
AutoFS - An Automounting File System for FreeBSD 6.x

Adam David Alan Martin, and Erez Zadok
Stony Brook University

Appears in the Proceedings of the 2007 BSDCan Technical BSD Conference

Abstract
File systems store, organize, and retrieve data for

users and often these files are stored on remote ma-
chines, or removable media. The UNIX system requires
that these file systems must be mounted before files can
be accessed. In network environments, mounted file sys-
tems can result in extra traffic, even when the file sys-
tem is mounted, but no files are used. This extra traffic
is undesirable, and adversely affects the available net-
work bandwidth, and mounted file systems require more
in-kernel memory and datastructures to maintain them
as ”active.” Nobody wants to keep remote file systems
mounted, when they’re not in use. AutoFS works with
AMD, a daemon which auto-mounts file systems, to pro-
vide an on-demand mounting facility. The purpose of
AutoFS is to limit the load upon AMD, and to provide
a layer of kernel control over mounting. This control
is used to minimise the number of calls to the Auto-
mounting daemon (AMD) thereby providing better per-
formance as a user navigates the ”unified” file system
tree. This paper describes the implementation details of
AutoFS for FreeBSD 6.x

1 Introduction
The file system is one of the most fundamental con-
structs of modern computer usage to almost any class
of user. Anyone from the casual Web surfer to the ded-
icated developer relies upon this simple, subtle, yet cru-
cial technology to save, file, and later review his work.
One’s installed software is saved in various files in the
file system, as are one’s own valuable work. Because
this technology is so ubiquitous and relied upon, im-
provements in performance or capability to this simple
mechanism will reap great rewards for system vendors,
and users alike. System vendors can market their prod-
uct’s improvements over the status quo as value added,
and improve their competitive edge in the software sys-
tems market. Users benefit, because all great software
products will have these improvements to remain com-
petitive. However, economics aside, improvements to
the file system and it’s access methods are arguably the
easiest way to improve any software system.

File systems store, organize, and retrieve data for
users and often these files are stored on remote ma-

chines, or removable media. The UNIX system requires
that these file systems must be mounted before files can
be accessed. In network environments, mounted file sys-
tems can result in extra traffic, even when the file sys-
tem is mounted, but no files are used. This extra traffic
is undesirable, and adversely affects the available net-
work bandwidth, and mounted file systems require more
in-kernel memory and datastructures to maintain them
as ”active.” Nobody wants to keep remote file systems
mounted, when they’re not in use. AutoFS works with
AMD, a daemon which auto-mounts file systems, to pro-
vide an on-demand mounting facility. The purpose of
AutoFS is to limit the load upon AMD, and to provide
a layer of kernel control over mounting. This control
is used to minimise the number of calls to the Auto-
mounting daemon (AMD) thereby providing better per-
formance as a user navigates the ”unified” file system
tree.

Removable media can also be serviced by the auto-
mounter. Users often expect their removable media
to be available on-demand, without requiring a user-
issued command to attach the file system to the unified
tree. AutoFS can be used to intercept calls, for AMD,
and determine whether AMD must mount a file system.
AutoFS maintains an in-kernel state, to ease the burden
upon AMD, and to provide for the ability to service di-
rectory lookups which do not need AMD to mount file
systems. AutoFS can be used to ease the user-burden
for removable media – user access patterns for remov-
able media revolves around using a set of files from a
removable media file system, then removing the media,
and perhaps inserting another removable volume, to ac-
cess another set of files. For example, the user will insert
a CDROM, access a set of documents and images, then
remove the disc, and insert another, and copy a set of
binaries and music to another directory.

