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Abstract

Traditionally, file systems were implemented as part
of OS kernels. However, as complexity of file systems
grew, many new file systems began being developed in
user space. Nowadays, user-space file systems are often
used to prototype and evaluate new approaches to file
system design. Low performance is considered the main
disadvantage of user-space file systems but the extent
of this problem has never been explored systematically.
As a result, the topic of user-space file systems remains
rather controversial: while some consider user-space file
systems a toy not to be used in production, others de-
velop full-fledged production file systems in user space.
In this paper we analyze the design and implementa-
tion of the most widely known user-space file system
framework—FUSE—and characterize its performance
for a wide range of workloads. We instrumented FUSE
to extract useful statistics and traces, which helped us an-
alyze its performance bottlenecks and present our anal-
ysis results. Our experiments indicate that depending on
the workload and hardware used, performance degrada-
tion caused by FUSE can be completely imperceptible
or as high as —-83% even when optimized; and relative
CPU utilization can increase by 31%.

1 Introduction

File systems offer a common interface for applications to
access data. Although micro-kernels implement file sys-
tems in user space [1, 16], most file systems are part of
monolithic kernels [6,22,34]. Kernel implementations
avoid the high message-passing overheads of micro-
kernels and user-space daemons [7, 14].

In recent years, however, user-space file systems
rose in popularity for four reasons. (1) Several stack-
able file systems add specialized functionality over ex-
isting file systems (e.g., deduplication and compres-
sion [19,31]). (2) In academia and R&D settings, this
framework enabled quick experimentation and prototyp-
ing of new approaches [3, 9, 15, 21, 40]. (3) Several
existing kernel-level file systems were ported to user
space (e.g., ZFS [45], NTFES [25]). (4) More companies
rely on user-space implementations: IBM’S GPFS [30]
and LTFS [26], Nimble Storage’s CASL [24], Apache’s
HDFS [2], Google File System [13], RedHat’s Glus-
terFS [29], Data Domain’s DDFS [46], etc.

Increased file systems complexity is a contributing
factor to user-space file systems’ growing popularity

(e.g., Btrfs is over 85 KLoC). User space code is eas-
ier to develop, port, and maintain. Kernel bugs can crash
whole systems, whereas user-space bugs’ impact is more
contained. Many libraries and programming languages
are available in user-space in multiple platforms.

Although user-space file systems are not expected
to displace kernel file systems entirely, they undoubt-
edly occupy a growing niche, as some of the more
heated debates between proponents and opponents in-
dicate [20,39,41]. The debates center around two trade-
off factors: (1) how large is the performance overhead
caused by a user-space implementations and (2) how
much easier is it to develop in user space. Ease of de-
velopment is highly subjective, hard to formalize and
therefore evaluate; but performance is easier to evalu-
ate empirically. Oddly, little has been published on the
performance of user-space file system frameworks.

In this paper we use a popular user-space file system
framework, FUSE, and characterize its performance. We
start with a detailed explanation of FUSE’s design and
implementation for four reasons: (1) the architecture is
somewhat complex; (2) little information on internals is
available publicly; (3) FUSE’s source code can be dif-
ficult to analyze, with complex asynchrony and user-
kernel communications; and (4) as FUSE’s popularity
grows, a detailed analysis of its implementation becomes
of high value to many.

We developed a simple pass-through stackable file
system in FUSE and then evaluated its performance
when layered on top of Ext4 compared to native Ext4.
We used a wide variety of micro- and macro-workloads,
and different hardware using basic and optimized config-
urations of FUSE. We found that depending on the work-
load and hardware, FUSE can perform as well as Ext4,
but in the worst cases can be 3x slower. Next, we de-
signed and built a rich instrumentation system for FUSE
to gather detailed performance metrics. The statistics ex-
tracted are applicable to any FUSE-based systems. We
then used this instrumentation to identify bottlenecks in
FUSE, and to explain why, for example, its performance
varied greatly for different workloads.

2 FUSE Design

FUSE—Filesystem in Userspace—is the most widely
used user-space file system framework [35]. According
to the most modest estimates, at least 100 FUSE-based
file systems are readily available on the Web [36]. Al-
though other, specialized implementations of user-space



file systems exist [30,32,42], we selected FUSE for this
study because of its high popularity.

Although many file systems were implemented using
FUSE—thanks mainly to the simple API it provides—
little work was done on understanding its internal ar-
chitecture, implementation, and performance [27]. For
our evaluation it was essential to understand not only
FUSE’s high-level design but also some details of its im-
plementation. In this section we first describe FUSE’s
basics and then we explain certain important implemen-
tation details. FUSE is available for several OSes: we
selected Linux due to its wide-spread use. We analyzed
the code of and ran experiments on the latest stable ver-
sion of the Linux kernel available at the beginning of the
project—v4.1.13. We also used FUSE library commit
#386b1b; on top of FUSE v2.9.4, this commit contains
several important patches which we did not want exclude
from our evaluation. We manually examined all new
commits up to the time of this writing and confirmed
that no new major features or improvements were added
to FUSE since the release of the selected versions.

2.1 High-Level Architecture
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Figure 1: FUSE high-level architecture.
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FUSE consists of a kernel part and a user-level dae-
mon. The kernel part is implemented as a Linux kernel
module that, when loaded, registers a fuse file-system
driver with Linux’s VFS. This Fuse driver acts as a proxy
for various specific file systems implemented by differ-
ent user-level daemons.

In addition to registering a new file system, FUSE’s
kernel module also registers a /dev/fuse block de-
vice. This device serves as an interface between user-
space FUSE daemons and the kernel. In general, dae-
mon reads FUSE requests from /dev/fuse, processes
them, and then writes replies back to /dev/fuse.

Figure 1 shows FUSE’s high-level architecture. When
a user application performs some operation on a
mounted FUSE file system, the VFS routes the operation
to FUSE’s kernel driver. The driver allocates a FUSE
request structure and puts it in a FUSE queue. At this
point, the process that submitted the operation is usu-
ally put in a wait state. FUSE’s user-level daemon then
picks the request from the kernel queue by reading from
/dev/fuse and processes the request. Processing the
request might require re-entering the kernel again: for

example, in case of a stackable FUSE file system, the
daemon submits operations to the underlying file system
(e.g., Ext4); or in case of a block-based FUSE file sys-
tem, the daemon reads or writes from the block device.
When done with processing the request, the FUSE dae-
mon writes the response back to /dev/fuse; FUSE’s
kernel driver then marks the request as completed and
wakes up the original user process.

Some file system operations invoked by an application
can complete without communicating with the user-level
FUSE daemon. For example, reads from a file whose
pages are cached in the kernel page cache, do not need
to be forwarded to the FUSE driver.

