
The Visual Development of GCC Plug-ins with GDE

A Thesis Presented
by

Daniel Joseph Dean

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2009

Technical Report FSL-09-04

Stony Brook University

The Graduate School

Daniel Joseph Dean

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

————————————————————————-
Prof. Erez Zadok, Thesis Advisor

Associate Professor, Computer Science

————————————————————————-
Prof. Annie Liu, Thesis Committee Chair

Professor, Computer Science

————————————————————————-
Prof. Robert Kelly

Associate Chair, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis

The Visual Development of GCC Plug-ins with GDE

by

Daniel Joseph Dean

Master of Science

in

Computer Science

Stony Brook University

2009

Being able to directly affect code compilation with code transformations allows the seamless
addition of custom optimizations and specialized functionality to code at compile time. Tradi-
tionally, this has only been possible by directly modifyingcompiler source code: a very difficult
task. Using GCC plug-ins, developers can directly affect code compilation, without actually mod-
ifying the source code of GCC. Although this makes applying acompleted plug-in easy, plug-in
development is transformation development nonetheless: an arduous task. The plug-in developer
is required to have the same thorough understanding of compiler internals, complex compiler
internal representations, and non-trivial source to internal representation mappings as any other
transformation developer.

Recently, simplified representations, such as CIL, have been developed to help developers
overcome some transformation design challenges. Althoughuseful in their own respect, repre-
sentations like CIL are often language-specific by design. This requires the developer to make
the unfortunate choice between the relative ease of development on a simplified representation or
language generality on a more complex representation.

We have developed a visual approach to transformation development consisting of a two com-
ponents: a plug-in to extract GCC’s intermediate representation and a Java-based tool to visualize
it. This thesis will clearly demonstrate how our visual technique significantly reduces many of the
problems facing transformation development without sacrificing the inherent benefits of a more
generalized intermediate representation.

iii

To Roxana.
You believe in me

and make me want to be a better person.

Contents

1 Introduction 1

2 Background 4
2.1 Front-End . 4
2.2 Middle-End . 5
2.3 Back-End . 6

3 Development Methodology 10
3.1 GCC Plug-ins . 10
3.2 Verbose-Dump Plug-in .. . 11
3.3 DB-Dump Plug-in .12

4 Design 14
4.1 Overview Window . 15

4.1.1 CFG: . 15
4.1.2 Call Graph . 16

4.2 GIMPLE Tree View . 17
4.3 Source Window . 19
4.4 GDB Console . 20
4.5 Extensible .20

5 Intermediate Dump Analysis 23
5.1 Files Examined .23
5.2 Dump Sizes . 23
5.3 Potential Uses .. 24

6 Use Cases 27
6.1 Dissecting GIMPLE Trees .. . 27
6.2 Dissecting Complex Expressions 28
6.3 API Usage . 30
6.4 Debugging Bad Code .30
6.5 CFG Inspection .31
6.6 GDBConsole . 32

v

7 Related Work 34
7.1 Graphical Development 34
7.2 Compiler Visualization 35
7.3 C Intermediate Language 36

8 Conclusions 37

9 Future Work 38
9.1 Zooming . 38
9.2 Online Functionality 38
9.3 RTL . 38

vi

List of Figures

1.1 C to intermediate representation 2

2.1 The GCC compilation process 7
2.2 An example CFG rendered by GDE. .. . 8
2.3 An example call graph .. 9

3.1 A figure showing the plug-in loading process. 11
3.2 Sample out from the verbose-dump GCC plug-in. 12

4.1 The GDE user interface .. . 14
4.2 The CFG rendered by GDE .16
4.3 The call graph rendered by GDE 17
4.4 A large basic block .. 18
4.5 An example cyclic GIMPLE access 19
4.6 GCC calling process .. 20
4.7 The GDB Console of GDE. .21
4.8 GDE class structure .. . 22

5.1 Database size vs.number of statements 24
5.2 Database size vs.number of statements without test.c.reference 25

6.1 Using GDE to get information about a CONDEXPR. 29
6.2 Using GDE to see how a particular statement is gimplified.. 29
6.3 Using GDE to help determine which macro to use. 30
6.4 Invalid and valid versions of a duplicated control-flow graph. 32

vii

List of Tables

5.1 Showing DB-dump key statistics 24

viii

Acknowledgments

Justin Seyster for his comments on an early draft of the thesis. Sean Callanan designed and
implemented the GCC plug-in system.

This work was partially made possible thanks to a Computer Systems Research NSF award
(CNS-0509230) and an NSF CAREER award in the Next GenerationSoftware program (CNS-
0133589).

Chapter 1

Introduction

Developers have long wanted greater control over compilation in order to automatically add fea-
tures like application-specific custom optimizations, integrated type checking, function call log-
ging, or parallism to code at compile time [2] [32] [26] [23].Code transformations give developers
this ability by modifying the compiler’s internal representation of compiling code. The traditional
development of code transformations,however, requires the direct modification of compiler source
files, a difficult and error prone task. As Chapter 3 explains,GNU Compiler Collection (GCC)
plug-ins are code transformations which do not require the developer modify the compiler source
itself [6]. Although this makes the application and deployment of completed transformations a
relatively simple process, plug-in development is an arduous task.

The GCC developer community has a great deal of expertise in developing code transforma-
tions due to their intimate knowledge of the compiler. Non-GCC developers, however, must first
learn the inner workings of GCC before developing a transformation. One of the most daunting
tasks in understanding the inner workings of GCC is understanding the various intermediate rep-
resentations that GCC creates. As shown in Figure 1.1, a single line of C code produces many
GIMPLE trees, with each GIMPLE tree containing internal information. Although each GIMPLE
tree node is used by the compiler in one way or another, a typical transformation is only interested
in a subset of nodes. Unfortunately, for the developer this often leads to hours of sorting through
low-level intermediate code to find a needle in the vast intermediate-representation haystack.

This thesis presents a visualization technique for the development of GCC plug-ins. Our tech-
nique involves the design and implementation of a visualization tool, theGIMPLE Development
Environment(GDE), along with a GCC plug-in to extract and format GCC internal informations.
GDE provides developers with four types of visualizations:(1) the control flow graph, (2) the call
graph, (3) the GIMPLE trees, and (4) the mapping from source to internal representation. We
demonstrate with a series of use cases, how these visual representations significantly reduce the
difficulty of interpreting and understanding the intermediate representation that GCC generates
while compiling a program.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of GCC
as a whole by presenting the fundamentals of GCC. It is here weintroduce the various phases of
compilation, explain why each phase exists, and finally describe the intermediate representation
at each phase. Although each phase is useful in its own right,this thesis focuses primarily on the

1

 FUNCTION_DECL 0,0
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=8
 DECL_SIZE:
 INTEGER_CST 0,0
 DECL_MODE=10
 DECL_ARG_TYPE:
 INTEGER_TYPE 0,0
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=9
 DECL_ABSTRACT=0
 DECL_RESULT:
 RESULT_DECL 10,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 DECL_NAME=NULL_TREE
 DECL_CONTEXT:
 FUNCTION_DECL 0,0
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=64
 DECL_SIZE:
 INTEGER_CST 0,0
 DECL_MODE=13
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=10
 DECL_ABSTRACT=0
 DECL_FUNCTION_CODE=0
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=10
 DECL_ABSTRACT=0
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=64
 DECL_SIZE:
 INTEGER_CST 3,0
 TREE_TYPE:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=13
 TYPE_POINTER_TO=NULL_TREE
 TYPE_NEXT_VARIANT=NULL_TREE
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_NAME:
 IDENTIFIER_NODE 0,0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 0,0
 TYPE_MAX_VALUE:
 INTEGER_CST 0,0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE
 TREE_INT_CST_LOW=64
 TREE_INT_CST_HIGH=0
 DECL_MODE=13
 DECL_INITIAL=NULL_TREE
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=15
 DECL_ABSTRACT=0
 TREE_ADDRESSABLE=0
 MULT_EXPR 1,2
 TREE_TYPE:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 0,0

#include <sys/types.h>

uint64_t facts[21];

uint64_t fact(unsigned char x)
{
 if(!facts[x]) {
 if(x == 0)
 facts[x] = 1;
 else
 facts[x] = x * fact(x-1);
 }

 return facts[x];
}

D.3155 = (int) x;
D.3156 = (uint64_t) x;
D.3157 = x + 255;
D.3158 = (int) D.3157;
D.3159 = fact (D.3158);
D.3160 = D.3156 * D.3159;
facts[D.3155] = D.3160;