AutoFS must be written to have an internal timer, re-
moving stale file systems from the ”mounted” status,
should the file system be inactive. The current AutoFS
protocol is also very obsolete, and has many shortcom-
ings. I have been writing an AutoFS implementation for
FreeBSD, implementing a new protocol which will be
a model for other future implementations on other op-
erating systems. This AutoFS will have a restartable,

1



transaction based protocol. AMD, should it crash, must
be able to interact with AutoFS and find out the current
system state for the set of paths it monitors. This AutoFS
will allow ”in-place” mounting wherein the file system
can be mounted directly over a path that AutoFS moni-
tors, without forcing AutoFS to stop the AMD process.
The AMD mounter and AutoFS will communicate using
an ”asynchronous” protocol, whereby AutoFS can re-
quest several mounts of AMD simultaneously, and AMD
will report successes in any particular order. This will al-
low AMD to be rewritten or modified in a multithreaded
fashion, and allow for more responsive file system ac-
tivity on operations which will work with several paths
at once. AutoFS will also track an internal listing of
mountable and nonmountable paths, which nonmount-
able paths AMD should never receive notification about
access, but mountable paths AMD must be notified if the
path in question is not mounted.

Hopefully this will allow FreeBSD to move to the
forefront of the field regarding automount features, and
make the system a reference platform for the creation
of future AutoFS implementations on other systems. In
other words, developers will look to FreeBSD as an ex-
ample for implementation of this feature, opposed to the
normal situation, where FreeBSD must strive to work
like other systems. It is also possible that AutoFS could
be easily ported to other UNIX systems in the BSD fam-
ily, with great ease.

2 Design
We designed the AutoFS Protocol with the following
goals in mind:

Performance: AutoFS replaces the much slower
”NFS-server” emulation mechanism that AMD
uses by default on systems which lack AutoFS.
Our new AutoFS protocol allows for asynchronous
”transactions” between AMD and the kernel.

Asynchronicity: AutoFS’s protocol to userspace is
explicitly asynchronous. All ”transactions” are
tagged with an ID number, and are to be handled
in parallel. This allows multiple file system access
requests to separate directories to occur simultane-
ously.

Extensibility: The AutoFS protocol leaves a very
large space of undefined transaction commands for
future command creation. Each command struc-
ture has the size of the command packet embedded
in the header. This will allow the AutoFS kernel
module or user module to remove commands from
the queue which either does not understand. The
AutoFS protocol declares at startup time which ver-
sion it will enact.

Portability: The AutoFS protocol is not tied to any
system implementation or version, although our

implementation is FreeBSD based. The AutoFS
protocol is also independant of the communication
mechanism used to transmit the protocol.

Simplicity: The AutoFS protocol was made inten-
tionally simple. It has basic commands to support
mounting, unmount notification, protocol initializa-
tion, and simple error detection. Advanced con-
cepts, like hierarchical mounts, are implemented as
userspace constructs and actions upon the simple
framework provided.

AutoFS’s protocol is designed to be easy to imple-
ment from both ends, with minimal data transfer over-
head. It is ”fault tolerant” in the sense that it is
restartable, and all state information is stored on the
”server” or kernel side. The protocol provides com-
mands for exchanging state information at startup, or
restart. The userland program is responsible for all
mount and unmount actions, and can perform these ac-
tions in any way it chooses – including, but not limited to
mounting from a file system, populating a directory with
a script, copying files, executing version control activi-
ties, and much more.

AutoFS implements the following commands:

Acknowledge: This command can be sent by either
party (AutoFS, or an Automounter.) Its purpose is
to report that one party or the other has received a
message, and acted accordingly. Some command
transaction sequences require an ”ACK” to com-
plete the transaction.

Mount Request: This command is sent by the AutoFS
to the Automounter to notify that a path has been
accessed, and must now be made available. The
path that was accessed is passed along with this
command token.

Unmount Request: This command is a variant of the
AutoFS mount request command. (Both use the
same primary command number.) Unlike mount
request, unmount request notifies the Automounter
that the path argument is to be deactivated.

Mount Done: This command is sent in response
to a mount request or an unmount request com-
mand, and only sent by Automounter. It notifies
the AutoFS that the action on the path in question
has been completed.