2.2 Implementation Details

We now discuss several important FUSE implemen-
tation details: the user-kernel protocol, library and
API levels, in-kernel FUSE queues, splicing, multi-
threading, and write-back cache.

Group (#) Request Types

Special (3) INIT, DESTROY, INTERRUPT

Metadata (14) | LOOKUP, FORGET, BATCH_FORGET,
CREATE, UNLINK, LINK, RENAME, RE-
NAME2, OPEN, RELEASE, STATFS,
FSYNC, FLUSH, ACCESS

Data (2) READ, WRITE

Attributes (2) | GETATTR, SETATTR

Extended SETXATTR, GETXATTR,

Attributes (4) | LISTXATTR, REMOVEXATTR

Symlinks (2) SYMLINK, READLINK

Directory (7) MKDIR, RMDIR, OPENDIR, RE-
LEASEDIR, READDIR, READDIRPLUS,
FSYNCDIR

Locking (3) GETLK, SETLK, SETLKW

Misc (6) BMAP, FALLOCATE, MKNOD, IOCTL,
POLL, NOTIFY_REPLY

Table 1: FUSE request types, by group (whose size is in paren-
thesis). Requests we discuss in the text are in bold.
User-kernel protocol. When FUSE’s kernel driver
communicates to the user-space daemon, it forms a
FUSE request structure. Requests have different types
depending on the operation they convey. Table 1 lists all
43 FUSE request types, grouped by their semantics. As
seen, most requests have a direct mapping to traditional
VES operations: we omit discussion of obvious requests
(e.g., READ, CREATE) and instead next focus on those
less intuitive request types (marked bold in Table 1).
The INIT request is produced by the kernel when a
file system is mounted. At this point user space and
kernel negotiate (1) the protocol version they will op-
erate on (7.23 at the time of this writing), (2) the set of
mutually supported capabilities (e.g., READDIRPLUS or
FLOCK support), and (3) various parameter settings (e.g.,
FUSE read-ahead size, time granularity). Conversely,



the DESTROY request is sent by the kernel during the
file system’s unmounting process. When getting a DE-
STROY, the daemon is expected to perform all necessary
cleanups. No more requests will come from the kernel
for this session and subsequent reads from /dev/fuse
will return 0, causing the daemon to exit gracefully.

The INTERRUPT request is emitted by the kernel if
any previously sent requests are no longer needed (e.g.,
when a user process blocked on a READ is terminated).
Each request has a unique sequence# which INTERRUPT
uses to identify victim requests. Sequence numbers are
assigned by the kernel and are also used to locate com-
pleted requests when the user space replies.

Every request also contains a node ID—an unsigned
64-bit integer identifying the inode both in kernel and
user spaces. The path-to-inode translation is performed
by the LOOKUP request. Every time an existing inode
is looked up (or a new one is created), the kernel keeps
the inode in the inode cache. When removing an in-
ode from the dcache, the kernel passes the FORGET re-
quest to the user-space daemon. At this point the dae-
mon might decide to deallocate any corresponding data
structures. BATCH_FORGET allows kernel to forget mul-
tiple inodes with a single request.

An OPEN request is generated, not surprisingly, when
a user application opens a file. When replying to this re-
quest, a FUSE daemon has a chance to optionally assign
a 64-bit file handle to the opened file. This file handle
is then returned by the kernel along with every request
associated with the opened file. The user-space daemon
can use the handle to store per-opened-file information.
E.g., a stackable file system can store the descriptor of
the file opened in the underlying file system as part of
FUSE’s file handle. FLUSH is generated every time an
opened file is closed; and RELEASE is sent when there
are no more references to a previously opened file.

OPENDIR and RELEASEDIR requests have the same
semantics as OPEN and RELEASE, respectively, but for
directories. The READDIRPLUS request returns one or
more directory entries like READDIR, but it also includes
metadata information for each entry. This allows the ker-
nel to pre-fill its inode cache (similar to NFSv3’s READ-
DIRPLUS procedure [4]).

When the kernel evaluates if a user process has per-
missions to access a file, it generates an ACCESS request.
By handling this request, the FUSE daemon can imple-
ment custom permission logic. However, typically users
mount FUSE with the default_permissions option that al-
lows kernel to grant or deny access to a file based on
its standard Unix attributes (ownership and permission
bits). In this case no ACCESS requests are generated.

Library and API levels. Conceptually, the FUSE Ii-
brary consists of two levels. The lower level takes care
of (1) receiving and parsing requests from the kernel,
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Figure 2: The organization of FUSE queues marked with their
Head and Tail. The processing queue does not have a tail
because the daemon replies in an arbitrary order.
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(2) sending properly formatted replies, (3) facilitating
file system configuration and mounting, and (4) hiding
potential version differences between kernel and user
space. This part exports the low-level FUSE API.

The High-level FUSE API builds on top of the low-
level API and allows developers to skip the implemen-
tation of the path-to-inode mapping. Therefore, neither
inodes nor lookup operations exist in the high-level API,
easing the code development. Instead, all high-level API
methods operate directly on file paths. The high-level
API also handles request interrupts and provides other
convenient features: e.g., developers can use the more
common chown (), chmod (), and truncate ()
methods, instead of the lower-level setattr (). File
system developers must decide which API to use, by bal-
ancing flexibility vs. development ease.

Queues. In Section 2.1 we mentioned that FUSE’s
kernel has a request queue. FUSE actually maintains
five queues as seen in Figure 2: (1) interrupts, (2) for-
gets, (3) pending, (4) processing, and (5) background. A
request belongs to only one queue at any time. FUSE
puts INTERRUPT requests in the interrupts queue, FOR-
GET requests in the forgets queue, and synchronous re-
quests (e.g., metadata) in the pending queue. When a
file-system daemon reads from /dev/fuse, requests
are transferred to the user daemon as follows: (1) Pri-
ority is given to requests in the interrupts queue; they
are transferred to the user space before any other re-
quest. (2) FORGET and non-FORGET requests are se-
lected fairly: for each 8 non-FORGET requests, 16 FOR-
GET requests are transferred. This reduces the bursti-
ness of FORGET requests, while allowing other requests
to proceed. The oldest request in the pending queue is
transferred to the user space and simultaneously moved
to the processing queue. Thus, processing queue re-
quests are currently processed by the daemon. If the
pending queue is empty then the FUSE daemon is
blocked on the read call. When the daemon replies to
a request (by writing to /dev/fuse), the correspond-



ing request is removed from the processing queue.