 GIMPLE_MODIFY_STMT 0,2
 VAR_DECL 12,0
 TREE_TYPE:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 3,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 TREE_INT_CST_LOW=64
 TREE_INT_CST_HIGH=0
 TYPE_MODE=13
 TYPE_POINTER_TO:
 POINTER_TYPE 9,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=13
 TYPE_POINTER_TO=NULL_TREE
 TYPE_NEXT_VARIANT=NULL_TREE
 TYPE_MAIN_VARIANT:
 POINTER_TYPE 0,0
 TYPE_NAME=NULL_TREE
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TREE_TYPE:
 INTEGER_TYPE 0,0
 TYPE_NEXT_VARIANT:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=13
 TYPE_POINTER_TO=NULL_TREE
 TYPE_NEXT_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_NAME:
 TYPE_DECL 0,0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 0,0
 TYPE_MAX_VALUE:
 INTEGER_CST 0,0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=13
 TYPE_POINTER_TO:
 POINTER_TYPE 0,0
 TYPE_NEXT_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_NAME:
 TYPE_DECL 0,0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 0,0
 TYPE_MAX_VALUE:
 INTEGER_CST 0,0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE

 TYPE_NAME:
 TYPE_DECL 7,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 DECL_NAME:
 IDENTIFIER_NODE 0,0
 DECL_CONTEXT=NULL_TREE
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_SOURCE_FILE=<built-in>
 DECL_SOURCE_LINE=0
 DECL_ABSTRACT=0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 3,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 TREE_INT_CST_LOW=0
 TREE_INT_CST_HIGH=0
 TYPE_MAX_VALUE:
 INTEGER_CST 3,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 TREE_INT_CST_LOW=4294967295
 TREE_INT_CST_HIGH=0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE
 DECL_NAME=NULL_TREE
 DECL_CONTEXT:
 FUNCTION_DECL 14,0
 TREE_TYPE:
 FUNCTION_TYPE 8,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=10
 TYPE_POINTER_TO:
 POINTER_TYPE 0,0
 TYPE_NEXT_VARIANT=NULL_TREE
 TYPE_MAIN_VARIANT:
 FUNCTION_TYPE 0,0
 TYPE_NAME=NULL_TREE
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=0
 DECL_NAME:
 IDENTIFIER_NODE 2,0
 IDENTIFIER_LENGTH=4
 IDENTIFIER_POINTER=fact
 DECL_CONTEXT=NULL_TREE
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=0
 DECL_SIZE=NULL_TREE
 DECL_MODE=10
 DECL_INITIAL:
 BLOCK 5,0
 BLOCK_VARS=NULL_TREE
 BLOCK_CHAIN=NULL_TREE
 BLOCK_ABSTRACT_ORIGIN=NULL_TREE
 BLOCK_ABSTRACT=0
 TREE_ASM_WRITTEN=0
 DECL_ARGUMENTS:
 PARM_DECL 11,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 DECL_NAME:
 IDENTIFIER_NODE 0,0
 DECL_CONTEXT:

 TYPE_MODE=13
 TYPE_POINTER_TO:
 POINTER_TYPE 0,0
 TYPE_NEXT_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_NAME:
 TYPE_DECL 0,0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 0,0
 TYPE_MAX_VALUE:
 INTEGER_CST 0,0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE
 VAR_DECL 12,0
 TREE_TYPE:
 INTEGER_TYPE 12,0
 TYPE_SIZE:
 INTEGER_CST 0,0
 TYPE_MODE=13
 TYPE_POINTER_TO:
 POINTER_TYPE 0,0
 TYPE_NEXT_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_MAIN_VARIANT:
 INTEGER_TYPE 0,0
 TYPE_NAME:
 TYPE_DECL 0,0
 TYPE_CONTEXT=NULL_TREE
 TYPE_UNSIGNED=1
 TYPE_MIN_VALUE:
 INTEGER_CST 0,0
 TYPE_MAX_VALUE:
 INTEGER_CST 0,0
 TYPE_PRECISION=64
 TREE_TYPE=NULL_TREE
 DECL_NAME=NULL_TREE
 DECL_CONTEXT:
 FUNCTION_DECL 14,0
 TREE_TYPE:
 FUNCTION_TYPE 0,0
 DECL_NAME:
 IDENTIFIER_NODE 0,0
 DECL_CONTEXT=NULL_TREE
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=0
 DECL_SIZE=NULL_TREE
 DECL_MODE=10
 DECL_INITIAL:
 BLOCK 0,0
 DECL_ARGUMENTS:
 PARM_DECL 0,0
 DECL_RESULT:
 RESULT_DECL 0,0
 DECL_FUNCTION_CODE=0
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=10
 DECL_ABSTRACT=0
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=64
 DECL_SIZE:
 INTEGER_CST 3,0
 TREE_TYPE:

 INTEGER_TYPE 0,0
 TREE_INT_CST_LOW=64
 TREE_INT_CST_HIGH=0
 DECL_MODE=13
 DECL_INITIAL=NULL_TREE
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=15
 DECL_ABSTRACT=0
 TREE_ADDRESSABLE=0
 VAR_DECL 12,0
 TREE_TYPE:
 INTEGER_TYPE 0,0
 DECL_NAME=NULL_TREE
 DECL_CONTEXT:
 FUNCTION_DECL 0,0
 DECL_ABSTRACT_ORIGIN=NULL_TREE
 DECL_ALIGN=64
 DECL_SIZE:
 INTEGER_CST 0,0
 DECL_MODE=13
 DECL_INITIAL=NULL_TREE
 DECL_SOURCE_FILE=test.c
 DECL_SOURCE_LINE=15
 DECL_ABSTRACT=0
 TREE_ADDRESSABLE=0

Figure 1.1: An example showing the C to intermediate representation blow-up.

2

GIMPLE intermediate representation. Next, in order to understand the our visualization technique,
we must understand the GCC plug-in system, which we discuss in Chapter 3. We focus on two
GCC plug-ins in particular: DB-dump and Verbose-dump. Chapter 4, explains the development
of GDE in detail along with an explanation of what features were chosen and why.

Once GDE and GCC plug-ins are understood as a whole, we explain how GDE allows for
the effective design and debugging of compiler transformations in Chapter 6. Here we show
how we have used GDE in the past to design and debug our own transformations, describing
each case in detail along with the specific advantages GDE brings to the development process.
We then examine, in Chapter 5, the DB-dump and Verbose-dump output of several applications,
suggesting analysis that can be done on these dumps. We then further illustrate exactly why GDE
was developed by examining some related technologies in Chapter 7. We conclude in Chapter 8
by summing up the key points of this thesis and finally, discuss further expansion possibilities for
GDE in Chapter 9.

3

Chapter 2

Background

The GNU Compiler Collection (GCC) [14] is an open source compiler which was initially re-
leased in 1987 as a C compiler under the name GNU C Compiler. Although initially a compiler
only able to compile C code, GCC is now a massive compiler suite able to compile many pro-
gramming languages, such as C++, FORTRAN, Pascal, Objective-C, Java, and Ada. GCC can
also support less used languages like Pascal, Mercury, and COBOL, but a custom version of GCC
must be configured and installed. GCC conforms to all ANSI/ISO C and C++ standards provid-
ing command-line options to select which standard it shouldadhere to. Lastly, GCC is able to
compile code to a wide range of well known architectures suchas x86-64, PowerPC, SPARC,
and MIPS. GCC also supports several lesser known architectures such as MCORE [9], ARC [20],
and Xtensa [41] [15]. Due to the large number of distinct architectures and languages supported,
GCC designers have separated the GCC compilation process into three distinct phases, as seen in
Figure 2.1: the front-end, the middle-end, and the back-end[15]. We discuss these phases next.

2.1 Front-End

GCC’s front-end is the language-dependent portion of compilation which is responsible for con-
verting a preprocessed source file into a representation suitable for further compilation. Specif-
ically, the front-end first parses the source code, constructing type and symbol information for
compilation. This phase is responsible for operations suchas the enforcement of language-level
standards compliance, resolution of type definitions, typeinference, and construction of scopes.
The front end then produces a tree-like intermediate representation, which differs from language
to language, while also populating some global variables holding auxiliary information such as
theTREE ADDRESSABLE flag, which indicates an item can be passed to the run-time. This tree-
like intermediate representation is called aparse treeand is what GCC uses, in various forms,
throughout the compilation process.

Parse Trees: The core of the front-end’s representation is the parse tree. A parse tree is the
first intermediate representation generated by the compiler from the output of the preprocessor.
Although similar in form, parse trees are language dependent and retain much of the original
source code structure. Few optimizations are applied to theinitial parse tree, which leads to the

4

explicit expression of hierarchical scoping and loop structures at this level. Parse trees follow
hierarchical structure where a node is created for every function. GCC then creates children for
each function node, representing the abstract syntax tree for that function. Each tree node has a set
leaf nodes calledattributesas well as a set non-leaf nodes calledoperands. Attribute nodes may
either contain data collected at compile time which allow the expression of specific node details
such as type information or may be other nodes created from program semantics. Operands are
tree nodes created from program semantics, for example the right branch of a conditional. Once
parse tree creation is complete, we enter the middle-end phase of file compilation.