Hello: This command is sent by the Automounter, to
AutoFS, to initialize a new session. The AutoFS
communication channel should allow for only one
Automounter at a time, per AutoFS instance.

Greeting: This command is sent by the AutoFS in
response to the ”Hello” command. AutoFS sends
some information to the Automounter in this com-
mand, including the protocol version it wishes to
communicate using, and the current state of the

2



AutoFS’s ”mountpoints.”
Greeting Response: This command is sent by

the Automounter in response to the ”Greeting”
command. The command can include a list of
”mountpoint” entries to add, modify, or delete.
AutoFS must send back an acknowledgement for
the ”mountpoint” modifications requested by this
command, if any.

Modify Mounts: This command will request
”mountpoint” tracking modification of AutoFS.
AutoFS must send back an acknowledgement for
the ”mountpoint” modifications requested by this
command. A null list will cause a mount list report
of the current state, without any changes.

Modify Mounts Acknowledge: This command sends
a list of currently tracked ”mountpoints” (post-
modification) back to the Automounter, from the
AutoFS. Any ”mountpoint” modification which
failed, can be implied by the lack of changes to the
current state for that ”mountpoint”

3 Implementation
We have implemented a prototype version of AutoFS on
FreeBSD 6.x. The AutoFS is a virtual file system which
can be compiled as a loadable kernel module (kld) for
FreeBSD 6.x. We have tested this code on FreeBSD 6.1
and 6.2.

Unlike traditional file systems, virtual file systems
have no real physical backing store. This means that,
for virtual file systems, the concepts of an inode, or a
superblock are quite different. Implmenting a virtual file
system from scratch, or even using pre-existing stack-
able file system code is a more difficult task than it
should be. At first, we started to implement AutoFS,
based upon NullFS. After continually reaching difficul-
ties related to allocation of memory and tracking file sys-
tem state, we concluded that this common task should
not need to be re-invented every time one wants to im-
plement a virtual file system.

Luckily, FreeBSD provides a framework and proto-
type system for handling virtual file systems. Free-
BSD ships with a number of virtual file systems already
installed, including ProcFS, and LinProcFS (Linux
ProcFS emulation.) Both of these file systems are imple-
mented on top of PseudoFS, a toolkit for making virtual
file systems. PseudoFS provides the programmer with
a set of functions to create virtual files, destroy virtual
files, and hooks to handle ”events” on these files – open,
close, read, write, and more. PseudoFS was not quite
adequate for our needs, but solved many of the original
problems inherent in building a virtual file system.

We forked PseudoFS, maintaining our own changes
to it. Eventually the changeset became so vast that we
decided to rename the modified version ”TemplateFS.”

This was to avoid confusion between stock PseudoFS
features, and the extensions we created. TemplateFS of-
fers these features above and beyond PseudoFS:

• Multiple instances of any file system type
• Ability to create instances of TemplateFS clients at

runtime
• Ability to destroy instances of TemplateFS clients

at runtime
• Per-inode hook for vfslookup() function
• vfs init() can call client code for its file system type
• Removed some unnecessary PseudoFS code for

supporting ProcFS like systems.

AutoFS required the ability to hook the vfslookup()
call. Instead of embedding our code directly into Tem-
plateFS, we created AutoFS as a client file system of
the TemplateFS code, following the PseudoFS model.
This was partly because AutoFS was developed origi-
nally against PseudoFS, and partly because we felt that
others might benefit from the TemplateFS work itself.

From the kernel perspective, the AutoFS code for
FreeBSD has four major components. Of these, only
one is really system independent.

• Device Driver: The code component which drives
the virtual device for AutoFS communications

• Protocol Handler: The code component which
parses the AutoFS protocol, and invokes other por-
tions to perform the specified actions

• File system Client: The TemplateFS client code
which implements the AutoFS file system seman-
tics

• Expiry Thread: A kernel thread which runs and
tracks current ”mountpoints”, and triggers the user-
land Automounter to invoke ”unmount” actions.

