CA, February
2012. USENIX Association.

[136] Watts up? PRO ES Power Meter.www.wattsupmeters.com/secure/products.php .

[137] Wavelet.http://en.wikipedia.org/wiki/Wavelet .

[138] WD Blue. http://www.wd.com/en/products/products.aspx?id=800# tab11 .

102



[139] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, andG. Kuenning. PARAID: a Gear-
Shifting Power-Aware RAID. InProceedings of the Fifth USENIX Conference on File and
Storage Technologies (FAST ’07), pages 245–260, San Jose, CA, February 2007. USENIX
Association.

[140] Device Mapper.http://en.wikipedia.org/wiki/Device_mapper .

[141] Fusion Drive.http://en.wikipedia.org/wiki/Fusion_Drive .

[142] Gamma Distribution.http://en.wikipedia.org/wiki/Gamma_distribution .

[143] Weibull Distribution.http://en.wikipedia.org/wiki/Weibull_distribution .

[144] A. Wildani and E. Miller. Semantic Data Placement for Power Management in Archival
Storage. InPDSW 2010, New Orleans, LA, USA, 2010. ACM.

[145] A. W. Wilson. Operation and implementation of random variables in Filebench.

[146] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, andE. Zadok. Auto-pilot: A Platform
for System Software Benchmarking. InProceedings of the Annual USENIX Technical Con-
ference, FREENIX Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[147] T. Xie and Y. Sun. PEARL: Performance, Energy, and Reliability Balanced Dynamic Data
Redistribution for Next Generation Disk Arrays. InIEEE MASCOTS, 2008.

[148] J Yang and F. Sun. A Comprehensive Review of Hard-Disk Drive Reliability. In Annual
Reliability and Maintainability Symposium, 1999.

[149] Y. Yu, D. Shin, H. Eom, and H. Yeom. NCQ vs I/O scheduler:preventing unexpected
misbehaviors.ACM Transaction on Storage, 6(1), March 2010.

[150] J. Yue, Y. Zhu, Z. Cai, and L. Lin. Energy and thermal aware buffer cache replacement
algorithm. InThe 26th IEEE Symposium on Massive Storage Systems and Technologies,
2010.

[151] ZCAV. http://en.wikipedia.org/wiki/Zone_bit_recording .

[152] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. InProceedings of the Sixth USENIX Conference on File and Storage
Technologies (FAST ’08), San Jose, California, USA, 2008.

[153] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hibernator: Helping Disk
Arrays Sleep Through the Winter. InProceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 177–190, Brighton, UK, October 2005. ACM Press.

[154] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Reducing Energy Con-
sumption of Disk Storage Using Power-Aware Cache Management. In Proceedings of the
10th International Symposium on High-Performance Computer Architecture, pages 118–
129, 2004.

103



[155] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and K. Shin. What does
control theory bring to systems research?SIGOPS Oper. Syst. Rev., pages 62–69, 2009.

[156] Y. Zhu and F. Mueller. Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling. In
RTAS ’04: Proceedings of the 10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, pages 33 – 63, Washington, DC, USA, 2004. IEEE Computer Society.

104