2.2 Middle-End

The middle-end in GCC was designed to perform virtually all architecture-independent optimiza-
tions. Before 2004, GCC was separated into two parts: the front-end and back-end. Whereas this
worked in the past and is still how many other compilers operate today, GCC developers were
running into problems. Following this two-phase design, optimizations such as loop unrolling and
constant propagation were performed on a representation very close to machine code. Although
not necessarily a problem for compilers supporting a small subset of languages or architectures,
GCC developers found these optimizations were becoming quite difficult to maintain [27]. To
simplify things, GCC developers separated optimizations from the rest of the code, giving them
a separate compilation phase along with its own representation. In 2006, the GCC developers
integrated support for inter-procedural optimization into the middle-end, further extending the
capabilities of middle-end optimizations.

GIMPLE: GCC’s middle-end optimizations begin withGimplification of the initial parse-
tree representation. Gimplification is the process of converting language-dependent parse trees
into a simplified three address language-independent representation called GIMPLE. GIMPLE
was named after, and is heavily influenced by, the McGill Compiler Architecture’s language-
independent abstract syntax tree representation, called SIMPLE [17]. Immediately after Gimplifi-
cation, GCC constructs acontrol-flow graph(CFG) for each function consisting of a single entry
and exit point, a set of nodes, and a set of edges connecting these nodes. Each node in the CFG,
for a particular function, corresponds to a series of statements to be executed in order called a
basic block. The edges connecting one basic block to another track the control flow from a func-
tion entry point to an exit point. Loops are implicitly represented in the CFG through conditionals
which correspond to loop edges. Figure 2.2 shows an example CFG in graphical form.

In addition, at this point GCC constructs acall graphwhich shows the function call structure.
Each call graph node represents a function in the source baseof the currently compiling code
and has a list of callers and callees with a series of edges connecting the nodes. Together, these
nodes and edges form a graph representing program function call semantics. An example call
graph is shown in Figure 2.3. These higher-level structuresallow for rapid control-flow and data-
flow analyses. The simple nature of the individual instructions and the deterministic execution
order inside a basic block also serve to make program analysis easier. Once all architecture-
independent optimizations, such as loop unrolling, have been performed, we enter the back-end
phase of compilation.

5

2.3 Back-End

The back-end is primarily responsible for generating the final assembly code for the program.
In order to do this, GCC must allocate registers, perform final stack-frame layout, and schedule
instructions for the CPU’s pipeline. At this point, most optimizations have already been applied
to the code and as a result, the only optimizations the back-end compilation phase need apply
are architecture-specific optimizations, such as instruction pipelining. The back-end phase of
compilation has been extensively developed over the years.As a result, modifications to this layer
are now almost exclusively done for the purpose of porting orto improve GCC’s exploitation of
CPU resources.

RTL: GCC’s back-end creates and manipulates an intermediate representation calledRegister
Transfer Level(RTL), which closely resembles Lisp expressions.(strict low part (subreg:m
(reg:n r) 0)) is an example RTL expression taken from the GCC internals documenta-
tion [15]. Although GDE does not currently support RTL visualization, we discuss it briefly
as future work may incorporate RTL visualization into GDE. RTL encodes both the individual
instructions and also the storage classes (memory or register) for the data the instructions operate
on. Once all low-level optimization passes on RTL are complete, its structure is isomorphic to that
of assembly, and generating assembly code from it is a relatively simple process.

6

FRONT−END

Gimplifier

Java
Trees

C++
Trees

IPA

Tree
SSA

Optimizer

RTL

MIDDLE−END

GIMPLE

RTL
Optimizer

Code
Generator

Object
Code

Java to
GENERIC

C to
GENERIC

C
Trees

C++ to
GENERIC

GENERIC

GIMPLE

RTL

RTLBACK−END

Figure 2.1: The GCC compilation process adapted from Red HatMagazine. [37]

7

Figure 2.2: An example CFG rendered by GDE.

8

Figure 2.3: A subsection of a call graph rendered by GDE. Eachnode represents a particular
function while edges represent function calls.

9

Chapter 3

Development Methodology

As mentioned in Chapter 1, code transformations allow developers to optimize and add function-
ality to code at compile time. Traditional development of code transformations, however, is a
difficult process with several development obstacles to overcome.

The developer first needs to make sure the code transformation modifies the intermediate repre-
sentation in such a way that file compilation is still possible. That is to say, the developer cannot
break the compiler. Second, modifying the compiler source requires a full compiler rebuild, a
process taking more than thirty minutes for GCC on an AMD64 X24400 dual-core [38]. Third,
distribution of a completed transformation is very difficult requiring the user to manually modify
compiler source files to apply the transformation. When applying more than one transformation,
this is difficult at best due to the complexity of GCC source files. Fourth, transformation devel-
opment requires the careful modification of a compiler’s internal representation. This is highly
non-trivial because that the internal representation becomes more and more low-level through-
out compilation. Understanding the representation becomes harder as we get closer to assembly.
Lastly, debugging a transformation is no easy task. Although a buggy high level application of-
ten has useful error messages, a buggy transformation usually has cryptic or short error messages
which are of little help to an inexperienced transformationdeveloper. The remainder of this chap-
ter first describes GCC Plug-ins in Section 3.1, then describes two plug-ins we have developed,
DB-dump and Verbose-dump, in Sections 3.2 and Section 3.3 accordingly.

3.1 GCC Plug-ins

GCC plug-ins, which are scheduled to be included in mainlineGCC version 4.5, give developers
the ability to develop code transformations with modifications to the source base of GCC itself.
Currently, developers need only to recompile GCConceto support the plug-in system and once
plug-ins have been incorporated into mainstream GCC, no source modification will be necessary.
GCC plug-ins are developed as separate files and then compiled into shared libraries which are
loaded into GCC at run-time. This is done by the addition of function calls, which load arbitrary
lists of plug-ins, at locations corresponding to individual phases of compilation. Figure 3.1 shows
this process in more detail.

10

GCC
Source

Plug−ins to load

Binary

Figure 3.1: A figure showing the plug-in loading process.

A user simply includes the flag-ftree-plugin={Path to compiled plug-in.so file} for each plug-
in to be applied. The GCC plug-in system not only solves the problem of rebuilding GCC multiple
times, but it also solves the transformation deployment problem; if a plug-in causes compilation
to fail, simple remove it from the list.

While the plug-in system solves some of the problems associated with transformation develop-
ment, GCC plug-ins do not make it any easier to understand a complex intermediate representation
or to debug a broken transformation. As we will show, visualization of the intermediate represen-
tation ameliorates these problems. A compiler’s intermediate representation is internal to the
compiler, however, and in order to visualize the intermediate representation, we first must extract
it.

3.2 Verbose-Dump Plug-in

Verbose-dump was the first GCC plug-in developed to extract and format GCC’s intermediate rep-
resentation. Initially, verbose-dump was able to extract only the GIMPLE intermediate represen-
tation in a raw output form to stdout, which then needed to be redirected to a file for later analysis.
Verbose-dump now formats and extracts GIMPLE, front-end parse trees, call-graphs, control-flow
graphs either to stdout or to a file specified as an argument to the plug-in. The verbose-dump
plug-in works by parsing a GCC definition file calledtree.def, which contains a description of
each element of GCC’s GIMPLE intermediate representation.Using tree.def along with a cus-
tom definition file, we have designed,parameter.def; verbose-dump is able to recursively iterate
through each element of the GIMPLE tree, formatting and printing node information at each step
along the way. Figure 3.2 shows a small sample of the output produced by verbose-dump.

Verbose-dump was initially used as a stand-alone tool, whose output was simply viewed in a
text editor. It soon became apparent, however, that the amount of GIMPLE output was becoming
too large to be looked at in its raw form, and a visualization system was needed. Verbose-dump
was then looked at as part of a visualization system instead of a stand-alone tool and the output
was formatted in order to be easily parsed by a visualizer. Although this is useful for simple source
files, over time it became apparent that this method was inadequate for larger and more complex
source files, as we show in Chapter 5.

11

Figure 3.2: Sample out from the verbose-dump GCC plug-in.

tree.def and parameter.def: Tree.def is a GCC source file which contains the definitions ofall
tree codes used by GCC along with an explanation of what information each tree code contains.
This file is used extensively by GCC throughout the compilation and is also useful for transfor-
mation developers as a reference when accessing tree nodes.DEFTREECODE (ERROR MARK,
"error mark", tcc exceptional, 0) is an example tree.def line definining a tree code.
Parameter.def is a custom definition file which we created to allow us to determine which attributes
are associated with each tree code defined in tree.def, something that is unclear from simply look-
ing at tree.def.DEFTREEPARAMETER(type name, TREE, TYPE NAME,ALL TYPES) is
an example taken from parameter.def.