The background queue is for staging asynchronous
requests. In a typical setup, only read requests go to
the background queue; writes go to the background
queue too but only if the writeback cache is enabled. In
such configurations, writes from the user processes are
first accumulated in the page cache and later bdflush
threads wake up to flush dirty pages [8]. While flush-
ing the pages FUSE forms asynchronous write requests
and puts them in the background queue. Requests from
the background queue gradually trickle to the pending
queue. FUSE limits the number of asynchronous re-
quests simultaneously residing in the pending queue to
the configurable max_background parameter (12 by
default). When fewer than 12 asynchronous requests
are in the pending queue, requests from the background
queue are moved to the pending queue. The intention is
to limit the delay caused to important synchronous re-
quests by bursts of background requests.

The queues’ lengths are not explicitly limited. How-
ever, when the number of asynchronous requests in the
pending and processing queues reaches the value of the
tunable congestion_threshold parameter (75%
of max background, 9 by default), FUSE informs the
Linux VFS that it is congested; the VFS then throttles
the user processes that write to this file system.

Splicing and FUSE buffers. In its basic setup, the
FUSE daemon has to read() requests from and
write () replies to /dev/fuse. Every such call
requires a memory copy between the kernel and user
space. It is especially harmful for WRITE requests and
READ replies because they often process a lot of data.
To alleviate this problem, FUSE can use splicing func-
tionality provided by the Linux kernel [38]. Splicing
allows the user space to transfer data between two in-
kernel memory buffers without copying the data to user
space. This is useful, e.g., for stackable file systems that
pass data directly to the underlying file system.

To seamlessly support splicing, FUSE represents its
buffers in one of two forms: (1) a regular memory re-
gion identified by a pointer in the user daemon’s ad-
dress space, or (2) a kernel-space memory pointed by
a file descriptor. If a user-space file system implements
the write_buf () method, then FUSE splices the data
from /dev/fuse and passes the data directly to this
method in a form of the buffer containing a file descrip-
tor. FUSE splices WRITE requests that contain more than
a single page of data. Similar logic applies to replies to
READ requests with more than two pages of data.
Multithreading. FUSE added multithreading support
as parallelism got more popular. In multi-threaded
mode, FUSE’s daemon starts with one thread. If there
are two or more requests available in the pending queue,
FUSE automatically spawns additional threads. Every

thread processes one request at a time. After process-
ing the request, each thread checks if there are more
than 10 threads; if so, that thread exits. There is no
explicit upper limit on the number of threads created
by the FUSE library. An implicit limit exists for two
reasons: (1) by default, only 12 asynchronous requests
(max_background parameter) can be in the pend-
ing queue at one time; and (2) the number of syn-
chronous requests in the pending queue depends on the
total amount of I/O activity generated by user processes.
In addition, for every INTERRUPT and FORGET requests,
a new thread is invoked. In a typical system where there
is no interrupts support and few FORGETs are generated,
the total number of FUSE daemon threads is at most
(12 + number of requests in pending queue).

Write back cache and max writes. The basic write
behavior of FUSE is synchronous and only 4KB of data
is sent to the user daemon for writing. This results in per-
formance problems on certain workloads; when copy-
ing a large file into a FUSE file system, /bin/cp indi-
rectly causes every 4KB of data to be sent to userspace
synchronously. The solution FUSE implemented was to
make FUSE’s page cache support a write-back policy
and then make writes asynchronous. With that change,
file data can be pushed to the user daemon in larger
chunks of max_write size (limited to 32 pages).

3 Instrumentation

To study FUSE’s performance, we developed a simple
stackable passthrough file system—called Stackfs—and
instrumented FUSE’s kernel module and user-space li-
brary to collect useful statistics and traces. We believe
that the instrumentation presented here is useful for any-
one who develops a FUSE-based file system.

3.1 Stackfs

Stackfs is a file system that passes FUSE requests un-
modified directly to the underlying file system. The rea-
son for Stackfs was twofold. (1) After examining the
code of all publicly available [28, 43] FUSE-based file
systems, we found that most of them are stackable (i.e.,
deployed on top of other, often in-kernel file systems).
(2) We wanted to add as little overhead as possible, to
isolate the overhead of FUSE’s kernel and library.

Complex production file systems often need a high de-
gree of flexibility, and thus use FUSE’s low-level API.
As such file systems are our primary focus, we imple-
mented Stackfs using FUSE’s low-level API. This also
avoided the overheads added by the high-level API. Be-
low we describe several important data structures and
procedures that Stackfs uses.

Inode. Stackfs stores per-file metadata in an inode.
Stackfs’s inode is not persistent and exists in memory
only while the file system is mounted. Apart from book-



keeping information, the inode stores the path to the un-
derlying file, its inode number, and a reference counter.
The path is used, e.g., to open the underlying file when
an OPEN request for a Stackfs file arrives.

Lookup. During lookup, Stackfs uses stat (2) to
check if the underlying file exists. Every time a file is
found, Stackfs allocates a new inode and returns the re-
quired information to the kernel. Stackfs assigns its in-
ode the number equal to the address of the inode struc-
ture in memory (by typecasting), which is guaranteed to
be unique. This allows Stackfs to quickly find the inode
structure for any operations following the lookup (e.g.,
open or stat). The same inode can be looked up sev-
eral times (e.g., due to hardlinks) and therefore Stackfs
stores inodes in a hash table indexed by the underlying
inode number. When handling LOOKUP, Stackfs checks
the hash table to see whether the inode was previously
allocated and, if found, increases its reference counter
by one. When a FORGET request arrives for an inode,
Stackfs decreases inode’s reference count and deallo-
cates the inode when the count drops to zero.

File create and open. During file creation, Stackfs
adds a new inode to the hash table after the correspond-
ing file was successfully created in the underlying file
system. While processing OPEN requests, Stackfs saves
the file descriptor of the underlying file in the file han-
dle. The file descriptor is then used during read and write
operations and deallocated when the file is closed.

3.2 Performance Statistics and Traces

The existing FUSE instrumentation was insufficient for
in-depth FUSE performance analysis. We therefore in-
strumented FUSE to export important runtime statistics.
Specifically, we were interested in recording the dura-
tion of time that FUSE spends in various stages of re-
quest processing, both in kernel and user space.

We introduced a two-dimensional array where a row
index (0-42) represents the request type and the column
index (0-31) represents the time. Every cell in the array
stores the number of requests of a corresponding type
that were processed within the 2VT'—2V*2 nanosec-
onds where N is the column index. The time dimension
therefore covers the interval of up to 8 seconds which
is enough in typical FUSE setups. (This technique effi-
ciently records a logs latency histogram [18].) We then
added four such arrays to FUSE: the first three arrays
are in the kernel, capturing the time spent by the re-
quest inside the background, pending, and processing
queues. For the processing queue, the captured time also
includes the time spent by requests in user space. The
fourth array is in user space and tracks the time the dae-
mon needs to process a request. The total memory size
of all four arrays is only 48KiB and only few instructions
are necessary to update values in the array.