The Automounter requires a protocol handler for this
AutoFS protocol. Erez Zadok’s AMDutils package pro-
vides a straightforward way of implementing this han-
dler.

3.1 Sample Transactions

AutoFS and Automounter initialization transaction:

• The Automounter announces its presence and re-
quests to speak a protocol version.

• The AutoFS responds with the highest version
number that it can speak. It also passes a ”mount”-
state list to the Automounter, such that the Auto-
mounter can track ”mounts” or make adjustments
to this state list.

• The Automounter returns a list of modifications it
wishes for this session, if anything. Otherwise it
just returns an acknowledgement.

• The AutoFS returns a ”Modify Mount Acknowl-
edge” command, with a list of modified ”mounts”,

3



if any.

AutoFS requests a ”mount” of Automounter

4 Related Work
Apple’s volfs, which runs on Darwin and MacOS X, is
an automounting file system of a different nature. Un-
like the traditional automounter file systems, volfs au-
tomatically creates mountpoints for file systems based
upon available network share resources. In this respect,
it is much like an automounting system in reverse. The
mounts are still requested explicitly by the user, but the
creation of the mount hierarchy is automated. Apple has
automounting tools for CD-ROM and other removable
media formats, but these function very differently.

AM-UTILS, the automounting utilty suite, is a suite
of tools including an automounter. This automounter
can simulate an NFS fileserver, and allow userland em-
ulation of an automounting file system facility. This ca-
pability, while universal, is inherently slow, due to the
overhead of NFS’s RPC mechanism.

SIGMA, the Simulation Infrastructure to Guide Mem-
ory Analysis [3], represents another approach to mem-
ory profiling. This tool is used in three phases:instru-
mentation, in which SIGMA instruments all data-access
instructions in the executable image of the application
under test;trace generation, in which the instrumented
code generates a compressed trace of all memory ac-
cesses; andsimulation, in which the compressed trace
is replayed against a simulator of the computer’s cache
hierarchy and memory manager. This allows collection
of low-level cache statistics (TLB misses, cache misses
for all levels of cache, page faults, etc.) for the applica-
tion running on a variety of memory systems.

The mprof tool concentrates on determining the
cause of heap memory allocations [7]. This consists of a
library which is linked into an executable in order to in-
terpose onmalloc andfree. Althoughmprof requires
the developer to link with a custom library, we presume
that the linking could be accomplished using dynamic
loader interposing as we do. The library’s implementa-
tions of the memory allocator functions record the size
of the area allocated and the top five addresses from the
call chain that led to this allocation, obtained by inspect-
ing the return addresses stored in the stack. This data is
post-processed and correlated with symbol information
from the binary image of the application under test to
produce anallocation call graph, in which each func-
tion is credited with its callees’ allocations.

The Valgrind suite of tools simulates program execu-
tion using dynamic binary translation [5]. It includes
three memory profiling tools. Memcheck, the first of
these tools, checks for most kinds of memory errors. It
can pinpoint the location of buffer overruns and identify
memory leaks. The second, Cachegrind, collects cache

statistics, including the number of memory accesses and
the number of cache misses, for each line of code. The
third, Massif, profiles heap allocation; it outputs a graph
that shows the amount of memory allocated over time
by each line of code that makes allocations. These are
by nature not real-time, but provide very high-resolution
data.

Solaris’slibumem providesmalloc andfree imple-
mentations that collect data about allocated regions [1].
Developers can instrument programs with these func-
tions when the executable is loaded, as Memcov does.
The Solaris OS Modular Debugger (MDB) [6] can
search for references to allocated areas in a memory
dump of a running program. Those areas that are not
referenced are flagged as memory leaks. Thelibumem

allocation functions can also be configured to pad al-
located areas withred zonesso that MDB can detect
bounds violations, and they can similarly fill recently
freed areas to detect writes to those areas.