3.3 DB-Dump Plug-in

DB-dump was the second GCC plug-in developed to capture GCC’s intermediate representa-
tion. Its design and operation are similar to verbose-dump,with one major difference: we used a
database to store the output as opposed to a file. We chose PostgreSQL as the database system in
order to keep with the open-source nature of GCC. We designedthe schema to allow the efficient
storage of GCC’s complex intermediate representation along with useful source file information.
We create tables for GCC internal items such as basic blocks,the call-graph, and the control-flow
graph as well as for source file information such as functions, the actual source code of the file, and
source-code statements. We also create tables for each typeof GIMPLE tree node found in tree.def
in order to keep table sizes manageable in size. Insertion into the database is similar to verbose-
dump: we visit each tree node in a recursive manner while inserting the node information into the
appropriate tables. A second major difference of db-dump with respect to verbose-dump is data
replication. GIMPLE trees contain a lot of redundant type information. Whereas verbose-dump
simply outputs all information it comes across, db-dump only inserts new information into the
database. When db-dump comes across data it has already seen, it creates pointer to the existing

12

entry instead of creating a new entry.

All pointers db-dump inserts into the database are hash values created through a two stage
process. First we create 40-byte hash using a SHA-1 [10] hashing function with combination the
file name, current function name, and the address of the current node being processed as input.
Then, we attach a four-byte numeric description of the tablewe are going to insert into to the
end of the hash and insert the 44-byte value into the database. The four-byte numeric description
allows developers to quickly determine which table to search given a specific node while the hash
value allows for quick lookups within that table. As Chapter5 shows, our database system is able
to handle complex source files efficiently.

13

Chapter 4

Design

Figure 4.1: The GDE user interface

We have developed the Gimple Development Environment (GDE)using Java to visualize
GCC’s GIMPLE intermediate representation. We also have provided a graphical interface to the
Gnu Debugger (GDB) which simplifies run-time plug-in debugging. GDE uses the Swing [12]
library to render components, the AWT [29] library to draw decorations (e.g., lines connecting the
elements of the CFG), the PostgreSQL JDBC driver [35] for database queries, and GDB for de-

14

bugging. We chose Java as the development language for its cross-platform compatibility, which
allows GDE to be used on most of GCC’s host platforms. This allows us to concentrate on the
development of the tool itself as opposed to platform support and library dependencies. As shown
in Figure 4.1, GDE has three main areas: the overview window,the GIMPLE tree view window,
and the source window, which we discuss in the following three sections. We then discuss the
graphical interface to GDB we have created in Section 4.4. Finally, we discuss how GDE was
designed to be further extended as needed in Section 4.5.

4.1 Overview Window

The overview window displays one of two main elements: a visual representation of the CFG of
each function in the source file, or a visual representation of the call graph of the file. The call
graph and each individual function are accessible via namedtabs.

4.1.1 CFG:

As shown in Figure 4.2, the CFG is rendered as colored rectangles connected by arrows with flags
associated with each edge. All elements of the CFG are movable and able to be minimized while
the lines connecting each element of the CFG can be hidden. This allows the user to rearrange the
graph at will to get a better view of a particular basic block of interest or to rearrange a loop into a
form that corresponds better to high-level semantics. Thisalso allow the user to hide uninteresting
graph elements in order to better view an area of interest. Each colored rectangle corresponds to
a specific basic block with a series of GIMPLE expressions to be executed in sequential order.
Mousing over one of the flags associated with each edge causesthe flag to expand, displaying the
GCC edge flags associated with that particular edge.

Edges and edge flags: As discussed in Chapter 2, basic blocks in the CFG are connected by
directed edges which specify the data flow through the graph.Most edges, with the exception of
the edge from the last basic block to the exit block, have a setof one or more flags associated with
it. These flags specify when a particular node is taken. For example, theEDGE FALLTHROUGH
flag specifies that this edge is taken at all times, whereas theEDGE TRUE VALUE flag specifies
the edge is only taken when the conditional in the previous basic block evaluates to true.

Clicking a CFG node here has several effects. First, GDE colors the selected block green,
while coloring its predecessors yellow, and its successorsgray. GDE also highlights the paths to
each successor in red. This allows the user to quickly determine which blocks could follow the
execution of this block and also which blocks could have preceded it’s execution, which allows for
easy flow analysis. Second, GDE displays a visual tree representation of the selected basic block’s
GIMPLE nodes in the GIMPLE tree view area. Finally, GDE highlights the lines of source code
corresponding to the selected basic block, its successors,and its predecessors in the source area.

As Figure 4.2 shows, the CFG is rendered in a tiered sequential manner. First, GDE renders
the entry block in its own row followed by its successors on the second row. Next, GDE renders

15

Figure 4.2: The CFG rendered by GDE

successors of the basic blocks in each row in the following row, provided that they have not already
been rendered. If rendering would take place off screen, that is to say a row is too wide, we render
any elements unable to fit on screen in the next row to be rendered by GDE, creating a new row
below the current row if necessary. This method allows the user to easily follow the basic block
execution order from function beginning to end, while also requiring minimal scroll bar use.

4.1.2 Call Graph

As shown in Figure 4.3, the call graph is comprised of coloredrectangles connected by arrows.
Each colored rectangle here represents a node in the call graph for a particular file and each
edge represents a function call from one node to another. Nodes in the call graph simply contain a
unique identifier assigned to that node along with the name ofthe function that the node represents.
All call graph elements are moveable, able to be minimized, and the edges connecting each node
can be hidden. We have implemented this functionality for the same reasons discussed in the CFG
segment above. Clicking a node of the call graph causes that node to be highlighted in green, any
node called by that node to be highlighted in gray, and any nodes calling the selected node to be
highlighted in yellow. Paths to each node called by the selected node are also highlighted in red
by GDE, similar to the highlighting scheme of the CFG described above.

The layout of the call graph had two generations. Initially,the we laid the call graph out in a
circular manner around the node with the most function calls. Whereas this was useful for small

16

Figure 4.3: The call graph rendered by GDE

call graphs, it became apparent that this layout scheme was inadequate for larger, more complex
graphs. Currently, the call graph is laid out in a tiered manner. GDE draws function entry points,
functions with no predecessors, first. Next, GDE draws the successors of each function entry
point, followed by the successors of those successors untilwe have drawn all nodes. In the case
that we have no function entry points, we select the functionwhich has the most outgoing edges
as our initial node, and proceed as usual. This layout, alongwith node and node-path highlighting,
allows users to quickly determine program flow.

4.2 GIMPLE Tree View

When a control-flow graph is being displayed in the overview window, clicking a basic block
displays its corresponding GIMPLE representation in the GIMPLE tree view. The root node of
each tree is a statement from the corresponding basic block rendered in a C-like syntax. The tree
generated is a visual representation of the attributes and operands for the selected GIMPLE node,
as previously discussed in Chapter 2. Non-leaf nodes are GIMPLE attributes or operands that have
at least one pointer to another node, whereas leaf nodes represent nodes that have no pointers to
other nodes. The tree view is useful as it visualizes the ordering of operands in each node and
also lets the developer know what attributes apply to a particular node. This is invaluable when
using macros such asTREE OPERAND, which programmatically dissect tree nodes, inside GCC
transformations.

Clicking a node in the GIMPLE tree view expands that node, showing its children. Each non-
leaf child node can then be expanded, in the same manner, until the desired information is found.
Initially, clicking a basic block caused the GIMPLE trees tobe created for all statements in the
basic block. This meant recursively visiting each node in each tree in the selected basic block,
creating the visual objects at each step along the way. Although this worked for most basic blocks,

17

as Figure 4.4 shows, larger basic blocks were simply too large to be rendered in their entirety.
Furthermore, due to the size of the GIMPLE, medium to large sized basic blocks were taking a
noticeable amount of time to render.

Our first attempt to deal with this issue, was to limit the depth nodes could be expanded to. This
worked well as an initial solution, as most nodes of interestare near the top of the GIMPLE tree,
but prevented the rendering of nodes deep within the tree which may be of interest to a particular

Figure 4.4: An example basic block with more statements thanusual shown in the GIMPLE Tree
view of GDE.

18

Figure 4.5: An example cyclic GIMPLE access, the cycle is detected and reported by GDE.

user. To address this, we implemented dynamic GIMPLE tree construction. Now, clicking a basic
block causes only the queries necessary to create the top level nodes to be executed. We then used
the results of those queries to create visual representations of each top-level node. We create visual
representations of child node in the same way as the user expands each parent node. This allowed
us to remove the tree depth limit but forced us to deal with another problem that had previously
been handled by the depth limit. Although GIMPLE is best visually represented as a tree structure,
GIMPLE nodes can occasionally form cycles when a child node points back to a parent node, as
shown in Figure 4.5.

Although these cycles do not occur often in each particular GIMPLE tree, they exist in every
GIMPLE tree. Without the depth limit, a user could potentially enter one of these loops and expand
the tree until GDE runs out of memory. We have addressed this issue by adding loop detection
as we create the GIMPLE tree; instead of blindly displaying tree nodes, we instead display nodes
only if they have not previously been rendered. When a node ispreviously displayed, we inform
the user that the node is a back reference using a placeholdernode which contains the hash of the
back reference.