FUSE includes a special fusectl file system
to allow users to control several aspects of FUSE’s
behavior. This file system is usually mounted at
/sys/fs/fuse/connections/ and creates a di-
rectory for every mounted FUSE instance. Every direc-
tory contains control files to abort a connection, check
the total number of requests being processed, and adjust
the upper limit and the threshold on the number of back-
ground requests (see Section 2.2). We added 3 new files
to these directories to export statistics from the in-kernel
arrays. To export user-level array we added SIGUSR1
signal handler to the daemon. When triggered, the han-
dler prints the array to a log file specified during the dae-
mon’s start. The statistics captured have no measurable
overhead on FUSE’s performance and are the primary
source of information about FUSE’s performance.

Tracing. To understand FUSE’s behavior in more de-
tail we sometimes needed more information and had to
resort to tracing. FUSE’s library already performs trac-
ing when the daemon runs in debug mode but there is
no tracing support for FUSE’s kernel module. We used
Linux’s static tracepoint mechanism [10] to add over 30
tracepoints mainly to monitor the formation of requests
during the complex writeback logic, reads, and some
metadata operations. Tracing helped us learn how fast
queues grow during our experiments, how much data is
put into a single request, and why.

Both FUSE’s statistics and tracing can be used by any
existing and future FUSE-based file systems. The in-
strumentation is completely transparent and requires no
changes to file-system-specific code.

4 Methodology

FUSE has evolved significantly over the years and added
several useful optimizations: writeback cache, zero-
copy via splicing, and multi-threading. In our per-
sonal experience, some in the storage community tend to
pre-judge FUSE’s performance—assuming it is poor—
mainly due to not having information about the improve-
ments FUSE made over the years. We therefore de-
signed our methodology to evaluate and demonstrate
how FUSE’s performance advanced from its basic con-
figurations to ones that include all of the latest optimiza-
tions. We now detail our methodology, starting from the
description of FUSE configurations, proceed to the list
of workloads, and finally present our testbed.

FUSE configurations. To demonstrate the evolution
of FUSE’s performance, we picked two configurations
on opposite ends of the spectrum: the basic configu-
ration (called StackfsBase) with no major FUSE opti-
mizations and the optimized configuration (called Stack-
fsOpt) that enables all FUSE improvements available
as of this writing. Compared to StackfsBase, the
StackfsOpt configuration adds the following features:



(1) writeback cache is turned on; (2) maximum size
of a single FUSE request is increased from 4KiB to
128KiB (max_write parameter); (3) user daemon runs
in the multi-threaded mode; (4) splicing is activated for
all operations (splice_read, splice_write, and
splice_move parameters). We left all other parame-
ters at their default values in both configurations.

Workloads. To stress different modes of FUSE op-
eration and conduct an thorough performance charac-
terization, we selected a broad set of workloads: mi-
cro and macro, metadata- and data-intensive, and also
experimented with a wide range of I/O sizes and par-
allelism levels. Table 2 describes all workloads that
we employed. To simplify the identification of work-
loads in the text we use the following mnemonics: rnd
stands for random, seq for sequential, rd for reads,
wr for writes, cr for creates, and del for deletes.
The presence of Nth and Mf substrings in a workload
name means that the workload contains N threads and M
files, respectively. We fixed the amount of work (e.g.,
the number of reads in rd workloads) rather than the
amount of time in every experiment. We find it eas-
ier to analyze performance in experiments with a fixed
amount of work. We picked a sufficient amount of
work so that the performance stabilized. Resulting run-
times varied between 8 and 20 minutes across the exper-
iments. Because SSDs are orders of magnitude faster
than HDDs, for some workloads we selected a larger
amount of work for our SSD-based experiments. We
used Filebench [12,37] to generate all workloads.

Experimental setup. FUSE performance depends
heavily on the speed of the underlying storage: faster de-
vices expose FUSE’s own overheads. We therefore ex-
perimented with two common storage devices of differ-
ent speed: an HDD (Seagate Savvio 15K.2, 15KRPM,
146GB) and an SSD (Intel X25-M SSD, 200GB). Both
devices were installed in three identical Dell PowerEdge
R710 machines with 4-core Intel Xeon ES530 2.40GHz
CPU each. The amount of RAM available to the OS was
set to 4GB to accelerate cache warmup in our experi-
ments. The machines ran CentOS 7 with Linux kernel
upgraded to v4.1.13 and FUSE library commit #386b1b.

We used Ext4 [11] as the underlying file system be-
cause it is common, stable, and has a well documented
design which facilitates performance analysis. Before
every experiment we reformatted the storage devices
with Ext4 and remounted the file systems. To lower
the variability in our experiments we disabled Ext4’s
lazy inode initialization [5]. In either case, standard de-
viations in our experiments were less than 2% for all
workloads except for three: seq-rd-1th-1f (6%),
files-rd-32th (7%), and mail-server (7%).

5 Evaluation

For many, FUSE is just a practical tool to build real prod-
ucts or prototypes, but not a research focus. To present
our results more effectively, we split the evaluation in
two. Section 5.1 overviews our extensive evaluation
results—most useful information for many practitioners.
Detailed performance analysis follows in Section 5.2.

5.1 Performance Overview

To evaluate FUSE’s performance degradation, we first
measured the throughput (in ops/sec) achieved by native
Ext4 and then measured the same for Stackfs deployed
over Ext4. As detailed in Section 4 we used two config-
urations of Stackfs: a basic (StackfsBase) and optimized
(StackfsOpt) one. From here on, we use Stackfs to re-
fer to both of these configurations. We then calculated
the relative performance degradation (or improvement)
of Stackfs vs. Ext4 for each workload. Table 3 shows
absolute throughputs for Ext4 and relative performance
for two Stackfs configurations for both HDD and SSD.

For better clarity we categorized the results by
Stackfs’s performance difference into four classes:
(1) The Green class (marked with *) indicates that the
performance either degraded by less than 5% or actu-
ally improved; (2) The Yellow class (") includes results
with the performance degradation in the 5-25% range;
(3) The Orange class (*) indicates that the performance
degradation is between 25-50%; And finally, (4) the Red
class (') is for when performance decreased by more than
50%. Although the ranges for acceptable performance
degradation depend on the specific deployment and the
value of other benefits provided by FUSE, our classifi-
cation gives a broad overview of FUSE’s performance.
Below we list our main observations that characterize
the results. We start from the general trends and move to
more specific results towards the end of the list.