The profiler in IBM’s Rational Test RealTime instru-
ments memory allocation and deallocation functions by
directly transforming the source code immediately be-
fore compilation [2]. The instrumented functions pro-
file allocations using techniques like those described
above forlibumem. Profiling is not real-time, but instru-
mented programs can be configured so that events, such
as calls to a particular function, trigger the profiler to an-
alyze the running program and report issues, including
memory leaks.

Electric Fence debugs memory-access errors using
memory-protection hardware [4]. However, it is not in-
tended to profile allocations or memory accesses like
Memcov and other profilers discussed here. Electric
Fence’s implementation ofmalloc places a read- and
write-protected page after each allocation. The protected
pages trap the program as soon as it overruns or under-
runs a buffer, revealing exactly which instruction made
the illegal read or write. Electric Fencefree also pro-
tects pages with freed allocations in order to detect ac-
cesses to freed regions, and reports unfreed allocations
when the program exits.

5 Conclusions
We have presented and demonstrated Memcov, an inno-
vative toolkit for building memory profilers. It isflexible,
providing insight not only into an application’s memory
allocation behavior but also into its memory accesses,
thus allowing the detection not only of leaks but of in-
efficient memory usage. It isnon-invasive, performing
large portions of its logic outside the context of the pro-
gram being instrumented and requiring no additional in-
strumentation or analysis phases. Finally, it issimple,
providing a straightforward and easy-to-understand in-
terface for new profiling applications. We developed

4



two profilers using Memcov, showing how they can be
used to gain insight into how applications use memory.
We also demonstrated that Memcov can be implemented
with moderate overheads.

Future Work. We intend to design a leak detector
based on Memcov, flagging areas that have not been
accessed for a long time as potential leaks. We will
reduce the penalty incurred by erroneously monitoring
commonly-accessed areas by designing the detector to
monitor allocations less frequently as more accesses to
them are detected. This will leave accesses to those al-
locations uninstrumented for most of the program’s exe-
cution. Memcov will use a decision process that tries to
monitor rarely-accessed allocations. Profiling these al-
locations incurs less overhead, yet they are of greater in-
terest, since they are more likely to be unused or leaked
memory—i.e., they are more likely to represent a bug.

Additionally, we intend to explore graphical represen-
tations for allocation information that will allow pro-
grammers to quickly prioritize potential leaks and inef-
ficient allocations by frequency of access, size, and how
much of the allocation is accessed. These capabilities
will complement Memcov’s real-time data acquisition,
making a complete tool for diagnosing inefficiencies in
memory allocation and access.

6 Acknowledgments

Alfred Perlstein, Robert Watson, and Benno Rice pro-
vided valuable input at varioius stages of the design and
implementation.

This work was made possible thanks to a Google
Summer of Code award, in the Summer of 2006.

???? How do we change references?

References
[1] R. Benson. Identifying Memory Management

Bugs Within Applications Using the libumem Li-
brary, June 2003. http://access1.sun.com/

techarticles/libumem.html.

[2] J. Campbell. Memory profiling for C/C++
with IBM Rational Test RealTime and IBM
Rational PurifyPlus RealTime, April 2004.
http://www-128.ibm.com/developerworks/

rational/library/4560.html.

[3] L. DeRose, K. Ekanadham, and J. K. Hollingsworth.
SIGMA: A Simulator Infrastructure to Guide Mem-
ory Analysis. InProceedings of the Supercomputing
Conference 2002 (SC2002), Baltimore, MD, USA,
November 2002.

[4] B. Perens.efence(3), April 1993. linux.die.net/
man/3/efence.

[5] J. Seward, N. Nethercote, and J. Fitzhardinge. Val-
grind. http://valgrind.kde.org, August 2004.

[6] M. Shapiro. Solaris Modular Debugger Guide (So-
laris 8). Fatbrain, October 2000.

[7] B. Zorn and P. Hilfiger. A Memory Allocation Pro-
filer for C and Lisp Programs. InProceedings of the
Summer 1998 USENIX Conference, Berkeley, CA,
USA, June 1998.

5