4.3 Source Window

The original source file, corresponding to the intermediaterepresentation currently being exam-
ined, is displayed in the source window with line numbers forquick reference. Although the user
cannot explicitly interact with this area, clicking a basicblock in the CFG of a function highlights
the line(s) of code corresponding to that basic block in green, the line(s) corresponding to its suc-
cessors in gray, and the line(s) corresponding to its predecessors in yellow. This allows the user
to easily identify which lines of code in the source were compiled to produce a particular basic
block, explicitly displaying the source-to-intermediaterepresentation mapping.

19

4.4 GDB Console

GDE has the ability to debug a plug-in as it runs using our GDB console. As a running plug-in
is loaded into GCC, debugging a plug-in requires the user to debug GCC itself. Although most
binaries can be debugged by attaching a debugger to the running binary, debugging GCC is not as
straightforward. The commandgccis not the actual GCC compiler, but instead the compiler driver
which determines the type of file being compiled, sets several arguments normally transparent to
the user, and finally calls the appropriate compiler to compile the source file. We show this process
in Figure 4.6. To debug GCC, the user must attach the debuggerto the correct binary while also
setting the same arguments that the GCC script would set. We have automated this process by
simply opening the GDB console from within GDE.

C Source
CC1

C++ SourceSource File
CC1plus

Collect2

GCC

JC1,etc

Object File

Performs Linking
BinaryJava, etc

Object File

Object File

Figure 4.6: The GCC calling process. Actual file compilationand linking are done by files called
by thegcccompiler driver.

As Figure 4.7 shows, the GDB console has five areas of interest: (1) the CFG area, (2) the
GIMPLE tree window, (3) the backtrace window, (4) the GDB output area, and (5) the Input
area. The GDB output area displays all output from GDB as received along with occasional GDE
output used mainly for GDE debugging purposes. The input area is where the user interacts with
the underlying GDB debugger. Users are given a dropdown box with GDE commands, a text input
area, and several buttons corresponding to common commands.

When a user selects the dump function option while GDB has stopped inside a function, GDE
creates a visual representation of that function’s CFG in the CFG view. Clicking CFG nodes in
the CFG view has the same result as clicking a CFG node in the overview window of GDE as
described above: the GIMPLE tree is displayed in the GIMPLE tree window of the GDB console.
The generated GIMPLE tree, however, is a snapshot of the current state of the intermediate rep-
resentation. This allows developers to see any changes thathappen to the GIMPLE tree as they
happen, giving insight into where a plug-in may be operatingincorrectly. Lastly, selecting the
backtrace option displays the results of running backtracecommand in the backtrace window in a
more readable form.

4.5 Extensible

We designed GDE was to be extended as new components need be added, which is done with
two interfaces. First, we designed the GUI interface to allow the easy addition of new rendering

20

Figure 4.7: The GDB Console of GDE.

areas. It accomplishes this by returning Java objects, suchas JPanels, which are then drawn by
GDE. Secondly, we designed the GUIElement interface to allow the easy rendering of graphical
components by GDE through the use preRender, Render, and postRender methods. The methods
in these interfaces give developers a way to specify exactlyhow and where a graphical component
should be drawn by GDE. Using these interfaces, GDE can use generic functions to perform its
visualization. Adding new components to GDE still requiressource code modification however,
these interfaces minimize the amount of modificaions needed.

Class Interaction: GDE separates rendering data and rendering methods throughthe use of
abstract classes in order to allow the easy addition of new data sources or rendering techniques
as needed. When extending GDE, the developer first must to create an abstract superclass of a
rendering element. This class contains the methods needed to render the element. The developer
then must create a subclass of that class responsible for defining methods to populate the data
structures needed by the rendering methods. Figure 4.8 shows how this class structure uses a
series ofDB classes to render from a PostgreSQL database.

21

Function

DBCallGraphBasicBlock

DBBasicBlock

GDBThread

GDBConsoleCall Graph

Parser GDEGui

DBFunction

GDE

Figure 4.8: The main classes of GDE with several classes excluded for readability. Abstract
classes for rendering are represented with dotted lines.

22

Chapter 5

Intermediate Dump Analysis

This Chapter discusses the results of several intermediatedumps using the db-dump GCC plug-in
we described in Chapter 3. As we show, being able to dump the intermediate representation of
compiling source code using our db-dump plug-in allows for static analysis to be performed on
that data at a later time. To begin, we discuss the files examined, including a brief explanation of
each file. We then discuss our dump statistics and conclude with a discussion of some types of
analysis possible on our db-dump output.

5.1 Files Examined

The first file we dumped was a test file created mainly for the development and debugging of
plug-ins,test.c.reference. This file is a simple file, written in C, which simply computes
the factorial of a number in a tabular manner. Next, we dumpeda second internal file named
test.c.benchmark, which is based off a file used to test for bounds violations. It does this by
accessing in bounds and out of bounds areas in the stack, heap, and global areas at a user specified
rate. This file has been modified slightly to increase the overall size of the file by the addition
of function copies, which was done to test the visualizationcapabilities of GDE with respect to
a larger single input file. We then dumped two real world projects: the Lighthttpd [21] and the
linux kernal [42]. Lighthttpd is a light weight web server written in C. The first linux kernel
configuration we have dumped was created using the makeallnoconfig option, which turns
off as many features as possible. We then turned on only the Ext2 filesystem and lock debugging
utilities for our next configuration.

5.2 Dump Sizes

Table 5.1 shows our dump sizes. We give numbers for: (1) the overall size of the database, (2) the
number of functions compiled and dumped, (3) the number of three address statements compiled
and dumped, (4) the number of basic blocks dumped, and (5) thetotal number of source lines
(including non compiled items such as comments).

Figure 5.1 shows the relation of size vs. number of statements dumped for all files. This is
a good metric of how our database system scales with project size. As the lines of C code in

23

Name Size(kB) Number Functions Number Statements Basic Blocks Source Lines
kernel-ext3-lock 817000 15826 286512 75660 271120

kernel-allnoconfig 678000 13435 241778 65860 241014
lighttpd 87000 2310 45516 11037 36321

test.c.benchmark 2688 46 2097 414 1139
test.c.reference 5 43 16 39

Table 5.1: Showing DB-dump key statistics

a project increases, the number of statements corresponding to those lines of C code generally
increases as well. As each statement is the starting point ofa GIMPLE tree, the more statements
you have, the more GIMPLE there will be corresponding to those statements. The large ratio
of size vs.statements fortest.c.reference shown in Figure 5.1 is due to the small size of
test.c.reference itself. When looking at small files, the database declarations alone cause
the size vs.statements ratio to be very large. However, it should be noted that in this case, even
though the ratio itself is large, the actual size of the database is only 664kB. Figure 5.2 is a better
metric of the scalability of our system. As this figure shows our database size scales linearly with
the number of statements.

5.3 Potential Uses

In this section we give potential analysis that can be done onthe intermediate dump of a program.
We start with a discussion of complex networks, what they are, and why complex network analysis

Figure 5.1: Database size vs.number of statements for each particular file. Although the ratio is
high fortest.c.reference, the overall size is 664kB.

24

is useful. We then discuss how analysis can be done on a software system to determine if usage
conventions are being followed properly. Finally, we discuss model checking and how tools could
be used with db-dump to verify system properties.

Complex networks: Complex networks are defined as network exhibiting non-trivial topolog-
ical properties. The process of determining if a network is acomplex network involves examining
the structure of the network to determine if the network has these properties. Many real-world
systems have been shown to exhibit complex network properties such as predator-prey interac-
tions between species in a freshwater lake, neural networks, and networks of citations between
papers [31]. Developers can perform complex network analysis on the control flow graphs and
call graphs extracted by db-dump. Once a network can be shownto be a complex network, certain
assumptions can be made which may have a large impact on both system security and recoverabil-
ity [24]. Developers can do this analysis off-line with the results then used to target specific areas
of a large software system for improvement.

Code Convention: In large software systems, item usage is often done through convention and
is not strictly enforced. For example, when accessing certain structs within the linux kernel, certain
locksshouldbe taken. This locking policy is not strictly enforced in allareas and as a result, some
structs are accessed without the appropriate lock being taken first. While this usually has no affect

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300

D
at

ab
as

e
S

iz
e

(M
B

)

Number of Statements (Thousands)

Figure 5.2: Database size vs.number of statements for each test file excluding
test.c.reference. The line present is a linear regression line.

25

on the overall operation of the system, occasionally it can lead to deadlocks. Our schema was
designed in such a way that it is possible to write relativelysimple queries to target specific node
types. This allows developers to perform off-line analysisof a system to look for things like the
usage patterns specified above to determine if access conventions are being followed correctly.

Model Checking: Symbolic model checking allows the verification of many non-trivial prop-
erties of large software systems. Tools exist, such as NuSMV2 [8], to allow developers to verify
questions about system security without having to learn or implement complex model checking
methods. The information stored in our database representsthe internals of an entire code base.
Developers can format this data appropriately and pass it tomodel checking tools to verify the
correctness of a system.