Observation 1. The relative difference varied across
workloads, devices, and FUSE configurations from
—83.1% for files—cr—1th [row #37] to +6.2% for
web-server [row #45].

Observation 2. For many workloads, FUSE’s opti-
mizations improve performance significantly. E.g., for
the web—-server workload, StackfsOpt improves per-
formance by 6.2% while StackfsBase degrades it by
more than 50% [row #45].

Observation 3. Although optimizations increase the
performance of some workloads, they can degrade the
performance of others. E.g., StackfsOpt decreases
performance by 35% more than StackfsBase for the
files—rd-1th workload on SSD [row #39].

Observation 4. In the best performing configuration
of Stackfs (among StackfsOpt and StackfsBase) only
two file-create workloads (out of a total 45 workloads)



Workload Name Description

Results

seq-rd-Nth-1f

N threads (1, 32) sequentially read from a single preallocated 60GB file.

[rows #1-8]

seq-rd-32th-32f

32 threads sequentially read 32 preallocated 2GB files. Each thread reads its own file.

[rows #9-12]

rnd-rd-Nth-1f

N threads (1, 32) randomly read from a single preallocated 60GB file.

[rows #13-20]

segq-wr—1th-1f

Single thread creates and sequentially writes a new 60GB file.

[rows #21-24]

seq-wr-32th-32f

32 threads sequentially write 32 new 2GB files. Each thread writes its own file.

[rows #25-28]

rnd-wr—-Nth-1f

N threads (1, 32) randomly write to a single preallocated 60GB file.

[rows #29-36]

files-cr—-Nth

N threads (1, 32) create 4 million 4KB files over many directories.

[rows #37-38]

files-rd-Nth N threads (1, 32) read from 1 million preallocated 4KB files over many directories. | [rows #39-40]
files-del-Nth N threads (1, 32) delete 4 million of preallocated 4KB files over many directories. [rows #41-42]
file-server File-server workload emulated by Filebench. Scaled up to 200,000 files. [row #43]
mail-server Mail-server workload emulated by Filebench. Scaled up to 1.5 million files. [row #44]
web-server Web-server workload emulated by Filebench. Scaled up to 1.25 million files. [row #45]

Table 2: Description of workloads and their corresponding result rows. For data-intensive workloads, we experimented with 4KB,
32KB, 128KB, and IMB 1/0O sizes. We picked dataset sizes so that both cached and non-cached data are exercised. The Results

column correlates these descriptions with results in Table 3.

fell into the red class: files—cr—1th [row #37] and
files—cr-32th [row #38].

Observation 5. Stackfs’s performance depends signif-
icantly on the underlying device. E.g., for sequential
read workloads [rows #1-12], Stackfs shows no per-
formance degradation for SSD and a 26-42% degrada-
tion for HDD. The situation is reversed, e.g., when a
mail-server [row #44] workload is used.

Observation 6. At least in one Stackfs configuration,
all write workloads (sequential and random) [rows #21—
36] are within the Green class for both HDD and SSD.

Observation 7. The performance of sequential read
[rows #1-12] are well within the Green class for both
HDD and SSD; however, for the seq—rd-32th-32f
workload [rows #5-8] on HDD, they are in Orange
class. Random read workload results [rows #13-20]
span all four classes. Furthermore, the performance
grows as I/O sizes increase for both HDD and SSD.

Observation 8. In general, Stackfs performs visi-
bly worse for metadata-intensive and macro workloads
[rows #37—45] than for data-intensive workloads [rows
#1-36]. The performance is especially low for SSDs.

Observation 9. The relative CPU utilization of Stackfs
(not shown in the Table) is higher than that of Ext4 and
varies in the range of +0.13% to +31.2%; similarly, CPU
cycles per operation increased by 1.2x to 10x times be-
tween Ext4 and Stackfs (in both configurations). This
behavior is seen in both HDD and SSD.

Observation 10. CPU cycles per operation are
higher for StackfsOpt than for StackfsBase for
the majority of workloads. But for the work-
loads seqg-wr—-32th-32f [rows #25-28] and
rnd-wr—-1th-1f [rows #30-32], StackfsOpt con-
sumes fewer CPU cycles per operation.

5.2 Analysis

We analyzed FUSE performance results and present
main findings here, following the order in Table 3.

5.2.1 Read Workloads

background queue B3
pending queue E==E
processing queue £Zz2
user daemon =3
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65536 -

4096 -

256 [

Number of FUSE
Requests (log,)

Types of FUSE Requests
Figure 3: Different types and number of requests generated by

StackfsBase on SSD during the seq-rd-32th-32f work-
load, from left to right, in their order of generation.

Figure 3 demonstrates the types of requests that were
generated with the seq-rd-32th-32f workload. We
use seg-rd-32th-32f as a reference for the figure
because this workload has more requests per operation
type compared to other workloads. Bars are ordered
from left to right by the appearance of requests in the ex-
periment. The same request types, but in different quan-
tities, were generated by the other read-intensive work-
loads [rows #1-20]. For the single threaded read work-
loads, only one request per LOOKUP, OPEN, FLUSH, and
RELEASE type was generated. The number of READ
requests depended on the I/O size and the amount of
data read; INIT request is produced at mount time so its
count remained the same across all workloads; and fi-
nally GETATTR is invoked before unmount for the root
directory and was the same for all the workloads.

Figure 3 also shows the breakdown of requests by
queues. By default, READ, RELEASE, and INIT are asyn-
chronous; they are added to the background queue first.




Table 3: List of workloads and corresponding performance results.