26

Chapter 6

Use Cases

In this chapter we give example uses for GDE using the db-dumpplug-in to extract GCC’s inter-
mediate representation. We discuss several plug-ins that we have developed in order to illustrate
the benefits GDE brings to plug-in development. The three plug-ins we use as examples in this
chapter are a call-tracing plug-in, the verbose-dump plug-in previously discussed in Chapter 3,
and a bounds-checking plug-in. Our first two use cases discuss issues faced while developing a
call-tracing plug-in. We then discuss an issue faced while expanding the verbose-dump plug-in
discussed in Chapter 3. Next, we discuss issues faced while developing a bounds-checking plug-in
and we finally conclude by discussing a potential use case forour GDB console.

6.1 Dissecting GIMPLE Trees

Our call-trace plug-in is written in C and adds tracing to a program without modifying the pro-
gram source code. It does this by finding specific GIMPLE nodeswe are interested in logging,
then extracting the information we want to log from those nodes. As we show, GDE helped the
development of this plug-in.

When writing the call-trace plug-in, to target specific GIMPLE nodes it was necessary to find
and replicate intermediate representation patterns corresponding to those nodes. For example, we
wanted to add functionality to the call-trace plug-in to detect and log conditional statements. We
were interested in reporting that executing code had reached a conditional and what the conditional
evaluated to: true or false. To do this, we needed to figure outhow conditionals are expressed in
GIMPLE in order to target conditional nodes with our plug-in. Checkingtree.defgave us some
information about conditionals, but the information contained was vague, stating operand one
was the then-value while operand two was the else-value. However it didnot tell us what those
operands were. They could have been one of many nodes, each requiring a different approach for
field access. Using the steps we describe below, we show how the GIMPLE tree view of GDE
made the task of finding what the operands were easier than thetraditional approach.

1. We began by writing a simple test case, using C, containingseveral conditional statements.
We then compiled the test case using GCC along with the db-dump plug-in to dump the

27

GIMPLE intermediate representation to our database. Once the dump was complete, we
looked at the intermediate representation stored in the database using GDE.

2. When inspecting the GIMPLE representation of the code, our first task was to locate a
conditional statement in the CFG in the overview window. Once we found a block with
a conditional statement, we clicked it to display the GIMPLEtree in the GIMPLE tree
view window. As Figure 6.1 shows, we were quickly able to see that the type of node
corresponding to a conditional expression was aCOND EXPR node. Further, we were able
to see that the first operand of aCOND EXPR (or conditional expression) node was the actual
conditional test itself (in this case, anEQ EXPR or equality test), followed by the left and
right branches of the conditional. It was here that we were able to see that the operands
wereGOTO EXPRs. Using this information, we were able to design our call-trace plug-in to
add logging statements in the correct basic blocks to indicate if the left or right branch was
taken.

As this example demonstrates, finding and reproducing simple GIMPLE code patterns is non-
trivial. In this case we were looking for all conditionals. It is clear that if we were interested in
a subset of conditionals, containing a specific variable forexample, then our code pattern would
become more complex and harder to find without the aid of a visualization tool such as GDE. We
show a more complex example in Section 6.2.

6.2 Dissecting Complex Expressions

Generating complex GIMPLE expressions programmatically can be difficult for even experienced
programmers due to GIMPLE’s low-level nature. It can be unclear exactly how certain items are
represented in GIMPLE. For example, while adding function call logging to the plug-in, we were
interested in printing the fields in pointers to structs being used as function parameters. To do this,
we first needed to reliably identify function calls with at least one pointer to a struct as a parameter.
We used GDE to accomplish this in the following way.

1. As before, we wrote a small test case in C containing the fragment of code we wanted to
generate: in this case a function call with the address of astruct as a parameter. We then
compiled our new test case with the db-dump plug-in enabled,and inspected the output in
GDE.

2. As shown in Figure 6.2, we were able to see exactly how this particular statement was
represented in GIMPLE by GCC. In this case, the function callwas aCALL EXPR node
with several subtrees, the last of which was anADDR EXPR. This indicated that the node is
a reference to the address of an object, which is what we were looking for.

3. As we dug deeper, we discovered theADDR EXPR node pointed to aVAR DECL node,
which indicates a variable. Finally, examining theTREE TYPE attribute of the variable told
us that the variable is of typeRECORD TYPE, showing that GCC represents a struct as a
RECORD TYPE node. This information about how GCC represents these kindsof function
calls allowed us to write code that reliably identified them.

28

Figure 6.1: Using GDE to get information about a CONDEXPR.

Generating complex expressions can also be done by hand after sifting through GCC source
files. This would be a long and tedious task, due to the different types of attributes and operands
that each node contains. Any mistakes made during translation would likely be difficult to track
down later due to the cryptic nature of compiler errors.

Figure 6.2: Using GDE to see how a particular statement is gimplified.

29

6.3 API Usage

The GCC API relies on specific macros, functions, and objectsto access nodes and node data.
Whereas some items likeTREE TYPE can be used very generally, others likeTREE CHAIN are
specific to a particular kind of node, causing an error otherwise. GCC is complex and the GCC
internals documentation is incomplete and frequently out of date with respect to the most recent
release. As a result, a person unfamiliar with GIMPLE can spend hours trying to figure out how
to access a particular field or child-node. GDE speeds up thisprocess significantly by providing
insight into what might be needed for a particular node access.

When we were expanding the verbose-dump plug-in to print theC parse trees for functions
we were unsure how to iterate through the list of statements in a nested block. When we inspected
the node corresponding to the nested block in the GIMPLE treeview, we found that it had a
STATEMENT LIST operand, as shown in Figure 6.3. Before we did this, it was notclear to us
exactly how this list was stored; it could have been aTREE CHAIN, which requires the use of a
macro to access each element. As it was aSTATEMENT LIST, we knew that we had to use the
tree stmt iterator object to access each element of the list. Using GDE in this situation helped us
to figure out exactly how to access the information containedwithin that node.

Figure 6.3: Using GDE to help determine which macro to use.

6.4 Debugging Bad Code

Our bounds-checking plug-in adds run-time bounds-checking to a source file by looking at pointer
dereferences and checking if those references point to a valid memory area. While developing this
plug-in, we ran into several issues that GDE was able to help with.

30

Even when the programmer understands what needs to be done, GIMPLE programming is
error-prone. The difficulty is compounded by the fact that errors are typically caught much later
in the compilation process and generate cryptic error messages. For example, we have found that
most malformed GIMPLE code simply causes a segmentation fault in GCC which gives the error
messageinternal compiler error. Debugging is made easier when the GIMPLE information is
visualized with GDE.

For example, our bounds-checking plug-in declares an arrayvariable containing all of the ad-
dresses of stack areas declared by each function for use by the bounds-checking runtime. Although
everything seemed to be written correctly, using the plug-in was causing an error to be generated
rather late during compilation. Looking at the code in GDE, we found through trial and error that
if we attempted to record the address of variables that did not have theTREE ADDRESSABLE flag
set, the compiler would crash. We found out that the flag indicates that an item has a valid address.
It was only through the use of GDE that we were able to determine that the flag was the problem.
To fix things, we simply did not record the address of variables with the flag unset.

6.5 CFG Inspection

In this section, we discuss two use cases concerning the CFG,basic block inspection and edge
inspection. Both use cases involve the bounds-checking plug-in described earlier.

Basic Block Inspection: Our bounds-checking plug-in can dynamically switch bounds-checking
on and off. To do this, the plug-in replicates the entire CFG for each function while also inserting
an additional basic block to each CFG that chooses to executeeither our instrumented code path
or the original uninstrumented path. While developing thisbounds-checking plug-in, however, we
found the transformed code was not executing properly.

Figure 6.4 we shows both the CFG generated by the buggy version of the CFG duplicator as
well as the correct version produced after the bug was fixed. We have minimized all the CFG
nodes to show only the structure of the CFG.

We were trying to generate a duplicate CFG with identical left-hand and right-hand sides
except for two shared initial and ending nodes (the top and bottom nodes) as well as a node to
decide which path to take. As Figure 6.4 shows, all basic blocks were being replicated correctly.
As this use case demonstrates, GDE can be useful in not only figuring out what is the problem,
but also what isn’t the problem.

Edge Inspection: As we have shown above, using GDE we found that although the nodes of
the graph were being replicated properly, the problem was that the edges connecting the nodes
were not. All outgoing edges were incorrectly connected to nodes in the left-hand copy. The
alternative to using GDE would have been a very difficult taskrequiring parsing of the intermediate
representation to create the CFG by hand or designing elaborate test cases to see in which cases
code executed properly. However, the overview provided by GDE immediately illustrated the
problem, and we were able to correct the graph which fixed the problem.

31

(a) With incorrectly connected edges

(b) With properly connected edges

Figure 6.4: Invalid and valid versions of a duplicated control-flow graph.