# | Workload 1/0 Size HDD Results SSD Results
(KB) EXT4 StackfsBase StackfsOpt| EXT4 StackfsBase StackfsOpt

(ops/sec) (% Diff) (% Diff) (ops/sec) (% Diff) (% Diff)
1 4 38382 -2.45* + 1.7 30694 S0.5% S0.9*
o | seqrd- 32 4805 S02° S22F 3811 +0.8" +0.3"
3 | lthelf 128 1199 Z0.86% 20 950 F 04 1
4 1024 150 Z09° S20F 119 +0.27 S0.3
5 4 1228400 | - 2.4* -3.0° 973450 +0.02* +2.1%
R 32 153480 24F 41" 121410 +0.7° +2.2°
R 28 38443 2.6 a4 30338 F 15 T 197
8 1024 4805 S25° “4.0° 3814.50 | -0.17 S04
9 4 11141 -36.9% -26.9% 32855 S0.17 -0.16"
10 | seq-rd- 32 1491 ~41.5° -30.3" 4202 S0.1° S1.8°
11 | 32th-32f 128 371 ~413" -29.8* 1051 S0.1° S0.2*
12 1024 46 “41.0° -28.3% 131 20.03* 207
13 4 243 -9.96" -9.95" 4712 -32.17 - 39.87
14 | tnd-rd- 32 232 7 75 2032 188 2507
Gl 128 191 oy 55 852 147 124
16 1024 88 29.0° 317 114 1537 1.5%
17 4 572 232 24998 276%
18 | rd-rd- 32 504 172 0273 1.9
19 | 32th-1f 128 278 - 34.4% 114" 1123 -20.1% 26
20 1024 41 -37.0* -15.0°7 126 -12.27 -1.9*
21 4 36919 26.2F S0.17 32959 ~9.0° +0.17
20 | Sed-Wr- 32 4615 -17.8° -0.16 4119 -25° +0.127
23 | 1th-1f 128 1153 166" 0.15° 1030 2 F0.0*
24 1024 144 17T 031F 129 S23° -0.08*
25 4 34370 S2.5° +0.17 32921 +0.05" +0.2°
26 ;‘;‘tlh"grz ; 32 4296 27 +0.0" 4115 +0.17 +0.17
27 128 1075 26" -0.02* 1029 20.04* +0.2°
28 1024 134 S24% S0.18° 129 S0.1F +0.27
29 4 1074 S0.7* S13* 16066 +0.9* S27.0°
30 | md-wr- 32 708 S0.1° S13° 4102 20¢ S13.07
3 | 1th-If 128 359 S0.1° S1.3* 1045 1.7F 207
32 1024 79 S0.01° S0.8 129 -0.02* S0.3*
33 4 1073 J0.9* S1.8° 16213 S0.7° 226.6"
T 32 705 +0.17 S0.7 4103 S22F -13.0°
oG [ 128 353 103 SN 1031 00 1003
36 1024 79 +0.17 -0.3* 128 +0.9* S0.3*
37 | filescr-1th | 4 30211
38 | files-cr-32th | 4 36590
39 | files-rd-1th 4 645
40 | files-rd-32th | 4 1263
41 | files-del-1th | - 1105 -4.0*
42 | files-del-32th | - 1109 S28° 2697 8563
43 | file-server - 1705 -26.3" -1.4* 5201
44 | mail-server | - 1547 Z45.0° 4.6% 11806
45 | web-server | - 1704 I +6.2° 19437

Green class (marked with *) indicates that the performance

either degraded by less than 5% or actually improved; Yellow class (*) includes results with the performance degradation in the
5-25% range; Orange class (*) indicates that the performance degradation is between 25-50%; And finally, the Red class (') is
for when performance decreased by more than 50%.



All other requests are synchronous and are added to
pending queue directly. In read workloads, only READ
requests are generated in large numbers. Thus, we dis-
cuss in detail only READ requests for these workloads.

Sequential Read using 1 thread on 1 file. The total
number of READ requests that StackfsBase generated
during the whole experiment for different I/O sizes for
HDD and SSD remained approximately the same and
equal to 491K. Our analysis revealed that this happens
because of FUSE’s default 128KB-size readahead which
effectively levels FUSE request sizes no matter what is
the user application I/O size. Thanks to readahead, se-
quential read performance of StackfsBase and Stackf-
sOpt was as good as Ext4 for both HDD and SSD.

Sequential Read using 32 threads on 32 files. Due to
readahead, the total number of READ requests generated
here was also approximately same for different I/O sizes.
At any given time, 32 threads are requesting data and
continuously add requests to queues. StackfsBase and
StackfsOpt show significantly larger performance degra-
dation on HDD compared to SSD. For StackfsBase, the
user daemon is single threaded and the device is slower,
so requests do not move quickly through the queues. On
the faster SSD, however, even though the user daemon
is single threaded, requests move faster in the queues.
Hence performance of StackfsBase is as close to that
of Ext4. With StackfsOpt, the user daemon is multi-
threaded and can fill the HDD’s queue faster so perfor-
mance improved for HDD compared to SSD.

Investigating further, we found that for HDD
and StackfsOpt, FUSE’s daemon was bound by the
max_background value (default is 12): at most, only 12
user deamons (threads) were spawned. We increased
that limit to 100 and reran the experiments: now Stackf-
sOpt was within 2% of Ext4’s performance.

Sequential Read using 32 threads on 1 file.
This workload exhibits similar performance trends to
seq-rd-1th-1f. However, because all 32 user
threads read from the same file, they benefit from the
shared page cache. As a result, instead of 32x more
FUSE requests, we saw only up to a 37% increase in
number of requests. This modest increase is because,
in the beginning of the experiment, every thread tries to
read the data separately; but after a certain point in time,
only a single thread’s requests are propagated to the user
daemon while all other threads’ requests are available
in the page cache. Also, having 32 user threads run-
ning left less CPU time available for FUSE’s threads to
execute, thus causing a slight (up to 4.4%) decrease in
performance compared to Ext4.

Random Read using 1 thread on 1 file. Unlike the
case of small sequential reads, small random reads did
not benefit from FUSE’s readahead. Thus, every appli-

cation read call was forwarded to the user daemon which
resulted in an overhead of up to 10% for HDD and 40%
for SSD. The absolute Ext4 throughput is about 20x
higher for SSD than for HDD which explains the higher
penalty on FUSE’s relative performance on SSD.

The smaller the I/O size is, the more READ requests
are generated and the higher FUSE’s overhead tended
to be. This is seen for StackfsOpt where performance
for HDD gradually grows from —10.0% for 4KB to —3%
for IMB I/O sizes. A similar situation is seen for SSD.
Thanks to splice, StackfsOpt performs better than Stack-
fsBase for large 1/O sizes. For IMB I/O size, the im-
provement is 6% on HDD and 14% on SSD. Interest-
ingly, 4KB I/O sizes have the highest overhead because
FUSE splices requests only if they are larger than 4KB.

Random Read using 32 threads on 1 file. Similar
to the previous experiment (single thread random read),
readahead does not help smaller I/O sizes here: every
user read call is sent to the user daemon and causes
high performance degradation: up to —-83% for Stackfs-
Base and —28% for StackfsOpt. The overhead caused by
StackfsBase is high in these experiments (up to —60% for
HDD and -83% for SSD), for both HDD and SSD, and
especially for smaller I/O sizes. This is because when 32
user threads submit a READ request, 31 of those threads
need to wait while the single-threaded user daemon pro-
cesses one request at a time. StackfsOpt reduced perfor-
mance degradation compared to StackfsBase, but not as
much for 4KB I/Os because splice is not used for request
that are smaller or equal to 4KB.

5.2.2 Write Workloads
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pending queue EEEE
processing queue £Z2Z2
user daemon =3
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Figure 4: Different types of requests that were generated by

StackfsBase on SSD for the seq-wr—32th-32f workload,
Jfrom left to right in their order of generation.

We now discuss the behavior of StackfsBase and
StackfsOpt in all write workloads listed in Table 3
[rows #21-36]. Figure 4 shows the different types
of requests that got generated during all write work-
loads, from left to right in their order of generation
(seg-wr-32th-32f is used as a reference). In case
of rnd-wr workloads, CREATE requests are replaced
by OPEN requests, as random writes operate on pre-



Stages of write () call processing Time| Time
(ps) | (%)
Processing by VFS before passing execu- | 1.4 24
tion to FUSE kernel code
FUSE request allocation and initialization 34 6.0
Waiting in queues and copying to user space | 10.7 | 18.9
Processing by Stackfs daemon, includes | 24.6 | 43.4
Ext4 execution
Processing reply by FUSE kernel code 13.3 | 235
Processing by VFS after FUSE kernel code | 3.3 5.8
Total 56.7 | 100.0

Table 4: Average latencies of a single write request generated
by StackfsBase during seq-wr-4KB-Ith-1f workload across
multiple profile points on HDD.

allocated files. For all the seg-wr workloads, due to
the creation of files, a GETATTR request was generated to
check permissions of the single directory where the files
were created. Linux VFS caches attributes and therefore
there were fewer than 32 GETATTRs. For single-threaded
workloads, five operations generated only one request:
LOOKUP, OPEN, CREATE, FLUSH, and RELEASE; how-
ever, the number of WRITE requests was orders of mag-
nitude higher and depended on the amount of data writ-
ten. Therefore, we consider only WRITE requests when
we discuss each workload in detail.

Usually the Linux VFS generates GETXATTR before
every write operation. But in our case StackfsBase
and StackfsOpt did not support extended attributes and
the kernel cached this knowledge after FUSE returned
ENOSUPPORT for the first GETXATTR.

Sequential Write using 1 thread on 1 file. The to-
tal number of WRITE requests that StackfsBase gener-
ated during this experiment was 15.7M for all I/O sizes.
This is because in StackfsBase each user write call is
split into several 4KB-size FUSE requests which are sent
to the user daemon. As a result StackfsBase degraded
performance ranged from —26% to —-9%. Compared to
StackfsBase, StackfsOpt generated significantly fewer
FUSE requests: between 500K and 563K depending on
the I/O size. The reason is the writeback cache that al-
lows FUSE’s kernel part to pack several dirty pages (up
to 128KB in total) into a single WRITE request. Ap-
proximately 3—12 of requests were generated in StackfsOpt
compared to StackfsBase. This suggests indeed that
each WRITE request transferred about 128KB of data (or
32 x more than 4KB).

Table 4 shows the breakdown of time spent (latencies)
by a single write request across various stages, during
the seg-wr-4KB-1th-1f workload on HDD. Taking
only major latencies, the write request spends 19% of its
time in request creation and waiting in the kernel queues;
43% of its time in user space, which includes time taken
by the underlying Ext4 to serve the write; and then 23%
of time during copy of the response from user space to
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kernel. The relative CPU utilization caused by Stack-
fsBase and StackfsOpt in segq—wr—4KB-1th-1f on
HDD is 6.8% and 11.1% more than native Ext4, re-
spectively; CPU cycles per operation were the same for
StackfsBase and StackfsOpt—4 X that of native Ext4.

Sequential Write using 32 threads on 32 files. Per-
formance trends are similar to seq—wr—1th-1f but
even the unoptimized StackfsBase performed much bet-
ter (up to —2.7% and —0.1% degradation for HDD and
SSD, respectively). This is because without the write-
back cache, 32 user threads put more requests into
FUSE’s queues (compared to 1 thread) and therefore
kept the user daemon constantly busy.

Random Write using 1 thread on 1 file. Performance
degradation caused by StackfsBase and StackfsOpt was
low on HDD for all I/O sizes (max —1.3%) because the
random write performance of Ext4 on HDD is low—
between 79 and 1,074 Filebench ops/sec, depending on
the I/0 size (compare to over 16,000 ops/sec for SSD).
The performance bottleneck, therefore, was in the HDD
I/0 time and FUSE overhead was invisible.

Interestingly, on SSD, StackfsOpt performance degra-
dation was high (-27% for 4KB I/0) and more than the
StackfsBase for 4KB and 32KB I/O sizes. The reason
for this is that currently FUSE’s writeback cache batches
only sequential writes into a single WRITE. Therefore,
in the case of random writes there is no reduction in
the number of WRITE requests compared to StackfsBase.
These numerous requests are processed asynchronously
(i.e., added to the background queue). And because of
FUSE’s congestion threshold on the background queue
the application that is writing the data becomes throttled.

For 1/O size of 32KB, StackfsOpt can pack the entire
32KB into a single WRITE request. Compared to Stack-
fsBase, this reduces the number of WRITE requests by
8 and results in 15% better performance.

Random Write using 32 threads on 1 file. This
workload performs similarly to rnd-wr-1th-1f and
the same analysis applies.

5.2.3 Metadata Workloads

‘We now discuss the behavior of Stackfs in all metadata
micro-workloads as listed in Table 3 [rows #37-42].

File creates. Different types of requests that got gen-
erated during the files—cr—-Nth runs are GETATTR,
LOOKUP, CREATE, WRITE, FLUSH, RELEASE, and FOR-
GET. The total number of each request type gener-
ated was exactly 4 million. Many GETATTR requests
were generated due to Filebench calling a fstat on
the file to check whether it exists or not before creat-
ing it. Files—cr-Nth workloads demonstrated the
worst performance among all workloads for both Stack-
fsBase and StackfsOpt and for both HDD and SSD. The
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Figure 5: Different types of requests that were generated by
StackfsBase on SSD for the £iles—rd—-1th workload, from
left to right in their order of generation.

reason is twofold. First, for every single file create, five
operations happened serially: GETATTR, LOOKUP, CRE-
ATE, WRITE, and FLUSH; and as there were many files
accessed, they all could not be cached, so we saw many
FORGET requests to remove cached items—which added
further overhead. Second, file creates are fairly fast in
Ext4 (3046 thousand creates/sec) because small newly
created inodes can be effectively cached in RAM. Thus,
overheads caused by the FUSE’s user-kernel communi-
cations explain the performance degradation.