6.6 GDBConsole

This section presents a hypothetical use case for our GDB Console. While developing plug-ins, it
is often necessary to debug GCC itself. As we have stated in Chapter 4, that process requires more
effort than debugging a typical program, and even once that is done, extracting run-time GIMPLE
information is a non-trivial task. Through the use of the GDBconsole, developers have the ability
to look at GIMPLE with the click of a mouse. For example, if a developer wanted to create and
insert a newCOND EXPR node into a particular basic block, the developer would haveto construct
theCOND EXPR node first, along with the operands. If the developer performed this construction
incorrectly, perhaps by specifying the condition node incorrectly, the result would most likely

32

be an internal compiler error when the developer attempted to compile the program. If this was
occurring in only one location, it might be possible to trackthe problem down quickly. However,
most transformations work by modifying or adding several nodes, not just one. If nodes are
being correctly being created in most places, but incorrectly in others, perhaps due to a cascading
problem, then tracking down the problem becomes much more difficult. Using the GDB console,
it would be possible to look at the GIMPLE at each step of the transformation. The developer
would be able to see a snapshot of each GIMPLE tree as it currently exists during compilation,
which may provide insight into the problem.

33

Chapter 7

Related Work

Graphical development tools and debuggers simplify many elements of application development
by allowing the developer to debug or develop an applicationvisually. In this chapter we discuss
tools in three categories. In Section 7.1 we discuss graphical tools for program development. In
Section 7.2 we describe compiler visualization tools. Lastly in Section 7.3 we briefly discuss the C
intermediate language (CIL), a C-like language that allowsdevelopers to develop source to source
transformations, and its uses compared to traditional transformation development.

7.1 Graphical Development

Graphical Debuggers: Stand-alone graphical debuggers, such as GNU DDD [16] or GDBX [4],
are designed to cut development time by allowing the developer to view source code along with
some visual representation of the run-time data of that code. Often, these tools are designed to
provide visual information to the user by visualizing the output of a command-line debugger such
as GDB [13] or dbx [40]. This use is common enough that some debuggers have output modes
used when the debugger is part of a larger system. GDB, for example, supports a special mode
calledmachine interfacemode, which automatically formats GDB output to be easily parsed by
a front-end. However, not all tools operate in the manner andinstead choose to directly modify
an executing binary. Development environments, such as Eclipse [43], provide debugging infor-
mation to the developer along with a set of other developmenttools, such as a source-code editor.
Whereas it may be simpler to parse GDB output, binary modification allows the developer to do
things likehot swappingexecuting code; modifying executing code without a full rebuild of the
binary. Over the years, other debuggers have also implemented visualizations and are similar to
the systems described above. The SoftBench [18] and CodeCenter [7] debuggers, for example,
support simple data structure visualizations in the form ofbox-and-arrow diagrams. Integrated
and stand-alone graphical debuggers such as these are useful as their visualizations make it eas-
ier to pass input to and to view output from the debugger. These tools do this by providing an
interactive debugging interface to the user, allowing the user to set breakpoints, set watches, and
view run-time data visualizations through mouse clicks. Although ease of input through mouse
use may not be all that useful to a highly experienced command-line debugger user, it may be
highly beneficial to a less experienced debugger user. The run-time data visualizations these tools

34

provide may give insight into problematic areas of code; useful to both experienced and inexpe-
rienced users. Although plug-ins could be debugged or visualized with these tools, they are very
general purpose, designed to work on a variety of programs. GDE, on the other hand, has been
designed specifically for use with plug-ins.

UML Tools: UML tools, like Rational Rose [36] and Visio [28], allow developers to specify
items such as class relations, local variables, or functionprototypes for a particular application in
a visual manner. This allows the developer to see a high-level representation of the application
which often gives insight into any shortcomings in its design. When the developer is satisfied with
the application layout, a simple button click creates a skeleton of the program.

Graphing Tool-kits: Graphing tool-kits allow the visualization of data. Tools like aiSee [1]
work by reading input specified in a custom graph descriptionlanguage, then creating and visual-
izing a graph based on the input specified. Some tools can be used by other programs to perform
visualization. Doxygen [11], for example, creates documentation for a source package by scan-
ning source code and parsing directives found in the source code of a package, similar to using
javadoc [39] on a Java file. When configuring Doxygen, users are given the option to create a vi-
sual representation of the scanned sources if they have GraphViz [3] installed. Other tools, such as
Program Explorer [25] and Module Views [45] also exist and provide data visualizations for object
oriented programs. These visualizations include call visualizations, object creation visualizations,
execution visualizations. Lastly, projects such as theJinsightproject are interested in examining
the dynamic behavior of Java programs [19]. TheJinsight project have developed Java specific
visualizations, such as object visualizations to find wasted memory [34] and a method call visual-
ization tool [33], to examine this behavior. These visualization tools like these are useful because
they give the developer a high level, concrete view of the interactions of an application. This in
turn may give the developer insight into problematic areas of the application’s design or may be
able to give insight into debugging an application. Although these tools are useful, they are gen-
eral purpose and require either the learning of a graphing language to describe their graph or the
insertion of directives throughout program code for data visualization. The run-time information
these tools provide is not suited to plug-in development dueto its high-level nature.

7.2 Compiler Visualization

Whereas graphical development tools have been shown to vastly improve application development
by displaying complex information in an easy to understand form, little has been done to visualize
complex compile-time data.

The Interactive Compiler: The Interactive Compiler [44] was one of the first attempts atvi-
sualizing compiler information. It is a custom compiler written in Smalltalk-80 which compiles
a simple language consisting of assignments and conditionals. After the initial compilation, the
interactive compiler generates an intermediate representation (IR) which is then displayed to the
user, in text-based form, and can then be edited as needed. Although the interactive compiler laid
the groundwork for much of what we have done, there are two issues which make it unsuitable

35

for use as a transformation-development tool. First, due totechnology limitations at the time,
the IR information generated by the Interactive Compiler isdisplayed in a textual form. As we
have shown in Figure 1.1, this is problematic when dealing with modern programs, as each line of
source code produces many lines of IR output. Second, the compiler itself is only able to compile
a simple language on a limited number of architectures, whereas transformation developers want
to target compilers that can compile several complex languages on many different architectures.

xvpodb and VISTA: xvpodbis a visualization tool developed to visualize the optimizations per-
formed by the Very Portable Optimizer (vpo) [5]. Vpo is an optimizer designed to perform many
low-level RTL optimizations [46]. These types of optimizations are things such as instruction se-
lection, instruction scheduling, and dead variable elimination. When a file is compiled withvpo
enabled, variousvpomessages are intercepted by thexvpodbtool and saved in a file for later view-
ing. The user can then step forward and backward through thevpooptimization process, choosing
to examine various pieces of information at will. This allows the user to see things like which
transformations affect a specific instruction.

VISTA is a tool based off basedvpo and designed to allow performance tuning of applica-
tions [22]. VISTAallows the user to step through transformation asxvpodbwhile also providing
useful features such as source correlation via line highlighting. Lastly,VISTAis able to rate the
effectiveness of optimizations and select the set of optimizations providing the best performance
gain.

Although xvpodband VISTAare useful in their own right, especially as teaching aids, they
have one major drawback: they can only visualize the transformations performed by thevpoopti-
mizer. This means the user is only able to look at RTL-level transformations, not transformations
performed on high-level IRs. Whereas RTL-level transformations are very powerful, certain trans-
formations, like function call logging, are better suited to high-level IRs. These tools, by design,
are unable to visualize or modify non-RTL-level transformations.

7.3 C Intermediate Language

The C intermediate language (CIL) is a source-to-source transformation of C programs [30]. CIL
users first write a transformation using CIL which is then applied to a user-specified source file.
This combination creates a new C source file which is then passed to GCC to compile as usual.
The main advantage of using CIL is that it allows developers to specify transformations using a
simplified version of C; this means that developers need not learn a complex IR to add new func-
tionality to existing code. Although CIL is a useful and powerful language, it has an inherent
problem which limits its usefulness. CIL transformations by design only support source-to-source
transformations of C programs whereas other transformations, such as GIMPLE transformations,
are language independent. Using languages like CIL to perform transformations can quickly be-
come cumbersome, requiring developers to learn a new language for each language they want their
transformation to support.

36

Chapter 8

Conclusions

Code transformations have traditionally been difficult to develop, requiring developers to directly
modify the source files of a compiler, a highly non-trivial task. Deployment of a completed trans-
formation is hard, necessitating a line-by-line addition of the transformation code to the existing
source to ensure compatibility with other transformationsexisting on that particular system. GCC
plug-ins have solved the problem of transformation deployment, but have not addressed the issue
of transformation development.