File Reads. Figure 5 shows different types of requests
that got generated during the files—rd-1th work-
load. This workload is metadata-intensive because it
contains many small files (one million 4KB files) that are
repeatedly opened and closed. Figure 5 shows that half
of the READ requests went to the background queue and
the rest directly to the pending queue. The reason is that
when reading a whole file, and the application requests
reads beyond the EOF, FUSE generates a synchronous
READ request which goes to the pending queue (not the
background queue). Reads past the EOF also generate a
GETATTR request to confirm the file’s size.

The performance degradation for files-rd-1th
in StackfsBase on HDD is negligible; on SSD, however,
the relative degradation is high (-25%) because the SSD
is 12.5x faster than HDD (see Ext4 absolute through-
put in Table 3). Interestingly, StackfsOpt’s performance
degradation is more than that of StackfsBase (by 10%
and 35% for HDD and SSD, respectively). The rea-
son is that in StackfsOpt, different FUSE threads pro-
cess requests for the same file, which requires additional
synchronization and context switches. Conversely, but
as expected, for files-rd-32th workload, Stack-
fsOpt performed 40-45% better than StackfsBase be-
cause multiple threads are needed to effectively process
parallel READ requests.

File Deletes. The different types of operations that got
generated during the files—del-1th workloads are
LOOKUP, UNLINK, FORGET (exactly 4 million each).
Every UNLINK request is followed by FORGET. There-
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fore, for every incoming delete request that the appli-
cation (Filebench) submits, StackfsBase and StackfsOpt
generates three requests (LOOKUP, UNLINK, and FOR-
GET) in series, which depend on each other.

Deletes translate to small random writes at the block
layer and therefore Ext4 benefited from using an SSD
(7-8x higher throughput than the HDD). This neg-
atively impacted Stackfs in terms of relative num-
bers: its performance degradation was 25-50% higher
on SSD than on HDD. In all cases StackfsOpt’s per-
formance degradation is more than StackfsBase’s be-
cause neither splice nor the writeback cache helped
files—-del-Nth workloads and only added addi-
tional overhead for managing extra threads.

5.2.4 Macro Server Workloads

We now discuss the behavior of Stackfs for macro-
workloads [rows #43-45].
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Figure 6: Different types of requests that were generated by
StackfsBase on SSD for the file-server workload.

File Server. Figure 6 shows different types of oper-
ations that got generated during the file-server
workload. Macro workloads are expected to have a
more diverse request profile than micro workloads, and
file-server confirms this: many different requests
got generated, with WRITEs being the majority.

The performance improved by 25-40% (depending
on storage device) with StackfsOpt compared to Stack-
fsBase, and got close to Ext4’s native performance for
three reasons: (1) with a writeback cache and 128KB re-
quests, the number of WRITEs decreased by a factor of
17x for both HDD and SSD, (2) with splice, READ and
WRITE requests took advantage of zero copy, and (3) the
user daemon is multi-threaded, as the workload is.

Mail Server. Figure 7 shows different types of op-
erations that got generated during the mail-server
workload. As with the £ile-server workload, many
different requests got generated, with WRITESs being the
majority. Performance trends are also similar between
these two workloads. However, in the SSD setup, even
the optimized StackfsOpt still did not perform close to
Ext4 in this mail-server workload, compared to
file-server. The reason is twofold. First, com-
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Figure 7: Different types of requests that were generated by
StackfsBase on SSD for the mail-server workload.
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Figure 8: Different types of requests that were generated by
StackfsBase on SSD for the web—server workload.

pared to file server, mail server has almost double the
metadata operations, which increases FUSE overhead.
Second, I/0 sizes are smaller in mail-server which im-
proves the underlying Ext4 SSD performance and there-
fore shifts the bottleneck to FUSE.

Web Server. Figure 8 shows different types of re-
quests generated during the web-server workload.
This workload is highly read-intensive as expected from
a Web-server that services static Web-pages. The perfor-
mance degradation caused by StackfsBase falls into the
Red class in both HDD and SSD. The major bottleneck
was due to the FUSE daemon being single-threaded,
while the workload itself contained 100 user threads.
Performance improved with StackfsOpt significantly on
both HDD and SSD, mainly thanks to using multiple
threads. In fact, StackfsOpt performance on HDD is
even 6% higher than of native Ext4. We believe this
minor improvement is caused by the Linux VFS treating
Stackfs and Ext4 as two independent file systems and
allowing them together to cache more data compared to
when Ext4 is used alone, without Stackfs. This does not
help SSD setup as much due to the high speed of SSD.

6 Related Work

Many researchers used FUSE to implement file sys-
tems [3,9, 15,40] but little attention was given to under-
standing FUSE’s underlying design and performance.
To the best of our knowledge, only two papers stud-
ied some aspects of FUSE. First, Rajgarhia and Gehani
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evaluated FUSE performance with Java bindings [27].
Compared to this work, they focused on evaluating Java
library wrappers, used only three workloads, and ran
experiments with FUSE v2.8.0-prel (released in 2008).
The version they used did not support zero-copying
via splice, writeback caching, and other important fea-
tures. The authors also presented only limited informa-
tion about FUSE design at the time.

Second, in a position paper, Tarasov et al. character-
ized FUSE performance for a variety of workloads but
did not analyze the results [36]. Furthermore, they evalu-
ated only default FUSE configuration and discussed only
FUSE’s high-level architecture. In this paper we evalu-
ated and analyzed several FUSE configurations in detail,
and described FUSE’s low-level architecture.

Several researchers designed and implemented use-
ful extensions to FUSE. Re-FUSE automatically restarts
FUSE file systems that crash [33]. To improve FUSE
performance, Narayan et al. proposed to marry in-kernel
stackable file systems [44] with FUSE [23]. Shun et al.
modified FUSE’s kernel module to allow applications
to access storage devices directly [17]. These improve-
ments were in research prototypes and were never in-
cluded in the mainline.

7 Conclusion

User-space file systems are popular for prototyping new
ideas and developing complex production file systems
that are difficult to maintain in kernel. Although many
researchers and companies rely on user-space file sys-
tems, little attention was given to understanding the per-
formance implications of moving file systems to user
space. In this paper we first presented the detailed design
of FUSE, the most popular user-space file system frame-
work. We then conducted a broad performance charac-
terization of FUSE and we present an in-depth analysis
of FUSE performance patterns. We found that for many
workloads, an optimized FUSE can perform within 5%
of native Ext4. However, some workloads are unfriendly
to FUSE and even if optimized, FUSE degrades their
performance by up to 83%. Also, in terms of the CPU
utilization, the relative increase seen is 31%.

All of our code and Filebench workloads files are
available from http://filesystems.org/ fuse/.

Future work. There is a large room for improvement
in FUSE performance. We plan to add support for com-
pound FUSE requests and investigate the possibility of
shared memory between kernel and user spaces for faster
communications.
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