Visual development is the solution to this problem. It has had great success in the past with
debuggers, development environments, and modeling tools.We have presented the GIMPLE De-
velopment Environment, a useful tool to reduce the time taken to design, development, and debug
GCC plug-ins and optimizations. We have also presented a GCCplug-in which stores the inter-
nal representation of a program in a database; a useful tool in its own right as we have shown in
Chapter 5. The graphical control flow graph GDE creates for each function allows the developer
to track the flow of information through a particular programfrom beginning to end much more
effectively than the traditional method, looking at a text-based control flow graph information.
Chapter 6 shows how this visual representation of the CFG aids in the debugging of plug-ins mod-
ifying the structure of all or part of an existing control flowgraph. The call graph visualization
capabilities of GDE allow developers to quickly determine predecessors and successors to a given
function, and help with program data flow understanding. GDE’s GIMPLE tree view allows devel-
opers to visualize the various GIMPLE trees for each statement in each basic block. This not only
gives insight into which macros to call on a given node, but also allows for quick inspection of a
transformation, allowing the developer to quickly determine if GIMPLE nodes are being modified
properly. Lastly, our GDB console allows developers to examine the GIMPLE and control flow
graph of a function as it is compiling, providing more usefulinformation to developers as opposed
to cryptic errors as discussed in Chapter 6.

We have found that although transformation development is inherently difficult, the use of
these visual aids alleviates many of the difficulties associated with using the GCC Internals API
and greatly lessens development time.

37

Chapter 9

Future Work

In this Chapter we will discuss future research areas for GDE.

9.1 Zooming

Although having each component of GDE rendered in its own view is useful and functional, the
call graph, control flow graph, basic blocks, and GIMPLE are all inherently related. We plan to
modify GDE to use a zooming-based view. Initially, the user would be presented with the call
graph, which the user could use to identify functions of interest. Zooming in on these functions
would then give the user the control flow graph for that particular function, showing all basic
blocks. If a basic block were particularly interesting, theuser could then zoom in to view the
statements and the GIMPLE for that block. This would expand and improve GDE usefulness with
larger files.

9.2 Online Functionality

Making GDE a web application is a practical and attainable goal. Although GDE is written in Java
and requires little work to port from system to system, db-dump is a C++ GCC plug-in, requiring
a specific configuration for each system it is to run on. Furthermore, the user needs to have
Postgresql running on the system db-dump is running on. By putting GDE online, developers
would only need to connect to a server, upload their code, andview it with GDE. This goal is
particularly interesting as GDE is written in Java, converting GDE to an applet will not require a
rewrite of the entire system.

9.3 RTL

We plan to further expand the amount of compile-time information displayed to the developer by
visualizing the RTL of each function. RTL is used extensively by developers porting GCC between
architectures and for developers working on improvements to GCC’s code generator. Visualizing
this level may greatly reduce the complexity of writing RTL code.

38

Bibliography

[1] AbsInt. aisee, 2008.http://www.aisee.com.

[2] R. Agrawal, L. G. Demichiel, and B. G. Lindsay. Static type checking of multi-methods. In
ACM SIGPLAN Notices, 1991.

[3] AT&T Research Labs. Graphviz, 2009.http://www.graphviz.org.

[4] D. B. Baskerville. Graphic presentation of data structures in the DBX debugger. Technical
report, University of California at Berkeley, Berkeley, CA, USA, 1985.

[5] M. Boyd and D. Whalley. Graphical Visualization of Compiler Optimizations.Journal of
Programming Languages, 3(2):69–94, 1995.

[6] S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with modular GIMPLE optimiza-
tions. InProceedings of the 2007 GCC Developers’ Summit, Ottawa, Canada, July 2007.

[7] CenterLine Software, Inc.CodeCenter Tutorial, 1995.http://products.ics.com/
products/codecenter/codecenter-4.1.1-tutorial.pdf.

[8] A. Cimatti, E. Clarke, E. Giunchiglia, F. Guinchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.Computer
Aided Verification, pages 241–268, 2002.

[9] Computergram. Motorola enters new markets with m-core microrisc. http:
//www.cbronline.com/news/motorola_enters_new_markets_with_
m_core_microrisc.

[10] P. A. DesAutels. SHA1: Secure Hash Algorithm.www.w3.org/PICS/DSig/SHA1_1_
0.html, 1997.

[11] Dimitri van Heesch. Doxygen, 2008.www.doxygen.org/.

[12] Amy Fowler. A Swing Architecture Overview. Technical report, Sun Microsystems, 2007.
http://java.sun.com/products/jfc/tsc/articles/architecture/.

[13] The Free Software Foundation, Inc. GDB: The GNU ProjectDebugger.www.gnu.org/
software/gdb/gdb.html, January 2006.

[14] The GCC Team. The gnu compiler collection.http://gcc.gnu.org.

39

[15] The GCC team.GCC online documentation, December 2005.http://gcc.gnu.org/
onlinedocs/.

[16] GNU Project. The Data Display Debugger.http://www.gnu.org/software/ddd.

[17] L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, andB. Sridharan. Designing the
McCAT Compiler Based on a Family of Structured IntermediateRepresentations. InLecture
Notes In Computer Science; Vol.757, pages 406–420. Springer-Verlag, 1992.

[18] Hewlett-Packard Company.C and C++ SoftBench User’s Guide, June 2000.http://
docs.hp.com/en/B6454-97413/B6454-97413.pdf.

[19] IBM Research. Jinsight.http://www.research.ibm.com/jinsight.

[20] ARC International. Arc configurable cpu/dsp cores.http://www.arc.com/
configurablecores.

[21] Jan Kneschke. Lighttpd, 2009.http://www.lighttpd.net/.

[22] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. van Engelen, K. Gallivan, J. Hiser,
J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho, and Y. Paek. VISTA:VPO Interactive
System for Tuning Applications. InACM Transactions on Embedded Computing Systems
(TECS), New York, New York, November 2006.

[23] N. Kumar, J. Misurda, B. R. Childers, and M. L. Soffa. Instrumentation in software dynamic
translators for self managed systems. InProceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, 2004.

[24] Ying-Cheng Lai, A. Motter, T. Nishilawa, K. Park, and L.Zhao. Cascade-based attacks on
complex networks.Pramana, pages 483–502, 2007.

[25] D. B. Lange and Y. Nakamura. Program Explorer: a programvisualizer for C++. In
COOTS’95: Proceedings of the USENIX Conference on Object-Oriented Technologies on
USENIX Conference on Object-Oriented Technologies (COOTS), pages 4–4, Berkeley, CA,
USA, 1995. USENIX Association.

[26] James R. Larus and Thomas Ball. Rewriting executable files to measure program behavior.
In Software–Practice & Experience, 1994.

[27] J. Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions. In
GCC Developers Summit, 2003.

[28] Microsoft Corporation. Visio 2007. http://office.microsoft.com/en-us/
visio/default.aspx.

[29] Sun Microsystems. The Awt in 1.0 and 1,1. Technical report, Sun Microsystems, April 1999.
http://java.sun.com/products/jdk/awt.

[30] George Necula. Cil - infrastructure for c program analysis and transformation, 2007.http:
//manju.cs.berkeley.edu/cil.

40

[31] M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45:167, 2003. http://www.citebase.org/abstract?id=oai:arXiv.org:
cond-mat/0303516.

[32] Vijay S. Pai and Sarita Adve. Code transformations to improve memory parallelism. In
Proceedings of the 32nd annual ACM/IEEE international symposium on Microarchitecture,
pages 147–155, 1999.

[33] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execution patterns in object-oriented
visualization. InProceedings Conference on Object-Oriented Technologies and Systems
(COOTS ’98), pages 219–234. USENIX, 1998.

[34] W. De Pauw and G. Sevitsky. Visualizing reference patterns for solving memory leaks in
Java. InECOOP ’99: Proceedings of the 13th European Conference on Object-Oriented
Programming, pages 116–134, London, UK, 1999. Springer-Verlag.

[35] PostgreSQL Global Development Team. PostgreSQL.http://www.postgresql.
org, 2003.

[36] Rational Software. Rational Rose. http://www-01.ibm.com/software/
rational.

[37] Red Hat. Red hat magazine, 2009.http://magazine.redhat.com.

[38] Basile Starynkevitch. Compared gcc compilation time on two linux desktops. www.
starynkevitch.net/Basile/compare_time_gcc.html.

[39] Sun Microsystems. Javadoc tool, 2004.http://java.sun.com/j2se/javadoc.

[40] Sun Microsystems, Inc.dbx man page. Sun Studio 11 Man Pages, Section 1.

[41] Tensilica. Tensilica’s processor overview. http://www.tensilica.com/
products/xtensa/index.htm.

[42] The CentOS Development team. Centos, 2009.http://www.centos.org/.

[43] The Eclipse Foundation. Eclipse.http://www.eclipse.org.

[44] Steven R. Vegdahl. The Design of an Interactive Compiler for Optimizing Microprograms.
In Proceedings of the 18th annual workshop on Microprogramming, December 1985.

[45] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and J. Isaak.
Visualizing dynamic software system information through high-level models. InOOPSLA
’98: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 271–283, New York, NY, USA, 1998. ACM.

[46] Zephyr. Very portable optimizer, 1998.http://www.cs.virginia.edu/zephyr/
vpo.

41

